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Abstract

This doctoral thesis contains three theoretical essays on the predictive power

of leading descriptive decision theories and one empirical essay on the impact

of stock market investors’ probability distortion on future economic growth.

Chapter 1 provides an extensive summary and motivation of all essays.

The first essay (Chapter 2, co-authored with Maik Dierkes) shows

that Cumulative Prospect Theory cannot explain both the St. Petersburg

paradox and the common ratio version of the Allais paradox simultaneously

if probability weighting and value functions are continuous. This result holds

independently of parametrizations of the value and probability weighting

function. Using both paradoxes as litmus tests, Cumulative Prospect Theory

with the majority of popular weighting functions loses its superior predictive

power over Expected Utility Theory. However, neo-additive weighting

functions (which are discontinuous) do solve the Allais - St. Petersburg

conflict.

The second essay in Chapter 3 (co-authored with Maik Dierkes) shows

that Salience Theory explains both a low willingness to pay, for example

$7.86 ($12.33), for playing the St. Petersburg lottery truncated at around

$1 million ($1 trillion) and reasonable preference reversal probabilities

around 0.33 in Allais’ common ratio paradox. Typical calibrations of

other prominent theories (for example, Cumulative Prospect Theory or
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Expected Utility Theory) cannot solve both paradoxes simultaneously. With

unbounded payoffs, however, Salience Theory’s ranking-based probability

distortion prevents such a solution - regardless of parametrizations. Fur-

thermore, the probability distortion in Salience Theory can be significantly

stronger than in Cumulative Prospect Theory, fully overriding the value

function’s risk attitude.

The third essay in Chapter 4 (co-authored with Maik Dierkes)

proves that subproportionality as a property of the probability weighting

function alone does not automatically imply the common ratio effect

in the framework of Cumulative Prospect Theory. Specifically, the issue

occurs in the case of equal-mean lotteries because both risk-averse and

risk-seeking behavior have to be predicted there. As a solution, we

propose three simple properties of the probability weighting function

which are sufficient to accommodate the empirical evidence of the

common ratio effect for equal-mean lotteries for any S-shaped value

function. These are (1) subproportionality, (2) indistinguishability of small

probabilities, and (3) an intersection point with the diagonal lower than

0.5. While subproportionality and a fixed point lower than 0.5 are common

assumptions in the literature, the property indistinguishability of small

probabilities is introduced for the first time. The ratio of decision weights

for infinitesimally small probabilities characterizes indistinguishability and

is also an informative measure for the curvature of the probability weighting

function at zero. The intuition behind indistinguishability is that, even

though the ratio of probabilities stays constant at a moderate level,

individuals tend to neglect this relative difference when probabilities get

smaller.

Finally, the fourth essay in Chapter 5 (co-authored with Maik Dierkes

and Stephan Germer) links stock market investors’ probability distortion

to future economic growth. The empirical challenge is to quantify the
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optimality of today’s decision making to test for its impact on future

economic growth. Fortunately, risk preferences can be estimated from stock

markets. Using monthly aggregate stock prices from 1926 to 2015, we esti-

mate risk preferences via an asset pricing model with Cumulative Prospect

Theory agents and distill a recently proposed probability distortion index.

This index negatively predicts GDP growth in-sample and out-of-sample.

Predictability is stronger and more reliable over longer horizons. Our results

suggest that distorted asset prices may lead to significant welfare losses.

Keywords: Cumulative Prospect Theory, Salience Theory, Allais - St. Pe-

tersburg Conflict, Common Ratio Effect, Probability Distortion, Economic

Growth
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Zusammenfassung

Diese Doktorarbeit enthält drei theoretische Abhandlungen über die Vorher-

sagekraft führender deskriptiver Entscheidungstheorien und eine empirische

Abhandlung über die Auswirkung der Wahrscheinlichkeitsverzerrung von

Aktienmarktinvestoren auf das zukünftige Wirtschaftswachstum. Kapitel 1

bietet eine ausführliche Zusammenfassung und Motivation aller Aufsätze.

Der erste Aufsatz (Kapitel 2, gemeinsam mit Maik Dierkes verfasst)

zeigt, dass die kumulative Prospect-Theorie das St. Petersburg-Paradoxon

und die Common-Ratio-Version des Allais-Paradoxons nicht gleichzeitig

erklären kann, wenn Wahrscheinlichkeitsgewichtungs- und Wertfunktion

stetig sind. Dieses Ergebnis gilt unabhängig von den Parametrisierungen der

Wert- und Wahrscheinlichkeitsgewichtungsfunktion. Wenn beide Paradoxe

als Lackmustest verwendet werden, verliert die kumulative Prospect-Theorie

mit den meisten gängigen Gewichtungsfunktionen ihre überlegene Vorher-

sagekraft gegenüber der Erwartungsnutzentheorie. Neoadditive Gewich-

tungsfunktionen (die unstetig an den Stellen 0 und 1 sind) lösen jedoch den

Konflikt zwischen dem Allais-Paradoxon und St. Petersburg-Paradoxon.

Der zweite Aufsatz in Kapitel 3 (gemeinsam mit Maik Dierkes verfasst)

zeigt, dass die Salience-Theorie sowohl eine geringe Zahlungsbereitschaft

von beispielsweise 7,86 USD (12,33 USD) für das Spielen der auf rund

1 Million USD (1 Billion USD) gekürzten St. Petersburg-Lotterie als
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auch angemessene Präferenzumkehrwahrscheinlichkeiten um Wahrschein-

lichkeiten von 0,33 in Allais’ Common-Ratio-Paradoxon erklärt. Typische

Kalibrierungen anderer bekannter Theorien (z. B. kumulative Prospect-

Theorie oder Erwartungsnutzentheorie) können nicht beide Paradoxien

gleichzeitig lösen. Bei unbegrenzten Auszahlungen verhindert jedoch die

auf der Rangfolge basierende Wahrscheinlichkeitsverzerrung der Salience-

Theorie eine solche Lösung - unabhängig von den Parametrisierungen.

Darüber hinaus kann die Wahrscheinlichkeitsverzerrung der Salience-

Theorie erheblich stärker sein als in der kumulativen Prospect-Theorie,

wodurch die Risikoeinstellung der Wertfunktion vollständig außer Kraft

gesetzt werden kann.

Der dritte Aufsatz in Kapitel 4 (gemeinsam mit Maik Dierkes verfasst)

belegt, dass im Rahmen der kumulativen Prospect-Theorie die Subpro-

portionalität als Eigenschaft der Wahrscheinlichkeitsgewichtungsfunktion

allein nicht automatisch den Common-Ratio-Effekt impliziert. Insbesondere

tritt das Problem bei Lotterien mit gleichem Erwartungswert auf, da

dort sowohl risikoaverses als auch risikofreudiges Verhalten vorhergesagt

werden muss. Als Lösung schlagen wir drei einfache Eigenschaften der

Wahrscheinlichkeitsgewichtungsfunktion vor, die ausreichen, um den em-

pirischen Nachweis des Common-Ratio-Effekts für Lotterien mit gleichem

Mittelwert für jede S-förmige Wertefunktion aufzunehmen. Diese sind

(1) Subproportionalität, (2) Ununterscheidbarkeit kleiner Wahrschein-

lichkeiten und (3) ein Schnittpunkt mit der Diagonalen unterhalb von 0,5.

Während in der Literatur Subproportionalität und ein Fixpunkt unter

0,5 gängige Annahmen sind, wird erstmals die Eigenschaft "Unun-

terscheidbarkeit kleiner Wahrscheinlichkeiten" eingeführt. Das Verhält-

nis der Entscheidungsgewichte für unendlich kleine Wahrscheinlichkeiten

kennzeichnet die Ununterscheidbarkeit und ist auch ein aussagekräftiges

Maß für die Krümmung der Wahrscheinlichkeitsgewichtungsfunktion bei
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Null. Die Intuition hinter der Ununterscheidbarkeit ist, dass Individuen

den relativen Unterschied zwischen Wahrscheinlichkeiten vernachlässigen,

wenn die Wahrscheinlichkeiten kleiner werden, obwohl das Verhältnis der

Wahrscheinlichkeiten auf einem moderaten Niveau konstant bleibt.

Abschließend verknüpft der vierte Aufsatz in Kapitel 5 (gemeinsam mit

Maik Dierkes und Stephan Germer verfasst) die Wahrscheinlichkeitsverzer-

rung von Aktienmarktinvestoren mit dem zukünftigen Wirtschaftswachs-

tum. Die empirische Herausforderung besteht hierbei, die Optimalität der

heutigen Entscheidungsfindung zu quantifizieren, um ihre Auswirkungen

auf das zukünftige Wirtschaftswachstum zu testen. Glücklicherweise können

Risikopräferenzen von den Aktienmärkten geschätzt werden. Unter Verwen-

dung der monatlichen aggregierten Aktienkurse von 1926 bis 2015 schätzen

wir die Risikopräferenzen über ein Asset-Pricing-Modell mit kumulativen

Prospect-Theorie-Agenten und destillieren einen kürzlich vorgeschlagenen

Wahrscheinlichkeitsverzerrungsindex. Dieser Index prognostiziert ein neg-

atives GDP-Wachstum innerhalb und außerhalb der Stichprobe. Dabei

ist die Vorhersagbarkeit über längere Zeiträume hinweg stärker und

zuverlässiger. Unsere Ergebnisse legen nahe, dass verzerrte Vermögenspreise

zu erheblichen Wohlfahrtsverlusten führen können.

Schlagwörter: Kumulative Prospect-Theorie, Salience-Theorie, Allais -

St. Petersburg-Konflikt, Common-Ratio-Effekt, Wahrscheinlichkeitsverzer-

rung, Wirtschaftswachstum
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Chapter 1

Introduction

Expected Utility Theory has been the leading theory of choice under risk and

the core of rational decision making for nearly three centuries. The idea of

Expected Utility Theory goes back to Bernoulli (1738, 1954) who proposed

a concave utility transformation of final wealth to solve the St. Petersburg

paradox which describes the fact that hardly anyone would be willing to

pay an infinite amount of money for a lottery with infinite expected value

which promises an amount of $2k with probability 2−k for k ∈ N>0. This

fact was used as evidence against Expected Value Theory and was a key

motivation to include risk aversion in normative decision theory to restore

a minimum level of descriptive power. Roughly two centuries after Daniel

Bernoulli’s publication, von Neumann & Morgenstern (1944) provided an

axiomatic foundation of Expected Utility Theory.1

Nowadays, Expected Utility Theory is still widely accepted and

applied as a normative model of rational behavior but hardly as a
1Besides the significant contributions of Bernoulli (1738, 1954) and von Neumann

& Morgenstern (1944), the works of Ramsey (1931) and Savage (1954) were also of
great importance for the further development and understanding of Expected Utility
Theory and should therefore not remain unmentioned. For a detailed historical review,
see Fishburn (1988).
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CHAPTER 1. INTRODUCTION

descriptive model. Over the last seven decades, the literature that questions

Expected Utility Theory’s descriptive power is consistently growing. One

of the first studies that revealed persistent and systematic violations of

Expected Utility Theory was Allais (1953) with his prominent Allais

paradox. He showed that individuals’ choice behavior violates Expected

Utility Theory’s independence axiom. In particular, he observed that

individuals seem to process probabilities of risky outcomes in a non-linear

way. A simple demonstration of the Allais paradox is the common ratio

effect which involves choices between the two-outcome lotteries L1(p) =

($6000, 0.5p; $0, 1− 0.5p) and L2(p) = ($3000, p; $0, 1− p) where p is a

probability. Empirically, subjects choose the safer lottery L2 for high

probabilities p and the riskier lottery L1 for low probabilities p (see, e.g.,

Kahneman & Tversky, 1979). The independence axiom, however, does not

allow for this change in preference over L1 and L2 for varying p ∈ (0, 1].

This observation initiated the development of behavioral decision

theories such as Kahneman & Tversky’s (1979) prominent Prospect

Theory. The advanced version, Cumulative Prospect Theory by Tversky

& Kahneman (1992), is largely considered to be the most powerful model

to describe individual decision making under risk. It captures experimental

evidence such as reference dependence, diminishing value sensitivity, loss

aversion and probability weighting (see Kahneman & Tversky, 1979; Tversky

& Kahneman, 1992).

The first essay of this thesis (Chapter 2, co-authored with Maik

Dierkes) tests whether Cumulative Prospect Theory is able to accommodate

both Bernoulli’s (1738, 1954) St. Petersburg paradox and Allais’ (1953)

common ratio paradox with one set of parameters. The main result of this

paper is that only discontinuous probability weighting functions – such as

neoadditive weighting functions (Wakker, 2010) – can solve both paradoxes

simultaneously. This result holds independently of parametrizations of the
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value and probability weighting function. If value and probability weighting

functions are continuous, as it is usually assumed in the literature, then

Cumulative Prospect Theory cannot explain both the choice behavior in

the Allais paradox and the finite willingness to pay to participate in

the St. Petersburg lottery at the same time. For example, consider the

originally proposed parametrization in Tversky & Kahneman (1992) where

the probability weighting function is given by w(p) = pγ/ (pγ + (1− p)γ)1/γ

with γ > 0 and the value function over gains is given by v(x) = xα with

α > 0. Finite willingness to pay for the St. Petersburg lottery requires

the parameter restriction α < γ while predicting Allais’ common ratio

effect requires the opposite inequality α ≥ γ. The particular strength

of this paper stems from the fact that we generalize this result to all

continuous and strictly increasing value functions v and all continuous and

strictly increasing probability weighting functions w with w(0) = 0 and

w(1) = 1. Put differently, this joint test dismisses large classes of popular

probability weighting functions (e.g. Tversky & Kahneman, 1992; Prelec,

1998; Goldstein & Einhorn, 1987; Rieger & Wang, 2006) and considerably

reduces the set of potentially promising weighting functions. Hence, future

research shall rather embrace discontinuous weighting functions, such as

neo-additive weighting functions (Wakker, 2010) and their obvious nonlinear

extensions.

We motivate our test procedure with the fact that virtually all theories

of decision making under risk are motivated by either the St. Petersburg

paradox or the Allais paradox, but a discrepancy between these two

paradoxes has, to the best of our knowledge, never been addressed before.

We therefore propose the joint consideration of both paradoxes as the new

minimum standard to test descriptive decision theories.

The second essay in Chapter 3 (co-authored with Maik Dierkes) tests

whether Bordalo et al.’s (2012) Salience Theory is able to resolve the
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CHAPTER 1. INTRODUCTION

Allais - St. Petersburg conflict documented in the previous chapter. Salience

Theory is a relatively new promising context-dependent descriptive theory of

choice under risk which models a Local Thinker who re-weights probabilities

in favor of salient payoffs. Bordalo et al. (2012, p. 1243) argue that Salience

Theory “provides a novel and unified account of many empirical phenomena,

including frequent risk-seeking behavior, invariance failures such as the

Allais paradox, and preference reversals.” Their analysis, however, does not

include the St. Petersburg paradox. Our paper complements the relatively

new strand of literature which tests Salience Theory empirically and

theoretically.2 In particular, we are, to the best of our knowledge, the first

to investigate the St. Petersburg paradox under Salience Theory.

Our main result is that Salience Theory can resolve the Allais -

St. Petersburg conflict but only under the assumptions of finite resources

and a value function which generates substantial risk aversion (such as

bounded value functions). A simple parametrization of Salience Theory

that performs sufficiently well consists of the exponential value function

v(x) = 1 − e−x, a probability-distortion parameter value δ ≈ 0.4, and

any salience function for ranking states with the properties ordering

and diminishing sensitivity, as proposed by Bordalo et al. (2012). This

simple parametrization simultaneously predicts a reasonable willingness

to pay of $7.86 ($12.33) for the St. Petersburg lottery truncated at

the maximum payoff of $220 ≈ 1 million ($240 ≈ 1 trillion) dollars

and an empirically substantiated preference reversal probability p∗ ≈ 1
3

for the common ratio lotteries L1 and L2. For this specification, the

Allais - St. Petersburg conflict emerges only asymptotically, i.e. when

considering the original St. Petersburg lottery with infinite expected payoff.

In a realistic, resource-constrained environment, this Salience Theory
2See, for example, Kontek (2016); Frydman & Mormann (2018); Nielsen et al. (2018);

Königsheim et al. (2019)
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specification has an edge over Expected Utility Theory and most Cumulative

Prospect Theory calibrations. Recall that, for Cumulative Prospect Theory

with continuous preference functions, any solution to Allais’ common ratio

effect predicts – at odds with experimental evidence – huge willingness to

pay for the St. Petersburg lottery, easily exceeding the expected payoff of

the truncated St. Petersburg lottery.

Furthermore, we show that the probability distortion in Salience

Theory can be significantly stronger than in Cumulative Prospect Theory.

An interesting implication of the latter finding is that the use of bounded

value functions does not necessarily solve the St. Petersburg paradox under

Salience Theory. Note that, under Cumulative Prospect Theory or Expected

Utility Theory, bounded value functions always solve the St. Petersburg

paradox (e.g. Dierkes & Sejdiu, 2019b; Rieger & Wang, 2006).

The third essay in Chapter 4 (co-authored with Maik Dierkes) clarifies

frequent misunderstandings about the relationship of subproportionality as

a property of the probability weighting function and the common ratio

effect. As selected quotes in Table A.1 in Dierkes & Sejdiu (2019a) show,

many researchers equate subproportionality to Allais’ common ratio effect.

Our paper, however, points out that this is not always the case.

Kahneman & Tversky (1979, p. 282) call a probability weighting

function w subproportional “if and only if logw(p) is a convex function of

log p”. Note that this definition allows probability weighting functions to be

inverse S-shaped or convex (Fehr-Duda & Epper, 2012). Convex probability

weighting functions, however, do not overweight small probabilities and,

therefore, are not able to override the risk attitude predetermined by

a S-shaped value function. Being able to predict both risk-averse and

risk-seeking behavior is, however, imperative when it comes to the prediction

of the common ratio effect for choices between equal-mean lotteries.

As a solution, we propose three simple properties of the probability

5



CHAPTER 1. INTRODUCTION

weighting function (including subproportionality) which are sufficient to

explain the common ratio effect for equal-mean lotteries for any S-shaped

value function (i.e. concave over gains and convex over losses). For given

lotteries Lr(p) = ($z,∆p ; $0, 1−∆p) and Ls(p) = ($∆z, p ; $0, 1− p)

with payoff z > 0, common ratio ∆ ∈ (0, 1), and varying probability p ∈

(0, 1], the three conditions on w are:

(1) Subproportionality: w(∆p)/w(p) > w(∆q)/w(q), ∀ 0 < p < q ≤ 1,

(2) Indistinguishability of small probabilities: limp→0+ w(∆p)/w(p) = 1,

(3) Inner fixed point restriction: w(∆) ≤ ∆.

While properties (1) and (3) are common assumptions in the literature,

the second property which we call indistinguishability of small probabilities

(abbreviated indistinguishability) is introduced for the first time. This

property is key to ensure that for any S-shaped value function, a risk-seeking

behavior for choices between two simple equal-mean lotteries can always be

predicted by just decreasing the probabilities of winning towards zero by

equal proportion. The intuition behind this property is that, even though

the ratio of probabilities stays constant at a moderate level, individuals tend

to neglect this relative difference when probabilities get smaller and focus

solely on the outcomes.

The ratio of decision weights for infinitesimally small probabilities

(limp→0+ w(∆p)/w(p)), which characterizes indistinguishability, is also an

informative measure for the probabilistic risk attitude of individuals.

In particular, it can be used to classify probability weighting functions

according to their processing of small probabilities. Specifically, we show

that limp→0+ w(∆p)/w(p) is directly linked to a probabilistic counterpart

of the Arrow-Pratt measure of relative risk aversion at probability p = 0.

While Prelec (1998) considers the absolute Arrow-Pratt measure and relates
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the relative version in log-log scales to subproportionality, we prove for the

first time that the relative Arrow-Pratt measure at p = 0 is closely related

to indistinguishability of small probabilities.

The last essay in Chapter 5 (co-authored with Maik Dierkes and

Stephan Germer) studies the impact of probability distortion on future

economic growth. A cornerstone concept of modern economics is that

prices for goods are set to match demand and supply. The good’s price

ensures an efficient allocation such that it is used for projects with superior

profitability. But what if prices are wrong? What if demand is determined by

irrational preferences and, hence, prices reflect this irrationality? According

to the logic above, such irrationality poses a threat to economic welfare.

Irrationality would lead to lower GDP growth due to the inefficient

allocation of resources. As Lamont & Thaler (2003, pp. 227-228) put it:

“Do asset markets offer rational signals to the economy about

where to invest real resources? If some firms have stock prices

that are far from intrinsic value, then those firms will attract

too much or too little capital.”

In this paper, we infer potentially irrational preferences from stock

prices and find that lower future GDP growth is linked to a higher degree

of irrationality. We use the term "rational" to refer to preferences which

are consistent with Expected Utility Theory and "irrational" in case they

conflict. Our interest centers on violations of Expected Utility Theory’s

independence axiom because this axiom is key to rational behavior. In

Cumulative Prospect Theory, the independence axiom is relaxed by the

non-linear processing of probabilities. To infer a probability distortion

index, we employ the equilibrium asset pricing model of Barberis & Huang

(2008) which assumes that prices on financial market are set by investors

who behave according to Cumulative Prospect Theory. Our estimation
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CHAPTER 1. INTRODUCTION

of potential irrationality is possible because stock prices reflect aggregate

preferences of an economy.

Our key finding is that stronger probability distortion today reliably

predicts lower future GDP growth in-sample and out-of-sample. This

negative link is stronger and statistically more reliable over longer

prediction horizons. Our results are robust to numerous variations, such as

different calibration procedures of the asset pricing model (simple average

returns vs. moving average estimators; GARCH vs. EGARCH), different

measures for probability distortion (likelihood insensitivity and Prelec’s

(1998) probability weighting function), and sample splits (1953-1984 and

1985-2015). Our conjecture is that suboptimal decision making is one

channel by which today’s market prices and future GDP growth are linked.

Implicitly, we provide evidence that stock prices can deviate from their

rationally warranted fundamental value.

All chapters of this thesis are self-contained. Therefore, in each chapter,

variables and acronyms are redefined. Of course, the notation was adapted

whenever possible to promote readability.
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Chapter 2

The Need for Discontinuous

Probability Weighting

Functions: How Cumulative

Prospect Theory is torn

between the Allais Paradox and

the St. Petersburg Paradox∗

2.1 Introduction

Descriptive theories of decision making under risk are typically required

to pass one or more litmus tests. Such tests help to determine whether a
∗This chapter is based on the Working Paper “The Need for Discontinuous Probability

Weighting Functions: How Cumulative Prospect Theory is torn between the Allais
Paradox and the St. Petersburg Paradox” authored by Maik Dierkes and Vulnet Sejdiu,
2019. We are particularly grateful to Johannes Jaspersen and Walther Paravicini for
comments and very helpful advice.
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2.1. INTRODUCTION

theory of decision making is able to predict human behavior to a desired

extent. The most prominent tests in decision theory include Bernoulli’s

(1738, 1954) St. Petersburg paradox and the Allais paradox (Allais,

1953). Both paradoxes have paved the way for new decision theories

and helped define the prevailing standard of a certain era. Specifically,

the St. Petersburg paradox criticized Expected Value Theory (EVT) and

fostered the dominance of Expected Utility Theory (EUT) thereafter.

Similarly, the Allais paradox revealed inconsistencies of EUT with actually

observed choice behavior and, thus, initiated the development of descriptive

decision theories such as Kahneman & Tversky’s (1979) prominent Prospect

Theory. The advanced version, Cumulative Prospect Theory (CPT) by

Tversky & Kahneman (1992) which is based on Rank Dependent Utility

Theory (RDU; Quiggin, 1982), is largely considered to be the most powerful

model to describe individual decision making under risk and uncertainty.

Virtually all theories of decision making under risk are motivated by

either the St. Petersburg paradox or the Allais paradox, but a potential

discrepancy between these two paradoxes has, to the best of our knowledge,

never been addressed before. We propose the joint consideration of both

paradoxes as the new minimum standard to test descriptive decision

theories.

