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Abstract

Existing and new slender structures made of hyperelastic multilayer composite materials
subject to highly dynamic loads, e.g., wind turbines, helicopters, cars, speedboats or
submarines inter alia, are very complex. Their dynamic analysis requires fully nonlinear
formulations, at least from the kinematic and geometric point of view, and also to some
extent from the material point of view. Thus, simulations in time-domain involving
large displacements, rotations and strains could be necessary to predict their mechanical
behavior accurately. Numerical procedures to carry out such simulations rely firstly on the
partial discretization in space of the governing equations, for instance with finite elements.
These semi discrete equations are further discretized in time with an integration scheme.
The resulting discrete equations are in fact very stiff and therefore, the computation of
the long-term behavior could be problematic. In many applications, the introduction of
constraints is also necessary for rendering more complex structures. Besides introducing
a new level of complexity, this can sharpen conditioning problems already present in the
fully discrete problem. Additionally, we also require procedures able to annihilate the
unwanted unresolved high-frequency content without upsetting of the underlying physics.
However, the simultaneous satisfaction of all these requirements is a very challenging task.

The main objective of this work is to provide means intended for helping to understand
further the nonlinear dynamics of beam and shell structures made of hyperelastic multilayer
composite materials subject to highly dynamic loads. To accomplish this main goal, we
propose a unifying computational approach that relies on: i) a director-based finite-element
formulation for geometrically exact beams with general cross-section properties; ii) a
director-based finite-element formulation for solid-degenerate shells made of hyperelastic
multilayer composite materials; iii) a unifying description of rigid bodies, geometrically
exact beams and solid-degenerate shells and their combination with kinematic pairs,
which avoids inherently the necessity of rotational degrees of freedom; and, iv) a robust
integration scheme based on the average vector field. Additionally, we propose: v) the
particularization of the principal geodesic analysis to identify motion patters exhibited by
beam structures in a purely nonlinear setting; and, vi) a new conservative/dissipative
integration method for general nonlinear mechanical systems, which relies on high-order
correction terms that optimally modify the midpoint rule. Moreover, the excellent
numerical performance of the proposed unifying framework and procedures is illustrated
by means of a good number of examples with different difficulty levels.





Kurzfassung

Gegenwärtige und zukünftige dynamisch beanspruchte, schlanke Strukturen aus mehr-
schichtig verbundenen, hyperelastischen Werkstoffen, z. B. Windenergieanlagen und
Hubschrauber usw., sind sehr komplex. Eine genaue Untersuchung im Zeitbereich er-
fordert den Einsatz von Methoden, die kinematische, geometrische sowie, bis zu einem
gewissen Grad, materielle Nichtlinearitäten berücksichtigen sollten. Daher könnten Simula-
tionen mit Beachtung von großen Verschiebungen, Drehungen und Verzerrungen nötig sein,
um das mechanische Verhalten akkurat zu vorhersagen zu vermögen. Zunächst werden die
Bewegungsgleichungen räumlich diskretisiert. Dann werden die zum Teil diskretisierten
Gleichungen mittels eines Integrationsverfahrens zeitlich diskretisiert. Solche diskreten
Gleichungen sind sehr steif, sodass sich die Berechnung der langzeitigen Lösung erschwert.
Darüber hinaus ist die Einführung von Nebenbedingungen oft nötig, um komplexere
Strukturen aufstellen zu können, wodurch sich die Komplexität erhöht wird und uner-
wünschte Eigenschaften noch verschärft werden. Um Robustheit zu gewinnen, sollen
Berechnungsverfahren hergeleitet werden, die die zugrunde legende Physik in gewissem
Maße erhalten können und gleichzeitig den hochfrequenten Anteil der Lösung unterdrücken
können. Die Erfüllung dieser Anforderungen stellt sich als sehr herausfordernd dar.

Das Hauptziel dieser Arbeit liegt an der Entwicklung von Berechnungsverfahren zur Ver-
tiefung des Verständnises des dynamischen Verhaltens von Balken- und Schalenstrukturen.
Um dieses Ziel zu erreichen, wird ein umfassender Ansatz vorgeschlagen. Dieser besteht aus:
i) Einer auf Direktoren basierenden, Finite-Elemente-Formulierung für den geometrisch
exakten Balken mit allgemeinen Querschnittseigenschaften; ii) einer auf Direktoren
basierenden, Finite-Elemente-Formulierung für die Kontinuumsmechanik-basierte Schale
aus mehrschichtig verbundenen, hyperelastischen Werkstoffen; iii) einer vereinheitlichten
Beschreibung von Starrkörpern, Balken und Schalen und deren Kopplung mittels kine-
matischer Nebenbedingungen; und, iv) einem robusten Integrationsverfahren basierend
auf dem gemittelten Vektorfeld. Des Weiteren wird Folgendes ebenfalls vorgeschlagen:
v) Die Partikularisierung der Hauptgeodätenanalyse zur nichtlinearen Identifikation von
Bewegungsmoden an Balkenstrukturen; und, vi) ein neues konservatives/dissipatives
Integrationsverfahren für allgemeine nichtlineare mechanische Systeme basierend auf
optimierten Modifizierungen höherer Ordnung, die die Defizite der Mittelpunktsregel
beheben. Die sehr gute Leistung des vorgeschlagenen Ansatzes wird durch mehrere
Beispiele unterschiedlicher Komplexität nachgewiesen.
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1. Introduction

1.1. Motivation

Existing and new slender structures made of hyperelastic multilayer composite materials
subject to highly dynamic loads, e.g., wind turbines, helicopters, cars, speedboats or
submarines, are very complex mainly due to their shape that can be sophisticated, the
materials employed for their fabrication, the way in which they carry the loads, etc, see
Fig. 1-11. The corresponding transient analysis requires the development and application
of fully nonlinear formulations (at least from the kinematic point of view, see Fig. 1-22,
and also to some extent from the material point of view). One important aspect is
that the load-carrying capacity of these structures is given by their geometric shape.
Therefore, the correct description of the kinematic and mechanical behavior is of major
relevance, specially in the context of their integrated design process supported by transient
simulations. Moreover, such simulations are required to be accordingly accompanied by
validation tests that usually show large scatter due to a high sensitivity to geometric and
material imperfections, the difficulty to set properly boundary conditions and applied
loads, and therefore, these are very complicated to prepare and certainly very expensive.

Numerical procedures to carry out transient simulations rely firstly on the discretization
in space of the continuous governing equations, for instance with finite elements. Then,
the semi discrete equations are further discretized in time with an integration scheme.
The resulting fully discrete equations for this kind of structures are very stiff, a feature
that is made evident by the large eigenvalue spectrum of the system matrices, i.e., mass
and stiffness matrices tend to be not well-conditioned. The computation of long-term
convergent responses could be problematic, even using well-established procedures and
commercial codes. Many applications require constraints (e.g., supports, joints and
junctions) to render more complex structures, introducing a new level of complexity and
sharpening the conditioning problems present at the system matrices. Certainly, making
the work of the iterative solver even more difficult. Additionally, any acceptable procedure
must be able to annihilate the unresolved high-frequency content, while simultaneously
avoiding the upsetting of conservation laws, e.g., linear and angular momenta, energy, etc.
However, dealing with all these aspects at once is rather a very challenging task.

1Picture made available by Pixabay under Pixabay Lizenz.
2Picture by George Becker, made available by Pexels under Pexels License.
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Figure 1-1.: Military helicopter during a flight maneuver.

Figure 1-2.: Wind turbine subject to seemly large blade deflections.
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1.2. Literature review

Mostly slender structures can be modeled by means of two specialized structural elements,
namely beams and shells. Meanwhile, beams are one-dimensional structural models,
i.e., prismatic elements, in which one dimension is much more larger than the two
remaining ones. Shells are two-dimensional structural models, i.e., elements described by
a mean surface that in general is non flat and whose thickness is relatively very small.
Simplifying this idealization further, we can obtain structural elements for plates and
membranes as special cases. Even provided that the descriptions of beams and shells
strongly differ, they share as a characteristic that their load-carrying capacity is not
only given by the material properties, but also by their geometric shape. Moreover,
their dynamic behavior is typically described by a set of nonlinear partial differential
equations in time and space, a set of initial conditions and a set of boundary conditions.
This description can be also complemented by algebraic equations that are necessary to
set additional kinematic constraints. As these governing equations are analytically non
solvable, we are required to look a solution through the numerical way. For this reason, this
work is devoted to develop robust computational procedures to investigate the nonlinear
dynamics of beam and shell structures, which will rely on three basic ingredients, i.e., a
finite element formulation for geometrically exact beams, a finite element formulation for
solid-degenerate shells, and conservative/dissipative time integration methods. On this
basis, the remaining of this subsection provides a brief on these three main ingredients,
highlighting some critical aspects and the role that they play toward a robust and fully
consistent treatment of such kind of structural idealizations.

1.2.1. Geometrically exact beams

Beam-like structural elements can be classified into two main families according to their
deformation response. The first one groups non-shearable beams, whose planar cross
section remains always flat and perpendicular to the tangent vector associated with the
curve that describes the beam axis. In the linear context, we have the Euler-Bernoulli
model, and the Rayleigh model. The last one does consider the inertial contribution due
to the rotation of the cross section and can be understood as a marginal improvement
of the Euler-Bernoulli model. In a nonlinear context, we have the generalization of the
Rayleigh beam, the so-called Kirchhoff model. The second one groups shearable beams,
whose planar cross section remains always flat as well, but not longer perpendicular to the
tangent vector associated with the curve that describes the beam axis. In a linear setting,
we have the shear beam model, and the Timoshenko model. The last one does consider
the inertial contribution due to the rotation of the cross section. In a nonlinear setting,
we have the generalization of the Timoshenko beam, the so-called geometrically exact
beam or the Reissner-Simó model. The configuration space related to the geometrically
exact beam model, i.e., all admissible positions of the beam axis (three possibilities of
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motion) and all admissible orientations of the cross sections (another three possibilities of
motion), is very rich, but also very complex mathematically speaking. This is due to the
presence of finite rotations that describe the orientation of the cross sections. Since we
want to develop methods able to handle the nonlinear dynamics of structures like wind
turbine blades or aircraft wings, which in general exhibit arbitrary cross section properties
and are prone to undergo shear deformation and shear forces, the most adequate beam
model for our purpose is provided by the geometrically exact beam theory. Therefore,
this model is one of the main ingredients of this work. Next, we summarize some of the
most notable contributions done during the last decades.

Reissner [74] formulated a one-dimensional large-strain beam theory for the plane case.
Such a work can be considered as the first seminal contribution toward the generalization
of the Timoshenko beam model. Following a continuum mechanics approach, Bathe
and Boloruchi [9] discussed fundamental aspects regarding the formulation of three-
dimensional geometrically nonlinear beam elements. Simó [89] extended the concepts
considered by Reissner in [74] to the three-dimensional case, from which resulted the
so-called geometrically exact beam theory. Cardona and Géradin [25] developed
perhaps the first fully objective finite element based on the geometrically exact beam
theory and a material description of the rotation group. The concept of objectivity, i.e., the
invariance of the strain measures under rigid body motions, plays a very critical role. Even,
provided that the strain measures in their continuous setting are objective, an inadequate
finite-element approximation can easily destroy this crucial property. For instance, the
first finite-element approximation proposed by Simó and collaborators was not objective.
Hodges [48] proposed a mixed variational formulation for beams that is based on exact
intrinsic equations. Gruttmann et al. [44] developed a three-dimensional beam finite
element based on a Timoshenko beam kinematic, where the strain measures are derived
from the Green-Lagrange strain tensor as usual in the mechanics of solids. The authors
showed also the connection between the proposed strain measures and the standard ones.

Romero and Armero [81] derived an objective finite element formulation for geomet-
rically exact beams. Such approach relies on the straightforward interpolation of the
directors (three orthonormal vectors that describe univocally the orientation of the cross
section). Betsch and Steinmann [15] presented a brief overview of the constrained
dynamics of nonlinear beams. The authors considered the interpolation of the direc-
tors, where the mutual orthonormality at the nodes is achieved by imposing holonomic
constraints. Zupan and Saje [106] derived an objective finite element formulation for
geometrically exact beams, in which the strain vectors are unknown functions. Motivated
by the critical role that rotations play in the context of geometrically exact beams,
Romero [76] presented an exhaustive review and classification in regard to the parame-
terization and interpolation of rotations and provided hints regarding their performance
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and convergence properties. Boyer and Primault [19] proposed a theory specialized
for very slender beams. That work can be considererd as one of the first attempts toward
the formulation of a geometrically exact beam theory for Kirchhoff rods. Yu et al.
[105] considered beams with initially large twisting and large curvature in the context
of thin-walled structures. The proposed approximated theory is asymptotically correct
and is able to handle material anisotropy. Mäkinen [61] derived an improved version
of the formulation proposed by Cardona and Géradin in [25], which, beyond being
objective like in its original version, is also path independent. The path-indenpendence
property, i.e., for conservative loading the work produced through any arbitrary closed
path is identically zero, is also a fundamental property of a finite element approximation
and can be seriously compromised when updated-Lagrangian formulations are chosen.

Auricchio et al. [8] emphasized some intrinsic features of the three-dimensional beam
model proposed by Simó in [89]. The formulation was also re-derived in a consistent
and compact form. Pimenta et al. [71] developed a model for geometrically nonlinear
rods equipped with nonlinear material laws, with which the authors achieved the objec-
tivity at the discrete level. Romero [77] compared the absolute nodal coordinate and
geometrically exact formulations. The author covered a wide range of aspects, including
implementation effort, performance, robustness, interfacing with material models and
other structural members, and accuracy. As a final conclusion, it was not possible to claim
the superiority of one approach over the other one. Mata et al. [63] generalized the
geometrically exact beam theory to take in account material nonlinearities in a dynamic
context. Ghosh and Roy [39] developed an objective scheme using the rotation vector
parameterization following an Eulerian formulation approach, which is unusual in the
beam context. Pai [69] considered linear and nonlinear shear-deformable beam theories,
including Timoshenko’s theory and geometrically exact beam theory. Special attention
is paid to the order deficiency, shear correction factors, shear locking and nonlinearities.
As a follow-up of the previous work, Pai [70] considered an advanced total-Lagrangian
displacement-based geometrically exact beam theory without singularities by using a
non-conventional description of rotations.

Sonneville et al. [96] formulated a geometrically exact beam model on the three-
dimensional special Euclidean group. Taking a look on that formulation, one can realize
that the equations derived by these authors are equivalent to the equations proposed
by Hodges in [48]. Eugster et al. [34] developed a new three-director-based finite
element formulation for geometrically exact beams that considers an adjustment of the
variational formulation for dealing with specific features of the director interpolation.
Following an alternative path, Genovese [38] proposed a two-director-based geometrically
exact beam model. However, the mathematical treatment of this approach is tedious
in comparison to the three-director approach, since the third director is obtained as
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the cross product of other two directors and not as an additional primal director field.
Yoon and Lee [104] investigated the performance of a continuum element equipped
with a beam kinematics under large twisting. De Miranda et al. [30] discussed briefly
the constitutive assumptions normally done for linear elastic isotropic and orthotropic
materials in the framework of thin-walled beams. Ortigosa et al. [68] embedded the
geometrically exact beam theory in the polyconvex framework. The formulation proposed
by Pimenta et al. [71] was enhanced by Gay Neto [36] in the context of mechanisms.
And recently, Sonneville et al. [95] considered the interpolation of the kinematic fields
describing the configuration of geometrically exact beams. Two kinematic representations
were investigated: the classical approach that treats the displacement and rotation fields
separately and the motion approach that treats those two fields as a unit.

1.2.2. Solid-degenerate shells

Shell-like structural elements can be classified into two main types according to their
modeling approach. The first one groups all approaches that are directly derived from
a shell theory that is presented in a resultant form, i.e., force and moment resultants
that are obtained by analytical integration of stresses across the thickness direction.
Moreover, they rely on special strain measures and constitutive laws. In a nonlinear
context, the Kirchhoff-Love model, which does not admit transverse shear deformation,
and the Reissner-Mindlin, which does consider transverse shear deformations, are the
main exponents of this type. The second one groups all approaches that are derived from
the continuum mechanics theory after degenerating the solid with allowance of small
changes of the thickness. These shell models are also well-known as solid-degenerate
shells. They rely on standard strain measures and constitutive laws and therefore, the
finite strain setting is straightforward and the knowledge made in the field of material
modeling can be spilled on them without any kind of specialization. This fact makes
this approach very appealing. Depending on the kinematic description chosen, many
sub-models can arise, for instance, the kinematics can be based upon the description
of motion of the upper and lower surfaces. Under a certain set of assumptions, this
will render an eight-node formulation, in which each node will comprise three degrees of
freedom. Another possibility is to employ the kinematics that comes from the standard
shell theory, i.e., description of the mean surface and the director field on it. Under a
different set of assumptions, this will render a four-node formulation, in which each node
will comprise six degrees of freedom. The configuration space based on the description
of the mean surface and its director field can become very tedious from the algorithmic
point of view, when the enforcement of the non-extensible condition on the director is
required. Once again, we want to develop methods able to handle the nonlinear dynamics
of structures like wind turbine blades or aircraft wings that are made of hyperelastic
multilayer composite materials. In many cases, these structures may undergo moderate
or even large deflections within the reversible nonlinear material regime. Due to this fact,
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the most adequate shell model for our purpose is then provided by the solid-degenerate
shell approach. Therefore, this model is also one of the main ingredients of this work.
Next, we summarize some of the most notable contributions done during the last decades.

Dvorkin and Bathe [31] developed a four-node shell element for general nonlinear
analysis, which is applicable to the analysis of thin and thick shells, the well-known MITC4,
in which the assumed natural strain method was employed to subdue the shear-locking
problem very effectively. Bathe and Dvorkin [10] discussed the requirements for linear
and nonlinear analysis. Those works certainly represent a pioneering contribution in
the context of solid-degenerate shells. To elucidate the relation among the different
formulation approaches, Büchter and Ramm [22] addressed the controversy between
solid-degenerate approaches and shell theories and showed that the formulations based on
the same mechanical assumptions differ only in the kind of discretization. The authors
paid also special attention to the performance under large rotations and the integration
across the thickness. Bucalem and Bathe [21] presented two mixed shell finite elements
of high order for general nonlinear analysis as extension of the element proposed by
Dvorkin and Bathe in [31]. Bütcher et al. [23] enabled the introduction of unmodi-
fied three-dimensional constitutive laws by means of the enhanced assumed strain method
proposed by Simó and Rifai [90]. As main result, a 7-parameter theory was proposed.
Following a similar path, Braun et al. [20] presented a study on the use of arbitrary
complete three-dimensional constitutive equations including composite and laminates
without reduction or manipulation in nonlinear analysis. Choi and Paik [27] presented
the development of a four-node shell element for the analysis of structures undergoing
large deformations, which is free of serious shear and membrane locking problems and
undesired spurious kinematic deformation modes. Betsch and Stein [13, 14] developed
a four-node shell element that incorporates unmodified three-dimensional constitutive
models. This element was improved by means of the enhanced assumed strain method
proposed by Simó and Armero [91]. Betsch et al. [11] extended the previously
developed shell element to deal with hyperelastic materials, specifically the Neo-Hookean
and Mooney-Rivlin types were investigated. Bischoff and Ramm [16] formulated a
geometrically nonlinear version of the enhanced assumed strain approach in terms of
Green-Lagrange strains and reduced the underlying three-field formulation to a two-field
formulation by imposing the orthogonality condition of the stress field with respect to the
assumed strain field. The analysis done confirmed previously observed equivalences among
mixed-hybrid elements. During the nineties, research in the field of solid-degenerate shells
at the groups in Stuttgart and in Hannover were carried out simultaneously and both
groups provided innovative technical solutions in the context of mixed formulations.

Hauptmann and Schweizerhof [46] proposed a systematic formulation for solid-shell
elements with selective reduced integration intended for linear and nonlinear analyses
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that only employ displacement degrees of freedom. Klinkel et al. [51] derived a
continuum based three-dimensional shell element for the nonlinear analysis of laminated
shell structures, where the anisotropic material behavior of layered shells was modeled
using a linear elastic orthotropic material law in each layer. Sze et al. [98] proposed an
eight-node solid-shell element for the nonlinear analysis, in which assumed natural strains,
modified stiffness and reduced integration were combined to subdue different locking
problems. Vu-Quoc and Tan [102] developed an eight-node solid-degenerate shell
element and tested it with several integration methods. Sansour et al. [83] investigated
the performance of enhanced strain shell finite elements in large strain deformations
for rubber-like materials. Tan and Vu-Quoc [99] presented a low-order solid-shell
element for the analysis of large deformable multilayer shell structures with nonlinear
materials. The element has only displacement degrees of freedom, and an optimal number
of enhancing assumed strain parameters to pass the patch tests (both membrane and
out-of-plane bending) and to remedy volumetric locking.

Klinkel et al. [52] improved the behavior of an eight-node solid-shell element by includ-
ing a displacement field, an assumed strain field and an assumed stress field. In contrast to
other formulations, the independent stress and the enhanced assumed strain interpolations
were not assumed to be orthogonal. That approach represented a major novelty and
provided a superior in-plane bending behavior with respect to existing formulations.
Schwarze and Reese [86] presented a reduced integration eight-node solid-shell finite
element for the linear analysis, which includes the assumed natural strain and enhanced
assumed strain methods and is equipped with an efficient and locking-free hourglass
stabilization. Carrera et al. [26] revisited and considered the mixed interpolation of
tensorial components (basically, the MITC shell element family proposed by Bathe and
collaborators), which was extended to include variable kinematics. Moreira et al. [65]
proposed an approach for the layerwise formulation of composite structures that relies on
solid-shell finite elements with enhanced strain variables. That approach is able to deal
with large displacements, large deformations and also material nonlinear behavior.

Schwarze and Reese [87] extended the previously developed reduced integration eight-
node solid-shell element to the large deformation regime. Those authors claimed that
the proposed formulation does not require a co-rotational coordinate system to retain
material objectivity. Vu-Quoc and Tang [103] derived an hybrid enhanced assumed
stress element to predict the interlaminar stresses in multilayer beam, plate and shell
structures. Sussman and Bathe [97] investigated the response of an extended version of
the MITC4 shell element at large strains. Reinoso and Blázquez [73] developed and
validated an eight-node solid-degenerate shell element intended for multilayer composite
structures based on the equivalent single layer approach. Caliri et al. [24] presented a
very detailed literature review on plate and shell theories for composite structures with
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highlights to the finite element method. Rah et al. [72] proposed a multilayer locking-free
hybrid-stress solid-shell element with high accurate interlaminar stress resolution across
the thickness direction, which is restricted to the geometrically linear elastic analysis.
And recently, Ko et al. [53, 54] presented an extensively tested version of the element
MITC4, in which the membrane strains components are assumed and tied/obtained from
four triangular subdomains, avoiding additional enhanced strain variables.

1.2.3. Conservative/dissipative time integration

A key feature in the numerical approximations intended for the transient analysis of
conservative mechanical systems is their ability to exactly preserve the first integrals
of their motion (energy, momenta, symplecticity, . . . ), replicating the properties of the
continuous counterparts. This interest in structure preserving integrators is hence justified
by the qualitative similarity between the dynamical behaviour of a mechanical system
and the discrete dynamics generated by the time integration scheme. It is not easy to
formulate numerical schemes that unconditionally preserve one or more invariants of the
discrete motion. Generally speaking, this goal is accomplished by ensuring that some of
the abstract mathematical structures that appear in the continuous picture are replicated
in the discrete dynamics, which is typically evidenced by the invariance under spatial
translations, spatial rotations and time shifts inter alia. However, it is well-known that,
in general, all invariants cannot be preserved for a fixed time step size scheme. Among
the structure preserving integrators, we can distinguish two main families. The first one
is able to preserve the linear and angular momenta as well as the symplectic structure,
and is labeled as symplectic integration. The second one is able to preserve the linear
and angular momenta as well as the total energy, and is labeled as energy-momentum
integration. The later one has superior performance in the context of stiff equations. In
addition to this, the modification of the method to introduce controlled dissipation and
to warrant unconditional stability is realizable on the basis of well founded mathematical
arguments. Since we want to develop robust procedures to analyze the nonlinear dynamics
of beam and shell structures (the later ones normally described by very stiff equations),
this family of integration methods provides the most adequate setting for our purpose,
being the time integration our third main ingredient. Next, we summarize some of the
seminal contributions done during the past decades that deal with this topic.

Simó and Tarnow [92] developed, in the context of nonlinear elastodynamics, the first
energy and momentum conserving algorithms. This pioneering work showed that for Saint
Venant-Kirchhoff materials, such structure preserving methods can be easily obtained by
a simple modification of the midpoint rule in which the strain, instead of being evaluated
at the midpoint instant, should be taken as the average of the strains at the boundaries of
the time interval. This simple idea was later applied to the conserving integration of shells
by Simó and Tarnow [93], of rods by Simó et al. [94] and Romero and Armero [81],
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of contact problems by Armero and Petőcz [2], of multibody systems by Goicolea
and García Orden [40] and Betsch et al. [12], etc. Moreover, it was generalized
to hyperelastic materials of arbitrary type including anistotropy by González [42] and
Laursen and Meng [58]. The key idea for such generalization is the definition of a
discrete gradient operator, a consistent approximation of the gradient that guarantees
the strict conservation of energy in Hamiltonian systems. Gotusso [43] proposed an
approach to discretize the Lagrange equations that for the conservative case preserves the
energy of the system exactly. Itoh and Abe [50] derived a method for discrete mechanics
that does not rely on derivatives, but on difference quotients, with which the preservation
of the Hamiltonian was achieved. González [41] developed a formalism for the design of
conserving time-integration schemes for systems with symmetry, for instance systems that
are invariant under certain transformations like spatial translations, spatial rotations and
time shifts. Through the formal introduction of the discrete directional derivative implicit
second-order conserving schemes can be constructed for general systems which preserve the
Hamiltonian along with a certain class of other first integrals arising from affine symmetries.

Romero [78] showed that there exist an infinite number of second-order, energy-momentum
methods for nonlinear elastodynamics. The existence of infinite second-order approxima-
tions relies on the fact that the definition of the discrete derivative is very vague. However,
finding some of these approximation is generally non trivial. Also it is worth to mention
the work of Sansour and collaborators [84, 85] in the context of nonlinear dynamics of
shells and mixed finite elements. Alternatively, one might derive conserving methods by
defining an average vector field as proposed by McLachlan et al. [64], who followed the
work of Harten et al. [45] in the context of general hyperbolic systems. Rojas et al.
[75] employed the average vector field for physics-based animations. It is well-known, that
many Hamiltonian problems are modeled with stiff differential equations for which con-
serving integration schemes might not be the most robust. For these problems, numerical
methods with controllable numerical dissipation in the high-frequency range provide often
a practical solution. Kuhl and Ramm [56] presented the generalized energy-momentum
method for the analysis of shells. That approach was developed within the framework of
the generalized-α method, and enforces the preservation of momenta and energy by means
of additional algebraic constraints. Kuhl and Crisfield [55] extended the generalized
energy-momentum method to allow at the same time guaranteed conservation or decay of
total energy and controllable numerical dissipation of unwanted high frequency response.
Bottasso and Borri [17] developed energy conserving/decaying integration methods for
the nonlinear dynamics of beams. Relying on the previous work, Bottasso and Borri
[18] derived a general methodology for the dynamic analysis of general nonlinear multibody
systems composed of rigid and deformable bodies, the latter under the small strain assump-
tion. While preserving linear and angular momenta, the method can conserve or dissipate
energy. Based on a modification of the discrete gradient operator, Armero and Romero
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[3, 4] developed a family of schemes for nonlinear three-dimensional elastodynamics that
exhibits this kind of algorithmic dissipation, while preserving the momenta and providing
a strict control of the energy, applicable to elastodynamics, as well as rods and shells
[5, 80]. Ibrahimbegovic and Maumouri [49] also presented a conservative/decaying
integration scheme for geometrically exact beams with controllable dissipation. Noels
et al. [67] investigated the performance of an energy-momentum algorithm at large
time-steps in the context of hypoelastic materials. Romero [79] described the structure of
the most commonly employed integration schemes of this type and focus in their numerical
analysis for linear and nonlinear problems. Conde Martín and García Orden [29]
investigated the performance of time energy-momentum integration schemes for flexible
multibody systems with dissipative physical mechanisms. Nguyen et al. [66] proposed
an energy-momentum method for geometrically exact beams, in which the enhanced
strain methods was employed to avoid locking problems. Lavrenčič and Brank [59]
showed that due to unresolved high-frequency content, numerical dissipation is absolutely
necessary for an efficient implicit dynamic simulation of complex shell buckling and
post-buckling behavior. And recently, García Orden [35] discussed the properties of
several formulas for the discrete derivative in the field of multibody systems.

1.3. Main research gaps

The previous section shows that a large number of approaches intended for geometrically
exact beams, solid-degenerate shells and conservative/dissipative time integration exists
and even if classical and well-developed, these research topics are still very meaningful due
to: i) complex structures or multibody systems that can be represented upon beam-like
and shell-like structural elements are of special relevance in the engineering context; and,
ii) among all the available approaches, the superiority of one approach over the other
ones cannot be claimed. Moreover, there is no work available in the literature that deals
with the development of a unifying robust computational framework that combines rigid
bodies, geometrically exact beams (with general cross section properties, which is very
important for instance to describe bend-twist coupling effects of wind turbine blades
and/or to capture aeroelastic phenomena like flutter and divergence present at aircraft
wings) and solid-degenerate shells (made of hyperelastic multilayer composite materials)
with a momentum-preserving, energy-preserving/dissipative integration method. Such an
approach requires: i) dealing at once with the very different configuration spaces of rigid
bodies, geometrically exact beams and solid-degenerate shells; and, ii) combining them
with integration methods able to strictly retain the conservation/dissipation properties
irrespective from the involved configuration spaces. Additionally: iii) the identification of
motion patterns/modes based on the nonlinear configuration spaces; and, iv) the optimal
design of robust time integration schemes based on averaged evaluations have not been
accomplished before in a formal basis. This work addresses all these four topics.
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1.4. Theoretical framework

From the modeling point of view, the present work relies on two basic structural models,
i.e., the geometrically exact beam and the solid-degenerate shell. Additionally and due
to its great wealth in kinematic concepts, we cannot leave out the rigid body. Along
the remaining of this chapter we refer to these three basic idealizations as the canonical
models. Even, provided that the modeling of these idealizations is rather a classical topic,
the consistent treatment and combination within a single framework is far from trivial.
This fact is mainly due to the very different kinematic descriptions involved. Typically, in
the context of rigid bodies and geometrically exact beams, the description of orientation
in space requires to deal with the Lie group

SO(3) :=
{
Λ ∈ R3×3, ΛTΛ = I, det(Λ) = 1

}
, (1.1)

where Λ is the rotation tensor, and its corresponding Lie algebra

so(3) :=
{
ξ̂ ∈ R3×3, ξ̂ = −ξ̂T

}
, (1.2)

where ξ̂ is the skew-symmetric representation of ξ ∈ R3. This is a manifold that possesses
the very favorable group structure, i.e., it satisfies the group axioms: i) the product of
two rotations is a rotation; ii); there is a neutral element called the identity; and, iii) for
each rotation, there is a reciprocal element called the inverse (in this particular case, the
inverse is computed by means of the transposition). In contrast with this, considering
shells requires usually to deal with the unit 2-sphere

S2 :=
{
d ∈ R3 | d · d = 1

}
, (1.3)

where d is sometimes referred to as director. This manifold does not possess any favorable
algebraic structure, specifically like-group structure, see for instance Eisenberg and
Guy [32]. It means that different treatments are required. For instance, a systematic
description of rigid bodies and geometrically exact beams can be addressed in a natural
way due to the similarities of the kinematic descriptions. Nevertheless, the combination
of these two mechanical models with shells requires devoted handling. Along this section,
we describe systematically the involved models by means of an unifying approach, which
completely circumvents the necessity of incurring to rotational degrees of freedom. The ap-
proach starts from the equilibrium statement for a continuum body and after introducing
a brief on symmetries, is specialized to the canonical models. In a very direct manner, the
proposed systematic description allows the combination of the basic mechanical models
among them and with the robust integration scheme, topics that are addressed later in
the coming four chapters.
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For further details on the formal aspects briefly exposed within the scope of this subsection,
the reader may refer to Tonti [100], Arnold [6], Landau and Lifshitz [57], Ciarlet
[28], Marsden and Huges [62], Simmonds [88], Antman [1], Rubin [82], Lurie
[60], Truesdell and Noll [101], Arnold et al. [7], Heard [47], Epstein [33] and
references therein.

1.4.1. Equilibrium statement

As customary, let us consider a continuum body characterized by two reference sets denoted
by B0, the original configuration, and by Bt = ϕt ◦ ϕ−1

0 (B0), the current configuration,
both open sets of E3 (R3 with the standard Euclidean structure), see Fig. 1-3. Where
ϕt ◦ϕ−1

0 is merely a smooth regular motion from the original configuration to the current
one, i.e., its inverse and derivatives are well defined everywhere, and the symbol ◦ denotes
the composition rule. Here, a chart is given by the pair (θ,ϕt), where θ is a subset of
R3 and the mapping function ϕt : θ 7→ x(θ; t). The configuration and velocity fields are
described by the vector fields x(θ; t) ∈ X ⊆ E3 and v(θ; t) ∈ V ⊆ E3, correspondingly.
The dynamics of the system considered can be weakly formulated as∫

B0
(
〈
δv,π(v)− p(ẋ)

〉
+
〈
δx, π̇(v)− f ext +HTλ

〉
+〈〈

δE[(x),S]
〉〉

+
〈
δλ,h

〉
)dB0 = 0 .

(1.4)

The angle brackets
〈
·, ·
〉

: W × W∗ → R stand for an appropriate dual pairing, in
which W is a vector space (whose elements are called vectors) and W∗ is its algebraic
dual space (whose elements are called covectors or one-forms) and the double brackets〈〈
·, ·
〉〉

: (W × W) × (W∗ × W∗) → R represent an appropriate double dual pairing.
δx ∈ Tx(θ;t)X and δv ∈ Tv(θ;t)V are admissible variations of the configuration and velocity
fields, respectively. The displacement-based momentum density p(ẋ) as well as the
velocity-based momentum density π(v) belong to T ∗v(θ;t)V and are defined as

p(ẋ) = %0ẋ and π(v) = %0v , (1.5)

correspondingly. Where %0 stands for the mass density in B0. The time rate of the velocity-
based momentum density π̇(v) as well as the external force density f ext belong to T ∗x(θ;t)X .
The Green-Lagrange strain measure, E := {E[ ∈ T ∗x(θ;0)X × T

∗
x(θ;0)X | skew(E[) = 0}, is

given in the curvilinear setting by

E[(θ; t) = 1
2 (G(θ; t)−G(θ; 0)) . (1.6)

The pullback of the metric tensor at Bt through the regular motion ϕt ◦ϕ−1
0 , i.e., G(θ; t) :

T ∗x(θ;0)X × T
∗
x(θ;0)X → R>0, is defined as
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G(θ; t) = δij
∂xi(θ; t)
∂θa

∂xj(θ; t)
∂θb

ga(θ; 0)⊗ gb(θ; 0) , (1.7)

where δij are the components of the Euclidean metric tensor, ga ∈ Tx(θ;0)X defined as
ga = ∂xi

∂θa ii with ii for i from 1 to 3 standing for the elements of the standard orthonormal
basis in E3, i.e., the space of column vectors, and the elements of the covariant basis
ga ∈ T ∗x(θ;0)X defined in the usual form, that is,

〈
gb, ga

〉
= δab , the elements of the

contravariant basis. The symbol ⊗ stands for the outer product. The admissible variation
of the Green-Lagrange strain tensor is denoted by δE[. The specific strain measure chosen
here is accompanied by the appropriate stress definition, S := {S] ∈ Tx(θ;0)X × Tx(θ;0)X |
skew(S]) = 0}, the second Piola-Kirchhoff stress tensor, which in the case of general
hyperelastic materials is given by S] = ∂W int(E[)

∂E[
, whereW int(E[) stands for the associated

strain energy. Additionally, we have that

〈〈
δE[(x),S]

〉〉
= 〈δx,f int(x,S])〉 , (1.8)

where f int ∈ T ∗x(θ;t)X represents the vector density of internal forces. Such alternative
representation will result very convenient in the remaining of this section. Finally,
H ∈ Rn × T ∗x(θ;t)X is the Jacobian matrix of h = 0 ∈ Rn, a finite-dimensional field
of holonomic restrictions and δλ is an admissible variation of the Lagrange multipliers
λ : Bt × [0, T ]→ Rn.

Figure 1-3.: The continuum body model.

1.4.2. Symmetries, momenta and energy

We would like to introduce next the implications that symmetry (the invariace of the
Lagrangian function of a given mechanical system under certain transformations, e.g., spa-
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tial translations, spatial rotations and time shifts) has on the form of the internal forces
and the appropriate notions of linear and angular momentum in the space X . For that,
the relation between the configuration space X and the ambient space E3 has to be
carefully considered. We start by defining Φ : E3 ×X → X to be a smooth action of E3

on the configuration space such that Φ(ξ,x) is the configuration of the system after all
its points have been translated in space by constant vector ξ. The infinitesimal generator
of this translation at x is the vector τξ(x) ∈ TxX defined as

τξ(x) = ∂

∂ι

∣∣∣∣
ι=0

Φ(ι ξ,x) , (1.9)

with ι ∈ R. Let us now assume that the strain energy is invariant under translations, i.e.,

W int = W int ◦ Φ . (1.10)

Then, choosing a one parameter curve of translations Φ(ι ξ, ·) in Eq. (1.10) and differenti-
ating with respect to ι, it follows that a translation invariant strain energy implies that
the internal forces satisfy

0 = ∂

∂ι

∣∣∣∣
ι=0

W int(Φ(ι ξ,x)) =
〈
∂W int(x)

∂x
, τξ(x)

〉
= −

〈
f int(x), τξ(x)

〉
. (1.11)

To study the conservation of angular momentum, we must repeat the same argument
but considering now a second smooth action Ψ : E3 × X → X such that Ψ(ξ,x) is the
configuration of the system after all its points have been rotated in ambient space by the
application of a rotation exp[ξ̂]. Defining, as before, the infinitesimal generator of this
action to be the vector ρξ(x) ∈ TxX calculated as

ρξ(x) = ∂

∂ι

∣∣∣∣
ι=0

Ψ(ι ξ,x) , (1.12)

again with ι ∈ R. If the strain energy is now rotation invariant, i.e.,

W int = W int ◦Ψ . (1.13)

Then the internal forces must also satisfy

0 = ∂

∂ι

∣∣∣∣
ι=0

W int(Ψ(ι ξ,x)) =
〈
∂W int(x)

∂x
,ρξ(x)

〉
= −〈f int(x),ρξ(x)〉. (1.14)

The precise notion of linear and angular momentum for the system defined in this section
is provided as follows: Consider a mechanical system with configuration space X ⊆ E3

and vanishing external forces. Let Φ(ξ, ·),Ψ(ξ, ·) be the translation and rotation actions
on the configuration space with infinitesimal generators τξ and ρξ, respectively, and define
the linear momentum l ∈ E3 and the angular momentum j ∈ E3 as the two quantities
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that verify
〈ξ, l〉 =

〈
ξ,

∫
B0
π(v)dB0

〉
=
∫
B0
〈τξ(x),π(v)〉dB0 (1.15)

and
〈ξ, j〉 =

〈
ξ,

∫
B0
x× π(v)dB0

〉
=
∫
B0
〈ρξ(x),π(v)〉dB0 . (1.16)

Then, the linear momentum is conserved if the strain energy is invariant with respect
to translations. Similarly, if the strain energy is invariant under rotations, the angular
momentum is a constant of the motion. Moreover, the total energy

H =
∫
B0

(1
2〈v,π(v)〉+W int(x)

)
dB0 (1.17)

is preserved by the motion, due to its time invariance.

The proof of momenta conservation follows from taking the derivative of these quantities
and using the argument of the time integral in Eq. (1.4) with admissible variations
(δx, δv) = (τξ(x),0) and (ρξ(x),0), respectively. The conservation of energy property
follows similarly by choosing (δx, δv) = (v,0) for v = ẋ.

1.4.3. Specialization to canonical models

First canonical model : the rigid body

The position of any given point of the rigid body shown in Fig. 1-4 can be written as

x(θ; t) = x̄(t) + θ1d1(t) + θ2d2(t) + θ3d3(t), (1.18)

in which x̄ ∈ X̄ ⊆ E3 is the position vector of a reference point and d1, d2 and d3 in S2

are three mutually orthonormal vectors, i.e., directors. On that basis, the rotation tensor
can be simply obtained as Λ = di ⊗ ii ∈ SO(3), in which ii for i from 1 to 3 stands for
the elements of the dual basis of E3 (R3 with the standard Euclidean structure), i.e.,
the space of row vectors. θ = (θ1, θ2, θ3) is a set of parameters chosen in the way that
θ̄ = θ1d1 + θ2d2 + θ3d3 describes the position of any given point of the body relative to
the reference point described by x̄. Analogously, the velocity can be written as

v(θ; t) = v̄(t) + θ1w1(t) + θ2w2(t) + θ3w3(t), (1.19)

in which v̄ ∈ V̄ ⊆ E3 is the translational velocity of the adopted reference point and w1,
w2 and w3 are three director velocity vectors. Then Eq. (1.4) takes the form∫

B0
(
〈
δv,π(v)− p(x)

〉
+
〈
δx, π̇(v)− f ext +HTλ

〉
+
〈
δλ,h

〉
)dB0 = 0 . (1.20)
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After performing the integration over the entire volume, the governing equation for the
rigid body, in its weak form, becomes

〈
δv̄,π0(v̄,w1,w2,w3)− p0(x̄,d1,d2,d3)

〉
+〈

δwi,π
i(v̄,w1,w2,w3)− pi(x̄,d1,d2,d3)

〉
+〈

δx̄, π̇0(v̄,w1,w2,w3)− f0,ext +HT
0λ
〉
+〈

δdi, π̇
i(v̄,w1,w2,w3)− f i,ext +HT

i λ
〉

+
〈
δλ,h

〉
= 0 ,

(1.21)

with i from 1 to 3. Given the mass density %0, the generalized velocity-based momen-
tum πi(v̄,w1,w2,w3) is defined as Ei0v̄ + Ei1w1 + Ei2w2 + Ei3w2 and the generalized
displacement-based momentum pi(x̄,d1,d2,d3) as Ei0 ˙̄x+ Ei1ḋ1 + Ei2ḋ2 + Ei3ḋ3, where
the symmetric mass inertia coefficients Eij are computed by means of

∫
B0
%0θ

iθjdB0 for i
and j from 0 to 3. For the case i (j) equal to zero, θi (θj) takes a constant unit value.
This setting allows to consider zeroth-order inertia E00, first-order inertia E0i for i greater
than zero, and second-order inertia Eij for i and j greater than zero. It enables the
handling of rigid bodies, in which the reference point does not coincide with the center of
mass. H0 and Hi (for i = 1, 2, 3) stand for ∂h

∂x̄ and ∂h
∂di

, respectively. Finally, the mutual
orthonormality condition among the directors is simply included by considering

hint(t) =



d1(t) · d1(t)− d1(0) · d1(0)
d2(t) · d2(t)− d2(0) · d2(0)
d3(t) · d3(t)− d3(0) · d3(0)
d2(t) · d3(t)− d2(0) · d3(0)
d1(t) · d3(t)− d1(0) · d3(0)
d1(t) · d2(t)− d1(0) · d2(0)


= 0, (1.22)

which is in fact the internal constraint that completes the dynamic description. Be aware
that this type of internal constraint will be also employed for the geometrically exact
beam formulation.

Second canonical model : the geometrically exact beam

The position of any given point of the beam shown in Fig. 1-5 can be written as

x(θ; t) = x̄(θ3; t) + θ1d1(θ3; t) + θ2d2(θ3; t), (1.23)

in which x̄ ∈ X̄ ⊆ E3 is the position vector of the beam axis and d1 and d2 together with
d3 in S2 are three mutually orthonormal directors. θ = (θ1, θ2, θ3) is a set of parameters
chosen in the way that θ̄ = θ1d1 + θ2d2 describes the cross section at the station L(θ3),
which intersects the beam and x = x(θ; t) is the given parametrization rule in time and
space. In the context of geometrically exact beams, the Green-Lagrange strain tensor can
be specialized after eliminating quadratic strain yielding
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Figure 1-4.: The rigid body model.

