On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions

Download statistics - Document (COUNTER):

Liu, H.C.; Pape, F.; Zhao, Y.; Ellersiek, L.; Denkena, B. et al.: On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions. In: Tribology Letters 71 (2023), Nr. 1, 10. DOI: https://doi.org/10.1007/s11249-022-01684-2

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/14646

Selected time period:

year: 
month: 

Sum total of downloads: 17




Thumbnail
Abstract: 
Oil-in-water (O/W) emulsions are water-based lubricants and used as fire-resistant hydraulic fluids and metalworking fluids (MWFs) in industry. The (elasto-)hydrodynamic film-forming properties of O/W emulsions have been studied extensively in literature. Typical elastohydrodynamic lubrication (EHL) behaviors are revealed at low rolling speeds followed by a starved EHL regime at elevated speeds. These emulsions are self-prepared and mostly stable only for a limited time ranging from hours to several days. By contrast, the film-forming behavior of water-miscible commercial MWFs (long-term stable O/W emulsions) has rarely been reported. This restricts the understanding of the lubrication status of many tribological interfaces in manufacturing processes, e.g., the chip-tool contact in cutting. In this work, the (elasto-)hydrodynamic film-forming property of two commercial MWFs is investigated by measuring the film thickness on two ball-on-disc test rigs using different optical interferometry techniques. For comparison, two self-prepared simple O/W emulsions with known formulation have also been investigated. Experimental results from the two test rigs agree well and show that the two self-prepared emulsions have typical EHL behaviors as reported in literature. However, for the two commercial MWFs, there is almost no (elasto-)hydrodynamic film-forming ability over the whole range of speeds used in this study. This could be explained by the cleaning and re-emulsification effects of the MWFs. The lubrication mechanism of the two MWFs is mainly boundary lubrication rather than hydrodynamic lubrication. Graphical Abstract: [Figure not available: see fulltext.].
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 9 52.94%
2 image of flag of United States United States 5 29.41%
3 image of flag of Ukraine Ukraine 1 5.88%
4 image of flag of Indonesia Indonesia 1 5.88%
5 image of flag of China China 1 5.88%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse