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Kurzzusammenfassung

Der englische Titel dieser Doktorarbeit lautet tibersetzt Konstruktionserwdgungen fir zu-
kiinftige Erdschwerefeld-Satellitenmissionen und zur weltraumbasierten Laser-Interferometrie.
Diese erwdhnten Satellitenmissionen messen sehr prézise den Satellitenabstand mittels Laser-
Interferometrie, der wiederum genutzt wird um die Erdanziehungskraft und damit die Mas-
senverteilung auf der Erde, weltweit und regelméflig in bestimmten Zeitabstéinden, zu kar-
tographieren. Diese Karten sind hilfreich um geophysikalische Phanomene zu studieren, z.B.
den Klimawandel oder den Wasserhaushalt der Erde. Der erste Teil dieser Arbeit befasst sich
allgemein mit der Nutzlast und dem Zusammenspiel der Instrumente in solchen Satelliten-
missionen, wiahrend der zweite Teil sich der Laser-Interferometrie widmet.

Der erste Teil beginnt mit einer Einleitung zum Erdschwerefeld und zum Messprinzip
der Missionen, sowie einigen Randbedingungen, welche beispielsweise schon durch andere
Studien gegeben sind, z.B. die bevorzugten Umlaufbahnen der Satelliten betreffend. Eine
kohérente Beschreibung der Distanzmessung, welche die Erdschwereinformation beinhaltet,
wird von Grund auf hergeleitet; so werden z.B. die gravitativen Referenzpunkte auf den
Satelliten definiert und diskutiert. Die Messmethoden und Genauigkeiten der wichtigsten
Nutzlast-Instrumente werden zusammen mit anderen wichtigen Kennzahlen adressiert um
mathematische Modelle fiir die Genauigkeit der spateren Gesamtmessung zu erhalten. Dabei
wird Wert darauf gelegt zwischen zufilligem Rauschen und wohldefinierten oszillierenden
Fehlerquellen zu unterscheiden. Da letztere Storungen oft vernachléssigt werden, wird deren
mogliche Behandlung in der Datenprozessierung angerissen.

Die hergeleiteten Fehler- und Sensitivitdtsmodelle fiir die finale Hauptbeobachtung und
fiir die einzelnen Instrumente werden genutzt, um die Genauigkeit der Erdschwerefeldbestim-
mung abzuschétzen. Dazu wird der sog. Beschleunigungsansatz verwendet, der im Wesentli-
chen eine Ende-zu-Ende Simulation liefert und es damit erlaubt, den Einfluss von verschiede-
nen Missionsszenarien aber auch von unterschiedlichen Instrumenten zu analysieren. Es wird
herausgestellt, dass zwei Satellitenpaare mit unterschiedlicher Inklination eine wesentlich ge-
nauere Messung des Erdschwerefeldes erlauben und somit eine vielversprechende Option fiir
zukiinftige Missionen darstellen. Des Weiteren wird auf die Zentrifugalbeschleunigung der
Basislinie zwischen den Satelliten in einem Paar eingegangen, die in aktuellen Konzepten
mittels ungenauer GNSS Beobachtungen indirekt bestimmt werden muss. Deshalb werden
auch verschiedene Moglichkeiten einer direkteren Bestimmung dieser Beschleunigung evalu-
iert. Weitere mogliche Verbesserungen in zukiinftigen Missionen betreffen die Nutzung sog.
Drag—Free Technologie und die Kalibration verschiedener Nutzlast-Instrumente untereinan-
der. Alles in allem beschreibt dieses Kapitel eine Vielzahl von Ideen und Optionen nachfol-
gende Satellitenmissionen zur Schwerefeldmessung weiterzuentwickeln.

Der zweite Teil dieser Arbeit geht auf die weltraumbasierte Laser-Interferometrie ein
und versucht einen systematischen Zugang zu diesem Gebiet zu liefern, welches bislang von
der Technologie-Entwicklung fiir die LISA und GRACE Follow-On Mission geprigt wird.
Nach einer kurzen Einfithrung in die Relativitétstheorie und in die optische Interferome-
trie, welche Aspekte wie Phasenbestimmung und interferometrische Signale umfasst, wird
ein Uberblick iiber die zur Verfiigung stehenden und weltraumgeeigneten Teilkomponenten
von typischen Interferometern gegeben. Anschlieffend wird Interferometrie anhand von funk-
tionalen Konzepten, welche u.a. Transponder- und sog. duale Einweg-Systeme einschlieflen,
diskutiert. Dazu werden zuerst Spezifika der optischen Implementierung auflen vor gelassen,
aber im spéteren Verlauf mit einbezogen. Eine detaillierte Beschreibung der Phasen bzw. der
dquivalenten Distanzbeobachtung wird fiir die verschiedenen funktionalen Konzepte herge-
leitet und miteinander beziiglich ihrer Sensitivitdt verglichen. Es wird herausgestellt, dass
die Genauigkeit der Instrumente zum einen durch Laserfrequenz-Rauschen und zum anderen
durch eine Suszeptibilitit zur Satellitenausrichtung limitiert wird. Daneben werden weitere



mogliche Limitierungsfaktoren und deren Losungsansitze besprochen, wie z.B. die Unsicher-
heit im Skalierungsfaktor, der einer beschrinkten Messgenauigkeit der absoluten Laserfre-
quenz geschuldet wird.

Weiterhin wird angemerkt, dass eine prézise Beschreibung der Beobachtungsgleichungen
relativistische Effekte beriicksichtigen muss, die durch die Bewegung der Satelliten und durch
das Erdschwerefeld verursacht werden. Dazu wird eine Herleitung und tiefgehende Analyse
préasentiert, welche die nétigen Methoden zur Korrektur dieser Effekte in der Datennachver-
arbeitung liefert und die auch bei GRACE Follow-On Verwendung finden kann.

Zum Schluss wird der optische Aufbau von Interferometern thematisiert. Referenzpunkte
werden eingefiihrt, welche eine elegante Charakterisierung der Abhéngigkeit zur Satelliten-
ausrichtung erlauben. Zudem wird die Signalstéirke der interferometrischen Messung beschrie-
ben. Verschiedene optische Layouts werden vorgestellt und bewertet. Auf Grundlage dieser
Betrachtung werden zwei unterschiedliche Layouts fiir Schwerefeldmissionen vorgeschlagen,
welche auch hinsichtlich ihrer Umsetzbarkeit und optimalen Kennwerte untersucht werden.