Ēij(θ,Γ ,Ω; t) ≈ symm
(
δi3δjk

(
Γ k(θ3; t)− εklmθ̄lΩm(θ3; t)

))
, (1.24)

where symm(·) denotes symmetrization, Γ i(θ3; t) defined as di(θ3; t) · x̄′(θ3; t)−di(θ3; 0) ·
x̄′(θ3; 0) is a first strain measure (for shear refer to first and second components and for
elongation refer to the third one), Ωi(θ3; t) defined as 1

2ε
i
jk[dk(θ3; t) · d′j(θ3; t)− dk(θ3; 0) ·

d′j(θ3; 0)] is a second strain measure (for bending refer to first and second components
and for torsion refer to the third one) and εijk is the alternating symbol that appears in
the computation of the cross product in the three-dimensional Euclidean space.

Analogously, the velocity can be written as

v(θ; t) = v̄(θ3; t) + θ1w1(θ3; t) + θ2w2(θ3; t), (1.25)

in which v̄ ∈ V̄ ⊆ E3 is the translational velocity of the beam axis and w1, w2 together
with w3 are three director velocity vectors. Now Eq. (1.4) takes the form∫

L0

∫
A0

(
〈
δv,π(v)− p(x)

〉
+
〈
δx, π̇(v) + f int(x,S])− f ext +HTλ

〉
+〈

δλ,h
〉
) dA0 dL0 = 0 ,

(1.26)

where A0 represents the cross-sectional area and L0 stands for the arc length in the
original configuration. Given two mutually orthonormal directors d1 and d2, a third
director d3 could be simply computed as d1 × d2. This description would lead to a
two-director formulation. An alternative to this formulation results from the additional
consideration of d3 in combination with the mutual orthonormality condition for the three
directors as already introduced by Eq (1.22). The resulting representation is a so-called
three-director formulation, which we adopt to facilitate the combination among beams



19 Chapter 1. Introduction

and rigid bodies and evenly to avoid special treatment of the third director, i.e., d3. After
introducing explicitly d3 in the variational principle and performing the integration over
the cross section, the governing equations for the geometrically exact beam, in its weak
form, becomes ∫

L0
(
〈
δv̄,π0(v̄,w1,w2)− p0(x̄,d1,d2)

〉
+〈

δwi,π
i(v̄,w1,w2)− pi(x̄,d1,d2)

〉
+
〈
δw3,w3 − ḋ3

〉
+〈

δx̄, π̇0(v̄,w1,w2) + f0,int(d1,d2,d3,N)− f0,ext +HT
0λ
〉
+〈

δdi, π̇
i(v̄,w1,w2) + f i,int(x̄,d1,d2,d3,N ,M)− f i,ext +HT

i λ
〉
+〈

δd3,f
3,int(x̄,d1,d2,d3,N ,M)− f3,ext +HT

3λ
〉

+
〈
δλ,h

〉
)dL0 = 0 ,

(1.27)

with i from 1 to 2. The generalized velocity-based momentum πi(v̄,w1,w2) is defined as
Ei0v̄ + Ei1w1 + Ei2w2 and the generalized displacement-based momentum pi(x̄,d1,d2) as
Ei0 ˙̄x+ Ei1ḋ1 + Ei2ḋ2, where Eij is computed by means of

∫
A0
%0θ

iθjdA0 for i and j from
0 to 2. This consideration allows the handling of cross sections with arbitrary shape and
material properties, which exactly applies to the case of modern slender structures made
of hyperelastic multilayer composite materials. Given the beam strain energy density per
unit length W beam defined as

W beam(θ3,Γ ,Ω; t) =
∫
A0
W int(Ē[(θ,Γ ,Ω; t)) dA0 , (1.28)

the force and moment resultants are respectively

N = ∂W beam

∂Γ
and M = ∂W beam

∂Ω
. (1.29)

The components of the cross-sectional tangent constitutive matrices are in principle
computed as

(CΓΓ )ij =
∫
A0

CIJKL
∂ĒIJ
∂Γ i

∂ĒKL
∂Γ j

dA0 , (CΓΩ)ij =
∫
A0

CIJKL
∂ĒIJ
∂Γ i

∂ĒKL
∂Ωj

dA0 ,

(CΩΓ )ij =
∫
A0

CIJKL
∂ĒIJ
∂Ωi

∂ĒKL
∂Γ j

dA0 , (CΩΩ)ij =
∫
A0

CIJKL
∂ĒIJ
∂Ωi

∂ĒKL
∂Ωj

dA0 .

(1.30)

Where CIJKL represents the components of the tangent elasticity tensor and ĒIJ stands
for the components of the strain tensor presented by Eq. (1.24). For thin-walled structures,
additional assumptions about the strain and stress states may be necessary. At this point,
warping effects are completely neglected. In the case of the blade of a wind turbine,
which is in some regions far away from the thin-walled structure hypothesis and also
non-negligible variations of the cross section may take place, the primary warping due to
torsion ought to be combined with the consideration of secondary warping due to shear.
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Figure 1-5.: The geometrically exact beam model

This would requiere to include additional displacements fields, see for example Gebhardt
et al. [37]. Therefore, standard assumptions regarding warping effects may result not
adequate. However, a detailed discussion and treatment of this aspect is beyond the scope
of the current work. The acting internal load densities are indicated as follows:

f0,int(d1,d2,d3,N) =
(
∂Γ

∂x̄
(d1,d2,d3)

)T
N ,

f i,int(x̄,d1,d2,d3,N ,M) =
(
∂Γ

∂di
(x̄,d1,d2,d3)

)T
N +

(
∂Ω

∂di
(d1,d2,d3)

)T
M .

(1.31)

Third canonical model : the solid-degenerate shell

The position of any given point of the shell shown in Fig. 1-6 can be written as

x(θ; t) = x̄(θ1, θ2; t) + θ3ϑ

2d(θ1, θ2; t), (1.32)

in which x̄ ∈ X̄ ⊆ E3 is the position vector of the midsurface, ϑ represents the thickness
of the shell and d ∈ D ⊆ R3

6=0 is an extensible director field, which admits multiplicative
decomposition, i.e., d = d d̂ with d ∈ R>0 and d̂ ∈ S2. θ = (θ1, θ2, θ3) is a set of
parameters chosen in the way that θ̄ = (θ1, θ2, 0) describes the midsurface. For instance,
we can choose θ to span the domain �, such as � := {[−1, 1]× [−1, 1]× [−1, 1]}. The
spatial metric structure induced by this construction agrees with Eq. (1.7).
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Analogously, the velocity can be written as

v(θ; t) = v̄(θ1, θ2; t) + θ3ϑ

2w(θ1, θ2; t), (1.33)

in which v̄ ∈ V̄ ⊆ E3 is the translational velocity of the midsurface and w ∈ W ⊆ R3 is
the director velocity. By employing the same idea applied already for the rigid body and
the geometrically exact beam, the governing equation for the solid-degenerate shell, in its
weak form, becomes∫

�
(
〈
δv,π(v)− p(x)

〉
+
〈
δx, π̇(v) + f int(x,S])− f ext +HTλ

〉
+〈〈

δẼ[,S
]〉〉+

〈
δλ,h

〉
)
√

det
[
G(θ; 0)

]
d� = 0 ,

(1.34)

where the enhanced part of the Green-Lagrange strain tensor is defined by convenience as
Ẽ[ ∈ T ∗x(θ;0)X ×T

∗
x(θ;0)X such that skew(Ẽ[) = 0 and

〈〈∫
� Ẽ[

√
det
[
G(θ; 0)

]
d�,S]

〉〉
= 0

for all non-trivial constant stress S], and
√

det
[
G(θ; 0)

]
d� is the volume element. And

finally, δẼ[ is an admissible variation of the enhanced part of the Green-Lagrange strain
tensor.

Note that this model, the solid-degenerated shell, is a solid in itself and no devoted
handling is required, as in case of rigid bodies and geometrically exact beams.

Figure 1-6.: The solid-degenerate shell model

1.4.4. Further technical aspects

Formulations derived with the Hamiltonian setting rely on the description of motion in
the phase space, i.e., the variables are generalized coordinates and generalized momenta.
This kind of approaches is very elegant and allows to exploit the very rich underlying
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mathematical structure, specially in the case of conservative systems. In contrast to this,
the mechanical framework adopted here is intended for general non-conservative systems
that may arise in the presence of dissipation functions and/or non-integrable constraints
(restrictions that are path-dependent, e.g., non-slip condition at the contact point of a
sphere rolling on the floor), which are highly relevant for industrial applications. Therefore,
we follow a complementary path, in which the description of motion takes place in the
state space, i.e., the variables are generalized coordinates and generalized velocities. Such
a kind of representations were introduced by Poincaré, see for instance Heard [47]. This
description allows to introduce dissipation functions as well as nonholonomic constraints in
a very natural way, since both can be easily stated in terms of velocities, but not in terms
of momenta. For the general non-conservative case, the resulting governing equations can
be reverted to the Lagrange-D’Alembert equations, which are non-variational. For the
conservative case, the resulting governing equations can be reverted to the Euler-Lagrange
equations, which are variational. Thus, it can be regarded as a very general setting and
this is why we chose it.

1.5. General objectives

This research effort provides means intended for helping to understand further the nonlinear
dynamics of beam and shell structures made of hyperelastic multilayer composite materials
subject to highly dynamic loads that can take place in modern engineering applications,
e.g., wind turbines, helicopters, cars, speedboats or submarines inter alia. This general
objective is materialized through the development and posterior employment of highly-
robust and -reliable, computational procedures that warrant affordable time expenditures.
It is apparent that the development of such methods promotes not only the improvement
of the current understanding, but also provides sound foundations that are necessary for
the design and analysis of future generations of high-performance slender structures.

1.6. Original contributions

We summarize next the original contributions of this work:

1. A director-based finite-element formulation for nonlinear dynamics of geometri-
cally exact beams with general cross-section properties embedded in a momentum-
preserving, energy-preserving/dissipative setting. This is intended for general
non-conservative beam structures/mechanisms that may arise in the presence of
dissipation functions and/or non-integrable constraints, which are very relevant for
industrial applications.

2. A director-based finite element formulation for nonlinear dynamics of solid-degenerate
shells made of hyperelastic multilayer composite materials embedded in a momentum-



23 Chapter 1. Introduction

preserving, energy-preserving/dissipative setting. Following the same philoso-
phy than before, this is also intended for general non-conservative shell struc-
tures/mechanisms that may arise in the context of industrial applications.

3. Combination of rigid bodies, geometrically exact beams and solid-degenerate shells
with robust time integration techniques into a single common object-oriented frame-
work. This is highly extensible and very suitable for structural engineering and
inherits all advantages of the basic ingredients, e.g., objectivity, path-independence,
unconditional stability, robustness, etc.

4. A comprehensive framework to analyze the nonlinear dynamics of beam structures
that relies on the principal geodesic analysis and thus goes beyond classical proce-
dures, which assume that every motion takes place in the three-dimensional ambient
space, i.e., the configuration space is considered to be linear.

5. A new conservative/dissipative time integration scheme relying on a collection of
linearly constrained quadratic programs intended to optimally modify the classical
midpoint rule so as to guarantee the strict energy conservation/dissipation properties.

1.7. Organization of this work

This work is a compilation of four journal articles. Following the chronological order
of publication and not a thematic sequence, the remaining of this work is organized in
chapters as indicated below. Additionally, we provide hints regarding the main innovations
that are partially or completely addressed within the scope of each chapter.

Chapter 2 considers the nonlinear dynamics of shell structures made of single- or multilayer
elastic materials (an extension of the linear elastic material model to the large deformation
setting), in which a mixed finite element formulation for solid-degenerate shells and
a robust integration scheme are consistently combined. To render more complicated
structures, this formulation also includes algebraic constrains and their treatment by
means of a null-space method. This addresses (partially) the second main innovation.

Chapter 3 presents a new object-oriented framework for the nonlinear dynamics of slen-
der structures made of multilayer composite and hyperelastic materials, in which each
mechanical system is modeled as a collection of stiff and flexible components, e.g., rigid
bodies, geometrically exact beams and solid-degenerate shells. The adopted robust time
integration scheme relies on the average vector field, which ensures the preservation
of momenta and the conservation or controlled dissipation of energy. This addresses
(partially) the first, (partially) the second and (completely) the third main innovations.
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Chapter 4 provides, by means of the principal geodesic analysis, a new approach to inves-
tigate the nonlinear dynamics of beam structures that is presented in a fully nonlinear
setting and exploits the underlying mathematical structure provided by the configuration
space. Additionally, we also provide hints regarding the further model order reduction.
This addresses (partially) the first and (completely) the fourth main innovations.

Chapter 5 considers a new conservative/dissipative time integration in the context of
both, reduced-order models and finite elasticity models, where a new systematic approach
for the derivation of algorithmic internal forces and generalized velocities is presented and
analyzed. Such algorithmic force and velocity approximations warrant strictly the desired
conservation/dissipation properties and are very easy to implement into existing codes.
This addresses (completely) the fifth main innovation.

Finally, Chapter 6 culminates this work with conclusions and suggests future work.

For sake of completeness, Appendix A presents a lists of journal articles written between
July 2015 and June 2019. Period, in which this work took place. All these fall directly or
indirectly within the field of structural analysis (Statik und Dynamik).



2. Article A: On the nonlinear dynamics of
shell structures: combining a mixed finite
element formulation and a robust
integration scheme

This article presents an approach to analyze the nonlinear dynamics of shell structures,
which relies on the combination of a mixed finite element formulation and a robust integra-
tion scheme that is presented in a differential-algebraic setting. The structure is spatially
discretized with extensible-director-based solid-degenerate shells. The shear locking and
the artificial thickness strains are cured by means of the assumed natural strain method,
but the enhancement of the strain field in the thickness direction and the cure of the
membrane locking are achieved by means of the enhanced assumed strain method. This
director-based approach allows to consider unmodified three-dimensional constitutive
laws by only improving the director field. Due to the adopted kinematic description,
the treatment of folded shells is very simple. The resulting semi-discrete equations are
temporally discretized by means of a momentum-preserving, energy-preserving/decaying
method, which allows to mitigate the undesirable effect due to unresolved high-frequency
content providing robustness without destroying the precision of the solution. To render
more complicated structures by means of junctions, some interesting constraints are
introduced together with their null-space treatment. In few words, from a methodological
point of view, the novelty of this work is the combination of a mixed finite element for
shells, the time integration with a momentum-preserving, energy-preserving/decaying
method and a null-space method into a single common unifying framework, which may
be used very effectively to analyze wind turbine blades or aircraft wings.

This article is published in Thin-Walled Structures 118 (2017), 56–72. The main work
was done by the author of this Habilitationsschrift. Raimund Rolfes contributed with
technical suggestions and supporting work.

Permanent link: http://doi.org/10.1016/j.tws.2017.05.001
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A B S T R A C T

In this work, we present an approach to analyze the nonlinear dynamics of shell structures, which combines a
mixed finite element formulation and a robust integration scheme. The structure is spatially discretized with
extensible-director-based solid-degenerate shells. The semi-discrete equations are temporally discretized with a
momentum-preserving, energy-preserving/decaying method, which allows to mitigate the effects due to
unresolved high-frequency content. Additionally, kinematic constraints are employed to render structural
junctions. Finally, the method, which can be used to analyze blades of wind turbines or wings of airplanes
effectively, is tested and its capabilities are illustrated by means of examples.

1. Introduction

The complexity of current and new shell structures in combination
with the increased computation capacity encouraged the development
and application of fully nonlinear shell formulations. In this context,
time-domain analysis involving large displacements, large rotations and
large strains due to dynamic loads plays a major role. The discrete
equations of shells are in fact very stiff and therefore, the calculation of
long-term response could be very problematic, even for well-established
commercial codes. Achieving robustness requires the development of
new methods that must annihilate the unresolved high-frequency
content, warranting evenly the preservation of the underlying physics.
Certainly, the accomplishment of these features is very challenging.

Dvorkin and Bathe [1] developed a four-node shell element for
general nonlinear analysis, which is applicable to the analysis of thin
and thick shells. Bathe and Dvorkin [2] discussed the requirements for
linear and nonlinear analysis. Büchter and Ramm [3] addressed the
controversy between solid-degenerate approaches and shell theories.
Bütcher et al. [4] enabled the introduction of unmodified three-
dimensional constitutive laws by means of the enhanced assumed
strain method proposed by Simo and Rifai [5]. Simo and Tarnow [6,7]
developed a time integration scheme for the dynamics of elastic solids
and shells, which preserves, independently of the time step size, the
linear momentum, the angular momentum and the total energy. Choi
and Paik [8] presented the development of a four-node shell element for
the analysis of structures undergoing large deformations. Betsch and
Stein [9,10] developed a four-node shell element that incorporates
unmodified three-dimensional constitutive models. This element was

improved by means of the enhanced assumed strain method proposed
by Simo and Armero [11]. Bischoff and Ramm [12] formulated a
geometrically nonlinear version of the enhanced assumed strain
approach in terms of Green-Lagrange strains. Sansour et al. [13]
combined a geometric exact shell theory and an integration scheme
that preserves the linear momentum, the angular momentum and the
total energy. Kuhl and Ramm [14] developed a generalization of the
energy-momentum method developed within the framework of the
generalized α method. Armero and Romero [15,16] developed a family
of schemes for nonlinear three-dimensional elastodynamics that ex-
hibits controllable numerical dissipation in the high-frequency range.
For a fixed and finite time step, the method produces a correct picture
of the phase space even in the presence of dissipation. Sansour et al. [17]
dealt with a dynamic formulation of shells and the development of a
robust energy-momentum integration scheme. Romero and Armero [18]
extended the previously introduced method for the dynamics of
geometrically exact shells. Proofs of the numerical properties in the
full nonlinear range were also provided. Bauchau et al. [19] developed
energy-preserving/decaying schemes for the simulation of multibody
systems including shell components. Vu-Quoc and Tan [20] developed
an eight-node solid-degenerate shell element and tested it with several
integration methods. Sansour et al. [21] modified an existent method to
deal with material nonlinearities. Ozkul [22] presented a finite element
for dynamic analysis of shells of general shape. Ziemčík [23] presented
a four-node shell element to analyze lightweight smart structures.
Leyendecker et al. [24] extended a framework for the computational
treatment of rigid bodies and nonlinear beams to the realm of nonlinear
shells. Vaziri [25] studied the response of shell structures under large
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deformations and presented a review of the current state-of-the-art with
practical suggestions. Carrera et al. [26] considered the mixed inter-
polation of tensorial components, which was extended to model shells
with variable kinematics. Wu [27] described the nonlinear dynamic
behavior of shell structures by means of a vector form intrinsic
formulation. Ahmed and Sluys [28] presented a three-dimensional shell
element for the dynamic analysis of laminated composites. Pietraszkie-
wicz and Konopińska [29] reviewed different theoretical, numerical,
and experimental approaches to model, analyze and design compound
shell structures with junctions. Reinoso and Blázquez [30] developed an
eight-node solid-degenerate shell element, which was reformulated in
the context of composite structures. Recently, Caliri et al. [31] pre-
sented a very detailed literature review on plate and shell theories for
composite structures with highlights to the finite element method.

In this work, we present an approach to analyze the nonlinear
dynamics of shell structures, which relies on the combination of a
mixed finite element formulation and a robust integration scheme that
is presented in a differential-algebraic setting. The structure is spatially
discretized with extensible-director-based solid-degenerate shells. The
shear locking and the artificial thickness strains are cured by means of
the assumed natural strain method, but the enhancement of the strain
field in the thickness direction and the cure of the membrane locking
are achieved by means of the enhanced assumed strain method. This
director-based approach allows to consider unmodified three-dimen-
sional constitutive laws by only improving the director field. Due to the
adopted kinematic description, the treatment of folded shells is very
simple and the combination with rigid bodies and beams is straightfor-
ward (this is valid for rotationless frameworks). Similar approaches for
eight-node solid-degenerate shells would require to reparametrize the
director field in terms of the upper and lower displacement fields,
which would be surely effective, but certainly more elaborate.
However, objective and comprehensive comparisons between the
four-node extensible-director-based solid-degenerate shell and the
eight-node displacement-based solid degenerate shell are not part of
this work. The resulting semi-discrete equations are temporally dis-
cretized by means of a momentum-preserving, energy-preserving/
decaying method, which allows to mitigate the undesirable effect due
to unresolved high-frequency content providing robustness without
destroying the precision of the solution. Finally, some interesting
constraints to render more complicated structures by means of junc-
tions are introduced, and its null-space treatment is briefly described. In
few words, from a methodological point of view, the novelty of this
work is the combination of a mixed finite element for shells, the time
integration with a momentum-preserving, energy-preserving/decaying
method and the null-space projection method into a single common
unifying framework, which may be used very effectively to analyze
blades of wind turbines or wings of airplanes. To our best knowledge,
there is not a single work, in which all these three topics are combined
with a similar setting in the context of shell structures.

The remaining is organized as follows: Section 2 presents the
adopted mechanical framework, comprising a general description, the
spatial discretization that relies on a mixed formulation, the temporal
discretization that relies on a robust scheme, the treatment of various
interesting constraints and the presentation of the discrete equations. In
Section 3, we present five examples taken from literature, which were
chosen to show the potentialities and capabilities of the exposed ideas.
Finally, concluding remarks and future work are given in the Section 4.

2. Mechanical framework

In this section, we present the necessary mathematical tools to deal,
from a purely mechanical point of view, with shell structures. First, we
roughly outline the fundamentals that are needed to establish a starting
point. Second, we introduce the shell kinematics and the spatial
discretization based on a mixed finite element formulation. Third, we
introduce the temporal discretization starting from the energy-momen-

tum-conserving algorithm and the modifications needed to build a
momentum-preserving, energy-preserving/decaying algorithm. Fourth,
we provide a brief exposition of some interesting constraints, which are
used to render more complicated structures. And lastly, we present the
governing equations for the fully discretized problem in their final
implementation form.

2.1. Generalities

Let us assume a continuum body characterized by a chosen
reference set denoted by B0, this is an open set of 3, whose
configuration and velocity are described at time t by the vectors

X x t( ) ∈ ⊆t
3 and V v t( ) ∈ ⊆t

3, respectively. In addition, let us
assume that the body is subjected to a finite-dimensional set of
constraints h x 0( ) = ∈ n, with n ∈ , that only accounts for integrable
restrictions. The dynamic behavior of the flexible system within the
bounded time interval t t[ , ] ⊂1 2 0+ can be formulated with the Hamilton
principle as

B

B
S ∫ ∫ v l x l v x f x S l v f x

H x λ E S λ h x

δ δ δ

δ δ t

= [ , ( ) − ( ) − , ( , ) + ˙( ) − ( )
+ ( ) − , − , ( ) ]d d = 0 ,͠

t

t

T

int ♯ ext

♭ ♯
1

2
0

(1)

where Sδ is merely the infinitesimal increment of the action functional,
which may be not an actual variation due to the presence of non-
conservative external fields, and ·,· is an appropriate dual pairing.

Xxδ T∈ x t t( ) and Vvδ T∈ v t t( ) are admissible variations of the configura-
tion and velocity vectors, respectively. The displacement-based mo-
mentum density l x( ) and the velocity-based momentum density l v( )
map elements of VTv t t( ) to elements of . The time rate of the velocity-
based momentum density l v˙( ), the internal force density f x S( , )int ♯ and
the external force density f x( )ext map elements of XTx t t( ) to elements of
. X H T: × →x

n
t t( ) is the Jacobean matrix of h x( ), λ t t: [ , ] → n1 2

belongs to the space of curves with no boundary conditions, the well-
known Lagrange's multipliers, and λδ represents an admissible variation
of the multipliers. The strain EE E∈ ≔ { ∈♭ ♭

X X E ϕ ϕ G x G xT T t* × * 2 = [ ∘( ) ]* [ ( )] − [ (0)]}x x t0 0( ) 0 ( ) 0 ♭ 0 −1 is the displace-
ment-based part of the Green-Lagrange strain tensor, in which G x[ (0)]
is the metric tensor in the original configuration, G x t[ ( )] is the metric
tensor in the current configuration and ϕ ϕ[ ∘( ) ]*(·)t 0 −1 denotes the
pullback from the current configuration to the original one by means
of the regular motion ϕ ϕ∘( )t 0 −1. The strain E ∈͠ ♭
E X X B

B
 ∫E E E ST T d0≔ { ∈ * × * skew( ) = , , = 0}͠ ͠ ͠x x0 0♭ ( ) 0 ( ) 0 ♭ ♭ ♯

0
is an

enhancement and EEδ T∈͠ E t t♭ ( )͠ ♭ represents an admissible variation,
assuming that the strain space possesses a manifold structure. From
the linear combination of both parts, i.e. E E+ ͠♭ ♭, results the Green-
Lagrange strain tensor E♭, which is energetically conjugated by an
appropriate stress definition S XS St T( ) ∈ ≔ { ∈ ×x 0♯ ♯ ( ) 0

X S ET Ψ= ∂ ( )}x E0( ) 0 ♯ ♭♭ , the second Piola-Kirchhoff stress tensor, and
EΨ ( )♭ is the material law. The symbol ♭(♯) indicates that a second-rank

tensor is doubly covariant (contravariant).

2.2. Shell kinematics and spatial discretization

The position at time t of any given point belonging to the shell can
be written as

x θ x dt θ θ t θ θ θ t( ; ) = ( , ; ) + ϑ
2 ( , ; ),1 2 3 1 2

(2)

in which x ∈ 3 is the position vector of the middle surface, ϑ
represents the thickness of the shell and d is an extensible director,
which admits multiplicative decomposition, i.e. d dd= with d ∈ +
and d S∈ 2. θ θ θ θ= ( , , )1 2 3 is a set of parameters chosen in the way
that θ θ θ= ( , , 0)1 2 describes the middle surface and x x θ t= ( ; ) is the
given parameterization rule in time and space, see Fig. 1. For
instance, we can choose θ to span the domain □ such as
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□ ≔ {[−1, 1] × [−1, 1] × [−1, 1]}. The spatial metric structure induced
by this construction is

G g gδ x
θ

x
θ

= ∂
∂

∂
∂ ⊗ ,ij

i

a

j

b
a b

(3)

where δij are the components of the Euclidean metric tensor, Xg T∈ θa

defined as g i= ̂
a

x
θ i

∂
∂

i
a with i ̂i for i from 1 to 3 standing for the elements of

the standard orthonormal basis in 3, i.e. 3 with the standard
Euclidean structure, are the elements of the covariant basis and

Xg T∈ *θa defined in the usual form g g δ, =b
a b

a are the elements of
the contravariant basis. δij and δba are simply Kronecker deltas. At this
point, it is certain that X X G T T: × →θ θ

+. Then the displacement-
based part of the Green-Lagrange strain tensor is simply

E θ G x θ G x θt t( ; ) = 1
2 { [ ( ; )] − [ ( ; 0)]},♭ (4)

which is expressed directly in terms of θ and t. Analogously, the velocity
at time t can be written as

v θ v wt θ θ t θ θ θ t( ; ) = ( , ; ) + ϑ
2 ( , ; ),1 2 3 1 2

(5)

in which v ∈ 3 is the translational velocity of the middle surface and
w ∈ 3 is the director velocity.
By following the adopted setting, the argument of the temporal

integration of Eq. (1) yields

∫ v l v l x x f x S l v f x H x λ E S

λ h x G θ

δ δ δ

δ θ

{ ·[ ( ) − ( )] + ·[ ( , ) + ˙( ) − ( ) + ( ) ] + ·
+ · ( )} det[ ( ; 0)] d = 0,

͠T
□

int ext

3

(6)

where is the interior product of first order Cartesian-like tensors, S and
E͠ are the Voight forms of S♯ and E͠♭, respectively, and G θ θdet[ ( ; 0)] d3
is the volume element at time t=0. Without loosing generality, the
dependencies on θ and t are indicated only when the specification of
given time-space locations is necessary.

For an initial mass density ϱ0 and the already implicitly introduced
Cartesian framework, the velocity-based and displacement-based linear
momentum densities and the internal force density are respectively
defined as

l v v l x x f x S B x S( ) = ϱ , ( ) = ϱ ˙ and ( , ) = ( ) ,T
0 0 int (7)

in which B x( ) is the matrix representation of the operator
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Now let us assume a four-node element, in which the displacement
and velocity fields as well as their admissible variations are discretized
by means of the usual approach, i.e.:


⎡
⎣⎢

⎤
⎦⎥x θ θ x d N θ xt N t θ t t( ; ) ≈ ( ) ( ) + ϑ

2 ( ) = ( ) ( ),A
A A

3
(9)


⎡
⎣⎢

⎤
⎦⎥v θ θ v w N θ vt N t θ t t( ; ) ≈ ( ) ( ) + ϑ

2 ( ) = ( ) ( ),A
A A

3
(10)


⎡
⎣⎢

⎤
⎦⎥x θ θ x d N θ xδ N δ θ δ δ( ) ≈ ( ) + ϑ

2 = ( ) ,A
A A

3
(11)


⎡
⎣⎢

⎤
⎦⎥v θ θ v w N θ vδ N δ θ δ δ( ) ≈ ( ) + ϑ

2 = ( )A
A A

3
(12)

with A running from 1 to 4. The functions θN ( )A are the following
Lagrange-type shape functions:

θN θ θ( ) = 1
2 (1 + )(1 + ),1 1 2

(13)

θN θ θ( ) = 1
2 (1 − )(1 + ),2 1 2

(14)

θN θ θ( ) = 1
2 (1 − )(1 − ),3 1 2

(15)

θN θ θ( ) = 1
2 (1 + )(1 − ).4 1 2

(16)

Although higher order approximations are still possible, we chose the
bilinear approach in concordance with the “Effective Finite Elements”
philosophy proposed by Bucalem and Bathe [32]. The matrix N θ( ) is
the interpolation matrix, whose rows are dual vectors constructed as

⎡
⎣⎢

⎤
⎦⎥

N θ θ i θ i θ i θ i θ i

θ i θ i θ i

N θ N N θ N N

θ N N θ N

( ) = ( ) , ϑ
2 ( ) , ( ) , ϑ

2 ( ) , ( ) ,
ϑ
2 ( ) , ( ) , ϑ

2 ( ) ,

̂ ̂ ̂ ̂ ̂

̂ ̂ ̂

i i i i i i

i i i

1 3 1 2 3 2 3

3 3 4 3 4
(17)

in which i î for i from 1 to 3 stands for the elements of the dual basis of
3, which is the space of row vectors. The nodal variables and their
admissible variations are then stored as:

x x d x d x d x dt t t t t t t t t( ) ≔ { ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )},T T T T T T T T T1 1 2 2 3 3 4 4
(18)

v v w v w v w v wt t t t t t t t t( ) ≔ { ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )},T T T T T T T T T1 1 2 2 3 3 4 4
(19)

x x d x d x d x dδ δ δ δ δ δ δ δ δ≔ { , , , , , , , },T T T T T T T T T1 1 2 2 3 3 4 4 (20)

v v w v w v w v wδ δ δ δ δ δ δ δ δ≔ { , , , , , , , }.T T T T T T T T T1 1 2 2 3 3 4 4 (21)

It means that X  x t( ) ∈ ⊆t
24, V  v t( ) ∈ ⊆t

24, X xδ T∈ x t t( ) and
V vδ T∈ v t t( ) . To follow the next calculations, we think it to be

Fig. 1. The extensible-director-based solid-degenerated shell concept.
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convenient to introduce equivalent expressions for the displacement
field, namely

 x θ N θ x N θ x i θ it t t N x t( ; ) ≈ ( ) ( ) = ( ), ( ) = ( ) ( ) .̂ ̂i
i A

i A
i (22)

For the adopted discretization, the approximation for the metric tensor
at a time t can be computed as

 x θ θ x θ θ
G t G t δ N

θ
N

θ
x t x t[ ( ; )] ≈ [ , ( )] = ∂ ( )

∂
∂ ( )

∂ ( ) ( ),ab ab ij
A
i

a
B
j

b
A B

(23)

which implies that the displacement-based part of the Green-Lagrange
strain tensor is approximated as

   

 x θ θ x x θ θ
E t E t

δ N
θ

N
θ

x t x t x x

[ ( ; )] ≈ [ , ( ), (0)] = 2
∂ ( )

∂
∂ ( )

∂
[ ( ) ( ) − (0) (0)].

ab ab
ij A

i

a
B
j

b

A B A B (24)

Having already introduced the spatial approximation, the discrete
version of B x[( )](·) given by Eq. (8) becomes







 

 

 



⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

B x

δ x

δ x

δ x

δ x δ x

δ x δ x

δ x δ x

[( )](·) =

(·)
(·)
(·)

(·) + (·)
(·) + (·)
(·) + (·)

.

N

N

N

N N

N N

N N

d

ij
N

θ
A

θ

ij
N

θ
A

θ

ij
N

θ
A

θ

ij
N

θ
A

θ ij
N

θ
A

θ

ij
N

θ
A

θ ij
N

θ
A

θ

ij
N

θ
A

θ ij
N

θ
A

θ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

A
i j

A
i j

A
i j

A
i j A

i j

A
i j A

i j

A
i j A

i j

1 1

2 2

3 3

2 3 3 2

1 3 3 1

1 2 2 1 (25)

Note that quadratic terms in θ3 are retained. However, the validity
of the current formulation for moderately thick-walled structures would
require special attention, which is beyond the scope of this work.

It is well-known that purely displacement-based formulations suffer
from some pathologies, e.g. shear locking, artificial thickness strains
and membrane locking. These deficiencies are caused by the adopted
simplified kinematics and the chosen discretization that lead to a poor
representation of the involved quantities that are necessary to set
properly the finite-dimensional version of the equilibrium. To cure the
shear locking and the artificial thickness strains, we use the assumed
natural strain method. To complete the strain field in the thickness
direction and to cure the membrane locking, we use the enhanced
assumed strain method.

The assumed natural strain method allows to cure some locking
issues without introducing additional degrees of freedom and is very
easy to implement, since it involves only redefinition of some terms
based on those originally computed from the displacement-based ones.
Here, we use the assumed natural strain formulation developed by
Dvorkin and Bathe [1] to remove the shear-locking issue. To remove the
artificial thickness strain issue, we use the assumed natural strain
formulation developed by Betsch and Stein [10] and similarly intro-
duced by Bischoff and Ramm [12], which should be typically combined
with an enhancement that is described next. For this aim, let us assume
some tying points laying in the middle surface of the shell, which are
summarized in Table 1.

The tying points θA, θB, θC and θD are employed to cure the shear
locking. We redefine θE ( )23 and θE ( )13 as

θ θ θE θ E θ Eˇ ( ) = 1
2 (1 − ) ( ) + 1

2 (1 + ) ( )B D23 1 23 1 23 (26)

and

θ θ θE θ E θ Eˇ ( ) = 1
2 (1 − ) ( ) + 1

2 (1 + ) ( ).C A13 2 13 2 13 (27)

The tying points θ1, θ2, θ3 and θ4 are employed to cure the artificial
thickness strain. We redefine θE ( )33 as

θ θ θ θ θ θ θ θ θE N E N E N E N Eˇ ( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( ).33 1 33 1 2 33 2 3 33 3 4 33 4
(28)

Immediately, the original strain components, θE ( )23 , θE ( )13 and θE ( )33 ,
are replaced by the new redefinitions, θĚ ( )23 , θĚ ( )13 and θĚ ( )33 ,
respectively.

The enhanced assumed strain method allows to improve the strain
field and to cure some locking issues as well, but this time, the
introduction of additional elemental degrees of freedom is necessary.
The method proposed by Simo and Rifai [5] enables the definition of
enhanced strains, which are spanned by outer products of the elements
of the dual basis at the center of the element, which is at θ 0= . Then
the enhanced strain fields are computed everywhere by

θ g θ g θ G 0
G θ

θ e g 0

g 0

E t E t( ; ) ( ; 0) ⊗ ( ; 0) = det[ ( ; 0)]
det[ ( ; 0)]

ˇ [ ; ( )] ( ; 0)

⊗ ( ; 0),

∼∼ ∼
ab

a b
ab

a

b (29)

in which Ě∼ab are the enhancements and where “by design” 0E ( , 0)∼
ab is

set equal to zero. For the membrane strain state, it is possible to identify
that due to the assumed approximations some terms proportional to θ1
and to θ2 are missing at the strain components E11, E22 and E12. This lack
can be addressed by adopting:

θ e 0E t θ E
θ

t θ e tˇ [ ; ( )] ≈ ∂ ˇ
∂ ( ; ) = ( ),∼ ∼∼ ∼

11 1 11
1

1 111 (30)

θ e 0E t θ E
θ

t θ e tˇ [ ; ( )] ≈ ∂ ˇ
∂ ( ; ) = ( ),∼ ∼∼ ∼

22 2 22
2

2 222 (31)

θ e 0 0E t θ E
θ

t θ E
θ

t θ e t θ e tˇ [ ; ( )] ≈ ∂ ˇ
∂ ( ; ) + ∂ ˇ

∂ ( ; ) = 1
2 ( ) + 1

2 ( ).∼ ∼ ∼∼ ∼ ∼
12 1 12

1
2 12

2
1 121 2 122

(32)

The main motivation for improving the strain component E33 is to give
the element the capability of handling unmodified three-dimensional
material laws. This is achieved by considering some terms proportional
to θ3, θ θ1 3, θ θ2 3 and θ θ θ1 2 3 that can be addressed by adopting the
following enhancement:

θ e 0 0 0

0

E t θ E
θ

t θ θ E
θ θ

t θ θ E
θ θ

t

θ θ θ E
θ θ θ

t

ˇ [ ; ( )] ≈ ∂ ˇ
∂ ( ; ) + ∂ ˇ

∂ ∂ ( ; ) + ∂ ˇ
∂ ∂ ( ; )

+ ∂ ˇ
∂ ∂ ∂ ( ; )

∼∼ ∼ ∼ ∼

∼
33 3 33

3
1 3 2 33

1 3
2 3 2 33

2 3

1 2 3 3 33
1 2 3 (33)

θ e t θ θ e t θ θ e t θ θ θ e t= ( ) + ( ) + ( ) + ( ),∼ ∼ ∼ ∼3 333 1 3 3313 2 3 3323 1 2 3 33123 (34)

which is based on the ideas proposed by Büchter et al. [4]. This can be
supported by considering high-order shell kinematics with infinite
directors and by truncating higher order terms of the infinite expansion,
see [10]. Finally, the array of elemental degrees of freedom is given by

e e e e e e e e e= ( , , , , , , , ).∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼111 222 121 122 333 3313 3323 33123 (35)

Notice that the condition B
B

∫ E S d, = 0͠ ♭ ♯
0

was implicitly replaced by

B
B

∫ E Sd , = 0͠ ♭ const♯
0

, which is a more restrictive condition and in

which Sconst♯ represents a constant nominal stress state. This constant
nominal stress state condition is closely related to the satisfaction of the
patch test in its nonlinear form, see Simo and Armero [11]. By design,
the adopted enhancements fulfill the constant nominal stress state
condition.

Table 1
Tying points for the assumed natural strain method.

A B C D 1 2 3 4

θ1 0 − 1 0 1 1 − 1 − 1 1
θ2 1 0 − 1 0 1 1 − 1 − 1
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Now it is possible to define the discrete operator related to the
enhanced strain as the multiplicative composition of a “left” operator
and a “right” operator:

B θ B θ B θ[( ; 0)](·) = { [( ; 0)]∘ [( ; 0)]}(·),∼ ∼ ∼
d l r (36)

where B∼l is merely a transformation rule for the enhanced strains in its
Voight form. The matrix representation of the “left” operator is

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

B θ G 0
G θ

G G G G G G G G G G G G

G G G G G G G G G G G G

G G G G G G G G G G G G

G G G G G G G G G G G G G G G G G G

G G G G G G G G G G G G G G G G G G

G G G G G G G G G G G G G G G G G G

( ; 0) = det[ ( ; 0)]
det[ ( ; 0)]

2 2 2 + + +
2 2 2 + + +
2 2 2 + + +

,

∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼

l

1
1

1
1

1
2

1
2

1
3

1
3

1
2

1
3

1
1

1
3

1
1

1
2

2
1

2
1

2
2

2
2

2
3

2
3

2
2

2
3

2
1

2
3

2
1

2
2

2
1

3
1

2
2

3
2

3
3

3
3

3
2

3
3

3
1

3
3

3
1

3
2

2
1

3
1

2
2

3
2

2
3

3
3

2
2

3
3

2
3

3
2

2
1

3
3

2
3

3
1

2
1

3
2

2
2

3
1

1
1

3
1

1
2

3
2

1
3

3
3

1
2

3
3

1
3

3
2

1
1

3
3

1
3

3
1

1
1

3
2

1
2

3
1

1
1

2
1

1
2

2
2

1
3

3
3

1
2

2
3

1
3

2
2

1
1

2
3

1
3

2
1

1
1

2
2

1
2

2
1

(37)

in which the coefficients G∼b
a
are computed as

θ g 0 g θG ( ; 0) = ( ; 0), ( ; 0) .∼
b
a b

a (38)

The matrix representation of the “right” operator is

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

B θ

θ
θ

θ θ θ θ θ θ θ θ

θ θ

( ) =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0

,∼
r

1
2

3 1 3 2 3 1 3 3

1 2 (39)

which allows the computation of Ě͠ as E θ e B θ et tˇ [ ; ( )] = [ ( )]{ ( )}∼ ∼͠ ∼
r that

renders a separation of variables. This construction allows to system-
atically include further enhancements, if necessary, just by adding more
columns to the matrix representation of B∼r , since no separate treatment
of the enhancements was made in the sense of Eq. (29). Of course,
particular considerations are necessary to justify the necessity of
including specific non-trivial columns into B∼r , but this discussion is
beyond the scope of the current work. In contrast with the type of
approach employed by Reinoso and Blázquez [30], where the definition
of three matrices is necessary to define the enhancements, the current
approach requires just one single matrix.

2.3. Temporal discretization and robust integration scheme

The preservation of mechanical invariants like the linear momen-
tum, the angular momentum, the total energy or even the symplectic
form is very important to produce acceptable numerical results, which
at least do not violate the underlying physical essence. The construction
of numerical schemes showing the conservation of one or several of
these properties consists in finding discrete versions of the continuous
terms, which after their corresponding evaluation at the time-quad-
rature points and in combination with appropriate admissible varia-
tions of the position and velocity vectors yield to the desired preserva-
tion rules. These preservation rules are typically materialized in terms
of the continuous invariant quantities evaluated only at the boundaries
of the time interval. For nonlinear systems, this is not directly achieved
just by evaluating the continuous terms at the temporal collocation
points, because the consistency and directionality of the discrete partial
derivatives are not per se satisfied. Therefore, the discrete setting ought
to parallel the continuous framework. Moreover, not all mechanical
invariants can be discretely preserved for a fixed time step h. The
preservation of the linear momentum, the angular momentum in
combination with the preservation of the total energy and the
symplectic form is only achieved by adaptation of the time step, whose
size is obtained by solving a minimization problem subjected to
inequality constraints, see [33].

In this work, we chose the family of integration schemes that is
obtained by direct discretization of the equations of motion, which are
derived from the continuous variational principle. Thus, the properties
to be preserved are the linear momentum, the angular momentum and
the total energy without the necessity of imposing additional algebraic
constraints, see [7]. This choice is an alternative to variational
integration schemes that preserve typically the linear momentum, the
angular momentum and the symplectic form of the underlying Hamil-
tonian system. In contrast with our choice, this second family of
integration schemes is obtained by direct discretization of the action
integral followed by the discrete minimization of the discrete action.
The variational integration in its standard form is less robust for highly
stiff problems that typically arise in the context of beams and shells,
being for the last case extremely critical. Therefore, this is not an
effective alternative for the present work.

Next, we summarize the three conditions that must be fulfilled to
achieve the desired preservation properties. For this purpose, we
require to introduce an arbitrary non-trivial vector ξ ∈ 3, which does
not have temporal or spatial dependency.

First, to ensure the preservation of the linear momentum l , for the
load-free case, the discrete version of the time rate of the linear
momentum l v v˙ ( , )d n n+1 must, for a virtual displacement of the form
x ξδ =n+ 1

2 , satisfy

x l v v ξ l v v ξ l v l vδ
h

· ˙ ( , ) = ·˙ ( , ) = ·[ ( ) − ( )],n d n n d n n n n+ 1
2 +1 +1 +1 (40)

and at the same time, the discrete version of the stress Sd ought to
warrant the vanishment of the virtual work done by the internal loads,
i.e.

