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1 Introduction

This article is concerned with constructions of hypercomplex and hyperkähler structures from
curves of arbitrary degree, and with their properties. It has been motivated by three sources.
First and foremost, the work of Nash [19], who gave a new twistor construction of hyperkähler
metrics on moduli spaces of SU(2) magnetic monopoles. Second, the so-called generalised Le-
gendre transform construction of hyperkähler metrics, due to Lindström and Roček [17], which
often leads to curves of higher genus. Third, the well-known fact that the smooth locus of the
Hilbert scheme of (local complete intersection) curves of degree d and genus g in P3 has, if
nonempty, dimension 4d. Because of author’s H-bias, the factor 4 seems to him to call for some
sort of quaternionic structure.

It turns out that the above three situations can be put in a common framework. Let M be
a connected hypercomplex or a hyperkähler manifold. The twistor space of M is a complex
manifold Z fibring over P1, π : Z → P1, and equipped with an antiholomorphic involution σ,
which covers the antipodal map on P1. The manifold M is recovered as a connected component
of the space of σ-equivariant sections s : P1 → Z with normal bundle N ' O(1)n. We now
ask: what happens if we consider σ-invariant curves of higher degree in Z? It turns out that we
still obtain a hypercomplex manifold, as long as we require that the normal bundle N of such
a curve C satisfies the “stability condition” H∗(N ⊗OC π∗OP1(−2)) = 0. This is the condition
shown by Nash [19] to hold for spectral curves of monopoles, and used by him to describe the
hypercomplex structure of monopole moduli spaces. His argument works in the general situation
considered here. Moreover, this new hypercomplex manifold is (pseudo)-hyperkähler if M was.

The hypercomplex manifolds obtained this way have interesting properties. For example, they
are biholomorphic, with respect to any complex structure Iζ , ζ ∈ P1, to (unramified covering of)

an open subset of the smooth locus of the Hilbert scheme Z
[d]
ζ of d points in the fibre Zζ = π−1(ζ)

(here d is the degree of curves under consideration).

Hyperkähler monopole moduli spaces arise in the above manner from the twistor space of
S1 × R3. If we consider instead the twistor space P3 − P1 of the flat R4, we shall obtain
hyperkähler structures on manifolds parameterising curves in P3 not intersecting a fixed line.
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In the simplest case, that of twisted normal cubics, the resulting 12-dimensional metric is still
flat, and the question arises what happens for other admissible values of genus and degree.
Equally interesting is the question what happens for twistor spaces of compact hyperkähler or
hypercomplex manifolds.

The differential geometry of hyperkähler manifolds obtained from higher degree curves is
richer than just hyperkähler geometry. This has been already observed in [4] in the case of
monopole moduli spaces. A first step in understanding this geometry is a description of natural
objects on such a manifold M directly in terms of the complex manifold Z containing the higher
degree curves, without passing to the usual (higher-dimensional) twistor space of the hyperkähler
structure. Here we give such a description for hyperholomorphic connections on vector bundles
on M . The novelty is that we construct canonical connections via a canonical splitting on the
level of sections of vector bundles, without a corresponding splitting of vector bundles on Z.

Finally, we make a technical remark. If we want to consider higher degree curves, then the
Kodaira moduli spaces (of complex submanifolds in a complex manifold) are not enough: such
curves will almost certainly degenerate, while the hyperkähler metric will remain smooth. In fact,
even for the usual twistor spaces, one is often enough led to consider a singular space Z, which
already contains all the information needed, and it is then simpler to work directly with Z rather
than resolving its singularities. For these reasons we replace throughout the Kodaira moduli
spaces with the Douady space D(Z). We recall the necessary definitions and facts in the next
section.

2 Some background material

We gather here some necessary facts and definitions from complex analysis. A good reference
is [13].

We work in the category of complex spaces, i.e. C-ringed spaces locally modelled on C-
ringed subspaces of domains U of Cn defined by finitely many holomorphic functions in U . In
particular, we allow nilpotents in the structure sheaf.

For a complex space (X,OX), the topological (Urysohn–Menger), analytic (Chevalley) and
algebraic (Krull) notions of local dimension dimxX coincide. A complex space is called reduced
if its structure sheaf has no nilpotents. It is pure dimensional (or equidimensional) if dimxX is
the same at all points of X. For a 0-dimensional space X, its length is the sum of dimensions of
stalks OX,x.

The cotangent sheaf Ω1
X of a complex space X is defined by glueing together the cotan-

gent sheaves IV /I2
V of local model spaces (V,OCn/IV ). The tangent sheaf TX is its dual

Hom(Ω1
X ,OX). The tangent space at x ∈ X is TxX = TX,x/mxTX,x, where mx is the maxi-

mal ideal of the stalk OX,x.

If A is a local ring with maximal ideal m and M is a module over A, then a sequence
(f1, . . . , fr) ∈ m is said to be regular for M if fi+1 does not divide 0 in M/(f1M + · · ·+fiM) for
i = 0, . . . , r− 1. The length of a maximal regular sequence is called the depth of M . A complex
space X is said to be Cohen–Macaulay if depthOX,x = dimxX for all x ∈ X. A reduced
1-dimensional complex space is always Cohen–Macaulay.