In this paper, we show that CPT is torn between both paradoxes in

the following way. If value and weighting functions are continuous, CPT

cannot explain both the choice behavior in the Allais paradox and the

finite willingness to pay to participate in the St. Petersburg lottery at the

same time. For example, consider the originally proposed parametrization

in Tversky & Kahneman (1992) where the probability weighting function is

given by w(p) = pγ/ (pγ + (1− p)γ)1/γ with γ > 0 and the value function

over gains is given by v(x) = xα with α > 0. Finite willingness to pay

for the St. Petersburg lottery requires the parameter restriction α < γ

11
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while predicting Allais’ common ratio effect requires the opposite inequality

α ≥ γ. The more interesting novelty of this paper stems from the fact

that we generalize this result to all continuous and strictly increasing value

functions v and all continuous and strictly increasing probability weighting

functions w with w(0) = 0 and w(1) = 1. Put differently, this joint

test dismisses large classes of popular probability weighting functions and

considerably reduces the set of potentially promising weighting functions.

If the probability weighting function is discontinuous, however, a

solution to both paradoxes is possible. Neo-additive weighting functions,

as formalized by Wakker (2010) via w(0) = 0, w(1) = 1, and w(p) = a+ bp

for p ∈ (0, 1) with a, b > 0, a + b ≤ 1, presumably constitute the

simplest class of such weighting functions. Kilka & Weber (2001, p. 1717)

use it for approximating continuous weighting functions while Baillon

et al. (2018) regard it as a full-fledged alternative to popular continuous

weighting functions. Neo-additive weighting functions are popular for

decision making under ambiguity (e.g. Abdellaoui et al., 2011; Baillon

et al., 2017; Chateauneuf et al., 2007). To account for more complex

choice behavior for moderate probabilities (Harless & Camerer, 1994;

Wu & Gonzalez, 1996) neo-additive weighting functions might be too

restrictive and should be amended by some non-linearities. Discontinuities

are, however, indispensable to accommodate both Allais’ common ratio

effect and the St. Petersburg paradox.

In light of these results, we find it stunning how much more predictive

power Kahneman & Tversky’s (1979) originally proposed discontinuous

probability weighting function has (when applied in a rank-dependent

framework, of course) compared to Tversky & Kahneman’s (1992) con-

tinuous weighting function. In the original paper, Figure 4 depicts a

hypothesized, yet discontinuous weighting function which “is relatively

shallow in the open interval and changes abruptly near the end-points where

12
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w(0) = 0 and w(1) = 1” and which “is not well-behaved near the end-points”

(Kahneman & Tversky, 1979, p. 282f.).

Our theoretical findings are consistent with and, in fact, strongly

support the empirical estimates in Barseghyan et al. (2013). Based on

more than 4000 households’ insurance deductible choices, they fit a

quadratic polynomial on the probability interval [0, 0.16] and estimate the

intercept at 0.061, indicating a discontinuity at probability zero. Thus,

our theoretical results virtually echo their estimate which they find “is

striking in its resemblance to the probability weighting function originally

posited by Kahneman & Tversky (1979). In particular, it is consistent

with a probability weighting function that exhibits overweighting of small

probabilities, exhibits mild insensitivity to changes in probabilities, and

trends toward a positive intercept as [the probability] approaches zero [. . .].

By contrast, the probability weighting functions later suggested by Tversky

& Kahneman (1992), Lattimore, Baker, & Witte (1992), and Prelec (1998)

– which are commonly used in the literature [. . .] – will not fit our data well,

because they trend toward a zero intercept [. . .]” (Barseghyan et al., 2013,

p. 2515).

To provide some intuition for our results, recall that the St. Petersburg

paradox describes the fact that hardly anyone would be willing to pay an

infinite amount of money for the lottery with infinite expected value which

promises an amount of $2k with probability 2−k for k = 1, 2, 3 . . . . This fact

was used as evidence against EVT and was a key motivation to include risk

aversion in normative decision theory – such as EUT – to restore a minimum

level of descriptive power. It dates back to 1713 and is among the oldest

and most prominent litmus tests for models of risky decision making. Based

on the ratio test, we then show that, under CPT, a necessary condition for

13
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finite willingness to pay is

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
≤ lim

z→∞

v(0.5z)

v(z)
. (STP )

For continuous (and strictly increasing) probability weighting functions w,

this necessary condition is equivalent to the following simpler necessary

condition which is useful when analyzing the common ratio effect:

lim
p→0+

w(0.5p)

w(p)
≤ lim

z→∞

v(0.5z)

v(z)
(STP ∗)

Now consider the Allais paradox. The Allais paradox exists in different

versions and uncovers a violation of EUT’s independence axiom. We

focus on the common ratio version which involves choices between equal

mean lotteries such as L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) =

($z/2, p; $0, 1− p) where p is a probability. Kahneman & Tversky (1979)

use payoff z = 6000 and p ∈ {0.002, 0.9} in Problems 7 and 8. Empirically,

subjects choose the safer lottery L2 for high probabilities p and the riskier

lottery L1 for low probabilities p. EUT’s independence axiom, however,

does not allow for this change in preference over L1 and L2 for varying

probabilities p. In our analysis, we make explicit use of Allais’ (1953) notion

that the common ratio effect emerges in particular for large payoffs z in

lotteries L1 and L2. He used payoffs in the millions. We then derive the

following necessary condition for the common ratio effect:

lim
p→0+

w(0.5p)

w(p)
≥ lim

z→∞

v(0.5z)

v(z)
. (CRE∗)

When comparing conditions (CRE∗) and (STP ∗), both inequalities turn

into a single equality and we also rule out this equality as a potentially

remaining case. Put differently, with continuous (and strictly increasing) v

and w there does not exist a simultaneous solution to both paradoxes –

independent of the exact parametrizations. To the best of our knowledge,

we are the first to prove this general result.

14
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Furthermore, in the CPT framework, any simultaneous solution

to both paradoxes must drive a wedge between lim
p→0+

w(0.5p)−w(0.25p)
w(p)−w(0.5p)

and

lim
p→0+

w(0.5p)
w(p)

and thus involves discontinuous probability weighting functions.

Neo-additive weighting functions wneo (see Wakker, 2010) are presumably

the simplest class of such weighting functions. For those functions it holds

lim
p→0+

wneo(0.5p)−wneo(0.25p)
wneo(p)−wneo(0.5p) = 0.5 and lim

p→0+

wneo(0.5p)
wneo(p)

= 1. Specifically, if we

choose, for example, a = 0.1, b = 0.8, and v(x) = x0.7, the CPT decision

maker is willing to pay $5.89 to be entitled to the St. Petersburg lottery

and exhibits the typical choice pattern between the common ratio lotteries

L1 and L2 with preference reversal probability p∗ = 0.42.

Using large payoffs, z → ∞, in the Allais paradox above might

appear extreme at first glance, but is supported by experimental evidence.

If CPT’s value function is parameterized by the power value function

v(x) = xα, as is most often the case in empirical calibration studies,

then the v-ratio v(0.5z)
v(z)

is independent of payoff z and using large payoffs

is irrelevant. In other words, the power value function inhibits a solution

to both paradoxes if the weighting function is continuous. With other value

functions and continuous weighting functions, solutions might theoretically

exist for moderate payoffs only - at odds with Camerer (1989), Conlisk

(1989), Fan (2002), Huck & Müller (2012), and Agranov & Ortoleva

(2017) who report less frequent Allais-type violations of EUT for small

payoffs. A sensitivity analysis, however, explicitly rejects other typical

value functions (exponential, logarithmic, and HARA) because of their

unrealistic predictions. For example, De Giorgi & Hens (2006) motivate

an exponential value function, i.e. v(x) = β (1− e−αx) with absolute risk

aversion coefficient α ≈ 0.2 and β > 0. This bounded value function always

ensures finite willingness to pay in the St. Petersburg paradox. Presumably,

optimal conditions for the emergence of the common ratio effect are then a
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low preference reversal probability p∗ and Prelec’s (1998) subproportional

weighting function with low curvature parameter γ. If we conservatively

set γ = 0.53 from Bleichrodt & Pinto (2000) and fix p∗ = 0.002 (which

Problem 8 in Kahneman & Tversky (1979) indicates as an extreme lower

boundary for p∗) then a preference switch from safe lottery L2 to risky

lottery L1 happens for payoffs z < $18.08 only – undoubtedly an unrealistic

prediction. The appendix provides the details.

To the best of our knowledge, we are the first to show that solving

the St. Petersburg paradox rules out practically all CPT preferences that

explain the common ratio version of the Allais paradox as long as preferences

are given by the same continuous value and weighting function across both

paradoxes. Some authors analyze the restrictions that finite willingness to

pay for the St. Petersburg lottery places on CPT (e.g. Blavatskyy, 2005;

Camerer, 2005; Rieger & Wang, 2006; De Giorgi & Hens, 2006; Cox &

Sadiraj, 2008; Pfiffelmann, 2011), but the conflict with the common ratio

effect, independent of parametrizations, has not been discovered before.

Our results are not fabricated by the infinite expected payoff of the

original St. Petersburg lottery and we refer to the original St. Petersburg

gamble because of its prominence. An analysis of truncated St. Petersburg

lotteries does not change our conclusions. For example, assume the lottery’s

maximum payoff is truncated at $230 which equals roughly 1 billion

dollars and corresponds to 29 possible rounds of coin flipping. The usual

parametrization in Tversky & Kahneman (1992) with α = 0.88 and γ = 0.61

which predicts the common ratio effect implies that the CPT decision maker

would pay up to $2, 899.88 to play this lottery – about 93 times more

than the expected payoff of $31. Such price predictions are absurd and

inconsistent with the empirical evidence (e.g. Hayden & Platt, 2009; Cox

et al., 2011). Further, Rieger & Wang’s (2006) arguments show that CPT

can predict infinite willingness to pay (certainty equivalent) even in cases
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of risks with finite expected value.

We further clarify that the slope of continuous probability weighting

functions at probability zero is less important for the St. Petersburg paradox

than often thought. Rather the trade-off between the limits of the w-ratio

lim
p→0+

w(0.5p)
w(p)

and v-ratio lim
z→∞

v(0.5z)
v(z)

is key. For smooth weighting functions, the

w-ratio limit is equivalent to a probabilistic counterpart of the Arrow-Pratt

measure of relative risk aversion, lim
p→0+

pw
′′(p)
w′(p)

(see Dierkes & Sejdiu, 2019a).

In particular, the limit of the w-ratio reflects the risk attitude induced by the

probability weighting function better than the slope at probability zero. For

example, the inverse S-shaped versions of the Tversky & Kahneman (1992)

and Prelec (1998) weighting functions have w-ratio limits of 0.5γ ∈ (0, 1) and

1, respectively, while both have infinite slope (first derivative) and curvature

(second derivative) at zero and, thus, appear indistinguishable on these

latter metrics. It is noteworthy that a strictly concave value function v over

gains and a positive, but finite slope w′(0) cannot explain the common ratio

effect (provided w is smooth, of course) because then lim
p→0+

w(0.5p)
w(p)

= 0.5 and

0.5 < v(0.5z)
v(z)

< 1 for fixed z > 0, and the necessary condition is violated.

Put differently, scaling down probabilities in the common ratio lotteries

counterfactually leads to a risk-averse choice if the continuous probability

weighting function has a finite slope at zero and the value function is strictly

concave.

The probabilistic and classical Arrow-Pratt measures of relative risk

aversion allow for an intuitive interpretation in, for example, Tversky &

Kahneman’s (1992) original parametrization. The sum of probabilistic risk

aversion at probability p → 0+ and the value function’s risk aversion has

to be strictly positive for finite willingness to pay in the St. Petersburg

paradox, while the common ratio effect emerges only for negative overall

risk aversion (risk proclivity).
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Finally, the discrepancy between both the St. Petersburg and the Allais

paradox is not an artifact of the preference reversal phenomenon whereby

there can occur inconsistencies between choice and valuation tasks (see,

e.g., Lichtenstein & Slovic (1971) for an early reference).1 In fact, the

preference reversal phenomenon makes CPT’s difficulties to predict both

paradoxes even greater. According to Tversky et al. (1990), there is more

overweighting of small probabilities for high payoffs in pricing tasks, such

as in the St. Petersburg paradox, than in choice tasks, such as in the Allais

paradox. So, let us assume we elicited an individual’s preference parameter

combination (α, γ) by a clever sequence of Allais type choices. In particular,

we would typically get α > γ. Then, Tversky et al. (1990) suggest to lower γ

to predict the individual’s willingness to pay in the St. Petersburg game. An

even lower γ, however, would counterfactually predict an infinite certainty

equivalent for the St. Petersburg lottery. Moreover, the preference reversal

phenomenon typically occurs when individuals deal with specific types of

lotteries – the so-called P -bet and $-bet. And the characteristics of these

bets do not match those in the two paradoxes.

Next to discontinuous probability weighting functions, another poten-

tial explanation for both paradoxes within the CPT framework might be

varying preferences across both paradoxes. It is well known that CPT

preferences can be driven by, for example, affect (Rottenstreich & Hsee,

2001), feelings (Hsee & Rottenstreich, 2004), or perceived self-competence

(Kilka & Weber, 2001). Similarly, Harrison & Rutström (2009) deliberately

model decision makers with a latent process which switches between

evaluation according to EUT or CPT. Whether differences in the Allais

paradox and St. Petersburg paradox trigger such changes in preferences is

an open question, though.
1Schmidt et al.’s (2008) third generation Prospect Theory enhances CPT to allow,

for example, for such preference reversals.
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The remainder of this paper illustrates our conclusions by formal proofs

and numerical examples.

2.2 The Allais - St. Petersburg Conflict

We make the following assumptions throughout our discussion:

Assumption 2.1 (Preference Calculus)

a) The decision maker’s utility for a lottery (x1, p1;x2, p2; . . .) is given by

Cumulative Prospect Theory. That is the decision maker has a value

function v and a probability weighting function w. Assuming without

loss of generality that payoffs are rank ordered such that 0 ≤ x1 ≤

x2 ≤ . . ., the CPT value is given by v(x1)[w(p1 + p2 + . . .) − w(p2 +

p3 + . . .)] + v(x2)[w(p2 + p3 + . . .)− w(p3 + p4 + . . .)] + . . ..

b) The value function v is continuous and strictly monotonically increas-

ing with v(0) = 0.

c) The probability weighting function w is continuous and strictly

monotonically increasing with w(0) = 0 and w(1) = 1.

d) The reference point is the current wealth level. In particular, all lottery

payoffs considered here are perceived as gains.2

Assumption 2.2 (Mathematical Notation) Whenever we use limits,

e.g. limx→z f(x), we implicitly assume these limits exist in a weak sense,

i.e. limes superior and limes inferior coincide and limx→z f(x) ∈ [−∞,∞].
2Without loss of generality, we follow the typical assumption that the reference points

is fixed at zero in both paradoxes. In particular, theories with stochastic reference points
(Kőszegi & Rabin, 2006) are not applicable.

19



CHAPTER 2. THE NEED FOR DISCONTINUOUS PROBABILITY
WEIGHTING FUNCTIONS: HOW CPT IS TORN BETWEEN THE ALLAIS

PARADOX AND THE ST. PETERSBURG PARADOX

2.2.1 The St. Petersburg Paradox under CPT

Bernoulli’s (1738, 1954) St. Petersburg lottery LSTP promises an amount of

$2k with probability 2−k for k ∈ N>0. Although the expected value of LSTP

is infinite, real decision makers are only willing to pay a low price for lottery

LSTP .3 Under CPT, the decision maker assigns the following utility to the

St. Petersburg lottery LSTP :

CPT (LSTP ) =
∞∑
k=1

v
(
2k
)
·

[
w

(
∞∑
i=k

1

2i

)
− w

(
∞∑

i=k+1

1

2i

)]

=
∞∑
k=1

v
(
2k
)
·
[
w
(
21−k)− w (2−k)] . (2.1)

A CPT decision maker’s willingness to pay for the lottery LSTP is given

by the certainty equivalent v−1(CPT (LSTP )). The following theorem states

conditions for a finite certainty equivalent under CPT.

Theorem 2.1 (Emergence of the St. Petersburg paradox)

Let v : R → R be a strictly increasing value function and w : [0, 1] → [0, 1]

be a strictly increasing probability weighting function with w(0) = 0 and

w(1) = 1. Then, it holds for the St. Petersburg lottery LSTP :

a) A CPT decision maker reports finite willingness to pay for LSTP if v

is bounded from above.

b) Assume v is unbounded. Then, a CPT decision maker reports finite

willingness to pay for LSTP if (sufficient condition)

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
< lim

z→∞

v(0.5z)

v(z)
. (2.2)

c) A necessary condition for finite willingness to pay for LSTP is

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
≤ lim

z→∞

v(0.5z)

v(z)
. (2.3)

3A comprehensive analysis of the St. Petersburg paradox is provided by Samuelson
(1977).
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Proof of Theorem 2.1: Using a bounded value function vb(·) is the simplest

way to guarantee a finite CPT value. Assuming that vb is monotonically

increasing, strictly concave and bounded, i.e limz→∞ v
b(z) = c, it is

straightforward to prove statement a) that, independent of the specification

of the probability weighting function w, Equation (2.1) is always strictly

smaller than c:
∞∑
k=1

vb
(
2k
)
·
[
w
(
21−k)− w (2−k)] < ∞∑

k=1

c ·
[
w
(
21−k)− w (2−k)] = c.

(2.4)

Hence, the maximum willingness to pay (certainty equivalent) for lottery

LSTP is finite.

For unbounded value functions v, finite willingness to pay is equivalent

to convergence of the infinite sum (2.1). The ratio test to assess the

convergence of (2.1) in case of unbounded value functions implies finite

willingness to pay if

lim
k→∞

∣∣∣∣∣v
(
2k+1

)
·
[
w
(
2−k
)
− w

(
2−k−1

)]
v (2k) · [w (21−k)− w (2−k)]

∣∣∣∣∣ < 1. (2.5)

If we substitute p for 21−k (probability) and z for 2k+1 (payoff), we can

restate the convergence criterion as

lim
z→∞

v (z)

v (0.5z)
· lim
p→0+

∣∣∣∣w(0.5p)− w(0.25p)

w(p)− w(0.5p)

∣∣∣∣ < 1, (2.6)

which corresponds to part b). Part c) follows because, according to the

ratio test, a necessary condition for convergence is the weak version of the

inequalities above.

Note that statement c) holds for bounded as well as unbounded value

functions because for bounded and strictly increasing value functions we

yield lim
z→∞

v(0.5z)
v(z)

= 1. To see this, recall that v(0) = 0 so that strict

monotonicity and boundedness leads to lim
x→∞

v(x) = c for some upper bound

c > 0 and, thus, v(0.5z)
v(z)

−→
z→∞

c
c

= 1.
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The next theorem specializes to the case of continuous preference

functions and already adumbrates that, for smooth weighting functions,

a finite derivative of the probability weighting function at zero, w′(0) <∞,

does not guarantee a finite certainty equivalent as long as we allow for

various forms for the value function. Rather, the trade-off between the limit

of the w-ratio lim
p→0+

w(0.5p)
w(p)

and the limit of the v-ratio lim
z→∞

v(0.5z)
v(z)

is important.

Theorem 2.2 (Continuous w and the St. Petersburg paradox)

Let v : R → R be a continuous and strictly increasing value function

and w : [0, 1] → [0, 1] be a continuous and strictly increasing probability

weighting function with w(0) = 0 and w(1) = 1. Then, it holds for the

St. Petersburg lottery LSTP :

a) A CPT decision maker reports finite willingness to pay for LSTP if

(sufficient condition)

lim
p→0+

w(0.5p)

w(p)
< lim

z→∞

v(0.5z)

v(z)
. (2.7)

b) A necessary condition for finite willingness to pay for LSTP is

lim
p→0+

w(0.5p)

w(p)
≤ lim

z→∞

v(0.5z)

v(z)
. (STP ∗)

c) If in part b) the limits are equal and less than one, that is

lim
p→0+

w(0.5p)

w(p)
= lim

z→∞

v(0.5z)

v(z)
∈ (0, 1), (2.8)

then the decision maker’s willingness to pay is arbitrarily large. Put

differently, no reported finite willingness to pay for LSTP can be

captured by these CPT preferences.

Proof of Theorem 2.2: The case of bounded value functions is clear from

Theorem 2.1. So, let us consider unbounded value functions. Lemma 2.1 in
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Appendix A.1 proves that for continuous probability weighting functions, it

holds:

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
= lim

p→0+

w(0.5p)

w(p)
. (2.9)

Then, statements a) and b) are clear from Theorem 2.1.

In the situation of statement c), Lemma 2.2 in Appendix A.1 shows

that for all ε > 0 there exists p0 ∈ (0, 1) such that

w(p) ≥ const ·
(p

2

)γ+ε

(2.10)

for all p ∈ (0, p0]. Similarly, Lemma 2.3 in Appendix A.1 ensures that for

all ε > 0 there exist x0 > 0 such that

v(x) ≥ const · xα−ε (2.11)

for all x ≥ x0.

Now let lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 0.5γ ∈ (0, 1) for some γ > 0. Observe

that v is unbounded because otherwise, with our convention v(0) = 0, we

would have had lim
z→∞

v(0.5z)
v(z)

= 1. We use Lemma 2.3 and Lemma 2.2 which

give lower boundaries for the value function v for larges payoffs z and for

the probability weighting function w for small probabilities, respectively.

For any ε1, ε2 > 0 the CPT value can be assessed as

CPT (LSTP ) =
∞∑
k=1

v
(
2k
)
·
[
w
(
21−k)− w (2−k)] (2.12)

=
∞∑
k=1

v
(
2k
)
w
(
21−k) ·

 1−
w
(
2−k
)

w (21−k)︸ ︷︷ ︸
≈0.5γ for sufficiently large k and some γ > 0


(2.13)

≥ const ·
∞∑

k=k0

(
2k
)γ−ε1 (21−k

2

)γ+ε2

(2.14)

= const ·
∞∑

k=k0

(
2−ε1−ε2

)k (2.15)
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where k0 is a sufficiently large index. Equation (2.15) equals infinity if and

only if ε1 + ε2 = 0. Since we can choose ε1 > 0 and ε2 > 0 arbitrarily small,

the sum in (2.15), and hence the willingness to pay, grows arbitrarily large.

Without probability weighting (i.e. w(p) = p), the v-ratio limit

lim
z→∞

v(0.5z)
v(z)

has to be strictly greater than 0.5 to ensure a finite subjective

CPT value. Note that the value function’s concavity alone does not

automatically imply a v-ratio limit greater than 0.5. For example, for Bell’s

(1988) one-switch function v(x) = βx − e−αx + 1 with α, β > 0, we prove

in Example 2.4 that the v-ratio limit equals 0.5. Applying Theorem 2.2,

statement c), re-establishes the well-known fact that this concave value

function yields infinite willingness to pay for the St. Petersburg lottery

under EUT. This fact foreshadows the insights of Menger (1934) who shows

that even within the EUT framework it is possible to construct a Super

St. Petersburg paradox where many of the strictly concave utility functions

are unable to guarantee finite willingness to pay.

Continuity of the probability weighting function in Theorem 2.2 is

crucial as the following example shows:

Example 2.1 Assume a neo-additive probability weighting function w.

That is

w(p) =


0 for p = 0

a+ b · p for p ∈ (0, 1)

1 for p = 1

, (2.16)

where a+ b ≤ 1 and a, b > 0. Note that although lim
p→0+

w(0.5p)
w(p)

= a
a

= 1, finite

willingness to pay is well possible for lim
z→∞

v(0.5z)
v(z)

< 1 (contrary to the case of

24



2.2. THE ALLAIS - ST. PETERSBURG CONFLICT

continuous weighting functions) because the CPT value is given by

CPT (LSTP ) =
∞∑
k=1

v
(
2k
)
·
[
w
(
21−k)− w (2−k)] (2.17)

=
∞∑
k=1

v
(
2k
)
·
[
a+ b ·

(
21−k)− a− b · (2−k)] (2.18)

=
∞∑
k=1

v
(
2k
)
· b · 2−k. (2.19)

If lim
z→∞

v(0.5z)
v(z)

= 0.5 then Lemma 2.3 in Appendix A.1 applies and

(2.19) is larger than b
∑∞

k=k0
2(1−ε)k−k = b

∑∞
k=k0

(2−ε)
k for any ε > 0

and sufficiently large k0. Since we can choose ε > 0 arbitrarily small,

the CPT value of the St. Petersburg lottery, CPT (LSTP ), is unbounded if

lim
z→∞

v(0.5z)
v(z)

= 0.5. Furthermore, v cannot be bounded from above. Together

with the ratio test applied to (2.19), it follows that a necessary and sufficient

condition for finite willingness to pay for LSTP is

lim
z→∞

v (0.5z)

v(z)
>

1

2
. (2.20)

In other words, neo-additive probability weighting functions have the same

implications for the St. Petersburg paradox as EUT despite the w-ratio

limit being equal to one. An obvious value function that now produces finite

willingness to pay is v(x) = x0.88 because v(0.5z)
v(z)

= 0.50.88 = 0.543.

