From global glacier modeling to catchment hydrology: bridging the gap with the WaSiM-OGGM coupling scheme

Download statistics - Document (COUNTER):

Pesci, M.H.; Schulte Overberg, P.; Bosshard, T.; Förster, K.: From global glacier modeling to catchment hydrology: bridging the gap with the WaSiM-OGGM coupling scheme. In: Frontiers in Water 5 (2023), 1296344. DOI: https://doi.org/10.3389/frwa.2023.1296344

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/16528

Selected time period:

year: 
month: 

Sum total of downloads: 13




Thumbnail
Abstract: 
Coupled glacio-hydrological models have recently become a valuable method for predicting the hydrological response of catchments in mountainous regions under a changing climate. While hydrological models focus mostly on processes of the non-glacierized part of the catchment with a relatively simple glacier representation, the latest generation of standalone (global) glacier models tend to describe glacier processes more accurately by using new global datasets and explicitly modeling ice-flow dynamics. Yet, to the authors' knowledge, existing catchment-scale coupled glacio-hydrological models either do not include these most recent advances in glacier modeling or are simply not available to other users. By making use of the capabilities of the free, distributed, physically-based Water Flow and Balance Simulation Model (WaSiM) and the Open Global Glacier Model (OGGM), a coupling scheme is developed to bridge the gap between global glacier representation and local catchment hydrology. The WaSiM-OGGM coupling scheme is used to further assess the impacts under future climates on the glaciological and hydrological processes in the Gepatschalm catchment (Austria), by considering a combination of three climate projections under the Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Additionally, the results are compared to the original WaSiM model with the integrated Volume-Area (VA) scaling approach for modeling glaciers. Although both models (WaSiM with VA scaling and WaSiM-OGGM coupling scheme) perform very similar during the historical simulations (1971–2010), large discrepancies arise when looking into the future (2011–2100). In terms of runoff, the VA scaling model suggests a reduction of the mean monthly peak between 10–19%, whereas a reduction of 26–41% is computed by the coupling scheme. Similarly, results suggest that glaciers will continuously retreat until 2100. By the end of the century, between 20–43% of the 2010 glacier area will remain according to the VA scaling model, but only 1–23% is expected to remain with the coupling scheme. The results from the WaSiM-OGGM coupling scheme raises awareness of including more sophisticated glacier evolution models when performing hydrological simulations at the catchment scale in the future. As the WaSiM-OGGM coupling scheme is released as open-source software, it is accessible to any interested modeler with limited or even no glacier knowledge.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 10 76.92%
2 image of flag of United States United States 2 15.38%
3 image of flag of Indonesia Indonesia 1 7.69%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse