Electronic, Optical, Mechanical and Li-Ion Storage Properties of Novel Benzotrithiophene-Based Graphdiyne Monolayers Explored by First Principles and Machine Learning

Download statistics - Document (COUNTER):

Mortazavi, B.; Shojaei, F.; Shahrokhi, M.; Rabczuk, T.; Shapeev, A.V. et al.: Electronic, Optical, Mechanical and Li-Ion Storage Properties of Novel Benzotrithiophene-Based Graphdiyne Monolayers Explored by First Principles and Machine Learning. In: Batteries 8 (2022), Nr. 10, 194. DOI: https://doi.org/10.3390/batteries8100194

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/13998

Selected time period:

year: 
month: 

Sum total of downloads: 31




Thumbnail
Abstract: 
Recently, benzotrithiophene graphdiyne (BTT-GDY), a novel two-dimensional (2D) carbon-based material, was grown via a bottom-up synthesis strategy. Using the BTT-GDY lattice and by replacing the S atoms with N, NH and O, we designed three novel GDY lattices, which we named BTHP-, BTP- and BTF-GDY, respectively. Next, we explored structural, electronic, mechanical, optical, photocatalytic and Li-ion storage properties, as well as carrier mobilities, of novel GDY monolayers. Phonon dispersion relations, mechanical and failure behavior were explored using the machine learning interatomic potentials (MLIPs). The obtained HSE06 results reveal that BTX-GDYs (X = P, F, T) are direct gap semiconductors with band gaps in the range of 2.49–2.65 eV, whereas the BTHP-GDY shows a narrow indirect band gap of 0.06 eV. With appropriate band offsets, good carrier mobilities and a strong capability for the absorption of visible and ultraviolet range of light, BTF- and BTT-GDYs were predicted to be promising candidates for overall photocatalytic water splitting. The BTHP-GDY nanosheet, noticeably, was found to yield an ultrahigh Li-ion storage capacity of over 2400 mAh/g. The obtained findings provide a comprehensive vision of the critical physical properties of the novel BTT-based GDY nanosheets and highlight their potential for applications in nanoelectronics and energy storage and conversion systems.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 14 45.16%
2 image of flag of United States United States 7 22.58%
3 image of flag of Saudi Arabia Saudi Arabia 2 6.45%
4 image of flag of India India 2 6.45%
5 image of flag of China China 2 6.45%
6 image of flag of Japan Japan 1 3.23%
7 image of flag of Indonesia Indonesia 1 3.23%
8 image of flag of Europe Europe 1 3.23%
9 image of flag of Spain Spain 1 3.23%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse