Understanding the Light-induced Lifetime Degradation and Regeneration in Multicrystalline Silicon

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Bredemeier, D.; Walter, D.; Herlufsen, S.; Schmidt, J.: Understanding the Light-induced Lifetime Degradation and Regeneration in Multicrystalline Silicon. In: Energy Procedia 92 (2016), S. 773-778. DOI: https://doi.org/10.1016/j.egypro.2016.07.060

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1196

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 277




Kleine Vorschau
Zusammenfassung: 
In this contribution, we focus on improving the fundamental understanding of the carrier lifetime degradation and regeneration observed in block-cast multicrystalline silicon (mc-Si) wafers under illumination at elevated temperature. We observe a pronounced degradation in lifetime at 1 sun light intensity and 75̊C after rapid thermal annealing (RTA) in a belt-firing furnace at a set peak temperature of 900̊C. However, almost no lifetime instability is detected in mc-Si wafers which are fired at a peak temperature of only 650̊C, clearly showing that the firing step is triggering the degradation effect. Lifetime spectroscopy reveals that the light-induced recombination centre is a deep-level centre with an asymmetric electron-to-hole capture cross section ratio of 20±7. After completion of the degradation, the lifetime is observed to recover and finally reaches even higher carrier lifetimes compared to the initial state. While the lifetime degradation is found to be homogeneous, the regeneration shows an inhomogeneous behaviour, which starts locally and spreads later laterally throughout the sample. Furthermore, the regeneration process is extremely slow with time constants of several hundred hours. We demonstrate, however, that by increasing the regeneration temperature, it is possible to significantly speed up the regeneration process so that it might become compatible with industrial solar cell production. To explain the observed lifetime evolution, we propose a defect model, where metal precipitates in the mc-Si bulk dissolve during the RTA treatment and the mobile metal atoms bind to a homogeneously distributed impurity. Restructuring and subsequent dissociation of this defect complex is assumed to cause the lifetime degradation, whereas a subsequent diffusion of the mobile species to the sample surfaces and crystallographic defects explains the regeneration.
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Erstveröffentlichung: 2016
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 203 73,29%
2 image of flag of China China 29 10,47%
3 image of flag of United States United States 23 8,30%
4 image of flag of Taiwan Taiwan 4 1,44%
5 image of flag of Singapore Singapore 4 1,44%
6 image of flag of Vietnam Vietnam 3 1,08%
7 image of flag of South Africa South Africa 2 0,72%
8 image of flag of United Kingdom United Kingdom 2 0,72%
9 image of flag of Korea, Republic of Korea, Republic of 1 0,36%
10 image of flag of France France 1 0,36%
    andere 5 1,81%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.