⎡
⎣⎢

⎤
⎦⎥x f x x S ξ B x Sδ ·[ ( , , )] = · ( ) = 0.n d n n d

T
n d+ 1

2
int +1 + 1

2 (41)

Once these two requirements are fulfilled, the linear momentum is
exactly preserved, ergo

l v l v( ) = ( ).n n+1 (42)

Second, to ensure the preservation of the angular momentum j, for the
load-free case, the discrete version of the time rate of the linear
momentum l v v˙ ( , )d n n+1 must, for a virtual displacement of the form
x ξ xδ = ×n n+ +1

2
1
2 , satisfy

⎛
⎝⎜

⎞
⎠⎟x l v v ξ x l v v ξ j x v j x vδ

h
· ˙ ( , ) = × ·˙ ( , ) = ·[ ( , ) − ( , )],n d n n n d n n n n n n+ 1

2 +1 + 1
2 +1 +1 +1

(43)

and at the same time, the discrete version of the stress Sd ought to
warrant the vanishment of the virtual work done by the internal loads,
i.e.

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥x f x x S ξ x B x Sδ ·[ ( , , )] = × · ( ) = 0.n d n n d n

T
n d+ 1

2
int +1 + 1

2 + 1
2 (44)

Once that these two requirements are satisfied, the angular momentum
is identically preserved, which is

j x v j x v( , ) = ( , ).n n n n+1 +1 (45)

Third, to ensure the preservation of total energy, H defined as T U+ ,
for the load-free case, the discrete version of the time rate of the linear
momentum l v v˙ ( , )d n n+1 must, for a virtual displacement of the form
x x xδ = ( − )n h n n+

1 +11
2

, satisfy

x l v v x x l v v v vδ
h h

T T· ˙ ( , ) = 1 ( − )·˙ ( , ) = 1 [ ( ) − ( )],n d n n n n d n n n n+ 1
2 +1 +1 +1 +1

(46)

which is the rate of kinetic energy, and at the same time, the discrete
version of the stress Sd ought to warrant
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⎡
⎣⎢

⎤
⎦⎥x f x x S x x B x S

E E

δ
h

h
U U

·[ ( , , )] = 1 ( − )· ( )

= 1 [ ( ) − ( )],
n d n n d n n

T
n d

n n

+ 1
2

int +1 +1 + 1
2

+1 (47)

which is the rate of potential energy. Once these two requirements are
fulfilled, the total energy is exactly preserved, ergo

v E v EH H( , ) = ( , ).n n n n+1 +1 (48)

The aforementioned conditions are satisfied, for example, by the
following second-order definitions

l v v v v( , ) ≔ ϱ
2 ( + ),d n n n n+1 0 +1 (49)

l v v v v
h

˙ ( , ) ≔ ϱ ( − ),d n n n n+1 0 +1 (50)

CS E E E E( , ) ≔ 2 ( + ),d n n n n+1 +1 (51)

in which the algorithmic stress S E E( , )d n n+1 is valid only for Saint
Venant-Kirchhoff elastic materials and C is the Voight form of the
elasticity tensor. In case of considering other material laws, the
introduction of a new definition for the algorithmic stress is necessary,
see [7], which can be circumvented by means of a discrete derivative in
the sense of Gonzalez [34]. However, Romero [35] proved that there
are infinite second-order approximations.

The preservation of linear momentum and the angular momentum
in combination with the conservation of the total energy does not
warrant the robustness of the integration scheme. It means that the
presence of unresolved high frequencies could trigger the failure of the
Newton-Raphson algorithm. One remedy to alleviate this problem is
adding some artificial dissipation to the system. However, the dissipa-
tion proportional to discrete rate of strain per se is not able to damp the
unresolved high-frequency content; therefore, the addition of some
damping proportional to the discrete rate of velocity module is
necessary. Following the ideas presented in [15,16,18,36], the velo-
city-based discrete linear momentum and the discrete stress are
modified to achieve the desired dissipation properties preserving at
the same time the objectivity of the formulation.

The velocity-based discrete linear momentum density can be
redefined as the additive combination of a conservative part and a
dissipative part, i.e.

l v E v E l v v l v E v E( , , , ) ≔ ( , ) + ( , , , )d n n n n d n n d n n n n+1 +1 cons +1 diss +1 +1 (52)

where the conservative part is

l v v v v( , ) = ϱ
2 ( + ),d n n n n

cons +1 0 +1 (53)

and the dissipative one must, for a virtual velocity of the form
v v vδ = −n n n+ +11

2
, satisfy

v l v E v E v v l v E v Eδ · ( , , , ) = ( − )· ( , , , )=n d n n n n n n d n n n n+ 1
2

diss +1 +1 +1 diss +1 +1 (54)

D v E v E= ( , , , ) ≥ 0,T n n n n+1 +1 (55)

in which the dissipation function, DT , allows cross definitions of some
objective quantities. Therefore, the dependency on vn , En, vn+1 and
En+1, is implicitly introduced. This condition implies

Dl v E v E v E v E
v v

v( , , , ) = 2 ( , , , )
− .d n n n n

T n n n n

n n
n

diss +1 +1 +1 +1
+1 2 2 + 1

2 (56)

The discrete stress can also be redefined as the additive combination of
a conservative part and a dissipative part, i.e.

S v E v E S E E S v E v E( , , , ) ≔ ( , ) + ( , , , )d n n n n d n n d n n n n+1 +1 cons +1 diss +1 +1 (57)

where the conservative part is

CS E E E E( , ) = 2 ( + ),d n n n n
cons +1 +1 (58)

and the dissipative one must, for a virtual velocity of the form
x x xδ = −n n n+ +11

2 , satisfy

⎡
⎣⎢

⎤
⎦⎥x B x S v E v E E E S v E v Eδ · ( ) ( , , , ) = ( − )· ( , , , )n

T
n d n n n n n n d n n n n+ 1

2 + 1
2

diss +1 +1 +1 diss +1 +1

(59)

D v E v E= ( , , , ) ≥ 0,U n n n n+1 +1 (60)

in which the dissipation function, DU , allows cross definitions as well.
This condition implies

D
C

C

S v E v E v E v E
E E

E E( , , , ) = ( , , , )
− ( − ).d n n n n

U n n n n

n n
n n

diss +1 +1 +1 +1
+1 2 +1

(61)

After the consideration of l v E v E( , , , )d n n n n
diss +1 +1 and

S v E v E( , , , )d n n n n
diss +1 +1 , Eq. (48) becomes

Dv E v E v E v EH H( , ) + ( , , , ) = ( , ),n n V n n n n n n+1 +1 +1 +1 (62)

for a positive semi-definite dissipation function density

D D D= + ≥ 0.V T U (63)

lddiss and Sd
diss must be as small as possible to avoid severe distortions in

the physical behavior.

2.4. Kinematic constraints

The introduction of kinematic constraints represents an effective
and less intrusive alternative to render, for example, structures with
intersections and/or ply-drop-offs. The implementation of this techni-
que requires the solution of differential-algebraic equations, which are
originated through the combination of differential equations that
describe the motion of the modeled flexible bodies in the three-
dimensional space and algebraic equations that describe the enforced
conditions. These restrictions can be either internal, which come on the
scene in the case of parameterizing the configuration manifold of a
system with a number of parameters larger than its intrinsic dimension,
e.g. by using unit quaternions, q ∈ 1, to describe actual rotations,
R SO∈ (3), or external ones, which come on the scene in the case of
constraining bodies by means of joints, connections or supports.
Inspired by the usual practices done in the field of multibody dynamics,
we present and discuss briefly some important aspects of three
kinematic constraints that are important for the structural analysis of
very complex shell structures. The first one is the continuous connec-
tion, that could arise in the context of smoothly connected shells. The
second one is the discontinuous connection, which could arise in the
context of intersecting plates. The last one is the layer connection,
which typically arises in the context of multi-layered composite
structures.

The differential-algebraic framework requires concomitantly the
introduction of Lagrange's multipliers. It means that beside the
increased number of unknowns due to redundant nodes and their
corresponding coordinates, it is necessary to take into account the
additional unknowns represented by the multipliers. The additional
cost due to the explicit computation of the constraint forces in joints,
connections or supports can be saved. Some techniques to avoid the
calculation of Lagrange's multipliers are available, e.g. by means of the
definition of a new connection in the sense of transporting information
along a curve over the configuration manifold, by partitioning the
vector of coordinates and computing a reduced form of the governing
equations, or by finding a suitable projection that eliminates the
contribution coming from the constraint forces. These three approaches
are briefly introduced and discussed in [37]. In this work, we chose the
third one in a slightly different setting as proposed in [38,39,24]. The
rows of the projection  P: →n m n− are then completely spanned by a
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given basis of the kernel of the constraint Jacobean matrix in its
transposed form, where  H k k 0 H k 0kernel( ) = { ∈ ≠ , = ∈ }T m T n ,
and therefore P Hrank( ) = nullity( )T . This construction warrants
PH 0= .T Once the solution is computed, Lagrange's multipliers are
easily recovered by a discrete version of

λ HH H f x S l v f x= −( ) [ ( , ) + ˙( ) − ( )].T −1 int ext (64)

The continuous connection allows the joining of two shells by introdu-
cing constraints at their interfacing edges, see Fig. 2a. Then the
positions and extensible directors are set to be equal. This is

h 0= ∈CC
6, in which

⎧⎨⎩
⎫⎬⎭h x x

d d
t t
t t

≔ ( ) − ( )
( ) − ( ) ,CC

A B

A B (65)

and A and B stand for the pair of interfacing nodes belonging to the
surfaces A and B, respectively. Realize that no restriction over the
magnitude of the extensible directors was introduced, meaning that the
component d d d dE t t= [ ( )· ( ) − (0)· (0)]33 1

2 of the displacement-based
part of the Green-Lagrange strain tensor is able to change with the
time. The corresponding Jacobean matrix takes the following form

⎡
⎣⎢

⎤
⎦⎥H I I

I I
0 0

0 0= −
− .CC

3×3 3×3 3×3 3×3
3×3 3×3 3×3 3×3 (66)

A visual inspection of HCC
T permits to find a basis for its null space.

Having found these vectors, the construction of the corresponding

projection operator is straightforward, whose final form is

⎡
⎣⎢

⎤
⎦⎥P I I

I I
0 0

0 0= .CC
3×3 3×3 3×3 3×3
3×3 3×3 3×3 3×3 (67)

The three uppermost rows show that movements with an identical
increment of translation at both nodes are present in the projection
operator. The three lowermost rows show that movements with an
identical increment of director motion are present as well. This means
that neither relative translation nor relative director motion will occur
and the directors will suffer an identical variation in their length
direction.

The discontinuous connection allows to deal with folded shells by
introducing constraints at the junction, see Fig. 2b. Then the positions
are set to be equal, the directors are set to be inextensible and the
projection between directors is set to be constant. This is h 0= ∈DC

6,
in which

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

h

x x
d d d d

d d d d
d d d d

t t
t t

t t
t t

=

( ) − ( )
[ ( )· ( ) − (0)· (0)]
[ ( )· ( ) − (0)· (0)]

( )· ( ) − (0)· (0)

,DC

A B

A A A A

B B B B

A B A B

1
2
1
2

(68)

and A and B stand for the pair of intersecting nodes belonging to the
surfaces A and B, respectively. Realize that now the directors are not
longer extensible, meaning that the component

d d d dE t t= [ ( )· ( ) − (0)· (0)]33 1
2 of the displacement/director-based part

of the Green-Lagrange strain tensor is identically zero at every time
step, which is required to avoid discontinuities in the change of
thickness along the intersection. An extensive discussion of this topic
can be found in [40]. The corresponding Jacobean matrix takes the
following form

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
H

I I
d

d
d d

t
t

t t

0 0
0 0 0
0 0 0
0 0

=
−

( )
( )

( ) ( )
.DC

A
T

B
T

B
T

A
T

3×3 3×3 3×3 3×3
1×3 1×3 1×3
1×3 1×3 1×3
1×3 1×3 (69)

A visual inspection of HDC
T permits to find a basis for its null space.

Having found these vectors, the construction of the corresponding
projection operator is straightforward, whose final appearance is

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
P

I I
d d

d d

d d

t t
t t

t t

0 0
0 0 0
0 0 0
0 0

= [ ( ) × ( )]
[ ( ) × ( )]

[ ( )] [ ( )]
,

∼ ∼
DC

A B
T

A B
T

A
T

B
T

3×3 3×3 3×3 3×3
1×3 1×3 1×3
1×3 1×3 1×3

1×3 1×3 (70)

for d i i id d d d d d= ( − ) + ( − ) + ( − ) ,∼ ̂ ̂ ̂T 3 2 1 1 3 2 2 1 3 such as d T S∈ *∼
d

T 2

and then d d = 0∼T
. The newly introduced co-vector d∼T

was inspired by
the rotor of a vector field. As it can be observed, the current
construction of the projection radically differs from the one proposed
in [41]. The three uppermost rows show that movements with an
identical increment of translation at both nodes are present in the

Fig. 2. Three kinematic constraints that can be used to carry out the analysis of shell structures.

Fig. 3. Tumbling cylinder – finite element representation.

Table 2
Tumbling cylinder – spatial loads per length unit in N/m.

A B C D

f1 0 1 1 0
f2 − 1 1 1 − 1
f3 − 1 1 1 − 1
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projection operator. The fourth and fifth rows show that movements
with identical director motion in the perpendicular plane to both
directors are permitted. The lowermost row shows that movements
simultaneously perpendicular to each director are present as well. This
means that no relative motion will occur between the intersecting
nodes. The absence of motion along the directors confirms the
preservation of the initial lengths. A further observation with respect
to the applicability of this constraint ought to be done. In the limit case,
in which the directors have the same direction, meaning that the angle
between directors is identically zero, the two unit length constraints
become linearly dependent.

The layer connection allows to stack two single shells by introdu-
cing constraints at a single fictitious interfacing surface, which lies at a
relative position equal to half the thickness of the lower layer, ϑ

2
L , times

its extensible director, which is seen from the middle surface of the
lower shell, and at a relative position equal to minus half the thickness
of the upper layer,− ϑ

2
U , times its extensible director, which is seen from

the middle surface of the upper shell, see Fig. 2c. Then the positions at
the interfacing surface from both sides is set to be equal. This is

h 0= ∈LC
3, in which

⎧⎨⎩
⎫⎬⎭h x d x dt t t t= ( ) + ( ) − ( ) + ( ) .LC A A B B

ϑ
2

ϑ
2

L U

(71)

This constraint enables to account situations in which the displacement
field across two adjacent layers is C0. The corresponding Jacobean
matrix takes the following form

⎡
⎣⎢

⎤
⎦⎥H I I I I= − .LC 3×3 ϑ

2 3×3 3×3 ϑ
2 3×3L U

(72)

A visual inspection of HLC
T permits to find a basis for its null space.

Having found these vectors, the construction of the corresponding
projection operator is straightforward, whose final form is

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
P

I 0 I 0
I 0 0 I

I I 0 0
= −

−
.LC

3×3 3×3 3×3 3×3
ϑ
2 3×3 3×3 3×3 3×3
ϑ
2 3×3 3×3 3×3 3×3

U

L
(73)

The three uppermost rows show that movements with an identical
increment of translation at both nodes are present in the projection

Fig. 4. Tumbling cylinder – motion sequence.

Table 3
Tumbling cylinder – verification of stationary values.

t > tload [41] Present

l1 20.0 20.0
l2 0.0 0.0
l3 0.0 0.0
j1 124.4 122.0
j2 − 148.9 − 147.2
j3 − 182.2 − 178.3
H 440.0 445.2
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operator. The three central rows show that movements, which couple
translation of the lower shell with the director motion of the upper
shell, are permitted. Finally, the three lowermost rows show that
movements, which couple translation with the director motion within
a single shell, are present as well. This means that in addition to the
rigid body motion, some relative motion will occur. The resultant
number of equations to determine the solution is comparable to the one
obtained with the assembly of brick-shell elements.

2.5. Final equations

The combination of Sections 2.2–2.4 yields the full discrete for-
mulation of the equilibrium for the extensible-director-based solid-
degenerate shell. This is comprised by four residuals, one for each field,
that must be minimized at every time step. The governing differential-

algebraic equations in their implementation form are given as follows:

 ∫r N l v v l v E v E l x x

G θ θ

= {[ ( , ) + ( , , , )] − ( , )}
det[ ( , 0)] d ,

v
T

d n n d n n n n d n n□
cons +1 diss +1 +1 +1

3

(74)

 

⎡
⎣⎢

⎤
⎦⎥

∫r P x x B x S E E S v E v E

N l v v f x G θ θ

= ( , ) ( )[ ( , ) + ( , , , )]

+ ̇ ( , ) − ( ) det[ ( , 0)] d ,

x d n n d
T

n d n n d n n n n

T
d n n n

+1 □ + 1
2

cons +1 diss +1 +1

+1 ext + 1
2

3

(75)

∫r B S E E S v E v E G θ θ= { [ ( , ) + ( , , , )]} det[ ( , 0)] d ,∼
e d

T
d n n d n n n n□
cons +1 diss +1 +1 3∼

(76)

r h x= ( ).λ n+1 (77)

This set of equations is solved by means of the full Newton-Raphson
algorithm. As we employ a rotationless framework, there is no necessity
of applying a hybrid combination of the additive and multiplicative
procedures to actualize the unknowns, which is standard in frameworks
that employ rotation matrices to describe the orientation of the
directors. Instead, we use the simplest additive actualization.

In Eq. (75) Lagrange's multipliers were eliminated by means of a
null-space projection. It means that  r ∈x

m n− , in which m represents
the dimension of the configuration manifold and n stays for the rank
associated with the restriction sub-manifold. For this purpose, the null-
space projection in its discrete form arises after direct evaluation at
xn+ 1

2
, which means that  P x x( , )d n n+1 is identically equal to P x( )n+ 1

2
. In

our case, this is valid because the constraints that we consider are in the
worst case quadratic functions of the nodal coordinates. If higher-order
dependencies on the nodal coordinates are considered, the introduction
of a discrete derivative is necessary to compute the Jacobean of the
constraints, which has to satisfy the consistency and directionality
conditions. An example is the nonstandard quadrature proposed in [34]
and employed for multibody systems in [42].

3. Results

In this section, we present some numerical examples, which were
chosen to show the potentialities of the proposed approach. The first

Fig. 5. Tumbling cylinder – linear momentum (lin. mom.), angular momentum (ang. mom.) and total energy.

Fig. 6. Free-flying single-layer plate – finite element representation.

Table 4
Free-flying singe-layer plate – force density per length unit in N/m.

A B C

f1 0 0 40,000
f2 40,000 0 0
f3 40,000 − 40000 40,000
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example is a tumbling cylinder. The second case considers a free-flying
single-layer plate. As an extension of the previous example, the third
one comprises a free-flying three-layer plate with ply-drop-offs. The
fourth case consists of three-intersecting plates, and the last example
considers the dynamic snap-through of a cylindrical panel. All the
results presented here are contrasted with results obtained by other
authors. Although the results from literature show some scattering due
to the theory employed, the time and space discretizations, which are
rather coarse, among others, the agreement with our results is indeed
very good.

We implemented Eqs. (74)–(77) in the straight manner. The model
was coded in Fortran 2008, and object-oriented programming was
adopted. Further improvements are still possible to reduce the compu-
tational effort and to increment the numerical efficiency, e.g. by

Fig. 7. Free-flying single-layer plate – motion sequence.

Table 5
Free-flying single-layer plate – verification of stationary values.

t > tload [14] at ◊ Present at ◊ [20] at □ Present at □

l1 4.8 4.8 4.8 4.8
l2 3.2 3.2 3.2 3.2
l3 3.2 3.2 3.2 3.2
j1 − 0.069 − 0.067 0.027 0.029
j2 − 0.386 − 0.387 − 0.381 − 0.387
j3 − 0.109 − 0.108 − 0.036 − 0.036
H 247.9 246.5 246.8 246.5

Fig. 8. Free-flying single-layer plate – linear momentum, angular momentum and total energy.
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implementation of a nested procedure to compute ldiss and Sdiss, scaling
of the directors to improve the condition number of the iteration
matrix [43], implementation of an hyper-reduction method [44],
consideration of occasionally rigid sub-domains [45] and off-line
precomputation of coefficients for Saint Venant-Kirchhoff elastic mate-
rials. Since the involved equations are very stiff, the second-order
predictions to initialize the Newton-Raphson method are not appro-
priate. The presence of unresolved high-frequency content in the
acceleration and velocity terms can lead to predictions outside the
basin of attraction of the iterative method, which is only locally stable,
and thus, implicate instability issues. Then, it is strongly recommended
to employ the solution of the previous step. Moreover, no line-search
algorithm is necessary to globalize properties of convergence.

3.1. Tumbling cylinder

The tumbling cylinder was largely studied, see for instance [7,41].
This structure is a cylindrical shell subjected to spatial loads with a
prescribed time variation. The geometrical and material properties are
the following: mean radius 7.5 m, height 3.0 m, thickness 0.02 m,
longitudinal elastic modulus 2.0 × 10 Pa8 , Poisson's ratio 0.25 and mass
density per volume unit 1.0 kg/m3. The cylinder is discretized with 48
elements, in which 16 elements are located along the circumference
and 3 elements along the height. The total number of nodes is 68, so it
means that the mesh has a seam, which was modeled by means of the
continuous connection. Moreover, no further kinematic boundary
condition is enforced and no dissipation is considered.

Fig. 3 shows the finite element representation of the tumbling
cylinder. Additionally, the line segments A, B, C and D, to which the
spatial loads are applied, are indicated. The seam is located along the
line segment A, which joins the first and last rows of nodes. Table 2
presents the values for the spatial loads that are applied to the structure.
The loads are then multiplied with a function that describes the
variation of the applied force over the time, which is defined in Eq.
(78). Then f i i if f f= + +̂ ̂ ̂0

ext 1
1

2
2

3
3 and f ft f t( ) = ( )·ext 0

ext, in which the
last expression is the acting load.

Fig. 9. Free-flying three-layer plate – finite element representation.

Fig. 10. Free-flying three-layer plate – motion sequence.

Table 6
Free-flying three-layer plate with ply-drop-offs – verification of stationary values.

t > tload [20] Present

l1 4.8 4.8
l2 3.2 3.2
l3 3.2 3.2
j1 0.0266 0.0285
j2 − 0.2236 − 0.2254
j3 − 0.0659 − 0.0656
H 195.0 195.6
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⎧
⎨⎪
⎩⎪

f t
t t

t t
t

( ) =
10 for 0 ≤ < 0.5

5 − 10 for 0.5 ≤ < 1
0 for ≥ 1 (78)

Fig. 4 shows a motion sequence, where the original configuration is
located at the upper-left corner of the plot, and some deformed
configurations are sequentially shown from left to right and from top
to bottom. As it can be observed, the tumbling cylinder exhibits large
displacements and large rotations, therefore the nonlinear kinematic
behavior is apparent. Table 3 presents a verification of the stationary
values for the linear momentum, angular momentum and total energy.
The results obtained with the present approach are then compared with
those results published in [41], whose values were taken directly from

the PDF file by mean of a point-capture technique. Therefore, they
should be considered just as references for comparison, but not as exact
values. Although some small differences can be appreciated, the
agreement is indeed very good. The main source of scattering can be
attributed to the modeling approaches, which are substantially differ-
ent. As already mentioned, the current model is based on an extensible-
director-based solid-degenerate shell, which can accommodate stresses
in the thickness direction, whereas the reference model presented
in [41] is based on a standard shell theory with an inextensible
director, which is not able to accommodate stresses in the thickness
direction.

Fig. 5 shows the time history for the linear momentum, angular
momentum and energy. It can be observed that the linear momentum,
angular momentum and total energy vary during the time in which the
external load is active, i.e. the first 1 s. After the vanishment of the
external load, all these three invariant quantities are identically
preserved through the time. These results prove numerically that the
adopted integration scheme preserves momenta and energy. Although
the total energy remains constant, the potential and kinematic energies
vary in the course of time, complementing each other in such a way that
the total energy is perfectly constant. As a final comment, this
particular case shows no unresolved high-frequency content, therefore
no dissipation is necessary to compute a convergent long-term response
of the system.

3.2. Free-flying single-layer plate

The free-flying single-layer plate was proposed by Kuhl and
Ramm [14] and studied later by Vu-Quoc and Tan [20] among others.
The structure is a rectangular flat plate, which comprises a single
material layer and is subjected to spatial loads with a prescribed time
variation. The geometrical and material properties are the following:
length 0.3 m, width 0.06 m, thickness 0.002 m, longitudinal elastic
modulus 2.06 × 10 Pa11 , Poisson's ratio 0.0 and mass density per volume
unit 7.3 × 10 kg/m3 3. The flat plate is then discretized with 120
elements, 30 elements being located along the largest dimension and
4 elements along the smallest dimension. The total amount of nodes is
155 and no dissipation is considered.

Fig. 6 shows the finite element representation of the free-flying
single-layer plate. The line segments A, B and C, to which the spatial
loads are applied, are indicated as well. Additionally, the points of

Fig. 11. Free-flying three-layer plate – linear momentum, angular momentum and total energy.

Fig. 12. Three-intersecting plates – finite element representation.

Table 7
Three-intersecting plates – force density per length unit in N/m.

A B C D

f1 2 − 2 1 10
f2 0 − 4 − 1 6
f3 − 2 2 − 1 − 1
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origin denoted by the symbols ◊ and □ are indicated, which are
necessary to perform the verification of the stationary angular momen-
tum. Table 4 presents the values for the spatial loads that are applied to
the structure. The loads are then amplified with a function, which is
defined in Eq. (79).

⎧
⎨⎪
⎩⎪

f t
t t

t t
t

( ) =
500 for 0 ≤ < 0.002

2 − 500 for 0.002 ≤ < 0.004
0 for ≥ 0.004 (79)

Fig. 7 shows a motion sequence. Table 5 presents a verification of the
stationary values for the linear momentum, angular momentum and
total energy. The results obtained with the present approach are
compared with those results published in [14], whose authors used
the initial location of the material point ◊ as origin of the global
coordinate system, and with the results presented in [20], whose
authors used the initial location of the material point □ as origin of
the global coordinate system. Both authors consider eight-node solid-
degenerate shell elements, which do belong to the same family of finite
elements. In [14], a generalized energy-momentum method based on

the generalized α method with adaptive time step was employed,
whereas in [20] the Bossak α algorithm with fixed time step was
applied. The values were taken from the PDF. Very small differences
can be appreciated, but the agreement is indeed very good, even
provided that the computed results are slightly sensitive to the time
step.

Fig. 8 shows the time history for the linear momentum, angular
momentum and total energy. These three quantities vary during the
time in which the external load is active, i.e. the first 0.004 s. After the
vanishment of the external load, they are identically preserved over the
time. As a final comment, this particular case does show unresolved
high-frequency content, which for very long simulations could trigger
the fail of the Newton-Raphson method. Although the adopted numer-
ical method is indeed unconditionally stable, if initial guest of the
solution falls outside the basin of the attraction, the stability is not
longer warranted and therefore, some dissipation would provide
robustness for computing a convergent long-term response of the
system.

3.3. Free-flying three-layer plate with ply-drop-offs

The free-flying three-layer plate with ply-drop-offs was originally
proposed by Vu-Quoc and Tan [20] to analyze the dynamic behavior of
thin-walled structures with ply-drop-offs. The structure is comprised by
three rectangular flat plates, which are stacked one over the other. The
lowermost plate is subjected to the same loads that are considered for
the free-flying single-layer plate. The properties are as follows: length of
the lowermost plate 0.3 m, length of the middle plate 0.2 m, length of
the uppermost plate 0.1 m, width 0.06 m, thickness 0.001 m, long-
itudinal modulus 2.06 × 10 Pa11 , Poisson's ratio 0.0 and mass density
per volume unit 7.3 × 10 kg/m3 3. The largest plate is discretized with

Fig. 13. Three-intersecting plates – motion sequence.

Table 8
Three-intersecting plates – verification of stationary values.

t > tload [46] at ◊ Present at ◊ [41] at □ Present at □

l1 4.125 4.125 4.125 4.125
l2 − 0.125 − 0.125 − 0.125 − 0.125
l3 − 0.75 − 0.75 − 0.75 − 0.75
j1 − 5.880 − 5.913 − 8.199 − 8.163
j2 22.39 22.463 26.238 26.213
j3 25.68 25.712 12.733 12.712
H 59.51 59.326 59.164 59.326
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120 elements. The middle plate comprises 80 elements. And finally, the
smallest plate is discretized with 40 elements. The plates are stacked by
means of the layer connection. At one edge, all the plates coincide in
the in-plane location. From this one to the other edge along the
longitudinal direction, the difference in length of the plates materializes
itself as ply-drop-offs. Moreover, no further kinematic boundary con-
dition is enforced. For the comparison of stationary values, no damping
was utilized, although convergence problems, due to the high-fre-
quency content, were present after few multiples of the load time
duration. This fact was also observed in [20]. Finally, to compute a
convergent long-term response, a dissipation factor of α = 0.05 was
employed.

Fig. 9 shows the finite element representation. The line segments A,
B and C at the lowermost plate, to which the spatial loads are applied,
are indicated as well. Additionally, the point □ in the original
configuration is indicated, which is necessary to perform the verifica-
tion of the stationary angular momentum. Fig. 10 shows a motion
sequence. The region containing the ply-drop-offs exhibits larger
deformations than the stiffer region containing all the three layers.
Table 6 presents a verification of the stationary values. The results
obtained with the present approach are contrasted with those results
published in [20]. In the aforementioned publication, the authors
consider eight-node degenerated-solid shell elements and the Bossak
α algorithm with fixed time step.

Fig. 11 shows the time history for the linear momentum, angular
momentum and energy. After the vanishment of the external load, i.e.

t > 0.004 s, the momenta are identically preserved. Due to the presence
of unresolved high-frequency content, the introduction of numerical
dissipation was necessary to obtain a convergent long-term response.
Although the energy is not preserved, it always decays in a controlled
form by means of a suitable definition of the non-conservative parts of
the linear momentum and stress. The reduction of energy is always
warranted for positive-definite dissipation functions even in the non-
linear case. Standard integration methods do not provide this feature,
and the desired dissipation characteristics are only warranted for the
linear case.

3.4. Three-intersecting plates

This example is very complicated. For instance [46], presented a
deep study of the discrepancies shown in literature. The structure
comprises three flat plates and is subjected to spatial loads. The
properties are the following: length and width of the lowermost plate
9.0 m and 4.0 m, respectively, length and width of the middle plate
10.0 m and 3.0 m, correspondingly, length and width of the uppermost
plate 14.0 m and 3.0 m, respectively, thickness of each plate 0.02 m,
longitudinal modulus 2.0 × 10 Pa7 , Poisson's ratio 0.23 and mass density
per volume unit 1.0 kg/m3. The lowermost plate is discretized with 108
elements, from which 18 elements are located along the largest
direction and 6 elements along the smallest dimension. The plate in
the middle comprises 72 elements, from which 12 elements are located
along the largest direction and 6 elements along the smallest dimen-
sion. The uppermost plate is discretized in 72 elements, from which 12
elements are located along the largest direction and 6 elements along
the smallest dimension. The plates are connected by means of the
discontinuous connection. Moreover, no further kinematic boundary
condition is enforced and no dissipation is considered.

Fig. 12 shows the finite element representation of the three-
intersecting plates. The line segments A, B, C and D, to which the
spatial loads are applied, are indicated as well. Additionally, the points
of origin denoted by the symbols ◊ and □ are indicated, which are
necessary to perform the verification of the stationary angular momen-
tum. Table 7 presents the values for the spatial loads that are applied to
the structure. The loads are then multiplied with a temporal function
that describes the time variation, which is defined in Eq. (80).

Fig. 14. Three-intersecting plates – linear momentum, angular momentum and total energy.

Fig. 15. Cylindrical panel – finite element representation.
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Fig. 13 shows a motion sequence. As it can be observed, the three-
intersecting plates exhibits large displacements and large rotations,
therefore the nonlinear kinematic behavior is evident. Table 8 presents
a verification of the stationary values for the linear momentum, angular
momentum and total energy. The results obtained with the present
approach are then compared with those results published in [46],
whose authors used the initial location of the material point ◊ as origin
of the global coordinate system, and with the results in [41], whose
authors used the initial location of the material point □ as origin of the
global coordinate system. In both publications, the authors consider
four-node shell elements, which do belong to the same family of finite
elements, but to a different one with respect to our modeling approach.
The values were taken directly from the PDF. Although some small
differences can be appreciated, the agreement with the references is
indeed very good. Due to this good agreement, it is not possible to
attribute the differences to the modeling approach.

Fig. 14 shows the time history for the linear momentum, angular
momentum and total energy. After the vanishment of the external load,
i.e. t > 1 s, all these quantities are exactly preserved. This particular
case shows unresolved high-frequency content, which for very long
simulations could trigger the fail of the numerical method and there-
fore, some dissipation would provide robustness.

3.5. Dynamic snap-through of a cylindrical panel

Here, we investigate the dynamic snap-through of a cylindrical
panel, originally proposed by Kuhl and Ramm [14] in the context of
solid-degenerate shell elements and studied later by Romero and
Armero [18] in the context of a geometrically exact shell theory. The
structure is a shell with constant curvature along the traversal direction.
It is subjected to a concentrated normal load that is applied to the point,
which is located at the geometric center of the panel. The properties are
the following: radius 5.0 m, half-angle 30.0°, dimension in the long-
itudinal direction 5.0 m, thickness 0.01 m, longitudinal modulus

2.0 × 10 Pa11 , Poisson's ratio 0.25 and mass density per volume unit
1.0 × 10 kg/m4 3. The structure was completely modeled instead of using
symmetries to reduce the computation time. The cylindrical panel is
then discretized in 256 elements, from which 16 elements are located
along the longitudinal direction and 16 elements along the transversal
direction. The total amount of nodes is 289, both longitudinal edges are
simply supported and no further kinematic boundary condition is
enforced. For the convergent long-term response, two cases are
considered, one without dissipation and one with dissipation factor
α = 0.1. Fig. 15 shows the finite element representation. At the edges A
and B, the simply supported boundary condition is applied. The
geometric center of the shell is indicated with a ◊ symbol. Additionally,
with a□ symbol an interesting point located in the middle of one of the
free edges is indicated. The concentrated load is defined as
f it f t( ) = −200000 ( ) ̂ext 1, which is expressed in N, and the time variation
is given by

⎧⎨⎩f t t t
t( ) = 5 for 0 ≤ < 0.2

1 for ≥ 0.2. (81)

Fig. 16 presents to the left the vertical displacement of the points
located at ◊ and at □, and to the right the mesh geometry at time 1 s.
The upper row corresponds to the case where no dissipation was
introduced and the lower row corresponds to the case where dissipation
was considered. Considering the results presented at the left, it can be
observed that for the time interval between 0 s and 0.2 s the distinction
of both cases is practically impossible. Taking a carefully look at the
long-term responses, it is possible to confirm that the results presented
at the bottom correspond to the case with dissipation. At the right, it is
possible to appreciate the long-term resulting mesh geometry for both
cases. The mesh that corresponds to the case without dissipation shows
distortions and lack of symmetry. As this case is purely symmetric, with
respect to two planes, in geometry, material, loads and boundary
conditions, this fact is unacceptable. The mesh, which corresponds to
the case with dissipation, shows neither distortion nor lack of symme-
try. This fact confirms that by considering a small dissipation, the
robustness of the long-term response can be improved, not only by
removing the unresolved high-frequency content, but also by annihilat-

Fig. 16. Snap-through of a cylindrical panel – displacement and mesh quality.
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ing their unwanted effects on the quality of the mesh. Finally, the static
solution published in [14] indicates a displacement of the center point
of − 1.5111 m, and the stationary response obtained with the current
approach is − 1.5093 m. Moreover, the dynamic behavior for both cases
shows the same unsteady features as those obtained by Kuhl and
Ramm [14]. On the contrary, the results obtained by Romero and
Armero [18] in the context of a geometrically exact shell theory show
that the cylindrical panel develops a nearly vibration steady-state about
the static solution immediately after reaching the maximal load.
Although the source of this discrepancy could be attributed to the
modeling approaches, the explanation requires more investigations that
are beyond the scope of this work.

4. Concluding remarks

This work presented a framework for simulating the nonlinear
dynamics of shell structures that relies on the combination of a mixed
finite element formulation, a robust integration scheme and a null-
space projection method. This unifying approach, which can deal with
large displacements, large rotations and large strains, was successfully
verified. Moreover, it inherits the advantages of all involved basic
ingredients (e.g. objectivity, unconditional stability, robustness, etc) and
is relatively easy to implement. We can claim that the approach is able
to handle highly-unsteady nonlinear cases and the robustness-precision
relation is well balanced.

However, the current methodology ought to be enhanced, for
example, by implementation of a hyper-reduction method, off-line
precomputation of coefficients for Saint Venant-Kirchhoff elastic mate-
rials, implementation of multi-layer laminated materials and, enrich-
ment of the displacement field with zig-zag functions.
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3. Article B: Nonlinear dynamics of slender
structures: a new object-oriented
framework

This article presents a new object-oriented framework to study the nonlinear dynamics of
slender structures made of hyperelastic multilayer composite materials that relies on finite
element method and multibody system formalism with a robust integration scheme and is
presented in a differential-algebraic setting. Each mechanical system under consideration
is represented as a collection of infinitely stiff components, such as rigid bodies, and
flexible components like geometrically exact beams and solid-degenerate shells. The
current approach employs directors instead of standard angle-based parametrizations
to describe the orientation of the involved components in combination with the total-
Lagrangian description. This setting allows to preserve by design the objectivity of the
discrete strain measures under rigid space transformations and the path-independence of
the formulation under the action of conservative loading. The semi-discrete equations are
temporally discretized for a fixed time increment with a momentum-preserving, energy-
preserving/dissipative method, which allows the annihilation of undesirable effects due to
unresolved high-frequency content and provides robustness without compromising the pre-
cision of the solution. Some interesting constraints to render more complicated structures
without modifying the underlying finite element formulation are introduced. In few words,
from a methodological point of view, the novelty of this work is the combination of rigid
bodies, geometrically exact beams and solid-degenerate shells, and the time integration
with a momentum-preserving, energy-preserving/dissipative method into a single common
unifying framework, which is implemented by using the object-oriented programming
philosophy. The resulting approach may be used very effectively, for example, in wind
energy and aeronautics.

This article is published in Computational Mechanics 63 (2019), 219–252. The main work
was done by the author of this Habilitationsschrift. Benedikt Hofmeister and Christian
Hente contributed mainly with the preparation and simulation of examples. Raimund
Rolfes contributed with technical suggestions and supporting work.
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Abstract
With this work, we present a new object-oriented framework to study the nonlinear dynamics of slender structures made of
composite multilayer and hyperelastic materials, which combines finite element method and multibody system formalism
with a robust integration scheme. Each mechanical system under consideration is represented as a collection of infinitely
stiff components, such as rigid bodies, and flexible components like geometrically exact beams and solid-degenerate shells,
which are spatially discretized into finite elements. The semi-discrete equations are temporally discretized for a fixed time
increment with a momentum-preserving, energy-preserving/dissipative method, which allows the systematic annihilation of
unresolved high-frequency content. As usual in multibody system dynamics, kinematic constraints are employed to render
supports, joints and structural connections. The presented ideas are implemented following the object-oriented programming
philosophy. The approach, which is perfectly suitable for wind energy or aeronautic applications, is finally tested and its
potential is illustrated by means of numerical examples.

Keywords Nonlinear dynamics of slender structures · Finite elements · Multibody systems · Robust integration ·
Object-oriented programming

1 Introduction

Existing andnewslender structuresmadeof compositemulit-
layer materials, e.g. wind turbines or airplanes, are very
complex and the corresponding dynamic analysis requires
a vast computational capacity as well as the development
and application of fully nonlinear formulations (at least from
the geometrical and kinematic point of view). Simulations
in time-domain involving large displacements, large rota-
tions and even large strains due to dynamic loads could be
mandatory. The resulting discrete equations for this kind of
structures are in fact very stiff and therefore, the computation
of long-term convergent responses could be very problem-
atic, even for well-established commercial codes. Achieving
robustness requires the development of procedures able to
annihilate the unwanted unresolved high-frequency content,
while warranting simultaneously preservation of the under-

B Cristian Guillermo Gebhardt
c.gebhardt@isd.uni-hannover.de

1 Institute of Structural Analysis, Leibniz Universität Hannover
and ForWind Hannover, Appelstr. 9A, 30167 Hannover,
Germany

lying physics. For further development and enhancement of
these procedures, it is equally important to take into account
implementation aspects regarding source-code reusability
and extension. However, the accomplishment of these fea-
tures is rather effortful.

Reissner [1] formulated a one-dimensional large-strain
beam theory for plane deformations of plane beams. Bathe
and Boloruchi [2] discussed fundamental aspects regarding
the formulation of three-dimensional geometrically non-
linear beam elements. Simo [3] extended the concepts
considered by Reissner in [1] to the three-dimensional case,
from which resulted the so-called geometrically exact beam
theory. Cardona and Géradin [4] developed an objective
beam finite element based on the geometrially exact beam
theory and a material description of the rotation group,
whose composition is performed to the right. Romero and
Armero [5] presented a finite element formulation for geo-
metrically exact beams, which is frame-indifferent. Relying
on the straightforward interpolation of the directors, the
authors provided a detailed derivation of the spatial and
temporal discretization. The proposed framework allowed
the development of an unconditionally stable time-stepping
algorithm that preserves first integrals ofmotion. Armero and
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Romero [6,7] developed a family of schemes for nonlinear
three-dimensional elastodynamics that exhibits controllable
numerical dissipation in the high-frequency range. Armero
and Romero [8] particularized that integration approach to
the Cosserat rod case. In the energy-preserving context,
Betsch and Steinmann [9] presented a brief overview of
the constrained dynamics of nonlinear beams. In contrast
to the standard formulations based on rotational degrees
of freedom, the authors proposed the interpolation of a
triad consisting of three orthonormal directors, where the
mutual orthonormality is achieved by imposing holonomic
constraints. Yu et al. [10] considered geometrically exact
beams with initially large twisting and large curvature in
the context of thin-walled structures. Mäkinen [11] derived
an improved version of the formulation proposed by Car-
dona and Géradin in [4], which, beyond being objective
like in its original version, is also path independent. Auric-
chio et al. [12] emphasized some intrinsic features of the
three-dimensional beammodel proposed by Simo in [3]. The
formulation was also re-derived in a consistent and com-
pact form. Pimenta et al. [13] developed a fully conserving
algorithm for the integration of the equations of motion in
nonlinear rod dynamics. Romero [14] compared the abso-
lute nodal coordinate and geometrically exact formulations.
Pai [15] discussed occurrent problems for different beam
theories under large deformations. De Miranda et al. [16]
discussed briefly the constitutive assumptions normally done
for linear elastic isotropic and orthotropic materials in the
framework of thin-walled beams. And very recently, the
aero-hydro-servo-elastic simulation framework FAST [17],
which employs amultibody formulation basedon apredictor-
corrector scheme and loose coupling, was enhanced with
an angle-based geometrically exact beam finite element for
blade calculations [18].

Dvorkin and Bathe [19] developed a four-node shell ele-
ment for general nonlinear analysis,which is applicable to the
analysis of thin and thick shells. In [20], the authors discussed
the requirements concerning linear and nonlinear analysis.
Choi and Paik [21] presented the development of a four-
node shell element for the analysis of structures undergoing
large deformations. Betsch and Stein [22,23] developed a
four-node shell element that incorporates unmodified three-
dimensional constitutivemodels. This elementwas improved
by means of the enhanced assumed strain method proposed
by Simo and Armero [24]. Bischoff and Ramm [25] for-
mulated a geometrically nonlinear version of the enhanced
assumed strain approach in terms ofGreen–Lagrange strains.
Sansour et al. [26] combined a geometrically exact shell
theory and an integration scheme that preserves first inte-
grals of motion. Betsch et al. [27] exposed a classification
of concepts regarding the parametrization of finite rotations
in the context of smooth shells. Sansour et al. [28] dealt
with a dynamic formulation of shells and the development

of a robust energy-momentum integration scheme. Romero
and Armero [29] extended the previously introduced method
to the dynamics of geometrically exact shells. Proofs of
the numerical properties in the full nonlinear range were
also provided. Bauchau et al. [30] developed energy pre-
serving/dissipative schemes for the simulation of multibody
systems including shell components. Ozkul [31] presented
a finite element for dynamic analysis of shells with gen-
eral shape. Betsch and Sänger [32] dealt with the design of
energy-momentum conserving schemes for flexible multi-
body dynamics by extending the ideas proposed by the same
authors in [9]. The approach is based on nonlinear finite ele-
ment methods for the space discretization of flexible bodies,
particularly geometrically exact shells.Vaziri [33] studied the
response of shell structures under large deformations and pre-
sented a review of the current state-of-the-art with practical
suggestions. Campello et al. [34] extended the fully conserv-
ing algorithm presented in [13] for the integration of motion
in nonlinear shell dynamics. Wu [35] described the nonlin-
ear dynamic behavior of shell structures bymeans of a vector
form intrinsic formulation. Ahmed and Sluys [36] presented
a three-dimensional shell element for the dynamic analysis of
laminated composites. Pietraszkiewicz and Konopińska [37]
reviewed different theoretical, numerical, and experimental
approaches to model, analyze and design compound shell
structures with junctions. Reinoso and Blázquez [38] devel-
oped an eight-node solid-degenerate shell element, which
was reformulated in the context of composite structures by
means of the single-layer concept. Caliri et al. [39] presented
a very detailed literature review on plate and shell theories
for composite structures with remarks regarding the finite
element implementation. Ota et al. [40] considered the non-
linear dynamics of thin foldable curved structures thatmaygo
through many snapping transitions from a stable configura-
tion to another. And very recently, Gebhardt and Rolfes [41]
dealt, in the context of shell structures, with the combination
of a mixed finite element and a robust integration scheme,
featuring a well-balanced robustness-precision relation.