A closed complex subspace X of a complex space Z is called regularly embedded of codimen-
sion r if every of its local defining ideals IX,x has depth r. If Z is a complex manifold, and
X ⊂ Z is regularly embedded, then X is called a local complete intersection, abbreviated l.c.i.
This is an intrinsic condition and it implies that X is Cohen–Macaulay.

For a closed complex subspace X of a complex space Z with ideal sheaf IX ⊂ OZ , the
normal sheaf of X in Z is NX/Z = HomOX (IX/I2

X ,OX). If X ⊂ Z is regularly embedded, then
both NX/Z and IX/I2

X are locally free. If, moreover, Z is smooth and X is reduced, then the
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conormal sheaf IX/I2
X fits into an exact sequence

0→ IX/I2
X → Ω1

Z |X → Ω1
X → 0,

and consequently we have an exact sequence

0→ TX → TZ |X → NX/Z → Ext1
(
Ω1
X ,OX

)
.

A celebrated theorem of Douady [6] states that for any complex space Z there exists a complex
space D(Z) parameterising all pure-dimensional compact complex subspaces of Z. In addition,
there exists a universal family on D(Z), i.e. a complex subspace Y of D(Z)× Z, which defines
a double fibration

D(Z)
ν←− Y µ−→ Z (2.1)

with the following properties:

(i) ν is flat and proper;

(ii) if S is a complex space, T ⊂ S ×Z a complex subspace with properties stated in (i), then
there exists a unique holomorphic map f : S → D(Z) such that T ' S ×D(Z) Y .

The fibre of Y over any m ∈ D(Z) is the complex subspace X of Z corresponding to m and the
restriction of the normal sheaf NY of Y in D(Z)× Z to this fibre is NX/Z .

At any X ∈ D(Z), there is a canonical isomorphism TXD(Z) ' H0(X,NX/Z). The Douady

spaceD(Z) is smooth atX if Ext1
OZ (IX ,OX) = 0. For a regularly embeddedX, this is equivalent

to H1(X,NX/Z) = 0. For a projective Z, D(Z) is the Hilbert scheme parameterising compact
subschemes of Z.

3 Hypercomplex and hyperkähler structures
from higher degree curves

For us, a curve means a compact, pure 1-dimensional, Cohen–Macaulay complex space. If the
curve is reduced, then the Cohen–Macaulay assumption is redundant.

Let Z be a pure (n+1)-dimensional complex space and π : Z → P1 a holomorphic surjection.
For a closed subspace X of Z we continue to write π for its restriction to X. Each fibre Xζ , i.e.
the complex subspace (π−1(ζ),OX/π∗mζ), is a closed subspace of X. If F is a sheaf on X, we
write F(k) for F ⊗ π∗OP1(k). Furthermore, we write

HX = π∗H0(P1,O(1)) ⊂ H0(X,OX(1)).

We consider the set X of curves C in Z such that:

• π : C → P1 is finite-to-one;

• the Douady space D(Z) is smooth at C;

• the sheaf NC/Z(−2) is acyclic, i.e. hi(NC/Z(−2)) = 0 for i = 0, 1.

These conditions are open, so X is an open submanifold of D(Z).
A useful characterisation of pure dimension + Cohen–Macaulay + finite cover of P1 is pro-

vided by

Lemma 3.1. Let π : X → Y be a finite-to-one closed surjective holomorphic map from a complex
space X to a complex manifold Y . Then the following conditions are equivalent:
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(i) X is pure dimensional and Cohen–Macaulay;

(ii) π is flat;

(iii) π∗OX is locally free;

(iv) all fibres of π have the same length.

Proof. Follows from [7, Corollary 18.17] and the equality dimxX = dimπ(x) Y + dimxXπ(x) for
flat maps [13, Proposition II.2.11]. �

Thus, for a C ∈ X , each fibre Cζ is a 0-dimensional complex space of constant length d,
which we call the degree of the curve C.

For any C ∈ X and ζ ∈ P1, consider the map NC/Z(−2)
·s−→ NC/Z(−1), where s ∈ HC with

s(ζ) = 0. This map must be injective, since a nontrivial kernel sheaf would be supported on
a 0-dimensional subspace, and so it would have nontrivial sections, which would then map to
nontrivial sections of NC/Z(−2). We have, therefore, the exact sequence

0→ NC/Z(−2)
·s−→ NC/Z(−1) −→ NC/Z(−1)|Cζ → 0. (3.1)

Taking cohomology and considering a generic ζ shows that

h0(NC/Z(−1)) = dn and h1(NC/Z(−1)) = 0.

Similarly, taking a section t of OP1(2) with zeros at ζ and ζ̃ gives the exact sequence

0→ NC/Z(−2)
·t−→ NC/Z −→ NC/Z |Cζ ⊕NC/Z |Cζ̃ → 0, (3.2)

from which we derive

h0(NC/Z) = 2dn, h1(NC/Z) = 0. (3.3)

The definitions and (3.3) imply

Proposition 3.2. The subset Xd of X , consisting of curves of degree d, is open in D(Z) and
smooth of dimension 2dn.

For regularly embedded subspaces some of the assumptions on C are automatically fulfilled

Lemma 3.3. Let C be a regularly embedded compact subspace of Z such that π : C → P1 is
finite-to-one and H∗(NC/Z(−2)) = 0. Then C ∈ X .