Schlagworte: Laser-Interferometrie, GRACE, Erdschwerefeld
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Abstract

This thesis addresses design considerations for space-borne satellite gravimetry missions,
which utilize precise inter-satellite ranging. These missions measure Earth’s gravity field and
provide valuable snapshots of Earth’s mass distribution on a regular basis. The data is used
to study geophysical phenomena such as, among others, climate change and the water cycle
on large scales. The first part of this thesis is concerned with the overall mission, payload
and system design, while the second part discusses space laser interferometry aboard the
satellites.

The first part starts with an introduction to the Earth’s gravity field, the measurement
principles and some boundary conditions on the mission design, which have been derived
in previous studies, for example, regarding the favored orbit height of the satellites. A
coherent description of the ranging observable, containing the gravity field information, is
provided starting from first principles and covering aspects such as the proper definition of
the gravitational reference points on the satellites. The measurement methods and accuracies
of the main payload instruments are discussed together with other key figures, which are
used to derive precise sensitivity models for this type of satellite mission. It is stressed that,
in general, two different types of measurement errors need to be distinguished: stochastic
fluctuations and deterministic sinusoidal errors. Handling of the latter in post-processing is
sketched, because this error type is often neglected in studies.

The derived sensitivity and error models for the final observable and for the individual
instruments are used to propagate the errors to the level of the gravity field using the so-called
acceleration approach. Thus, an end-to-end simulation is obtained, which is used to assess the
effect of different mission scenarios and instrument types onto the gravity field. It is pointed
out that the gain in gravity field accuracy with a dual pair mission with different inclinations
is significant and, hence, a viable option for future missions. Furthermore, the analysis
shows that the centrifugal acceleration of the baseline, formed by the satellite pair, needs to
be deduced from relatively imprecise GNSS observations. Different approaches to mitigate
this susceptibility by means of direct measurements are discussed. Other aspects regarding
potential improvements in future missions are addressed as well, namely, the utilization of
drag-free technology and the inter-calibration of different on-board instruments. In summary,
this thesis part provides a variety of ideas and option to advance future gravimetric missions.

The second part of this thesis on space laser interferometry attempts to provide a system-
atic approach to the field, which is mainly shaped by the technology development for the LISA
and the GRACE Follow-On mission, so far. After a brief introduction to relativity and optical
interferometry, which includes aspects such as phase-tracking and interferometric signals, an
overview on the available set of technology for the subsystems of typical laser interferometers
is given. Then, interferometry on the level of functional concepts is discussed, which includes
transponder-based ranging and dual one-way ranging but leaves out temporarily contribu-
tions related to the optical layouts. A detailed description for the phase or equivalent ranging
observable is derived for the different functional concepts and they are compared with each
other with regard to their sensitivity. It is shown that the precision of the instruments is
limited by laser frequency fluctuations and by a dependence on the satellite’s attitude. Other
potential limiting factors such as the scale factor uncertainty due to the limited absolute laser
frequency knowledge are also addressed together with mitigation concepts.

Furthermore, it is noted that an accurate description of the measurements requires the
consideration of relativistic effects, which arise due to the motion of the satellites and due
to the gravitational field. A derivation and in-depth analysis of these effects is performed,
yielding the necessary methods to remove these contributions in post-processing, which can
also be applied to the GRACE Follow-On laser ranging instrument.



In the end, the optical layouts and the implementation are thematized. Reference points
are introduced to characterize the S/C attitude dependent errors and the signal strength of
the phase measurement is discussed. Different optical layouts are assessed and novel layouts
based on the previous findings are proposed for future gravimetric missions. These are further
analyzed with the help of power budgets regarding their feasibility. Moreover, an exemplary
parametric study is performed to obtain the optimal parameters for the instrument design.

Keywords: laser interferometry, GRACE, gravity field
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Part 1

Design Considerations for Future
Geodesy Missions

Geodesy is the science of the measurement and mapping of the Earth’s surface [Helmert,
1880, 1884]. In [Seeber, 2003] the basic aims of geodesy are formulated as

1. Determination of precise global, regional and local three dimensional positions (e.g.
establishment of geodetic control).

2. Determination of Earth’s gravity field and linear functions of this field (e.g. a precise
geoid).

3. Measurement and modeling of geodynamical phenomena (e.g. polar motion, Earth
rotation, crustal deformation).

This first part of this thesis deals mainly with the second point, the measurement of Earth’s
gravity field, although interconnections and overlap also exist with the two other points.
Terrestrial measurements using gravimeters provide a good means for this in well-developed
regions. Complementary precise orbit determination of satellites in the vicinity to Earth with
Satellite Laser Ranging (SLR) from ground and with the Global Navigation Satellite System
(GNSS) provide large-scale information of the Earth’s gravity field [Bezdek et al., 2014; Jaggi
et al., 2011; Baur et al., 2014; Matsuo et al., 2013].

For resolving Earth’s small-scale gravity field structure and it’s temporal variations ded-
icated missions like GRACE (Gravity Recovery and Climate experiment, launch 2002) and
GOCE (Gravity field and steady-state ocean circulation explorer, 2009-2013) have been
proven to be vital [Tapley et al., 2004; Johannessen et al., 2003]. GRACE monthly snap-
shots of Earth’s gravity field have provided insights into processes within the system Farth,
consisting of oceans, solid Earth and atmosphere. The gain in understanding of our planet
and the associated importance for society and humankind manifested in the funding of a
GRACE Follow-On mission, which is currently being built. It is designed as a low-risk quick
successor mission, basically a copy of the GRACE satellites, aiming to provide continuity of
data streams with an increased sensitivity due to advances in technology. However, a major
change is the integration of a Laser Ranging Interferometer (LRI) technology demonstrator,
which shall prove the feasibility of laser interferometry between satellites and verify the in-
creased sensitivity of the ranging observable. The LRI has been developed by an US-German
collaboration with involvement of the AEI and the author of this thesis.

Due to the long development and lead times for space missions and space technology,
research and studies on future missions are continuously carried out in preparation for the
next mission calls by space agencies beyond GRACE Follow-On.