In this work, we present a new object-oriented frame-
work to study the nonlinear dynamics of slender struc-
tures made of composite multilayer materials combining
finite element method and multibody system formalism
with a robust integration scheme that is presented in a
differential-algebraic setting. Each mechanical system under
consideration is represented as a collection of infinitely
stiff components, such as rigid bodies, and flexible compo-
nents like geometrically exact beams and solid-degenerate
shells. The current approach employs directors instead of
standard angle-based parametrizations to describe the ori-
entation of the involved components in combination with
the total-Lagrangian description. This setting allows to pre-
serve “by design” the objectivity of the discrete strain
measures under rigid space transformations and the path
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independence of the formulation under the action of con-
servative loading. For the spatial discretization, we use
low-order interpolations following the “Effective Finite Ele-
ments” philosophy proposed by Bucalem and Bathe [42].
The semi-discrete equations are temporally discretized for a
fixed time increment with a momentum-preserving, energy-
preserving/dissipativemethod, which allows the annihilation
of undesirable effects due to unresolved high-frequency con-
tent and provides robustness without compromising the pre-
cision of the solution. Some interesting constraints to render
more complicated structures without modifying the underly-
ing finite element formulation are introduced. In few words,
from a methodological point of view, the novelty of this
work is the combination of rigid bodies, geometrically exact
beams and solid-degenerate shells, and the time integration
with amomentum-preserving, energy-preserving/dissipative
method into a single common unifying framework, which is
implemented by using the object-oriented programming phi-
losophy. The resulting approachmaybe used very effectively,
for example, in wind energy and aeronautics. To our best
knowledge, there is no comprehensive work available in the
literature, where all these ingredients are consistently com-
binedwith a similar setting in the context of slender structures
made of composite multilayer and hyperelastic materials.

The article is organized as follows: Sect. 2 presents the
basic mechanical models, comprising a general descrip-
tion and some details of the spatial discretization into finite
elements. Section 3 is devoted to the temporal discretiza-
tion based on a robust scheme. Section 4 presents several
constraints that allow to render complex structures. Sec-
tion 5 presents some examples to show the potential of the
framework proposed. Finally, Sect. 6 is dedicated to con-
cluding remarks, limitations and future work. Additionally,
“Appendix” presents a summary of the numerical implemen-
tation.

2 Basic mechanical models

The currentwork relies on three basicmechanicalmodels, i.e.
rigid bodies, geometrically exact beams and solid-degenerate
shells. Even, provided that the modeling of these idealiza-
tions is rather a classical topic, the consistent combination
within a single framework is still far from trivial. This
is mainly due to the very different kinematic descriptions
involved.Typically, in the context of rigid bodies andgeomet-
rically exact beams, the orientation problem requires to deal
with the Lie group SO(3) and its corresponding Lie algebra
so(3). In the context of director-based shells on the contrary,
it is required to deal with the unit 2-sphere S21, a manifold
that does not possess Lie group structure (this is a conse-
quence of the hairy ball theorem [43]). It means that different
treatments are required. For instance, a systematic descrip-

tion of rigid bodies and geometrically exact beams can be
addressed in a natural way due to the similarities of the kine-
matic descriptions. However, the combination of these two
mechanical models with shells requires devoted handling.
Along this section, we describe systematically all the three
basic mechanical models by means of unifying approach
without the necessity of incurring to rotational degrees of
freedom. In a very direct manner, the proposed systematic
description allows the combination of the basic mechanical
models among them and with the robust integration scheme,
which is presented later. Therefore, the present summarized
exposure is considered essential for the subsequent steps.

2.1 Rigid body

2.1.1 Kinematic description and weak form of the
governing equations

The position at time t , for t ∈ [t1, t2] ⊂ R+, of any given
point belonging to the rigid body shown in Fig. 1, namely
x(t) ∈ Xt ⊆ R3, can be written as

x(θ; t) = x̄(t) + θ1d1(t) + θ2d2(t) + θ3d3(t), (1)

in which x̄ ∈ X̄ ⊆ R3 is the position vector of a refer-
ence point and d1, d2 and d3 are three mutually orthonormal
directors. On that basis, the rotation tensor can be simply
obtained as R = di ⊗ i i ∈ SO(3), in which i i for i from 1 to
3 stands for the elements of the dual basis of E3 (R3 with the
standard Euclidean structure), i.e. the space of row vectors.
θ = (θ1, θ2, θ3) is a set of parameters chosen in the way that
θ̄ = θ1d1 + θ2d2 + θ3d3 describes the position of any given
point of the body relative to the reference point described by
x̄. Analogously, the velocity, namely v(t) ∈ Vt ⊆ R3, can
be written as

v(θ; t) = v̄(t) + θ1w1(t) + θ2w2(t) + θ3w3(t), (2)

in which v̄ ∈ V̄ ⊆ R3 is the translational velocity of the
adopted reference point andw1,w2 andw3 are three director
velocity vectors. The dynamic behavior of the rigid body can
be formulated as
∫
B0

{〈
δv, l(v) − l(x)

〉 + 〈
δx, l̇(v)

− f ext + HT · λ
〉 + 〈

δλ, h
〉}
dB0 = 0 , (3)

where B0 is an open subset of R3 and
〈·, ·〉 : V × V ∗ → R

is a dual pairing, in which V is a vector space (whose
elements are called vectors) and V ∗ is its algebraic dual
space (whose elements are called covectors or one-forms).
δv ∈ TvV and δx ∈ TxX are admissible variations of
the position and the velocity vectors, respectively. l(v) and
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Fig. 1 The rigid body
concept—time evolution among
configurations through the
regular motion ϕt ◦ ϕ−1

0

l(x), both in T ∗
v V , are the velocity-based momentum and

the displacement-based momentum densities, correspond-
ingly. l̇(v) and f ext(x), both in T ∗

x X , are the time rate of
the velocity-based momentum and the external force den-
sities, respectively. H : Rn × TxX → R is the Jacobian
matrix of h = 0 ∈ Rn , a finite-dimensional set of holo-
nomic restrictions and δλ is an admissible variation of the
corresponding Lagrange multipliers λ : [t1, t2] → Rn . At
this point, it should be clear that a state-space description is
adopted instead a phase-state description. This setting (in
contrast to approaches based only on generalized coordi-
nates) is necessary to include in a natural way the dissipation
of energy at the level of the generalized velocities for the flex-
ible bodies that are described along the next section. Further
details on the geometrical aspects introduced above can be
found in [44,45] within the context of classical mechanics or
in [46,47] within an engineering context. After performing
the integration over the entire volume, the governing equation
for the rigid body, in its weak form, becomes

〈
δv̄, l0(v̄,w1,w2,w3) − l0(x̄, d1, d2, d3)

〉
+ 〈

δ x̄, l̇
0
(v̄,w1,w2,w3) − f 0,ext + HT

0 · λ
〉

+ 〈
δw1, l1(v̄,w1,w2,w3) − l1(x̄, d1, d2, d3)

〉
+ 〈

δd1, l̇
1
(v̄,w1,w2,w3) − f 1,ext + HT

1 · λ
〉

+ 〈
δw2, l2(v̄,w1,w2,w3) − l2(x̄, d1, d2, d3)

〉
+ 〈

δd2, l̇
2
(v̄,w1,w2,w3) − f 2,ext + HT

2 · λ
〉

+ 〈
δw3, l3(v̄,w1,w2,w3) − l3(x̄, d1, d2, d3)

〉
+ 〈

δd3, l̇
3
(v̄,w1,w2,w3) − f 3,ext + HT

3 · λ
〉

+ 〈
δλ, h

〉 = 0.

(4)

Given the mass density �0, the generalized velocity-based
momentum l i (v̄,w1,w2,w3) is defined as Ei0v̄ + Ei1w1 +
Ei2w2 + Ei3w2 and the generalized displacement-based
momentum l i (x̄, d1, d2, d3) asEi0 ˙̄x+Ei1 ḋ1+Ei2 ḋ2+Ei3 ḋ3,
where the symmetric mass inertia coefficients Ei j are com-
puted bymeans of

∫
B0

�0θ
iθ jdB0 for i and j from 0 to 3. For

the case i ( j) equal to zero, θ i (θ j ) takes a constant unit value.
This setting allows to consider zeroth-order inertia E00, first-
order inertia E0i for i greater than zero, and second-order
inertia Ei j for i and j greater than zero. It enables the han-
dling of rigid bodies, in which the reference point does not
coincide with the center of mass. H0 and H i (for i = 1, 2, 3)
stand for ∂h

∂ x̄ and
∂h
∂di

, respectively. Finally, themutual orthog-
onality condition among the directors is simply included by
considering

hint(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1(t) · d1(t) − d1(0) · d1(0)
d2(t) · d2(t) − d2(0) · d2(0)
d3(t) · d3(t) − d3(0) · d3(0)

2[d2(t) · d3(t) − d2(0) · d3(0)]
2[d1(t) · d3(t) − d1(0) · d3(0)]
2[d1(t) · d2(t) − d1(0) · d2(0)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 0, (5)

which is in fact the internal constraint that completes the
dynamic description, for more details see [48].

2.2 Geometrically exact beam

2.2.1 Kinematic description and weak form of the
governing equations

The position at time t of any given point belonging to the
beam shown in Fig. 2 can be written as
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Fig. 2 The geometrically exact
beam concept—time evolution
among configurations through
the regular motion ϕt ◦ ϕ−1

0

x(θ; t) = x̄(θ3; t) + θ1d1(θ3; t) + θ2d2(θ3; t), (6)

in which x̄ ∈ X̄ ⊆ R3 is the position vector of the mid-
dle curve and d1 and d2 together with d3 are three mutually
orthonormal directors. θ = (θ1, θ2, θ3) is a set of parame-
ters chosen in the way that θ̄ = θ1d1 + θ2d2 describes the
cross section at the stationL(θ3), which intersects themiddle
curve and x = x(θ; t) is the given parametrization rule in
time and space. The spatial metric structure induced by this
construction is

G = δi j
∂xi

∂θa

∂x j

∂θb
ga⊗gb, (7)

where δi j are the components of the Euclidean metric tensor,

ga ∈ TθX defined as ga = ∂xi
∂θa

i i with i i for i from 1 to 3
standing for the elements of the standard orthonormal basis
in E3, i.e. the space of column vectors, and the elements of
the covariant basis ga ∈ T ∗

θ X defined in the usual form, this
is gb(ga) = δab , the elements of the contravariant basis. δi j
and δab are simply Kronecker deltas. At this point, it is certain
that G : TθX × TθX → R+. Then the displacement-based
doubly-covariant Green–Lagrange strain tensor is

Ē�(θ; t) = 1

2
{G[x(θ; t)] − G[x(θ; 0)]} , (8)

which in the context of geometrically exact beams can be
reduced after eliminating quadratic strain terms as

Ēi j (θ; t) ≈ S
{
δi3δ jk[Γ k(θ3; t) − εklm θ̄ lΩm(θ3; t)]}. (9)

where S(·) denotes symmetrization, Γ i (θ3; t) defined as
di (θ3; t) · x̄′(θ3; t) − di (θ3; 0) · x̄′(θ3; 0) is a first strain
measure (for shear refer to first and second components and
for elongation refer to the third one), Ω i (θ3; t) defined as
1
2ε

i
jk[dk(θ3; t) ·d ′

j (θ
3; t)−dk(θ3; 0) ·d ′

j (θ
3; 0)] is a second

strain measure (for bending refer to first and second compo-
nents and for torsion refer to the third one) and εijk is the
alternating symbol that allows the computation of the cross
product in the three-dimensional Euclidean space. Analo-
gously, the velocity can be written as

v(θ; t) = v̄(θ3; t) + θ1w1(θ
3; t) + θ2w2(θ

3; t), (10)

in which v̄ ∈ V̄ ⊆ R3 is the translational velocity of the
middle curve and w1, w2 together with w3 are three director
velocity vectors. The dynamic behavior of the geometrically
exact beam can be formulated as
∫
L0

∫
A0

{〈
δv, l(v) − l(x)

〉 + 〈
δx, f int(x, S
)

+ l̇(v) − f ext + HT · λ
〉 + 〈

δλ, h
〉}
dA0 dL0 = 0 , (11)

where A0 represents the cross-sectional area and L0 stands
for the arc length in the original configuration, f int(x, S
) ∈
T ∗
x X is the internal force and S
 ∈ Tx(0)X0 × Tx(0)X0 is an

appropriate stress definition, here the secondPiola–Kirchhoff
stress tensor.

Given two mutually orthonormal directors d1 and d2, a
third director d3 could be simply computed as d1 × d2.
This description would lead to a two-director formulation.
An alternative to this formulation results from the addi-
tional consideration of d3 in combination with the mutual
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orthonormality condition for the three directors as already
introduced by Eq. (5). The resulting representation is a
so-called three-director formulation, whichwe adopt to facil-
itate the combination among beams and rigid bodies. After
introducing explicitly d3 in the variational principle and per-
forming the integration over the cross section, the governing
equations for the geometrically exact beam, in its weak form,
becomes

∫
L0

{〈
δv̄, l0(v̄,w1,w2) − l0(x̄, d1, d2)

〉

+ 〈
δ x̄, f 0,int(d1, d2, d3, N) + l̇

0
(v̄,w1,w2) − f 0,ext

+ HT
0 · λ

〉 + 〈
δw1, l1(v̄,w1,w2) − l1(x̄, d1, d2)

〉
+ 〈

δd1, f 1,int(x̄, d2, d3, N, M)

+ l̇
1
(v̄,w1,w2) − f 1,ext + HT

1 · λ
〉

+ 〈
δw2, l2(v̄,w1,w2) − l2(x̄, d1, d2)

〉
+ 〈

δd2, f 2,int(x̄, d1, d3, N, M)

+ l̇
2
(v̄,w1,w2) − f 2,ext + HT

2 · λ
〉

+ 〈
δd3, f 3,int(x̄, d1, d2, N, M) − f 3,ext + HT

3 · λ
〉

+ 〈
δλ, h

〉}
dL0 = 0 .

(12)

The generalized velocity-based momentum l i (v̄,w1,w2)

is defined as Ei0v̄ + Ei1w1 + Ei2w2 and the general-
ized displacement-based momentum l i (x̄, d1, d2) as Ei0 ˙̄x+
Ei1 ḋ1+Ei2 ḋ2,whereEi j is computedbymeansof

∫
A0

�0θ
iθ j

dA0 for i and j from 0 to 2. This consideration allows the
handling of cross sections with arbitrary shape and material
properties, which exactly applies to the case of modern slen-
der structuresmade of compositemultilayermaterials. Given
the beam potential energy density per unit length V beam,
the internal force and moment densities per unit length are
N = ∂V beam

∂Γ
and M = ∂V beam

∂Ω
, respectively. The compo-

nents of the cross-sectional tangent constitutive matrices are
in principle computed as

(CΓ Γ )i j =
∫
A0

CI J K L ∂ Ē I J

∂Γ i

∂ ĒK L

∂Γ j
dA0 ,

(CΓ Ω)i j =
∫
A0

CI J K L ∂ Ē I J

∂Γ i

∂ ĒK L

∂Ω j
dA0 ,

(CΩΓ )i j =
∫
A0

CI J K L ∂ Ē I J

∂Ω i

∂ ĒK L

∂Γ j
dA0 ,

(CΩΩ)i j =
∫
A0

CI J K L ∂ Ē I J

∂Ω i

∂ ĒK L

∂Ω j
dA0 .

(13)

where CI J K L represents the components of the tangent elas-
ticity tensor and Ē I J stands for the components of the strain
tensor presented by Eq. (9). For thin-walled structures, addi-
tional assumptions about the strain and stress states may

be necessary. At this point, warping effects are completely
neglected. In the case of the blade of a wind turbine, which
is in some regions far away from the thin-walled structure
hypothesis and also non-negligible variations of the cross
section may take place, the primary warping due to torsion
ought to be combined with the consideration of secondary
warping due to shear. This would requiere to include addi-
tional displacements fields, see for example [49]. Therefore,
standard assumptions regarding warping effects may result
not adequate. However, a detailed discussion and treatment
of a this aspect is beyond the scope of the current work. The
acting internal load densities are indicated as follows:

f 0,int(d1, d2, d3, N) =
[∂Γ

∂ x̄
(d1, d2, d3)

]T· N,

f 1,int(x̄, d2, d3, N, M) =
[ ∂Γ

∂d1
(x̄, d2, d3)

]T· N
+

[ ∂Ω

∂d1
(d2, d3)

]T· M,

f 2,int(x̄, d1, d3, N, M) =
[ ∂Γ

∂d2
(x̄, d1, d3)

]T· N
+

[ ∂Ω

∂d2
(d1, d3)

]T· M,

f 3,int(x̄, d1, d2, N, M) =
[ ∂Γ

∂d3
(x̄, d1, d2)

]T· N
+

[ ∂Ω

∂d3
(d1, d2)

]T· M.

(14)

The geometrically exact beam model presented is able to
take into account coupling terms not only at the level of the
stiffness, but also at the level of the mass/inertia. This feature
is of high interest in wind energy or aeronautic applications,
specially to evaluate static and dynamic critical behavior of
slender blades made of multilayer composite materials like
divergence or flutter.

2.2.2 Spatial discretization

To spatially discretize the geometrically exact beam into
two-node finite elements, we approximate the generalized
displacement fields x̄ and di as well as the generalized
velocity fields v̄ andwi and their admissible variations as fol-
lows: x̄(θ3; t) ≈ N I (θ3)x̄ I (t), di (θ3; t) ≈ N I (θ3)di,I (t),
v̄(θ3; t) ≈ N I (θ3)v̄ I (t), wi (θ

3; t) ≈ N I (θ3)wi,I (t),
δ x̄(θ3) ≈ N I (θ3)δ x̄ I , δdi (θ3) ≈ N I (θ3)δdi,I , δv̄(θ3) ≈
N I (θ3)δv̄ I and δwi (θ

3) ≈ N I (θ3)δwi,I for I from 1 to
2, and N I (θ) denotes linear Lagrange-type functions of
θ3 ∈ [− 1,+1]. In addition, the mutual orthogonality con-
dition among the directors is also imposed discretely at the
nodes. Finally, the semi-discrete version of the weak form of
the governing equations for a single finite element becomes
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〈
δ ˆ̄v,

∫ +1

−1
NT · [l0(v̄, w1, w2) − l0(x̄, d1, d2)

]∂L0

∂θ3
dθ3

〉

+
〈
δŵ1,

∫ +1

−1
NT · [l1(v̄, w1, w2) − l1(x̄, d1, d2)

]∂L0

∂θ3
dθ3

〉

+
〈
δŵ2,

∫ +1

−1
NT · [l2(v̄,w1,w2) − l2(x̄, d1, d2)

]∂L0

∂θ3
dθ3

〉

+
〈
δ ˆ̄x,

∫ +1

−1

{
NT · [ f 0,int(d1, d2, d3, N)

+ l̇
0
(v̄,w1,w2) − f 0,ext

] + HT
0 · Nλ · λ

}∂L0

∂θ3
dθ3

〉

+
〈
δ d̂1,

∫ +1

−1

{
NT · [ f 1,int(x̄, d2, d3, N, M)

+ l̇
1
(v̄, w1, w2) − f 1,ext

] + HT
1 · Nλ · λ

}∂L0

∂θ3
dθ3

〉

+
〈
δ d̂2,

∫ +1

−1

{
NT · [ f 2,int(x̄, d1, d3, N, M)

+ l̇
2
(v̄,w1,w2) − f 2,ext

] + HT
2 · Nλ · λ

}∂L0

∂θ3
dθ3

〉

+
〈
δ d̂3,

∫ +1

−1

{
NT · [ f 3,int(x̄, d1, d2, N, M) − f 3,ext

]

+ HT
3 · Nλ · λ

}∂L0

∂θ3
dθ3

〉

+
〈
δλ̂,

∫ +1

−1
NT

λ · h ∂L0

∂θ3
dθ3

〉
= 0 ,

(15)

where ˆ(·) denotes nodal variables,N is the matrix containing
the shape functions and Nλ is a collocation matrix to set
discretely the constraints at the nodes.

As a consequence of the adopted discrete imposition of the
internal constraints, the approximation of the rotation tensor
is given by

R(θ3; t) ≈ N 1(θ3)di,1(t) ⊗ i i + N 2(θ3)di,2(t) ⊗ i i

= N 1(θ3)R1(t) + N 2(θ3)R2(t), (16)

which does not belong in general to SO(3), except at θ3

equal to − 1 or + 1, and for the case R1 equal to R2. This
lack of orthonormality of the directors, i.e. the unit length
is not preserved and the orthogonality is lost, requires finer
discretizations than standard beam elements equipped with
angle-based parametrizations, but at the same time, it does
possess a very important feature, since this discrete setting
preserves the objectivity, invariance of the discrete strain
measures under rigid body motions. Furthermore, the path
independence is guaranteed, e.g. for conservative actions
the work produced through any arbitrary closed path is
identically zero, see for instance [5] and [9]. The second
property is destroyed when updated-Lagrangian approaches
are adopted, and the first one is destroyed when the spatial
descriptions of the rotation tensor basedon theCartesian rota-
tion vector are employed. Contrarily, thematerial description

of the rotation tensor based on the Cartesian rotation vec-
tor does not destroy the objectivity of the formulation, see
for example [4] und [11]. Pimenta et al. [13] and Gay Neto
[50] developed formulations for geometrically exact beams
by using the Rodrigues rotation parameters, with which the
authors achieved the objectivity at the discrete level. Alter-
nativelly, Ghosh and Roy [51] developed a frame-invariant
scheme using the rotation vector parametrization in the con-
text of an Eulerian formulation. Since we want to analyze
slender structures with variable properties along their length,
the demand for finer meshes does not represent a problem.
To capture the nonlinear dynamics of such a kind of struc-
tures accurately finer meshes are necessary anyway. For an
exhaustive review and classification in regard to the inter-
polation of rotations in the context of geometrically exact
beams, the reader is referred to [52].

2.3 Solid-degenerate shell

2.3.1 Kinematic description and weak form of the
governing equations

The position at time t of any given point belonging to the
shell shown in Fig. 3 can be written as

x(θ; t) = x̄(θ1, θ2; t) + θ3
ϑ

2
d(θ1, θ2; t), (17)

in which x̄ ∈ X̄ ⊆ R3 is the position vector of the mid-
dle surface, ϑ represents the thickness of the shell and
d ∈ D ⊆ R3 is an extensible director, which admits mul-
tiplicative decomposition, i.e. d = d d̂ with d ∈ R+ and
d̂ ∈ S21. θ = (θ1, θ2, θ3) is a set of parameters chosen in
the way that θ̄ = (θ1, θ2, 0) describes the middle surface.
For instance, we can choose θ to span the domain , such
as := {[− 1, 1] × [− 1, 1] × [− 1, 1]}. The spatial metric
structure induced by this construction agrees with Eq. (8).
Analogously, the velocity can be written as

v(θ; t) = v̄(θ1, θ2; t) + θ3
ϑ

2
w(θ1, θ2; t), (18)

in which v̄ ∈ V̄ ⊆ R3 is the translational velocity of the
middle surface and w ∈ W ⊆ R3 is the director velocity. By
employing the same idea applied already for the rigid body
and the geometrically exact beam, the governing equation
for th solid-degenerate shell, in its weak form, becomes

∫
�

{〈
δv, l(v) − l(x)

〉 + 〈
δx, f int(x, S
) + l̇(v) − f ext

+HT · λ
〉 + 〈

δλ, h
〉 + 〈〈

δ Ẽ�, S

〉〉}√

det
[
G(θ; 0)]d3θ,

(19)
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Fig. 3 The solid-degenerate
shell concept—time evolution
among configurations through
the regular motion ϕt ◦ ϕ−1

0

where 〈〈·, ·〉〉 : V ×V ×V ∗×V ∗ → R represents the double
dual pairing, δ Ẽ� is an admissible variation of the enhanced
part of the Green–Lagrange strain tensor, Ẽ� : Tx(0)X0 ×
Tx(0)X0 → R, and

√
det

[
G(θ; 0)]d3θ is the volume element.

Thevelocity-based anddisplacement-based linearmomen-
tum densities, and the internal force density are defined as

l(v) = �0v, l(x) = �0 ẋ and f int(x, S
) = [B̄T
(x)](S�),

respectively. The continuous operator [B̄(x)](·) relates the
variation of the displacement field to the variation of the strain
field.

2.3.2 Spatial discretization

To spatially discretized the solid-degenerate shell into four-
node finite elements, we approximate the displacement as
well as the velocity fields, and their admissible variations as
follows: x(θ; t) ≈ N

(
θ , ϑ

) · x̂(t), v(θ; t) ≈ N
(
θ , ϑ

) · v̂(t),
δx(θ) ≈ N

(
θ , ϑ

)·δ x̂ and δv(θ) ≈ N
(
θ , ϑ

)·δv̂.N(θ , ϑ) is the
interpolationmatrix,whose rows are dual vectors constructed
as

Ni (θ , ϑ
) = [

N 1(θ̄)
i i , θ3

ϑ

2
N 1(θ̄)

i i , N 2(θ̄)
i i , θ3

ϑ

2
N 2(θ̄)

i i ,

N 3(θ̄)
i i , θ3

ϑ

2
N 3(θ̄)

i i , N 4(θ̄)
i i , θ3

ϑ

2
N 4(θ̄)

i i
]
. (20)

The functions N A
(
θ̄
)
, with A taking values from 1 to 4,

are the bilinear Lagrange-type shape functions. In this con-
text, it means that x̂(t) ∈ X̂t ⊆ R24, v̂(t) ∈ V̂t ⊆ R24,
δ x̂ ∈ Tx̂(t)X̂t and δv̂ ∈ Tv̂(t)V̂t . Given that N

(
θ , ϑ

)
x̂(t) =

Ni
A

(
θ , ϑ

)
x̂ A(t)i i , the displacement-based strain can be sim-

ply approximated as

Ēab
[
x(θ; t)] ≈ Ēab

[
θ , x̂(t), x̂(0)

]

= δi j

2

∂Ni
A

(
θ , ϑ

)
∂θa

∂N j
B

(
θ , ϑ

)
∂θb

[
x̂ A(t) x̂ B(t) − x̂ A(0) x̂ B(0)

]
.

(21)

Having already introduced the spatial approximation, the dis-
crete version of B̄(x) becomes

[B̄(x̂)](·) = [B̄ · N](x̂)(·)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δi j
∂Ni

A
∂θ1

x̂ A ∂N j

∂θ1
(·)

δi j
∂Ni

A
∂θ2

x̂ A ∂N j

∂θ2
(·)

δi j
∂Ni

A
∂θ3

x̂ A ∂N j

∂θ3
(·)

δi j
∂Ni

A
∂θ2

x̂ A ∂N j

∂θ3
(·) + δi j

∂Ni
A

∂θ3
x̂ A ∂N j

∂θ2
(·)

δi j
∂Ni

A
∂θ1

x̂ A ∂N j

∂θ3
(·) + δi j

∂Ni
A

∂θ3
x̂ A ∂N j

∂θ1
(·)

δi j
∂Ni

A
∂θ1

x̂ A ∂N j

∂θ2
(·) + δi j

∂Ni
A

∂θ2
x̂ A ∂N j

∂θ1
(·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

It is well-known that purely displacement-based formu-
lations suffer from some pathologies, e.g. shear locking,
artificial thickness strains andmembrane locking. These defi-
ciencies are caused by the adopted simplified kinematics and
the chosen discretization, leading to a poor representation of
the involved quantities that are necessary to set the finite-
dimensional version of the equilibrium properly. To cure the
shear locking and the artificial thickness strains, we use the
assumed natural strain method. To complete the strain field
in the thickness direction and to cure the membrane lock-
ing, we employ the enhanced assumed strain method. The
assumed natural strainmethod is amean to cure some locking
issues without introducing additional degrees of freedom. It
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Table 1 Tying points for the assumed natural strain method (isoparametric coordinates)

A B C D 1 2 3 4

(θ1, θ2) (0,+1) (− 1, 0) (0,− 1) (+ 1, 0) (+ 1,+ 1) (− 1,+ 1) (− 1,− 1) (+ 1,− 1)

involves only redefinition of some terms based on those orig-
inally computed from the displacement-based ones. Here,
we use the assumed natural strain formulation developed in
[19] to eliminate the shear-locking issue. To eliminate the
artificial thickness strain issue, we also employ the assumed
natural strain formulation, which is a further development of
the ideas presented in [23] and [25]. For this purpose, we
assume tying points lying in the middle surface of the shell,
which are summarized in Table 1.

The tying points θ̄ A, θ̄ B , θ̄C and θ̄D are employed to cure
the shear locking. We redefine Ē23(θ̄) and Ē13(θ̄) as

ˇ̄E23(θ̄) = 1

2
(1 − θ1)Ē23(θ B) + 1

2
(1 + θ1)Ē23(θD) and

ˇ̄E13(θ̄) = 1

2
(1 − θ2)Ē13(θC ) + 1

2
(1 + θ2)Ē13(θ A) . (23)

The tying points θ̄1, θ̄2, θ̄3 and θ̄4 are employed to cure the
artificial thickness strain. We redefine Ē33(θ̄) as

ˇ̄E33(θ̄) = N 1(θ̄)Ē33(θ1) + N 2(θ̄)Ē33(θ2)

+N 3(θ̄)Ē33(θ3) + N 4(θ̄)Ē33(θ4) . (24)

The enhanced assumed strain method allows the improve-
ment of the strain field and the curing of some locking issues
as well, but the introduction of additional elemental degrees
of freedom is necessary. Themethodproposed in [53] enables
the definition of enhanced strains spanned by outer products
of the elements of the dual basis at θ = 0, i.e.

Ẽab(θ; t)ga(θ; 0)⊗gb(θ; 0) =√
det

[
G(0; 0)]

det
[
G(θ; 0)]

ˇ̃Eab
[
θ; ẽ(t)]ga(0; 0)⊗gb(0; 0) , (25)

in which ˇ̃Eab are the enhancements, where “by design”
Ẽab(0, 0) is set equal to zero, and ẽ(t) ⊆ R8 contains the ele-
mental degrees of freedom. For the membrane strain state,
the inclusion of some terms proportional to θ1 and to θ2

in the strain components Ē11, Ē22 and Ē12 is necessary.
For improving the strain component Ē33 the inclusion of
terms proportional to θ3, θ1θ3, θ2θ3 and θ1θ2θ3 is neces-

sary aswell. Notice that the condition
〈〈∫

B0
Ẽ�, S
dB0 = 0

〉〉

was implicitly replaced by
〈〈∫

B0
Ẽ�dB0, S



const = 0

〉〉
, which

is a more restrictive condition and in which S

const represents

a constant nominal stress state. This constant nominal stress

state condition is closely related to the satisfaction of the
patch test in its nonlinear form [24]. By design, the adopted
enhancements fulfill the constant nominal stress state condi-
tion. Now, we can define the discrete operator related to the
enhanced strain as B̃d = B̃l ◦ B̃r , where thematrix represen-
tation of B̃l is merely a transformation rule for the enhanced
strains in its Voigt form, which is based on Eq. (25), and the
matrix representation of B̃r is merely

B̃r (θ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1 0 0 0 0 0 0 0
0 θ2 0 0 0 0 0 0
0 0 0 0 θ3 θ1θ3 θ2θ3 θ1θ3θ3

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 θ1 θ2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (26)

The inclusion of additional terms is possible just by adding
new columns. It becomes apparent that particular considera-
tions are required to justify the new enhancements. For more
details see [41]. Finally, the semi-discrete version of theweak
form of the governing equations for a single finite element
becomes

〈
δv̂,

∫
�

NT · [l(v) − l(x)
]√

det
[
G(θ; 0)]d3θ

〉

+
〈
δ x̂,

∫
�

{
NT · [ f int(x, S
) + l̇(v) − f ext

]

+HT · Nλ · λ
}√

det
[
G(θ; 0)]d3θ

〉

+
〈〈

δ
ˇ̃E�,

∫
�

Š


√
det

[
G(θ; 0)]d3θ

〉〉

+
〈
δλ̂,

∫
�

NT
λ · h

√
det

[
G(θ; 0)]d3θ

〉
= 0 ,

(27)

where Š


represents the stress consistently accommodated in

the basis at θ = 0. The resultingfinite element in combination
with the robust integration can be regarded as a new evolution
of the work developed by Gebhardt and Rolfes [41], which
belongs to a similar element family to the MITC4 developed
by Dvorkin and Bathe [19] and Bathe and Dvorkin [20]. The
current extended version is a very effective alternative to
recent developments [54].

The improvement of the current element with respect to
Gebhardt and Rolfes [41] is two-fold because the concepts
presented here are firstly, valid for everymaterial law derived
from a potential function, while equally preserving the objec-
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tivity of the discrete strain measure and path independence.
And secondly, also for structures made of composite mul-
tilayer materials, which is accomplished by means of the
single equivalent-layer theory. The corresponding integra-
tion is performed layerwise within a single element with two
Gaussian integration points per layer. For a similar recent
development in the static context see [38]. Moreover, the
proposed shell element is in fact a fully-integrated degener-
ated solid, which relies on an extensible director kinematics.
In contrast to some reduced-integrated elements available in
the literature, that are based upon standard shell kinematics,
our element is free of spurious modes and drilling issues.
Therefore, no stabilization technique is necessary. Adding
drilling degrees of freedom may result very interesting to
capture the change of in-plane direction for materials with
preferenceable orientations.

3 Temporal discretization and robust
integration

A fundamental aspect to produce acceptable numerical
results in the context of conservative systems is the preserva-
tion of mechanical invariants like the linear momentum, the
angular momentum, the total energy (basically first integrals
of motion) or even the symplectic form. These conserva-
tion properties ensure that beyond the approximation errors,
the computed solution remains consistent with respect to the
underlying physical essence. The construction of numeri-
cal schemes showing the preservation of one or several of
these properties consists in finding discrete versions of the
continuous terms, which after their corresponding evalua-
tion at the time-quadrature points and in combination with
appropriate admissible variations of the position and veloc-
ity vectors yield to the desired preservation rules. These
preservation rules are typically materialized in terms of the
continuous invariant quantities evaluated only at the bound-
aries of the time interval. For nonlinear systems, this is not
directly achieved just by evaluating the continuous terms
at the temporal collocation points, because consistency and
directionality of the discrete partial derivatives are not per se
satisfied. Therefore, the discrete setting ought to parallel the
continuous framework. Moreover, not all mechanical invari-
ants can be discretely preserved for a fixed time step h. The
preservation of linear momentum and angular momentum in
combination with the preservation of the total energy and the
symplectic form is only achieved by adaptation of the time
step, whose size is obtained by solving an optimization prob-
lem subjected to inequality time constraints, see for example
Kane et al. [55].

In this work, we chose the family of integration methods
that is derived by direct discretization of the equations of
motion, which are obtained from the continuous variational

principle. Thus, the properties to be preserved are the lin-
ear momentum, the angular momentum and the total energy
without the necessity for imposing additional algebraic con-
straints, see [56]. Moreover, to achieve the preservation of
total energy for the conservative case, the discrete derivative
of the elastic potential function is computed by employing
the second-order “average vector field” proposed by Harten
et al. [57] and later by McLachlan et al. [58] instead of the
nonstandard quadrature proposed by Gonzalez [59], which
leads to a unsymmetric Hessian matrix even for the conser-
vative case. As far as we know, no publication is available, in
which the “average vector field” is employed in the context
of slender structures. As follows, we introduce a definition
of a discrete derivative due to Gonzalez [59], an example
of a discrete derivative based on the “average vector field”,
and proofs that the proposed discrete derivative fulfills the
introduced requirements.

Definition 1 For x and y ∈ Rn , DV : Rn × Rn → Rn is a
discrete derivative of V : Rn → R that satisfies:
i) directionality:

DV (x, y) · ( y − x) = V ( y) − V (x) . (28)

ii) consistency:

DV (x, x) = ∂V (x)

∂x
. (29)

Proposition 1 The discrete derivative of V : Rn → R is
given by

DV (x, y) = 1

2

∫ +1

−1

∂V (z)
∂ z

∣∣∣∣
z(ξ)

dξ , (30)

where z(ξ) is defined as 1
2 (1 − ξ)x + 1

2 (1 + ξ) y for ξ ∈
[− 1,+ 1].
Proof The directionality property is verified as follows:

DV (x, y) · ( y − x) = 1

2

∫ +1

−1

∂V (z)
∂ z

∣∣∣∣
z(ξ)

dξ · ( y − x)

=
∫ +1

−1

∂V (z)
∂ z

∣∣∣∣
z(ξ)

· ( y − x)

2
dξ

=
∫ +1

−1

∂V (z)
∂ z

∣∣∣∣
z(ξ)

· ∂ z(ξ)

∂ξ
dξ

=
∫ y

x

∂V (z)
∂ z

dz

= V ( y) − V (x)


�
Proof The consistency property is verified as follows:
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DV (x, x) = 1

2

∫ +1

−1

∂V (z)
∂ z

∣∣∣∣
z=x

dξ

= ∂V (x)

∂x
1

2

∫ +1

−1
dξ

= ∂V (x)

∂x


�
This concept of directional derivative is necessary not

only to compute the algorithmic internal forces, but also may
result necessary to compute the discrete version of the Jaco-
bian matrix associated to the constraints. However, Romero
[60] proved that there is an infinite number of second-order
approximations for the algorithmic stress formula. For the
finite elasticity problem, objective strain measures ought
to be employed to warrant the invariance of the potential
function under rigid space transformations. Finally, by com-
bining the mid-point rule, i.e. (·)n+ 1

2
≈ [(·)n+1+(·)n]/2 and

˙(·)n+ 1
2

≈ [(·)n+1−(·)n]/h, for the inertial internal terms and
the discrete derivative, i.e. the “average vector field”, for the
elastic internal terms and for the Jacobian matrix of the con-
straints, it is possible for the conservative case to preserve
linear momentum and angular momentum in combination
with the total energy.

The adopted integration approach is an alternative to vari-
ational integration schemes that preserve typically the linear
momentum, the angular momentum and the symplectic form
of the underlying Hamiltonian system [61,62]. In contrast
with our choice, that second family of integration methods
is derived by direct discretization of the action integral fol-
lowed by the discrete minimization of the discrete action.
The variational integration in its standard form is less robust
toward highly stiff problems that typically arise in the con-
text of beams and shells. Therefore, this is not an effective
alternative for our investigations.

The preservation of linear momentum and the angular
momentum in combination with the conservation of the total
energy does not warrant the robustness of the integration
scheme. It means that the presence of unresolved high fre-
quencies could trigger the failure of the Newton–Raphson
algorithm. One remedy to alleviate this problem is to add
some artificial dissipation to the system. However, the dissi-
pation proportional to discrete rate of strain is per se not able
to damp the unresolved high-frequency content; therefore,
the addition of some damping related to the discrete rate of
velocity module is necessary. Following the ideas presented
in [6–8,29], the velocity-based discrete linearmomentumand
the discrete internal loads are modified to achieve the desired
dissipation properties preserving at the same time the objec-
tivity of the formulation. To the best of our knowledge, there
is no work available in the literature, in where the robust

integration method with controlled energy dissipation, the
“average vector field” for the discrete derivative, and a unified
director-based formulation for rigid bodies, geometrically
exact beams and solid-degenerate shells with the simplest
additive actualization have been consistently combined and
implemented in a highly-extensible object-oriented frame-
work as the one proposed in the current manuscript and
specially towards real-world applications.

It is also worth mentioning that in [63–65], the null space
projection and the nodal reprarametrization were introduced
in the context of structure-preserving integration (see for a
very clear exposure of the basic ideas [66]) with the aim of
reducing the number of unkowns by eliminating theLagrange
multipliers. The multipliers are then easily recoverd by post-
processing the solution for the solved reduced problem. On
the one hand, analytical constructions of null-space pro-
jectors are not possible in general, and then linear algebra
libraries are necessary to compute the basis for the null space.
As the reformulated problem requieres the computation of
directional derivatives for the projectors, and as they are not
available in an analytical formgenerally, numerical computa-
tion with finite differences is requiered, which is very expen-
sive. On the other hand, introducing nodal reparametrization
is equivalent to fromulations based uponminimal representa-
tions of the rotation group and updated Lagrangian descrip-
tions. In contrast to these major drawbacks, the aforemen-
tioned authors showed that the null-space method improves
substantially the condition number of the iteration matrix,
since director-based formulations are more prone to condi-
tioning problems than formulations based on a minimal rep-
resentation of the rotation group. However, for all the cases
considered along this work, the solution of the nonlinear
equations system took in average 3-4 iterations, even for the
cases showing the snap-through phenomenon. One alterna-
tive to alleviate the condition number issue could be achieved
by employing scaling techniques as those proposed in [67].

3.1 Rigid body

Next, we describe the particularization of the momentum-
preserving, energy-preserving integration scheme for the
“rigid body” case. For this purpose, the following nomen-
clature is necessary:

q =

⎧⎪⎪⎨
⎪⎪⎩

x̄
d1
d2
d3

⎫⎪⎪⎬
⎪⎪⎭

, s =

⎧⎪⎪⎨
⎪⎪⎩

v̄

w1

w2

w3

⎫⎪⎪⎬
⎪⎪⎭

, p =

⎧⎪⎪⎨
⎪⎪⎩

l0

l1

l2

l3

⎫⎪⎪⎬
⎪⎪⎭

and

Qext =

⎧⎪⎪⎨
⎪⎪⎩

f 0,ext

f 1,ext

f 2,ext

f 3,ext

⎫⎪⎪⎬
⎪⎪⎭

. (31)
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While q is the vector of generalized coordinates, s stands for
the vector of generalizedvelocities, p collects the generalized
momenta and Qext contains the generalized external loads.
The discrete version of Eq. (4) can be expressed at time n+ 1

2
as

〈
δsn+ 1

2
, pd(sn, sn+1) − pd(qn, qn+1)

〉
+ 〈

δqn+ 1
2
, ṗd(sn, sn+1) − Qext

n+ 1
2

+ HT
d (qn, qn+1)· λn+ 1

2

〉
+ 〈

δλn+1, h(qn+1)
〉 = 0 .

(32)

A key point to achieve the desired preservation properties, is
to define the momentum terms by using the mid-point rule,
i.e.

pd(sn, sn+1) = M
2

· (sn+1 + sn), pd(qn, qn+1)

= M
h

· (qn+1 − qn), and ṗd(sn, sn+1)

= M
h

· (sn+1 − sn), (33)

in which the mass matrix takes the form

M =

⎡
⎢⎢⎣

E00 I3×3 E01 I3×3 E02 I3×3 E03 I3×3

E01 I3×3 E11 I3×3 E12 I3×3 E13 I3×3

E02 I3×3 E12 I3×3 E22 I3×3 E23 I3×3

E03 I3×3 E13 I3×3 E23 I3×3 E33 I3×3

⎤
⎥⎥⎦ (34)

and Ei j for i and j running from 0 to 3 being defined as in
Sect. 2.1. This very simple construction satisfies, only for
the rigid body case, the preservation of linear and angular
momenta in combination with the total energy in absence of
external loads. For further clarifications the reader is referred
to [68].