It is clear that the limit lim
p→0+

w(0.5p)
w(p)

is in the interval [0, 1]. Intuitively,

the limit of this w-ratio is an index of concavity of w at probability p = 0.

More precisely, for sufficiently smooth weighting functions, Dierkes & Sejdiu

(2019a) show that it relates to a probabilistic counterpart of relative risk

aversion at p = 0 as defined here.

Definition 2.1 Let w be a probability weighting function which is twice

continuously differentiable on a subset (0, p0), p0 ∈ (0, 1), and strictly

increasing. Then we define a probabilistic counterpart of relative risk
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aversion at infinitesimally small probabilities:

RRA0
w = lim

p→0+
p
w′′(p)

w′(p)
. (2.21)

Note that RRA0
w > 0 indicates probabilistic risk aversion and

RRA0
w < 0 probabilistic risk proclivity when processing infinitesimally small

probabilities. Using our previous definition, Dierkes & Sejdiu (2019a) show

that for smooth w and all ∆ ∈ (0, 1) it holds

lim
p→0+

w(∆p)

w(p)
= ∆1+RRA0

w . (2.22)

That is, the limit lim
p→0+

w(0.5p)
w(p)

is informative about the curvature of w at

p = 0. In particular, a higher w-ratio limit indicates more concavity of w at

p = 0.

The discussion of the power value function vPower(x) = xα for α ∈ (0, 1)

is now rather simple and a particularly worthwhile example because it is

by far the most frequently used parametrization in CPT. Recall that vPower

exhibits constant relative risk aversion equal to 1 − α. There is now an

intuitive interpretation for finite willingness to pay for the St. Petersburg

lottery LSTP . Corollary 2.1 below shows that willingness to pay for LSTP is

finite if and only if the decision maker exhibits strictly positive total relative

risk aversion. Here, total relative risk aversion is the sum of probabilistic

relative risk aversion RRA0
w induced by the probability weighting function

and relative risk aversion of the value function as defined by the Arrow-Pratt

measure. Put differently, to produce a lower certainty equivalent than the

expected value (infinity in this case) the decision maker must exhibit strict

risk aversion. In the CPT framework, risk aversion is driven by both

the value and the probability weighting function. Conversely, with risk

neutrality or risk proclivity, gambling for an infinite expected payoff is

desirable and decision makers are willing to pay any amount.
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Corollary 2.1 Provided w is twice continuously differentiable on a subset

(0, p0), p0 ∈ (0, 1), and strictly increasing and the value function is given

by vPower(x) = xα with α ∈ (0, 1) then the CPT decision maker has finite

willingness to pay for the St. Petersburg lottery LSTP if and only if

RRA0
w +RRAv > 0, (2.23)

where RRAv = −xv
′′(x)
v′(x)

= 1−α is the constant relative risk aversion of the

power value function v.

Proof of Corollary 2.1: Note that v(0.5z)
v(z)

∈ (0, 1) for all α > 0. According to

Theorem 2.2, parts a) and c), it suffices to show that lim
p→0+

w(0.5p)
w(p)

< 0.5α is

equivalent to Equation (2.23). Using ∆ = 0.5 in Equation (2.22), we get

lim
p→0+

w(0.5p)
w(p)

< 0.5α (2.24)

⇔ 0.5RRA
0
w+1 < 0.5−RRAv+1 (2.25)

⇔ RRA0
w > −RRAv (2.26)

which is equivalent to Equation (2.23).

To illustrate the applications of our findings, we discuss some typical

parametrizations of v and w from the literature.

Example 2.2 The convergence rate of the w-ratio w(0.5p)
w(p)

for tiny probabil-

ities for commonly employed probability weighting functions w are given as

follows:

a) For wTK92(p) = pγ/ (pγ + (1− p)γ)1/γ, γ ∈ (0, 1) proposed by Tversky

& Kahneman (1992), we have lim
p→0+

wTK92(0.5p)
wTK92(p)

= 0.5γ.

b) For wlog−odds(p) = δpγ/ (δpγ + (1− p)γ), γ ∈ (0, 1), δ > 0 proposed by

Goldstein & Einhorn (1987)4, we have lim
p→0+

wlog−odds(0.5p)

wlog−odds(p)
= 0.5γ.

4It is also used by e.g Tversky & Fox (1995), and Lattimore et al. (1992).
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c) For wPrelec(p) = e−(− log p)γ , γ ∈ (0, 1) proposed by Prelec (1998), we

have

lim
p→0+

wPrelec(0.5p)

wPrelec(p)
=


1 if γ ∈ (0, 1),

0.5 if γ = 1,

0 if γ > 1.

d) Consider polynomial probability weighting functions wPoly(p) =∑N
i=1 ai · pi with parameters ai ∈ R for i = 1, . . . , N and aN 6= 0.

Let j be the smallest index i < N such that aj 6= 0, i.e. wPoly(p) =∑N
i=j ai · pi. Then the limit is lim

p→0+

wPoly(0.5p)

wPoly(p)
= 0.5j.

The third degree polynomial weighting function wRW06(p) =

3−3b
a2−a+1

(p3 − (a+ 1)p2 + ap)+p with a, b ∈ (0, 1) proposed by Rieger &

Wang (2006) is a special case with limit lim
p→0+

wRW06(0.5p)
wRW06(p)

= 0.5 because

a, b ∈ (0, 1) imply a1 6= 0.

Before we get to the crux of our paper, namely the restrictions on finite

willingness to pay for LSTP inhibit the emergence of the common ratio

effect, it is now easy to restate some selected results from the literature

on the willingness to pay for the St. Petersburg lottery LSTP (see, e.g.,

Blavatskyy (2005) and Rieger & Wang (2006)):

Example 2.3 Suppose the CPT decision maker exhibits a power value

function vPower(x) = xα with α ∈ (0, 1). Hence, v(0.5z)
v(z)

= 0.5α is independent

of z. From Theorem 2.2 and Example 2.2, we know that:

(i) With parametrization of the probability weighting function w

as in Tversky & Kahneman (1992) or Goldstein & Einhorn

(1987), i.e. wTK92(p) = pγ/ (pγ + (1− p)γ)1/γ or wlog−odds(p) =

δpγ/ (δpγ + (1− p)γ), respectively, the willingness to pay for the

St. Petersburg lottery LSTP is finite if and only if α < γ.
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(ii) With the Prelec (1998) parametrization wPrelec(p) = e−(− log p)γ , finite

willingness to pay for the St. Petersburg lottery LSTP implies γ ≥ 1. In

other words, finite willingness to pay is not possible with the inverse S-

shaped probability weighting function wPrelec. This result foreshadows

the conflict with the common ratio effect which exactly requires an

inverse S-shaped probability weighting function.

(iii) The CPT decision maker states finite willingness to pay for LSTP for

all polynomial probability weighting functions because 0.5α > 0.5j for

all coefficient indices j = 1, 2, . . . as in Example 2.2, part d).

Example 2.4 Suppose the CPT decision maker exhibits Bell’s (1988) one-

switch function v(x) = βx−e−αx+1 which is unbounded, strictly increasing,

and strictly concave for α > 0 and β > 0. Then,

lim
z→∞

v(0.5z)

v(z)
= lim

z→∞

β0.5z − e−α0.5z + 1

βz − e−αz + 1

l′Hospital
= lim

z→∞

0.5β + 0.5αe−α0.5z

β + αe−αz
= 0.5

and from Theorem 2.2, statement c) and Examples 2.2, we know that:

(i) For parametrizations of the probability weighting function w as

in Tversky & Kahneman (1992), Goldstein & Einhorn (1987), or

Prelec (1998) i.e. wTK92(p) = pγ/ (pγ + (1− p)γ)1/γ, wlog−odds(p) =

δpγ/ (δpγ + (1− p)γ), or wPrelec(p) = e−(− log p)γ , respectively, an

inverse-S shaped weighting function w never leads to finite willingness

to pay for the St. Petersburg lottery LSTP because γ ∈ (0, 1). If γ > 1

then willingness to pay is finite.

(ii) Consider polynomial probability weighting functions wPoly(p) =∑N
i=1 ai · pi with parameters ai ∈ R for i = 1, . . . , N and aN 6= 0.

Then, willingness to pay for LSTP is finite if and only if a1 = 0. In

particular, a probability weighting function’s finite slope at probability

p = 0 is not enough to guarantee finite willingness to pay for the

St. Petersburg lottery.
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2.2.2 The common ratio effect under CPT

The Allais paradox is a traditional counterexample against EUT and comes

along in different versions. We focus on the common ratio version which

involves choices between equal mean lotteries5

L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) = ($0.5z, p; $0, 1− p) (2.27)

where z > 0 denotes a payoff amount and p a probability. Empirically,

subjects choose the safer lottery L2 for high probabilities p and the riskier

lottery L1 for low probabilities p.6 EUT’s independence axiom, however,

does not allow for this change in preference over L1 and L2 for varying

probabilities p.

By introducing probability weighting, CPT is able to explain this choice

behavior. In the CPT framework, a risk seeking choice is predicted when

CPT (L1) > CPT (L2)

⇔ v(z) · w(0.5p) + v(0) · [1− w(0.5p)] > v(0.5z) · w(p) + v(0) · [1− w(p)]

(2.28)

⇔ w(0.5p)

w(p)
− v(0.5z)− v(0)

v(z)− v(0)
> 0 (2.29)

and a risk averse choice results vice versa. Using Assumption 2 whereby

v(0) = 0, we define the common ratio effect with the help of Equation (2.29).

Definition 2.2 (Common ratio effect) Let v be a value function and w

be a probability weighting function. We say that, in this CPT framework

with equal mean lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) =

5More generally, the results of this section easily extend to lotteries L1(p) =
($z,∆p; $0, 1−∆p) and L2(p) = ($∆z, p; $0, 1− p) with ∆ ∈ (0, 1). However, to analyze
the conflict with the St. Petersburg paradox, we focus on lotteries with payoff and
probability ratio of ∆ = 0.5 which is a common choice in experiments.

6Lottery L1(p) is called riskier than the lottery L2(p) because L1(p) is a mean-
preserving spread of L2(p).
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($0.5z, p; $0, 1− p) with payoff z > 0, the common ratio effect is predicted

if and only if there exists exactly one sign change in function

fCRE(p) =
w(0.5p)

w(p)
− v(0.5z)

v(z)
, (2.30)

that is, there exists exactly one preference reversal probability p∗ such that

fCRE(p) > 0 for p ∈ (0, p∗) and fCRE(p) < 0 for p ∈ (p∗, 1].

This definition already foreshadows the conflict between the common

ratio effect and the necessary conditions for finite willingness to pay for the

St. Petersburg Lottery as stated in Theorem 2.2. This definition is also a

little stricter than we need for our purposes. We can relax the assumption of

a single preference reversal probability as long as there exists a probability p∗

such that fCRE(p) > 0 for p ∈ (0, p∗). Put differently, we need to assume

that, for sufficiently small probabilities p, the decision maker chooses the

riskier lottery which we find is an intuitive criterion. Nevertheless, multiple

preference reversal probabilities appear awkward as they would imply, at

odds with lab results, rather erratic behavior.

The following proposition is a trivial consequence of the previous

definition and explicitly states necessary conditions for the common ratio

effect.

Proposition 2.1 (Emergence of the common ratio effect)

Let v be a value function and w be a probability weighting function.

Consider the equal mean lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p) and

L2(p) = ($0.5z, p; $0, 1− p). Then it holds:

a) For fixed payoff z, one necessary condition7 for the prediction of the
7There are more necessary conditions, of course. This one, however, unveils the

conflict with finite willingness to pay for the St. Petersburg lottery LSTP . Another obvious
necessary condition is lim

p→1

w(0.5p)
w(p) = w(0.5) ≤ v(0.5z)

v(z) .
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common ratio effect as defined in Definition 2.2 is

lim
p→0+

w(0.5p)

w(p)
≥ v(0.5z)

v(z)
. (CRE)

b) Allais (1953) suggests that statement a) holds for all payoffs z, in

particular large payoffs. This leads to the necessary condition:

lim
p→0+

w(0.5p)

w(p)
≥ lim

z→∞

v(0.5z)

v(z)
. (CRE∗)

Clearly, if the v-ratio v(0.5z)
v(z)

is independent of the payoff z then the

two necessary conditions CRE and CRE∗ coincide. This is the case for

the power value function vPower(x) = xα, α ∈ (0, 1) which is the, by far,

most often employed parametrization of the value function. Further, the

necessary conditions CRE∗ in Proposition 2.1 and STP ∗ in Theorem 2.2,

respectively, leave at best a corner solution for many CPT calibrations. Put

together, both restrictions require for continuous w

lim
p→0+

w(0.5p)

w(p)
= lim

z→∞

v(0.5z)

v(z)
. (2.31)

However, statement c) in Theorem 2.2 rules out such cases where

lim
p→0+

w(0.5p)

w(p)
= lim

z→∞

v(0.5z)

v(z)
∈ (0, 1). (2.32)

In particular, using a power value function vPower for which always

lim
z→∞

v(0.5z)
v(z)

∈ (0, 1), will always result in a strict conflict between the

restrictions on the St. Petersburg and the Allais paradox if the probability

weighting function is continuous.

The remaining case lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 1 is ruled out by the

following proposition.

Proposition 2.2 Let w be a strictly increasing and continuous probability

weighting function and v be a strictly increasing value function with v(0) =
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0. If lim
z→∞

v(0.5z)
v(z)

= 1 then the common ratio effect does not emerge for

large payoffs z in lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) =

($0.5z, p; $0, 1− p). Put differently, by increasing z, the preference reversal

probability p∗, given by the intersection of function fCRE(p) = w(0.5p)
w(p)

− v(0.5z)
v(z)

with the abscissa, can be moved arbitrarily close to zero if it exists at all.

Proof of Proposition 2.2: Since 0 ≤ w(0.5p)
w(p)

≤ 1 for all probabilities p and

lim
z→∞

v(0.5z)
v(z)

= 1, the function fCRE(p) = w(0.5p)
w(p)

− v(0.5z)
v(z)

is, for p → 0+,

either negative or arbitrarily close to zero for sufficiently high payoffs z.

That is, the intersection probability p∗, also denoted the preference reversal

probability, moves for large z arbitrarily close to zero if it exists at all.

Bounded value functions always imply finite willingness to pay for the

St. Petersburg lottery. However, the following corollary shows that they have

difficulties predicting the Allais paradox because bounded value functions

always have a v-ratio limit equal to one.

Corollary 2.2 Let v be a bounded and strictly increasing value function

with v(0) = 0. Then the common ratio effect does not emerge for

large payoffs z in lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) =

($0.5z, p; $0, 1− p) because, by increasing z, the preference reversal prob-

ability p∗, given by the intersection of function fCRE(p) = w(0.5p)
w(p)

− v(0.5z)
v(z)

with the abscissa, can be moved arbitrarily close to zero if it exists at all.

Proof of Corollary 2.2: For bounded strictly increasing value functions v

with v(0) = 0, it holds: lim
z→∞

v(0.5z)
v(z)

= 1. Assume lim
x→∞

v(x) = b for some

upper bound b > 0. Hence, v(0.5z)
v(z)

−→
z→∞

b
b

= 1. Then, the statement follows

from Proposition 2.2.

Before we summarize these findings in our main Theorem 2.4 and

discuss further the, by now clear, tension between the two presumably

most prominent paradoxes in decision theory, we illustrate implications of
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Definition 2.2 with Figure 2.1. This illustration is worthwhile for several

reasons. First, some calibrations from the literature do not predict the

common ratio effect while others do. Second, we show that several preference

reversal points are theoretically possible. Third, it nicely hints at the role

of Proposition 2.2 although we use the power value function. Fourth, it

indicates similarities and differences between the weighting functions wTK92,

wlog−odds, wPrelec, wPoly, and wneo.

Figure 2.1 depicts function fCRE as defined in Definition 2.2. We focus

on Tversky & Kahneman’s (1992) CPT parametrization in Panel A and vary

the specification of the probability weighting function in Panel B. Since we

assume the power value function vPower(x) = xα, no assumption about

the lottery payoffs z is needed. Specifically, Panel A depicts the following

function:

fTK92(p) = 0.5γ ·
[

pγ + (1− p)γ

(0.5p)γ + (1− 0.5p)γ

] 1
γ

− 0.5α. (2.33)

Positive function values of (2.33) indicate risk seeking behavior and negative

values risk averse behavior. The black solid line depicts an individual’s risk

attitude when assuming Tversky & Kahneman’s (1992) suggested median

parameters α = 0.88 and γ = 0.61. In line with Definition 2.2, a risk seeking

choice is predicted for p < 0.91 and a risk averse choice otherwise. Estimates

(α, γ) = (0.77, 0.67), taken from Bleichrodt & Pinto (2000), make similar

predictions. The decision maker behaves risk averse roughly for probabilities

p > 0.81 and risk seeking otherwise. Interestingly, parameter estimations

by Camerer & Ho (1994) and Wu & Gonzalez (1996) who estimate the

parameter sets (α, γ) = (0.37, 0.56) and (α, γ) = (0.50, 0.71), respectively,

uniformly display risk aversion for all probabilities p and, hence, do not
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Panel A: Common ratio effect for different parameter sets (α, γ) of Tversky &
Kahneman’s (1992) CPT parametrization.
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Panel B: Common ratio effect for various probability weighting functions.

Figure 2.1: Common ratio effect under CPT.

Notes: This figure illustrates the common ratio effect under various parametrizations of CPT by
depicting the function fCRE(p) = w(0.5p)/w(p)−v(0.5z)/v(z) as a function of probability p. The
decision maker has the choice between the equal mean lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p)
and L2(p) = ($0.5z, p; $0, 1− p). For positive function values fCRE , she behaves risk seeking
and prefers the riskier lottery L1 over the safer lottery L2. Conversely, for negative values fCRE ,
she behaves risk averse and prefers L2 over L1. In Panel A, the individual’s preferences are
given by the value function v(x) = xα and the weighting function wTK92 for different parameter
sets (α, γ) including those estimated in Tversky & Kahneman (1992), Camerer & Ho (1994),
Wu & Gonzalez (1996), and Bleichrodt & Pinto (2000) denoted in the legend by TK92, CH94,
WG96, and BP00, respectively. In Panel B, the value function is fixed as v(x) = x0.88 (Tversky &
Kahneman, 1992) and the weighting function takes the forms wTK92, wlog−odds, wPrelec, wRW06,
and wneo. Due to the form of the value function, no assumption about z is needed. Function
values of fCRE are depicted for weighting functions with parameter estimates of Tversky &
Kahneman (1992) for TK92, estimates of Bleichrodt & Pinto (2000) for Prelec and Log-odds,
parameter values motivated by Rieger & Wang (2006) for a cubic weighting function, and the
neo-additive weighting function with intercept a = 0.05 and slope b = 0.8, respectively.
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explain the common ratio effect.8 However, as argued in Section 2.2.1, these

parameter combinations are in line with finite willingness to pay for the

St. Petersburg lottery because α < γ.

In addition, we plot two illustrative pairs of preference parameters.

Cases where α = γ < 1 are interesting in the Tversky & Kahneman

(1992) parametrization because they robustly predict a single preference

reversal point with risk prone behavior for low probabilities p (positive

fCRE) and risk averse behavior for larger probabilities p (negative fCRE),

but the limiting case in Equation (2.33) yields limp→0 fCRE(p) = 0. Panel

A illustrates the case α = γ = 0.61.

Interestingly, the pair α = 0.5 and γ = 0.61 has two preference reversal

points, yielding risk prone behavior for intermediate probabilities between

0.1 and 0.38 and risk averse behavior otherwise. Such cases are bad empirical

predictors because real decision makers exhibit a single preference reversal

point with lower probabilities typically leading to more risk prone choices.

Panel B of Figure 2.1 illustrates that this problem also arises for

weighting functions with finite slope at zero such as the cubic weighting

function wRW06(p) = 3−3b
a2−a+1

(p3 − (a+ 1)p2 + ap) + p of Rieger & Wang

(2006), see also Proposition 2.3 and Example 2.5 below. In the context of

our paper, the failure of the polynomial weighting function wRW06 to explain

the common ratio effect is particularly interesting since it was primarily

designed to explain the St. Petersburg paradox (Rieger & Wang, 2006).

Moreover, Panel B fixes the value function as v(x) = x0.88 and

shows that the image of fCRE is for the approximate range 0.56 ≤

p ≤ 1 very similar for all four continuous probability weighting functions
8Neilson & Stowe (2002) note that the parameter estimates of Camerer & Ho (1994)

and Wu & Gonzalez (1996) are unable to predict gambling on unlikely gains and the
choice behavior of Allais’ original common consequence example. In contrast to Neilson &
Stowe (2002), we do not call for new parametrizations of CPT. Our Allais - St. Petersburg
test evaluates CPT in its most general form and does not rely on specific parametrizations
of the value and probability weighting function.
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wTK92, wlog−odds, wPrelec, and wRW06 with standard parameter values but

significantly different for lower probabilities 0 ≤ p ≤ 0.56. While wTK92 and

wlog−odds seem to treat all probabilities very similar, wPrelec and wRW06 go

into the opposite direction when probabilities get smaller. This discrepancy

nicely foreshadows the conflict between the conditions of the Allais and

St. Petersburg paradox since both weighting functions are motivated by

one paradox, respectively. Note that Prelec (1998) motivates his probability

weighting function wPrelec(p) = e−(− log p)γ with Allais’ common ratio effect.

Similarly, the discontinuous neo-additive weighting function results in a

strictly decreasing function fCRE and predicts the common ratio effect.

Figure 2.1 also shows that fCRE does not need be a monotone function in p.

Monotonicity is guaranteed, however, if we use a subproportional probability

weighting function such as wPrelec (Prelec, 1998) or neo-additive ones.

The next proposition shows that a combination of a probability

weighting function with finite slope at zero and a strictly concave value

function cannot explain the common ratio effect.

Proposition 2.3 Let the value function v be strictly concave and let the

probability weighting function w be right-differentiable around zero and the

slope of w at zero be finite, i.e. w′(0+) = c with 0 ≤ c < ∞. Then,

lim
p→0+

w(0.5p)
w(p)

≤ 0.5 and the CPT decision maker always prefers the safer

lottery L2(p) = ($0.5z, p; $0, 1− p) over L1(p) = ($z, 0.5p; $0, 1− 0.5p) for

any payoff z > 0 when the probabilities p and 0.5p tend to zero. In particular,

the common ratio effect does not emerge.

Proof of Proposition 2.3: If w is monotonically increasing with w(0) = 0,

w(1) = 1 and w′(0+) = c, 0 < c < ∞, then applying the rule of l’Hopital

directly shows that

lim
p→0+

w(0.5p)

w(p)

l′Hopital
= lim

p→0+

w′(0.5p) · 0.5
w′(p)

=
w′(0) · 0.5
w′(0)

= 0.5 . (2.34)
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For w′(0) = 0, the general monotonicity assumption of w ensures that there

exists a p0 ∈ (0, 1] such that w is convex for p ∈ [0, p0], i.e. w(0.5p) ≤

0.5w(p).

Since v is strictly concave it follows that 0.5 < v(0.5z)
v(z)

< 1 for any z > 0

and

lim
p→0+

fCRE(p) = lim
p→0+

w(0.5p)

w(p)︸ ︷︷ ︸
≤0.5

− v(0.5z)

v(z)︸ ︷︷ ︸
>0.5

< 0 (2.35)

which is equivalent to L2 � L1. This, however, contradicts the empirical

evidence of the common ratio effect and, hence, Definition 2.2.

In light of Example 2.1, the next proposition shows that neo-additive

weighting functions are a prime candidate to solve both paradoxes.