In 2013/2014 a collaborative study involving several institutes of geodesy, geoscience,
applied science, and industry partners was conducted and funded by the German Federal
Ministry of Research and Technology (BMBF). The efforts led to a comprehensive pub-
lished report [e.motion? Team, 2014] providing a concept for a future mission with the name
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e.motion®. At first, during the study, scientific requirements and needs were determined and
assessed, mission goals in terms of geoid accuracy defined, and technological and mission
constraints such as orbit configurations were derived and settled upon. Consequently, the
satellite and payload concept was elaborated, providing realistic models for the sensitivity
of observables. To complete the study, elaborated full-scale simulations were performed to
determine the quality of gravity field solutions and if the mission goals could be achieved.
The payload concept of e.motion? was worked out as part of this thesis. The author was
responsible for the payload concept (work package 400 of the study).

This chapter starts with a short introduction on the structure and constituents of Earth’s
gravity field, which is the science objective of gravimetric satellite missions, in section 1.1.
Then basic concepts are introduced to measure it. In section 1.2, e.motion? boundary con-
ditions are addressed, for example, why a particular satellite constellation was selected in
the study. In section 1.3 on the measurement principle of GRACE-like missions, the math-
ematical relation between observations and gravity field is elaborated. This can be based
on high-low satellite-satellite tracking (HL-SST), low-low satellite tracking (LL-SST), or a
combination of both.

To be able to recover the gravity field different observations by various instruments are
required, which are discussed with respect to their important parameters such as sensitivity
and errors in section 1.4 (Instruments and Observations). These instrument models are used
to derive the noise level in the HL-SST and LL-SST channel (section 1.6), which are finally
propagated to the level of gravity fields in section 1.7. This end-to-end simulation, which
relates the errors from the very first observation to the final gravity field solution, is used to
show the strength of the e.motion? concept and to independently verify the result from the
study. Additionally, it also allows critical quantities in the processing chain to be revealed,
which should be addressed.

It turned out during the analysis that the centrifugal acceleration of the inter-satellite
baseline is not measured with sufficient precision, which makes in-situ approaches of gravity
field recovery undesirable in LL-SST missions. To circumvent the problem, dynamical refer-
ence satellite trajectories are derived, which are again susceptible to errors in the background
gravity field models. Hence, a precise direct measurement of the centrifugal acceleration
would be beneficial but turns out to be difficult. This is shown in section 1.8.

Another important aspect regarding drag-free utilization was addressed only briefly in
the e.motion? report, and is therefore supplemented in section 1.9 of this thesis. Finally,
section 1.10 presents ideas for the integrated data analysis and calibration of instruments,
and section 1.11 completes part one of this thesis with a summary.

1.1 Earth’s Gravity Field

Earth’s gravity field is static to first order and a pronounced spatial dependency exists due
to Earth’s oblateness. The gravity acceleration at the poles is roughly 9.832m/s? , while at
the equator it is 9.780 m/s? [Zhang, 2012, p. 66]. Thus, an object’s weight changes by roughly
0.5% between the two locations due to the different distances to the geocenter and the change
in centrifugal acceleration. If a best-fit ellipsoidal gravity field is subtracted from the actual
gravity field, the remaining spatial structure is of the order of +100mgal = +1.0 mm/s?
(peak-peak), a factor of 10™* smaller. Commonly, Earth’s gravity field is expressed as a
particular equipotential surface, the so-called geoid. The geoid undulation (height) w.r.t. a
reference ellipsoid is globally between approximately —100m and +85m. The distribution
of geoid height signal as a function of spatial frequencies, expressed as equivalent spherical
harmonic degrees, is shown by the upper dark blue trace in figure 1.1.
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1.1.1 Time-Varying Gravity Field

In addition to a large static part there are temporal variations of Earth’s gravity field. They
are of special interest, since they can be used to study mass transport within the system
Earth, e.g. ice mass losses at polar regions, sudden mass shifts due to earthquakes, changing
water resources and so on. In general, one should distinguish between tidal and non-tidal
temporal variations. Tidal variations of the gravity field are caused by gravitational pull
from other celestial bodies, especially from the Moon. The well-known ocean tides, which
reach water elevations of 60 cm over oceans and even higher in shallow regions, have, next to
the principal semi-diurnal component, several constituents with lower frequencies. The solid
Earth and atmosphere are also affected by tides. For example, the solid Earth tides result
in a periodic land uplift with 20-30 cm magnitude, which can be measured e.g. by means
of GNSS. If tidal effects are subtracted from the gravity field, non-tidal variations become
visible, which are often categorized as AOHIS [Gruber et al., 2011] :

e Atmosphere: e.g. distribution and propagation of pressure systems,

e Ocean: e.g. mass variations due to atmospheric and continental freshwater fluxes and
evaporation, changes in temperature, salinity, or surface height changes due to currents

e Hydrology: e.g. terrestrial water storage such as basins, rivers and groundwater,
e Ice: e.g. ice mass change in polar regions,
e Solid Earth: e.g. glacial isostatic adjustment and seismic deformations.

Many of these effects have a strong connection to weather phenomena and contain high
frequency signals with periods of hours to days. Space-borne gravimetry is sampling Earth’s
gravity field on a global scale and spatial coverage of measurement points is only sufficient
after a few weeks of integration for a gravity field map update. Higher frequencies in the
time-variable gravity field need to be subtracted using background models to avoid aliasing
of the high-frequency content into the (low-frequency) measurement. For this, the Geo-
ForschungsZentrum Potsdam (GFZ) is providing an atmosphere and ocean de-aliasing prod-
uct (AOD1B), which consists of a set of spherical harmonic coefficients (cf. next subsection),
which are updated every 6 hours and are derived from meteorological and ocean models. The
mean monthly non-tidal AOHIS signal is shown in figure 1.2. It was obtained by forward-
modeling [Gruber et al., 2011]. These traces indicate the time-variable components of the
gravity field, which one aims to measure with GRACE-like missions. The typical precision of
gravity field solutions derived on a periodic basis is illustrated in figure 1.3. Please note that
figure 1.3 shows the difference between a static gravity field (Eigen-6¢4) and, for example,
monthly gravity field solutions. As is apparent from the plot, the GRACE monthly gravity
field solutions can recover the AOHIS signal up to SH degree ~ 40.