Proof. The normal sheaf of a regularly embedded subspace is locally free. Hence, (3.1) implies
that each fibre Cζ has length h0(NC/Z(−1))/n. Owing to Lemma 3.1, C is equidimensional and
Cohen–Macaulay. Moreover, for a regularly embedded C, (3.3) implies that D(Z) is smooth
at C. �

Since the linear system HC is base-free, (3.2) implies that the following sequence is also exact:

0→ NC/Z(−2)→ NC/Z(−1)⊗HC → NC/Z → 0,

and, consequently, there is a canonical isomorphism

H0(NC/Z) ' H0(NC/Z(−1))⊗HC . (3.4)

We denote by E a vector bundle over Xd, the fibre of which at C is H0(NC/Z(−1)). In the
notation of (2.1), E = ν∗

(
NY ⊗µ∗OZ(−1)

)
. We also write H for the trivial bundle of rank 2, with
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fibre HC = π∗H0(P1,O(1)). The decomposition (3.4) induces a decomposition (of holomorphic
vector bundles)

TXd ' E ⊗H.

For every ζ ∈ P1, we have a subbundle Qζ of TXd of rank dn defined as

Qζ = E ⊗ s,

where s is a section of OP1(1) vanishing at ζ. In other words, the fibre of Qζ at C consists of
sections of NC/Z vanishing on Cζ .

Proposition 3.4. The distribution Qζ is integrable.

Proof. Let X and Y be vector fields with values in Qζ , and t 7→ γt(m), t 7→ δt(m) their integral
curves beginning at m. The bracket of [X,Y ] at any p ∈ Xd can be computed as lim

t→0
ν̇(t)/t2,

where

ν(t) = δ−t(γ−t(δt(γt(m)))).

Consider the corresponding deformations of curves in Z. Since X and Y take values in Qζ , the
deformation ν(t) fixes the fibre Cζ , and hence ν̇(t) ∈ Qζ . Thus [X,Y ]m ∈ Qζ |m. �

Now suppose that Z is equipped with an antiholomorphic involution σ which covers the
antipodal map on P1. The submanifold (Xd)σ of σ-invariant curves in Xd is either empty or of
real dimension 2dn. In the latter case, (Xd)σ is canonically a hypercomplex manifold. For each
complex structure Iζ , ζ ∈ P1, the bundle of (0, 1)-vectors is Qζ . We state the result as follows.

Theorem 3.5. Let Z be an equidimensional complex space equipped with a holomorphic sur-
jection π : Z → P1 and an antiholomorphic involution σ covering the antipodal map on P1.
Then the subset Md of the smooth locus of D(Z), consisting of σ-invariant curves C of de-
gree d such that H∗(NC/Z(−2)) = 0, is, if nonempty, a hypercomplex manifold of real dimension
2d(dimZ − 1).

Remark 3.6 (a generalisation). One can consider a more general situation. Let O(1) a globally
generated line bundle on a complex space Z and let H ⊂ H0(Z,O(1)) be a base-free linear
system. Let X be a regularly embedded compact subspace X of Z such that h1(NX/Z) = 0,
H|X is base-free, and the kernel of the natural map NX/Z(−1)⊗H → NX/Z has no cohomology
in dimensions 0, 1 and 2. We obtain again a canonical isomorphism

H0(X,NX/Z) ' H0(NX/Z(−1))⊗H,

so that the open subset X ⊂ D(Z), consisting of such X, is a manifold, the tangent bundle of
which decomposes as TX ' E ⊗ H. Such a decomposition is known under various names, in
particular as an almost Grassmann structure or a conic structure [18]. Once again, for every
s ∈ H, we have a subbundle Qs of TX (of rank dimX/ dimH), and the proof of Proposition 3.4
can be repeated to show that Qs is integrable. We can also consider compatible real structures.
In particular, we did not need to restrict ourselves to 1-dimensional subspaces of Z in order to
obtain hypercomplex manifolds.

Returning to the hypercomplex manifold Md, recall that, for a C ∈ Md, each fibre Cζ =
C ∩π−1(ζ) is a 0-dimensional complex space of length d, and so, for each ζ ∈ P1, we have a map

Ψζ : Md → Z
[d]
ζ , C 7→ Cζ ,

to the Douady space of 0-dimensional complex subspaces of Zζ of length d. This map describes
the complex structures of Md:
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Proposition 3.7. The map Ψζ : (Md, Iζ) → Z
[d]
ζ is holomorphic and, provided that dimZζ =

dimZ − 1, an unramified covering of an open subset of the smooth locus of Z
[d]
ζ .

Proof. We show first that the map Ψζ : Xd → Z
[d]
ζ , Ψζ(C) = Cζ , is holomorphic. Consider

the subspace T of Xd × Zζ defined as T = {(C, z) ∈ Xd × Zζ ; z ∈ C}. Since the projection
ν : T → Xd is finite and every fibre has the same length, ν is flat. It is also clearly proper. Hence,
the universal property of the Douady space of Zζ implies that there is a unique holomorphic
map f : Xd → D(Zζ) such that T = Xd×D(Zζ) Yζ , where Yζ is the universal family on D(Zζ). It
follows that f = Ψζ , and, hence, Ψζ is holomorphic on Xd. In addition, this map factors locally
through Xd/Qζ ' (Md, Iζ), and hence Ψζ is holomorphic on (Md, Iζ).

