Digital mirror devices and liquid crystal displays in maskless lithography for fabrication of polymer-based holographic structures

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Rahlves, M.; Kelb, C.; Rezem, M.; Schlangen, S.; Boroz, K. et al.: Digital mirror devices and liquid crystal displays in maskless lithography for fabrication of polymer-based holographic structures. In: Journal of Micro/ Nanolithography, MEMS, and MOEMS 14 (2015), Nr. 4, 15051SSP. DOI: https://doi.org/10.1117/1.JMM.14.4.041302

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1754

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 640




Kleine Vorschau
Zusammenfassung: 
Polymer-based holographic and diffractive optical elements have gained increasing interest due to their potential to be used in a broad range of applications, such as illumination technology, micro-optics, and holography. We present a production process to fabricate polymer-based diffractive optical elements and holograms. The process is based on maskless lithography, which is used to fabricate optical elements in photoresist. We discuss several lab-level lithography setups based on digital mirror devices and liquid crystal devices with respect to illumination efficiency, resolution, and contrast. The entire optical setup is designed with emphasis on low-cost components, which can be easily implemented in an optical research lab. In a first step, a copy of the microstructures is replicated into optical polymeric materials by means of a soft stamp hot embossing process. The soft stamp is made from polydimethylsiloxan, which is coated onto the microstructure in the photoresist. The hot embossing process is carried out by a self-made and low-cost hot embossing machine. We present confocal topography measurements to quantify the replication accuracy of the process and demonstrate diffractive optical elements and holographic structures, which were fabricated using the process presented. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE).
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2015
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 328 51,25%
2 image of flag of United States United States 102 15,94%
3 image of flag of China China 43 6,72%
4 image of flag of France France 16 2,50%
5 image of flag of Korea, Republic of Korea, Republic of 15 2,34%
6 image of flag of Taiwan Taiwan 12 1,88%
7 image of flag of Japan Japan 10 1,56%
8 image of flag of Turkey Turkey 9 1,41%
9 image of flag of United Kingdom United Kingdom 9 1,41%
10 image of flag of Russian Federation Russian Federation 8 1,25%
    andere 88 13,75%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.