1.1.2 Observation Techniques

Space-borne geodesy aims to map Earth’s static and temporal gravity field on a global scale.
The gravity field is dependent on the mass distribution within the system Earth. One goal of
geodesy is to determine the gravitational potential function, V (¢, z,y, z), which is in general a
function with spatial and temporal dependency. For simplification it is often assumed that all
mass is concentrated within a sphere (with mean Earth radius a), so that the potential fulfills
the Laplacian equation V2V = 0 for exterior points. In this type of boundary condition the
gravity field outside the sphere is fully determined by a potential function defined on the
sphere. This function is often expressed in terms of a series expansion of global spherical
harmonics (SH) [Barthelmes, 2009] with degree [ and order m:

o 1

G;M ‘ Z Z (%)l Py (cos (0)) - [cos (me) - Cpp + sin(mep) - Sy m]. (1.1)
[=0m=0

V(r,@,0) =
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Static Gravity Field models
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Figure 1.1: Static gravity field models derived by GRACE, Champ, GOCE, Gravimetry
(G) and Altimetry (A). The upper dark blue trace is the signal of the Eigen-6¢4 model,
which contains GRACE, GOCE, Gravimetry and Altimetry information. The other traces

are computed as the difference to the Eigen-6¢4 model.
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Figure 1.2: Mean of monthly signal in terms of spherical harmonic degree variances for
different AOHIS components (colored traces) compared to mean monthly error of GRACE
derived fields (dashed black line). Plot from [Gruber et al., 2011] under Creative Commons

Attribution 3.0 License.
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Periodic gravity field models w.r.t. Eigen-6¢4
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Figure 1.3: Typical signal and error content in gravity field solutions derived on a regular
basis with different integration times, e.g., 7 days and 1 month, for CHAMP (green trace)
and for GRACE (red, magenta and light blue traces). The black traces indicate the monthly
variability of the gravity field due to ocean and atmospheric effects derived from AODI1B.
The gray bold trace indicates an upper limit for the time-variable gravity field averaged over
one month, which is the sum of the single components shown in figure 1.2. CSR and DMT
denote two different processing centers and schemes.

However, in recent years expansions or supplementations with local basis functions also came
into focus [Naeimi, 2013]. The SH-coefficients Cj ,,(t) and Sj,(t) fully determine the gravity
field. The equation refers to a co-rotating Earth-fixed coordinate frame and the coordinates
r, A, # denote spherical coordinates. One should note that the orbit height or radial distance
r attenuates coefficients of degree [ with 1/rl in the potential V', while the acceleration,
defined as the spatial gradient of the potential ﬁV, is attenuated already by 1/r/*!. The
gravity gradient, the second spatial derivative of the gravity potential, is attenuated by 1/r!*2
where r is measured from the center of the Earth.

)

If one aims to compute the physically correct acceleration of a satellite in an Earth-
fixed frame, eq. (1.1) needs to be supplemented by the non-harmonic centrifugal potential
[Barthelmes, 2009, eq. (4)], which accounts for the centrifugal acceleration present in a ro-
tating frame, as well as by the Coriolis acceleration if the object is moving in the Earth-fixed
frame. The Fuler acceleration needs to be considered if the angular velocity of the frame is
not constant.

Several means exist to access the potential or its functionals. The three most prominent
principles of space-borne gravimetry are introduced in the following sections:

Gravity Field from Orbit Trajectory

A free-falling satellite within a spherically symmetric gravity field, without disturbances
from atmosphere and other celestial bodies, will orbit the central body in a closed elliptical
(Keplerian) trajectory, if relativistic effects are neglected. Higher moments of the gravity field,
small deviations from the sphericity of the gravity field, induce disturbances in the trajectory,
which can be measured by means of SLR or GNSS. From these, low degree coefficients Cj ,,, (t)
and Sy, (t) can be computed, as shown in the case of the LAGEOS and CHAMP satellites
[Jaggi et al., 2012]. The limited accuracy of orbit tracking of millimeter to centimeter and
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disturbances such as atmospheric drag allow only large-scale features of the gravity field to be
retrieved. The temporal variations of these coefficients have seasonal and annual components
as well as long-term drifts. The residual atmosphere produces drag accelerations, which can
be mitigated by flying at higher altitudes with the detrimental effect of a lower gravity signal
amplitude. Alternatively, the drag acceleration can be measured using accelerometers and
subtracted later in post-processing.

Gravity Field from Satellite-Satellite Tracking

The determination of absolute 3-d positions w.r.t. the Earth is, in general, less accurate than
the measurement of distance changes between close objects, e.g. a pair of satellites. The dis-
tance between close free-falling satellites is influenced by gravitational and non-gravitational
effects and can be read out with high precision via low-low satellite-satellite tracking (LL-
SST). The non-gravitational part can be measured with accelerometers and removed from
the observations. With GRACE one can retrieve spherical harmonic coefficients for the static
field up to degree 180, which corresponds to a spatial (half-wavelength) resolution of approxi-
mately 110 km. Monthly solutions are usually determined up to degree 90 [Dahle et al., 2012,
GFZ RLO5], which corresponds to approximately 220 km spatial half-wavelength resolution.
In case of GRACE, the satellites are separated by approx. 220 km.

Gravity Field from Gradiometry

The concept of differential measurements can be extended to multiple close objects, e.g. test-
masses on a single satellite. By measuring their relative acceleration, or equivalent distance
changes, one can form a short-arm gradiometer. Such a setup with six accelerometers has
been used in the GOCE mission, which was capable of retrieving all six degrees of the gravity
gradient tensor. The short baseline nature yields the best sensitivity for high-degree coeffi-
cients. However, a lower orbit and longer integration times compared to GRACE are essential
in order to resolve the weak fine-structure of the static gravity field. The temporal AOHIS
signals of such high-degree coefficients (up to [ ~ 1800) are below the instrument sensitivity.
The sensitivity at low degrees (below 50) for an integration time of one month is insuffi-
cient for resolving the time-variable gravity field. However, use of gradiometry for resolving
the time-variable gravity field is under investigation, for example, within the collaborative

research center geo-@ at the Leibniz University of Hannover'.

Data Fusion

Generally, the measurement quality benefits from an increased number of independent ob-
servations. A GRACE-like mission can exploit information from the precise satellite-satellite
link as well as from orbit trajectory to retrieve the gravity field. The combination of gradiom-
etry and satellite-satellite tracking could be considered. The most accurate gravity models
are obtained from a combination of satellite measurements with terrestrial observations.