The discrete version of the Jacobian matrix of the con-
straints is given by

Hd(qn, qn+1) = 1

2

∫ +1

−1

∂h
∂q

∣∣∣∣
q(ξ)

dξ, (35)

where q(ξ) is defined as 1
2 (1− ξ)qn + 1

2 (1+ ξ)qn+1 for ξ ∈
[− 1,+ 1]. The algorithmic Jacobian matrix defined in this
way satifies for any admissible solution the discrete versionof
the hidden constraints, i.e. Hd(qn, qn+1) · (qn+1 − qn) = 0.

3.2 Geometrically exact beam

Next, we describe the particularization of the momentum-
preserving, energy-preserving/dissipative integration scheme
for the “geometrically exact beam” case. For this purpose, the
following nomenclature is necessary:

Qint =

⎧⎪⎪⎨
⎪⎪⎩

f 0,int

f 1,int

f 2,int

f 3,int

⎫⎪⎪⎬
⎪⎪⎭

, π =
{

Γ

Ω

}
, σ =

{
N
M

}
and

Cbeam =
[
CΓ Γ CΓ Ω

CΩΓ CΩΩ

]
. (36)

Qint contains the generalized internal loads,π andσ contains
the objective strain measures and internal loads, respectively,
and Cbeam

n stands for the tangent constitutive matrix at time
tn . The discrete version of Eq. (15) can be expressed at time
n + 1

2 as

〈
δsn+ 1

2
,

∫ +1

−1
NT · [ pd(sn,πn, sn+1,πn+1)

− pd(qn, qn+1)]
∂L0

∂θ3
dθ3

〉

+
〈
δqn+ 1

2
,

∫ +1

−1

{
NT · [ ṗd(sn, sn+1)

+Qint
d (qn, sn, qn+1, sn+1) − Qext

n+ 1
2

]

+HT
d (qn, qn+1)· Nλ · λn+ 1

2

} ∂L0

∂θ3
dθ3

〉

+
〈
δλn+1,

∫ +1

−1
NT

λ · h(qn+1)
∂L0

∂θ3
dθ3

〉
= 0 ,

(37)

where the admissible variations correspond to the nodal vari-
ables and therefore, further distinction are unnecessary and
from now, N gathers all nodal contributions.

On the one hand, the momentum term computed from
generalized velocities can be redefined as the additive com-
bination of a conservative part and a dissipative part, i.e.

pd(sn,πn, sn+1,πn+1) = pconsd (sn, sn+1)

+ pdissd (‖sn‖M ,πn, ‖sn+1‖M ,πn+1), (38)

where M is the consistent mass matrix and the conservative
part is

pconsd (sn, sn+1) = M̃
2

· (sn+1 + sn), (39)

in which the augmented mass matrix per unit length takes
the form

M̃ =

⎡
⎢⎢⎣

E00 I3×3 E01 I3×3 E02 I3×3 03×3

E01 I3×3 E11 I3×3 E12 I3×3 03×3

E02 I3×3 E12 I3×3 E22 I3×3 03×3

03×3 03×3 03×3 I3×3

⎤
⎥⎥⎦ (40)

and Ei j for i and j running from 0 to 2 being defined as in
Sect. 2.2. M̃ differs from M only in the block placed in the
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lower right corner, I3×3 instead of 03×3, which includes the
condition w3 = ḋ3 without adding further constraints. The
dissipative part that supports cross definition involving ‖s‖M
and π is given by

pdissd (‖sn‖M ,πn, ‖sn+1‖M ,πn+1)

= 2DP (‖sn‖M ,πn, ‖sn+1‖M ,πn+1)

‖sn+1‖2M − ‖sn‖2M
· M · sn+ 1

2
, (41)

in which the associated dissipation function DP is positive
semidefinite.

On the other hand, the discrete generalized load due to
internal terms can be also redefined as the additive combina-
tion of a conservative part and a dissipative part, i.e.

Qint
d (qn, sn, qn+1, sn+1) = Qint, cons

d (qn, qn+1)

+Qint, diss
d (qn, ‖sn‖M , qn+1, ‖sn+1‖M). (42)

The conservative part is

Qint, cons
d (qn, qn+1) =

[
∂π

∂q

]T

n+ 1
2

· σ cons
d (πn,πn+1) (43)

for the conservative algorithmic internal loads given by

σ cons
d (πn,πn+1) = 1

2

∫ +1

−1

∂V beam

∂π

∣∣∣∣
π(ξ)

dξ, (44)

where π(ξ) is defined as 1
2 (1 − ξ)πn + 1

2 (1 + ξ)πn+1 for
ξ ∈ [− 1,+ 1].

The dissipative part that also supports cross definition
involving ‖s‖M and π is given by

Qint, diss
d (qn, ‖sn‖M , qn+1, ‖sn+1‖M)

=
[
∂π

∂q

]T

n+ 1
2

· σ diss
d (‖sn‖M ,πn, ‖sn+1‖M ,πn+1) (45)

for the dissipative algorithmic loads

σ diss
d (‖sn‖M ,πn, ‖sn+1‖M ,πn+1)

= DQ(‖sn‖M ,πn, ‖sn+1‖M ,πn+1)

‖πn+1 − πn‖2Cbeam
n

·Cbeam
n · (πn+1 − πn), (46)

in which the dissipation function DS is positive semidefinite
as well. Finally, the following condition

H beam
n+1 + DP + DQ = H beam

n for DP + DQ ≥ 0, (47)

is warranted “by design”, being the corresponding Hamilto-
nian function H beam.

3.3 Solid-degenerate shell

Next, we describe the particularization of the momentum-
preserving, energy-preserving/dissipative integration scheme
for the “solid-degenerate shell” case. For this purpose, the
following nomenclature is necessary:

q =
{
x̄
d

}
and s =

{
v̄

w

}
. (48)

While q is the vector of generalized coordinates, s stands for
the vector of generalized velocities.

The discrete version of Eq. (27) can be expressed at the
time n + 1

2 as

〈
δsn+ 1

2
,

∫
�

NT · [ld (vn, En, vn+1, En+1)

− ld (xn, xn+1)
]√

det
[
G(θ; 0)]d3θ

〉

+
〈
δqn+ 1

2
,

∫
�

{
NT · [l̇d (vn, vn+1)

+ f intd (xn, vn, Ẽn, xn+1, vn+1, Ẽn+1) − f ext
n+ 1

2

]

+ HT
d (qn, qn+1)· Nλ · λn+ 1

2

}√
det

[
G(θ; 0)]d3θ

〉

+
〈
δ ẽn+ 1

2
,

∫
�

B̃
T [

Sd (vn, En, vn+1, En+1)
]√

det
[
G(θ; 0)]d3θ

〉

+
〈
δλn+1,

∫
�

NT
λ · h(xn+1)

√
det

[
G(θ; 0)]d3θ

〉
= 0 .

(49)

On the one hand, the discrete linear momentum density
computed from velocities can be redefined as the additive
combination of a conservative part and a dissipative part, i.e.

ld(vn, En, vn+1, En+1) = lconsd (vn, vn+1)

+ ldissd (‖vn‖, En, ‖vn+1‖, En+1), (50)

where the conservative part is

lconsd (vn, vn+1) = �0

2
(vn+1 + vn). (51)

The dissipative part that supports cross definition involving
‖v‖ and E is given by

ldissd (‖vn‖, En, ‖vn+1‖, En+1)

= 2DL(‖vn‖, En, ‖vn+1‖, En+1)

‖vn+1‖2 − ‖vn‖2 vn+ 1
2

, (52)

in which the associated dissipation function DL is positive
semidefinite.

On the other hand, the discrete internal load term can be
also redefined as the additive combination of a conservative
part and a dissipative part, i.e.
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f intd (xn, vn, Ẽn, xn+1, vn+1, Ẽn+1)

= f int, consd (xn, Ẽn, xn+1, Ẽn+1)

+ f int, dissd (xn, ‖vn‖, Ẽn, xn+1, ‖vn+1‖, Ẽn+1) (53)

Being consistent with the ideas already employed for the
beam, the conservative part is

f int, consd (xn, Ẽn, xn+1, Ẽn+1) = [Bd ]Tn+ 1
2

·Sconsd (En, En+1), (54)

for the conservative algorithmic stress given by

Sconsd (En, En+1) = 1

2

∫ +1

−1

∂V shell

∂E

∣∣∣∣
E(ξ)

dξ , (55)

where E(ξ) is defined as 1
2 (1 − ξ)En + 1

2 (1 + ξ)En+1 for
ξ ∈ [− 1,+ 1].

The dissipative part that also supports cross definition
involving ‖v‖ and E is given by

f int, dissd (xn, ‖vn‖, Ẽn, xn+1, ‖vn+1‖, Ẽn+1)

= [Bd ]Tn+ 1
2

· Sdissd (‖vn‖, En, ‖vn+1‖, En+1) , (56)

for the dissipative algorithmic stress

Sdissd (‖vn‖, En, ‖vn+1‖, En+1)

= DF (‖vn‖, En, ‖vn+1‖, En+1)

‖En+1 − En‖2Cn

·Cn · (En+1 − En) ,

(57)

in which the dissipation function DS is positive semidefinite
as well. Finally, the following condition

H shell
n+1 + DL + DF = H shell

n for DL + DF ≥ 0, (58)

is warranted “by design”, being the corresponding Hamilto-
nian function H shell.

4 Kinematic constraints

The introduction of kinematic constraints is a very effec-
tive manner to render, for example, very complex struc-
tures that arise from the combination of simpler structural
components. This methodology requires the solution of
differential-algebraic equations, which are originated from
the combination of differential equations that describe the
motion of the modeled rigid or flexible bodies and algebraic
equations that describe the enforced conditions.

These restrictions can be either internal, which come on
the scene in the case of parameterizing the configuration
manifold of a system with a number of parameters larger
than its intrinsic dimension, e.g. by employing three direc-
tors to describe the Lie group SO(3) (basically for rigid
bodies and beams) or by employing a single unit direc-
tor to describe the two-dimensional sphere with unit radius
embedded in the three-dimensional Euclidean space, i.e. S21,
(basically for inextensible shells, in which the E33 compo-
nent of the Green–Lagrange strain tensor is set to be zero at
every time), or external ones, which come on the scene in the
case of constraining bodies by means of joints, connections
or supports. Next, we present briefly some selected kinematic
constraints that allow: (i) the combination of nodes equipped
with twelve coordinates (one position and three mutually
orthogonal directors), the so-called “Nodes 12” ; (ii) the com-
bination of nodes equippedwith six coordinates (one position
and one extensible director), the so-called “Nodes 6”; and,
(iii) the hybrid combination of both.

Realize that we consider some constraints called supports,
with which we can set a reference to a given single node
irrespective of its type, and some other constraints called
joints, connections or transitions,withwhichwe can combine
two or more nodes of the same or of a different type. For
example, to study the dynamic behavior of a given structure
under sismic action, we can impose displacements, velocities
or even accelerations at the level of the anchoring of the
structure. The support also can be used as a “transfer node”
if the current code is hooked with another numerical tool,
for example to study soil-structure interactions. Here, we
consider the support as a specific kind of constraint and not
as a particularization derived form another kind of constraint
like joints. In fewwords, themain contribution of this section
relies on the reformulation of exiting kinematic constraints
with the kinematic descriptions adopted and the formulation
of new ones in the context of shells and their combination
with geometrically exact beams and rigid bodies. For recent
developments in the context of nonlinear beams and continua
see Romero [69].

4.1 “Node 12” constraints

– Spherical support It allows the fixing of the position
of a point related to the node whose relative position
is described by the offset vector φ, with components
{φ1, φ2, φ3}, but leaving free the change of orientation
of the associated frame. This is h = 0 ∈ R3,

h = {[x̄(t) + φ(t)] − [x̄(0) + φ(0)]} . (59)

– Revolute support It allows the fixing the position of
a point related to the node whose relative position is
described by the offset vector φ, and at the same time, the
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change of orientation of the associated frame about the
unit vector ν, with components {ν1, ν2, ν3} is permitted.
This is h = 0 ∈ R5 for i and j different,

h =
⎧⎨
⎩

[x̄(t) + φ(t)] − [x̄(0) + φ(0)]
ν(t) · di (t) − ν(0) · di (0)
ν(t) · d j (t) − ν(0) · d j (0)

⎫⎬
⎭ . (60)

– Rigid support It allows the fixing of the position of a point
related to the nodewhose relative position is described by
the offset vector φ, and at the same time, the orientation
of the associated frame is fixed with respect to its initial
configuration. This is h = 0 ∈ R12,

h =

⎧⎪⎪⎨
⎪⎪⎩

[x̄(t) + φ(t)] − [x̄(0) + φ(0)]
d1(t) − d1(0)
d2(t) − d2(0)
d3(t) − d3(0)

⎫⎪⎪⎬
⎪⎪⎭

. (61)

– Spherical joint It allows the connection of two points,
indicated with A and B, respectively, and each one has
a relative position φ with respect to its reference node.
The positions of both points are set to be equal and the
change of relative orientation of the associated frames is
set to be free. This is h = 0 ∈ R3,

h = {[A x̄(t) + Aφ(t)] − [B x̄(t) + Bφ(t)]} . (62)

– Revolute joint It allows the connection of two points,
indicated with A and B, respectively, and each one has
a relative position φ with respect to its reference node.
The positions of both points are set to be equal, but this
time, the change of relative orientation between the asso-
ciated frames is permitted to take place only about the
unit vector ν. This is h = 0 ∈ R5 for i and j different,

h =
⎧⎨
⎩

[A x̄(t) + Aφ(t)] − [B x̄(t) + Bφ(t)]
Aν(t) · Bdi (t) − Aν(0) · Bdi (0)
Aν(t) · Bd j (t) − Aν(0) · Bd j (0)

⎫⎬
⎭ . (63)

– Rigid connection It allows the connection of two points,
indicated with A and B, respectively. The relative posi-
tion φ of the node B with respect to the node A is
expressed in terms of the directors associated to the node
A. The positions of both points are set to be equal and
the change of relative orientation between the associated
frames is not permitted. The current relative orientation
is set to be fixed with respect to that one at the initial con-
figuration, i.e. ARB(t) = ARB(0). This is h = 0 ∈ R12,

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[B x̄(t) − A x̄(t)] − φ(t)
Ad1(t) · Bd1(t) − Ad1(0) · Bd1(0)
Ad1(t) · Bd2(t) − Ad1(0) · Bd2(0)
Ad1(t) · Bd3(t) − Ad1(0) · Bd3(0)
Ad2(t) · Bd1(t) − Ad2(0) · Bd1(0)
Ad2(t) · Bd2(t) − Ad2(0) · Bd2(0)
Ad2(t) · Bd3(t) − Ad2(0) · Bd3(0)
Ad3(t) · Bd1(t) − Ad3(0) · Bd1(0)
Ad3(t) · Bd2(t) − Ad3(0) · Bd2(0)
Ad3(t) · Bd3(t) − Ad3(0) · Bd3(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (64)

with the component φi defined as [B x̄(0) − A x̄(0)] ·
Adi (0).

4.2 “Node 6” constraints

– Spherical support It allows the fixing of the position
of a point related to the node whose relative position
is described by the offset vector φ, but leaving free the
change of orientation of the associated director. This is
h = 0 ∈ R3,

h = {[x̄(t) + φ(t)] − [x̄(0) + φ(0)]} . (65)

– Semi-rigid support It allows the fixing of the position
of a point related to the node whose relative position is
described by the offset vector φ and the associated direc-
tor is fixedwith respect its initial configuration. However,
the change of orientation about the director is permitted.
This is h = 0 ∈ R6,

h =
{[x̄(t) + φ(t)] − [x̄(0) + φ(0)]

d(t) − d(0)

}
. (66)

– Spherical connection It allows the connection of two
adjacent shells by introducing constraints at the inter-
facing edges, indicated with A and B, respectively. The
positions of each pair of nodes are set to be equal and
the change of relative orientation is set to be free. This is
h = 0 ∈ R3,

h = {
A x̄(t) − B x̄(t)

}
. (67)

– Continuous connection It allows the joining of two adja-
cent shells, see Fig. 4a, by introducing constraints at their
interfacing edges, indicated with A and B, respectively.
The positions and extensible directors at the edge are
set to be equal, but no restriction over the magnitude of
the extensible directors is considered. Therefore, the E33

component of the Green–Lagrange strain tensor can take
values different from zero. This is h = 0 ∈ R6,

h =
{A x̄(t) − B x̄(t)
Ad(t) − Bd(t)

}
. (68)
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(a) (b) (c)

Fig. 4 “Node 6” constraints: three special connections. a Continuous connection. b Discontinuous connection. c Layer connection

– Discontinuous connection It allows the dealing with
folded shells, see Fig. 4b, by introducing constraints at
the junction, indicated with A and B, respectively. Then
the positions are set to be equal, the directors are set to
be inextensible and the projection between directors is
set to be constant. In this case, the E33 component of
the Green–Lagrange strain tensor is identically zero at
every time step, which is required to avoid discontinu-
ities in the change of thickness across the junction. This
is h = 0 ∈ R6,

h =

⎧⎪⎪⎨
⎪⎪⎩

A x̄(t) − B x̄(t)
Ad(t) · Ad(t) − Ad(0) · Ad(0)
Bd(t) · Bd(t) − Bd(0) · Bd(0)
Ad(t) · Bd(t) − Ad(0) · Bd(0)

⎫⎪⎪⎬
⎪⎪⎭

. (69)

– Layer connection It allows stacking two single shells,
see Fig. 4c, by introducing constraints at a single ficti-
tious interfacing surface, which lies at a relative position
equal to half the thickness of the lower layer ϑL

2 , indi-
cated as surface A, times its extensible director, which is
seen from the middle surface of the lower shell, and at a
relative position equal to minus half the thickness of the
upper layer ϑU

2 , indicated as surface B, times its exten-
sible director, which is seen from the middle surface of
the upper shell. Then the positions at the interfacing sur-
face from both sides are set to be equal. This constraint
enables the consideration of situations in which the dis-
placement field across two adjacent layers is C0. This is
h = 0 ∈ R3,

h = {
A x̄(t) + ϑL

2
Ad(t) − B x̄(t) + ϑU

2
Bd(t)

}
. (70)

4.3 “Node 6” to“Node 12” constraints

This family of constraints allows dealing with combinations
of beams and shells that typically arises in the geometric
multi-scale analysis, for the combination of beams and solids
see for instance [69]. Some regions of a complex structure

are modeled with shells and the remaining ones are modeled
with beams. This strategy allows correct determination of
strain and stress states on the regions discretized with shell
elements, but at the same time, the essential nonlinear dynam-
ics of the remaining parts discretized with beam elements is
properly represented.

According to [70], the following assumptions are neces-
sary: (i) a rigid plane cross section in accordance with the
geometrically exact beam theory does exist with normal d3.
It means that warping effects are not allowed and therefore,
this assumption could be very restrictive; and, (ii) those nodes
belonging to the shell and the node belonging to the beam
node, which is taken as a master node for the transition, are
contained in this plane, see Fig. 5.

– Soft transition It allows the relative motion of all “Nodes
6” along a straight line whose origin is located at “Node
12” and whose direction remains constant with respect
to the moving frame attached to the master node. The
direction of this line is defined as

ν(t) = ν1d1(t) + ν2d2(t) + ν3d3(t) , (71)

in which the components are computed at the initial con-
figuration by means of the formula

νi := [x6(0) − x12(0)] · di (0)
‖x6(0) − x12(0)‖2 . (72)

The definition of a bi-normal direction is obtained as

τ (t) = ν(t) × d3(t) = ν2d1(t) − ν1d2(t) , (73)

and the soft transition for each “Node 6” with respect to
the master “Node 12” is h = 0 ∈ R2,

h =
{ [x6(t) − x12(t)] · τ (t)
[x6(t) − x12(t)] · d3(t) − [x6(0) − x12(0)] · d3(0)

}
.

(74)
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Fig. 5 “Node 6” to “Node 12” constraints: the rigid and soft transitions

– Rigid transition The relative motion along the in-plane
straight line is not longer permitted. The rigid transition
for each “Node 6” with respect to the master “Node 12”
is h = 0 ∈ R3, in which

h =
⎧⎨
⎩

[x6(t) − x12(t)] · τ (t)
[x6(t) − x12(t)] · d3(t) − [x6(0) − x12(0)] · d3(0)
[x6(t) − x12(t)] · ν(t) − [x6(0) − x12(0)] · ν(0)

⎫⎬
⎭ .

(75)

This rigid transition represents a more restrictive condi-
tion than the soft one and therefore, additional strains are
introduced due to the obstruction of transversal defor-
mations. Wagner and Gruttmann [70] showed that for a
hybrid beam-shell thin-walled H-beam under axial load,
the magnitude of the transversal stress component is
higher than the one obtained with the soft transition.

5 Results

In this section, we present some numerical examples to illus-
trate the potential of the proposed object-oriented framework.
All examples were calculated with the self-developed object-
oriented finite element method, multibody system software
DeSiO, which is entirely coded in Fortran 2008. To validate
the presented effort, some of our results are contrasted with
those results obtained with conventional finite element soft-
ware, i.e. ANSYS 17.0 andAbaqus FEA “3DEXPERIENCE
R2016x HotFix 3”.

In the first two examples, we set the focus on the adopted
director-based geometrically exact beam formulation. Exam-
ple 1 examines the dynamic snap-through of a shallow arc
beam structure and Example 2 considers the dynamic behav-
ior of a swinging rubber rod under gravity. In Examples 3 and
4, we concentrate on the solid-degenerate shell formulation
and examine the dynamic behavior of a layered composite
cantilever plate under bending and shear loading, and the

dynamic snap-through of a layered composite cylindrical
panel. The last two examples focus on hybrid representa-
tions, such as the combination of rigid bodies and beams
and the combination of beams and shells with guaranteed
total energy preservation. Hence, no comparison with results
computed with commercial software is provided. Therefore,
Example 5 includes a simplified dynamic analysis of a large-
scale horizontal-axis wind turbine, in which rigid bodies
and geometrically exact beams elements are combined, and
Example 6 shows a tumbling slender structure, in which one
part of the structure is discretized with solid-degenerate shell
elements and the other part is discretized with geometrically
exact beam elements.

For the Examples 1 and 4, we consider additional dissi-
pation. The dissipation functions that we employ are those
proposed by [5–7], which were calibrated to achieve similar
results to those obtained with Abaqus FEA and ANSYS. For
both softwares, there are options to automatically stabilize
the dynamic solutions by means of introducing of dissipa-
tion, but this works like a black box and the extraction of
dissipation parameters is not possible. Therefore, we regard
these two examples not as benchmarks, but as plausibility
studies.

5.1 Example 1: dynamic snap-through of a shallow
arc beam structure

The geometry of the shallow arc beam structure is depicted
in Fig. 6. The applied cross section properties are A =
8.45 × 10−3 m2, Ixx = 2.31 × 10−4 m4, Iyy = 1.32 ×
10−5 m4, Izz = 5.11 × 10−7 m4, and the used material
parameters are E = 2.1 × 1011 N/m2, ν = 0.3, G =
8.0 × 1010 N/m2 and ρ = 7.85 × 103 kg/m3. The structure
is subdivided into 20 beam elements. The end nodes are sim-
ply supported and a concentrated force is applied to point P1,
which is located at half the arc length of the structure. The
corresponding time history of the force is given in Fig. 6 as
well. The performed simulation time is 0.4 s with a constant
time step of 1.0 × 10−3 s.

Figure 7 presents the vertical displacement u3, evaluated
at point P1, calculated with DeSiO and compared with the
results from ANSYS, with the beam element BEAM188
(a two-node element based on Timoshenko theory), and
Abaqus FEA, with the beam element B31 (a two-node ele-
ment based on Timoshenko theory). The diagram at the top
shows the solution for the undamped case, whereas the dia-
gram at the bottom contains the solution for the damped
case. In both diagrams, it can be seen that the results show a
very good agreement for the sub critical responses before
snap-through and critical responses during snap-through.
For the undamped case, the super critical responses after
snap-trough, show similar amplitude and mean values. The
differences among the three results are attributed to the ele-
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Fig. 6 Shallow arc beam
structure
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Fig. 7 Shallow arc beam structure—vertical displacement at point P1: undamped (top) and damped (bottom)

ment technology and to the integration approaches. The
commercial codes employ non conservative integration algo-
rithms, e.g. Newmark’s method in ANSYS and HHTmethod
in Abaqus FEA, which in the best case scenario could reach
warranted stability only in the linear setting providing a suit-
able set of integration parameters. In contrast, the robust
integration approach we adopted is unconditionally stable
even in the nonlinear regime. For the damped case, we con-
sider dissipating loads proportional to the temporal rate of the
objective strain measures. The reduction of energy resulting

from the damping is dominant over additional numerical dis-
sipation, if present for non conservative approaches. Due to
this, the integration scheme employed by commercial soft-
ware, meaning that the three approaches perform well under
the considered conditions. As a consequence, the agreement
during the post critical behavior among all solutions is indeed
very good. For this case, the remaining differences aremainly
attributed to the element technology, but a detailed analysis
of that topic is far away from the scope of the current work.
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Fig. 8 Swinging rubber
rod—deformed shape at
different times computed with
DeSiO
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Fig. 9 Swinging rubber rod—displacements (u1 and u3) at point P1

5.2 Example 2: dynamic behavior of a swinging
rubber rod under gravity

The dynamic behavior of a swinging rubber rod under the
action of gravity was largely studied, see for instance [71].
The rod has a length of 1.0m and a circular cross sectionwith
a radius of 5.0×10−3 m. The elastic rod is only loaded by its

self-weight due to the gravity acceleration g = 9.81m/s2. In
addition, the rod is simply supported at one end. The rubber
material parameters used are E = 5.0×106 N/m2, ν = 0.5,
G = E/2(1+ν) and ρ = 1.1×103 kg/m3. No dissipation is
considered and discretization comprises 20 beam elements.
The performed simulation time is 2.4 s with a constant time
step of 1.0 × 10−2 s.
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Fig. 10 Swinging rubber rod—energy conservation

Fig. 11 Layered composite
cantilever plate—finite element
representation and problem
setting
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Figure 8 shows the resulting motion sequence within the
time interval between t = 0 s and t = 2.4 s. Large displace-
ments and large rotations become apparent. Figure 9 presents
the time history of displacement components u1 (top), hori-
zontal displacement, andu3 (bottom), vertical displacements,
at point P1 located at the free end. It can be observed that
DeSiO provides a very good consistency regarding the solu-
tions obtained with the commercial software.

Figure 10 shows the timehistory of the resulting energy for
the simulation performed with the current approach and also
with Abaqus FEA and ANSYS. For the current formulation,
the kinetic and potential energies are equal and with oppo-
site signs and, as required in the adopted conservative time
integration scheme, the total energy is identically preserved
during the whole simulation. For the commertial software,
it is observed that the total energy is not preserved showing
sharped rates that are sometimes positives and sometimes
negatives. This fact shows that those integration schemes are
not stable in the nonlinear sense.

5.3 Example 3: dynamic behavior of a layered
composite cantilever plate

The layered composite plate was proposed in Masud et al.
[72] in the context of static nonlinear analysis with shell
finite elements. The cantilever plate has a length of 10.0 m, a
width of 1.0 m and its overall thickness across the four layers
is 0.1479 m. Thus, each layer has a thickness of 0.036975
m. The material parameters are E1 = 1.379 × 108 N/m2,
E2 = E3 = 1.448 × 107 N/m2, G12 = G13 = G23 =
5.86 × 106 N/m2, ν = 0.21 and ρ = 5.0 kg/m3. As shown
inFig. 11, the structure is fixed at its left short edge and loaded
at the middle node of the right short edge with concentrated
forces in normal direction F1, bending force, and in traversal
direction F2, shear force. The performed simulation time is
1.0 s with a constant time step of 1.0 × 10−2 s.

The time history of the forces used is given in Fig. 11 as
well.Here,we analyzed the dynamic response for two layouts
with different layer orientation angles in combination with
each of the given forces, making a total of four cases. The
settings of all the four cases are listed in Table 2.

Figure 12 shows the time history of the displacement in
some selected directions at point P1 for all the four cases.
Additionally, the solutions obtained with Abaqus FEA with
the shell element S4 (a fully integrated four-node element
based on the thick shell theory) andANSYSwith the element
SHELL181 (a fully/reduced integrated four-node element for
shell finite strain that includes thickness change) are available
for comparison. We observe that the solutions obtained with
DeSiO,Abaqus FEAandANSYSare very close to each other
showing an excellent agreement. The solution obtained with

Table 2 Layered composite cantilever plate—analyzed cases

Case F1[N] F2[N] θ1[◦] θ2[◦] θ3[◦] θ4[◦]

1 − 500 0 45 −45 − 45 45

2 0 500 45 −45 − 45 45

3 − 500 0 45 −45 45 − 45

4 0 500 45 −45 45 − 45

Abaqus FEA shows for case 2 and 4 a vibration frequency
that is barely higher. However, the agreement between the
solutions obtained with DeSiO and ANSYS and the solution
obtained with Abaqus FEA is still very good and acceptable.
The differences are mainly attributed to the element technol-
ogy. At any rate, this discussion is beyond the scope of this
work.

Figure 13 shows a motion sequence for case 1, where the
initial configuration is located at the upper left corner, and
some deformed configurations are sequentially shown from
left to right and from top to bottom. The cantilever plate
exhibits large displacements and large rotations, therefore
the nonlinear kinematic behavior becomes apparent. Fig-
ure 14 shows the time evolution of the total energy for the
same case computed with the current approach and also with
Abaqus FEA andANSYS. For the current formulation, it can
be observed that total energy varies during the time where
load is active, i.e. the first 0.05 s. After the disappearance
of the external load, the total energy is identically preserved
through the time. This particular case shows no unresolved
high-frequency content, therefore no dissipation is necessary
to compute a convergent long-term response of the system.
As already showed for rubber rod example, it is observed that
Abaqus FEA and ANSYS fail to preserve the total ernegy.
This fact shows also that those employed integration schemes
are dissipative.

5.4 Example 4: dynamic snap-through of a layered
composite cylindrical panel

The snap-through of an isotropic cylindrical panel was
proposed by Kuhl and Ramm [73] in the context of solid-
degenerate shell elements, and later studied by Romero and
Armero [29] in the context of geometrically exact shells.
Here, we take the same example, but this time the cylindrical
panel is a composite multilayer structure made from a sin-
gle transversal isotropic material, i.e. carbon fiber reinforced
plastic. As depicted in Fig. 15, the structure has a constant
curvature along the transverse direction. Further geometrical
properties are defined by: radius 5.0 m, angle of the arc 60◦
and length of the longitudinal direction 5.0 m.

123

64



240 Computational Mechanics (2019) 63:219–252

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [s]

-5

-3.8

-2.6

-1.4

-0.2

1
u 

at
 p

oi
nt

 P
1 [m

]
Case 1

u1 - DeSiO
u1 - Abaqus FEA

u1 - ANSYS
u3 - DeSiO

u3 - Abaqus FEA
u3 - ANSYS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [s]

-0.8

-0.48

-0.16

0.16

0.48

0.8

u 
at

 p
oi

nt
 P

1 [m
]

Case 2

u2 - DeSiO
u2 - Abaqus FEA

u2 - ANSYS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [s]

-5

-3.8

-2.6

-1.4

-0.2

1

u 
at

 p
oi

nt
 P

1 [m
]

Case 3

u1 - DeSiO
u1 - Abaqus FEA

u1 - ANSYS
u3 - DeSiO

u3 - Abaqus FEA
u3 - ANSYS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [s]

-0.8

-0.48

-0.16

0.16

0.48

0.8

u 
at

 p
oi

nt
 P

1 [m
]

Case 4

u2 - DeSiO
u2 - Abaqus FEA

u2 - ANSYS

Fig. 12 Layered composite cantilever plate—displacement at point P1
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t = 0.00 s t = 0.20 s t = 0.40 s

t = 0.60 s t = 0.80 s t = 1.00 s

Fig. 13 Layered composite cantilever plate—motion sequence for case 1 computed with DeSiO

The cylindrical panel consists of four layers and each layer
has a constant thickness. Layer one is located at the bottom
and the following layers are arranged in ascending order to
the top, see Fig. 15. The corresponding orientation angles
are given by θ1 = θ3 = 15◦ and θ2 = θ4 = − 45◦. The
material properties of the carbon fiber reinforced plastic are
E1 = 1.4 × 1011 N/m2, E2 = E3 = 1.2 × 1010 N/m2,
G12 = 5.8 × 109 N/m2, G13 = G23 = 5.4 × 109 N/m2,
G23 = 5.4 × 109 N/m2, ν12 = ν13 = ν23 = 0.26 and
ρ = 1.5 × 103 kg/m3. The structure is discretized into
256 elements, from which 16 elements are located along the
longitudinal direction and 16 elements along the transverse
direction. The total number of nodes is 289. Both straight
edges are simply supported and the panel is subjected to
a concentrated force that is applied to the point, which is
located at half the arc length in both principal directions of
the structure. The corresponding time history of the force is
depicted in Fig. 15 as well. The performed simulation time
is 0.3 s with a constant time step of 1.0 × 10−3 s.

Figure 16 shows the vertical displacement at point P1
as a function of time without considering numerical dissi-
pation (top) and with numerical dissipation (bottom). For
this example, the dissipation does play an important role.
Whilst ANSYS andAbaqus FEA employ dissipation propor-
tional to the velocity,DeSiOemploys the complexdissipation
explained in the second section of this manuscript. For the
case without dissipation, only DeSiO was able to reach the
convergent solution for a time interval of 0.3 s. The simula-
tion with ANSYS abruptly stopped a few time steps after the
snap-through and the simulation with Abaqus FEA abruptly
stopped a few time steps before reaching 0.3 s. The uncondi-
tional stability of themethod adopted in DeSiO is guaranteed

even in the nonlinear cases provided that the initial guess
belongs to the basin of attraction of the Newton–Raphson
method. For the damped case, all the solutions performed
very well over the whole time interval. The solution obtained
with the present approach shows after the snap-through a
replica with a slightly higher amplitude than those obtained
with commercial software. Since our element is a mixed
solid-degenerate shell element, it possesses an enhanced
kinematics in terms of displacement and strains. It could play
a role regarding the dynamic behavior after snap-through.
A corresponding experimental test and the validation of the
current numerical models should provide more information
about this behavior.

5.5 Example 5: simplified dynamic analysis of a wind
turbine

In this example, we present a model for the reference wind
turbine defined in [74], see Fig. 17. It consists of one beam
component for the tower and three beam components for the
individual rotor blades. Hub and nacelle are modeled as rigid
bodies. The geometric and material properties for this exam-
ple are also taken from [74]. Blade pre-cone and shaft tilt are
also taken into account. The tower root is rigidly clamped.
The rigid connection is used to connect the topmost tower
node to the nacelle. The three blades are rigidly connected
to the hub, and rotation of the hub about the rotor axis is
permitted.

The structure is loaded with a spatial force (initially tan-
gent to the rotation plane) at the ten outermost nodes of the
reference blade. The load is applied using a triangle func-
tion with a peak force of 1.0 × 105 N per node during the
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Fig. 14 Layered composite cantilever plate—energy conservation for case 1

first 1.5 s of the simulation. After this time period, the forces
vanish. Gravity is available during the whole simulation, and
is accounted for the conservation of energy during the force
free interval, see Fig. 18. The total simulation time is 10.0
s with a time step of 5.0 × 10−2 s. In Fig. 19, we present
the reaction forces at the tower base and at the blade root. It
is possible to observe that the time step is very coarse with
respect to the vibrations observed, however the method is
very robust since total energy is exactly preserved. Under
these conditions, the real-time feature is achieved and war-

ranted, since the simulation performs several times faster than
the elapsed actual time. Although there is more place for fur-
ther efficiency improvements, this is already a very promising
indicator. Figure 20 shows a motion sequence for the whole
wind turbine within the time interval [0, 2.5] s. It is also clear
that for a more realistic analysis, it is necessary to account
for: (i) unsteady aerodynamic loads and fluid-structure inter-
actions [75–77]; (ii) soil-structure interactions [78,79]; and,
(iii) and scattering conditions and their probabilistic treat-
ment in a consistent framework [80–82].
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Fig. 15 Layered composite
cylindrical panel—finite
element representation and
problem setting
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Fig. 16 Layered composite cylindrical panel—vertical displacement at point P1: undamped (top) and damped (bottom)

5.6 Example 6: slender cylindrical structure

In the last example, we consider a tumbling slender cylindri-
cal structure, in which one part of the structure is discretized
with solid-degenerate shell elements and the other part is dis-
cretized with geometrically exact beam elements. The total
length of the cylindrical slender structure is 4.0m.At the half,
the connection of the different element types, degenerate-

solid shells and geometrically exact beams, is realized using
the soft transition connection previously described. The geo-
metrical and material properties are the following: outer
diameter 0.20 m, wall thickness 0.02 m, total length 4.0
m (2.0 m for the shell part and 2.0 m for the beam part),
elastic modulus E = 1 × 108 N/m2, shear modulus G =
4 × 107 N/m2, mass per volume unit ρ = 1 × 103 kg/m3.
The cylinder is discretized with 360 shell elements (16 ele-
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Fig. 17 Wind turbine—finite element representation showing the loca-
tion of nodes by directors

ments are located along the circumference and 30 elements
along the longitudinal direction) and 20 beam elements. The
total number of nodes is 393. No further kinematic boundary
condition is enforced and no dissipation is considered. Fig-
ure 21 shows the geometry and finite element representation.
Moreover, the structure is loaded with forces, whose maxi-
mal values are F1 = F2 = 1 × 103 N acting at the free end
of the beam part. The simulation time is 2.0 s with a constant
time step of 5.0 × 10−3 s. Figure 22 presents a sequence
of motion, where the original configuration is located at the
upper left corner of the plot, and some deformed configu-
rations are sequentially shown from left to right and from
top to bottom. As it can be observed, the slender cylindrical
structure exhibits large displacements and large rotations,

therefore the nonlinear kinematic behavior becomes appar-
ent. Figure 23 shows the time history for linear momentum
and angularmomenta aswell as the total energy. Themechan-
ical quantities vary during the time interval, when the load
is active. After that, all the invariant quantities are identi-
cally preserved through the time. For this case, no unresolved
frequency response was observed, therefore no damping is
necessary to obtain a long-term response convergent solu-
tion. For the rigid transition, linear and angular momenta
as well as the total energy are almost identical to the ones
obtained with the soft transition and thus, these are not here
presented. As the evaluation of local behavior is beyond the
scope of this work, the comparison of strains and stresses
obtained with both transitions is also left out.

6 Concluding remarks, limitations and
future work

We presented a new object-oriented framework to study the
nonlinear dynamics of slender structures made of composite
multilayer materials, which combines finite element method
and multibody system formalism with a robust integration
scheme. The approach, which can deal with rigid bod-
ies, geometrically exact beams and solid-degenerate shells,
was successfully verified and tested with results computed
with standard and well-established commercial tools. In the
proposed framework, all advantages of all involved basic
ingredients are inherited, e.g. objectivity, unconditional sta-
bility, robustness, etc. Moreover, the proposed methodology
was fully implemented using the object-oriented program-
ming philosophy, which ensures an easy maintenance and
the reusability of existing classes. In summary, we can claim
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Fig. 18 Wind turbine—energy conservation
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Fig. 19 Wind turbine—forces at tower base and the blade root (reference blade)

Fig. 20 Wind turbine—motion
sequence

t = 0.0 s t = 0.5 s t = 1.0 s

t = 1.5 s t = 2.0 s t = 2.5 s
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Fig. 21 Slender cylindrical
structure—finite element
representation

t = 0.00 s t = 0.1 s t = 0.2 s

t = 0.3 s t = 0.4 s t = 0.5 s

Fig. 22 Slender cylindrical structure—motion sequence

that the approach is able to handle very complicated nonlinear
cases, in which rigid bodies, geometrically exact beams and
solid-degenerate shells are combined, and the robustness-
precision relation is well-balanced. However, the proposed
methodology possesses also some limitations. The number
of available element formulations is reduced, the material
models are restricted to be hyperelastic, and no considera-
tion of contact is possible for now. In addition, the current

approach ought to be enhanced and enriched, for example,
by implementing hyper-reduction techniques, off-line pre-
computation of coefficients that remain constant during the
simulation and enrichment of the kinematics to account for
warping in the case of beams or zig-zag functions in the case
of shells.
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Fig. 23 Slender cylindrical structure—linear momentum, angular momentum and energy
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Appendix: Summary: numerical implementa-
tion

To achive very competitive numerical performance, the
adopted formulations ought to be generalized in regard to
the implementation aspects, for example avoiding redundant
code, storing the information to facilitate an optimized han-
dling of data, minimize the amount of required operations,
taking advantage of sparse structures, among others. At the
same time reusability and extensibility of the produced code
must be warranted. Satisfing several criteria at the same time
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can result very complicated. Therefore, we think that pre-
senting our scheme for efficient numerical implementation
to that kind of problems is as important as the formulation
aspects already presented. In the scope of this section, we
describe how our self-developed object-oriented finite ele-
ment method, multibody system software, dubbed DeSiO
(Design and Simulation Framework for Offshore Support
Structures) was conceived.

A.1 Object-oriented programming

The presented ideas are implemented in object-oriented For-
tran 2008 by following the design rules of object-oriented
programming. Data belonging to the entities modeled in the
program like structures and finite elements are confined to
the respective Fortran modules. The control flow is designed
in such a way that the solver module drives the time integra-
tion scheme. The “model” object is called to update force,
stiffness and constraint data for every increment.

In Fig. 24, the object hierarchy and information about data
and functionality is shown inbrief. The following subsections
give a detailed description of these entities.

A.1.1 Class “solver”

The “solver” class is responsible for step control, assem-
bling and solving the system of equations for every iteration.
After assembly of the iteration matrix and the residual vec-
tor, the linear system of equations is solved. According to the
Newton–Raphson iteration scheme, the nodal positions and
velocities, elemental strains and Lagrange’s multipliers are
updated. This also encompasses check of convergence by a
numerical tolerance criterion and code to abort the simulation
in case of divergence.

Since the structure of the iteration matrix is invariant to
the geometrical configuration and loading, reordering and
memory organization can be done once before the actual
finite element calculation. Nonzero elements are identified
by running the iterationmatrix assembly using specially con-
ditioned input data for all variables of the formulation that
numerically change the iteration matrix:

– Node positions at the beginning of the time step
– Node positions at the current time
– Material loads
– Lagrange multipliers

Parameter coefficients of the employedmaterial law like den-
sity and moduli are invariant during the simulation, so zero
entries in the iteration matrix arising for example frommate-
rial symmetries are not considered for the solution.

Considering the “three intersecting plates” problem [56],
for afinite elementmesh containing7896degrees of freedom,

the iteration matrix has a fraction of 99.54% zero elements.
Figure 25 displays the structure of the iteration matrix in this
case.

Generally, the fraction of zero elements increases with
degrees of freedom, which means that the speed advantage
gained by employing a sparse solver is pronounced in prob-
lemswith large numbers of elements. The present code solves
the system of equations using the PARDISO [83] parallel
sparse solver code.

A.1.2 Class “model”

The “model” class contains every entity in the mechanical
system considered in the simulation. When the code starts, it
calls the constructor of the “model” class which will in turn
open simulation input files. The input files are parsed and
instances of structure modules are created according to the
information provided. Also constraint input is processed and
constraint objects are created accordingly.

During the simulation, the model class is called to assem-
ble the iteration matrix by passing the respective row and
column coordinates of the iteration matrix to the simulation
entities.

A.1.3 Class “structure”

The “structure” class is a master class to provide an external
force calculation routine and assembly handling for entities
in the mechanical system considered in the simulation. The
external force calculation is placed outside of the element
formulation to prevent redundant code which would arise, if
this was done in the actual beam and shell classes. Since this
simulation framework is intended to be mostly used in con-
text of fluid-structure interactions with non-matching grids
(flow field computed with boundary elements), informa-
tion is tranferred using an extended version of the approach
exposed in [77],whichwarrants the primary consistency con-
dition (equivalency at the level of the virtual work) during
the data trasnferring for loads located at fixed isoparametric
coordinates and therefore, the calculation can be performed
outside the elemental scope. This assumption could result
very restrictive for other situations, in which requierements
on invariant preservation along the data transefernce from
one field to another field are not requiered. However, a broad
exposure of this topic is outside the reach of this manuscript.

A.1.4 Class “rigid body”, “beam”, and “shell”

The “rigid body” class provides a means to simulate concen-
trated masses and inertias. During the simulation, stiffness
matrices corresponding to the inertia of the rigid body are
provided for assembly into the iteration matrix.
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Fig. 24 Object hierarchy and functionality

The “beam” class contains the actual finite elements and
element connectivity. During the update for every iteration,
the update function for stiffness and internal forces for each
element is called. Updated element stiffness and internal
forces are then assembled according to the element connec-
tivity stored in the “beam” class.