Proposition 2.4 Let w be the neo-additive probability weighting function

with intercept a and slope b with a, b > 0 and a+ b ≤ 1. Then the common

ratio effect emerges between Lotteries L1 and L2 with payoffs determined by

z if and only if

a+ 0.5b

a+ b
<
v(0.5z)

v(z)
< 1. (2.36)

Proof of Proposition 2.4: Observe that the function fCRE(p) = wneo(0.5p)
wneo(p)

−
v(0.5z)
v(z)

is strictly decreasing in p:

∂fCRE
∂p

= − 0.5 · a · b
(a+ b · p)2

< 0 ∀ p ∈ (0, 1) if a, b > 0. (2.37)

Since limp→0+ fCRE(p) = 1 − v(0.5z)
v(z)

and limp→1 fCRE(p) = a+0.5b
a+b

− v(0.5z)
v(z)

,

the common ratio effect then emerges if and only if the conditions in the

proposition are fulfilled.

The class of neo-additive weighting functions is the simplest class

of weighting functions that allows a solution to both paradoxes. In

Subsection 2.2.3, we will show how to extend the class of weighting functions
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so as to accommodate more complex choice behavior for intermediate

probabilities (Harless & Camerer, 1994; Wu & Gonzalez, 1996). We conclude

this subsection with two examples.

Example 2.5 Let the value function v be strictly concave. With polynomial

probability weighting functions wPoly(p) =
∑N

i=1 ai·pi with parameters ai ∈ R

for i = 1, . . . , N and aN 6= 0, the choice behavior in the common ratio effect

according to Definition 2.2 cannot be predicted. To see this, note that it

holds 0 ≤ w′Poly(0) <∞. Then, Proposition 2.3 applies.

Example 2.6 Consider wPrelec(p) = e−(− log p)γ proposed by Prelec (1998).

It is subproportional and lim
p→0+

wPrelec(0.5p)
wPrelec(p)

= 1 for γ ∈ (0, 1), see

Example 2.2. Assume the value function is given by vLog(x) = log(1 +

x). Then, lim
p→0+

wPrelec(0.5p)
wPrelec(p)

= lim
z→∞

vLog(0.5z)

vLog(z)
= 1 is a corner case for

the necessary conditions (CRE∗) and (STP ∗). However, the empirically

observed common ratio effect cannot be predicted because of Proposition 2.2.

Intuitively, by using ever larger payoffs z in the common ratio lotteries L1

and L2, as is supported by experimental evidence in Allais (1953), we can

move the preference reversal probability p∗ arbitrarily close to zero.

Interestingly, Example 2.8 in Appendix A.2 shows that the combination of

vLog and wPrelec produces finite willingness to pay for the St. Petersburg

lottery. Theoretically then, smaller payoffs z might offer a solution to

both paradoxes with vLog and wPrelec. However, a sensitivity analysis in

Appendix A.2 unveils for various combinations of v and continuous w that

only unreasonably small z would do the trick.

2.2.3 Summary: Allais - St. Petersburg conflict in CPT

We summarize our findings in the following theorems which distinguish

between discontinuous and continuous probability weighting functions.
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Specifically, in the latter case of continuous weighting functions, no solution

exists, in particular for large payoffs. In the former case of discontinuous

weighting functions, the class of neo-additive weighting functions opens

the door for a broader class of weighting functions which can additionally

accommodate more complex choice behavior as found, for example, by

Harless & Camerer (1994) than neo-additive functions which are linear for

probabilities in (0, 1).

In the following, we shall include explicit statements about the power

value function because of its predominant use in the literature although

it constitutes a trivial corollary of more general results. Cases where for

fixed payoff z and z/2 in lotteries L1 and L2, respectively, it holds v(0.5z)
v(z)

<

lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 1 are not covered here. They might theoretically

allow for finite willingness to pay for the St. Petersburg lottery LSTP and the

emergence of the common ratio effect for small or maybe even moderately

large payoffs z. A sensitivity analysis in Appendix A.2, however, rules out

any realistic cases for specific parametrizations.

Theorem 2.3 (Simultaneous solution to both paradoxes)

Let wneo be defined by

w(p) =


0 for p = 0

a+ b · p for p ∈ (0, 1)

1 for p = 1

, (2.38)

with a, b > 0 and a + b ≤ 1. Let further v be a continuous and strictly

increasing value function. The common ratio lotteries are given by L1(p) =

($z, 0.5p; $0, 1− 0.5p) and L2(p) = ($0.5z, p; $0, 1− p) with z > 0. Then it

holds:

a) Let the probability weighting function be given by wneo. Assume

the decision maker strictly prefers the risky lottery L1 over L2 for
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probabilities near zero and the safe lottery L2 over L1 for probabilities

near one for all sufficiently high payoffs z. This is equivalent to
a+0.5b
a+b

< v(0.5z)
v(z)

< 1 for all payoffs z ≥ z0 for some z0 >

0. Furthermore, in those cases, the decision maker states finite

willingness to pay for playing the St. Petersburg lottery LSTP .

In other words, a+0.5b
a+b

< v(0.5z)
v(z)

< 1 for all payoffs z ≥ z0 for some z0 >

0 is equivalent to the simultaneous solution of both the St. Petersburg

paradox and the common ratio version of the Allais paradox for all

sufficiently large payoffs in the common ratio lotteries.

b) Assume the probability weighting function is given by w(p) = wneo ◦

wcont.(p) = wneo(wcont.(p)), where wcont. is a continuous and strictly

increasing probability weighting function. If the decision maker states

finite willingness to pay for playing the St. Petersburg lottery LSTP

and strictly prefers the risky lottery L1 over L2 for probabilities near

zero and the safe lottery L2 over L1 for probabilities near one for all

sufficiently high payoffs z ≥ z0, z0 > 0, then for all z ≥ z0 it holds

(necessary conditions)

a+ bwcont.(0.5)

a+ b
<
v(0.5z)

v(z)
, (2.39)

1 >
v(0.5z)

v(z)
, (2.40)

lim
p→0+

wcont.(0.5p)

wcont.(p)
≤ lim

z→∞

v(0.5z)

v(z)
. (2.41)

c) Assume that, in the situation of part b), all inequalities hold strictly

and the function fCRE(p) = w(0.5p)
w(p)

− v(0.5z)
v(z)

has, for every fixed z, a

single intersection point p∗ ∈ (0, 1) with the abscissa, that is, there is

a single preference reversal probability p∗ between the common ratio

lotteries L1 and L2. Then, both Allais’ common ratio effect for all fixed
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payoffs z and a finite willingness to pay for the St. Petersburg lottery

emerge.

Proof of Theorem 2.4: We start by proving a). The common ratio effect

for all payoffs z ≥ z0 for some z0 > 0 is, by Proposition 2.4, equivalent

to 1 > v(0.5z)/v(z) > a+0.5b
a+b

for all z ≥ z0. In those cases, it holds that

1 ≥ lim
z→∞

v(z)
v(0.5z)

≥ a+0.5b
a+b

> 0.5 because a+0.5b
a+b

> 0.5 for a > 0. From

Example 2.1, then, lim
z→∞

v(z)
v(0.5z)

> 0.5 is equivalent to the finite willingness

to pay for playing LSTP .

For statement b), similar arguments as for Proposition 2.4 show that

the common ratio effect implies a+bwcont.(0.5)
a+b

< v(0.5z)/v(z) < 1 which

proves Equations (2.39) and (2.40). Theorem 2.1 gives a necessary condition

for convergence of the CPT value for the St. Petersburg lottery as follows:

lim
z→∞

v (z)

v (0.5z)
· lim
p→0+

∣∣∣∣w(0.5p)− w(0.25p)

w(p)− w(0.5p)

∣∣∣∣ ≤ 1. (2.42)

After substituting w(p) = wneo(wcont.(p)) we get

lim
z→∞

v (z)

v (0.5z)
· lim
p→0+

∣∣∣∣wcont.(0.5p)− wcont.(0.25p)

wcont.(p)− wcont.(0.5p)

∣∣∣∣ ≤ 1 (2.43)

which, given the continuity of wcont. and Lemma 2.1 in Appendix A.1, leads

to

lim
p→0+

wcont.(0.5p)

wcont.(p)
≤ lim

z→∞

v(0.5z)

v(z)
. (2.44)

This last equation is the same as Equation (2.41).

Statement c) is clear because the first two Inequalities (2.39) and (2.40)

guarantee the common ratio effect with a single preference reversal point

and the previous arguments with the ratio test show that the strict version

of the last Inequality (2.41) is sufficient for the solution of the St. Petersburg

paradox (see also Theorem 2.1).

Note that although Prelec’s (1998) probability weighting function itself

is a prime candidate to predict the common ratio effect it is likely less
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successful to also predict the St. Petersburg paradox when combined with

the neo-additive probability weighting function because of condition (2.41).

We provide two simple examples for a solution to both paradoxes.

Example 2.7 a) Let the value function be given by v(x) = xα with α =

0.7 and the neo-additive probability weighting function be given by a =

0.1 and b = 0.8. Then, the certainty equivalent or, equivalently, the

willingness to pay for the St. Petersburg lottery equals

CE(LSTP ) := v−1

(
∞∑
k=1

v
(
2k
)
·
[
w
(
21−k)− w (2−k)]) (2.45)

=

[
∞∑
k=1

2αk · b · 2−k
] 1
α

(2.46)

=

[
b ·

∞∑
k=1

(
0.51−α)k] 1

α

(2.47)

α<1
=

[
b

21−α − 1

] 1
α

= 5.892. (2.48)

It it also clear from Theorem 2.3, part a), that the common ratio

effect is predicted because a+0.5b
a+b

= 5
9
< v(0.5z)

v(z)
= 0.5α = 0.616 < 1. The

preference reversal probability is given by

a+ b · 0.5p∗

a+ b · p∗
!

= 0.5α (2.49)

⇔ p∗ =
a (1− 0.5α)

b (0.5α − 0.5)
= 0.416 (2.50)

and is well in line with ranges proposed by Kahneman & Tversky

(1979) and Starmer & Sugden (1989).

b) Let the value function be given by v(x) = xα, α > 0, and the probability

weighting function be given by w(p) = wneo◦wcont.(p) = wneo(wcont.(p))

where the neo-additive weighting function wneo is given by intercept

a > 0 and slope b > 0 and the continuous weighting function

wcont.(p) = pγ, γ > 0.
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Then, Inequality (2.40) is fulfilled because v(0.5z)

v(z)
= 0.5α < 1 ∀α > 0;

Inequality (2.41) holds strictly if α < γ. Function fCRE(p) = w(0.5p)
w(p)

−
v(0.5z)
v(z)

is strictly decreasing in p since its derivative is negative for all

p ∈ (0, 1):
∂fCRE
∂p

= −abγ (1− 0.5γ) pγ−1

(a+ bpγ)2 < 0 (2.51)

and Inequality (2.39) then ensures a single intersection with the

abscissa.

Specifically, for α = 0.88, a = 0.1, b = 0.8, and γ = 2, Equation (2.39)

is fulfilled because 0.1+0.8·0.52
0.1+0.8

= 1
3
< 0.50.88 = 0.543. The preference

reversal probability equals

p∗ =

[
a (1− 0.5α)

b (0.5α − 0.5γ)

] 1
γ

= 0.441. (2.52)

The certainty equivalent of the St. Petersburg lottery is

CE(LSTP ) =

[
∞∑
k=1

2αk · b · 2−γk · (2γ − 1)

] 1
α

(2.53)

=

[
b(2γ − 1) ·

∞∑
k=1

(
0.5γ−α

)k] 1
α

(2.54)

=

[
b(2γ − 1)

2γ−α − 1

]1/α

= 2.255. (2.55)

However, when preferences are given by continuous functions, no

simultaneous solution to both paradoxes exists:

Theorem 2.4 (Continuity and the conflict between both paradoxes)

Assume decision makers behave according to CPT with continuous and

strictly increasing value function v and continuous and strictly increasing

probability weighting function w. The common ratio lotteries are given by

L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) = ($0.5z, p; $0, 1− p) with z > 0.

a) Assume the common ratio effect shows up for all payoffs z, in

particular for large payoffs z as argued by Allais (1953). Then, there
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does not exist a simultaneous solution to both the St. Petersburg

paradox and the common ratio effect.

b) Assume v(x) = xα with α > 0. Then, there does not exist a

simultaneous solution to both the St. Petersburg paradox and the

common ratio effect.

Proof of Theorem 2.4: We start by proving statement a). Any solution

to both paradoxes requires that lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

because of

Theorem 2.2, part b), and Proposition 2.1. Now, two cases can occur:

1) If lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

∈ (0, 1) then the decision maker always

states infinite willingness to pay for the St. Petersburg lottery LSTP

(see Theorem 2.2, statement c)). This is at odds with the empirical

observation whereby decision makers report finite willingness to pay.

2) If lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 1 then, by increasing the payoff z in

lotteries L1 and L2, we can move the preference reversal probability p∗

arbitrarily close to zero which rules out a solution to the common ratio

effect. This is proven in Proposition 2.2.

Note that the case lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 0 can be ruled out. To see

this, observe that a risk averse choice in the common ratio effect for large

probabilities (p→ 1) implies the necessary condition lim
p→1

w(0.5p)
w(p)

= w(0.5) ≤

lim
z→∞

v(0.5z)
v(z)

. Since w is strictly increasing and w(0) = 0, this necessary

condition can never be fulfilled when lim
z→∞

v(0.5z)
v(z)

= 0.

Statement b) is a trivial corollary of case 1) because the v-ratio v(0.5z)
v(z)

equals 0.5α ∈ (0, 1) independent of payoff z.

Admittedly, allowing payoffs z and 0.5z in lotteries L1 and L2,

respectively, to grow infinitely large in Condition (CRE∗) is extreme. In

special cases, such as the power value function, this is not necessary because
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then the v-ratio v(0.5z)

v(z)
is independent of z. Here, the conflict between both

paradoxes appears directly. For other parametrizations of the value function,

calibration exercises in Appendix A.2 unveil that already moderately large

payoffs z run counter real world decision makers’ behavior.

Note also that the conflict between finite willingness to pay in the

St. Petersburg paradox and choice behavior as in the common ratio effect

is not a simple artifact of the preference reversal phenomenon, reported

in e.g. Lichtenstein & Slovic (1971). The preference reversal phenomenon

describes the puzzling fact that while subjects choose lottery A over lottery

B they simultaneously state higher certainty equivalents for lottery B

than for lottery A. Accounting for preference reversal effects, however,

makes the conflict between both paradoxes even more severe. To see this,

note that many studies of the preference reversal phenomenon involve

mean-preserving spread lotteries, similar to our L1 and L2. Empirically,

when subjects choose between L1 and L2, they have a tendency to exhibit a

more risk averse choice behavior going for L2 than their willingness to pay

suggests. Suppose, for given payoff z, choices indicate indifference between

L1 and L2 for some probability p. Then, switching from a choice to a

pricing task and asking for certainty equivalents would typically indicate

a preference for the riskier lottery L1 according the preference reversal

effect. Tversky et al. (1990) attribute this to more extreme overweighting

of small probabilities in pricing tasks. In the Tversky & Kahneman

(1992) framework, for example, this would be equivalent to an even lower

probability weighting parameter γCertainty Equivalent than revealed by previous

choices, that is γCertainty Equivalent < γChoice. But quite to the contrary, the

St. Petersburg paradox, which also involves a pricing task by stating a

certainty equivalent, requires a higher curvature parameter γ for finite

willingness to pay.

Finally, truncating the St. Petersburg lottery does not help much for
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typical parametrizations. Appendix A.3 analyzes various specifications with

truncation levels up to a payment of $240, that is, roughly one trillion dollar.

The essence of our previous conclusions remains unchanged.

2.3 Conclusion

It is striking that so many textbooks on decision theory start by outlining

the St. Petersburg paradox and the Allais paradox when motivating EUT

and CPT, respectively. However, a joint consideration of both paradoxes

has, to the best of our knowledge, never been done before. Since CPT is

widely accepted as the gold standard of descriptive theories of decision

making under risk and uncertainty, we study a potential discrepancy

between these two paradoxes within the framework of CPT. Our results

can be extended to other theories of decision making under risk with similar

additively separable utility across states.

The main result of our paper is that CPT with continuous preference

functions is not able to simultaneously explain the two most prominent

paradoxes in decision making under risk – the St. Petersburg paradox and

the Allais paradox. All attempts to solve to the Allais - St. Petersburg

conflict by changing the parametrizations of the CPT preference calculus

within the class of continuous functions are in vain. Rather, future research

shall embrace discontinuous weighting functions, such as neo-additive

weighting functions (Wakker, 2010) and their obvious nonlinear extensions.

In particular, exact calibrations are in order because neo-additive weighting

functions can have vastly different predictions than their nonlinear

extensions (consider, for example, pricing implications in capital markets, as

in Barberis & Huang, 2008). Using field data, Barseghyan et al. (2013) made

a first attempt in this direction, indicating a jump at probability zero and

explicitly rejecting continuous weighting functions. While they do not offer
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much advice on probabilities larger than 25%, Harless & Camerer (1994)

andWu & Gonzalez (1996) suggest nonlinearities for moderate probabilities.
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A. APPENDIX

A Appendix

A.1 Lemmata

Lemma 2.1 Suppose both limits below exist. Then, for a continuous and

strictly increasing probability weighting function w, it holds

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
= lim

p→0+

w(0.5p)

w(p)
. (A.1)

Proof of Lemma 2.1: Strict monotonicity of w ensures that w(0.5p)
w(p)

∈ [0, 1].

Therefore, lim
p→0+

w(0.5p)
w(p)

∈ [0, 1]. The same is true for w(0.5p)−w(0.25p)
w(p)−w(0.5p)

as the

following arguments show.

Monotonicity of w implies that w(0.5p)−w(0.25p)
w(p)−w(0.5p)

≥ 0. Assume, for proof

by contradiction, that

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
= λ > 1. (A.2)

Then, we can find p0 ∈ (0, 1) such that

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
> 1 (A.3)

for all sufficiently small probabilities p ∈ (0, p0] and for those p we have

w(0.5p)− w(0.25p) > w(p)− w(0.5p). (A.4)

Note that the last inequality also applies to probabilities p̂ = 0.5p which

leads to

w(0.52p)− w(0.53p) > w(0.5p)− w(0.52p) > w(p)− w(0.5p) (A.5)

and by iteration

w(0.5np)− w(0.5n+1p) > w(p)− w(0.5p) for all n = 1, 2, . . . . (A.6)
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Then w(p) can be written as a telescoping series for all probabilities p ∈

(0, p0) and we yield the following inequality:

w(0.5p) =
∞∑
n=1

(
w (0.5np)− w(0.5n+1p)

)
≥

∞∑
n=1

(w(p))− w(0.5p)) =∞

(A.7)

which is a contradiction. Hence, w(0.5p)−w(0.25p)
w(p)−w(0.5p)

∈ [0, 1].

We now prove Equation (A.1) by distinguishing cases. As a first case,

suppose that lim
p→0+

w(0.5p)
w(p)

< 1. Then

lim
p→0+

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
= lim

p→0+

1− w(0.25p)/w(0.5p)

1− w(0.5p)/w(p)
· lim
p→0+

w(0.5p)

w(p)

= lim
p→0+

w(0.5p)

w(p)

and both limits are equal.

In particular, if lim
p→0+

w(0.5p)−w(0.25p)
w(p)−w(0.5p)

= 1 then it cannot be that

lim
p→0+

w(0.5p)
w(p)

< 1. Hence, Equation (A.1) holds if lim
p→0+

w(0.5p)−w(0.25p)
w(p)−w(0.5p)

= 1.

As the last case, suppose lim
p→0+

w(0.5p)
w(p)

= 1. Assume, for proof by

contradiction, that lim
p→0+

w(0.5p)−w(0.25p)
w(p)−w(0.5p)

< 1. By similar arguments as above,

we can find λ ∈ (0, 1) such that

w(0.5p)− w(0.25p)

w(p)− w(0.5p)
≤ λ < 1 (A.8)

for all sufficiently small probabilities p less than some p0 ∈ (0, 1). By

iteration and using a telescoping series, we get

w(0.5p) =
∞∑
n=1

(
w(0.5np)− w(0.5n+1p)

)
(A.9)

≤
∞∑
n=1

λn (w(p))− w(0.5p)) =
λ

1− λ
(w(p))− w(0.5p)) . (A.10)

This last inequality is equivalent to

w(0.5p)

w(p)
≤ λ (A.11)

and, given that λ < 1, this is a contradiction. Hence, in any case,

Equation (A.1) holds provided both limits exist.
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Lemma 2.2 Let lim
p→0+

w(0.5p)
w(p)

= 0.5γ ∈ (0, 1). Then, for all ε > 0 there exists

p0 ∈ (0, 1) such that

w(p) ≥ const ·
(p

2

)γ+ε

(A.12)

for all p ∈ (0, p0].

Proof of Lemma 2.2: Assume lim
p→0+

w(0.5p)
w(p)

= 0.5γ ∈ (0, 1). Then for any

ε > 0 it holds 0.5γ ≥ 0.5γ+ε. Hence, it exists a p0 ∈ (0, 1) such that for all

p ∈ (0, p0]

w (0.5p) ≥ 0.5γ+εw(p) . (A.13)

Equation (A.13) holds in particular for p0 and iterating n times yields

w (0.5np0) ≥ 0.5n(γ+ε)w(p0) = (0.5np0)γ+ε w(p0)

pγ+ε
0

≥ (0.5np0)γ+ε w(p0)

pγ0
.

(A.14)

For any p ∈ (0, p0] we choose n ∈ {1, 2, . . .} such that

0.5np0 < p ≤ 0.5n−1p0. (A.15)

Then, it holds

w(p) >w (0.5np0) (A.16)

≥ (0.5np0)γ+ε w(p0)

pγ0
(A.17)

=0.5γ+ε
(
0.5n−1p0

)γ+ε w(p0)

pγ0
(A.18)

≥
(p

2

)γ+ε w(p0)

pγ0
(A.19)

=const ·
(p

2

)γ+ε

(A.20)

Lemma 2.3 Let lim
z→∞

v(0.5z)
v(z)

= 0.5α ∈ (0, 1). Then, for all ε > 0 there exist

x0 > 0 such that

v(x) ≥ const · xα−ε (A.21)

for all x ≥ x0.
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Proof of Lemma 2.3: Assume lim

z→∞
v(0.5z)
v(z)

= 0.5α ∈ (0, 1). Then for any ε > 0

it holds 0.5α ≤ 0.5α−ε. Hence, it exists a x0 > 0.5 such that for all x ≥ x0

v(0.5x) ≤ 0.5α−εv(x). (A.22)

Equation (A.22) holds in particular for x0 and iterating n times yields

v(2nx0) ≥ 2n(α−ε)v(x0). (A.23)

For any x ≥ x0, we choose n ∈ {0, 1, 2, . . .} such that

2nx0 ≤ x < 2n+1x0. (A.24)

Then, it holds

v(x) ≥v (2nx0) (A.25)

≥2n(α−ε)v(x0) (A.26)

=
(
2n+1x0

)α−ε v(x0)

(2x0)α−ε
(A.27)

≥xα−ε v(x0)

(2x0)α
(A.28)

=const · xα−ε (A.29)

A.2 Sensitivity analysis for the common ratio effect

with small payoffs

From our analyses in the main part of the paper it is clear that potentially

interesting cases require small or only moderately large payoffs z in lotteries

L1 and L2 and value functions with lim
z→∞

v(0.5z)
v(z)

= 1. This restriction excludes

Tversky & Kahneman’s (1992) suggested power value function v(x) = xα

and Bell’s (1988) one-switch function. Linear and quadratic utility functions

are clearly unable to explain both paradoxes. Table A.1 lists the remaining
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Table A.1: Functional forms for the value function v in gains.

Type Function v(x) Parameter
restriction

Bounded
utility

v(0.5z)

v(z)
lim
z→∞

v(0.5z)

v(z)

Exponential 1− e−αx α > 0 yes
1− e−α0.5z

1− e−αz
1

Logarithmic log(1 + αx) α > 0 no
log (1 + α0.5z)

log (1 + αz)
1

HARA 1−α
α

[(
x

1−α + β
)α

− βα
]

α < 0, β > 0 yes [0.5z/(1−α)+β]α−βα
[z/(1−α)+β]α−βα 1

typical forms of promising value functions. For these ones, we perform a

sensitivity analysis to gauge the set of payoff amounts z for which the

common ratio effect can be predicted.