However, from a satellite mission design perspective, it is also necessary to justify a space
mission by pointing out a stand-alone benefit to science and society. Therefore, e.motion?
and other studies usually define science objectives in terms of geophysical phenomena to be
observed, or in terms of gravity field resolution. Since this thesis focuses on technology aspects
and system design, the interested reader is referred to [e.motion? Team, 2014, chapter 2] for
detailed scientific objectives.

1.1.3 Geodesy and Fundamental Gravitational Physics

Measuring the gravity field unavoidably leads to the question on the nature of gravitation. For
most terrestrial applications, the Newtonian description from 1687 as an instantaneous force

'Project BO7: http://www.geoq.uni-hannover.de/
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acting between masses is sufficient. However, the Newtonian formalism is prone to deficiencies
(e.g. perihelion shift of Mercury), which were resolved by Albert Einstein’s General Theory
of relativity (GR) in the beginning of the 20th century. In the framework of GR, space and
time are merged to a four-dimensional spacetime and gravitation is a fictitious force arising
from the curvature of spacetime. This curvature is caused by mass, or equivalently by energy,
through E = mc?. Thus, measuring Earth’s gravity field is equivalent to the determination
of the curvature of spacetime.

Newton’s first axiom states that force-free objects rest or move with constant velocity
along a straight line. In the Euclidean space, a straight line is the shortest connection
between two points. In GR, a free-falling object is moving along so-called geodesics, which
are the shortest connection between arbitrary points in the 4d-spacetime. The metric of
the spacetime, which defines distances and therefore the trajectory, is connected through
Einstein’s field equations directly to the mass (and energy).

By tracking the orbital trajectory of an ideally free-falling satellite, in other words by
recording its position at certain times, one obtains the 4-dimensional spacetime trajectory,
the geodesic. With this, one can derive the spacetime curvature, known as the gravity
field. The same is achieved by measuring distance changes between free-falling test-masses,
e.g. between GRACE satellites or within a GOCE gradiometer. Earth’s static and time
variable gravity field is equivalent to a static and time-variable spacetime curvature.

Recall that distances, and therefore also positions, are defined by the speed of light ¢,
i.e. pathlength of light rays in vacuum. In the case of GNSS, position is determined by means
of the travel time of electromagnetic waves. Electromagnetic waves, in particular light, is our
ruler for spacetime. Much research at the AEI is focused on building instruments, which can
read this ruler with ever higher precision.

One such instrument is the planned Laser Interferometer Space Antenna (LISA) [Danz-
mann et al., 2017] mission. It will measure tiny ripples in space-time, so-called gravitational
waves (GW), which propagate through the universe at the speed of light and are generated
by accelerated masses. Due to spacetime’s stiffness, only massive cosmic bodies like stars
and black holes are supposed to produce GW with sufficient amplitude to be detected in our
solar system.

Such waves were predicted by Einstein in 1916 [Einstein, 1916]. Their existence has been
shown indirectly by Hulse-Taylor in 1974 [Hulse & Taylor, 1975], who were rewarded with a
Nobel prize in 1993. On 14th September 2015, the ground-based LIGO detectors succeeded in
the first direct measurement [LSC, 2016]. However, such ground-based detectors are limited
to frequencies above ~ 10Hz, where disturbances from Earth are manageable. The low-
frequency regime containing most of the gravitational wave sources can be covered by LISA.
LISA can be placed far away from Earth, such that variations in spacetime curvature due to
Earth are sufficiently small.

The spacetime measurements mentioned in this section rely on the measurement of dis-
tance or length changes. The ratio of sensitivity of length measurement, expressed as m/ VHz,
and the actual distance between the probing masses, yields the so-called strain sensitivity with
units of 1 / \/E It is a measure of the sensitivity of the spacetime curvature measurements.
In figure 1.4, the acceleration noise and corresponding strain sensitivity are depicted for dif-
ferent instruments. This illustrates that fundamental physics, such as gravitational wave
physics, and the science of precise determination of Earth’s gravity field are closely related.
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Figure 1.4: (Top:) Sensitivity of different instruments and means to probe spacetime curva-
ture expressed as acceleration noise. One should keep in mind that the different instruments
aim to measure different effects (signals) of spacetime curvature, i.e. Earth gravity missions
map the spatial form/distribution, while gravitational wave instruments detect propagating
waves. (Bottom:) Upper plot rescaled to strain sensitivity.
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1.2 E.motion’ Boundary Conditions

1.2.1 Previous Studies

The satellite gravimetry missions GRACE, CHAMP, GOCE and GRACE Follow-On have re-
sulted in over 1700 scientific publications to date. Continuously, papers are released concern-
ing ideas, concepts and analysis of future geodesy missions. For example, Sneeuw et al. [2005]
pointed out various (geophysical) science objectives and corresponding sensitivity require-
ments and, furthermore, simulated different cases of high-altitude, gradiometry, GRACE-like
and other satellite formation missions with a quick-look tool. The analysis is limited to static
gravity field recovery and uses various simplifications (e.g. no accelerometer noise). Bender
et al. [2003] suggested laser interferometry along a single axis in a GRACE-like configuration
and along two axes in a Cartwheel configuration. In a later paper, a dual pair GRACE con-
cept with inclinations of 90° and 63° was suggested for an improved temporal resolution and
therefore a reduction of temporal aliasing [Bender et al., 2008]. Elsaka [2010] analyzed various
formations in his PhD thesis, e.g. Pendulum, Cartwheel, LISA-like, Bender, with regard to
the retrieval of the static and temporal gravity field by means of satellite-to-satellite tracking.
He emphasized that pure along-track measurements as in GRACE introduce anisotropy and
are therefore suboptimal and should be complemented by measurements along the radial or
cross-track component. In addition, it is stated that the proper selection of orbits can sup-
press errors induced by temporal aliasing. Loomis et al. [2012] used different accelerometer
and ranging noise levels to assess the gain by advanced missions. He concluded that a gain
solely in ranging sensitivity does not improve gravity field solutions. Instead, a reduction
of accelerometer errors, e.g. a drag-free mission, and the reduction of temporal aliasing is
required. In [Flechtner et al., 2016] the expected enhancement of gravity field solutions due
to the laser interferometer was analyzed for the GRACE Follow-On mission. The simulation
spanning 5 years predicts a modest gain for the fine structure due to the interferometer, but
accelerometer noise and background model errors are still major contributors to the overall
error.

Other comprehensive resources concerning science objectives and conceptual mission de-
signs are [Rummel et al., 2003] and [Koop & Rummel, 2007].

