
Physics Letters B 748 (2015) 439–442
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Loop groups in Yang–Mills theory

Alexander D. Popov

Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2015
Received in revised form 29 June 2015
Accepted 17 July 2015
Available online 22 July 2015
Editor: M. Cvetič

We consider the Yang–Mills equations with a matrix gauge group G on the de Sitter dS4, anti-de Sitter 
AdS4 and Minkowski R3,1 spaces. On all these spaces one can introduce a doubly warped metric in 
the form ds2 = −du2 + f 2dv2 + h2ds2

H2 , where f and h are the functions of u and ds2
H2 is the metric 

on the two-dimensional hyperbolic space H2. We show that in the adiabatic limit, when the metric on 
H2 is scaled down, the Yang–Mills equations become the sigma-model equations describing harmonic 
maps from a two-dimensional manifold (dS2, AdS2 or R1,1, respectively) into the based loop group �G =
C∞(S1, G)/G of smooth maps from the boundary circle S1 = ∂ H2 of H2 into the gauge group G . For 
compact groups G these harmonic map equations are reduced to equations of geodesics on �G , solutions 
of which yield magnetic-type configurations of Yang–Mills fields. The group �G naturally acts on their 
moduli space.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

It is well known that the self-dual Yang–Mills equations in the 
Euclidean space R4,0 have an infinite-dimensional algebra of “hid-
den symmetries” (see [1–6] for discovering, reviews and more ref-
erences). For the Yang–Mills potentials with value in a Lie algebra 
g = Lie G , where G is a matrix gauge group, among these symme-
tries there is the Lie algebra of the loop group LG = C∞(S1, G). 
Here we shall show that the same group is a part of the moduli 
space of solutions to the Yang–Mills equations on the Lorentzian 
manifolds dS4, AdS4 and R3,1 of constant positive, negative and 
zero curvature.

We will use the adiabatic limit method which was applied to the 
first-order self-dual Yang–Mills equations on the product �1 × �2
of two Riemann surfaces in [7]. It was shown that when the met-
ric on the Riemann surface �2 shrinks to a point, the Yang–Mills 
instantons converge to holomorphic maps from �1 to the moduli 
space of flat connections on �2. In [8] this limit was discussed in 
the framework of topological Yang–Mills theories on �1 × �2. We 
will apply the adiabatic method to the second-order Yang–Mills 
equations on Lorentzian four-manifolds of constant curvature and 
describe how to construct approximate solutions of the Yang–Mills 
equations. It will be shown that these configurations become exact 
solutions in the adiabatic limit and their moduli space is the tan-
gent space T �G of the based loop group �G . Thus, �G is a “hid-
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den symmetry group” not only of the first-order self-dual Yang–
Mills equations but also of the second-order Yang–Mills equations 
on Lorentzian manifolds R3,1, AdS4 and dS4.

2. Metrics

It is known that on the de Sitter dS4 and anti-de Sitter AdS4
spaces one can introduce (local) coordinates such that the metrics 
on these spaces will be a double warped metrics of the form [10]

dS4 : ds2+1 = −du2 + cosh2 u dv2 + sinh2 u ds2
H2 , (1)

AdS4 : ds2−1 = −du2 + sin2 u dv2 + cos2 u ds2
H2 , (2)

where the first two terms are metrics on the spaces dS2 and AdS2, 
respectively. Here,

ds2
H2 = dχ2 + sinh2 χ dϕ2 , (3)

is the metric on the two-dimensional hyperbolic space H2. This 
space has two-sheets H2 = H2+ ∪ H2− with the common boundary 
S1 at χ → +∞ for H2+ and χ → −∞ for H2− .