Exponential value function

A promising alternative parametrization is the use of the exponential value

function v(x) = 1 − e−αx with α > 0. This value function is bounded and,

thus, automatically ensures finite willingness to pay for the St. Petersburg

lottery (Theorem 2.2, a)). It holds that lim
z→∞

v(0.5z)
v(z)

= 1. To simultaneously

predict the common ratio effect, a probability weighting function with

lim
p→0+

w(0.5p)
w(p)

= 1 is presumably most promising. A prime candidate would

be the commonly used weighting function wPrelec(p) = e−(− log p)γ with

γ ∈ (0, 1) as proposed by Prelec (1998).

Recall that, by Definition 2.2 of the common ratio effect, the decision

maker behaves risk seeking for all probabilities p ∈ (0, p∗) and risk averse

for all p ∈ (p∗, 1]. Technically, we solve the following equation for any pair
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Figure 2.2: Preference reversal points for the exponential value
and Prelec weighting function combination.

Notes: This figure depicts preference reversal points p∗ under CPT by solving
w(0.5p∗)/w(p∗) − v(0.5z)/v(z) = 0 for the pairs (p∗, αz). The decision maker
has the choice between the equal mean lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p)
and L2(p) = ($0.5z, p; $0, 1− p). The individual’s preferences are given by the
bounded value function v(x) = 1 − e−αx, α > 0 and Prelec’s (1998) probability
weighting function w(p) = e−(− log p)γ , γ ∈ (0, 1). The three lines indicate
individual’s preference reversal points for γ = {0.53, 0.74, 0.94}. The use of these
three parameter estimates is motivated by Bleichrodt & Pinto (2000), Wu &
Gonzalez (1996), and Stott (2006), respectively.

(p∗, αz):

CPT (L1)
!

= CPT (L2)

⇔ w(0.5p∗)

w(p∗)
=
v(0.5z)

v(z)
(A.30)

⇔ e−(− log(0.5p∗))γ

e−(− log p∗)γ
=

1− e−0.5αz

1− e−αz
(A.31)

Equation (A.31) determines the decision maker’s indifference point between

the lotteries L1 and L2 in (2.27) for given constant absolute risk aversion

coefficient α and payoff z.

Figure 2.2 depicts the preference reversal point p∗ as a function of αz

for the three weighting function parameter estimates γ = {0.53, 0.74, 0.94}

54



A. APPENDIX

reported in Bleichrodt & Pinto (2000), Wu & Gonzalez (1996), and Stott

(2006), respectively. For all three specifications, p∗ quickly converges to

zero when αz increases. Problems 7 and 8 in Kahneman & Tversky (1979)

conservatively suggest that, empirically, 0.002 < p∗ < 0.9. Thus, even the

lowest estimate γ = 0.53 of Bleichrodt & Pinto (2000) requires αz < 3.617

to ensure the lower boundary of the empirically observed reversal point p∗ >

0.002. The typical payoff z = $6000 leads to α < 3.617/6000 ≈ 0.000603

which is an unreasonably low constant absolute risk aversion. To the

contrary, De Giorgi & Hens (2006) suggest for the exponential value function

the parameter value α ≈ 0.2. The typical z = $6000 implies αz = 1, 200

which results in a v-ratio that is just infinitesimally smaller than one. Hence,

only when γ tends to zero – quite at odds with all calibration studies – the

w-ratio equals one and the common ratio effect emerges theoretically. An

alternative interpretation is that CPT counterfactually predicts a preference

for risky lottery L1(p = 0.002) only for z < $18.08. This is at odds with

experiments that show less frequent Allais type behavior for low payoffs

(Camerer, 1989; Conlisk, 1989; Fan, 2002; Huck & Müller, 2012; Agranov

& Ortoleva, 2017). We conclude that the combination of the exponential

value function and Prelec’s (1998) subproportional weighting function is no

viable solution to both paradoxes.

Recall that for probability weighting functions in, e.g., Tversky &

Kahneman (1992) and Goldstein & Einhorn (1987), it holds lim
p→0+

w(0.5p)
w(p)

=

0.5γ. Because limγ→0 0.5γ = 1, a sufficiently low γ and sufficiently low

payoff z, can theoretically explain both paradoxes in similar cases with

low αz combinations. Table A.2 provides a sensitivity analysis. It depicts

for exponential, logarithmic and HARA value functions and various (α, z)

combinations the maximum curvature parameter γ of the probability

weighting function that still predicts the common ratio effect. Evidently,

with the exponential value functions, payoffs of the order of z = 6.000 are
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Table A.2: Numerical upper boundaries for the curvature

parameter γ of the Tversky & Kahneman (1992) or Goldstein &
Einhorn (1987) weighting function for different values of α and z

such that the common ratio effect is predicted.

Payoff z

Type v Upper boundary for γ $100 $1,000 $6000 $20,000 $100,000

Exponential
log
(

1−e−α0.5z

1−e−αz

)
log(0.5)

α = 0.001 0.96 0.68 0.07 0 0

α = 0.01 0.68 0.01 0 0 0

α = 0.1 0.01 0 0 0 0

Logarithmic
log
(

log(1+α0.5z)
log(1+αz)

)
log(0.5)

α = 0.5 0.27 0.17 0.13 0.11 0.10

α = 1 0.23 0.15 0.12 0.10 0.09

α = 2 0.2 0.14 0.11 0.10 0.08

HARA
(β = 1)

log
(

[0.5z/(1−α)+β]α−βα
[z/(1−α)+β]α−βα

)
log(0.5)

α = −0.25 0.14 0.06 0.04 0.03 0.02

α = −0.5 0.08 0.02 0.01 0.01 0

α = −1 0.03 0 0 0 0

sufficient to wipe out the common ratio effect unless unrealistic preference

parameters are assumed. For example, with z = 6.000 and an extremely low

α = 0.001, the curvature parameter γ cannot exceed 0.07. Larger α values

are even more problematic.

Logarithmic value function

Next, we consider a logarithmic value function v(x) = log(1 + αx) with

α > 0. This value function exhibits sufficiently high risk aversion such

that the CPT decision maker reports finite willingness to pay for the

St. Petersburg lottery for typical probability weighting functions wTK92,

wlog−odds, or wPrelec. While the former two cases are a simple application of

Theorem 2.2, finite willingness to pay in the latter case (wPrelec) deserves

special attention in Example 2.8 below because lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 1.
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Example 2.8 Assume the value function is given by v(x) = log(1 + αx)

with α > 0 and the probability weighting function is given by wPrelec(p) =

e−(− log p)γ proposed by Prelec (1998). Then lim
p→0+

w(0.5p)
w(p)

= lim
z→∞

v(0.5z)
v(z)

= 1 and

the CPT decision maker states finite willingness to pay for LSTP .

Proof of Example 2.8: Observe that

wPrelec
(
21−k) = e−((k−1) log(2))γ < e−(k−1)γ log(2) = 2−(k−1)γ . (A.32)

For any given α > 0, it exists a k̄ ∈ N≥1 such that for all k ∈ N≥k̄

log
(
1 + α2k

)
< log

(
α2k+1

)
= log(2α) + k log(2). (A.33)

Then, the CPT value in Equation (2.1) is finite. As a first step we have

CPT (LSTP ) =

∞∑
k=1

log
(
1 + α2k

)
·
[
wPrelec

(
21−k)− wPrelec (2−k)] (A.34)

<

∞∑
k=1

log
(
1 + α2k

)
· wPrelec

(
21−k) (A.35)

=

k̄−1∑
k=1

log
(
1 + α2k

)
· wPrelec

(
21−k)

︸ ︷︷ ︸
=c<∞

+

∞∑
k=k̄

log
(
1 + α2k

)
· wPrelec

(
21−k)

(A.36)

< c+

∞∑
k=k̄

[log(2α) + k log(2)] · 2−(k−1)γ (A.37)

= c+

∞∑
k=k̄−1

[log(2α) + (k + 1) log(2)] · 2−k
γ

(A.38)

= c+ log(4α)

∞∑
k=k̄−1

2−k
γ

+ log(2)

∞∑
k=k̄−1

k2−k
γ

. (A.39)

The first term in (A.39) is a constant and the series
∑∞

k=k̄−1 2−k
γ is strictly

smaller than the series
∑∞

k=k̄−1 k2−k
γ . To assess convergence, it suffices to

prove convergence of
∑∞

k=0 k2−k
γ . The integral test, using the substitution
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x = kγ · log(2) with dk
dx

= 1
γ

(
1

log(2)

) 1
γ
x

1
γ
−1, shows convergence because∫ ∞

0

k2−k
γ

dk =

∫ ∞
0

ke−k
γ ·log(2)dk (A.40)

=
1

γ
log(2)−

2
γ

∫ ∞
0

x
2
γ
−1e−xdx (A.41)

=
1

γ
log(2)−

2
γ · Γ

(
2

γ

)
<∞, (A.42)

where Γ is the well known Gamma function.

Further, observe that wPrelec is subproportional and γ ∈ (0, 1) is a

necessary condition for the common ratio effect. The following function,

corresponding to function (2.30) depicted in Figure 2.1,

fwPrelec,vCRE∗ (p) =
w(0.5p)

w(p)
− lim

z→∞

v(0.5z)

v(z)
=
w(0.5p)

w(p)
− 1, (A.43)

is, thus, strictly monotonically decreasing in p and limp→0+ f
wPrelec,v
CRE∗ (p) = 0.

In other words, there is no preference reversal point p∗ and, thus, no common

ratio effect.

A sensitivity analysis is worthwhile because there might be a

realistically large set of moderate payoffs z for which condition (CRE)

is satisfied. Solving Equation (A.30) with wPrelec, vLog, and z = 6000

gives preference reversal points of virtually zero. The value is roughly

p∗ ≈ 7.32 × 10−11 for γ = 0.53 reported in Bleichrodt & Pinto (2000).

For larger γ, as reported in e.g. Wu & Gonzalez (1996) and Stott (2006),

the preference reversal point is even closer to zero.

Figure 2.3 depicts the preference reversal probability p∗ dependent on

the payoff z in lotteries L1 and L2. It unveils that p∗ quickly converges to

zero for moderately large payoffs. Convergence is faster for higher curvature

parameters γ. For z = 400, the Bleichrodt & Pinto (2000) estimate γ = 0.53

is not distinguishable from zero. In fact, this moderate case implies p∗ ≈

4.5× 10−5.
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Figure 2.3: Preference reversal points for the logarithmic value
and Prelec weighting function combination.

Notes: This figure depicts preference reversal points p∗ under CPT by solving
w(0.5p∗)/w(p∗) − v(0.5z)/v(z) = 0 for the pairs (p∗, z). The decision maker
chooses between the equal mean lotteries L1(p) = ($z, 0.5p; $0, 1− 0.5p) and
L2(p) = ($0.5z, p; $0, 1− p). The individual’s preferences are given by the
bounded value function v(x) = log(1+x) and Prelec’s (1998) probability weighting
function w(p) = e−(− log p)γ , γ ∈ (0, 1). The three lines indicate individual’s
preference reversal points for γ = {0.53, 0.74, 0.94}. The use of these three
parameter estimates is motivated by Bleichrodt & Pinto (2000), Wu & Gonzalez
(1996), and Stott (2006), respectively.

Table A.2 kills any hope for wTK92 and wlog−odds. For example, using

the typical amount z = 6000, condition (CRE) implies γ < 0.12 which is

unrealistically low. Further, Camerer & Ho (1994), Rieger & Wang (2006),

and Ingersoll (2008) show that for γ ≤ 0.28, wTK92 is not monotonically

increasing.

HARA value function

Our last candidate value function is the HARA value function vHARA(x) =

1−α
α

((
x

1−α + β
)α − βα) with α < 0 and β > 0. As the function is

bounded from above it automatically ensures finite willingness to pay in the
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Payoff z=10
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Figure 2.4: Preference reversal points for the HARA value and
Prelec weighting function combination.

Notes: This figure depicts preference reversal points p∗ under CPT on the ordinate
and risk aversion parameter α on the abscissa by solving w(0.5p∗)/w(p∗) −
v(0.5z)/v(z) = 0 for the pairs (p∗, α). The individual’s preferences are given
by the bounded value function v(x) = 1−α

α

((
x

1−α + β
)α
− βα

)
with α < 0 and

normalized β = 1 and Prelec’s (1998) probability weighting function w(p) =
e−(− log p)γ , γ ∈ (0, 1). The three lines indicate individual’s preference reversal
points for γ = {0.53, 0.74, 0.94}. The use of these three parameter estimates
is motivated by Bleichrodt & Pinto (2000), Wu & Gonzalez (1996), and Stott
(2006), respectively. The decision maker chooses between the equal mean lotteries
L1(p) = ($z, 0.5p; $0, 1− 0.5p) and L2(p) = ($0.5z, p; $0, 1− p). The upper panel
depicts the risk aversion parameter α if we fix z = 5 and the lower panel shows α
for z = 10.
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St. Petersburg paradox. However, Table A.2 unveils even more unrealistic

calibrations for the curvature parameter γ for the Tversky & Kahneman

(1992) or Goldstein & Einhorn (1987) probability weighting functions.

For example, if we use the typical payoff z = 6000 and value function

parameters α = −1 and β = 1 the largest plausible parameter would

be γ = 0.00048 which is neither supported by empirical calibrations nor

supported by – in the Tversky & Kahneman (1992) case – our stochastic

dominance assumption of a strictly increasing w (see, e.g., Camerer & Ho

(1994), Rieger & Wang (2006), or Ingersoll (2008)).

Figure 2.4 provides the results of a similar analysis with Prelec’s (1998)

probability weighting function wPrelec. It depicts preference reversal points

p∗ on the ordinate and risk aversion parameter α on the abscissa by solving
w(0.5p∗)
w(p∗)

− v(0.5z)
v(z)

= 0 for the pairs (p∗, α). Since the convergence of the

preference reversal probability p∗ to zero is so fast we depict the special

case z = 5 and z = 10 in the upper and lower panel, respectively. As before,

we use γ = {0.53, 0.74, 0.94}. For γ = 0.94 convergence is too quick to

visualize it in one of the graphs. These effects are considerably stronger for

larger values z. We conclude that using the HARA value function does not

yield practical solutions to both paradoxes.

A.3 Truncated St. Petersburg lotteries

As our testing ground, we propose the St. Petersburg paradox and the

Allais paradox because of their outstanding prominence and importance for

the development of new theories of decision making under risk throughout

the history of risky decision making. Some readers might feel tempted to

change this playing field. Especially the infinite expected payoff of the

St. Petersburg lottery sometimes spurs criticism. We consider this to be

scientific foul play. True, willingness to pay for the original St. Petersburg
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Figure 2.5: Certainty equivalents for the truncated
St. Petersburg gamble under CPT.

Notes: This figure illustrates the willingness to pay CE
(
L

(N)
STP

)
= v−1

(
CPT

(
L

(N)
STP

))
for the

truncated St. Petersburg lottery where N = 2, . . . , 40 determines the maximum payoff $2N . The
truncated gamble promises a payoff of $2k with probability 0.5k for k = 1, . . . , N−1 and a payoff
of $2N with probability 0.5N−1. In Panel A, the individual’s preferences are given by the value
function v(x) = xα and the probability weighting function wTK92(p) = pγ/ (pγ + (1− p)γ)1/γ

for different parameter sets (α, γ) including those estimated in Tversky & Kahneman (1992),
Camerer & Ho (1994), Wu & Gonzalez (1996), and Bleichrodt & Pinto (2000) denoted in
the legend by TK92, CH94, WG96, and BP00, respectively. In Panel B, the value function
is consistently v(x) = x0.88 (Tversky & Kahneman, 1992) and the weighting function takes the
forms wTK92, wlog−odds(p) = δpγ/ (δpγ + (1− p)γ), wPrelec(p) = e−(− log p)γ , and wRW06(p) =

3−3b
a2−a+1

(
p3 − (a+ 1)p2 + ap

)
+ p. Certainty equivalents CESTP are depicted for weighting

functions with parameter estimates of Tversky & Kahneman (1992) for wTK92, estimates of
Bleichrodt & Pinto (2000) for wPrelec and wlog−odds, and parameter values motivated by Rieger
& Wang (2006) for wRW06, respectively. The gray dashed line represents the expected value of
the lottery.
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lottery LSTP is difficult to elicit with monetary incentives. Nevertheless,

stated willingness to pay in hypothetical scenarios is reliable, though noisy

and real incentives would not change our conclusions (Holt & Laury, 2002,

2005).9

A typical concern is that subjects do not trust promises to payout

in the St. Petersburg lottery above a certain threshold (Tversky & Bar-

Hillel, 1983). Resorting to truncated versions of the St. Petersburg lottery,

however, is not much more than grasping at straws, as we shall see. Let L(N)
STP

denote the truncated St. Petersburg lottery which yields a payoff $2k with

probability 0.5k for k = 1, . . . , N − 1 and a payoff of $2N with probability

0.5N−1. The expected value of this lottery equals N + 1 and corresponds to

N − 1 possible rounds of coin flipping.10

By all indications, subjects behave risk averse in the original as well as

the truncated St. Petersburg lottery L(N)
STP (Bernoulli, 1738, 1954; Bottom

et al., 1989; Rivero et al., 1990; Baron, 2008; Hayden & Platt, 2009;

Neugebauer, 2010; Cox et al., 2011; Seidl, 2013; Erev et al., 2017; Cox

et al., 2019). Specifically, Hayden & Platt (2009) show in an experimental

study with real monetary payments that individuals’ willingness to pay is

hardly affected by truncating the lottery. They find that bids on truncated

St. Petersburg lotteries are typically smaller than twice the smallest payoff,

that is $4 for L(N)
STP . Cox et al. (2011) show that the majority of their

subjects behave risk averse in the finite St. Petersburg gamble especially

for N ≥ 6. For N = 9, 83% of their participants rejected the gamble for

a price of $8.75, thus indicating risk averse behavior. The proportion of

subjects rejecting the gamble for a price slightly lower than the expected
9Note that infinite willingness to pay can also emerge from finite expected payoff

gambles (Rieger & Wang, 2006).
10For example, for N = {10, 20, 30, 40} the maximum payoffs are $210, $220, $230,

and $240 which roughly equal 1 thousand, 1 million, 1 billion, and 1 trillion dollars,
respectively.
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value increased monotonically with N . Moreover, Erev et al. (2017) show

that risk aversion in the St. Petersburg paradox is also robust to feedback

(with real monetary incentives).

In the CPT framework, Figure 2.5 depicts the willingness to pay

CE
(
L

(N)
STP

)
= v−1

(
CPT

(
L

(N)
STP

))
as a function of N for the truncated

St. Petersburg gamble, whereN = 2, . . . , 40 determines the maximum payoff

$2N , for the most common parametrizations. Panel A shows the certainty

equivalents CE
(
L

(N)
STP

)
for Tversky & Kahneman’s (1992) parametrization

of the value and probability weighting function, that is vPower(x) = xα

and wTK92(p) = pγ/ (pγ + (1− p)γ)1/γ, for different parameter sets (α, γ) as

estimated in Tversky & Kahneman (1992), Camerer & Ho (1994), Wu &

Gonzalez (1996), and Bleichrodt & Pinto (2000). Parameter combinations

with α ≥ γ predict a certainty equivalent that increases exponentially

with N and illustrate once more infinite willingness to pay for N → ∞

(see Theorem 2.2 or Example 2.3). The empirical evidence on truncated

St. Petersburg lotteries clearly rejects such parameter combinations.11

Surprisingly, the hypothetical parameter combination (α, γ) = (0.50, 0.61)

implies risk proclivity for N = 7, . . . , 29, that is higher certainty

equivalents than expected payoff (gray dashed line) although this preference

combination yields finite willingness to pay for N → ∞. Predicted and

actual willingness to pay can deviate by substantial amounts, though both

are finite. One interpretation is that our formerly applied criterion of finite

willingness to pay is rather conservative if benchmarked against actual

willingness to pay.

We derive similar conclusion from Panel B which fixes the value func-

tion as v(x) = x0.88 and uses probability weighting functions wTK92(p) =

11The empirical evidence mentioned above overwhelmingly supports risk averse
behavior in truncated St. Petersburg lotteries and risk proclivity is merely a thought
experiment (Tversky & Bar-Hillel, 1983) or an artificially induced observation where
individuals were framed to a risk-seeking choice (Erev et al., 2008).
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pγ/ (pγ + (1− p)γ)1/γ with γ = 0.61, wlog−odds(p) = δpγ/ (δpγ + (1− p)γ)

with γ = 0.55 and δ = 0.82, wPrelec(p) = e−(− log p)γ with γ = 0.53, and

wRW06(p) = 3−3b
a2−a+1

(p3 − (a+ 1)p2 + ap) + p with a = 0.4 and b = 0.5. The

parameter values are motivated by Tversky & Kahneman (1992) for wTK92,

Bleichrodt & Pinto (2000) for wPrelec and wlog−odds, and Rieger & Wang

(2006) for the cubic weighting function wRW06.

Just like with wTK92, we see that the standard parametrization of

the two weighting functions wPrelec and wlog−odds also predict unreasonably

high willingness to pay for finite values of N . Interesting is the case of the

polynomial weighting function wRW06 which implies a willingness to pay of

$26.18 for N →∞. We yield risk seeking behavior for N = 3, . . . , 18 which

correspond to maximum payoffs of $8; $16; . . . ; $262, 144. This prediction

does not match the empirical fact mentioned above.

In summary, truncating the original St. Petersburg lottery does not

change the essence of our previous conclusions.
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Chapter 3

Salience Theory and the

Allais - St. Petersburg Conflict∗

3.1 Introduction

Descriptive theories of choice under risk aim to rationalize human choice

behavior. But what characterizes a "good" descriptive model? Obviously,

the model has to accommodate as many empirically observed choice

patterns as possible while being manageable and falsifiable. George Box

once remarked that “all models are wrong, but some are useful.”(Box,

1979, p. 202) “The practical question is how wrong do they have to be

to not be useful.”(Box & Draper, 1987, p. 74) In the context of descriptive

decision theories, his quotes imply that the first step is to define what the

minimum standard for descriptive models is in order to be able to reject

a model. Dierkes & Sejdiu (2019b) recently propose the joint consideration

of the Allais paradox (Allais, 1953) and Bernoulli’s St. Petersburg paradox

(Bernoulli, 1738, 1954) as the new minimum standard of descriptive decision
∗This chapter is based on the Working Paper “Salience Theory and the Allais -

St. Petersburg Conflict” authored by Maik Dierkes and Vulnet Sejdiu, 2019.
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theories. They motivate this minimum standard with the outstanding

historical importance of both paradoxes and the failure of Tversky &

Kahneman’s (1992) Cumulative Prospect Theory to accommodate both

paradoxes simultaneously.

In this paper, we analyze the predictions of Bordalo et al.’s (2012)

Salience Theory in the St. Petersburg paradox and the common ratio version

of the Allais’ paradox. Salience Theory is a recently developed promising

context-depended descriptive theory for choice under risk. Successful

applications vary from asset pricing over consumer choice to judicial

decisions (see, e.g., Bordalo et al., 2013a,b, 2015). The theory models a Local

Thinker whose preferences are determined by a value function v, a salience

function σ, and a probability-distortion parameter δ ∈ (0, 1). The Local

Thinker re-weights probabilities for states dependent on the salience of the

respective outcomes in these states. The probability-distortion parameter δ

drives the re-weighting of probabilities. δ = 1 corresponds to the case

where there is no re-weighting at all and the Local Thinker’s risk attitude

is solely driven by the value function v. A lower value δ reflects more

extreme re-weighting. The exact re-weighting of probabilities also depends

on payoff’s relative salience across states. Throughout this paper, we

follow Bordalo et al. (2012) and focus on the nonparametric ranking-based

probability distortion. Specifically, probabilities get distorted by δk where

k denotes the salience rank given by the general salience function σ. In

particular, we only assume that the value function v is strictly monotonically

increasing with v(0) = 0 and that the salience function σ satisfies the

conditions ordering and diminishing sensitivity (see Bordalo et al., 2012,

Definition 1).