For ζ1 6= ζ2 ∈ P1 with dimZζ1 = dimZζ2 = dimZ − 1, consider now the map

Φ : Xd 3 C 7→
(
Cζ1 , Cζ2

)
∈ Z [d]

ζ1
× Z [d]

ζ2
.

An argument analogous to the one given above shows that Φ is holomorphic. Since

H∗(C,NC/Z(−2)) = 0,

the differential of Φ is injective at any point of Xd. Thus Φ is an immersion and, since Xd and

Z
[d]
ζ1
× Z [d]

ζ2
have the same dimension, Φ is a local diffeomorphism. In particular Φ maps to the

smooth locus of Z
[d]
ζ1
× Z [d]

ζ2
and is a covering of its image. Taking ζ2 to be antipodal to ζ1, we

conclude that Md is a covering of an open subset of the smooth locus of Z
[d]
ζ1

. �

Remark 3.8. We can now describe the usual twistor space of Md as long as π : Z → P1

is flat (e.g., submersion of smooth manifolds). Consider the relative Douady space D[d]
π (Z) of

finite subspaces of length d in each fibre Zζ [20], and let Zd be its open subset consisting of the
smooth locus in each fibre. Since π is flat, Zd is a manifold. It has an induced real structure and
a canonical projection π̃ : Zd → P1. Each C in Md corresponds to a section sC of π̃ : Zd → P1,
sC(ζ) = Cζ , and the normal bundle N of sC(P1) in Zd is isomorphic to π∗NC/Z – a locally free
sheaf of rank 2dn, where n = dimZ − 1. It follows that N ⊗OP1(−2) = π∗

(
NC/Z(−2)

)
has no

cohomology, and, consequently, N '
⊕
O(1).

Remark 3.9. The above results can be viewed as follows. Start with a hypercomplex mani-
fold M . Its twistor space is a smooth manifold Z equipped with a projection to P1 and an
antiholomorphic involution which covers the antipodal map on P1. We obtain, for each d,
a hypercomplex manifoldMd, which is biholomorphic, with respect to each complex structure Iζ ,
to a discrete covering of an open subset of the smooth locus of the Douady space M [d] of d points
in (M, Iζ). Of course, this open subset (and the manifold Md itself) could be empty.

We shall now show that Md is hyperkähler if M was. First of all, let us define symplectic
forms in the context we shall need them.

Definition 3.10. Let X be a complex space, F a coherent sheaf, and L a line a bundle on X.
An L-valued symplectic form on F is a homomorphism Λ2F → L such that the associated
homomorphism F → F∗ ⊗OX L is an isomorphism.

Now recall that kernel of the map dπ : TZ → TP1 is called the vertical tangent sheaf and
is denoted by TZ/P1 . To obtain a hyperkähler metric we need an OZ(2)-valued symplectic
form ω on TZ/P1 . This form needs to be compatible with the real structure σ in the following
sense [15]. The line bundle OZ(1) has a canonical quaternionic structure (i.e. an antilinear
isomorphism with square −1) covering σ on Z. Since σ induces a real structure on TZ/P1 ,
we obtain a quaternionic structure on TZ/P1(−1). The form ω induces a usual (i.e. O-valued)

symplectic form on TZ/P1(−1), and we say that ω is compatible with σ if ω(σ∗s, σ∗t) = ω(s, t)
for local sections s, t of TZ/P1(−1). We have
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Theorem 3.11. Let Z be a complex manifold equipped with a holomorphic submersion π : Z→P1

and an antiholomorphic involution σ covering the antipodal map on P1. In addition, suppose that
we are given a σ-compatible OZ(2)-valued symplectic form on the vertical tangent bundle TZ/P1,
which induces a symplectic structure in the usual sense on each fibre Zζ . Then the hypercomplex
manifold Md defined in Theorem 3.5 has a canonical pseudo-hyperkähler metric.

Remark 3.12. The signature of this metric can vary between different connected components
of Md.

Proof. The arguments of Beauville [2] show that if M is a complex manifold with a holomorphic
symplectic form, then the smooth locus of M [d] has an induced holomorphic symplectic form.
Applying this construction fibrewise to Z, we obtain an O(2)-valued fibrewise symplectic form
on the twistor space Zd of Md described in Remark 3.8. This form is still compatible with
the induced real structure and hence, owing to [15, Theorem 3.3], it gives a pseudo-hyperkähler
metric on Md. �

Remark 3.13. Nash [19] gives a different construction of hyperkähler metrics on moduli spaces
of SU(2)-monopoles, which works as long as dimZ = 3 andMd is replaced by its open subset of
l.c.i. curves (so that the normal sheaf is locally free and the Serre duality can be applied to it).

Remark 3.14. Similarly, if Z has an O(n)-valued volume form on TZ/P1 , then so does Zd, and
the holonomy group of Md reduces to SL(dn,H).