Additionally, specific studies containing derivation of scientific requirements, formulation
of mission scenarios and of instrument concepts, and end-to-end simulations have been con-
ducted [Alenia-Team, 2010; NG2-Team, 2011; Reubelt et al., 2014]. The precursor of the
e.motion? study, on which this thesis focuses, was the e.motion study [e.motion Team, 2010].
In Europe, the term Next Generation Geodesy/Gravimetric Missions (NGGM) is coined for
such future missions, with e.motion? being the German NGGM-D study.

1.2.2 Observation Type and Number of Satellites

The e.motion? mission concept is designed to study the mass transport within the system
Earth, in particular to track mass changes on Earth over a long period of 10years with
monthly sampling. As pointed out in previous sections, the strength of a GOCE-like gra-
diometry mission is its ability to provide a finely resolved global gravity field map, but it
requires a long period to obtain global coverage. Hence, it is well suited for the static gravity
field. In addition, the low altitude of a GOCE-like mission requires drag-compensation, which
limits the mission lifetime due to propellant constraints. Therefore, the e.motion? concept
was based on GRACE-like low-low satellite-satellite tracking (LL-SST). Different pendulum
constellations, as well as a dual-GRACE, so-called “Bender” configuration [Bender et al.,
2008], were considered in the study. More sophisticated formations such as a Cartwheel
have been suggested in literature [Bender et al., 2003] but impose technological challenges,

21369 for GRACE and 11 for GRACE Follow-On according to GFZ website (http://www.gfz-potsdam.
de/sektion/globales-geomonitoring-und-schwerefeld/publikationen/), 333 for GOCE according to ISI
Web of Knowledge search (http://apps.webofknowledge.com/)
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e.g. due to higher relative velocities and formation control, and were therefore not considered
for e.motion?.

As various analyses have shown [Elsaka, 2010; Pour et al., 2013], pendulum formations
with two satellites, as well as the Bender configuration with four satellites, outperform the
classical GRACE concept. However, since a Heisenberg-like uncertainty relation holds, the
product of spatial resolution Dgpace and temporal resolution Dyipe of gravity field maps is

bounded for a fixed number of measurement links or SST pairs [Pour et al., 2013],
Dspace - Dyime = const. (1.2)

Thus, further improvement requires an increase in measurements, e.g. by a second pair. A
dual pair GRACE mission doubles the measurement points, thus, leading to an improvement
of a factor of v/2 at least, compared to a single GRACE pair. The gain is even larger due to
reduction in temporal aliasing. Pour et al. [2013] claim a gain factor between 10 and 15 for a
Bender configuration over a single in-line pair for 6-day short-period gravity field solutions.

The superior sensitivity of the Bender configuration w.r.t. a Pendulum for degrees below
60, which contain most of the time-variable signal, was identified in [e.motion? Team, 2014,
Figure 3-5, p. 25]. Furthermore, the fact that the Pendulum configuration has already been
analyzed in the precursor e.motion study [e.motion Team, 2010] led to a selection of the
Bender configuration as baseline for e.motion?.

1.2.3 Inclination

The inclination of a single satellite pair in a gravimetry missions is usually close to 90°.
Such a polar orbit ensures coverage of the poles, which are of special interest for geoscience
e.g. due to ice mass loss by global warming. Due to the rotation of the Earth underneath the
satellites, the ground-track pattern can achieve global coverage. One should note that the
poles are crossed at each orbital revolution, while a particular point on the equator may have
long periods between subsequent passes. Usually, the orbits are not exactly polar to avoid
numerical difficulties. Moreover, a small polar gap can increase the coverage in non-polar
regions and can even improve retrieval of particular spherical harmonic coefficients [Elsaka,
2010].

The inclination of a second pair should be significantly smaller to achieve a more ho-
mogeneous global distribution of data points and, in addition, add measurements along the
East-West direction, which helps to reduce the anisotropy and striping in GRACE gravity
field solutions.

Obviously, a four satellite mission is rather demanding concerning funding aspects, so
that a collaborative mission between different space agencies should be envisaged. In the
e.motion? study the inclination of the second pair was chosen based on a parametric analysis
[e.motion? Team, 2014, sec. 3.3] such that the second pair can still provide a stand-alone
benefit by means of global gravity field maps, e.g. significant portions of ice mass regions are
covered. Finally, an inclination of 70° was selected for the second pair.

1.2.4 Altitude and Groundtrack Repeat Cycle

The selection of altitude and inclination determines the ground-track pattern or equivalently,
the distribution of measurement points over the sphere. While the GRACE altitude is nat-
urally decaying, the pattern changes and might result in short repeat cycles, whereas the
e.motion? concept envisions an orbit control with a fixed repeat pattern and homogeneous
distribution of measurements over the sphere during the whole mission lifetime. In addition,
as shown for example in [Murbock et al., 2014], the effect of temporal aliasing by tidal and
non-tidal effects in gravity field maps can be suppressed by using particular altitude bands,
e.g. 294 km—309 km, 360 km—370km, 416 km—426 km or 479 km—495km. This is based on
the idea of shifting the strongest orbital resonances to high SH orders and therefore SH de-
grees, such that the low degrees and orders containing the monthly time-variable gravity field
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are less affected by temporal aliasing. These orbital resonances are also discussed in [Sneeuw,
2000].

The orbital repeat pattern is usually denoted as the ratio of an integer number of orbital
revolutions 3 over a period of integer nodal days . For the e.motion? concept, long-term
repeat cycles of §/a = 478/31 for the polar pair and §/a = 474/31 for the second pair were
selected. These cycles are achieved at orbital altitudes of 434 km and 441 km, respectively. In
addition, Pour et al. [2013] showed that such ground-tracks have subcycles, which also allow
retrieval of 6-day snapshots of Earth’s gravity field, which in turn can help to de-alias the
monthly solutions [Wiese et al., 2011].

In the e.motion? study technological feasibility with regard to drag compensation and
maintenance of orbit height over a decade was analyzed for altitudes around 455km and
366 km. For an altitude of 366 km a combination of cold-gas propulsion for attitude control
and electric propulsion (4RIT) for drag compensation was suggested, with propellant demand
of approx. 22kg for nitrogen and xenon for 10 years. A pure cold-gas system seems feasible
at orbit heights above 400 km with approx. 60 kg propellant, and was selected as baseline in
the e.motion? study.