Our main result is that Salience Theory can resolve the Allais -

St. Petersburg conflict with one set of parameters if we truncate the

St. Petersburg lottery – which avoids offering lotteries with infinite expected
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payoff. Here, Salience Theory has an edge over most Cumulative Prospect

Theory calibrations and, of course, Expected Utility Theory. Dierkes &

Sejdiu (2019b) prove that, for Cumulative Prospect Theory with continuous

preference functions, any solution to Allais’ common ratio effect predicts

– at odds with experimental evidence – huge willingness to pay for the

St. Petersburg lottery, easily exceeding the expected payoff of the truncated

St. Petersburg lottery. In contrast, Salience Theory with an exponential

value function v(x) = 1 − e−x and a probability-distortion parameter

δ = 0.4 simultaneously predicts a reasonable willingness to pay of $7.86

($12.33) for the St. Petersburg lottery truncated at the maximum payoff of

$220 ≈ 1 million ($240 ≈ 1 trillion) dollars and an empirically substantiated

preference reversal probability p∗ ≈ 1
3

for the common ratio lotteries

L1(p) = ($6000, 0.5p; $0, 1− 0.5p) and L2(p) = ($3000, p; $0, 1− p) where p

is a probability.

With unbounded payoffs, however, Salience Theory cannot predict both

paradoxes because that requires the following two conflicting conditions:

lim
z→∞

v(0.5z)

v(z)
≥ 1

2δ
, (St. Petersburg paradox)

lim
z→∞

v(0.5z)

v(z)
<

1

2δ
. (Common ratio effect)

Using the limit in the latter condition accommodates the peculiarity that

Allais’ common ratio effect emerges in particular for large payoffs (Allais,

1953).

Obviously, both conditions directly refuse the often chosen power value

function v(x) = xα, α > 0, because then the limit of the v-ratio simplifies to

lim
z→∞

v(0.5z)
v(z)

= 0.5α. This case also includes the linear value function. Bordalo

et al. (2012) choose a linear value function and δ = 0.7 to explain the Allais

paradox, consistent with the above condition. However, their specification

cannot explain finite willingness to pay for the St. Petersburg lottery.
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Furthermore, we prove that the probability distortion in Salience

Theory can be significantly stronger than in Cumulative Prospect Theory.

Yet another necessary condition for finite willingness to pay in the

St. Petersburg paradox is δ > 0.5 – independent of the value function v.

Hence, a probability-distortion parameter δ ≤ 0.5 can fully override the

impact of the value function’s curvature. For comparison, under Cumulative

Prospect Theory, an individual’s overall risk attitude is always determined

by both the value and the probability weighting function (Dierkes & Sejdiu,

2019b).

Another interesting implication of this latter finding is that the use

of bounded value functions does not necessarily solve the St. Petersburg

paradox under Salience Theory. The intuition is that, for δ ≤ 0.5, the ever

growing payoffs are salient and so strongly overweighted that the willingness

to pay for the St. Petersburg lottery diverges for any monotonically

increasing value function. Note that, under Cumulative Prospect Theory or

Expected Utility Theory, bounded value functions solve the St. Petersburg

paradox (e.g. Dierkes & Sejdiu, 2019b; Rieger & Wang, 2006). Experimental

calibration exercises should, thus, pay special attention to estimating the

probability-distortion parameter δ because this is the much more sensitive

parameter in Salience Theory (see also Königsheim et al., 2019).

Our paper complements the relatively new strand of literature which

tests Salience Theory empirically and theoretically. In particular, we are, to

the best of our knowledge, the first to examine the St. Petersburg paradox

under Salience Theory. Frydman & Mormann (2018) test Salience Theory

by conducting two choice experiments. In their first experiment, they vary

the correlation between lottery options and in their second experiment, they

use a phantom lottery to manipulate the perception of payoffs. In contrast to

Expected Utility Theory and Cumulative Prospect Theory, Salience Theory

is able to explain the results caused by the perceptual manipulations. Nielsen
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et al. (2018) present an alternative experimental test of Salience Theory

where subjects have to bet on a risky option under different treatments. The

experimental results support Salience Theory’s prediction that the salience

of preferred consequences increases the attractiveness of the risky option.

Königsheim et al. (2019) provide a first calibration of Salience Theory. Their

empirical estimates roughly support the parameterization of Bordalo et al.

(2012) (linear value function and δ ≈ 0.7). Moreover, they find that the

estimates of the probability-distortion parameter δ are not significantly

affected by the assumption of a concave value function (standard CRRA

function). However, the estimate of δ is significantly smaller when a lottery’s

downside is more salient. Kontek (2016) shows that the certainty equivalent

of a lottery can be undefined for some ranges of probabilities and that

monotonicity violations can occur.

The rest of this paper is organized as follows. Sections 3.2 and 3.3

evaluate the original St. Petersburg paradox and the common ratio version

of the Allais paradox with Salience Theory, respectively. Section 3.4 analyzes

the conflict between the conditions of both paradoxes. In particular, we

distinguish between an unbounded payoff analysis (Section 3.4.1), where

payoffs can grow infinitely large (as in the original example), and a bounded

payoff analysis (Section 3.4.2), where the maximum payoff is limited to

a certain amount. Finally, we conclude with Section 3.5. An appendix

complements the paper with selected formal proofs.

3.2 Bernoulli’s St. Petersburg paradox under

Salience Theory

Throughout our discussion, we make the following assumptions (see, e.g.,

Bordalo et al., 2012; Dierkes & Sejdiu, 2019b).
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Assumption 3.1 (Preference Calculus)

a) The decision maker (Local Thinker) behaves according to Bordalo

et al.’s (2012) Salience Theory where preferences are determined by

a value function v, a salience function σ, and a probability-distortion

parameter δ ∈ (0, 1).

b) The Local Thinker’s value function v is continuous and strictly

monotonically increasing with v(0) = 0.

c) The salience function σ satisfies the two conditions ordering and

diminishing sensitivity of Definition 1 in Bordalo et al. (2012) on

p. 1249.

Assumption 3.2 (Mathematical Notation) Our notation limx→z f(x)

implies that the limit exists in a weak sense, namely limes superior and

limes inferior are equal and limx→z f(x) ∈ [−∞,∞].

In order to evaluate Bernoulli’s (1738, 1954) prominent St. Petersburg

lottery with Salience Theory, we consider a truncated St. Petersburg gamble,

where $2N is the maximum payoff, and compute the limit for N →∞:1

L
(N)
STP =


(
2k; 2−k

)
for k = 1, . . . , N − 1(

2N ; 21−N) for k = N .

(3.1)

As suggested by Bordalo et al. (2012) on p. 1271, we infer the willingness

to pay for L(N)
STP by calculating the certainty equivalent when the lottery is

considered in isolation, i.e. against a sure outcome of zero. Then, the state
1We do this because the construction of the salience ranking is easier to understand

for the truncated St. Petersburg lottery. For fixed N , we work with the natural minimal
state space. Splitting states, however, would not alter evaluation or choice under Salience
Theory (see Bordalo et al., 2012).
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space equals S := {(2, 0), (4, 0), . . . , (2N , 0)}. For any salience function σ

satisfying the ordering condition of Definition 1 in Bordalo et al. (2012),

the salience ranking for the St. Petersburg lottery is:

σ(2N , 0) > σ(2N−1, 0) > . . . > σ(2, 0).

The original St. Petersburg lottery is given by LSTP = limN→∞ L
(N)
STP and

the Local Thinker (LT) assigns the following value to LSTP :

V LT (LSTP ) = lim
N→∞

V LT
(
L

(N)
STP

)
= lim
N→∞

21−N · δ · v
(
2N
)

+
N−1∑
k=1

2k−N · δk+1 · v
(
2N−k

)
21−N · δ +

N−1∑
k=1

2k−N · δk+1

(3.2)

= lim
N→∞

(
1
2δ

)N · v (2N)+
N−1∑
k=0

(
1
2δ

)N−k · v (2N−k)
(

1
2δ

)N
+
N−1∑
k=0

(
1
2δ

)N−k
(3.3)

= lim
N→∞

(
1
2δ

)N · v (2N)+
N∑
k=1

(
1
2δ

)k · v (2k)
(

1
2δ

)N
+

N∑
k=1

(
1
2δ

)k . (3.4)

The following proposition states necessary conditions for finite willingness

to pay for LSTP .

Proposition 3.1 (Necessary conditions for STP) Given the Assump-

tions 3.1 and 3.2, if Salience Theory predicts a finite willingness to pay for

the St. Petersburg lottery LSTP then:

δ >
1

2
, (3.5)

and

lim
z→∞

v(0.5z)

v(z)
≥ 1

2δ
. (ST.STP ∗)

Proof of Proposition 3.1: We conduct a proof by contraposition to derive

the first necessary condition (3.5). More precisely, we show that δ ≤ 0.5
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leads to an infinite certainty equivalent for the St. Petersburg lottery LSTP .

It then follows that δ > 0.5 is a necessary condition for a finite certainty

equivalent v−1
(
V LT (LSTP )

)
.

An infinite certainty equivalent is predicted by Salience Theory if and

only if limN→∞ V
LT (LN) = limx→∞ v(x). Hence, we have to prove that the

parameter restriction 0 < δ ≤ 0.5 leads to limN→∞ V
LT (LN) = limx→∞ v(x).

Since both the numerator and denominator of fraction (3.4) contain variants

of the geometric series, we separately consider the two cases δ = 0.5 and

0 < δ < 0.5 for ease of exposition.

If δ = 0.5, Equation (3.4) can be rewritten to:

V LT (LSTP ) = lim
N→∞

v
(
2N
)

1 +N
+ lim

N→∞

1

1 +N

N∑
k=1

v
(
2k
)

(3.6)

= lim
N→∞

v
(
2N
)

1 +N
+ lim

N→∞
v (N) (3.7)

=

∞ if v is unbounded, i.e. limx→∞ v(x) =∞

v(∞) = c if v is bounded, i.e. limx→∞ v(x) = c <∞
.

(3.8)

Going from (3.6) to (3.7) is obvious. The proof, however, is available upon

request. Note that Assumption 3.1 only assumes that v is continuous and

monotonically increasing. Additionally, we distinguish between bounded

and unbounded value functions v. Equation (3.8) shows that the certainty

equivalent v−1
(
V LT (LSTP )

)
is infinite in both cases.

Now, we consider the case 0 < δ < 0.5. Then, Equation (3.4) can be
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rewritten as:

V LT (LSTP ) = lim
N→∞

1− 2δ

2− 2δ − (2δ)N
·

[
v
(
2N
)

+
N∑
k=1

(2δ)N−k · v
(
2k
)]
(3.9)

=
1− 2δ

2− 2δ
·

[
lim
N→∞

v
(
2N
)

+ lim
N→∞

N−1∑
k=0

(2δ)k · v
(
2N−k

)]
(3.10)

=
1− 2δ

2− 2δ
·

[
1 +

∞∑
k=0

(2δ)k

]
· lim
N→∞

v
(
2N
)

(3.11)

=
1− 2δ

2− 2δ
·
[
1 +

1

1− 2δ

]
· lim
N→∞

v
(
2N
)

(3.12)

= lim
N→∞

v
(
2N
)
. (3.13)

This shows that δ ∈ (0, 0.5) also leads to an infinite certainty equivalent
for LSTP . Thus, a finite certainty equivalent implies δ > 0.5. Note that the
rewriting from (3.10) to (3.11) also holds for bounded value functions. Given
that limN→∞ v

(
2N
)

= c ∈ R+, then ∀ε > 0 ∃N0 : c − v
(
2N−k

)
< ε ∀N0 ≤

N − k and

lim
N→∞

∣∣∣∣∣ c

1− 2δ
−
N−1∑
k=0

(2δ)k · v
(
2N−k

)∣∣∣∣∣
≤ lim
N→∞

∣∣∣∣∣ c

1− 2δ
−

[
N−N0∑
k=0

(2δ)k · v
(
2N−k

)
+

N−1∑
k=N−N0+1

(2δ)k · v
(
2N−k

)]∣∣∣∣∣ (3.14)

≤ lim
N→∞

∣∣∣∣∣ c

1− 2δ
−

[
(c− ε) ·

N−N0∑
k=0

(2δ)k +

N−1∑
k=N−N0+1

(2δ)k · v
(
2N−k

)]∣∣∣∣∣ (3.15)

≤ lim
N→∞

∣∣∣∣∣ c

1− 2δ
−

[
(c− ε) · 1− (2δ)N−N0+1

1− 2δ
+

N−1∑
k=N−N0+1

(2δ)k · v
(
2N−k

)]∣∣∣∣∣ (3.16)

≤ lim
N→∞

∣∣∣∣ c

1− 2δ
−
[
(c− ε) · 1− (2δ)N−N0+1

1− 2δ
+ (N0 − 1) · (2δ)N−N0+1 · v(2)

]∣∣∣∣ (3.17)

≤
∣∣∣∣ ε

1− 2δ

∣∣∣∣ . (3.18)

Hence, ∀ν > 0 ∃N0 such that

lim
N→∞

∣∣∣∣∣ c

1− 2δ
−

N−1∑
k=0

(2δ)k · v
(
2N−k

)∣∣∣∣∣ < ν ∀N ≥ N0. (3.19)
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In other words

lim
N→∞

N−1∑
k=0

(2δ)k · v
(
2N−k

)
=

1

1− 2δ
· lim
N→∞

v
(
2N
)
. (3.20)

Next, we derive the second necessary condition (ST.STP ∗)by applying

the ratio test. From now on, we always assume δ > 0.5. This leads to:

V LT (LSTP ) = (2δ − 1) ·

[
lim
N→∞

v
(
2N
)

(2δ)N
+
∞∑
k=1

(
1

2δ

)k
· v
(
2k
)]
. (3.21)

Equation (3.21) converges if and only if the series
∞∑
k=1

(
1
2δ

)k ·v (2k) converges.
The ratio test indicates that if

∞∑
k=1

(
1
2δ

)k · v (2k) converges then (necessary

condition):

lim
k→∞

∣∣∣∣∣
(

1
2δ

)k+1 · v
(
2k+1

)(
1
2δ

)k · v (2k)

∣∣∣∣∣ ≤ 1. (3.22)

After substituting z for 2k+1 and some rearrangements, we get exactly the

above stated second condition:

lim
z→∞

v (0.5z)

v (z)
≥ 1

2δ
. (3.23)

Since we primarily aim to investigate the conflict with the conditions

of the Allais paradox, we only state the necessary conditions in Proposition

3.1. However, condition (ST.STP ∗)can be easily transformed to a sufficient

condition by replacing the greater or equal sign with a strict greater sign.

The Local-Thinker value (3.4) converges if (sufficient condition)

lim
z→∞

v (0.5z)

v (z)
>

1

2δ
. (3.24)

Corollary 3.1 If δ ≤ 0.5, then Salience Theory predicts an infinite

certainty equivalent for the St. Petersburg lottery independent of the choice

of the value function v.
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Proof of Corollary 3.1: According to Proposition 3.1, δ > 0.5 is a necessary

condition for a finite certainty equivalent for LSTP . Thus, δ ≤ 0.5 is sufficient

for an infinite certainty equivalent independent of the choice of the value

function.

Corollary 1 is a trivial consequence of Proposition 3.1. Nevertheless, we

explicitly formalize a statement to highlight the importance of the condition

δ > 0.5. This condition reveals the surprising fact that bounded value

functions are not sufficient for a finite certainty equivalent for LSTP in the

framework of Salience Theory. Intuitively, for δ ≤ 0.5, the N0(< N) smallest

payoffs are assigned an ever smaller decision weight when the number of

coin flips N increases. Note the difference to Cumulative Prospect Theory

and Expected Utility Theory. In these latter frameworks, a bounded value

function always guarantees a finite willingness to pay for LSTP (see, e.g.,

Rieger & Wang, 2006; Dierkes & Sejdiu, 2019b) because the decision weights

for the N0(< N) smallest payoffs stay constant for varying N .

Interestingly, under Salience Theory, extreme probability distortion

(δ ≤ 0.5) fully overrides the value function’s curvature in the context of the

St. Petersburg paradox. For moderate distortion δ > 0.5, though, the value

function is a crucial determinant. There is a trade-off between probability

distortion (right hand side of (3.24)) and the value function’s curvature

(left hand side of (3.24)). In particular, the value function is important for

δ > 0.5. Consider, for example, Bordalo et al.’s (2012) suggested standard

specification of Salience Theory with linear value function v(x) = x and

a salience parameter δ = 0.7. This specification of Salience Theory is not

able to explain the St. Petersburg paradox because it violates the second

St. Petersburg condition (ST.STP ∗), i.e. limz→∞
v(0.5z)
v(z)

= 0.5 � 1
2δ

for

any δ ∈ (0, 1). An interpretation of this result is that the risk aversion

predetermined by the value function has to be substantial enough to override

the risk proclivity generated by the distortion of probabilities induced by
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the salience mechanism.

Although our focus is primarily on the question of whether Salience

Theory is able to resolve Dierkes & Sejdiu’s (2019b) Allais - St. Petersburg

conflict, we want to briefly discuss the use of alternative value functions

and derive some sufficient conditions for finite willingness to pay for the

St. Petersburg lottery. Thereby, we are, to the best of our knowledge, the

first to examine the St. Petersburg paradox in the framework of Salience

Theory.

Table 3.1 lists the most well-known value functions from the literature.

The value function Linear is a simple linear function, Power corresponds

to Tversky & Kahneman’s (1992) value function, and the functions

Logarithmic, Exponential, and HARA (hyperbolic absolute risk aversion)

are standard utility functions from the literature. All listed value functions

are continuous and monotonically increasing with v(0) = 0 and, hence,

satisfy Assumption 3.1. Additionally, Table 3.1 differentiates between

bounded and unbounded value functions. The last column of Table

3.1 reports the if-and-only-if parameter conditions for a finite certainty

equivalent for the St. Petersburg lottery LSTP given the respective value

function (first column).2 Table 3.1 shows that the Logarithmic, Exponential,

and HARA value functions predict a finite certainty equivalent as long as

δ > 0.5 holds. The frequently used power value function v(x) = xα of

Tversky & Kahneman (1992) explains the St. Petersburg paradox if and

only if δ > 2α−1. Following Bordalo et al. (2012) and assuming δ = 0.7 leads

to the restriction that the risk aversion parameter α has to be strictly lower

than α < log(2δ)
log(2)

≈ 0.4854.

In summary, solutions to the St. Petersburg paradox are similarly

restrictive under Salience Theory as they are under Cumulative Prospect

Theory. Especially the originally proposed parametrization of Salience
2For a detailed derivation of the if-and-only-if conditions, see the appendix.
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Table 3.1: If-and-only-if conditions for the explanation of the
St. Petersburg paradox for various value functions under

Salience Theory.

Type Function v(x)
with v(0) = 0

Parameter
restriction

Bounded
utility

Finite certainty
equivalent for LSTP iff

Linear x – no δ > 1

Power xα α > 0 no δ > 2α−1

Logarithmic log(1 + αx) α > 0 no δ > 0.5

Exponential 1− e−αx α > 0 yes δ > 0.5

HARA 1−α
α

[(
x

1−α + β
)α
− βα

]
α < 0, β > 0 yes δ > 0.5

Theory by Bordalo et al. (2012) with linear value function fails to explain

the St. Petersburg paradox. And, surprisingly, bounded value functions are

not a sufficient condition for the solution of the St. Petersburg paradox

in the framework of Salience Theory. The following section shows that

the prediction of Allais’ common ratio effect further tightens parameter

restriction under Salience Theory considerably.

3.3 Allais’ common ratio effect under

Salience Theory

To investigate under which conditions Salience Theory explains Allais’

common ratio effect, we follow Bordalo et al. (2012) and consider a choice

between the two equal-mean lotteries

L1(p) = ($z, 0.5p; 0, 1− 0.5p) and L2(p) = ($0.5z, p; 0, 1− p), (3.25)
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which are determined by the payoff amount z > 0 and the probability p.3

Lab experiments systematically reveal that subjects tend to choose the

safer lottery L2 for high probabilities p and the riskier lottery L1 for

low probabilities p (e.g. Kahneman & Tversky, 1979). A definition of the

common ratio effect is given below:

Definition 3.1 (Common ratio effect) Given the equal-mean lotteries

L1 and L2 defined in (3.25). The common ratio effect occurs if and only

if the preference L1 � L2 holds for any p ∈ (0, p∗) and L1 ≺ L2 for any

p ∈ (p∗, 1] where p∗ ∈ (0, 1) indicates the preference reversal probability that

implies L1 ∼ L2.

Since the lotteries L1 and L2 are uncorrelated, the state space is S =

{(z, 0.5z); (0, 0.5z); (z, 0); (0, 0)} and the salience ranking is

σ(z, 0) > σ(0, 0.5z) > σ(z, 0.5z) > σ(0, 0) ∀z > 0.

This salience ranking follows from the diminishing sensitivity property of

the salience function σ (Bordalo et al., 2012, see p. 1249) and holds for any

z > 0 without any parametric assumptions about σ.

The Local Thinker evaluates both lotteries as follows:

V LT (L1) = 0.5p(1− p)δ
η
v(z) + (1− 0.5p)p

δ2

η
v(0)

+ 0.5p2 δ
3

η
v(z) + (1− 0.5p)(1− p)δ

4

η
v(0),

(3.26)

V LT (L2) = 0.5p(1− p)δ
η
v(0) + (1− 0.5p)p

δ2

η
v(0.5z)

+ 0.5p2 δ
3

η
v(0.5z) + (1− 0.5p)(1− p)δ

4

η
v(0),

(3.27)

where η is just some normalizing constant such that perceived probabilities

sum up to one. It does not affect choices which are determined by the
3For numerical examples of the lottery pair (3.25) see, e.g., Kahneman & Tversky

(1979) Problem 7 and 8.
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maximum max{V LT (L1), V LT (L2)}. We follow Bordalo et al. (2012) and

assume, without loss of generality, v(0) = 0. Then, the Local Thinker prefers

the riskier lottery L1 � L2 iff

V LT (L1) > V LT (L2) (3.28)

⇔ v(z) ·
[
0.5p(1− p)δ

η
+ 0.5p2 δ

3

η

]
> v(0.5z) ·

[
(1− 0.5p)p

δ2

η
+ 0.5p2 δ

3

η

]
(3.29)

⇔ 1− p (1− δ2)

2δ − p(δ − δ2)
>
v(0.5z)

v(z)
(3.30)

and L1 ≺ L2 vice versa. Inequality (3.30) shows that a risk-seeking

(risk-averse) choice is predicted only if the ratio of decision weights is

strictly greater (smaller) than the ratio of evaluated payoffs v(0.5z)/v(z).

Interestingly, it turns out that the ratio of decision weights (left-hand side

of Inequality (3.30)) is monotonically decreasing in p:

∂

∂p

1− p (1− δ2)

2δ − p (δ − δ2)
= − 1− δ(2δ − 1)

δ (2− p(1− δ))2 < 0 for any δ ∈ (0, 1), (3.31)

which means that the probability-weighting mechanism of Salience Theory

satisfies subproportionality in this setting. This is particularly interesting

because subproportionality is a key concept when modeling the common

ratio effect under Prospect Theory (Prelec, 1998). It ensures that if a

preference change between the lottery pairs (L1, L2) for varying p ∈ (0, 1]

exists, it is a unique one. Hence, it excludes unrealistic predictions of

multiple preference reversals. Moreover, this property enables us to focus

on the corner cases p → 0+ and p = 1 for the prediction of the common

ratio effect. The following proposition states the necessary and sufficient

conditions for Salience Theory to predict the common ratio effect according

to Definition 3.1.
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Proposition 3.2 (Necessary and sufficient condition for CRE)

Given Assumption 3.1 and the equal-mean lotteries L1 and L2 defined in

(3.25), then Salience Theory satisfies Definition 3.1 and thus predicts the

common ratio effect for varying probability p ∈ (0, 1] and for payoff z > 0

if and only if (necessary and sufficient condition):

δ

1 + δ
<
v(0.5z)

v(z)
<

1

2δ
. (ST.CRE)

Proof of Proposition 3.2: According to Definition 3.1 and Inequality (3.30),

we have to prove that the common ratio condition (ST.CRE) implies

that the decision-weight ratio (left-hand side of (3.30)) is greater than the

v-ratio v(0.5z)/v(z) for any p ∈ (0, p∗) and smaller for any p ∈ (p∗, 1].

As already shown in (3.31), the decision-weight ratio in Salience Theory

is monotonically decreasing in p. Therefore, to satisfy Definition 3.1 and

especially to ensure the existence of exactly one preference reversal point

p∗ ∈ (0, 1), it is enough to focus on the two corner cases p→ 0+ and p = 1.