4 Examples

4.1 Monopoles and the generalised Legendre transform

In the case of SU(2)-monopoles, one starts with the twistor space Z of S1 × R3, i.e. the total
space of certain line bundle L2 over TP1 without the zero section. Write p : Z → TP1 for the
projection. A curve C in Z corresponds to a curve p(C) in TP1 such that L2|p(C) is trivial. This
is the condition satisfied by spectral curves of magnetic monopoles, and Nash [19] shows that if S
is a spectral curve of a monopole, then its lift C to L2 satisfies additionally H∗(NC/Z(−2)) = 0.
Thus, the moduli space of monopoles of charge d (i.e. those for which S is a curve of degree d)
is a connected component of the manifold Md defined in the previous section. Already in this
case one has to include singular curves (although not nonreduced ones).

More general hyperkähler metrics were considered in [3], as examples of the generalised
Legendre construction of Lindström and Roček [17]. Many of these can be put in this framework,
i.e. Z is the total space of a line bundle over a complex surface, or, more generally, the total space
of a holomorphic principal bundle over a complex manifold fibring over P1, or the projectivisation
of a vector bundle over a complex manifold fibring over P1. The last situation is relevant, for
example, for ALF gravitational instantons of type Dk [5].

According to Proposition 3.7, the complex structures of such hypercomplex manifolds are
always those of (covering of) open subsets of the Douady spaces of 0-dimensional subspaces of
fibres of Z. In the case when Z is the total space of a C∗-bundle over a complex surface Σ→ P1,
one can describe these open subsets more precisely, as in [1, Chapter 6]. Let p : Z → Σ be the

projection. Then (Md, Iζ) is biholomorphic to the open subset of (Zζ)
[d]
p , where the subscript p

denotes 0-dimensional subspaces D such that p∗(OD) is a cyclic OΣζ -sheaf.

4.2 Projective curves

The twistor space Z of the flat R4 is the total space of O(1) ⊕ O(1) on P1. We can view it as
P3−P1, so that curves in Z are curves in the projective space not intersecting a fixed projective
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line. In addition, the real structure of Z extends to the real structure σ of P3 (which is the
twistor space of S4), so we look for σ-invariant curves in P3.

Consider first a rational curve, i.e. an embedding f : P1 → P3 given by homogeneous
polynomials of degree d. For d = 2, such a curve is an intersection of a line and a quadric,
so its normal bundle is isomorphic to OP1(2) ⊕ OP1(4) and it does not satisfy the condition
H∗(N (−2)) = 0. For d ≥ 3, however, the normal bundle of a generic rational curve of deg-
ree d splits as OP1(2d − 1) ⊕ OP1(2d − 1) [8, 12], while the restriction of OZ(1) = OP3(1)|Z
is isomorphic to OP1(d). Thus a generic rational curve of degree d ≥ 3 satisfies the condition
H∗(NC/Z(−2)) = 0 and, consequently, the parameter space of such curves, which are σ-invariant
and avoid a fixed line, is a 4d-dimensional (pseudo)-hyperkähler manifold. We shall see shortly,
that for d = 3, i.e. for twisted normal cubics, the resulting metric is flat. This, however, is
a rather special case and we do not know what to expect in the general case. We observe that
the action of SO(3) on P1 induces an isometric action rotating the complex structures, and so
all complex structures are equivalent. In fact, we expect that these hyperkähler manifolds are
cones over 3-Sasakian manifolds.

For higher genera, it is known [10] that the parameter space Hd,g of space curves with degree d
and genus g contains smooth curves with H∗(NC/P3(−2)) = 0 for any d greater than or equal
to some D(g) (e.g., D(0) = 3 and D(1) = 5). As soon as Hd,g contains also a σ-invariant
smooth curve with H∗(NC/P3(−2)) = 0, we obtain a natural pseudo-hyperkähler structure on
a submanifold of Hd,g.

We shall now show that the resulting metric on H3,0 (and more generally on moduli spaces of
ACM (arithmetically Cohen–Macaulay) curves admitting a linear resolution) is flat. Although
the metric itself is not interesting, it is still an instructive example, which shows, in particular,
that if we want to have a shot at completeness of the metric, we cannot avoid including very
singular and nonreduced complex subspaces of Z.

4.3 ACM curves with a linear resolution

We consider curves C, the structure sheaf of which admits a free resolution of the form

0→ OP3(−r − 1)r
φ2−→ OP3(−r)r+1 φ1−→ OP3 −→ OC → 0. (4.1)

This means that IC is defined by simultaneous vanishing of the r × r minors of the linear
matrix φ2. If C is smooth, then its degree is d = 1

2r(r + 1) and its genus is equal to g =
1
6(r − 1)(r − 2)(2r + 3).

A complex subspace C with a resolution (4.1) is automatically equidimensional and Cohen–
Macaulay [7, Theorem 18.18], and the Douady space (i.e. Hilbert scheme) is smooth at C [14, Co-
rollary 8.10]. Furthermore, Ellia [9] has shown that every such C satisfies H∗(C,NC/Z(−2)) = 0.
For completeness (and to remove the unnecessary assumption of projective normality) let us
reproduce his argument.

Lemma 4.1 ([9]). Let C be a subscheme of P3 with a resolution (4.1). Then H∗(NC/Z(−2)) = 0.