1.3 E.motion’ Measurement Principle

The rationale behind the selection of two satellite pairs in a LEO orbits for the e.motion?
study was pointed out in previous sections. Each satellite can exploit high-low satellite
tracking, while each pair enables low-low satellite tracking, as introduced in section 1.1.2
(Observation Techniques) to determine Earth’s gravity field. In the following subsections,
the relation between observations and SH coefficients of Earth’s gravity field is elaborated.

1.3.1 Properties of Gravity Field Induced Signals

The determination of Earth’s gravity field by means of low-low satellite tracking (LL-SST)
can be described by the measurement of a differential gravitational acceleration between two
satellites projected onto the line-of-sight given as

Sagy(t) = (l?i - VV (Forp2) — R ﬁV(FGRP1)> - €12, (1.3)

with 7grp1,2 denotmg the position of the gravitational reference point (GRP) of each space-
craft and where R is a rotation matrix, transforming the Earth-fixed pseudo-acceleration® to
an inertial frame. An idealized case is assumed, where the spacecraft are point masses and
the GRP coincides with the center-of-mass and center-of-gravity. Non-conservative forces
and gravitational perturbations from other celestial bodies are omitted. The vector €5 is
the normalized direction vector between the two GRPs in the inertial frame. The functional
in eq. (1.3) is denoted as “projected differential gravitational acceleration” (PDGA) from
now on. It can be evaluated using the spherical harmonic expansion from eq. (1.1) and the
relation dy(r) = +§V(F) with geodesy-typical sign convention, in contrast to the common
expression dy(7) = —VV(F) in physics.
The result can be written as Fourier sum of the form

dag(t) ix

qlm

l
2 COS 27Tfl mygl + Qm q) Cl,m “ Clim,gq

0 m=0

B

0
+ Sln(Qng m qt =+ ﬁl m,q) Sl,m . gl,mg)? (1'4)

where the amplitudes (€ g, 51,m,q), frequencies (fim. g: 91,m,q) and phases (o m.q, Bim,q) are
dependent on the orbits of the satellites. Each spherical harmonic coefficient of particular

3This is a pseudo-acceleration, because the gradient of the SH potential does not include the centrifugal
acceleration apparent in a rotating Earth-fixed frame.
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degree [ and order m produces a comb of sinusoidal signals in the PDGA, as illustrated in
figure 1.5 for a particular polar orbit. The magnitude of each trace in figure 1.5 is already
scaled by the SH coefficient of a typical Earth gravity field (model). However, if the traces
are normalized to unity SH coefficients, these traces can be understood as a basis for the
PDGA signal. Decomposition of the PDGA signal into this basis yields the SH coefficients.

Another approach for space gravimetry is to use high-low satellite tracking (HL-SST) of
individual satellites by means of GNSS. This allows to retrieve the 3-d position. Forming
time-derivatives yields velocity and acceleration. Assuming that the state vector rgrp1 is
given in the inertial frame, the gravitational acceleration 7;1,9(15) can be written as:

Fig(t) = R+ VV (7arpr). (1.5)

Each vector component can be expanded in the same manner as in eq. (1.4) into a Fourier
sum, and a very similar plot to figure 1.5 can be obtained. Expression (1.5) will be denoted
as “direct acceleration” (DA).

Since the spatial (full-wavelength) resolution A of coefficients with degree ! on Earth’s
surface is [Barthelmes, 2009]

40000 km
A ~ =, (1.6)

the gravitational signals da4(t) and 7.’.’1,9(75) contain information with frequencies smaller than

v

f< AL (1.7)

where v is the mean spacecraft velocity of approximately 7.6 km/s in LEO. This provides an
approximate relation between SH degree [ and the measurement frequency. For [ = 52, the
full-wavelength resolution is 770 km and the frequency cut-off is at roughly 9.8 mHz, as shown
in figure 1.5. In contrast, [ = 200 has a full-wavelength resolution of 200 km and frequencies
below 38 mHz (not shown). )

The PDGA observation dagy(t) and the DA observation 7 4(t) do not consist of single
coefficients but of a superposition of several thousand coefficients at the same time. This
produces a quasi-continuous signal in the frequency domain. Exemplary spectra of the pro-
jected gravitational acceleration (PDGA) for different satellite separations L and orbit heights
h are shown in figure 1.6. They are based on pure gravitational accelerations derived from
the static EGM96 gravity field model. One can see that the signal amplitude scales with the
satellite separation (baseline length) L, which is expected as long as the spatial resolution of
SH coeflicients is larger than the baseline length L. If the baseline length approaches the spa-
tial wavelength of particular coefficients, a common-mode suppression appears (cf. [Sneeuw,
2000, Section 4.4]), but this is usually not very pronounced in the final gravity field solutions.

The satellite altitude alters the roll-off frequency in figure 1.6, which is known in geodesy
as upward continuation acting as strong low-pass filter [Zhu & Jekeli, 2007]. With lower
altitude, one can resolve higher frequencies and thus higher spherical harmonic coefficients.
In case of the direct gravitational acceleration 7 4(t), upward continuation is also present.
However, the signal is obviously independent of the baseline length L.

1.3.2 Remark on Spectral Densities

A remark is given on the difference between the representation of data as spectrum and as
spectral density: The PDGA signal in figure 1.6 is plotted as a spectrum and not as a spectral
density, because the PDGA signal is the superposition of several thousand single tones and
the tone amplitude and power is correctly displayed in an amplitude spectrum (AS) or power
spectrum (PS), as long as the spectral resolution of the spectrum is sufficient. If the bin-
width of a spectral estimation is larger than the frequency separation between two tones, they
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Figure 1.5: Signal in the projected differential gravitational acceleration due to particular
spherical harmonic coefficients shown as a spectrum. The spacecraft separation is 200 km at
an orbit height of 400 km. The magnitude of the individual traces/coefficients is based on a
typical Earth gravity field (EGM96 model).
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Figure 1.6: Typical spectra of projected differential gravitational acceleration for different
satellite separations L, orbit height h and truncation degree of the SH expansion. A lower
altitude increases the roll-off frequency, such that higher degrees of spherical harmonics are
observable. The light blue trace contains only spherical harmonics up to degree 50.
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may fall into the same frequency bin and are shown as a single peak with the combined tone
power. Ideally, a power spectrum is the visualization of the integrated power in a frequency
bin, and the amplitude spectrum is simply the square root of the power spectrum.