If p tends to zero, then condition (3.30), which implies the preference

L1 � L2, simplifies to

lim
p→0+

1− p (1− δ2)

2δ − p(δ − δ2)
=

1

2δ
>
v(0.5z)

v(z)
. (3.32)

To accommodate the common ratio effect, Salience Theory also has to

predict a preference for the safer lottery L2 � L1 if p tends to one (certainty

effect):

lim
p→1

1− p (1− δ2)

2δ − p(δ − δ2)
=

δ

1 + δ
<
v(0.5z)

v(z)
. (3.33)

Now, considering both boundaries together leads to the above stated

condition for the common ratio effect:

δ

1 + δ
<
v(0.5z)

v(z)
<

1

2δ
. (3.34)
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Thus, if and only if (3.34) holds, then Definition 3.1 is satisfied and L1 � L2

is predicted for any p ∈ (0, p∗) and L1 ≺ L2 for any p ∈ (p∗, 1] where

p∗ ∈ (0, 1) is the preference reversal probability.

The next corollary is a trivial consequence of Proposition 3.2 but a very

practical one because it highlights that δ < 0.5 satisfies the common ratio

condition (ST.CRE) of Proposition 3.2 for any value function v that has a

v-ratio v(0.5z)
v(z)

≥ 1
3
. Note that v(0.5z)

v(z)
≥ 1

3
includes all concave value functions

and even some convex value functions like, e.g., v(x) = x1.5.

Corollary 3.2 Given Assumption 3.1 and the equal-mean lotteries L1 and

L2 defined in (3.25) with payoff z > 0, the combination of a value function

v with v-ratio v(0.5z)
v(z)

≥ 1
3
for all z > 0 and a probability-distortion parameter

δ < 0.5 is sufficient for the prediction of the common ratio effect according

to Definition 3.1.

Proof of Corollary 3.2: The parameter restriction δ < 0.5 implies δ/(1 +

δ) < 1/3 and 1/(2δ) > 1. The value function’s monotonicity assumption in

Assumption 3.1 ensures that the v-ratio is bounded from above, i.e. v(0.5z)
v(z)

≤

1. Together with the assumption that the v-ratio is greater than or equal

to 1
3
, it follows that the v-ratio is bounded between 1

3
≤ v(0.5z)

v(z)
≤ 1 for any

payoff z > 0 (even for z →∞). Hence,

δ

1 + δ
<

1

3
≤ v(0.5z)

v(z)
≤ 1 <

1

2δ
∀z > 0, (3.35)

and the common ratio condition (ST.CRE) of Proposition 3.2 is satisfied.

Corollary 3.2 shows that Salience Theory with δ < 0.5 explains

the common ratio effect for all commonly employed value functions (see

Table 3.1 for examples) and also for any level of positive risk aversion.

Besides practicability, this result illustrates again the dominant role of

δ. If δ ∈ (0, 0.5), then the probability-weighting mechanism in Salience
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Theory generates such a strong risk proclivity, in the case where the winning

probabilities of both lotteries are scaled down (p → 0+) that any level of

risk aversion generated by the value function is fully compensated for –

independent of payoff z > 0 (even for z → ∞). It turns out that this

feature is particularly useful for the prediction of the common ratio effect

because it prevents the issue that the preference reversal probability p∗

can be moved arbitrarily close to zero just by increasing the payoffs of

the lotteries, i.e. by increasing z. Dierkes & Sejdiu (2019b) show that

Cumulative Prospect Theory with typical (continuous) weighting functions

suffers from this very problem and hence has difficulties to predict the

common ratio effect especially when employing bounded value functions.

Moreover, in Salience Theory, the preference reversal probability p∗ can

be represented as an explicit function of δ and the v-ratio v(0.5z)
v(z)

:

p∗ =
1− 2δ · v(0.5z)

v(z)

1− δ2 − (δ − δ2) · v(0.5z)
v(z)

∈ [0, 1] for
δ

1 + δ
≤ v(0.5z)

v(z)
≤ 1

2δ
. (3.36)

Figure 3.1 presents a contour plot of (3.36) and nicely summarizes

the results of this chapter in one figure. The blue contour lines in Figure

3.1 depict the parameter sets
(
v(0.5z)
v(z)

, δ
)
that yield to a preference reversal

probability p∗ ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. Note that only the parameter sets

that are located strictly in between the two blue solid lines v(0.5z)
v(z)
|p∗=0 = 1

2δ

and v(0.5z)
v(z)
|p∗=1 = δ

1+δ
predict a preference reversal probability p∗ ∈ (0, 1)

and thus satisfy the common ratio condition (ST.CRE) of Proposition 3.2.

The parameter sets I and II including and above the blue solid 0-line and

including and below the blue solid 1-line, respectively, do not explain the

common ratio effect because they predict either only risk-averse behavior

I or only risk-seeking behavior II . For example, in area I which

corresponds to v(0.5)
v(z)
≥ 1

2δ
, the safer lottery L2 is always preferred over the

riskier lottery L1 for all p ∈ (0, 1] which means that no preference change
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Figure 3.1: Contour plot of the preference reversal probability p∗.

Notes: The figure illustrates the combination of v-ratio v(0.5z)/v(z) and δ
that yields to p∗ = {0, 0.1, 0.2, . . . , 0.9, 1}, respectively. In detail, we depict

the v-ratio in dependence of δ and p∗ according to v(0.5z)
v(z)

=
1−p∗(1−δ2)
2δ−p∗(δ−δ2)

.

occurs. Interestingly, I is at the same time the domain which has the best

chances to solve the St. Petersburg paradox. This fact already foreshadows

the conflict between the conditions (ST.STP ∗) and (ST.CRE∗) of both

paradoxes.

Figure 3.1 also visualizes Corollary 3.2 and the importance of the

parameter δ. The gray horizontal line at v(0.5z)
v(z)

= 0.5 separates concave

(upper half) and convex (lower half) value functions. When considering

the top-left part of the figure it becomes clear that the combination of

a concave value function
(
v(0.5z)
v(z)

≥ 0.5
)

and δ < 0.5 is sufficient for the

common ratio effect (ST.CRE) as implied by Corollary 3.2. Furthermore,

the figure illustrates that even when assuming a bounded value function and

considering high payoffs, i.e. limz→∞ v(0.5z)/v(z) = 1, Salience Theory is
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still able to predict a reasonable preference reversal probability 0 < p∗ < 1

as long as δ < 0.5. In such a case, function (3.36) simplifies to

p∗| v(0.5z)
v(z)

≈1
=

1− 2δ

1− δ
. (3.37)

Interestingly, the model is able to ensure that the preference reversal

probability p∗ does not fall below some threshold. For example, δ = 1
3

ensures that p∗ ∈ [0.5, 1) for any value function with a v-ratio v(0.5z)
v(z)

∈

(0.25, 1]. To see this note that the preference reversal function (3.36) is

monotonically decreasing in v(0.5z)
v(z)

for any δ ∈ (0, 1).4 Thus, a lower v-ratio,

which corresponds to lower risk aversion, leads to a higher preference

reversal probability p∗ and vice versa. This prediction of Salience Theory

is different from that of Cumulative Prospect Theory. Under Cumulative

Prospect Theory, the preference reversal probability p∗ always converges to

zero if the value function’s risk aversion increases to infinity. The reason

for this is that under Cumulative Prospect Theory, an individual’s risk

attitude is determined by both the value function and probability weighting

function. In contrast, Salience Theory’s probability-weighting mechanism

can dominate the value function in this setting if δ < 0.5 and hence can

easily predict the common ratio effect for any concave value function. Recall,

however, that δ < 0.5 cannot accommodate the St. Petersburg paradox.
4The partial derivative of p∗ with respect to the v-ratio v(0.5z)

v(z) is negative for any
v(0.5z)
v(z) ∈ [0, 1] and δ ∈ (0, 1):

∂p∗

∂ v(0.5z)
v(z)

= − δ(1− δ) · (2δ + 1)(
1− δ2 − (δ − δ2) · v(0.5z)

v(z)

)2 < 0 ∀ δ ∈ (0, 1). (3.38)
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3.4 The Allais - St. Petersburg conflict in

Salience Theory

After revisiting the St. Petersburg paradox and the common ratio version of

the Allais paradox separately, we analyze the conflict between the conditions

of both paradoxes. Furthermore, we distinguish between an unbounded

payoff analysis where payoffs can grow infinitely large (as in the original

example) and a bounded payoff analysis where the maximum payoff is

limited to a certain amount. The latter analysis can be considered as a

robustness check and aims to investigate whether the potential conflict is

driven by the infinite expected payoff of the St. Petersburg lottery and hence

the assumption of infinite resources.

3.4.1 Unbounded payoff analysis

Theorem 3.1 (Main Result) Assume decision makers behave according

to Salience Theory with continuous and strictly increasing value function

v and v(0) = 0. The common ratio lotteries are given by L1(p) =

($z, 0.5p; $0, 1− 0.5p) and L2(p) = ($0.5z, p; $0, 1− p) and we assume the

common ratio effect shows up for all payoffs z > 0, in particular for large

payoffs as argued by Allais (1953). Then, there does not exist any set

of parameters that simultaneously explains both Bernoulli’s St. Petersburg

paradox and Allais’ common ratio effect.

Proof of Theorem 3.1: Given Allais’ (1953) observation that the Allais

paradox occurs in particular for large payoffs (he used payoffs in the

millions), the following condition can be considered as a special case of
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the common ratio condition (ST.CRE) of Proposition 3.2:

δ

1 + δ
< lim

z→∞

v(0.5z)

v(z)
<

1

2δ
. (ST.CRE∗)

Then, the conflict with the necessary condition of (ST.STP ∗) for the

St. Petersburg paradox

lim
z→∞

v(0.5z)

v(z)
≥ 1

2δ

is ultimately evident since both conditions are in direct conflict.

Theorem 3.1 shows that Salience Theory cannot resolve Dierkes

& Sejdiu’s (2019b) Allais - St. Petersburg conflict. Put differently, no

parameter set is able to explain Bernoulli’s original St. Petersburg paradox

and Allais’ common ratio effect simultaneously. The conflict becomes clear

for any value function v when the payoffs in the common ratio lotteries

L1 and L2 grow infinitely large (z → ∞). Using infinitely large payoffs is

supported by empirical evidence. For example, in his original work, Allais

(1953) used payoffs in the millions. For such high payoffs v(0.5z)
v(z)

≈ lim
z→∞

v(0.5z)
v(z)

for most value functions.

Before we consider a truncated setting where monetary resources are

limited and hence payoffs are bounded, we briefly discuss the use of the

most popular value function v(x) = xα with α > 0 as suggested by Tversky

& Kahneman (1992).

Corollary 3.3 In Salience Theory, if the value function equals the fre-

quently used power function v(x) = xα with α > 0, then the parameter

sets that explain the common ratio effect and the St. Petersburg paradox,

respectively, are strictly disjunct independent of payoff z.

Proof of Corollary 3.3: Compare again the necessary condition (ST.STP ∗)

for the St. Petersburg paradox and the upper necessary condition (ST.CRE)
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for the common ratio effect. When applying v(x) = xα, then lim
z→∞

v(0.5z)
v(z)

=

v(0.5z)
v(z)

= 0.5α ∀z > 0 and

lim
z→∞

v(0.5z)

v(z)
= 0.5α ≥ 1

2δ
, (St. Petersburg paradox)

v(0.5z)

v(z)
= 0.5α <

1

2δ
(Common ratio effect)

which proves that the parameter sets are strictly disjunct independent of z.

Corollary 3.3 highlights that assuming a power value function, including

the linear function as a special case, produces the Allais - St. Petersburg

conflict independent of the payoff level z in the common ratio lotteries L1

and L2. Hence, it is obvious that Bordalo et al.’s (2012) originally proposed

parametrization with linear value function v(x) = x and δ = 0.7 also

produces the conflict for any value z.

3.4.2 Bounded payoff analysis

In this section, we assume that monetary resources are finite. Then, payoff z

in the common ratio lotteries L1 and L2 and the maximum payoff 2N of the

St. Petersburg gamble L(N)
STP have to be below a certain threshold. By doing

this, we test whether the occurrence of the Allais - St. Petersburg conflict

in Salience Theory is only an asymptotic result which is mainly driven by

the consideration of infinitely large payoffs.

To keep things simple, we follow Kahneman & Tversky (1979) and

fix z = 6000 in the common ratio example. Then, the Local Thinker

has the choice between the lotteries L1(p) = ($6000, 0.5p; $0, 1− 0.5p) and

L2(p) = ($3000, p; $0, 1− p) for varying probability p ∈ (0, 1]. Definition 3.1

of the common ratio effect is very general and only requires that a preference

reversal point p∗ ∈ (0, 1) exists but not that it lies in a reasonable

range which can be substantiated by empirical evidence. For example,
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in Kahneman & Tversky (1979) Problem 7 and 8, subjects exhibit the

preferences L1(0.9) ≺ L2(0.9) and L1(0.002) � L2(0.002) which implies

that the preference reversal probability p∗ is in the range 0.002 < p∗ < 0.9.

Obviously, this range of p∗ is a conservative estimate, nevertheless, it

gives us a first indication in what range an acceptable prediction of the

preference reversal probability has to be. Starmer & Sugden (1989, p. 173)

provide a more accurate estimate of the p∗-range and argue that “most

subjects switch preference in the range 0.6 > p > 0.2”. This more accurate

estimate naturally puts tighter restrictions on Salience Theory. Bordalo

et al. (2012) already report on p. 1269 that δ ∈ (0.22, 1) is a necessary

condition for the prediction of p∗ ∈ (0.002, 0.9) when assuming a linear

value function. Since we already know that a linear value function cannot

explain the St. Petersburg paradox, we are particularly interested in what

restrictions for δ follow if we assume more common concave value functions,

for example, a bounded value function which has the best chances to solve

the St. Petersburg paradox.

Table 3.2 presents parameter sets of δ that predict the preference

reversal probability p∗ in the ranges 0.002 < p∗ < 0.9 and 0.2 < p∗ < 0.6,

respectively, for all value functions v listed in Table 3.1 and a given set

of risk-aversion parameters α. Although we already know that the power

value function v(x) = xα with α > 0 produces the Allais - St. Petersburg

conflict independent of the payoff z, we still include this value function

to illustrate the interplay between δ and α in the common ratio example

when the preference reversal probability p∗ has to lie in a realistic range.

For example, if v(x) = x0.4 then δ has to be in the interval (0.124, 0.659)

to satisfy the minimum requirement 0.002 < p∗ < 0.9. When assuming

a linear value function (α = 1), then the preference reversal probability

p∗ is always strictly greater than 2
3
which explains why no δ ∈ (0, 1) is
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Table 3.2: Allais’ common ratio effect under Salience Theory.

Notes: This table indicates parameter sets of δ that predict the preference
reversal probability p∗ in a certain range for all respective value functions v
listed in Table 3.1 for a given set of risk-aversion parameters α. In detail, we
consider a choice between the lotteries L1(p) = ($6000, 0.5p; $0, 1− 0.5p) and
L2(p) = ($3000, p; $0, 1− p) for varying probability p ∈ (0, 1]. The common ratio
effect occurs if and only if the preference L1 � L2 holds for any p ∈ (0, p∗) and
L1 ≺ L2 for any p ∈ (p∗, 1] where p∗ ∈ (0, 1) indicates the preference reversal
probability that implies L1 ∼ L2. The ranges 0.002 < p∗ < 0.9 and 0.2 < p∗ < 0.6
are motivated by the experimental observations in Kahneman & Tversky (1979)
and Starmer & Sugden (1989), respectively.

Function v v-ratio v(0.5z)
v(z) α-value

δ-condition for a given range of p∗

0.002 < p∗ < 0.9 0.2 < p∗ < 0.6

Power 0.5α

α = 1 δ ∈ (0.222, 1.000) ∅

α = 0.7 δ ∈ (0.161, 0.812) δ ∈ (0.543, 0.762)

α = 0.4 δ ∈ (0.124, 0.659) δ ∈ (0.399, 0.599)

Logarithmic
log(1 + α3000)

log(1 + α6000)

α = 0.5 δ ∈ (0.100, 0.547) δ ∈ (0.317, 0.489)

α = 1 δ ∈ (0.099, 0.543) δ ∈ (0.314, 0.485)

α = 2 δ ∈ (0.099, 0.539) δ ∈ (0.312, 0.482)

Exponential 1− e−α3000

1− e−α6000

α = 0.001 δ ∈ (0.096, 0.524) δ ∈ (0.302, 0.468)

α = 0.01 δ ∈ (0.091, 0.500) δ ∈ (0.286, 0.444)

α = 0.1 δ ∈ (0.091, 0.500) δ ∈ (0.286, 0.444)

HARA (β = 1)

(
0.5z
1−α + 1

)α
− 1(

z
1−α + 1

)α
− 1

α = −0.25 δ ∈ (0.094, 0.513) δ ∈ (0.294, 0.457)

α = −0.5 δ ∈ (0.092, 0.503) δ ∈ (0.288, 0.448)

α = −1 δ ∈ (0.091, 0.500) δ ∈ (0.286, 0.445)

able to predict a p∗ ∈ (0.2, 0.6).5 For a graphical illustration see contour
5Given that the value function’s v-ratio is 0.5, then the preference reversal function

(3.36) simplifies to

p∗
(
δ,
v(0.5z)

v(z)
= 0.5

)
=

1− δ
1− δ2 − 0.5 (δ − δ2)

. (3.39)

The image of p∗(δ, 0.5) equals the interval
(

2
3 , 1
)
for δ ∈ (0, 1). The lower bound 2

3 follows
when considering the limit δ → 1:

lim
δ→1

1− δ
1− δ2 − 0.5 (δ − δ2)

l′Hopital
= lim

δ→1

−1

−2δ − 0.5 (1− 2δ)
=
−1

−1.5
=

2

3
. (3.40)
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lines p∗ = {0.2, 0.6} in Figure 3.1. Both contour lines are monotonically

decreasing and consistently greater than 0.5 (horizontal gray line) for any

δ ∈ (0, 1). This shows that 0.2 < p∗ < 0.6 is not possible with a linear value

function.

Considering now the δ-conditions for the more interesting value

functions Logarithmic, Exponential, and HARA, shows surprisingly narrow

ranges for δ. For the conservative range 0.002 < p∗ < 0.9, the upper

bounds of the δ-conditions are just slightly higher than 0.5 for all listed

values of α. If we require the more accurate prediction 0.2 < p∗ < 0.6,

then the upper bounds of δ are strictly lower than 0.5 for all listed

specifications. Even for moderate values of z and a wide range of the

preference reversal probability p∗, δ is not allowed to be greater than 0.5.

The Allais - St. Petersburg conflict is then predetermined because δ > 0.5

is one of the necessary conditions for the solution of the St. Petersburg

paradox. Note that choosing an unrealistically low risk-aversion parameter α

does not solve the problem, because then the certainty equivalent of the

St. Petersburg gamble will grow tremendously. For example, assuming a

logarithmic value function v(x) = log(1 + αx) with α = 0.5 and δ = 0.54

satisfies the minimum requirement 0.002 < p∗ < 0.9 but predicts a

willingness to pay of $12,884.57 for St. Petersburg lottery LSTP which is

an unrealistic prediction of typical human behavior. People are usually

unwilling to pay more than $8 to play the lottery (see, e.g., Hayden & Platt,

2009; Cox et al., 2011). Thus, decreasing the value function’s risk aversion

does not help. At best, it provides only a theoretical corner solution without

much practical benefits. Therefore, the conflict between the conditions of a

finite willingness to pay for the St. Petersburg lottery and Allais’ common

ratio effect is not caused by an unrealistic payoff level z in the common

ratio lotteries or any other parameter. In fact, the results show that a

realistic prediction of the common ratio effect alone suggests δ < 0.5 for all
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value functions except the function Power. The power function, however, is

immediately ruled out when we want to predict the St. Petersburg paradox

in addition to the common ratio effect (see Corollary 3.3).

Next, we test whether the Allais - St. Petersburg conflict is driven by

the infinite expected payoff of the St. Petersburg lottery. Technically, we

consider a truncated St. Petersburg lottery where the maximum payoff of

the lottery is 2N . Recall that L(N)
STP yields a payoff $2k with probability 0.5k

for k = 1, . . . , N − 1 and a payoff of $2N with probability 0.5N−1. The

expected value of the lottery is N + 1 and corresponds to N − 1 possible

rounds of coin flipping. For example, for N = 40, the expected payoff equals

$41 and the maximum payoff is $240 which equals roughly 1 trillion dollars.

In Figure 3.2, we depict the willingness to pay CE
(
L

(N)
STP

)
=

v−1
(
V LT

(
L

(N)
STP

))
as a function of N for the truncated St. Petersburg

gamble, where N = 2, . . . , 40 determines the maximum payoff $2N , for

various parametrizations of Salience Theory. We focus on the value functions

Logarithmic v(x) = log(1 + x) and Exponential v(x) = 1 − e−x and two

exemplary values of δ = {0.4, 0.7}. Both value functions are chosen because

they are simple and, more importantly, they resolve the St. Petersburg

paradox in Expected Utility Theory and Cumulative Prospect Theory

(Bernoulli, 1738, 1954; Menger, 1934; Dierkes & Sejdiu, 2019b). The choice

of δ = 0.7 follows the suggestion of Bordalo et al. (2012) and δ = 0.4 is

interesting because it violates the St. Petersburg condition δ > 0.5 without

being too far away from 0.5.

Figure 3.2 shows that the logarithmic value function v(x) = log(1 + x)

predicts acceptable certainty equivalents only for δ = 0.7 (solid line) but

not for δ = 0.4 (dashed line). The combination with δ = 0.4 (dashed line)

performs poorly because, for all depicted truncation levels N , it predicts

certainty equivalents higher than the expected value (risk-seeking behavior).

Even worse, the certainty equivalent increases exponentially in N . This
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Figure 3.2: Certainty equivalents for the truncated
St. Petersburg lottery under Salience Theory.

Notes: This figure depicts the willingness to pay CE
(
L

(N)
STP

)
=

v−1
(
V LT

(
L

(N)
STP

))
for the truncated St. Petersburg lottery under Salience

Theory where N = 2, . . . , 40 determines the maximum payoff $2N . The truncated
gamble promises a payoff of $2k with probability 0.5k for k = 1, . . . , N − 1 and
a payoff of $2N with probability 0.5N−1. The gray line represents the expected
value of the lottery. Individual’s preferences are given by the value functions
Logarithmic (v(x) = log(1 + x)) and Exponential (v(x) = 1 − e−x) and the
salience mechanism of Bordalo et al. (2012) with δ = {0.4, 0.7}, respectively.

result is no surprise because δ > 0.5 is one of the necessary conditions

for the solution of the St. Petersburg paradox. With δ = 0.7, however,

the logarithmic value function predicts certainty equivalents higher than

the expected value (risk-seeking behavior) for low truncation levels N =

2, . . . , 8. This is relevant because experimental studies show that subjects

also behave risk averse in the truncated St. Petersburg gamble (e.g. Hayden

& Platt, 2009).

Consider now the specifications with the exponential value function

v(x) = 1 − e−x. Figure 3.2 reveals that the exponential value function

predicts reasonable certainty equivalents even for δ = 0.4. More precisely,
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the certainty equivalents are lower than the expected value of the lottery

(positive risk premium) throughout all depicted truncation levels, thereby

correctly indicating risk-averse behavior for all 2 ≤ N ≤ 40. Moreover, this

combination implies for N = 40 (≈maximum payoff of 1 trillion dollars) a

certainty equivalent of only $12.33 which is a good prediction. Note that

the combination of v(x) = 1 − e−x and δ = 0.4 also yields a preference

reversal probability of p∗ ≈ 1
3
for Kahneman & Tversky’s (1979) common

ratio lotteries with payoff z = 6000. Such a prediction of p∗ furthermore

satisfies Starmer & Sugden’s (1989) tighter suggestion 0.2 < p∗ < 0.6.

Finally, the predicted certainty equivalent for the St. Petersburg lottery

strictly decreases when the constant absolute risk aversion parameter α

increases while the preference reversal probability p∗ for the common ratio

lotteries remains always higher than 1
3
as long as δ = 0.4. For example,

choosing v(x) = 1 − e−2x predicts a certainty equivalent of $7.24 for the

St. Petersburg lottery with N = 40 and preference reversal probability

p∗ ≈ 1
3
for the common ratio lotteries.