We introduce on the Minkowski space–time a metric similar 
to (1) and (2). In the Cartesian coordinates xμ , μ = 0, 1, 2, 3, the 
metric has the form

ds2
0 = ημνdxμdxν with (ημν) = diag(−1,1,1,1) . (4)

Let us introduce coordinates u, χ and ϕ by
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x0 = u coshχ , x1 = u sinhχ cosϕ and x2 = u sinhχ sinϕ ,

(5)

and keep x3 untouched. The coordinates (5) have a range

u =
(
(x0)2 − (x1)2 − (x2)2

)1/2
> 0 , χ ∈ (−∞,+∞) and

ϕ ∈ [0,2π ] . (6)

They cover the interior of the light cone in R2,1 and we denote 
this subset of R2,1 by R2,1

+ . The region R2,1
− = R

2,1 \ R
2,1
+ can be 

covered by other choice of pseudospherical coordinates. In these 
coordinates the metric (4) acquires the form

ds2
0 = −du2 + (dx3)2 + u2 ds2

H2 . (7)

From (7) we recognize a cone over H2, i.e. R2,1
+ = C(H2) and we 

restrict ourselves to the subset R3,1
+ = R × R

2,1
+ ⊂ R

3,1. For the 
metrics (1) and (2) we also consider u > 0, since for u = 0 they 
degenerate.

After denoting x3 = v , we see that the metrics (1), (2) and (7)
have the same form

ds2 = −du2 + f 2dv2 + h2ds2
H2 , (8)

where

f = cosh u and h = sinh u for dS4

f = sin u and h = cos u for AdS4 (9)

f = 1 and h = u for R
3,1

Therefore, we will consider all three spaces together by using the 
metric (8), specifying f and h if necessary. Recall that we work in 
local coordinates which cover only part of any of the considered 
spaces. This is enough for our purposes. For further unification 
we introduce the coordinates (yμ) = (ya, yi) = (u, v, χ, ϕ), where 
μ = (a, i) with a, b, . . . = 0, 1 and i, j, . . . = 2, 3. Then metric (8)
can be written as

ds2 = gμνdyμdyν = gabdyadyb + gijdyidy j , (10)

where g� = (gab) is the metric on the two-dimensional space �
which is (a patch of) dS2, AdS2 or R1,1 and (gij) = h2(g H2

i j ) where 

gH2 = (g H2

i j ) is the metric on H2.

Finally, as H2 we will consider only the upper sheet of the two-
dimensional hyperbolic space with χ ≥ 0 for all three metrics (1), 
(2), (7) and consider only y0 = u > 0 in (8)–(10). All other regions 
of our spaces dS4, AdS4, and R3,1 can be considered similarly.

3. Yang–Mills equations

So, we consider Yang–Mills theory on a Lorentzian 4-manifold 
M with local coordinates yμ and the metric given by (8)–(10). We 
start with the potential A = Aμdyμ with values in the Lie algebra 
g = Lie G having scalar product defined by the trace Tr. Here G
is an arbitrary matrix gauge group. The field strength F = dA +
A ∧A is the g-valued two-form:

F = 1
2Fμνdyμ ∧ dyν with Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ] .

(11)

The Yang–Mills equations on M with the metric given by (8)–(10)
are

DμFμν := 1√|det g| ∂μ(
√|det g|Fμν) + [Aμ,Fμν ] = 0 , (12)
where g = (gμν) and indices are raised by gμν . We have the obvi-
ous splitting

A = Aμdyμ = Aadya +Aidyi , (13)

F = 1
2Fabdya ∧ dyb +Faidya ∧ dyi + 1

2Fi jdyi ∧ dy j . (14)

4. Adiabatic limit

By using the adiabatic approach [7–9,11], which is based on the 
ideas of [12], we deform the metric (8) and introduce

ds2
ε = −du2 + f 2dv2 + ε2h2ds2

H2 , (15)

where ε is a real parameter. Then | det gε| = ε4| det(gab)| det(gij)

and

Fab
ε = gac

ε gbd
ε Fcd = Fab, Fai

ε = ε−2Fai and

F i j
ε = ε−4F i j , (16)

where indices of Fμν are raised by the metric gμν from (10).
To avoid the divergent term ε−2 Tr(Fi jF i j) in the Lagrangian, 

we impose the flatness condition

Fi j = 0 (17)

on the Yang–Mills curvature along H2 in M . For the deformed met-
ric (15) the Yang–Mills equations have the form

ε2 DaFab + DiF ib = 0 , (18)

DaFaj + ε−2 DiF i j = 0 , (19)

and in the limit ε → 0 (after choosing Fi j = 0) we have

DiF ib = 0 , (20)

DaFaj = 0 . (21)