The “shell” class has the same functionality as the “beam”
class. Additional complexity arises from the fact that for
quadrilateral elementsmore connected neighboring elements
have to be considered during assembly than during beam
assembly and the existence of elemental degree of freedom
due to the enhanced assumed strains (these are not con-
densed).

A.1.5 Class “beam element” and “shell element”

The “element” classes provide the actual mathematical
implementation of the finite element as proposed in sections

2.2 and 2.3. Due to the object-oriented implementation, each
finite element is an instance of the corresponding Fortran
module. This makes passing stiffness and mass information
easy by making member variables of the class accessible
from the outside. After an update to the internal terms of the
element and hence the update of the member variables, all
subsequent data queries to the element will provide internal
terms for the latest time step.

In every iteration the stiffness and internal forces are
updated using the current configuration in generalized coor-
dinates and velocities.

A.1.6 Class “constraint”

The “constraint” class is a master class which is inherited to
create a specific kinematic constraint of the type described
in Sect. 4. It provides the block vector h and block matrix
H for the coupling terms between Lagrange’s multipliers
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Fig. 25 Skyline plot of the iteration matrix for the “three intersecting
plates” problem [41,56]

and generalized coordinates. A method is provided for the
Lagrange multiplier update based on the configuration at the
current iteration. To enable internal constraints and certain
types of joint connections, optionally a stiffness blockmatrix
contribution can be provided.

As discussed in Sect. 4, there are three classes of con-
straint to couple the “Node 6” and “Node 12” node types:
“constraint6”, “constraint12” and “constraint6to12”.

A.1.7 Class “node”

For both “Node 6” and “Node 12”, a separate class exists in
the code. These classes are derived from the “node” class and
provide the routine to calculate external nodal loads. Loads
which should follow the structure, also called material loads,
further provide a stiffness block matrix contribution.

A.2 Pre- and post-processing

A.2.1 Pre-processing

Since geometry definition and meshing routines are outside
the scope of the finite element kernel, pre-processing is done
in external software. Import routines are written in the lan-
guage Python to read node and element list formats from
various commercial finite element solvers and convert geom-
etry and material definitions into the simple format used
by the present finite element code. Import of constraints,
forces and boundary conditions is semi-automated, since in
some cases, the present formulation needs extra information
regarding the director-based approach.

A.2.2 Post-processing

For graphical post-processing, a script was developed which
enables interactive video display of the transient simulation
results. Since commercially available finite element solvers
do not implement the concept of directors in the formulation,
there is no simple way to convert analysis output to formats
used by established post-processors. The in-house visual-
ization tool thus enables a quick check for model sanity by
making directors and mesh visible.
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4. Article C: Understanding the nonlinear
dynamics of beam structures: a principal
geodesic analysis approach

This article presents a comprehensive framework to analyze the nonlinear dynamics
of beam structures that goes beyond classical procedures that assume linearity on the
configuration space, e.g., modal analysis and principal component analysis. The proposed
approach relies on: i) a frame-invariant path-independent finite-element formulation for
geometrically exact beams; ii) a multibody formalism to deal with general boundary
conditions and to render more complicated structures through connections and junctions;
iii) a momentum-preserving energy-preserving/dissipative scheme to integrate the gov-
erning equations in the time domain; and, iv) a principal geodesic analysis to directly
identify the main kinematic features from the solution. The proposed approach is very
powerful to identify motion patterns/modes in a fully nonlinear setting, which is the main
innovation of the present research. Such motion patters could be used very effectively
to generate models of reduced order for design purposes or to investigate changes of
the mechanical features of a given structure, which is highly relevant in the context of
model-based Structural-Health-Monitoring for damage identification, localization and
quantification. Along this work, the theoretical and numerical foundations are addressed,
since they are necessary to identify motion patters. This provides a very robust proce-
dure to improve the understanding of the matter with respect to classical approaches
available in the literature. The proposed approach may be used very effectively to build
reduced-order models or to evaluate changes of the mechanical features of a given structure.

This article is published in Thin-Walled Structures 140 (2019), 357–372. The work was
conducted in cooperation with a partner from the Institute of Applied Mathematics
at Leibniz Universität Hannover. The main work was done by the author of this
Habilitationsschrift. Marc Steinbach contributed with the numerical implementation of the
principal geodesic analysis and its subsequent application. Raimund Rolfes contributed
with technical suggestions and supporting work.
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A B S T R A C T

We present a framework to identify the main kinematic features that arise when considering the nonlinear
dynamics of beam structures that takes advantage of the mathematical structure provided by the configuration
space. This relies on: i) a finite-element formulation for geometrically exact beams; ii) a multibody formalism to
deal with boundary conditions and to render complex structures; iii) a robust integration scheme; and, iv) a
principal geodesic analysis to directly identify the main kinematic features. Our framework contributes to im-
prove the understanding of the very complex nonlinear dynamics, and at the same time, provides some hints
regarding the further model order reduction, but in a fully nonlinear setting. The proposed ideas are tested and
their capabilities are illustrated with four examples: a swinging rod under gravity, a free oscillating clamped-free
straight beam with pre-stress, a triple pendulum under gravity and a complete wind turbine.

1. Introduction

The fully nonlinear analysis of current and modern beam structures
is becoming more and more popular in different applications like wind
energy, aeronautics, offshore oil and gas industry, among others. In this
context, the nonlinear dynamics of such slender structures is very rich,
but also very complex. The configuration space of any given point along
the beam is completely described by its position, which can be de-
scribed by a vector x̄ that belongs to the three-dimensional Euclidean
space, and its orientation, which can be described by a matrix R that
belongs to the group of rotations. This group is a very special one be-
cause beyond satisfying the group axioms (e.g., for the case of rotation
matrices, we have that: i) the product of two rotations is also a rotation;
ii) there is a neutral element, namely the identity; and, iii) there is an
inverse element, namely for each rotation matrix there is another ro-
tation matrix such as their product is equal to the identity) also pos-
sesses a manifold structure (i.e., a curved space that is smoothly defined
everywhere and can be locally described as a linear space). These fea-
tures are already evidenced when describing the kinematic/kinetic
quantities like the curvature and the angular velocity W, that can not
be derived from an orientation vector, but as the axial representations
of skew-symmetric matrices that are computed as = R R˜ T , where (·)
stands for the derivative along the arc-length, and =W R R~ T , where (·)
stands for the time derivative, respectively. This fact shows that the
complex nonlinear motion of beam structures can not be described as a

linear combination of time-invariant patterns at the level of the con-
figuration space, i.e., modal decomposition and proper orthogonal de-
composition are no longer possible without destroying intrinsic features
of the motion.

Reissner [1] formulated a one-dimensional large-strain beam theory
for plane deformations of plane beams. Bathe and Boloruchi [2] dis-
cussed fundamental aspects regarding the formulation of three-dimen-
sional geometrically nonlinear beam elements. Simó [3] extended the
concepts considered by Reissner in [1] to the three-dimensional case,
from which resulted the so-called geometrically exact beam theory.
Cardona and Géradin [4] developed an objective beam finite element
based on the geometrially exact beam theory and a material description
of the rotation group. Romero and Armero [5] presented a finite ele-
ment formulation for geometrically exact beams, which is frame-in-
different. Relying on the straightforward interpolation of the directors,
the authors provided a detailed derivation of the spatial and temporal
discretizations. The proposed framework allowed the development of
an unconditionally stable time-stepping algorithm that preserves some
first integrals of motion. Armero and Romero [6,7] developed a family
of schemes for nonlinear three-dimensional elastodynamics that ex-
hibits controllable numerical dissipation in the high-frequency range.
Armero and Romero [8] particularized that integration approach to the
Cosserat rod case. In the energy-preserving context, Betsch and Stein-
mann [9] presented a brief overview of the constrained dynamics of
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nonlinear beams. In contrast to the standard formulations based on
rotational degrees of freedom, the authors proposed the interpolation of
a triad consisting of three orthonormal directors, where the mutual
orthonormality is achieved by imposing holonomic constraints. For an
exhaustive review and classification in regard to the interpolation of
rotations in the context of geometrically exact beams, the reader is
referred to Romero [10]. Fletcher et al. [11] developed the principal
geodesic analysis, a generalization of the principal component analysis
to the manifold setting, and demonstrated its use in describing the
variability of medially-defined anatomical objects. Yu et al. [12] con-
sidered geometrically exact beams with initially large twisting and
large curvature in the context of thin-walled structures. Mäkinen [13]
derived an improved version of the formulation proposed by Cardona
and Géradin in [4], which, beyond being objective like in its original
version, is also path independent. Auricchio et al. [14] emphasized
some intrinsic features of the three-dimensional beam model proposed
by Simó in [3]. The formulation was also re-derived in a consistent and
compact form. Pimenta et al. [15] developed a fully conservative al-
gorithm for the integration of the equations of motion in nonlinear rod
dynamics, with which the authors achieved the objectivity at the dis-
crete level. Romero [16] compared the absolute nodal coordinate and
geometrically exact formulations. Ghosh and Roy [17] developed a
frame-invariant scheme using the rotation vector parametrization in the
context of an Eulerian formulation. Pai [18] discussed occurrent pro-
blems for different beam theories under large deformations. Huck-
emann et al. [19] developed a general framework, which is laid out for
principal component analysis on quotient spaces that result from an
isometric Lie group action on a complete Riemannian manifold. Ma-
chado and Piovan [20] investigated the nonlinear dynamics of rotating
planar beams using nonlinear modes. The model is based on a one-
dimensional Euler-Bernoulli formulation where the geometric cubic
nonlinear terms are included in the equation of motion. Pai [21] con-
sidered an energy-consistent formulation and order deficiency of linear
and nonlinear shear-deformable beam theories, including Timoshenko's
theory and Cosserat rod theory. Special attention is paid to the order
deficiency, shear correction factors, shear locking and nonlinearities.
Pai [18] considered an advanced total-Lagrangian geometrically exact
displacement-based beam theory without singularities. Such a model
was used to compare with and reveal, by in-depth derivations and
reasoning, theoretical and numerical problems of other nonlinear beam
theories that intend to be geometrically exact in the literature. De
Miranda et al. [22] discussed briefly the constitutive assumptions nor-
mally done for linear elastic isotropic and orthotropic materials in the
framework of thin-walled beams. Wu and Tiso [23] investigated the
model order reduction for planar geometrically nonlinear beams by
means of the “modal-derivative” concept in combination with the
Craig-Bampton technique. Hauberg [24] considered extensions of the
principal component analysis to Riemannian manifolds by means of
employing the concept of principal curves. Gebhardt and Rolfes [25]
considered the nonlinear dynamics of shell structures, where a mixed
finite element formulation and a robust integration scheme are com-
bined. The formulation proposed by Pimenta et al. [15] was enhanced
by Gay Neto [26] in the context of mechanism with contact. Sonneville
et al. [27] considered the interpolation of the kinematic fields de-
scribing the configuration of geometrically exact beams, i.e., the posi-
tion and rotation fields. Two kinematic representations were in-
vestigated: the classical approach that treats the displacement and
rotation fields separately and the motion approach that treats those two
fields as a unit. Brüls et al. [28] investigated the application of the
proper orthogonal decomposition method to dynamic systems including
the construction of the snapshot matrix and the definition of the pro-
jection operation on the Lie group. An alternative approach to in-
vestigate the nonlinear dynamics of beams is provided by the co-rota-
tional technique that relies on the separation of primary motions, due to
large rotations and displacements in the space of the structure or a part
of the structure as a whole, and secondary motions, due to small/

moderate rotations and displacements originating from elastic de-
formations. Special attention ought to be paid to the fact that the
nonlinear internal force vectors and stiffness matrices differ from ap-
plying transformation to the linear internal force vectors and stiffness
matrices. Such vector and matrix quantities should be derived from the
adopted deformation measures consistently. This is crucial for cap-
turing properly softening/stiffening effects among others. In contrast to
that approach, our formulation relies on the geometrically exact beam
concept, and therefore the only possibility of separating motions re-
quires the polar decomposition of the tangent map

= T TF: d( ):t t tx x0
1

( ,0) ( , )0 , the so-called deformation gradient.
Next, few works dealing with co-rotational beam formulations are
quoted for the sake of completeness. Crisfield [29] derived a co-rota-
tional formulation for three-dimensional beams in which the “strains”
relate to conventional small-deflection beam theory but are embedded
in a continuously rotating frame. In contrast to many previous for-
mulations, internal force vectors and tangent stiffness matrices were
consistently computed from those “strains”. Galvanetto and Crisfield
[30] presented an energy conserving procedure for the implicit non-
linear dynamic analysis of planar beam structures, where the method is
based on a form of co-rotational technique that is external to the ele-
ment. Following the same approach, Crisfield et al. [31] investigated
different types of implicit time integration algorithms for the dynamics
of spatial beams. In the thin-walled beam context, Alsafadie et al. [32]
proposed a co-rotational formulation of a three-dimensional elasto-
plastic mixed beam element that can undergo large displacements and
rotations. Le et al. [33] realized a comparative study of established and
new formulations for the nonlinear dynamics of three-dimensional
beams in a co-rotational context. Gebhardt [34], Gebhardt et al. [35]
and Gebhardt and Roccia [36] employed a co-rotational formulation for
three dimensional beams to investigate the nonlinear aeroelastic be-
havior of large-scale horizontal-axis wind turbines. Foti et al. [37] dealt
with the numerical simulation of the dynamic response of frame
structures undergoing large displacements and three-dimensional ro-
tations. In that work, the co-rotational and the geometrically exact
approaches were combined in the formulation of a single three-di-
mensional beam element. Meanwhile, Mathisen et al. [38] investigated
and compared the two families of beam formulations, i.e., co-rotational
technique versus geometrically exact approach, by means of several
examples. The authors concluded that for low order interpolations the
superiority of one formulation over the other one cannot be claimed.
Banerjee et al. [39] presented a generalization of the principal geodesic
analysis that can cope with manifold-valued input data and respect the
intrinsic geometry of the underlying manifold. Additionally, it takes
advantage of the sparsity not only for easy interpretability, but for also
computational efficiency. Gebhardt et al. [40] derived a displacement-
field based beam formulation with five components. The proposed
formulation extends Timoshenko's beam theory to asymmetric cases
and adds two displacement components to estimate in-plane warping.
Gebhardt et al. [41] presented a new object-oriented framework to
investigate the nonlinear dynamics of slender structures made of
composite multilayer and hyperelastic materials, which includes rigid
bodies, geometrically exact beams, solid-degenerate shells, supports
and joints. That framework was successfully verified and tested with
results computed with standard and well-established commercial tools,
i.e., ANSYS and Abaqus FEA, see also [42,43]. Relying on that previous
work, we extend the proposed formulation for the geometrically exact
beam to identify the main kinematic features that arise from the non-
linear dynamics, but this time taking full advantage of the configuration
space. Zwölfer and Gerstmayr [44] considered the generalized mode
component analysis in the context of model reduction for industrial
applications. And very recently, Wu et al. [45] investigated the model
order reduction for geometrically nonlinear multibody systems by
means of the “modal-derivative” concept in combination with the
Rubin method. However in none of the seminal works cited before, the
complex nonlinear dynamics was revealed in a fully nonlinear setting.
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Here, we present a comprehensive framework to analyze the non-
linear dynamics of beam structures that goes beyond classical proce-
dures that assume linearity on the configuration space, e.g., modal
analysis and principal component analysis. The proposed approach
relies on: i) a frame-invariant path-independent finite-element for-
mulation for geometrically exact beams1; ii) a multibody formalism to
deal with general boundary conditions and to render more complicated
structures through connections and junctions; iii) a momentum-pre-
serving energy-preserving/dissipative scheme to integrate the gov-
erning equations in the time domain; and, iv) a principal geodesic
analysis to directly identify the main kinematic features from the so-
lution. The proposed approach is very powerful to identify motion
patterns in a fully nonlinear setting, which is the main innovation of the
present research. Such motion patters could be used very effectively to
generate models of reduced order for design purposes or to investigate
changes of the mechanical features of a given structure, which is highly
relevant in the context of model-based Structural-Health-Monitoring for
damage identification, localization and quantification. Along this work,
we address the theoretical and numerical foundations that are neces-
sary to identify motion patters. This provides a very robust procedure to
improve the understanding of the matter with respect to classical ap-
proaches available in the literature. The further application of the ap-
proach to build reduced-order models or to evaluate changes of the
mechanical features of a given structure are beyond the scope of the
current manuscript and are addressed in sequels.

The remainder of this article is organized as follows. Section 2
presents the approach adopted to analyze the nonlinear dynamics of
beam structures. It comprises a general description of a three-director
formulation for geometrically exact beams. The resulting continuous
equations are discretized spatially with low-order effective finite ele-
ments. The semi-discrete equations are then solved by means of a
momentum-preserving energy-preserving/decaying integration
scheme. Section 3 describes the principal geodesic analysis on SE(3),
the special Euclidean group (a Riemannian manifold that naturally
describes the configuration space of rigid bodies and geometrically
exact beams). It starts with a brief description of the principal compo-
nent analysis on 3, the three-dimensional Euclidean space. This
method clearly assumes the linear structure of the configuration space,
which is true for the translational motion. Then it follows the descrip-
tion of the principal geodesic analysis on SO(3), the group of rotations.
This can be understood as a nonlinear extension of the principal com-
ponent analysis. Finally, it concludes with the combination of the
principal component analysis on 3 and the principal geodesic analysis
on SO(3) to render the principal geodesic analysis on SE(3). Section 4
presents four examples that are solved and analyzed with the for-
mulation described. Finally, Section 5 is dedicated to concluding re-
marks, limitations and future work.

2. Numerical modeling of the nonlinear dynamics of beam
structures

2.1. Kinematics and equilibrium

The position at time t , for t t t[ , ]1 2 0 of any given point be-
longing to the beam shown in Fig. 1, namely tx( ; ) t

3, can be
written as

= + +t t t tx x d d( ; ) ¯ ( ; ) ( ; ) ( ; ),3 1
1

3 2
2

3 (1)

in which x̄ ¯ 3 is the position vector of the beam axis and d1 and
d2 together with d3 are three mutually orthonormal directors. On that
basis, the rotation tensor can be simply obtained as

= SOR d i (3)i
i , in which ii for i from 1 to 3 stands for the ele-

ments of the dual basis of 3 ( 3 with the standard Euclidean structure),
i.e., the space of row vectors. = ( , , )1 2 3 is a set of parameters
chosen in the way that = +d d¯ 1

1
2

2 describes the cross section at
( )3 , which intersects the beam axis and = tx x( ; ) is the given

parametrization rule in time and space. The spatial metric structure
induced by this construction is

=G g gx x ,ij
i

a

j

b
a b

(2)

where ij are the components of the Euclidean metric tensor, Tga

defined as =g ia
x

i
i
a with ii for i from 1 to 3 standing for the elements of

the standard orthonormal basis in 3, i.e., the space of column vectors,
and the elements of the covariant basis Tg *a defined in the usual
form, that is, =g g, b

ab
a , the elements of the contravariant basis.

×V V·,· : * is the dual pairing, in which V is a given vector space
(whose elements are called vectors) and V * is its algebraic dual space
(whose elements are called co-vectors or linear forms). ij and b

a are
simply Kronecker deltas. At this point, it is clear that

×G: T T 0.
Then the doubly-covariant Green-Lagrange strain tensor is

=E G x G x¯ ( ; t) 1
2

{( )* [ ( ; t)] [ ( ; 0)]},t 0
1

(3)

where ( )*(·)t 0
1 denotes the pullback from the current configuration

to the original one through the regular motion t 0
1, and the symbols

and indicate that a rank-n tensor is n times covariant and n times
contravariant, respectively. In the context of geometrically exact
beams, the Green-Lagrange strain tensor can be simplified by elim-
inating quadratic strain. Thus, the components are approximated as

Ē ( ; t) symm{ [ ( ; t) ¯ ( ; t)]},l
ij i3 jk

k 3
lm
k m 3 (4)

where symm(·) is the symmetric part of the tensor considered, ( ; t)i 3

defined as d x d x( ; t)· ¯ ( ; t) ( ; 0)· ¯ ( ; 0)i
3 3

i
3 3 is a first vector strain

measure (for shear refer to first and second components and for elon-
gation refer to the third one), ( ; t)i 3 defined as

d d d d[ ( ; t)· ( ; t) ( ; 0)· ( ; 0)]1
2 jk

i
k

3
j

3
k

3
j

3 is a second vector strain
measure (for bending refer to first and second components and for
torsion refer to the third one) and jk

i is the alternating symbol that
appears in the computation of the cross product in three-dimensional
Euclidean space. Analogously, the velocity, namely v( ; t) t

3,
can be written as

= + +v v w w( ; t) ¯ ( ; t) ( ; t) ( ; t),3 1
1

3 2
2

3 (5)

in which v̄ ¯ 3 is the translational velocity of the beam axis and
w1, w2 together with w3 are three director velocity vectors. The dy-
namic behavior of the geometrically exact beam can be formulated as

Fig. 1. The geometrically exact beam concept: time evolution among config-
urations through the regular motion t 0

1.

1 Here, we employ a non-orthogonal interpolation for the rotations as pro-
posed by Romero and Armero [5] and Betsch and Steinmann [46], and recently
used by Gebhardt et al. [41]. This formulation based on this kinematics and
deformation measures is objective and does not require additional storage.
Moreover, Romero [10] carried out simulations that confirm that finite element
solutions with fine meshes are almost identical to the ones computed by means
of several well-established interpolations.
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+ + +

+ =

v v vl l x x f x S l f H

h

{ , ( ) ( ) , ( , ) ( )

, }d d 0,

int ext T

0 0

0 0

(6)

where 0 represents the cross-sectional area and 0 stands for the arc
length in the original configuration. v Tv and x Tx are ad-
missible variations of the position and the velocity vectors, respectively.

vl( ) and l x( ), both in T*v , are densities for the velocity-based mo-
mentum and the displacement-based momentum, correspondingly.
f x S( , )int , vl( ) and f x( )ext , all three in T*x are densities for the internal
force, the time rate of the velocity-based momentum and the external
force, respectively. ×S T Tx x(0) 0 (0) 0 is an appropriate stress defi-
nition, here the second Piola-Kirchhoff stress tensor. ×H: Tn

x
is the Jacobian matrix of =h 0 n, a finite-dimensional set of holo-
nomic restrictions and is an admissible variation of the corre-
sponding Lagrange multipliers : [t , t ] n

1 2 . The equality (6) shall
hold for every combination of admissible variations, namely

v x( , , ), otherwise it would not be an equilibrium statement. At this
point, it should be clear that a state-space description is adopted instead
of a phase-state description. This setting (in contrast to approaches
based only on generalized coordinates) is necessary to include in a
natural way the dissipation of energy at the level of the generalized
velocities for the flexible bodies that are described along the next
subsection.

Moreover, given two mutually orthonormal directors d1 and d2, a
third director d3 could be simply computed as ×d d1 2. This description
would lead to a two-director formulation. An alternative to this for-
mulation results from the additional consideration of d3 in combination
with the mutual orthonormality condition for the three directors as
already introduced by (8). The resulting representation is a so-called
three-director formulation, which we adopt to facilitate the combina-
tion among beams and rigid bodies and evenly to avoid special treat-
ment of the third director, i.e., d3, during the discretization procedure.
The cost associated to this choice is that the mass matrix becomes
singular, but this singularity is removed when the additional informa-
tion coming from internal kinematic restrictions is accounted for. After
introducing explicitly d3 in the variational principle and performing the
integration over the cross section, the governing equation for the geo-
metrically exact beam, in its weak form, becomes

+
+
+ + +
+ + +
+ + +
+ + + =

v v w w x

w v w w x
w v w w x
x v w w

x v w w
x v w w
x

l l d d

l l d d
l l d d

f d d d n f l H
d f d d n m f l H
d f d d n m f l H
d f d d n m f H h

{ ¯, ( ¯, , ) ( ¯, , )

, ( ¯, , ) ( ¯ , , )
, ( ¯, , ) ( ¯ , , )

¯ , ( , , , ) ( ¯, , )
, ( ¯, , , , ) ( ¯, , )
, ( ¯ , , , , ) ( ¯, , )
, ( ¯ , , , , ) , } d 0.

0
1 2

0
1 2

1
1

1 2
1

1 2

2
2

1 2
2

1 2
0,int

1 2 3
0,ext 0

1 2 0

1
1,int

2 3
1,ext 1

1 2 1

2
2,int

1 3
2,ext 2

1 2 2

3
3,int

1 2
3,ext

3 0

0

(7)

The equality (7) shall hold for every combination of admissible varia-
tions, i.e., v w w x d d d( ¯, , , ¯ , , , , )1 2 1 2 3 under observation of

=w d3 3. The generalized velocity-based momentum v w wl ( ¯, , )i
1 2 is

defined as + +v w w¯i0 i1 1 i2 2 and the generalized displacement-
based momentum xl d d( ¯ , , )i

1 2 as + +x d d¯i i i0 1 1 2 2, where ij is
computed by means of di j

0 00
for i and j from 0 to 2. This

consideration allows the handling of cross sections with arbitrary shape
and material properties, which exactly applies to the case of modern
beam structures made of composite multilayer materials. H0 and Hi (for

=i 1, 2, 3) stand for h
x̄

and h
di

, respectively. Finally, the mutual or-
thogonality condition among the directors is simply included by con-
sidering

= =h

d d d d
d d d d
d d d d
d d d d
d d d d
d d d d

0(t)

(t)· (t) (0)· (0)
(t)· (t) (0)· (0)
(t)· (t) (0)· (0)
(t)· (t) (0)· (0)
(t)· (t) (0)· (0)
(t)· (t) (0)· (0)

.int

1 1 1 1

2 2 2 2

3 3 3 3

2 3 2 3

1 3 1 3

1 2 1 2 (8)

This completes the dynamic description; for more details on the
handling of internal constraints see [46]. Given the beam potential
energy density per unit length V beam, the internal force and moment
densities per unit length are =n V beam

and =m V beam
, respectively.

The components of the cross-sectional tangent constitutive matrices are
in principle computed as

C C C C

C C C C

= =

= =

( ) d , ( ) ( ) d ,

( ) d , ( ) ( ) d .

ij
IJKL Ē Ē

0 ij
IJKL Ē Ē

0

ij
IJKL Ē Ē

0 ij
IJKL Ē Ē

0

0
IJ
i

KL
j 0

IJ
i

KL
j

0
IJ
i

KL
j 0

IJ
i

KL
j (9)

Here CIJKL represents the components of the tangent elasticity tensor
and ĒIJ stands for the components of the strain tensor presented by (4).
For thin-walled structures, additional assumptions about the strain and
stress states may be necessary [22]. At this point, warping effects are
completely neglected. In the case of the blade of a wind turbine, which
is in some regions far away from the thin-walled structure hypothesis
and also non-negligible variations of the cross section may take place,
the primary warping due to torsion ought to be combined with the
consideration of secondary warping due to shear. This would require to
include additional displacements fields, see for example [40]. There-
fore, standard assumptions regarding warping effects may be in-
adequate in this context. However, a detailed discussion and treatment
of a this aspect is beyond the scope of the current work. The acting
internal load densities are indicated as follows:

=

= +

= +

= +

f d d d n
x

d d d n

f x d d n m
d

x d d n
d

d d m

f x d d n m
d

x d d n
d

d d m

f x d d n m
d

x d d n
d

d d m

( , , , )
¯

( , , ) ,

(¯ , , , , ) (¯ , , ) ( , ) ,

(¯ , , , , ) (¯ , , ) ( , ) ,

(¯ , , , , ) (¯ , , ) ( , ) .

0,int
1 2 3 1 2 3

1,int
2 3

1
2 3

1
2 3

2,int
1 3

2
1 3

2
1 3

3,int
1 2

3
1 2

3
1 2

(10)

The geometrically exact beam model presented is capable of taking into
account coupling terms not only at the level of the stiffness, but also at
the level of the mass/inertia. This feature is of high interest in wind
energy or aeronautic applications, especially to evaluate static and
dynamic critical behavior of slender blades made of multilayer com-
posite materials like divergence or flutter.

2.2. Discretization in space via the finite element method

To spatially discretize the geometrically exact beam into two-node
finite elements, we approximate the generalized displacement fields x̄
and di as well as the generalized velocity fields v̄ and wi and their
admissible variations as follows: x x¯ ( ; t) N ( ) ¯ (t)3 I 3

I ,
d d( ; t) N ( ) (t)i

3 I 3
i,I , v v¯ ( ; t) N ( ) ¯ (t)3 I 3

I , w w( ; t) N ( ) (t)i
3 I 3

i,I , ,
d d( ) N ( )i

3 I 3
i,I, v v¯ ( ) N ( ) ¯3 I 3

I and w w( ) N ( )i
3 I 3

i,I for I
from 1 to 2, and N ( )I denotes linear Lagrange-type functions of

+[ 1, 1]3 . In addition, the mutual orthogonality condition among
the directors is also imposed discretely at the nodes. Finally, the semi-
discrete version of the weak form of the governing equations for a
single finite element becomes
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+

+

+

+ + +

+ + +

+ + +

+ +

=

+

+

+

+

+

+

+

+

v v w w x

w v w w x

w v w w x

x v w w

x v w w

x v w w

x

N l l d d

N l l d d

N l l d d

N f d d d n f l H N

d N f d d n m f l H N

d N f d d n m f l H N

d N f d d n m f H N

N h

¯̂ , [ ( ¯, , ) ( ¯ , , )] d

^ , [ ( ¯, , ) ( ¯ , , )] d

^ , [ ( ¯, , ) ( ¯ , , )] d

¯̂ , { [ ( , , , ) ( ¯, , )] } d

^ , { [ ( ¯ , , , , ) ( ¯, , )] } d

^ , { [ ( ¯ , , , , ) ( ¯, , )] } d

^ , { [ ( ¯ , , , , ) ] } d

^, d 0,

1
1 0 1 2 0 1 2

0
3

3

1 1
1 1 1 2 1 1 2

0
3

3

2 1
1 2 1 2 2 1 2

0
3

3

1
1 0,int 1 2 3 0,ext 0

1 2 1
0
3

3

1 1
1 1,int 2 3 1,ext 1

1 2 2
0
3

3

2 1
1 2,int 1 3 2,ext 2

1 2 2
0
3

3

3 1
1 3,int 1 3 3,ext 3

0
3

3

1
1 T 0

3
3

(11)

where (·)̂ denotes nodal variables, N is the matrix containing the shape
functions and N is a collocation matrix to set discretely the constraints
at the nodes. The equality (11) shall hold for every combination of
admissible variations, i.e., v w w x d d d( ¯̂ , ^ , ^ , ¯̂ , ^ , ^ , ^ , ^)1 2 1 2 3 under

observation of =w d^ ^
3 3.

As a consequence of the adopted discrete imposition of the internal
constraints, the approximation of the rotation tensor is given by

+
= +

R d i d i
R R

( ; t) N ( ) (t) N ( ) (t)
N ( ) (t) N ( ) (t),

3 1 3
i,1

i 2 3
i,2

i

1 3
1

2 3
2 (12)

which does not belong in general to SO(3), except at 3 equal to 1 or
+ 1, and for the case R1 equal to R2. This lack of orthonormality of the
directors, i.e., the unit length is not preserved and the orthogonality is
lost, requires finer discretizations than standard beam elements
equipped with angle-based parametrizations, but at the same time, it
does possess a very important feature, since this discrete setting pre-
serves the objectivity, invariance of the discrete strain measures under
rigid body motions. Furthermore, the path independence is guaranteed,
i.e., for conservative actions the work produced through any arbitrary
closed path is identically zero. Regarding finer discretization require-
ments and convergence properties for beam models relying on a non-
orthogonal interpolation, Romero [10] showed that the static perfor-
mance of beam structures with linear constitutive laws, the three-di-
rector-based kinematics and deformation measures behave properly as
required. This claim is also in very good agreement with our observa-
tions of the dynamic performance of beam structures.

2.3. Discretization in time via a robust integration scheme

Next, we describe the specialization of the momentum-preserving,
energy-preserving/dissipative integration scheme for the “geome-
trically exact beam” case. For this purpose, the following nomenclature
is used:

= = = = =
v

w
w
w

q

x
d
d
d

s p
l
l
l
l

Q

f
f
f
f

Q
f
f
f
f

¯

,
¯

, , , .1

2

3

1
2
3

0

1

2

3

int

0,int

1,int

2,int

3,int

ext

0,ext

1,ext

2,ext

3,ext

(13)

While q is the vector of generalized coordinates, s stands for the vector
of generalized velocities, p collects the generalized momenta, Qint and
Qext contain the generalized internal and external loads, correspond-
ingly. Additionally, we have

C
C C

C C
= = =n

m, , .beam

(14)

While and contain the objective strain measures and internal re-
sultant loads, respectively, Cbeam stands for the tangent constitutive

matrix.
The discrete version of (11) can be expressed at time +n 1

2 as

+ +

+ +

=

+
+

+ + +

+
+

+ + + +

+ + +
+

+

s p s s p q q

q N p s s Q q s q s Q

H q q N N h q

, N [ ( , , , ) ( , )] d

, { [ ( , ) ( , , , ) ]

( , ) } d , ( ) d

0,

n 1
2 1

1 T
d n n n 1 n 1 d n n 1

0
3

3

n 1
2 1

1 T .
d n n 1 d

int
n n n 1 n 1 n 1

2
ext

d n n 1
T

n 1
2

0
3

3
n 1 1

1 T
n 1

0
3

3

(15)

where the admissible variations correspond to the nodal variables and
therefore, further distinctions are unnecessary and from now, N gathers
all nodal contributions. The equality (15) shall hold for every combi-
nation of admissible discrete variations, namely + + +s q( , , )n n n 11

2
1
2

,
otherwise it would not be a discrete equilibrium statement. On the one
hand, the momentum term computed from generalized velocities can be
redefined as the additive combination of a conservative part and a
dissipative part, i.e.,

m m

=

+
+ + +

+ +

p s s p s s

p s s

( , , , ) ( , )

( , , , ),
d n n n 1 n 1 d

cons
n n 1

d
diss

n n n 1 n 1 (16)

where M is the consistent mass matrix per unit of length

M =

× × × ×

× × × ×

× × × ×

× × × ×

I I I 0
I I I 0
I I I 0

0 0 0 0

,

00 3 3 01 3 3 02 3 3 3 3

01 3 3 11 3 3 12 3 3 3 3

02 3 3 12 3 3 22 3 3 3 3

3 3 3 3 3 3 3 3 (17)

that is singular, and the conservative part is

M= ++ +p s s s s( , )
2

( ),nd
cons

n n 1 n 1 (18)

in which the augmented mass matrix per unit length takes the form

M =

× × × ×

× × × ×

× × × ×

× × × ×

I I I 0
I I I 0
I I I 0

0 0 0 I

00 3 3 01 3 3 02 3 3 3 3

01 3 3 11 3 3 12 3 3 3 3

02 3 3 12 3 3 22 3 3 3 3

3 3 3 3 3 3 3 3 (19)

and ij for i and j running from 0 to 2 being defined above. M differs
from M only in the block placed in the lower right corner, ×I3 3 instead
of ×03 3, which includes the condition =w d3 3 without adding further
constraints. The dissipative part that supports cross definition involving

ms and is given by

D
M

m m

m m

m m

=

+ +

+ +

+
+

p s s
s s

s s
s

( , , , )
2 ( , , , ) ,P

d
diss

n n n 1 n 1

n n n 1 n 1

n 1
2

n
2 n 1

2 (20)

in which the associated dissipation function DP is positive semidefinite.
On the other hand, the discrete generalized load due to internal

terms can be also redefined as the additive combination of a con-
servative part and a dissipative part, i.e.,

m m

=

+
+ + +

+ +

Q q s q s Q q q

Q q s q s

( , , , ) ( , )

( , , , ).
d
int

n n n 1 n 1 d
int,cons

n n 1

d
int,diss

n n n 1 n 1 (21)

The conservative part is

=+
+

+Q q q
q

( , ) ( , ),d
int,cons

n n 1
n 1

2

T

d
cons

n n 1

(22)

with the conservative algorithmic internal loads given by
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=+
+ V( , ) 1

2
d ,d

cons
n n 1 1

1 beam

( ) (23)

where ( ) is defined as + + +(1 ) (1 )1
2 n

1
2 n 1 for +[ 1, 1].

The dissipative part that also supports cross definition involving
ms and is given by

m m

m m=

+ +

+
+ +

Q q s q s

q
s s

( , , , )

( , , , ),

d
int,diss

n n n 1 n 1

n 1
2

T

d
diss

n n n 1 n 1

(24)

with the dissipative algorithmic loads

D
C

m m

m m

C

=

+ +

+ +

+ +
+

s s
s s

( , , , )
( , , , )

( ),Q

n
n

d
diss

n n n 1 n 1

n n n 1 n 1

n 1 n n 1
2 n

beam
n 1

n
beam (25)

in which the dissipation function DQ is positive semidefinite as well.
Finally, the following condition

H D D H+ + =+ ,P Qn 1
beam

n
beam (26)

for D D+ 0P Q , is automatically warranted, being the corresponding
Hamiltonian function Hbeam.

The discrete version of the Jacobian matrix of the constraints is
given by

=+
+

H q q h
q

( , ) 1
2

d ,
q

d n n 1 1

1

( ) (27)

where q( ) is defined as + + +q q(1 ) (1 )1
2 n

1
2 n 1 for +[ 1, 1].

The algorithmic Jacobian matrix defined in this way satifies for any
admissible solution the discrete version of the hidden constraints, i.e.,

=+ +H q q q q 0( , )( )d n n 1 n 1 n (this is a second-order discrete approx-
imation of =h q 0( ) ).

Notice that (23) and (27) are defined employing the second-order
“average vector field” proposed in [47,48]. This concept satisfies the
definition of discrete derivative proposed in [49]. By means of the
discrete derivative it is possible to design integration methods that are
second-order accurate, and momentum and energy preserving, which
are the basis for the robust integration method that completes the nu-
merical representation for beam structures and their nonlinear dy-
namics.

2.4. Further technical aspects of the current formulation

The three-director-based kinematic description as well as the de-
formation measures employed in the current work are exactly the same
as proposed by Romero and Armero [5] and Betsch and Steinmann
[46], but our dynamical formulation differs and is presented in a more
general setting. Meanwhile, Romero and Armero [5] employed a nodal
procedure based on Cayley's transform for the multiplicative updating
of the directors, Betsch and Steinmann [9] employed Lagrange's mul-
tipliers method for enforcing directors' orthonormality at the nodes,
where the resulting update procedure is the simplest additive one. As
previously indicated, we adopted the second approach as proposed in
[46,9] due to its simplicity and robustness.

Regarding the formulation of the dynamic problem, Betsch and
Steinmann [9] presented a Hamiltonian formulation for the geome-
trically exact beam that relies on a description in the “phase space”, i.e.,
the variables are generalized coordinates and generalized momenta.
After temporal discretization of the derived Hamilton equations by
means of the mixed Galerkin method, the resulting approach is capable
of satisfying the discrete conservation of some first integral of motion,
i.e., linear and angular momenta as well as total energy. Therefore, that
formulation can be labeled as a purely conservative one.

The current formulation is intended for general non-conservative

systems that may arise in the presence of dissipation functions and/or
non-integrable constraints, which are highly relevant for industrial
applications. Therefore, we adopted a description in the “state space”,
i.e., the variables are generalized coordinates and generalized velocities
(such a kind of representations were introduced by Poincaré, see for
instance Heard [50]). This description allows to introduce dissipation
functions as well as non-holonomic constraints in a very natural way
(both can be easily stated in terms of velocities, but not in terms of
momenta). For the general non-conservative case, the resulting gov-
erning equations can be reverted to the Lagrange-D'Alembert equations,
which are non-variational. For the conservative case, the resulting
governing equations can be reverted to the Euler-Lagrange equations,
which are variational. A comprehensive treatment of this topic can be
found in Bloch [51]. After the temporal discretization by means of a
combination of the midpoint rule and the “average vector field”
method, our approach preserves identically the linear and angular
momenta as well as the total energy in absence of external loads. Thus,
it can be understood as a “complementary” formulation with respect to
the one based on the Hamiltonian setting.

The adopted numerical quadrature for the integration of elemental
contributions in time and space is the standard Gauss-Legendre quad-
rature rule. The spatial integrals involving inertial terms are computed
by means of a two-point integration scheme. Meanwhile, those spatial
integrals involving internal terms are computed by means of a one-
point integration scheme that avoids shear locking issues. Moreover,
even for coarse meshes, no additional residual stress corrections are
necessary. All time integrals for the computation of the average vector
field are calculated by means of a two-point integration scheme.

3. Principal geodesic analysis

3.1. Principal component analysis in m (standard approach)

Given a set of n data vectors in m, one naturally obtains a matrix in
×m n with the vectors as columns. Intuitively, principal component

analysis (PCA) uses this data matrix to determine a representation of the
linear subspace of minimal dimension that contains the given vectors.
This is done in a way that extracts information on the behavior of the
data vectors as a finite sequence, and also in a way that allows for the
direct construction of optimal approximate representations of the data
vectors in spaces of even lower dimension. The technique has many
applications in data analysis and various related areas. It is known
under several different names in those areas; in particular, proper or-
thogonal decomposition (POD) is often used in applications to dynamic
systems.

In our case the data vectors are discrete-time snapshots, such as time
steps in a numerical simulation, of continuous-time trajectories of the
elastic beam structures under consideration. Here the PCA will de-
termine dominating patterns/modes of the system's motion, such as the
natural oscillations that actually appear in the particular data set. In
addition, the PCA will automatically detect and exploit special cases
such as planar motion. Thus one may obtain a better understanding of
the dynamics, which is the main purpose of our investigation.
Moreover, the approach is often used for model order reduction (MOR),
i.e., the construction of lower-dimensional approximate dynamic
models with the intent to save computational cost.

Mathematically, PCA is based on the singular value decomposition
(SVD) of the data matrix ×D m n, which determines a rectangular
diagonal matrix ×m n with orthogonal matrices ×O mU ( ) m m

and ×O nV ( ) n n such that

= = = … … >
=

vD U V u , Diag( , , , 0), 0.
i

r

i i i r r
T

1

T
1 1

(28)

The diagonal elements i of are called the singular values of the matrix
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D, and the columns ui of U and vi of V are called its left and right
singular vectors, respectively. The number of nonzero singular values,
r min(m, n), is the rank of D. The matrix is uniquely determined
whereas U V, are only unique up to sign switches of the singular vec-
tors and the choice of singular vectors associated with identical singular
values. The space containing the data vectors is spanned
by …u u, , r

m
1 while …v v, , r

n
1 represent the sequential beha-

vior.
Best rank-p approximations of D (in terms of the spectral or

Frobenius matrix norms, · 2 and · F) are naturally obtained by the
truncated SVD (TSVD), i.e., by dropping all but the p largest singular
values in ,

= = = …
=

×vD U V u , Diag( , , , 0) , p r.p p
T

i 1

p

i i i
T

p 1 p
m n

(29)

In practice, a suitable rank p is usually determined by some application-
specific accuracy requirement.

3.2. Principal geodesic analysis in SO(3)

When considering motion in a Riemannian manifold rather than in a
linear space, such as motion along geodesics, principal component
analysis can be generalized to principal geodesic analysis [11,19,24,39].
Manifolds are curved in general, but every point possesses a (linear)
tangent space which is smoothly mapped onto the manifold by the so-
called exponential map. Rather than a global inverse, which does not
exist in general, the exponential map has infinitely many local inverses,
called logarithm maps, each of which maps some subset of the manifold
into the tangent space. The basic idea of principal geodesic analysis
(PGA) consists in lifting trajectories from the manifold to trajectories in
a suitable tangent space and performing a principal component analysis
on the lifted trajectory. Results are then mapped back to the manifold
by means of the exponential map. The initial lifting requires one or
more local inverses of the exponential map.

For the purpose of the current paper we are concerned with the
matrix manifold of rotations in 3, i.e., the special orthogonal group

×SO(3) 3 3. This three-dimensional manifold, though quite compli-
cated, has favorable mathematical properties that allow for an efficient
implementation of PGA via simple analytic representations of the ex-
ponential and logarithm maps. The main properties can be illustrated
by planar rotations, SO(2) x2 2, which are a one-dimensional sub-
manifold of SO(3) (parameterized by the rotation angle ) when con-
sidered as rotations in the xy-plane about the z axis,

= =RSO(2) ( ) cos sin
sin cos :

cos sin 0
sin cos 0
0 0 1

: SO(3).