The examples of this section demonstrate that combinations of v

and δ exist that are able to predict a reasonable willingness to pay for

truncated St. Petersburg lotteries and accommodate the empirical evidence

on Allais’ common ratio effect simultaneously. This result is by no means

trivial and shows that Salience Theory has an edge over other prominent

decision theories. For example, Dierkes & Sejdiu (2019b) show that, with

typical (continuous) parametrizations of Cumulative Prospect Theory, the

Allais - St. Petersburg conflict emerges for unbounded as well as bounded

payoff lotteries.

3.5 Conclusion

Bordalo et al.’s (2012) Salience Theory is a new promising context-
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dependent descriptive theory of choice under risk. Extensive tests of this

theory are, however, still work in progress. Our paper contributes to this

literature by examining Salience Theory with Dierkes & Sejdiu’s (2019b)

Allais - St. Petersburg test. We find that Salience Theory can resolve the

Allais - St. Petersburg conflict but only under the assumptions of finite

resources and a value function which generates substantial risk aversion

(e.g. bounded value functions). A simple parametrization of Salience Theory

that performs sufficiently well consists of the exponential value function

v(x) = 1 − e−x, a probability-distortion parameter value δ ≈ 0.4, and any

salience function for ranking states with the properties ordering and dimin-

ishing sensitivity, as proposed by Bordalo et al. (2012). This parametrization

simultaneously predicts a reasonable willingness to pay for the truncated

St. Petersburg lottery and an empirically substantiated preference reversal

probability for Allais’ common ratio lotteries with equal-mean lotteries.

The Allais - St. Petersburg conflict emerges only asymptotically for this

specification, i.e. when considering the original St. Petersburg lottery with

infinite expected payoff. Although theoretically imperfect, this specification

works sufficiently well in a realistic, resource-constrained environment.

This study also reveals new implications of Salience Theory and

highlights differences to related decision theories such as Expected Utility

Theory and Cumulative Prospect Theory. One important peculiarity of

Salience Theory is that the probability-weighting mechanism can have a

significantly stronger impact on the decision maker’s choice than the utility

concept (i.e. the shape of the value function). In particular, we show that a

probability-distortion parameter δ ≤ 0.5 can fully override the impact of a

value function’s curvature in this setting. Under Salience theory, there can

be both a trade-off between probability distortion and value function as well

as the value function’s impact being muted.
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B Appendix

In the following, we derive the if-and-only-if conditions for a finite

certainty equivalent for the St. Petersburg lottery LSTP listed in Table 3.1.

Throughout this section, we follow Proposition 3.1 and assume the necessary

condition δ > 0.5. Then, Equation (3.4) simplifies to

V LT (LSTP ) = (2δ − 1)

[
lim
N→∞

v
(
2N
)

(2δ)N
+
∞∑
k=1

(
1

2δ

)k
· v
(
2k
)]
. (B.1)

We skip the case of the linear value function v(x) = x and start with the

power value function v(x) = xα since it includes linear utility as a special

case (α = 1).

1. Power value function v(x) = xα, α > 0:

V LT (LSTP ) = (2δ − 1)

[
lim
N→∞

(
2N
)α

(2δ)N
+
∞∑
k=1

(
1

2δ

)k
·
(
2k
)α] (B.2)

= (2δ − 1)

[
lim
N→∞

(
1

δ21−α

)N
+
∞∑
k=1

(
1

δ21−α

)k]
(B.3)

=

∞ if δ21−α ≤ 1

2δ−1
δ21−α−1

if δ21−α > 1

. (B.4)

Series (B.2) converges if and only if δ21−α > 1 because
∞∑
k=1

(
1

δ21−α

)k is a

geometric series. For α = 1, which corresponds to a linear value function

v(x) = x, δ > 1 is then the iff-condition for a finite certainty equivalent for

LSTP .
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2. Logarithmic value function v(x) = log(1 + αx), α > 0:

V LT (LSTP ) = (2δ − 1)

[
lim
N→∞

log
(
1 + α2N

)
(2δ)N

+
∞∑
k=1

(
1

2δ

)k
· log

(
1 + α2k

)]
(B.5)

= (2δ − 1) ·
∞∑
k=1

(
1

2δ

)k
· log

(
1 + α2k

)
<∞ ∀α > 0. (B.6)

Our general assumption δ > 0.5 and the ratio test imply that (B.5)

converges if and only if δ > 0.5 for any α > 0:

lim
k→∞

∣∣∣∣∣
(

1
2δ

)k+1 · log
(
1 + α2k+1

)(
1
2δ

)k · log (1 + α2k)

∣∣∣∣∣ =
1

2δ
· lim
k→∞

log
(
1 + α2k+1

)
log (1 + α2k)

=
1

2δ
= r < 1.

(B.7)

3. Exponential value function v(x) = 1− e−αx, α > 0:

V LT (LSTP ) = (2δ − 1)

[
lim
N→∞

1− e−α2N

(2δ)N
+
∞∑
k=1

(
1

2δ

)k
·
(

1− e−α2k
)]
(B.8)

= (2δ − 1) ·
∞∑
k=1

(
1

2δ

)k
·
(

1− e−α2k
)

(B.9)

< (2δ − 1) ·
∞∑
k=1

(
1

2δ

)k
= 1 ∀α > 0. (B.10)

The certainty equivalent v−1
(
V LT (LSTP )

)
is finite if and only if δ > 0.5

for any given α > 0 since V LT (LSTP ) < v(∞) = 1 iff δ > 0.5.
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4. HARA value function v(x) = 1−α
α

[(
x

1−α + β
)α − βα], α < 0, β > 0:

V LT (LSTP ) = (2δ − 1) ·

 lim
N→∞

1−α
α

[(
2N

1−α + β
)α
− βα

]
(2δ)N

+
∞∑
k=1

(
1

2δ

)k
· 1− α

α

[(
2k

1− α
+ β

)α
− βα

]] (B.11)

=
(α− 1)(2δ − 1)

α
·
∞∑
k=1

(
1

2δ

)k
·
[
βα −

(
2k

1− α
+ β

)α]
(B.12)

<
(α− 1)(2δ − 1)

α
·
∞∑
k=1

(
1

2δ

)k
· βα (B.13)

=
α− 1

α
βα = v(∞) ∀α < 0, β > 0. (B.14)

The certainty equivalent v−1
(
V LT (LSTP )

)
is finite if and only if δ > 0.5

for any given α < 0 and β > 0 because V LT (LSTP ) < v(∞) = α−1
α
βα iff

δ > 0.5.

99





Chapter 4

Indistinguishability of Small

Probabilities,

Subproportionality, and the

Common Ratio Effect

This chapter is based on the Article “Indistinguishability of small

probabilities, subproportionality, and the common ratio effect” authored

by Maik Dierkes and Vulnet Sejdiu, Journal of Mathematical Psychology,

93, 2019.

Available at: https://doi.org/10.1016/j.jmp.2019.102283

101

https://doi.org/10.1016/j.jmp.2019.102283




Chapter 5

Probability Distortion, Asset

Prices and Economic Growth

This chapter is based on the Article “Probability distortion, asset prices

and economic growth” authored by Maik Dierkes, Stephan Germer, and

Vulnet Sejdiu, Journal of Behavioral and Experimental Economics, 84, 2020.

Available at: https://doi.org/10.1016/j.socec.2019.101476

103

https://doi.org/10.1016/j.socec.2019.101476




Bibliography

Abdellaoui, M., Baillon, A., Placido, L., & Wakker, P. P. (2011). The

Rich Domain of Uncertainty: Source Functions and Their Experimental

Implementation. American Economic Review , 101 (2), 695–723. [cited on

p. 12]

Agranov, M., & Ortoleva, P. (2017). Stochastic choice and preferences for

randomization. Journal of Political Economy , 125 (1), 40–68. [cited on

p. 15, 55]

Allais, M. (1953). Le Comportement de l’Homme Rationnel devant

le Risque: Critique des Postulats et Axiomes de l’Ecole Americaine.

Econometrica, 21 (4), 503–546. [cited on p. 2, 11, 14, 32, 39, 44, 67,

69, 87, 88]

Baillon, A., Bleichrodt, H., Emirmahmutoglu, A., Jaspersen, J. G., & Peter,

R. (2018). When risk perception gets in the way: Probability weighting

and underprevention. Working Paper . [cited on p. 12]

Baillon, A., Bleichrodt, H., Keskin, U., l’Haridon, O., & Li, C. (2017). The

effect of learning on ambiguity attitudes. Management Science, 64 (5),

2181–2198. [cited on p. 12]

105



BIBLIOGRAPHY

Barberis, N., & Huang, M. (2008). Stocks as Lotteries: The Implications of

Probability Weighting for Security Prices. American Economic Review ,

98 (5), 2066–2100. [cited on p. 7, 47]

Baron, J. (2008). Thinking and Deciding . Cambridge Univ. Press, 4th ed.

[cited on p. 63]

Barseghyan, L., Molinari, F., O’Donoghue, T., & Teitelbaum, J. C. (2013).

The Nature of Risk Preferences: Evidence from Insurance Choices.

American Economic Review , 103 (6), 2499–2529. [cited on p. 13, 47]

Bell, D. E. (1988). One-Switch Utility Functions and a Measure of Risk.

Management Science, 34 (12), 1416–1424. [cited on p. 24, 29, 52]

Bernoulli, D. (1738, 1954). Specimen theoriae novae de mensura sortis.

Commentarii Academiae Scientiarum Imperialis Petropolitanae. Trans-

lated, Bernoulli, D., 1954. Exposition of a new theory on the measurement

of risk. Econometrica, 22 (1), 23–36. [cited on p. 1, 2, 11, 20, 63, 67, 72,

93]

Blavatskyy, P. R. (2005). Back to the St. Petersburg Paradox? Management

Science, 51 (4), 677–678. [cited on p. 16, 28]

Bleichrodt, H., & Pinto, J. L. (2000). A Parameter-Free Elicitation

of the Probability Weighting Function in Medical Decision Analysis.

Management Science, 46 (11), 1485–1496. [cited on p. 16, 34, 35, 54,

55, 58, 59, 60, 62, 64, 65]

Bordalo, P., Gennaioli, N., & Shleifer, A. (2012). Salience Theory of Choice

Under Risk. The Quarterly Journal of Economics , 127 (3), 1243–1285.

[cited on p. 3, 4, 68, 69, 71, 72, 73, 77, 78, 79, 80, 81, 89, 90, 93, 94, 95,

96]

106



BIBLIOGRAPHY

Bordalo, P., Gennaioli, N., & Shleifer, A. (2013a). Salience and Asset Prices.

American Economic Review Papers and Proceedings , 103 (3), 623–628.

[cited on p. 68]

Bordalo, P., Gennaioli, N., & Shleifer, A. (2013b). Salience and Consumer

Choice. Journal of Political Economy , 121 (5), 803–843. [cited on p. 68]

Bordalo, P., Gennaioli, N., & Shleifer, A. (2015). Salience Theory of Judicial

Decisions. The Journal of Legal Studies , 44 (S1), S7–S33. [cited on p. 68]

Bottom, W. P., Bontempo, R. N., & Holtgrave, D. R. (1989). Experts,

Novices, and the St. Petersburg paradox: Is one solution enough? Journal

of Behavioral Decision Making , 2 (3), 139–147. [cited on p. 63]

Box, G. E. P. (1979). Robustness in the Strategy of Scientific Model

Building. In R. L. Launer, & G. N. Wilkinson (Eds.) Robustness in

Statistics , (pp. 201–236). Academic Press. [cited on p. 67]

Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and

response surfaces . Empirical model-building and response surfaces.

Oxford, England: John Wiley & Sons. [cited on p. 67]

Camerer, C. F. (1989). An experimental test of several generalized utility

theories. Journal of Risk and Uncertainty , 2 (1), 61–104. [cited on p. 15,

55]

Camerer, C. F. (2005). Three Cheers - Psychological, Theoretical, Empirical

- for Loss Aversion. Journal of Marketing Research, 42 (2), 129–133. [cited

on p. 16]

Camerer, C. F., & Ho, T.-H. (1994). Violations of the betweenness axiom

and nonlinearity in probability. Journal of Risk and Uncertainty , 8 (2),

167–196. [cited on p. 34, 35, 36, 59, 61, 62, 64]

107



BIBLIOGRAPHY

Chateauneuf, A., Eichberger, J., & Grant, S. (2007). Choice under

uncertainty with the best and worst in mind: Neo-additive capacities.

Journal of Economic Theory , 137 (1), 538 – 567. [cited on p. 12]

Conlisk, J. (1989). Three variants on the allais example. American

Economic Review , 79 (3), 392–407. [cited on p. 15, 55]

Cox, J. C., Kroll, E. B., Lichters, M., Sadiraj, V., & Vogt, B. (2019). The

St. Petersburg paradox despite risk-seeking preferences: an experimental

study. Business Research, 12 (1), 27–44. [cited on p. 63]

Cox, J. C., & Sadiraj, V. (2008). Risky decisions in the large and in the

small: Theory and experiment. In J. C. Cox, & G. W. Harrison (Eds.)

Risk Aversion in Experiments , (pp. 9–40). Emerald Group Publishing.

[cited on p. 16]

Cox, J. C., Sadiraj, V., & Vogt, B. (2011). On the Empirical Relevance

of St. Petersburg Lotteries. SSRN Scholarly Paper ID 1740724, Social

Science Research Network, Rochester, NY. [cited on p. 16, 63, 92]

De Giorgi, E., & Hens, T. (2006). Making prospect theory fit for finance.

Financial Markets and Portfolio Management , 20 (3), 339–360. [cited on

p. 15, 16, 55]

Dierkes, M., & Sejdiu, V. (2019a). Indistinguishability of small probabilities,

subproportionality, and the common ratio effect. Journal of Mathematical

Psychology , 93 , 102283. [cited on p. 5, 17, 25, 26]

Dierkes, M., & Sejdiu, V. (2019b). The Need for Discontinuous Probability

Weighting Functions: How Cumulative Prospect Theory is torn between

the Allais Paradox and the St. Petersburg Paradox. Working Paper,

Leibniz University Hannover . [cited on p. 5, 67, 69, 70, 71, 77, 78, 84, 88,

93, 95, 96]

108



BIBLIOGRAPHY

Erev, I., Ert, E., Plonsky, O., Cohen, D., & Cohen, O. (2017). From

anomalies to forecasts: Toward a descriptive model of decisions under

risk, under ambiguity, and from experience. Psychological Review , 124 (4),

369–409. [cited on p. 63, 64]

Erev, I., Glozman, I., & Hertwig, R. (2008). What impacts the impact of

rare events. Journal of Risk and Uncertainty , 36 (2), 153–177. [cited on

p. 64]

Fan, C.-P. (2002). Allais paradox in the small. Journal of Economic

Behavior & Organization, 49 (3), 411 – 421. [cited on p. 15, 55]

Fehr-Duda, H., & Epper, T. (2012). Probability and Risk: Foundations

and Economic Implications of Probability-Dependent Risk Preferences.

Annual Review of Economics , 4 (1), 567–593. [cited on p. 5]

Fishburn, P. C. (1988). Expected utility: An anniversary and a new era.

Journal of Risk and Uncertainty , 1 (3), 267–283. [cited on p. 1]

Frydman, C., & Mormann, M. M. (2018). The Role of Salience in Choice

under Risk: An Experimental Investigation. SSRN Scholarly Paper ID

2778822, Social Science Research Network, Rochester, NY. [cited on p. 4,

70]

Goldstein, W. M., & Einhorn, H. J. (1987). Expression Theory and the

Preference Reversal Phenomena. Psychological review , 94 (2), 236–254.

[cited on p. xii, 3, 27, 28, 29, 55, 56, 61]

Harless, D. W., & Camerer, C. F. (1994). The Predictive Utility of

Generalized Expected Utility Theories. Econometrica, 62 (6), 1251–1289.

[cited on p. 12, 39, 40, 48]

109



BIBLIOGRAPHY

Harrison, G. W., & Rutström, E. E. (2009). Expected utility theory

and prospect theory: one wedding and a decent funeral. Experimental

Economics , 12 (2), 133–158. [cited on p. 18]

Hayden, B. Y., & Platt, M. L. (2009). The mean, the median, and the

St. Petersburg paradox. Judgment and Decision Making , 4 (4), 256–272.

[cited on p. 16, 63, 92, 94]

Holt, C. A., & Laury, S. K. (2002). Risk aversion and incentive effects.

American Economic Review , 92 (5), 1644–1655. [cited on p. 63]

Holt, C. A., & Laury, S. K. (2005). Risk aversion and incentive effects: New

data without order effects. American Economic Review , 95 (3), 902–904.

[cited on p. 63]

Hsee, C. K., & Rottenstreich, Y. (2004). Music, pandas, and muggers: on

the affective psychology of value. Journal of Experimental Psychology:

General , 133 (1), 23. [cited on p. 18]

Huck, S., & Müller, W. (2012). Allais for all: Revisiting the paradox in

a large representative sample. Journal of Risk and Uncertainty , 44 (3),

261–293. [cited on p. 15, 55]

Ingersoll, J. (2008). Non-monotonicity of the Tversky-Kahneman

probability-weighting function: A cautionary note. European Financial

Management , 14 (3), 385–390. [cited on p. 59, 61]

Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of

Decision under Risk. Econometrica, 47 (2), 263–291. [cited on p. 2, 5, 11,

12, 13, 14, 16, 43, 55, 80, 89, 90, 91, 95]

Kilka, M., & Weber, M. (2001). What Determines the Shape of

the Probability Weighting Function under Uncertainty? Management

Science, 47 (12), 1712–1726. [cited on p. 12, 18]

110



BIBLIOGRAPHY

Königsheim, C., Lukas, M., & Nöth, M. (2019). Salience theory: Calibration

and heterogeneity in probability distortion. Journal of Economic

Behavior & Organization, 157 , 477–495. [cited on p. 4, 70, 71]

Kontek, K. (2016). A critical note on Salience Theory of choice under risk.

Economics Letters , 149 , 168–171. [cited on p. 4, 71]

Kőszegi, B., & Rabin, M. (2006). A model of reference-dependent

preferences. The Quarterly Journal of Economics , 121 (4), 1133–1165.

[cited on p. 19]

Lamont, O. A., & Thaler, R. H. (2003). Can the market add and subtract?

Mispricing in tech stock carve-outs. Journal of Political Economy , 111 (2),

227–268. [cited on p. 7]

Lattimore, P. K., Baker, J. R., & Witte, A. D. (1992). The influence

of probability on risky choice: A parametric examination. Journal of

Economic Behavior & Organization, 17 (3), 377–400. [cited on p. 13, 27]

Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids

and choices in gambling decisions. Journal of Experimental Psychology ,

89 (1), 46–55. [cited on p. 18, 46]

Menger, K. (1934). Das Unsicherheitsmoment in der Wertlehre. Zeitschrift

für Nationalökonomie, 5 (4), 459–485. [cited on p. 24, 93]

Neilson, W., & Stowe, J. (2002). A further examination of cumulative

prospect theory parameterizations. Journal of Risk and Uncertainty ,

24 (1), 31–46. [cited on p. 36]

Neugebauer, T. (2010). Moral Impossibility in the Petersburg Paradox:

A Literature Survey and Experimental Evidence. Luxembourg School of

Finance Research Working Paper Series , 10 (174), 1–45. [cited on p. 63]

111



BIBLIOGRAPHY

Nielsen, C. S., Sebald, A. C., & Sørensen, P. N. (2018). Testing for salience

effects in choices under risk. Working Paper, University of Copenhagen.

[cited on p. 4, 70]

Pfiffelmann, M. (2011). Solving the St. Petersburg Paradox in cumulative

prospect theory: the right amount of probability weighting. Theory and

Decision, 71 (3), 325–341. [cited on p. 16]

Prelec, D. (1998). The Probability Weighting Function. Econometrica,

66 (3), 497–527. [cited on p. 3, 6, 8, 13, 16, 17, 28, 29, 37, 39, 42, 53, 54,

55, 57, 59, 60, 61, 81]

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic

Behavior & Organization, 3 (4), 323–343. [cited on p. 11]

Ramsey, F. P. (1931). Foundations of mathematics and other logical essays .

Routledge and Kegan Paul. [cited on p. 1]

Rieger, M. O., & Wang, M. (2006). Cumulative prospect theory and the St.

Petersburg paradox. Economic Theory , 28 (3), 665–679. [cited on p. 3, 5,

16, 28, 35, 36, 59, 61, 62, 63, 65, 70, 77]

Rivero, J. C., Holtgrave, D. R., Bontempo, R. N., & Bottom, W. P. (1990).

The St. Petersburg Paradox: Data, at Last. Commentary , 8 (3-4), 46–51.

[cited on p. 63]

Rottenstreich, Y., & Hsee, C. K. (2001). Money, Kisses, and Electric Shocks:

On the Affective Psychology of Risk. Psychological Science, 12 (3), 185–

190. [cited on p. 18]

Samuelson, P. A. (1977). St. Petersburg Paradoxes: Defanged, Dissected,

and Historically Described. Journal of Economic Literature, 15 (1), 24–55.

[cited on p. 20]

112



BIBLIOGRAPHY

Savage, L. J. (1954). The Foundations of Statistics . New York: Wiley. [cited

on p. 1]

Schmidt, U., Starmer, C., & Sugden, R. (2008). Third-generation prospect

theory. Journal of Risk and Uncertainty , 36 (3), 203–223. [cited on p. 18]

Seidl, C. (2013). The St. Petersburg Paradox at 300. Journal of Risk and

Uncertainty , 46 (3), 247–264. [cited on p. 63]

Starmer, C., & Sugden, R. (1989). Probability and Juxtaposition Effects:

An Experimental Investigation of the Common Ratio Effect. Journal of

Risk and Uncertainty , 2 (2), 159–178. [cited on p. 43, 90, 91, 95]

Stott, H. P. (2006). Cumulative prospect theory’s functional menagerie.

Journal of Risk and uncertainty , 32 (2), 101–130. [cited on p. 54, 55, 58,

59, 60]

Tversky, A., & Bar-Hillel, M. (1983). Risk: The long and the short. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 9 , 713–

717. [cited on p. 63, 64]

Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty.

Psychological review , 102 (2), 269. [cited on p. 27]

Tversky, A., & Kahneman, D. (1992). Advances in Prospect Theory:

Cumulative Representation of Uncertainty. Journal of Risk and

Uncertainty , 5 (4), 297–323. [cited on p. xii, 2, 3, 11, 12, 13, 16, 17,

27, 28, 29, 34, 35, 36, 46, 52, 55, 56, 61, 62, 64, 65, 68, 78, 88]

Tversky, A., Slovic, P., & Kahneman, D. (1990). The causes of preference

reversal. American Economic Review , 80 (1), 204–217. [cited on p. 18,

46]

113



BIBLIOGRAPHY

von Neumann, J., & Morgenstern, O. (1944). Theory of Games and

Economic Behavior . Princeton: Princeton University Press. [cited on

p. 1]

Wakker, P. P. (2010). Prospect Theory: For Risk and Ambiguity . Cambridge

University Press, Cambridge. [cited on p. 2, 3, 12, 15, 47]

Wu, G., & Gonzalez, R. (1996). Curvature of the Probability Weighting

Function. Management Science, 42 (12), 1676–1690. [cited on p. 12, 34,

35, 36, 39, 48, 54, 55, 58, 59, 60, 62, 64]

114


	Contents
	List of Tables
	List of Figures
	Introduction
	The Need for Discontinuous Probability Weighting Functions: How CPT is torn between the Allais Paradox and the St. Petersburg Paradox
	Introduction
	The Allais - St. Petersburg Conflict
	The St. Petersburg Paradox under CPT
	The common ratio effect under CPT
	Summary: Allais - St. Petersburg conflict in CPT

	Conclusion
	Appendix
	Lemmata
	Sensitivity analysis for the common ratio effect with small payoffs
	Truncated St. Petersburg lotteries


	Salience Theory and the Allais - St. Petersburg Conflict
	Introduction
	Bernoulli's St. Petersburg paradox under Salience Theory
	Allais' common ratio effect under Salience Theory
	The Allais - St. Petersburg conflict in Salience Theory
	Unbounded payoff analysis 
	Bounded payoff analysis

	Conclusion
	Appendix

	Indistinguishability of Small Probabilities, Subproportionality, and the Common Ratio Effect
	Probability Distortion, Asset Prices and Economic Growth
	Bibliography