5. Flat connections

Flat connection AH2 =Aidyi on H2 (upper sheet) has a simple 
form

AH2 = g−1d̂g with d̂ = dyi ∂

∂ yi
, (22)

where g = g(ya, yi) is a smooth map from H2 (for any given ya) 
into the gauge group G . We consider smooth matrix-valued func-
tions g with smooth boundary value on S1 = ∂ H2 and impose 
additional condition g = Id at 1 ∈ S1 (framing of flat connection 
on H2 [9]). We denote by C∞

0 (H2, G) the space of all such g in 
(22). On H2, as on a manifold with the boundary, the group of 
gauge transformations is defined as [9]

GH2 =
{

g : H2 → G | g|∂ H2 = Id
}

. (23)

Hence the solution space of the equation FH2 = 0 is the infinite-
dimensional group N = C∞

0 (H2, G) and the moduli space is the 
based loop group [13]

M = �G = C∞
0 (H2, G)/GH2 . (24)

Recall that g and AH2 depend on coordinates ya .
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6. Moduli space

On the group manifold (24) we introduce local coordinates φα

with α = 1, 2, . . . and assume that Aμ ’s depend on u and v only 
via the moduli parameters φα = φα(u, v). Then moduli of flat con-
nections on H2 define a map

φ : � → M with φ(u, v) = {φα(u, v)} , (25)

where by � we denote (a patch of) dS2, AdS2 or R1,1 depending 
on choice of M in (8)–(9). These maps are constrained by the equa-
tions (20) and (21). Since AH2 is a flat connection for any ya ∈ �, 
the derivatives ∂aAi have to satisfy the linearized around AH2 flat-
ness condition, i.e. ∂aAi belong to the tangent space TAN of the 
space N = C∞

0 (H2, G) of flat connections on H2. Using the pro-
jection π on the moduli space, π : N → M, one can decompose 
∂aAi into the two parts

TAN = π∗TAM⊕ TAG ⇔ ∂aAi = (∂aφ
β)ξβi + Diεa , (26)

where G is the gauge group (restricted to H2 by fixing ya ∈ �, 
G|H2 = GH2 ), {ξα = ξαidyi} is a local basis of tangent vectors on 
TAM (they form the Lie algebra �g) and εa are g-valued gauge 
parameters (Diεa are tangent vectors from TAG) which are deter-
mined by the gauge-fixing equations

gij Diξα j = 0 ⇔ gij Di∂aA j = gij Di D jεa . (27)

In fact, since φα depend on ya ∈ �, we have N = N (ya), G =
GH2(ya) and M =N /G =M(ya).

Recall that Ai are fixed by (22) and Aa are yet free. For the 
mixed components of the field strength we have

Fai = ∂aAi − DiAa = (∂aφ
β)ξβi − Di(Aa − εa) . (28)

It is natural to choose Aa = εa [12,14] and obtain

Fai = (∂aφ
β)ξβi = π∗∂aAi ∈ TAM . (29)

On the other hand, since Ai(φ
α, y j) depends on ya only via φα , 

we have

∂aAi = ∂Ai

∂φβ

∂φβ

∂ ya

(27)�⇒ εa = Aa = (∂aφ
β)εβ (30)

with the gauge parameters εα defined by (27) via the equations

gij Di D jεα = gij Di
∂A j

∂φα
. (31)

Thus, if we know φα(u, v) then we can construct

(Aμ) = (Aa,Ai) =
(
(∂aφ

β)εβ , g−1(φβ, y j)∂i g(φβ, yk)
)

(32)

which should solve the equations (20) and (21).