Clearly, SO(2) is equivalently represented by the set of first rows of
R( ), the unit circle S1, see Fig. 2. Its tangent space at = 0 is the line

=T S {(1, ): }(1,0)
1 , and the exponential map simply wraps

this line around the circle, yielding the first row of R( ). Using the
second row of R( ) gives the same picture, except that the tangent
space is rotated by

2
, =T S {( , 1): }(0,1)

1 .
Finally, the full rotation matrix R( ) is given by the standard matrix

exponential as

= = +
+

= + =

= =
×

=

+

×

k k k
J J I J

I J J

exp( ) ( )
!

( 1)
(2 )!

( 1)
(2 1)!

cos( ) sin( ) with 0 1
1 0 .

k

k

k

k k

k

k k

0 0

2
2 2

0

2 1

2 2

This maps the space of skew-symmetric matrices, A(2) , para-
meterized by , to SO(2), satisfying = ×J Iexp(0 ) 2 2 and

+ = + = =J J R R R J Jexp( ) ( ) ( ) ( ) exp( )exp( )1 2 1 2 1 2 1 2 . Again
exp wraps around SO(2) infinitely often, and a local inverse exists for
the restriction of exp to every open ball with radius ,

= + JB ( , ) A(2)J .
The corresponding properties of SO(3) are mathematically ex-

pressed as follows. SO(3) is a compact multiplicative Lie group. Its as-
sociated Lie algebra, the tangent space SOT (3)I , is canonically iso-
morphic to ×A(3) 3 3, the linear space of skew-symmetric matrices.
(Here we write I for ×I3 3 and similarly 0 for ×03 3.) The exponential map
and its inverses are only needed for the specific tangent space
T SO(3) A(3)I

3, and again these mappings reduce to the standard
matrix exponential and its inverses. We will compare PGA with PCA of
embedded rotations ×SO(3) 3 3 9.

For the exponential map exp:A(3) T SO(3) SO(3)I we have the
numerical representation

=
+ +

A
I

I A A
exp( )

, [0, ],
, ( , 2 ),

M
sin 1 cos 2

M2 (30)

where M is the machine precision and [0, 2 ) is the normalized
rotation angle,

= = = =A A A A2
2

, 1
2

tr( )
2

: .0
0

0
T F

A(3) (31)

With vector a and matrix A in standard notation (no covariant and
contravariant index conventions),

= = =a
a

aa A a
a

and skew( )
0 a a

0 a
a a 0

,
1
2
3

3 2

3 1

2 1 (32)

the full rotation angle above is = =a A0 2 A(3). The exponential
map is surjective: with B A(3)A denoting the open ball of radius
centered at A, the image of every closed ball B̄A covers all of SO(3) such
that exp |BA is injective while every pair of antipodal surface points on
B̄A has the same image point. Hence the exponential map has infinitely
many local inverses: the branches of the logarithm map. Every matrix
A A(3) defines a branch logA that satisfies =A 0log (exp( ))A and that
maps a maximal (relatively) open subset SO(3)/exp( B )A to BA .
(Here S \S1 2 denotes the set-theoretic difference.) The principal branch,

=log log :SO(3)/exp( B ) A(3)0 0 , has the numerical representation

=

=

R
0

R R

R

log( )
, [0, ],

sin 2
, ( , ),

where arccos tr( ) 1
2

(0, ).

M
T

M

(33)

Every other branch is then obtained as

=R R Alog :SO(3)/exp( B ) A(3), log ( ) log( exp( ) ).A A A
T (34)

Finally, we use logA to define the lift of R SO(3) with respect to
A A(3) as

= + = +R A R A R Alift ( ) log ( ) log ( exp ( ) ).A A
T (35)

Fig. 2. Planar rotations SO(2) represented by the unit circle S1, with two tangent
spaces and associated exponential maps.
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This allows to lift snapshots =tR( ( )) SO(3)n
N
n 0 of a continuous trajec-

tory to =tA( ( )) A(3)n
N
n 0 by setting

=A R(t ) log( (t )),0 0 (36)

= = + = …A R A R R(t ) lift ( (t )) (t ) log( (t ) (t ) ), n 1, ,N,An (t ) n n 1 n n 1
T

n 1

(37)

provided that each relative rotation of successive snapshots,
R R(t ) (t )n n 1

T, has a rotation angle less than .

3.3. Principal geodesic analysis in SE(3)

We also consider the direct extension to the special Euclidian group
of combined translations and rotations, = ×SE(3) SO(3)3 . The Lie
algebra T SE(3)0 I( , ) of that Lie group is canonically isomorphic to

× ×A(3)3 3 3. Since the translation part 3 of SE(3) is a linear
space and an additive Lie group, its exponential map
exp T0

3 3 3 is the identity map. Thus, one may simply com-
bine PCA in 3 with PGA in SO(3) to perform PGA in SE(3).

3.4. A brief comment on the use of principal geodesic analysis for model
order reduction

The principal geodesic analysis plays a very important role regarding
the further model order reduction of beam structures. Therefore, we
present in this subsection the main idea behind a nonlinear technique to
derive reduced representations. For sake of brevity and without loss of
generality, let us consider the fully conservative unconstrained problem
emanating from (15) that can be described as

+ =+
+

+ + +
q N p q q Q q q Q, [ ( , ) ( , ) ] d 0,n 1

2 1

1 T
d n n 1 d

int
n n 1 n 1

2
ext 0

3
3

(38)

in which q collects all nodal contributions. An admissible local re-
parameterization for the i-th node is given by

=

+

+

+

+

+

+

q
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

x
d
d
d

0 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

x
d
d
d

¯

exp( )
exp( )

exp( )

¯

,

i

i

i

i

n 1
1

2

3 n 1

i

n 1

n 1

n 1

1

2

3 n

i

(39)

where the skew-symmetric matrix +Ai
n 1 is computed as +askew( )i

n 1 with
skew: A(3)3 . Be aware that this re-parameterization avoids the
necessity of imposing internal constraints on the three mutually or-
thonormal directors, since +a i

n 1 can be regarded as the incremental
Cartesian rotation vector. Additionally, we have that

=

= =

+
+

+
+

+

+
+

+

q
q
q

q

q
q

I 0
0 d
0 d
0 d

q x
a

1
2 ˜

˜ ,

˜

skew( )
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and ˜ ¯ ,
n

n

n

n 1
2

i n 1
i

n 1
i n 1

i

n 1
i

n 1
i

1,
i

2,
i

3,
i

n 1
i

n 1

i

(40)

where q̃ denotes the vector containing the generalized coordinates that
allows the local reparametrization of the original vector of generalized
coordinates q. The main idea of the model reduction relies on adopting
an approximation of the form

+ =
+ +

+ +x
a

x
a

q q¯ ¯ ˜
and

˜
,

x

a
n 1

i
ref
ref

n 1

i
n 1
i

n 1
i ¯ i

(41)

in which x̄ref and aref are reference or offset values, x̄ and a are rec-
tangular matrices (the number of columns is considerably smaller that
the number of rows) containing a reduced basis obtained from the
principal geodesic analysis. They correspond to those patterns associated
with the higher singular values and thus, the chosen reduced basis will
span the subspace where the reduced dynamics will take place. m

for <q qm dim(˜) dim( ) is the vector of reduced coordinates that will
evolve in time on the reduced subspace. By considering (39), (40) and
(41), the weak form (38) can be rewritten as

+

= =

+ +

+

+

+ +

q q
q

N p q Q q

Q r

, 1
2

[
˜

] [
˜

] [ ( , ) ( , )

] d , ( ) 0.

n 1 T n 1

n 1

T
1

1 T
d n d

int
n

n 1
2

ext 0
3

3
n 1

(42)

Finally, the residual vector +r ( )n 1 is minimized by solving a sequence
of quadratic programs, namely

G

= ++
+r r* arg min 1

2
( ) ( )· ,n 1

n 1
2

m (43)

for G being a symmetric non-singular square matrix with adequate di-
mensions, in combination with the actualization rule given by

+ * until * is smaller than a tolerance. The reader should be
aware that firstly, many details are omitted due to the scope of the
work, and secondly, for sake of clarity, the ideas are not presented in
their optimal form regarding the computational implementation. For
model-order reduction techniques based on a minimal parameterization
of the three-dimensional rotation group with orthonormal interpolation
and the generalized- method, a very different philosophy than the one
adopted here, see [52,53].

4. Results

In this section, we present four examples to show the potential of
the principal geodesic analysis applied to beam structures (described as
a special class of Cosserat continua) that are developing very complex
motions. The four cases were computed using DeSiO (Design and
Simulation Framework for Offshore Support Structures), an in-house
object-oriented finite element method, multibody system software that
is under development at Institute of Structural Analysis [25,41].

The first example considers a swinging rubber rod under the action
of gravity. The second example comprises a straight beam that is sta-
tically loaded and then being pre-stressed and further on, we remove
the load and the beam deforms dynamically. The third example is a
triple pendulum under the action of gravity, which comprises three
flexible links. The fourth and last example considers the simplified
dynamic analysis of a large-scale onshore wind turbine, where in ad-
dition to flexible beam components, we also consider stiff components
like the nacelle and the cube that are modeled as rigid bodies, whose
configuration space is also described by SE(3).

For the four examples, the boundary conditions and the combina-
tion of several structural components are achieved by means of the
introduction of kinematic constraints. With this approach, we can
model very complex structures that can be built from simpler structural
members. This approach requires solving differential-algebraic equa-
tions that come on the scene when combining differential equations
that describe the motion and algebraic equations that describe the en-
forced conditions, further details on the constraints can be found in
[41].
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4.1. Swinging rubber rod

The dynamic behavior of a swinging rubber rod under the action of
gravity was largely studied, see for instance [54]. The rod has a length
of 1.0 m and a circular cross section with a radius of 0.005 m. The elastic
rod is only loaded by its self-weight due to the gravity acceleration

=g 9.81 m/s2. In addition, the rod is simply supported at one end. The
rubber material parameters used are = ×E 5.0 10 N/m6 2, = 0.5,

= +G E/2(1 ) and = ×1.1 10 kg/m3 3. No dissipation is considered
and the discretization comprises 20 beam elements, i.e., 21 nodes. The
performed simulation time is 2.48 s with a constant time step of 0.01 s,
i.e., including the initial condition, we have 249 solution sets. The
reader must be warned that this example is very delicate. For the
adopted discretization setting, simulations based on well-established
and validated commercial software like ANSYS and Abaqus FEA blow
up after 2.0 s, see [40], where the solutions after 1.5 s show severe un-
stable behavior. With our approach, we are able to compute a high-
quality solution up to 2.5 s approximately. After that the mesh becomes
severely distorted at one single element located at one quarter of the
length from the simply supported end, and even if convergent, the rest
of the solution is considered as invalid. A preliminary study indicates
that this is somehow related with the relatively poor condition of the
iteration matrix in combination with the chaotic behavior of the rod in
itself. However, a detailed analysis of this instability is not part of the
current work and would require further investigations.

Fig. 3 presents a motion sequence where the original configuration
and some deformed configurations at given time instants are shown. As
it can be observed, the rubber rod exhibits large displacements and
rotations, therefore the nonlinear kinematic behavior is apparent. Since
in this case we deal with a purely conservative system, the total energy
of the system must be identically preserved. Table 1 presents energy
values at different time instants. These results numerically demonstrate
that the adopted formulation preserves the total energy, which is a first
integral of motion. Moreover, for this particular case, we observed no
unresolved high-frequency content along the simulated time. Therefore,
no dissipation is necessary to compute a convergent long-term response.

The discretization above yields a discrete trajectory with 249
snapshots in the space

= × × ×SE(3) ( SO(3)) ( ) .21 3 21 3 3 3 21 252 (44)

We compute singular value decompositions (SVD) and associated
truncated singular value decompositions (TSVD) for the following dis-
crete trajectories (see Table 2):

(Pos + Rot) positions and embedded rotations combined in ×252 249;
(Pos Rot) positions and embedded rotations separately in ×63 249

and ×189 249;
(Pos + Lift) positions and lifted rotations combined in ×126 249;
(Pos Lift) positions and lifted rotations separately in ×63 249 each.

Table 2 gives the CPU times for computing the lifted trajectory of
rotations, the SVD and truncated SVD, and the total CPU time. It also
gives the rank of the truncated SVD (the sum in case of separate SVDs)
and its accuracy, where the rank is determined as the smallest integer p
such that

• <+p p1 M or else
• <+p 1 M 1,

and the accuracy is the maximal absolute difference between corre-
sponding elements of the original matrix and its approximation,

D Dp max . The machine precision and its square root are
×2.22 10M

16 and ×1.49 10M
8. The plots in Figs. 4 and 5

show all numerically computed singular values for the combined SVD
(left) and separate SVD (right, position blue, rotation red).

In all four cases the computational effort is clearly dominated by

Fig. 3. Swinging rubber rod: motion sequence.

Table 1
Swinging rubber rod: energy values for t T T[ , ]1 2 ( =T 0 s1 , =T 2 s2 ).

Time (s) Kinetic energy (J) Potential energy (J) Total energy (J)

0.0 0.000000 0.000000 0.000000
0.5 0.410061 − 0.410061 0.000000
1.0 0.027473 − 0.027473 0.000000
1.5 0.358499 − 0.358499 0.000000
2.0 0.063050 − 0.063050 0.000000

Table 2
Swinging rubber rod: computing times, rank and accuracy.

CPU times (s)

Lift SVD TSVD Total Rank p D Dp max

Pos + Rot – 0.033 0.004 0.037 83 ×1.67 10 14

Pos Rot – 0.022 0.003 0.025 40 + 43: 83 ×4.31 10 14

Pos + Lift 0.003 0.010 0.002 0.015 61 ×2.83 10 14

Pos Lift 0.003 0.004 0.000 0.007 40 + 21: 61 ×4.31 10 14
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performing the SVD. Since two SVDs on small matrices are much
cheaper than one SVD on the combined matrix, separating positions
and rotations reduces the total time substantially. Moreover, lifting the
rotations to A(3) is comparatively inexpensive and reduces the matrix
dimensions even further. Thus, in addition to capturing the nonlinear
structure of SO(3), it has by far the lowest total effort: PGA in SE(3) is
about 5 times as fast as PCA in × ×3 3 3.

The rod's motion is actually planar, which leads to “gaps” in the
singular value distributions. As it turns out, the rank p is always de-
termined by the first gap here, and we obtain approximations of mod-
erate rank and near-perfect accuracy. Thus, the truncated SVD nicely
exploits the inherent structure.

4.2. Free oscillating clamped-free straight beam

In a first static simulation, a clamped-free straight beam is statically
loaded with a concentrated moment at the free end. The concentrated
moment is normal to the longitudinal axis of the beam and is applied in
ten load steps. As result of this static simulation, the clamped-free
straight beam adopts a deformed configuration that is identically semi
circular, which is perfectly consistent with the analytic solution. In a
second dynamic simulation, the moment is eliminated totally and then,
the beam starts to oscillate freely. The clamped-free straight beam has a
length of 1.0 m and a circular cross section with a radius of 0.005 m. The
material parameters used are = ×E 1.273 10 N/m9 2,

= ×G 6.366 10 N/m8 2 and = ×3.183 10 kg/m3 3. The discretization
comprises 200 beam elements, i.e., 201 nodes. The performed simula-
tion time is 10.0 s with a constant time step of 0.001 s both for the first

seconds (static simulation) and for the remaining time (dynamic si-
mulation).

Fig. 6 presents a motion sequence of the free oscillating straight
beam, where the pre-stressed configuration and some subsequent de-
formed configurations at given time instants are shown. As it can be
observed, the straight beam exhibits large displacements and rotations,
therefore the nonlinear kinematic behavior is apparent. After the
complete elimination of the moment applied, we deal with a purely
conservative system, the total energy of the system must be identically
preserved. Table 3 presents some energy values at different time in-
stants. Once again, these results numerically demonstrate that the
adopted formulation preserves the total energy. As in the previous ex-
ample, this particular case shows no unresolved high-frequency content
along the simulated time. Therefore, no dissipation is necessary for
computing a convergent long-term response.

Here we have 201 nodes and 9012 solution sets (see results in
Table 4 and Figs. 7 and 8):

(Pos + Rot) positions and embedded rotations combined in ×2412 9012;
(Pos Rot) positions and embedded rotations separately in ×603 9012

and ×1809 9012;
(Pos + Lift) positions and lifted rotations combined in ×1206 9012;
(Pos Lift) positions and lifted rotations separately in ×603 9012 each.

Due to much higher dimensions, the SVD dominates the computa-
tional effort even more than before, and the differences between the
four cases are more pronounced. In particular, separating positions and
rotations yields drastic time reductions even though the total

Fig. 4. PCA of swinging rubber rod: singular values of position and embedded rotation combined (left) and separate (right, position blue, rotation right). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 5. PGA of swinging rubber rod: singular values of position and lifted rotation combined (left) and separate (right, position blue, rotation right). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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approximation rank p is larger than in the combined cases, both with
and without lifting. Here PGA in SE(3) is about 11 times as fast as PCA
in × ×3 3 3.

As with the rod, the beam's motion is planar, which again creates
gaps in the singular value distributions. However, here the rank p is
always smaller than the position of the first gap. We obtain approx-
imations of moderate rank and high accuracy. Again, the truncated SVD
nicely detects the inherent structure.

4.3. Triple pendulum

Next, we consider a triple pendulum under the action of gravity.
This example, which can be considered as a sort of extension of the first
example, comprises three identical flexible links joined by spherical
joints and thus, this is the first one of the two multibody systems con-
sidered along this work. Each link is modeled as a beam and has a
length of 1.0 m. The triple pendulum is only loaded by its self-weight
due to the gravity acceleration =g 9.81 m/s2. In addition, the triple
pendulum is simply supported at one end. The cross-sectional proper-
ties are = = ×GA GA 5.0 10 N/m1 2

4 , = ×EA 1.0 10 N/m3
5 ,

= =EI EI 6. 2510 Nm1 2
1 2, = ×GJ 6.239 10 Nm3

1 2, = ×A 2.5
10 kg/me 1 and = = ×I I 1.562 10 kgm1 2

6 . No dissipation is

considered and the discretization comprises 20 beam elements per link,
i.e., a total of 63 nodes. The performed simulation time is 10.0 s and the
fixed time step is 0.001 s, i.e., we have 10001 solution sets.

Fig. 9 presents a motion sequence, where the original configuration
and some deformed configurations at given time instants are shown.
Large displacements and rotations are evident. Also the discontinuities
in the slope take place at the revolute joints as expected. Since this case
is purely conservative the energy is exactly preserved, see Table 5.

The discretization considered produces a discrete trajectory with 63
nodes and 10001 solution sets (see results in Table 6 and Figs. 10 and
11):

(Pos + Rot) positions and embedded rotations combined in ×756 10001;
(Pos Rot) positions and embedded rotations separately in ×189 10001

and ×567 10001;
(Pos + Lift) positions and lifted rotations combined in ×378 10001;
(Pos Lift) positions and lifted rotations separately in ×189 10001 each.

Here the computation times of the four different cases behave similar to
the straight beam, except that the differences are less pronounced with
PGA in SE(3) being roughly 6 times as fast as PCA in × ×3 3 3.

As with the rod, the triple pendulum's motion is planar, which again
creates gaps in the singular value distributions, and the rank p is always
determined by the first gap. We obtain approximations of moderate
rank and very high accuracy. Again, the truncated SVD nicely detects
the inherent structure.

4.4. Wind turbine

In this example, we present a model for the reference wind turbine
defined in [55]. It consists of one beam component for the tower and
three beam components for the individual rotor blades. Hub and nacelle

Fig. 6. Free oscillating straight beam: motion sequence.

Table 3
Free oscillating straight beam: energy values for t T T[ , ]1 2 ( =T 1 s1 , =T 3 s2 ).

Time (s) Kinetic energy (J) Potential energy (J) Total energy (J)

1.0 3.042741 0.000000 3.042741
1.5 2.381333 0.661408 3.042741
2.0 1.994711 1.048030 3.042741
2.5 1.201059 1.841682 3.042741
3.0 0.990583 2.052158 3.042741

Table 4
Oscillating beam: computing times, rank and accuracy.

Lift SVD TSVD Total Rank p D Dp max

Pos + Rot – 109.828 6.790 116.618 473 ×6.72 10 07

Pos Rot – 65.606 3.986 69.592 252 + 323: 575 ×5.73 10 07

Pos + Lift 0.947 20.949 2.320 23.269 365 ×3.75 10 07

Pos Lift 0.947 9.239 1.387 10.626 252 + 155: 407 ×1.67 10 07
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are modeled as rigid bodies. The geometric and material properties for
this example are also taken from [55]. Blade pre-cone and shaft tilt are
also taken into account. The tower root is rigidly clamped. A rigid
connection is used to connect the topmost tower node to the nacelle.
The three blades are rigidly connected to the hub, and rotation of the
hub about the rotor axis is permitted. The tower is discretized into 10
finite elements, each blade into 48. A conservative load set is applied at
the ten outermost nodes of one of the three blades. The load set follows
a triangular law with maximum of ×1.0 10 N5 at each node and remains
active during the first 1.5 s. The finite element representation and the
applied loads are illustrated in Fig. 12.

Fig. 13 presents a motion sequence where the original configuration
and some deformed configurations at given time instants are shown. As
it can be observed, the nonlinear kinematic behavior is apparent.
Table 7 presents energy values at different time instants. Once again,
the total energy is identically preserved and no unresolved high-fre-
quency content along the simulated time is observed.

Here we have 160 nodes and 4001 time steps (see results in Table 8
and Figs. 14 and 15):

(Pos + Rot) positions and embedded rotations combined in ×1920 4001;
(Pos Rot) positions and embedded rotations separately in ×480 4001

and ×1440 4001;
(Pos + Lift) positions and lifted rotations combined in ×960 4001;
(Pos Lift) positions and lifted rotations separately in ×480 4001 each.

Again we observe substantial reductions of the computational effort
due to both separation and lifting, although the total rank p with se-
paration is now much larger than without, and the truncated SVD in
case 2 is much more expensive than in case 1. PGA in SE(3) is about 10
times as fast as PCA in × ×3 3 3.

The overall motion of the wind turbine (tower and blades) is gen-
uinely 3-dimensional. The singular value distributions look rather
smooth here, with gaps occurring only at very small singular values.
Here the rank p is always determined by the second truncation criterion
(ratio of current and first singular values). We obtain approximations of
moderate rank and moderate accuracy. There is no special structure
here. The truncated SVD shows the usual behavior that is to be expected
in the general case.

5. Concluding remarks, limitation and future works

In this work, we presented a comprehensive framework intended to
investigate the nonlinear dynamics of beam structures. The proposed
approach that relies on geometrically exact beam finite-elements, a
multibody system formalism, a robust time integration scheme and a
principal geodesic analysis, takes full advantage of the underlying
mathematical structure provided by the configuration space SE(3) (the
three-dimensional special Euclidean group). By applying the principal
geodesic analysis, it was possible to show that motion patterns/modes
are identifiable, but this time in the fully nonlinear setting. Even,

Fig. 7. PCA of oscillating beam: singular values of position and embedded rotation combined (left) and separate (right, position blue, rotation right). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 8. PGA of oscillating beam: singular values of position and lifted rotation combined (left) and separate (right, position blue, rotation right). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article).
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provided that we adopted a non-orthogonal interpolation for the rota-
tions over each element, the principal geodesic analysis was safely
applied to the nodes, where the orthogonality is warranted in a strong
sense and therefore, no re-orthonormalization strategy is necessary.
Moreover, the dynamics of some beam structures could be satisfactorily
reconstructed by employing a reduced set of patters/modes. The ac-
curacy of the reconstructed solutions is very good and interesting speed
ups of the computations were observed, which is of high importance
especially when solving for engineering applications. This result is very
encouraging especially when structure-preserving reduction techniques
are required, where we do understand the term structure-preserving as
the capability of a formulation to preserve the underlying mathematical
structure, in this context the Lie group structure. Before deriving a
generalized method for order reduction, further investigations with
respect to the solvability and the robustness are still necessary.
Additionally, the current approach is in principle restricted to non-
linearities due to the kinematic description. In future works further
extensions regarding, first, nonlinearities due to complex material
constitutive laws, and second, nonlinearities due to contact will be
considered.

Fig. 9. Triple pendulum: motion sequence.

Table 5
Triple pendulum: energy values for t T T[ , ]1 2 ( =T s[ ]01 , =T s[ ]82 ).

Time (s) Kinetic energy (J) Potential energy (J) Total energy (J)

0.0 0.000000 0.000000 0.000000
2.0 4.439267 − 4.439267 0.000000
4.0 10.187456 − 10.187456 0.000000
6.0 4.771004 − 4.771004 0.000000
8.0 0.928892 − 0.928892 0.000000

Table 6
Triple pendulum: computing times, rank and accuracy.

Lift SVD TSVD Total Rank p D Dp max

Pos + Rot – 8.526 0.973 9.499 247 ×1.16 10 12

Pos Rot – 5.330 0.528 5.858 120 + 127:247 ×1.32 10 11

Pos + Lift 0.336 2.117 0.388 2.841 378 ×1.35 10 12

Pos Lift 0.336 1.089 0.203 1.628 120 + 63:183 ×2.15 10 12

Fig. 10. PCA of triple pendulum: singular values of position and embedded rotation combined (left) and separate (right, position blue, rotation right). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Fig. 11. PGA of triple pendulum: singular values of position and lifted rotation combined (left) and separate (right, position blue, rotation right). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 12. Wind turbine: finite element representation and applied loads.

Fig. 13. Wind turbine: motion sequence.

Table 7
Wind turbine: energy values for t T T[ , ]1 2 ( =T 4 s1 , =T 8 s2 ).

Time (s) Kinetic energy (J) Potential energy (J) Total energy (J)

4.0 ×6.437354 106 ×3.010235 106 ×9.447589 106

5.0 ×8.839348 106 ×0.608241 106 ×9.447589 106

6.0 ×7.325392 106 ×2.122197 106 ×9.447589 106

7.0 ×7.071510 106 ×2.376079 106 ×9.447589 106

8.0 ×8.892539 106 ×0.555050 106 ×9.447589 106

Table 8
Wind turbine: computing times, rank and accuracy.

Lift SVD TSVD Total Rank p D Dp max

Pos + Rot – 49.050 1.387 50.437 323 ×3.16 10 5

Pos Rot – 26.162 2.354 28.516 159 + 670: 829 ×3.92 10 5

Pos + Lift 0.332 9.488 0.856 10.344 408 ×2.61 10 4

Pos Lift 0.332 4.167 0.609 5.108 159 + 401: 560 ×3.92 10 5
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5. Article D: A new conservative/dissipative
time integration scheme for nonlinear
mechanical systems

This article considers the conservative/dissipative time integration of the equations of
motion that typically arise during the analysis of nonlinear mechanical systems. More
specifically, the novel approach renders, by construction, methods with the desired conser-
vation or dissipation properties. These discretize the equations of motion and add some
perturbations related to the main field variables through a collection of ancillary linearly
constrained quadratic programs that guarantee the conservation/dissipation properties.
This kind of programs are analytically solvable and therefore, very attractive from the
computational point of view. One possible interpretation of the contributions in this
article is that it results in conservative/dissipative methods where the geometric arguments
typically employed for their design have been replaced by optimality conditions. The
perturbations proposed in the new methods are designed to correct some of the unwanted
effects coming from the discretization of the governing equations. From a geometric point
of view, the idea is to redesign the problem in such a way that the behavior of the system
on the discrete constrained submanifold remains unaltered, but acts as an attractor for
trajectories outside of it. Since the constrained programs can be solved in closed form,
corrected formulas for the algorithmic internal forces and generalized velocities can be
provided, and thus easily incorporated in existing simulation codes based on reduced-order
models, finite-elements models and multibody systems. Additionally, the similarities and
differences of the newly proposed approach with respect to existing ones are pointed out
and critically discussed.

This article is published in Computational Mechanics 65 (2020), 405–427. The work was
conducted in cooperation with a partner from the IMDEA Materials Institute and
the Universidad Politécnica de Madrid, Spain. The main work was done by the
author of this Habilitationsschrift. Ignacio Romero contributed with the revision of the
formulation, technical suggestions and supporting work. Raimund Rolfes contributed
with technical suggestions and supporting work.
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Abstract
We present a conservative/dissipative time integration scheme for nonlinear mechanical systems. Starting from a weak form,
we derive algorithmic forces and velocities that guarantee the desired conservation/dissipation properties. Our approach relies
on a collection of linearly constrained quadratic programs defining high order correction terms that modify, in the minimum
possible way, the classical midpoint rule so as to guarantee the strict energy conservation/dissipation properties. The solution
of these programs provides explicit formulas for the algorithmic forces and velocities which can be easily incorporated into
existing implementations. Similarities and differences between our approach and well-established methods are discussed
as well. The approach, suitable for reduced-order models, finite element models, or multibody systems, is tested and its
capabilities are illustrated by means of several examples.

Keywords Conservative/dissipative time integration scheme ·Nonlinear mechanical systems · Linearly constrained quadratic
programs · Optimality conditions · Unconditional energy stability

1 Introduction

A key feature in the numerical approximations of conserva-
tive mechanical systems is their ability to exactly preserve
the first integrals of their motion (energy, momenta, sym-
plecticity, …), replicating the properties of the continuous
counterparts (see, e.g., [1,2]). This interest in structure
preserving integrators is hence justified by the qualitative
similarity between the dynamical behaviour of a mechani-
cal system and the discrete dynamics generated by the time
integration scheme [3]. In addition, a wealth of evidence sup-
ports the fact that this kind of time-steppingmethods behaves
extremely well for long-term simulations [4–9].

It is not easy to formulate numerical schemes that uncon-
ditionally preserve one or more invariants of the discrete
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motion. Generally speaking, this goal is accomplished by
ensuring that some of the (abstract) geometric structures that
appear in the continuous picture are replicated in the discrete
dynamics. Since it is well-known that, in general, all invari-
ants cannot be preserved for a fixed time step size scheme,
different families of methods strive for the preservation of
specific subsets of the various symmetries of the continu-
ous system. For example, some numerical methods resemble
discrete Hamiltonian systems [6], based on discrete gradient
operators, and unconditionally preserve the energy and the
(at most quadratic) momenta. Other methods emanate from
discrete variational principles [10] and obtain the update for-
mula from the stationarity conditions of these principles. In
fact, it is possible to formulate methods that preserve energy,
momenta, and the symplectic form of the system, if the time
step size is added as an unknown to the method’s equations
[7].

In the context of nonlinear elastodynamics, the first energy
and momentum conserving algorithms were developed by
Simo and co-workers [4]. This pioneering work showed that
for SaintVenant–Kirchhoffmaterials, such structure preserv-
ing methods can be easily obtained by a simple modification
of themidpoint rule in which the stress, instead of being eval-
uated at the midpoint instant, should be taken as the average
of the stresses at the endpoints of the time interval. Since
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the constitutive law is linear in the strain, this turns to be
equivalent to compute the algorithmic stress with the aver-
age of the strains at the endpoints of the time interval. This
simple idea was later applied to the conserving integration of
shells [5], rods [11,12], contact mechanics [13], multibody
systems [14,15], etc., and generalized to elastic materials
of arbitrary type [16,17]. The key idea for such general-
ization is the definition of a discrete gradient operator, a
consistent approximation of the gradient that guarantees the
strict conservation of energy in Hamiltonian systems [16,18–
20]. Alternatively, one might derive conserving methods by
defining an average vector field [8,21]. In the context of
the continuous Galerkin method, an optimization approach
was employed to systematically develop high-order energy
conserving schemes [22,23].Very recently, a newmixed vari-
ational framework that takes advantage of the structure of
polyconvex stored energy functions was proposed [24], and
the properties of several formulas for the discrete gradient
that are available in the literature were carefully analyzed in
the context of multibody systems [25].

Many Hamiltonian problems are modeled with stiff dif-
ferential equations for which conserving integration schemes
might not be the most robust. For these problems, numerical
methods with controllable numerical dissipation in the high-
frequency range provide often a practical solution [26–30].
Based on a modification of the discrete gradient operator,
Armero and Romero [9,31] developed a family of schemes
for nonlinear three-dimensional elastodynamics that exhibits
this kind of algorithmic dissipation, while preserving the
momenta and providing a strict control of the energy, applica-
ble to elastodynamics, as well as to rods and shells [32,33].
Following an alternative path based on the average vector
field, Gebhardt and co-workers have proposed similar con-
serving/dissipative methods for general solid and structural
problems [34,35].

This work considers the conservative/dissipative time
integration of the equations of motion that typically arise
during the analysis of nonlinear mechanical systems. More
specifically, we present a novel approach that renders, by
construction, methods with the desired conservation or dis-
sipation properties. These methods discretize the equations
of motion and add some perturbations related to the main
field variables through a collection of ancillary linearly
constrained quadratic programs that guarantee the conser-
vation/dissipation properties. This kind of programs are
analytically solvable and therefore, very attractive from the
computational point of view. One possible interpretation of
the contributions in this article is that it results in conser-
vative/dissipative methods where the geometric arguments
typically employed for their design have been replaced by
optimality conditions.

The perturbations proposed in the new methods are
designed to correct some of the unwanted effects coming

from the discretization of the governing equations. From a
geometric point of view, the idea is to redesign the problem
in such a way that the behavior of the system on the discrete
constrained sub-manifold remains unaltered, but acts as an
attractor for trajectories outside of it. Since the constrained
programs can be solved in closed form, corrected formulas
for the algorithmic internal forces and generalized velocities
can be provided, and thus easily incorporated in existing sim-
ulation codes. The similarities and differences of the newly
proposed method with respect to existing ones are pointed
out and discussed critically.

The remaining of the article is organized as follows:
In Sect. 2, we present the basic framework for nonlinear
mechanical systems. In Sect. 3, we address in a compre-
hensive manner the new time discretization. In Sect. 4, we
present several examples of increasing complexity for the
verification of the method. Finally, conclusions, limitations
and future work are presented in Sect. 5. Additionally, the
“Appendix” introduces the precision quotient, with which
the correctness of an implementation can be tested.

2 Mechanical framework

2.1 Statement

In this work we consider mechanical systems whose con-
figuration is completely defined by a vector q ∈ Q, where
Q ⊆ Rn . Denoting by t the time, the state of the system at
any instant is given by the pair (q, s) ∈ W ≡ T Q, where
s = q̇ is the velocity, and in which we have employed the
notation ˙(·) = d(·)

dt . The dynamical behavior of this system,
for t ∈ [ta, tb] is governed by the variational equation:
∫ tb

ta

[〈
δs, p(q̇)−π(s)

〉 − 〈
δq, π̇(s)+ f int(q)− f ext(q)

〉]
dt

= 0 , (1)

where (δq, δs) ∈ TW are admissible variations of the
generalized coordinates and velocities, p(q̇) ∈ T ∗

s S and
π(s) ∈ T ∗

s S stand for the generalized-coordinate-based and
generalized-velocity-based momenta, respectively, f int ∈
T ∗
q Q is the vector of internal forces, f ext ∈ T ∗

q Q is the
vector of external loads that can be of conservative or non-
conservative nature, and finally,

〈·, ·〉 represents a suitable
pairing. Additionally, we assume the following two condi-
tions: (i) the system possesses a positive-definite symmetric
mass matrix M such that

π(s) = Ms, p(q̇) = Mq̇ (2)

and, (ii) both the internal and the external forces derive from
potential functions depending only on the configuration q,
i.e.,
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f int = −∂V int

∂q
, f ext = −∂V ext

∂q
, (3)

and we define the total potential energy of the system as
V = V int + V ext.

We would like to analyze next the implications that
symmetry has on the form of the internal forces and the
appropriate notions of linear and angular momentum in the
abstract space Q. For that, the relation between the configu-
ration space Q and the ambient space R3 has to be carefully
considered. We start by defining Φ : R3 × Q → Q to
be a smooth action of R3 on the configuration space such
that Φ(a, q) is the configuration of the system after all its
points have been translated in space by constant vector a.
The infinitesimal generator of this translation at q is the vec-
tor τ a(q) ∈ TqQ defined as

τ a(q) = ∂

∂ε

∣∣∣∣
ε=0

Φ(ε a, q), (4)

with ε ∈ R. Let us now assume internal potential energy is
invariant under translations, i.e.,

V int = V int ◦ Φ. (5)

Then, choosing a one parameter curve of translations
Φ(ε a, ·) in Eq. (5) and differentiating with respect to ε, it
follows that a translation invariant potential implies that the
internal forces satisfy

0 = ∂

∂ε

∣∣∣∣
ε=0

V int(Φ(ε a, q)) =
〈

∂

∂q
V int(q), τ a(q)

〉

= −〈 f int(q), τ a(q)〉. (6)

To study the conservation of angular momentum, wemust
repeat the same argument but considering now a second
smooth action Ψ : R3 × Q → Q such that Ψ (θ, q) is the
configuration of the system after all its points have rotated in
ambient space by the application of a rotation exp[θ̂ ]. Defin-
ing, as before, the infinitesimal generator of this action to be
the vector ρθ (q) ∈ TqQ calculated as

ρθ (q) = ∂

∂ε

∣∣∣∣
ε=0

Ψ (ε θ, q), (7)

again with ε ∈ R. If the potential energy is now rotation
invariant, i.e.,

V int = V int ◦ Ψ . (8)

Then the internal force must satisfy

0 = ∂

∂ε

∣∣∣∣
ε=0

V int(Ψ (ε θ , q)) =
〈

∂

∂q
V int(q), ρθ (q)

〉

= −〈 f int(q), ρθ (q)〉. (9)

The precise notion of linear and angular momentum for
the systemdefined in this section is provided by the following
result:

Theorem 1 Consider a mechanical system with configura-
tion space Q ⊆ Rn and vanishing external forces. Let
Φ(a, ·), Ψ (θ , ·) be the translation and rotation actions on
the configuration space with infinitesimal generators τ a and
ρθ , respectively, and define the linear momentum l ∈ R3

and the angular momentum j ∈ R3 as the two quantities
that verify

〈l, a〉 = 〈τ a(q),π〉, 〈 j , θ〉 = 〈ρθ (q),π〉 . (10)

Then, the linear momentum is conserved if the potential
energy is invariant with respect to translations. Similarly,
if the potential energy is invariant under rotations, the angu-
larmomentum is a constant of themotion.Moreover, the total
energy

E = 1

2
〈s, Ms〉 + V (q) (11)

is preserved by the motion, due to its time invariance.

Proof The proof of momenta conservation follows from tak-
ing the derivative of these quantities and using (1) with
admissible variations (δq, δs) = (τ a(q), 0) and (ρθ (q), 0),
respectively. The conservation of energy property follows
similarly by choosing (δq, δs) = (s, 0). 
�

3 Time discretization

The interest in the current work is in algorithms to approx-
imate the solution of Eq. (1). To define them, let us start
by considering a partition of the interval [ta, tb] into disjoint
subintervals (tn, tn+1] with ta = t0 < t1 < . . . < tN = tb,
andΔtn = tn+1−tn . Then, the integration algorithms that we
consider are based on the midpoint approximation of Eq. (1)
and of the form:

0 =
〈
δs, M

qn+1 − qn
Δtn

− Msn+1/2

〉
−

〈
δq,

πn+1 − πn

Δtn

+ fint(qn, qn+1) − f ext(qn+1/2)

〉
(12)

where the configuration and rate, respectively, at time tn are
approximated by qn, sn , we have defined πn = Msn , and
we have used the notation (·)n+1/2 = 1

2 (·)n + 1
2 (·)n+1. The

update depends on the definition of an approximation to the
internal force at the midpoint tn+1/2 that we have denoted as
fint.
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Equation (12) provides an implicit or explicit update
(qn, sn) �→ (qn+1, sn+1) that, together with the initial con-
ditions of the configuration and velocity, suffices to generate
discrete trajectories. We note that the approximation to the
internal force in Eq. (12) is a function of two arguments that,
by consistency, must satisfy

fint(q, q) = f int(q), (13)

for all configurations q ∈ Q.
We are interested, in particular, in formulating time inte-

gration schemes of the form (12) that preserve (some of) the
invariants in the motion of the system (1), while controlling
the value of the energy at all times. Let us first consider the
update Eq. (12) with variations of the form (δq, δs) = (0, c),
where c is an arbitrary but constant vector in T Q. Then, triv-
ially, it follows that

qn+1 − qn
Δtn

= sn+1/2. (14)

Next, we would like to explore whether the proposed class
of integration schemes preserves momenta for mechanical
systems defined in the configuration space Q. The result, for
every configuration space, is given next.

Theorem 2 Consider the time discretization (12) of a
mechanical system with configuration space Q ⊆ Rn. Let
Φ andΨ denote, as above, the actions ofR3 on Q represent-
ing, respectively, translations and rotations. The integration
scheme preserves linear momentum if

0 = 〈τ a(qn+1/2), f
int(qn, qn+1)〉 (15a)

〈τ a(qn+1/2),πn+1 − πn〉 = 〈ln+1 − ln, a〉, (15b)

for every a ∈ R3. Likewise, the integration algorithm pre-
serves angular momentum if for every θ ∈ R3

0 = 〈ρθ (qn+1/2), f
int(qn, qn+1)〉 (16a)

〈ρθ (qn+1/2),πn+1 − πn〉 = 〈 jn+1 − jn, θ〉. (16b)

The verification of conditions (15)–(16) depends, first, on
the structure of Q. For example, if we consider Q ≡ R3n ,
the configuration space of n particles in three-dimensional
Euclidean space, conditions (15b)–(16b) are easily veri-
fied. Conditions (15a)–(16a) depend not only on Q but
also on the form of fint which has been, up to this point,
left unspecified. For example, the canonical midpoint rule
employs fint(x, y) = f int((x + y)/2), and preserves both
linear and angular momenta, but not energy. In turn, the
Energy-Momentum method [4,5] provides an expression for
this force that guarantees strict energy conservation in the
discrete update map, without upsetting the preservation of

momenta. Expanding on this idea, the Energy-Dissipative-
Momentum-Conserving method [9,31] adds controllable
energy dissipation to the solution, so small that does not upset
the accuracy of the solution, yet large enough that can damp
out some of the spurious oscillations in the high-frequency
part of the solution.

3.1 Discrete derivative

As already mentioned, the direct evaluation of the internal
forces at the midpoint configuration does not guarantee, in
general, the preservation of energy. There exist however, con-
sistent approximations of these forces that strictly enforce
this property of conservative equations.

To introduce the form of this “conservative” approxima-
tion of the internal energy let us assume as in Sect. 2 that the
internal forces derive from a smooth potential V : Q → R.
Be aware that from now on, we remove the superindex int,
since no external force is longer considered along the deriva-
tion presented next. The type of approximations we search
for are referred in the literature as “discrete derivatives” [6]
and are functions f : Q × Q → R that satisfy, for every
x, y ∈ Q, two properties, namely:

i. Directionality:

〈f(x, y), y − x〉 = V ( y) − V (x) . (17)

ii. Consistency:

f(x, x) = −DV (x) = f (x), (18)

where D denotes the standard derivative operator.

When Q ⊂ R, there only exists one discrete derivative [8]
and its closed form expression is given by

f(x, y) = V (y) − V (x)

|y − x | , (19)

with the well-defined limit

lim
y→x

f(x, y) = −DV (x) = f (x). (20)

In higher dimensions, there are actually an infinite number
of discrete derivatives [8,20] since only the component of f
along the direction of y − x needs to have a precise value
in order to guarantee energy conservation, and its orthog-
onal complement is free to vary, as long as consistency of
the approximation is preserved. This statement is formalized
next:
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Theorem 3 Any discrete derivative can be rewritten as

f(x, y) = V ( y) − V (x)

‖ y − x‖2 ( y − x) + g(x, y), (21)

with g(x, y) a vector-valued function such that

〈g(x, y), y − x〉 = 0, ( y �= x), (22)

and

lim
y→x

(
g(x, y) − P⊥

( y−x) f (x)
)

= 0, (23)

whereP⊥
( y−x) is the projection on the component perpendic-

ular to y − x.