Proof. We can rewrite (4.1) as a resolution of the ideal sheaf of C:

0→ OP3(−r − 1)r
φ2−→ OP3(−r)r+1 φ1−→ IC → 0. (4.2)

We have H i(NC/Z(−2)) = Exti+1(IC , IC(−2)), i = 0, 1. Applying Hom(−, IC(−2)) to (4.2)

and using the isomorphism Exti(OP3(k), IC(−2)) ' H i(IC(−2−k)), k ∈ Z, we obtain the exact
sequence

H0(IC(r − 1))r → Ext1(IC , IC(−2))→ H1(IC(r − 2))r+1

→ H1(IC(r − 1))r → Ext2(IC , IC(−2))→ 0.
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On the other hand, tensoring the resolution (4.2) with OP3(r − 1) and with OP3(r − 2) shows
that IC(r − 1) and IC(r − 2) are acyclic. �

Let us now choose a σ-invariant 2-dimensional linear system H in OP3 with base B, and let
Z = P3 − B be the twistor space of R4. The projection π : Z → P1 is defined by H, and it
is automatically finite-to-one on any projective subscheme which is contained in P3 − B, since
a 1-dimensional intersection with π−1(ζ) will also intersect B.

Thus, the Douady space of those σ-invariant C, which admit a resolution of the form (4.1)
and do not intersect a fixed P1, is a (pseudo)-hyperkähler manifold Xr of dimension 2r(r + 1).
We shall now show that Xr is the flat Hr(r+1)/2. Moreover, the natural biholomorphism of
Proposition 3.7 identifies Xr with an open subset of the Hilbert scheme (C2)[r(r+1)/2] consisting
of 0-dimensional subspaces of length r which are not subschemes of any plane curve of degree <r.

Let x1, . . . , x4 be homogeneous coordinates on P3 and π : [x1, . . . , x4] 7→ [x3, x4] the chosen
projection onto P1. Thus B = {[x1, x2, 0, 0]} is the base of the linear system and P3 − B is our
twistor space Z. The real structure σ is given by

σ : [x1, x2, x3, x4] 7→ [−x2, x1,−x4, x3].

Let C be a curve defined by (4.1), and write, with respect to some bases,

φ2(x1, x2, x3, x4) =
4∑
i=1

Aixi, Ai ∈ Matr+1,r(C).

Such a C does not intersect B if φ2 restricted to x3 = x4 = 0 has rank r for all non-zero (x1, x2).
The involution σ induces a quaternionic structure σ on linear forms and such a curve C is
σ-invariant as soon as

• for r even, the set of columns of φ2 is σ-invariant;

• for r odd, the set of rows of φ2 is σ-invariant.

We shall now describe the intersection Cζ of C with a fibre π−1(ζ). The map φ2 restricted to
the projective plane Zζ is still injective, otherwise Cζ is 2-dimensional and intersects B. Thus Cζ
also has a free resolution of the form (4.1):

0→ OP2(−r − 1)r
ψ2−→ OP2(−r)r+1 ψ1−→ OP2 −→ OCζ → 0. (4.3)

Let us now write ζ = [1, t], so that ψ2(x1, x2, x3) = A1x1 + A2x2 + (A3 + tA4)x3. Recall that
the condition that C does not intersect B is equivalent to A1x1 + A2x2 having rank r for any
[x1, x2] ∈ P1.

Lemma 4.2. If A1, A2 are two (r+ 1)× r complex matrices such that A1x1 +A2x2 is injective
for every (x1, x2) ∈ C2\{0}, then A1x1+A2x2 belongs to the (open) GL(r+1,C)×GL(r,C)-orbit
of Sx1 + Tx2 where

Sij =

{
1 if i = j,

0 if i 6= j,
Tij =

{
1 if i = j + 1,

0 if i 6= j + 1.

Moreover, the stabiliser of (A1, A2) in GL(r + 1,C)×GL(r,C) is the central subgroup

∆ =
{

(zId, z−1Id); z ∈ C∗
}
.



10 R. Bielawski

Proof. We can appeal to Kronecker’s theory of minimal indices [11, Chapter XII]. The as-
sumption implies that the pencil A1 + λA2 has no minimal indices for columns and no ele-
mentary divisors. Thus it can have only minimal indices for rows, and therefore it lies in the
GL(r + 1,C) × GL(r,C)-orbit of a block quasi-diagonal matrix built out of blocks of the form
as in the statement of the lemma. Such a matrix cannot, however, have size (r + 1)× r, unless
there is only one block. The statement about the stabiliser is then straightforward. �

We can now use the action of GL(r + 1,C) × GL(r,C) in order to make Sx1 + Tx2 σ-
invariant (and fixed). It is then easy to see that, given an (r + 1) × r matrix Ã3, we can find
a unique A3, A4 so that Ã3 = A3 + tA4 and A3x3 +A4x4 is σ-invariant. It follows that the map
which sends Cζ represented by (S, T, Ã3) to Ã3 is an isomorphism between the twistor space Zr
of Xr (cf. Remark 3.8) and the total space of Cr(r+1) ⊗ O(1), i.e. the twistor space of the flat
Hr(r+1)/2 (possibly, although unlikely, with a non-Euclidean signature).

It remains to identify the complex structure of Xr as an open subset of the Hilbert scheme
(C2)[r(r+1)/2]. Recall that the Hilbert scheme (C2)[d] of d points in C2 has a natural stratification
by the Hilbert function H : N → N, with H(k) equal to (k + 1)(k + 2)/2 minus the dimension
of the vector space of plane curves of degree k containing X [7]. The Hilbert function can be
computed from any free resolution, and in our case we obtain

H(k) =


(k + 1)(k + 2)

2
if k < r,

r(r + 1)

2
if k ≥ r.