7. Harmonic maps

Substituting (29) into (20), one can see that these equations are 
resolved due to (27), (30) and (31). On the other hand, substitution 
of (29) and (30) into (21) gives us the equations

1√|det g� | ∂a

(√|det g� | gab∂bφ
β
)

gij
H2ξβ j

+ gab gi j
H2(Daξβ j)∂bφ

β = 0 , (33)

where g� = (gab) is the metric on � and gH2 = (g H2

i j ) is the metric 
on H2. Before proceeding further we introduce a metric G = (Gαβ)

on the moduli space M = �G of flat connections on H2 as
Gαβ ≡ 〈ξα, ξβ〉 = −
∫

H2

d vol gij
H2 Tr(ξαiξβ j) , (34)

where the integral is taken over H2 = H2+ . Multiplying (33) by ξαi

and integrating over H2 (projection on the moduli space), we ob-
tain

1√|det g� | ∂a

(√|det g� | gab∂bφ
β
)

〈ξα, ξβ〉 + gab〈ξα, Daξβ〉∂bφ
β

= 1√|det g� | ∂a

(√|det g� | gab∂bφ
β
)

Gαβ

+ 〈ξα,∇γ ξβ〉gab∂aφ
γ ∂bφ

β

= Gασ

{
1√|det g� | ∂a

(√|det g� | gab∂bφ
σ
)

+ �σ
βγ gab∂aφ

β∂bφ
γ

}
= 0 , (35)

where

�σ
βγ = 1

2 Gσλ
(
∂γ Gβλ + ∂β Gγ λ − ∂λGβγ

)
with

∂γ := ∂

∂φγ
, (36)

are the Christoffel symbols and ∇γ are the corresponding covariant 
derivatives on the moduli space �G of flat connections on H2.

The equations

1√|det g� | ∂a

(√|det g� | gab∂bφ
α
)

+ �α
βγ gab∂aφ

β∂bφ
γ = 0

(37)

are the Euler–Lagrange equations for the effective action

Seff =
∫
�

dy1dy2
√|det g� | gabGαβ∂aφ

α∂bφ
β (38)

of the Yang–Mills theory on M which appears from the term 
Tr(FajFaj) in the initial Yang–Mills Lagrangian in the adiabatic 
limit ε → 0. The equations (37) are the standard sigma-model 
equations defining harmonic maps from � (= dS2, AdS2, or R1,1) 
into the based loop group �G parameterized (locally) by coordi-
nates φα . Note that solutions φα(u, v) exist and depend on both 
coordinates u and v only if the gauge group G is noncompact. For 
compact groups G solutions of (37) exist only if φα do not depend 
on u. Then equations (37) reduce to the geodesic equations on the 
loop group �G and gives static configurations of Yang–Mills fields. 
This result can be considered as supplementing the result of [15], 
where only electric components of adiabatic Yang–Mills fields were 
nonvanishing. Note that any geodesic on �G is parametrized by 
the initial point φ0 ∈ �G and by the velocity φ̇0 ∈ T0�G . Therefore, 
the moduli space of solutions (32) (with ∂vφ = 0 and ∂uφ =: φ̇) 
can be identified with the tangent bundle T �G of �G . The based 
loop group �G naturally acts on T �G which can be identified 
with the semi-direct product �G � g of �G and its Lie algebra 
g = Lie G

8. Concluding remarks

In conclusion we recall that in the Euclidean case Atiyah has 
shown [16] that the moduli space of instantons over R4,0 is bi-
jective to the moduli space of holomorphic maps from S2 to �G . 
There is a conjecture (see e.g. [17]) that the moduli space of solu-
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tions of the second-order Yang–Mills equations on R4,0 is bijective 
to the moduli space of harmonic maps from S2 to �G . Our con-
sideration in this paper can be repeated for the Euclidean space. 
In [18] it was observed that R4 ∪ {∞} \ S1 = S4 \ S1 is confor-
mally diffeomorphic to the product manifold S2 × H2. Considering 
M = S2 × H2 and literally repeating our calculations for this Eu-
clidean manifold we will arrive to the equations (37) with � = S2. 
These equations will define harmonic maps from S2 into the based 
loop group �G . Furthermore, from the implicit function theorem 
it follows that near every solution φ of (37) with � = S2 (and the 
corresponding solution Aε=0 of the Yang–Mills equations) there 
exists a solution Aε>0 of the Yang–Mills equations on M for ε suf-
ficiently small (cf. with the instanton case [7,9,18]). In other words, 
solutions of (37) with � = S2 approximate solutions of the Yang–
Mills equations on M = S2 × H2 (and on R4,0 after some maps [9,
18] from S2 × H2 to R4,0) and one can conjecture that the moduli 
spaces for Aε=0 and Aε>0 are bijective.
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