Proof Let g(x, y) be defined as

g(x, y) = f(x, y) − V ( y) − V (x)

‖ y − x‖2 ( y − x), (24)

it is apparent that g(x, y) is perpendicular to y − x because
〈f(x, y), y − x〉 = V ( y) − V (x), and

g(x, y) − P⊥
( y−x) f (x) = f(x, y) − V ( y) − V (x)

‖ y − x‖2 ( y − x)

− f (x) + 〈 f (x), y − x〉
‖ y − x‖2 ( y − x)

= f(x, y) − f (x) − 1

‖ y − x‖ (V ( y) − V (x)

−〈 f (x), y − x〉) ( y − x)

‖ y − x‖ ,

(25)

which tends to zero as y → x. 
�

3.2 Conservative algorithmic force

We explore next a type of discrete derivative that is dif-
ferent to the one usually employed in nonlinear mechanics
[4,16]. For that, we construct first a convex combination of
the (exact) derivative at two configurations, i.e.,

fcons = 1

2
(1 − αcons) f (x) + 1

2
(1 + αcons) f ( y) (26)

or in a more compact form

fcons = f a + αcons Δ̃ f . (27)

In this expression, the scalar αcons has to be determined in
order to guarantee directionality, f a is the averaged force

f a = f (x) + f ( y)
2

, (28)

and Δ̃ f is one half of the force jump between the configura-
tions at times tn and tn+1, i.e.,

Δ̃ f = f ( y) − f (x)

2
. (29)

Notice that this conservative approximation satisfies, by con-
struction, the consistency condition (18). The satisfaction of
directionality depends, as advanced, on the choice of the
parameter αcons. To enforce it, we select αcons by means
of an optimality condition [20], namely, as the scalar that
minimizes

1
2‖fcons − f m‖2G

subject to 〈fcons, y − x〉 − V ( y) + V (x) = 0.
(30)

Assuming f (x) �= f ( y), this optimization problem is a lin-
early constrained quadratic program that can be solved in
closed form. Moreover, the only requirement for the opti-
mization problem to be convex is that ‖ f ( y)− f (x)‖2G > 0.
Its solution can be interpreted as the discrete derivative that
is closest to f m , the continuous force at the midpoint f m ,
namely,

f m = f
(
x + y
2

)
. (31)

Here, G is a metric tensor. The Lagrangian of the optimiza-
tion problem is

L(αcons, λcons) = 1

2
‖fcons − f m‖2G + λcons

(〈fcons, y − x〉
−V ( y) + V (x)) , (32)

where λcons is a Lagrange multiplier that enforces direction-
ality. To find the stationarity condition, the variation of L is
calculated as:

δL(αcons, λcons) = 〈δ f cons,G(fcons − f m) + λcons( y − x)〉
+δλcons

(〈fcons, y − x〉 − V ( y) + V (x)
)
. (33)

Now for the sake of brevity, let us introduce a discrete func-
tion defined as

C̃ f (x, y) = V ( y) − V (x) − 〈
f a, y − x

〉
. (34)

From now on, we refer to this function as a conservation
function, which allows the preservation energy in the dis-
crete setting for a given fixed time stepΔt . This conservation
function is not unique and depends, in principle, on the shape
of the approximated discrete form.

The stationarity condition for the associated Lagrangian
function can be reformulated as the linear system that is
explicitly given by
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⎛
⎝ A f

11 A f
12

A f
12 0

⎞
⎠

[
αcons

λcons

]
=

⎡
⎣ b f , cons

1

b f , cons
2

⎤
⎦ , (35)

with

A f
11 = 1

2
‖ f ( y) − f (x)‖2G , (36)

A f
12 = 〈 f ( y) − f (x), y − x〉 , (37)

b f , cons
1 = 〈 f ( y) − f (x),G( f m − f a)〉, (38)

and

b f , cons
2 = 2C̃ f (x, y) . (39)

The solution of this program is

αcons = 2C̃ f (x, y)

〈 f ( y) − f (x), y − x〉 , (40)

and

λcons = −〈 f ( y) − f (x),G( f m − f a)〉
〈 f ( y) − f (x), y − x〉

−‖ f ( y) − f (x)‖2GC̃ f (x, y)

〈 f ( y) − f (x), y − x〉2 . (41)

Notice thatαcons does not depend on the chosenmetric. Then,
we can claim that the adopted construction affords a unique
definition. This feature represents a main innovation of the
current work. However and up to this point, it is not clear to
which extent the current formula approaches the commonly
used formulas like the one due to Gonzalez [6] or the one due
toHarten et al. [21]; a comparison of that secondmethodwith
the current one is beyond the scope of this work.

In contrast, the Lagrange multiplier λcons depends on the
chosen metric. Finally, the conservative part of the discrete
force takes the following explicit form:

fcons(x, y) = f (x) + f ( y)
2

+ C̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y) − f (x)).

(42)

In the context of nonlinear elastodynamics, the first term
of the formula is equivalent to the definition proposed by
Simo and Tarnow [4] that was derived in the context of
Saint Venant–Kirchhoff materials. The second term can be
interpreted as a correction for the most general hyperelastic
case. The formula proposed by Gonzalez [6] cannot be alge-
braically reduced to the proposed expression, because the
former is basically a correction for f m and the latter, for f a .

The conserving force given by Eq. (42) can be rewritten
in the form of Eq. (21) and therefore, is a discrete derivative
with

P
‖
( y−x)f

cons( y − x) = V ( y) − V (x)

‖ y − x‖2 ( y − x) , (43)

where P
‖
( y−x) is the projection parallel to y − x, and

gcons(x, y) := P⊥
( y−x)f

cons(x, y). (44)

3.3 Dissipative algorithmic force

To account for dissipation, let us assume the existence of a
dissipative part of the algorithmic internal force that is pro-
portional to Δ̃ f , this is

fdiss = αdissΔ̃ f , (45)

where αdiss is a scalar whose precise definition is still open.
This construction is supported by the analysis done by
Romero [20], which showed that other choices may destroy
the accuracy of the approximation. We will see later that this
expression is very attractive since it provides an unifying
treatment of both conservative and dissipative parts of the
algorithmic internal force.

To find the value of αdiss, we define a discrete dissipation
function D̃ f (x, y), which must be positive semi-definite, at
least second order in ‖ y− x‖ to avoid spoiling the accuracy
of the algorithm, and tend to 0 as x tends to y. Then αdiss can
be obtained as the scalar that minimizes

1
2‖fdiss‖2G

subject to 〈fdiss, y − x〉 − D̃ f (x, y) = 0.
(46)

This is also a linearly constrained quadratic program. The
solution of this optimization problem can be interpreted as
the smallest perturbation force that satisfies the dissipation
relation 〈 y− x, fdiss〉 = D̃ f (x, y). Once again, G is a given
metric tensor and the associated Lagrangian is simply

L(αdiss, λdiss)= 1

2
‖fdiss‖2G+λdiss(〈fdiss, y−x〉−D̃ f (x, y)),

(47)

where λdiss is a Lagrange multiplier that enforces the dissi-
pation constraint. To formulate the stationarity condition, the
variation of the associated Lagrangian has to be computed.
This procedure yields

δL(αdiss, λdiss) = 〈δfdiss,Gfdiss + λdiss( y − x)〉
+δλdiss(〈fdiss, y − x〉 − D̃ f (x, y)). (48)
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Noting that δfdiss = δαdissΔ̃ f , the stationarity condition of
the Lagrangian can be written explicitly as

(
A f
11 A f

12

A f
12 0

)[
αdiss

λdiss

]
=

[
0

b f , diss
2

]
, (49)

with

b f , diss
2 = 2D̃ f (x, y) . (50)

The solution of this linearly constrained quadratic program
is

αdiss = 2 D̃ f (x, y)

〈 f ( y) − f (x), y − x〉 , (51)

and

λdiss = −‖ f ( y) − f (x)‖2GD̃ f (x, y)

〈 f ( y) − f (x), y − x〉2 . (52)

As in the case of the conservative part of the algorithmic
force, the parameter αdiss does not depend on the chosen
metric and therefore, it is unique. However and up to this
point, it is not clear to which extent the current formula
approaches already established formulas, especially the one
due to Armero and Romero [9,31]. As in the case of the
conservative part of the approximation, the multiplier λdiss

depends on the chosen metric. Finally, the formula for the
dissipative part of the algorithmic internal force takes the
following explicit form:

fdiss = D̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y) − f (x)). (53)

Notice that this formula has the same structure as the sec-
ond term of the conservative part of the algorithmic force.
However, instead of the conservation function, the dissipa-
tion function appears in the numerator. This fact suggests
that a unifying formula containing both conservative and dis-
sipative parts is possible, which makes the approach very
attractive.

3.4 Generalization and preservation of momenta

Assuming an additive compositionof the algorithmic approx-
imation of the force, that is,

f = fcons + fdiss, (54)

we can write, using Eqs. (42) and (53),

f(x, y) = f (x) + f ( y)
2

+ C̃ f (x, y) + D̃ f (x, y)

〈 f ( y) − f (x), y − x〉 ( f ( y)− f (x)).

(55)

This formula is very compact and a simple inspection
confirms that when the dissipation is zero, the directional-
ity condition is exactly verified.

To accommodate the preservation of linear and angular
momenta as discussed in Eqs. (15) and (16), Eq. (55) must
be modified as indicated next: Let G be a Lie group with
algebra g and coalgebra g∗, which acts on the configuration
space Q ⊆ R3n by means of the action χ : G × Q → Q.
For every ξ ∈ g, let ξQ : Q → T Q denote the infinitesimal
generator of the action. Following again Gonzalez [6], we
can define G-equivariant derivatives. If V : Q → R is a
G-invariant function, its G-invariant discrete derivative is a
smooth map fG : Q×Q → R that satisfies the requirements
of discrete derivatives and, moreover, the equivariance and
orthogonality condition, namely,

fG(χg(x),χg( y)) =
(
Dχg

(
x + y
2

))−T

fG(x, y), (56)

for all x, y ∈ Q, g ∈ G, and

fG(x, y) · ξ Q

(
x + y
2

)
= 0. (57)

To construct a G-equivariant discrete derivative, consider
invariant functions under the symmetry action denoted by
πi , i = 1, 2, ...., q where q is the dimension of the quotient
space Q/G. Let Π = (π1, π2, ..., πq). If V : Q → R is G-
invariant, a reduced function Ṽ can be defined by the relation
V = Ṽ ◦ Π. If each of the invariants is at most of degree
two, then a G-equivariant discrete derivative for V can be
constructed as

fG(x, y) = f̃(Π(x),Π( y)) ◦ DΠ

(
x + y
2

)
, (58)

where, as before x, y ∈ Q. In particular, the formulation of
a G-equivariant discrete derivative that preserves linear and
angular momenta (cf. Eqs. 15 and 16) is straightforward.

The expression of the G-equivariant force in the current
context is given by

f(x, y) = DΠT (z)
(

f (Π( y)) + f (Π(x))

2

+ α(Π(x), (Π( y))( f (Π( y)) − f (Π(x)))

)
,

(59)

with z = (x + y)/2 and

α(Π(x), (Π( y))= C̃ f (Π( y),Π(x))+D̃ f (Π( y),Π(x))

〈 f (Π( y)) − f (Π(x)),Π( y) − Π(x)〉 .

(60)
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3.5 Interpretation of the conservative algorithmic
force

There exist infinite second order accurate approximations of
the midpoint force that that lead to energy and momentum
conserving discretizations [20]. A general expression for the
algorithmic force that is in agreement with the definition of
the discrete derivative is given by

fG(x, y) = f
(
x + y
2

)
+ Ĉ f (x, y)

‖ y − x‖2
G−1

G−1( y− x), (61)

where G is the matrix representation of a suitable metric
tensor and its associated conservation function is

Ĉ f (x, y) = [
V ( y) − V (x)

] − 〈
f m, y − x

〉
. (62)

As shown in [20], the choice of themetric tensor inEq. (61)
is crucial, since a wrong choice can destroy the accuracy
of the solution even when the directionality and consistency
properties are verified.Thegeneral expression canbe reduced
to the original formula proposed in [6] just by adopting the
standard Euclidean metric tensor, i.e.,

f I (x, y) = f
(
x + y
2

)
+ Ĉ f (x, y)

‖ y − x‖2I
( y − x). (63)

Until now, this original formula has been regarded as the
optimal one from the implementation point of view.By visual
inspection of Eq. (42), it is also possible to claim that the
formula derived in this work is as easy to implement as the
original one given in Eq. (63). Moreover, the new formula
requires only evaluations at the endpoints of the time interval
and not at the midpoint.

Next, we would like to analyze the formula (42) in terms
of the general expression provided byEq. (61). First, defining
z to be the average z = (x + y)/2, we make use of Taylor’s
theorem to compute

f (x) = f (z) − 1

2
D f · ( y − x) + 1

4
D2 f · (( y − x), ( y − x))

−1

8
D3 f · (( y − x), ( y − x), ( y − x)) + O(‖ y − x‖4)

(64)

and

f ( y) = f (z) + 1

2
D f · ( y − x) + 1

4
D2 f · (( y − x), ( y − x))

+ 1

8
D3 f · (( y − x), ( y − x), ( y − x)) + O(‖ y − x‖4).

(65)

The averaged force can be expressed as

f (x) + f ( y)
2

= f (z) + O(‖ y − x‖2) (66)

and

〈
f (x) + f ( y)

2
, y − x

〉
= 〈 f (z), y − x〉 + O(‖ y − x‖3).

(67)

The force jump can be written as

f ( y) − f (x) = 〈D f , y − x〉 + O(‖ y − x‖3), (68)

and

〈 f ( y) − f (x), y − x〉
=

〈
y − x, D2V (z)( y − x)

〉
+ O(‖ y − x‖4)

=
〈
y − x, D2V (x)( y − x)

〉
+ O(‖ y − x‖3).

(69)

Now putting everything together, we can rewrite Eq.(42) as

fcons = f (z)+ V ( y)−V (x)−〈 f (z), y−x〉〈
y − x, D2V (x)( y − x)

〉 D2V (x)( y−x)

+O(‖ y − x‖2). (70)

Taking a look at this expression, it is apparent that the
discrete force (42) is a second order perturbation of the mid-
point approximation and that the metric employed for the
definition of the conserving correction is just

G = (D2V (x))−1. (71)

We conclude that the an integration scheme based on Eq. (27)
would behave locally in a very similar manner to a method
based on Eq. (61) with metric (71). Their global behavior
can, in general, differ.

3.6 Dissipative algorithmic velocity

As proposed in [9,31], the generalized velocity can also
be expressed as the linear combination of a conserva-
tive and a dissipative component. If the mass matrix is
configuration-independent, the midpoint rule provides pre-
cisely the conservative part of the velocity. Following the
ideas adopted for the formulation of the dissipative part of
the algorithmic force, we find next the smallest perturbation
of the midpoint velocity that guarantees dissipation accord-
ing to a given dissipation function D̃s(u, v), which must be
non-negative, at least second order accurate in ‖v − u‖, and
tend to 0 as u tends to v.
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According to the midpoint rule, the conservative part of
the algorithmic velocity can be expressed as

scons = u + v

2
= w , (72)

where the velocity u corresponds to time instant tn , the veloc-
ity v corresponds to time instant tn+1 and w is the averaged
velocity. This particular choice preserves linear and angular
momenta. The preservation of energy is guaranteed when the
relation

〈scons, M(v − u)〉 = T (v) − T (u) (73)

is satisfied, with T being the kinetic energy. Equivalently,
this expression can be obtained from 〈δsn+1/2,π(scons)〉 =
T (v) − T (u) when the variation is of the form δsn+1/2 =
v − u. It is apparent that the conservative part of the algo-
rithmic velocity adopted fulfills this condition without need
for further corrections.

Now we follow an idea that is slightly different to the one
previously used to derive the dissipative part of the algo-
rithmic force. Henceforth, let us assume the existence of a
dissipative part of the algorithmic velocity proportional to
scons, this is

sdiss = βdissscons, (74)

where βdiss is a scalar to be found that must guaranteed the
dissipation of energy according to a given dissipation func-
tion D̃s(u, v). This scalar can be obtained as theminimizer of

1
2‖sdiss‖2M

subject to 〈sdiss, M(v − u)〉 − D̃s(u, v) = 0 ,
(75)

where M is the mass matrix. Equation (75) defines a
quadratic program with linear constraints. Its solution can
be interpreted as the smallest non-conservative velocity per-
turbation that satisfies for a discrete variation of the form
δsn+1/2 = v − u, an energy dissipation according to the
adopted rule. The associated Lagrangian function of the opti-
mization problem is

L(βdiss, μdiss)

= 1

2
‖sdiss‖2M + μdiss(〈sdiss, M(v − u)〉 − D̃s(u, v)),

(76)

where μdiss is a Lagrange multiplier that enforces the dis-
sipation constraint. To formulate the stationarity condition,
the variation of the associated Lagrangian function has to be
computed. This procedure yields

δL(βdiss, μdiss) = 〈δsdiss, Msdiss + μdissM(v − u)〉

+ δμdiss(〈sdiss, M(v − u)〉 − D̃s(u, v)) . (77)

Noting that δsdiss = δβdissscons, the stationarity condition of
the Lagrangian can be written explicitly as

(
As
11 As

12
As
12 0

)[
βdiss

μdiss

]
=

[
0

bs, diss2

]
, (78)

with

As
11 = 2T (w) , (79)

As
12 = T (v) − T (u) , (80)

and

bs, diss2 = D̃s(u, v) . (81)

The solution of this linearly constrained quadratic program is

βdiss = D̃s(u, v)

T (v) − T (u)
(82)

and

μdiss = − T (w)D̃s(u, v)

(T (v) − T (u))2
. (83)

Finally, the formula for the dissipative part of the algorithmic
velocity takes the following explicit form:

sdiss = D̃s(u, v)

T (v) − T (u)

v + u
2

. (84)

Assuming an additive compositionof the algorithmic approx-
imation of the velocity, that is,

s = scons + sdiss , (85)

we can write

s(u, v) =
(
1 + D̃s(u, v)

T (v) − T (u)

)
v + u
2

. (86)

This formula is identical to the formula proposed in [9,31]
that was derived by employing only geometric arguments.
This time, it can be clearly interpreted as an optimal approx-
imation.

3.7 Final equations

The combination of all ingredients discussed here yields the
full discrete formulation of the dynamic equilibrium for non-
linear mechanical systems. These consist of two residuals,
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one for the generalized velocities and another for the gener-
alized coordinates, namely,

[
rs
rq

]
n+1/2

=
[

π(sn, sn+1)− p(qn, qn+1)

π̇(sn, sn+1) + f(qn, qn+1) − f ext(qn+1/2)

]
,

(87)

where both residuals have to beminimized at every time step.
This task is accomplished by means of a Newton-Raphson
algorithm.

The generalized-velocity-based momentum term in its
algorithmic form is

π(sn, sn+1) = M

(
1 + D̃s(sn, sn+1)

T (sn+1) − T (sn)

)
sn+1 + sn

2
.

(88)

The generalized-coordinate-basedmomentum term in its dis-
crete version becomes

p(qn, qn+1) = M
qn+1 − qn

Δtn
. (89)

The generalized-coordinate-basedmomentum rate term in its
algorithmic form is

π̇(sn, sn+1) = M
sn+1 − sn

Δtn
. (90)

Finally, the generalized internal force becomes

f(qn, qn+1) = f (qn) + f (qn+1)

2

+ C̃ f (qn, qn+1) + D̃ f (qn, qn+1)

〈 f (qn+1) − f (qn), qn+1 − qn〉
( f (qn+1) − f (qn)) .

(91)

In the case of accommodating the preservation of linear and
angularmomenta,we require theG-equivariant version given
by

fG(qn, qn+1) = DΠT
n+1/2

(
f (Πn+1) + f (Πn)

2

+ α(Πn,Πn+1)( f (Πn+1) − f (Πn))

)
(92)

where

α(Πn,Πn+1) = C̃ f (Πn+1,Πn) + D̃ f (Πn+1,Πn)

〈 f (Πn+1) − f (Πn),Πn+1 − Πn〉 (93)

and Πn = Π(qn). The discrete conservation function is
given by

C̃ f (qn, qn+1) = (V (qn+1) − V (qn))

−
〈
f (qn) + f (qn+1)

2
, qn+1 − qn

〉
, (94)

and its G-equivariant version given by

C̃G
f (qn, qn+1) = (V (Πn+1) − V (Πn))

−
〈
f (Πn) + f (Πn+1)

2
,Πn+1 − Πn

〉
.

(95)

The most basic discrete dissipation function at the level
of the generalized internal force that can be chosen is

D̃ f (qn, qn+1, q̃n) = 1

2

〈
qn+1 − qn, D(q̃n − qn)

〉
, (96)

or its G-equivariant counterpart expressed as

D̃G
f (qn, qn+1, q̃n) = 1

2

〈
Πn+1 − Πn, D(Π̃n − Πn)

〉
,

(97)

where q̃n could correspond to an intermediate configuration,
and D is constant, symmetric and positive semi-definite. The
dissipation function for the velocity is of the form

D̃s(sn, sn+1, s̃n) = 1

2
〈sn+1 − sn, M(s̃n − sn)〉 , (98)

or its G-equivariant version given by

D̃G
s (sn, sn+1, s̃n) = 1

2
(‖sn+1‖M − ‖sn‖M)(‖s̃n‖M − ‖sn‖M),

(99)

where s̃n could correspond to an intermediate configuration.
With this setting, unconditional stability in the nonlinear
sense can be achieved. The chosen dissipation functions cor-
respond to those proposed in [9,31] for the EDMC-1/2.

4 Numerical results

In this section, we present four numerical examples which
were chosen to show the potentialities of the proposed
approach. With these, we do not pretend to test the new
approach exhaustively, but at rather provide some insight on
its properties. For this purpose, we study first two examples
involving two-mass systemswith potential functions that can
arise in the context of reduced-order models, and then two
examples of nonlinear elastic shell structures employing a
neo-Hookean material. Additionally, we briefly discuss the
dissipation properties of the proposed scheme in the high-
frequency range.
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4.1 Reduced-order models

The first example is a mechanical system with two degrees
of freedom whose potential function possesses polynomial
complexity. The second one considers another mechanical
systemwith also two degrees of freedom, butwhose potential
function shows non-polynomial complexity. Here, we adopt
themost basic discrete dissipation functions at the level of the
generalized internal force and at the level of the generalized
velocity that are given by

D̃ f (qn, qn+1) = χ f

2h

∥∥qn+1 − qn
∥∥2
D , (100)

in which D is a constant symmetric semi-positive definite
matrix, and

D̃s(sn, sn+1) = χs

h

(√
T (sn+1) − √

T (sn)
)2

, (101)

where χ f and χs in R≥0 are merely dissipation parameters.
For both examples, four cases are considered: i) fully con-
servative, i.e., χ f = χs = 0; ii) dissipative at the level of
the generalized internal force, i.e., χ f �= 0 and χs = 0;
iii) dissipative at the level of the generalized velocities, i.e.,
χ f = 0 and χs �= 0; and, iv) fully dissipative, i.e., χ f �= 0
and χs �= 0. Additionally, to numerically gain some insight
about the accuracy of the method, we provide for these two
examples and all cases the secondquotient of precisionQII(t)
computed on the basis of the corresponding states ξ ∈ W ,
namely ξ = (q, s). The definition of QII(t) is presented in
the “Appendix”.

4.1.1 Two-mass systemwith a polynomial potential

Here, we consider a nonlinear oscillatory mechanical system
with potential function

V (q) = 1

2
V II
abq

aqb + 1

3
V III
abcq

aqbqc + 1

4
V IV
abcdq

aqbqcqd .

(102)

This kind of systems naturally arises in the context of
reduced-order models, see for instance [36,37]. To perform
our computations,we adopt amodelwith two degrees of free-
domused as a demonstrator in [36]. The non-zeromechanical
properties are M11 = M22 = 1 Kg, V II

11 = V II
22 = 16 N/m,

V II
12 = V II

21 = −15 N/m and V IV
1111 = 15 N/m3. The simula-

tion parameters are initial time ti = 0 s, final time t f = T s,
simulation time T = 50 s, time step Δt = 0.001 s and
relative iteration tolerance ε = 10−10. Additionally, for the
dissipative cases, we set χ f = 0.0025 and χs = 0.008 as

well as D = V II. The initial conditions employed are

q0 =
[
1.00000
0.91800

]
and s0 =

[
0.00000
0.00000

]
.

Figure 1 shows the idealized mechanical system under con-
sideration and Fig. 2 presents a plot of the potential function,
which is clearly convexwithin the regionwhere the dynamics
of the system takes place. Figure 3 shows different plots for
the solution of the fully conservative case. We can observe
the very complex and nonlinear oscillatory behavior, which
is also in excellent agreement with those results presented in
[36].

On the left of Figs. 4, 5, 6 and 7, the evolution of the
kinetic, potential, and total energies is shown. On the right of
these figures, we show the second precision quotient also as a
function of time. Figure 4 evidently corresponds to the fully
conservative case. Figure 5 shows the dissipative case at the
level of the generalized internal forces. Figure 6 corresponds
to the dissipative case at the level of the generalized veloci-
ties. Finally, Fig. 7 corresponds to the fully dissipative case.
In the latter, the energy decay is larger than the two previous
cases.

For all cases the second quotient of precision is almost
constant and its value is approximately 4. Therefore, as
expected, the numerical method is second-order accurate.
According to Eq. (115), a method of a given order is unable
to produce solutions with higher quotients of precision. In
[38], it is stated that even if the method is correctly imple-
mented, it is not trivial to find the right set of parameters

Fig. 1 Twomasses connected by linear springs between two walls. The
first mass is also connected to the left wall through a nonlinear spring

Fig. 2 Potential function with polynomial complexity

123

108



416 Computational Mechanics (2020) 65:405–427

Fig. 3 Fully conservative case; extended configuration and velocity diagrams

Fig. 4 Fully conservative case; energy and QII

Fig. 5 Dissipative case at the level of internal forces; energy and QII

Fig. 6 Dissipative case at the level of generalized velocities; energy and QII
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Fig. 7 Fully dissipative case; energy and QII

in order to numerically obtain precision quotients of a high
quality like the one presented herein.

4.1.2 Two-mass systemwith a non-polynomial potential

Next, we consider a nonlinear oscillatory mechanical system
whose potential function is

V (q) = 1

2

[
V II
ab + VN

ab(
1 + VD

abq
aqb

)n
]
qaqb, (103)

in which the conditions V II
ab = V II

ba , V
N
ab = VN

ba and VD
ab =

VD
ba are used for the sake of simplicity. This kind of systems

could arise in the context of Euler-Bernoulli beams [39,40]
or for structures with softening behavior [41].

To perform our computations, we adopt a model with two
degrees of freedom. The non-zero constants of the model are
are M11 = M22 = 1 Kg, V II

11 = V II
22 = 10 N/m, VN

11 =
VN
22 = −VN

12 = −VN
21 = 300 N/m, VD

11 = VD
22 = −VD

12 =
−VD

21 = 5 N/m2 and n = 3.
The simulation parameters are initial time ti = 0 s,

final time t f = T s, simulation time T = 50 s, time step
Δt = 0.0001 s, and relative iteration tolerance ε = 10−10.
Additionally, for the dissipative cases, we set χ f = 0.001
and χs = 0.001 as well as D = V II. The initial conditions
employed are

q0 =
[− 0.41726

− 0.49840

]
and s0 =

[− 2.53182
− 2.79761

]
.

Figure 8 shows the idealized mechanical system under con-
sideration and Fig. 9 depicts the potential function, which is
clearly non-convex within the region where the dynamics of
the system takes place, see Fig. 10. This feature pushes the
numerical method to its limits. On the left of Figs. 11, 12, 13
and 14 the kinetic, potential and total energies are plotted.
On their right, these show the second precision quotient
also as a function of time. Figure 11 depicts the energies
in the conserving solution. Figures 12 and 13 plot the ener-

Fig. 8 Nonlinear system with two masses connected by linear springs
to two walls. Both masses are connected to each other by a nonlinear
spring

Fig. 9 Potential function with non-polynomial complexity

gies when dissipation is introduced in the internal forces
and generalized velocities, respectively. Last, Fig. 14, pro-
vides the results obtained when both dissipation functions
are employed, resulting in a larger dissipation of energy. In
all cases, the second quotient of precision is very close to
4 for all time, confirming the second order accuracy of the
method in all the simulations.

4.2 Finite elasticity models

Herewe analyze twofinite elasticitymodels. The first one is a
tumbling cylinder and the second one is a free-flying, single-
layer, shell. In both cases, the spatial discretizations are based
on a four-node shell element [34,42], i.e., an extensible-
director-based solid-degenerate shell model, in which the
shear locking and the artificial thickness strains are controlled
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Fig. 10 Fully conservative case; extended configuration and velocity diagrams

Fig. 11 Fully conservative case; energy and QII

Fig. 12 Dissipative case at the level of internal forces; energy and QII

Fig. 13 Dissipative case at the level of generalized velocities; energy and QII
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Fig. 14 Fully dissipative case; energy and QII

Fig. 15 Tumbling cylinder—finite element representation

Table 1 Tumbling
cylinder—spatial loads per
length unit in N/m

A B C D

f1 0 1 1 0

f2 − 1 1 1 − 1

f3 − 1 1 1 − 1

by means of the assumed natural strain method. Also, the
enhancement of the strain field in the thickness direction and
the cure of the membrane locking are achieved by means of
the enhanced assumed strain method. Such element allows
to consider unmodified three-dimensional constitutives laws.
For the current study, we adopt the neo-Hookean hyperelas-
tic material model, whose strain energy density is given by

W̃ (C) = λ

2
log2(J ) + μ

2
(I1 − 3) − μ log(J ) , (104)

with C , the right Cauchy–Green deformation tensor, J =√
det(C), I1 = trace(C), and λ andμ are the first and second

Lamé parameters, respectively.

4.2.1 Tumbling cylinder

This structure is a cylindrical shell subject to body loads
with a prescribed time variation and was already investi-

Fig. 16 Tumbling cylinder (conservative)—sequence of motion

gated, for instance, in [5,42,43] and in many other works.
The geometrical and material properties are the following:
mean radius 7.5m, height 3.0m, thickness 0.02m, first Lamé
parameter 80MPa, secondLaméparameter 80MPa andmass
density per volume unit 1.0Kg/m3. The cylinder is dis-
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Table 2 Tumbling cylinder—stationary values

t > tload (1.0 s) l1 (Kg m/s) l2 (Kg m/s) l3 (Kg m/s) j1 (Kg m2/s) j2 (Kg m2/s) j3 (Kg m2/s) T + V (J)

Cons. 20.00000 0.00000 0.00000 122.00960 147.20774 − 178.26475 445.22767

Diss. 20.00000 0.00000 0.00000 121.62771 147.28455 − 178.14972 –

Fig. 17 Tumbling cylinder (conservative)—momenta and energy

cretized with 48 elements, in which 16 elements are located
along the circumference and 3 elements along the height. The
total number of nodes is 60. Moreover, no kinematic bound-
ary conditions are enforced. For the dissipative case we set
χ = 0.25. Figure 15 shows the finite element model of the
tumbling cylinder. Additionally, the line segments A, B, C
and D, to which the spatial loads are applied, are indicated
in magenta. Table 1 presents the values for the loads that
are applied to the structure. The loads are then multiplied
with a function that describes the variation of the applied
force over the time, which is defined in Eq. (105). Then

f ext0 = f1 î
1 + f2 î

2 + f3 î
3
and f ext(t) = f (t) f ext0 , in

which the last expression is the applied load.

f (t) =
⎧⎨
⎩
10t for 0 ≤ t < 0.5
5 − 10t for 0.5 ≤ t < 1
0 for t ≥ 1

(105)

Figure 16 shows a motion sequence for the conservative
case, where the original configuration is located at the upper-
left corner of the plot, and some deformed configurations are
sequentially shown from left to right and from the top to the
bottom. Table 2 provides the stationary values for momenta
and energy computed with the current method for both the
conservative and the dissipative cases. Figure 17 shows the
time history of momenta and energy for the conservative
case. It can be observed that the linear momentum, angular
momentum and total energy vary during the time in which
the external load is active, i.e., the first 1 s. After the external
loads vanish, these three quantities are identically preserved
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Fig. 18 Tumbling cylinder (dissipative)—momenta and energy

Fig. 19 Free-flying single-layer plate—finite element representation

through the time. These results confirm that the newly pro-
posed integration scheme preserves momenta and energy.
Although the total energy remains constant, the potential and
kinematic energies vary in time, complementing each other
in such a way that the total energy is perfectly constant. Fig-

Table 3 Free-flying singe-layer
plate—force density per length
unit in N/m

A B C

f1 0 0 40,000

f2 40,000 0 0

f3 40,000 − 40,000 40,000

ure 18 shows the time history of momenta and energy for
the dissipative case. Clearly, the momenta is identically pre-
served and energy is dissipated.

4.2.2 Free-flying single-layer plate

The structure considered in this last example is a rectangular
flat plate, which consisting of a single material layer, sub-
ject to spatial loads with a prescribed time variation and was
considered, for example, in [26,42,44] and in many other
works. The geometrical and material properties are the fol-
lowing: length 0.3m, width 0.06m, thickness 0.002m, first
Lamé parameter 0.0 Pa, second Lamé parameter 103.0GPa
and mass density per volume unit 7.3 × 103 Kg/m3. The
plate is then discretizedwith 120 elements, 30 elements being
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Fig. 20 Free-flying single-layer
plate (conservative)—sequence
of motion

Table 4 Free-flying single-layer plate—stationary values

t > tload (0.004 s) l1 (Kgm/s) l2 (Kgm/s) l3 (Kgm/s) j1 (Kgm2/s) j2 (Kgm2/s) j3 (Kgm2/s) T + V (J)

Cons. 4.80000 3.20000 3.20000 0.02880 − 0.38690 − 0.03596 246.53283

Diss. 4.80000 3.20000 3.20000 0.02896 − 0.38701 − 0.03597 –

located along the largest dimension and 4 elements along the
smallest dimension. The total amount of nodes is 155 and
for the dissipative case we set χ = 0.5. Figure 19 depicts
the finite element discretization of this structure. The loads
are applied over the line segments A, B and C , indicated in
magenta on the figure. The reference point for the angular
momentum is indicated with the symbol �. Table 3 gathers
the values for the loads that are applied to the structure and
Eq. (106) defines their scaling factor.

f (t) =
⎧⎨
⎩
500t for 0 ≤ t < 0.002
2 − 500t for 0.002 ≤ t < 0.004
0 for t ≥ 0.004

(106)

Figure 20 shows amotion sequence for the conservative case.
The linear momentum, angular momentum and energy dur-
ing the simulation are constant once reached the stationary
state, and their values are provided in Table 4 for both the
conservative and the dissipative cases. Momenta and energy
values in time are plotted in Fig. 21 for the conservative case,
proving that after the removal of the force, they all remain
constant. Figure 22 shows the values in time of momenta
and energy for the dissipative case. Once again, momenta is
perfectly preserved and energy is artificially dissipated.
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Fig. 21 Free-flying single-layer plate (conservative)—momenta and energy

4.2.3 On the dissipation properties

Dissipative schemes would be of little interest if the energy
dissipation did not take place mostly in the high-frequency
range. It is well-known that the dissipation of the high fre-
quencies results in enhanced stability for the integration of
stiff differential equations. Therefore, we could conclude
that the only useful dissipative schemes are those that can
annihilate the high-frequency content of the response with-
out radically affecting the low frequency content of the
response. In a nonlinear mechanical context, and to the
best of our knowledge, there exists no dissipation function
that only eliminates the high-frequency content and leaves
untouched the low-frequency content. Dissipation always
takes place along the whole frequency range. Moreover,
there is no formal proof that the dissipation can be split
in that sense for nonlinear problems and thus, we can only
claim that some dissipation functions seem to be effective
to address the high-frequency problem, fact that is mainly
justified by experience. Further detailed analysis regarding
intrinsic features of dissipation functions would fall outside
the scope of the current work that addresses the deriva-
tion of a new structure preserving schema that is enriched

with the inclusion of numerical dissipation. The choice of a
particular dissipation function is left to the structural ana-
lyst based on the special demands of the problem to be
solved.

Keeping these limitations in mind, the free-flying single-
layer plate turns to be a suitable example to show the good
dissipation properties of the new proposed scheme. Fig-
ure 23, to the left, presents the amplitude spectrum based
on the fast Fourier transform of the potential energy for both,
the conservative and dissipative cases within the time range
0.06–0.1 s such that the direct influence of the initial transient
is avoided. The subsequent analysis corresponds to the fre-
quency range100–2000Hzand to the energy amplitude range
0–20 J. Figure 23, to the right, presents the same information,
but for the energy amplitude range 0–2 J. Clearly, the dissi-
pative algorithm works very effectively beyond 600 Hz. For
the kinetic energy, Fig. 24, to the left and to the right, shows
almost identical dissipative properties. Up to 600 Hz, even if
slightly different due to some dissipationwithin 200–210Hz,
the behavior for the conservative and dissipative cases looks
similar. Thus, we can claim that the proposed scheme seems
to have very interesting dissipation properties.
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Fig. 22 Free-flying single-layer plate (dissipative)—momenta and energy

Fig. 23 Effectiveness of the dissipative scheme at the potential energy level

Fig. 24 Effectiveness of the dissipative scheme at the kinetic energy level
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5 Concluding remarks

We considered the conservative/dissipative time integration
in the context of nonlinear mechanical systems. A sys-
tematic approach to derive algorithmic internal forces and
generalized velocities that ensure the preservation or the
controlled dissipation of energy was presented. As a main
concrete result, we proposed a new second-order formula for
the algorithmic internal forces. Moreover, this formula was
investigated from a geometric point of view and also inter-
preted for the fully conservative case in terms of a general
approach available in the literature.

In contrast with conservative/dissipative methods avail-
able in the literature and based on the midpoint rule, the
proposed formulas are perturbations of averaged evaluations,
and thus not equivalent to existing ones.

The proposedmethods are able to preserve the total energy
of conservative equations, or add artificial dissipation in a
controllable fashion, while preserving, in both cases, the lin-
ear and angular momenta of the system. Numerical tests
verify all the previous assertions.

The proposed methods could be extended to integrate
differential-algebraic equations or to include consistently
dissipation functions involving derivatives with fractional
orders, among others. The reformulation in the context of
polyconvex large strain elasticity as well as of Lie Groups
may yield interesting results. Beyond that, rigorous mathe-
matical proofs on the robustness are still necessary.
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A Precision quotient

It is very useful to havemeans for checking the correctness of
integration algorithms during their development and imple-
mentation. Therefore, we introduce here two tests that can
be applied once an integration scheme has been numerically
implemented. According toKreiss andOrtiz [38], the numer-
ical solution of an initial value problem can be expanded as

ξ(t, h, k) = ξ(t) +
(
h

k

)
ψ1(t) +

(
h

k

)2

ψ2(t) + · · ·

+
(
h

k

)n

ψn(t) + O(hn+1), (107)

where ξ(t) is the exact solution of the given initial value
problem and ψ i for i = 1, . . . , n are smooth functions of
the time t that do not depend on the reference time step h.

A positive integer number k allows to define finer solutions
based on the original resolution given by the time step h that
are necessary to compute precision coefficients, a tool that
may be very effective to check the correctness of a running
program.

A first precision quotient can be defined as

QI(t) = ‖ξ(t, h, 1) − ξ(t)‖
‖ξ(t, h, 2) − ξ(t)‖ , (108)

where the numerator is computed as

‖ξ(t, h, 1) − ξ(t)‖ =
(
h

1

)n ∥∥ψn(t)
∥∥ + O(hn+1), (109)

and the denominator is given by

‖ξ(t, h, 2) − ξ(t)‖ =
(
h

2

)n ∥∥ψn(t)
∥∥ + O(hn+1). (110)

It is possible to show that for sufficiently small time steps,
the first precision quotient can be directly approximated by
2n , where n denotes the order of accuracy of the integration
method, namely

QI(t) =
( h
1

)n ∥∥ψn(t)
∥∥ + O(hn+1)( h

2

)n ∥∥ψn(t)
∥∥ + O(hn+1)

= 2n + O(hn+1) ≈ 2n .

(111)

The main issue with this definition is that the exact solution
of the initial value problem is required and, in general, is not
available, especially in the context of mechanical systems
involving nonlinear constitutive relations. To circumvent this
drawback, it is possible to define a second precision quotient
as

QII(t) = ‖ξ(t, h, 1) − ξ(t, h, 2)‖
‖ξ(t, h, 2) − ξ(t, h, 4)‖ , (112)

where the numerator is computed as

‖ξ(t, h, 1) − ξ(t, h, 2)‖
=

∥∥∥∥
(
h

1

)n

ψn(t) −
(
h

2

)n

ψn(t) + O(hn+1)

∥∥∥∥
=

(
2n − 1

2n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)

(113)

and the denominator is given by

‖ξ(t, h, 2) − ξ(t, h, 4)‖
=

∥∥∥∥
(
h

2

)n

ψn(t) −
(
h

4

)n

ψn(t) + O(hn+1)

∥∥∥∥
=

(
2n − 1

4n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1).

(114)
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Notice that this concept removes intrinsically the need for the
exact solution of the considered initial value problem. Once
again, it is possible to show that for sufficiently small time
steps, the second precision quotient can be approximated by
2n as well as in the case of the first precision quotient, namely

QII(t) =
(
2n−1
2n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)(

2n−1
4n

)
hn

∥∥ψn(t)
∥∥ + O(hn+1)

= 2n+O(hn+1) ≈ 2n .

(115)

For the integration scheme considered in this work (an
energy-conservative/dissipativemethod), accuracy of second
order can be guaranteed, meaning that log2[QI(t)] ≈ 2 and
log2[QII(t)] ≈ 2. Let us note that for the calculation of pre-
cision quotients, h has to be chosen small enough, and the
choice may vary from case to case. In addition, if ‖ψn(t)‖ is
very small, both tests may fail even if the implementation is
right. For this reason it is sometime necessary to experiment
with several initial conditions and time step sizes in order to
achieve correct pictures. As a general rule, the quotients of
accuracy show better performance when the trajectories are
periodic or quasi-periodic.
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6. Closure

6.1. Conclusions

In this work, we considered the nonlinear dynamics of beam and shell structures from a
purely computational point of view. This investigation was carried out by means of the
derivation and implementation of finite-element models for the discrete representation of
geometrically exact beams and solid-degenerate shells. Due to its great wealth in kinematic
concepts, we considered the rigid body as well. With these canonical models, we could
study the behavior of relatively simple slender structures that are challenging enough for
the purpose of showing the potentialities of the procedures proposed. The setting adopted
is such that the rotational degrees of freedom were elegantly circumvented through the
choice of a differential-algebraic approach, also known as multibody formalism. The
unifying representation, was also consistently combined with robust integration methods,
which were formulated to retain up to a certain extent the underlying mechanical features.
Such integration schemes beyond preserving linear and angular momenta allow to conserve
the total energy of the system, for the purely conservative case, or to artificially dissipate
energy, when necessary to compute long-term responses and thus, rendering nonlinear
unconditional stability. By inclusion of dissipation functions at the level of coordinates or
at the level of velocities, we could investigate long-term response of structures exhibiting
strong nonlinear behavior.

Among the original contributions, we can highlight the following ones: i) a director-based
finite-element formulation to investigate the nonlinear dynamics of geometrical exact
beams with general cross-section properties; ii) a director-based finite-element formulation
to investigate the nonlinear dynamics of solid-degenerate shells made of hyperelastic
multilayer composite materials; iii) the unifying description of rigid bodies, geometrically
exact beams and solid-degenerate shells and their combination with kinematic pairs;
iv) the development of a robust integration scheme based on the average vector field;
v) the particularization of the principal geodesic analysis to identify motion patters
exhibited by beam structures in a purely nonlinear setting; vi) the derivation of a new
conservative/dissipative integration method that relies on high order correction terms
that modify, in the minimal possible way, the well-know midpoint rule, and, vii) the
implementation of all the methods and algorithms into a new object-oriented framework.
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6.2. Future work

Even provided that the current work is rather comprehensive, the proposed unifying
approach can be further enhanced and improved by addressing the following suggestions:

• Enrichment of the beam formulation with torsion- and shear-warping modes to
improve the estimation of strain and stress states.

• Enrichment of the shell formulation with high-order-shear and zig-zag functions to
improve the estimation of strain and stress states across the thickness.

• Derivation and implementation of variational links among beams and shells to allow
the energetically optimal deformation of the coupling interfaces.

• Inclusion of contact models among point, line and surface representations to enable
the intermittent interaction of each canonical models with itself and with the
remaining ones.

• Implementation of optimal reduction techniques (hyper reduction) to reduce the
number of unknowns and thus, to accelerate the computation time.

• Derivation and implementation of fractional-order dissipation functions to render
complex damping mechanisms.

• Combination with fluids to investigate fluid-structure interactions.

• Embedding of optimal control techniques for studying intelligent structures.

• And, many others.
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