This means that Cζ does not lie on any plane curve of degree <r. Conversely, if a D ∈ (P2)[d]

does not lie on any curve of degree <r, then its ideal must be generated by forms of degree ≥r.
Comparing dimensions and using the Hilbert–Burch theorem, as in [7, § 20.4.1], shows that the
minimal resolution of D is of the form (4.3). In other words, the natural biholomorphism of
Proposition 3.7 identifies Xr with the open stratum of (C2)[r(r+1)/2], consisting of 0-dimensional
subspaces which do not lie on any plane curve of degree smaller than r.

5 Induced vector bundles and their tangent spaces

We aim to define canonical connections on vector bundles over a hypercomplex manifold, ob-
tained from higher degree curves in Z, directly in terms of objects defined on Z, i.e. without
passing to the usual twistor space of a hypercomplex manifold. In this section, we shall consider
a general Douady space D(Z) (not necessarily a hypercomplex manifold) and describe total
spaces of vector bundles arising on D(Z) as Douady spaces of some other, canonically defined,
complex spaces.

Let Z be a complex space and D(Z) its Douady space. The double fibration

D(Z)
ν←− Y µ−→ Z

allows one to transfer holomorphic data from Z to D(Z) or to its subsets. Let M be an open
connected subset of D(Z), such that every X ∈ M is regularly embedded (cf. Section 2) and
satisfies h1(NX/Z) = 0. In particular, M is a manifold and NX/Z a locally free sheaf. We are
interested in vector bundles on M obtained from vector bundles on Z. Let E be a vector bundle
on Z. The sheaf Ê = ν∗µ

∗E is locally free on M if the function X 7→ h0(E|X) is constant on M .
In this case Ê is called the vector bundle induced by E [16].

Let π : E →M be a vector bundle on a manifold M . One way of defining connections on E
is to split the canonical exact sequence

0→ V → TE → π∗(TM)→ 0 (5.1)
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of vector bundles on E, where V denotes the vertical bundle ker dπ. As the first step in defining
canonical connections, we want to show that for bundles Ê (with E satisfying a cohomological
condition) the above sequence is induced from objects on Z.

Let E be a vector bundle on Z such that h0(E|X) is constant on M and h1(E|X) = 0 for
every X in M . A point of the total space of E = Ê corresponds to a pair, consisting of
a regularly embedded compact subspace X in Z and a section s of E|X . The image space s(X)
is well defined and is a regularly embedded compact subspace of the total space1 |E| of E . The
normal sheaf Ns(X) of s(X) in |E| fits into the exact sequence

0→ π∗E|X → Ns(X) → π∗NX/Z → 0, (5.2)

of sheaves on s(X). Since h1(E|X) = 0, it follows that h1(Ns(X)) = 0 and the Douady
space D

(
|E|
)

is smooth at s(X) of dimension h0(Ns(X)) = dimM + rankE. Since pairs (X ′, s′)
define a submanifold of D

(
|E|
)

also of dimension dimM + rankE, it follows that E is an open
subset of the smooth locus of D

(
|E|
)
. Therefore the tangent space TeE at e = (X, s) is cano-

nically identified with H0(Ns(X)) and the sequence (5.2) induces the canonical sequence (5.1).
We can phrase these considerations more precisely, if less transparently, as follows.

Theorem 5.1. Let Z be a complex space and M an open connected subset of the smooth locus
of D(Z), such that every X ∈M is regularly embedded. Let E be a vector bundle on Z such that
h0(E|X) is constant on M and h1(E|X) = 0 for every X in M , and let E = Ê be the induced
vector bundle on M . Then E is identified with an open subset of the smooth locus of D

(
|E|
)
,

again consisting of regularly embedded subspaces. Furthermore, if Ỹ is the universal family
on D

(
|E|
)

and p : Ỹ → Y , ν̃ : Ỹ → E are canonical projections, then the normal sheaf NỸ of Ỹ
in E × |E| fits into the commutative diagram:

0 −−−−→ ν̃∗p
∗µ∗E −−−−→ ν̃∗NỸ −−−−→ ν̃∗p

∗NY −−−−→ 0yo yo yo
0 −−−−→ V −−−−→ TE −−−−→ π∗(TM) −−−−→ 0

(5.3)

Remark 5.2. The above description of the total space of an induced vector bundle as a Douady
space has the following consequence. Let Z be as in Theorem 3.5 and let M be an open subset
of Md consisting of regularly embedded curves. Let E be a vector σ-bundle on Z (i.e. there is
an antilinear involution on E covering σ on Z) such that h0(E|C) is constant on M and E(−2)
is acyclic on any C ∈ M . Then the σ-invariant part of the total space of Ê has a natural
hypercomplex structure. Indeed, it is enough to tensor (5.2) by O(−2) and apply the results of
Section 3. This result is in the same spirit as [21, Theorem 7.2].

6 Hyperholomorphic connections

We return to hypercomplex manifolds and consider again the situation from Section 3. As in the
last section, we restrict ourselves to the subset of regularly embedded curves, for which the con-
struction is more transparent. Thus Z is equipped with a holomorphic surjection onto P1 and M
is an open connected subset of D(Z) consisting of regularly embedded compact subspaces C,
such that π|C is finite-to-one and H∗(C,NC/Z(−2)) = 0 (cf. Lemma 3.3). Recall that M is then
a complex version of a hypercomplex manifold, i.e. TM ' E ⊗ C2, and for every ζ ∈ P1 the
distribution Qζ = E ⊗ l, where [l] = ζ, is integrable. We now use the results of the previous
section to define canonical connections on certain induced vector bundles on M .

1The reason for the inconsistence in writing |E| for the total space of E is that D(E) has a different meaning:
it parameterises coherent quotients of E with compact support.
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Proposition 6.1. Let E be a vector bundle on Z such that C → h0(E|C) is constant on M
and E(−1)|C is acyclic for every C ∈ M . Then the induced bundle Ê on M is equipped with
a canonical linear connection ∇, which has the following property: for any ζ ∈ P1 and any
m ∈ M , if u is a local section of Ê which satisfies du(X) = 0 for every X ∈ Qζ |m, then
∇Xu = 0 for every such X.

In particular, if Z is also equipped with an antiholomorphic involution σ covering the antipodal
map, so that Mσ is a hypercomplex manifold, then ∇ on Ê |Mσ is hyperholomorphic, i.e. ∇0,1 = ∂̄
for every complex structure Iζ .

Remark 6.2. In the case when Z is the usual twistor space of a hypercomplex manifold, i.e.
the curves C have genus 0, then the condition that E(−1)|C is acyclic is equivalent to E|C to
being trivial, and we recover the well-known results of [22] and [16]. In that case, already the
sequence (5.2) splits.

Proof. Let us write E for Ê (in the course of the proof we are not going to use the bundle E
from the decomposition TM ' E ⊗ H), and consider the canonical exact sequence (5.1). An
Ehresmann connection is a splitting of this sequence. To define such a splitting, tensor (5.2)
by O(−1). Acyclity of E(−1)|C implies that there is a canonical isomorphism

φ : H0(NC/Z(−1))→ H0(Ns(C)(−1)).

We obtain a canonical map (where H = π∗H0(P1,O(1)))

H0(NC/Z) ' H0(NC/Z(−1))⊗H φ⊗id−→ H0(Ns(C)(−1))⊗H → H0(Ns(C)),

which splits (5.1). Since, for any s ∈ H with s(ζ) = 0, the image in Ns(C) of H0(Ns(C)(−1))⊗ s
consists of sections which vanish on s(C)ζ (here, as in Section 3, the subscript ζ denotes the
fibre of the projection to P1), we have a description of the horizontal subspace at (C, s) as
the subspace of H0(Ns(C)) linearly generated by sections vanishing on some s(C)ζ , ζ ∈ P1. It
follows easily that the differential of the scalar multiplication E → E and the differential of the
addition map E ⊕ E → E preserve the horizontal subbundles, and, therefore, our Ehresmann
connection is linear.

Let us now prove the stated property of this connection. Let γ(t) be a curve in M tangent to
the distribution Qζ . The curves Ct in Z corresponding to γ(t) have a fixed intersection with the
fibre Zζ . A horizontal lift γ̃(t) of γ is given by (Ct, st) such that st(Ct) ∩ Eζ is a fixed complex
subspace of the fibre Eζ . Thus, for a section u of E, the parallel transport τ t(u(t)) = (C̃t, s̃t) of
u(γ(t)) along γ to γ(0) satisfies

s̃t(C̃t) ∩ Eζ = st(Ct) ∩ Eζ . (6.1)

Suppose now that u is a section of E such that du(X) = 0 for every X ∈ Qζ |m. This implies
that if γ(t) is a curve in M with γ̇(0) = X ∈ Qζ |m and (Γt, ψt) is the pair curve + section
corresponding to u(γ(t)), then up to order 1:

ψt(Γt) ∩ Eζ = ψ0(Γ0) ∩ Eζ .

Comparing this and (6.1), we conclude that ∇Xu = 0 for any X ∈ Qζ |m.
The remaining statement of the Proposition (concerning Mσ) is automatic, since Qζ consists

of vectors of type (0, 1) for Iζ . �

Remark 6.3. A similar result remains valid for the Grassmann structures defined in Re-
mark 3.6. The above argument produces a canonical linear connection on a vector bundle
induced from a vector bundle E on Z with constant h0(E|C) and vanishing H∗(E(−1)|C). Once
again, this connection has the property described in the statement of the above theorem.
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Remark 6.4. The method of this and the last section reproduces also another result of Huggett
and Merkulov [16]. Let Z be an arbitrary complex space, and M ⊂ D(Z) as in the previous sec-
tion. Let E be a vector bundle on Z such that h0(E|X) is constant on M and hi(E ⊗X N ∗X/Z) = 0

for i = 0, 1 and every X ∈ M . Then there is a canonical splitting of the sequence (5.2), which
produces a canonical linear Ehresmann connection as above.
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[15] Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyper-Kähler metrics and supersymmetry, Comm.
Math. Phys. 108 (1987), 535–589.

[16] Huggett S.A., Merkulov S.A., Twistor transform of vector bundles, Math. Scand. 85 (1999), 219–244.
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