Recall that noise is a stochastic process and is characterized by a well-defined power
spectral density, i.e. power at particular Fourier frequency in a 1 Hertz bandwidth. Noise has
a continuous distribution of power in the frequency domain, while the power of sinusoidal
tones is concentrated at single discrete frequencies. Hence, the noise level in a spectrum is
proportional to the frequency resolution, while the peak height of tones is independent of the
frequency resolution.

Thus, a spectrum is not the correct means for visualizing noise in the frequency domain
and spectral densities are used. Loosely speaking, a power spectral density (PSD) is a power
spectrum (PS) divided by the frequency resolution, which is the bin-width of the spectral
estimation. The frequency resolution fies of a single periodogram, consisting of a single
discrete Fourier transformation of a discrete time-series, is given by

fres = N/fs = 1/T7 (18)

where N is the number of samples, fs the sampling frequency and T the total duration of
the time-series.

Noise in a spectral density plot is independent of the frequency resolution. However, the
peak height of sinusoidal signals is proportional to 7" = 1/f,es in a power spectral density
plot or proportional to /7 in an amplitude spectral density plot. Thus, it is not possible
to display signal (tones) and noise meaningful in a single frequency domain plot, unless the
frequency resolution is provided to recover the corresponding amplitude without ambiguity.

Correct spectral estimation is even more complicated, as the frequency response of a
discrete Fourier transform is widened due to the finite time series. Hence, for precise spectral
estimates, one needs to apply window functions, which can either be optimized for obtaining
the correct noise spectral density or for obtaining the correct peak height of tone signals. For
a detailed description of the topic, the reader is referred to [Heinzel et al., 2002].

With window functions, the important quantity to convert from a spectrum to a spectral
density and vice versa is not the frequency resolution f,es but the so-called “equivalent noise

bandwidth” (ENBW):
ASD? = PSD = PS/ENBW = AS?/ENBW. (1.9)

As a good practice, all spectral domain plots within this thesis show the ENBW.

The distinction between a sinusoidal tone signal and noise becomes unclear, if the signal
contains so many tones that its power can be considered quasi-continuous in frequency, as
it is the case for the PDGA signal in figure 1.6. The frequency resolution of the spectral
estimate is larger than the mean separation between tone frequencies and the power in most
frequency bins is not dominated by a single tone frequency but by various tone frequencies
within each bin. In such a case it makes sense to also use a spectral density, as it provides
the average power per bandwidth and a quantity, which is independent of the frequency
resolution, i.e. length of time-series.

However, the large peaks apparent at the first integer multiples of the orbital frequency
in figure 1.6 are dominating the corresponding bin power at these frequencies, so that the
peak height needs to be derived from a spectrum in units of m/s? instead of m/(s>v/Hz).

1.3.3 Projected Differential Gravitational Acceleration (PDGA)

The PDGA definition from eq. (1.3) needs to be related to the observations, in particular the
ranging observable. For this purpose one considers

e the gravitational reference point (GRP) trajectories 7 (¢) and 75(t) of both S/C,
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e the connecting line 715(t) = 7o (t) — 71(t), €12(t) = T12(t)/|712(2)|
e the inter-satellite distance p(t) = |F12(t)| = /T12 - T2,

e the non-gravitational accelerations dyg 1(t) and dng2(t) acting on the GRP and caused
e.g. by atmospheric drag,

Computing the first time-derivative of the inter-satellite distance p yields

— —

. 12 - T12 - 2
p = €12 - T12, (110)
VT2 - T12
while the second-time derivative can be expressed as
p = €12 T2 + €12 T2, (1.11)

where the acceleration vector between the two satellites 72 is influenced by gravitational and
non-gravitational effects:

—

12

[l
=

YV (1) + g1 — B+ VV () = ng 2
ﬁ'ﬁ(FbFQ) ’ @+Jng,1 _C_ing,Qy (112)

where R is simply a rotation matrix transforming from the Earth fixed to the inertial frame.
Since the gravitational acceleration (and potential) is a linear function of the SH coefficients,
one can write all spherical harmonics coefficients into a vector C3 and use a convenient
matrix-vector notation to compute the potential V' or the gradient of the potential VV. The
matrix M is the so-called design matrix. Finally, by exploiting 1o = ?12/p — 712 - p/p? and
by re-arranging the desired SH coefficients to the left-hand-side one easily arrives at

> 2 -2
- 5 A5/ = . 12
?12 -R- M( 1, 2) : @J = P — Qng,1,LOS + Gng,2,1.OS — (| p| - pp) (113)
PDVGA
3L
= f — (Ang2,1.0S — Gng1,LOS) — — (1.14)
= p - (ang2,LOS - angl,LOS) - |<DLOS|2 " P (115)

where 7%’127 | is the relative transversal velocity between the spacecraft, i.e. perpendicular to
the line-of-sight, and ang 1,08 = dng - €12 is the non-gravitational acceleration along the line-
of-sight. The third term on the right hand side can also be written in terms of the angular
velocity dros = (712 x 712)/|F12|? of the constellation baseline (cf. eq. (1.15)), showing that
the third term is a centrifugal acceleration. Eqgs. (1.13)-(1.15) are powerful, since they provide
a linear relation via the design matrix M (71, 72) between spherical harmonic coefficients S
and observables such as ranging and accelerometer data at each point in time. In the so-called
classical acceleration approach, the gravity field SH coefficients are determined by solving the
linear equations (1.13)-(1.15) in a least-squares sense for C'S, which also allows the easy
propagation of errors and noise from the observations into the final gravity field solutions.
Due to the epoch-wise and in-situ nature, the acceleration approach is also well suited to
handle data gaps.

The typical magnitudes of the first ranging and third centrifugal term on the right hand
side of eq. (1.15) are illustrated with red and green traces in figure 1.7. One notices that the
magnitude of the ranging term and centrifugal acceleration is comparable at low frequencies,
while at high frequencies the latter rolls off more quickly.

Unfortunately, the relative transversal velocity 712 | or the angular velocity &r,og cannot
be measured with sufficient sensitivity, as will be discussed in subsequent sections, making this
straightforward approach impractical for real mission data processing [Ellmer, 2011; Naeimi,

15



1.3. EMOTION? MEASUREMENT PRINCIPLE

[y
o
=]

ENBW 6.1pHz

-5

[
o

— Centrifugal Term
— Numerical Error M1
— Numerical Error M2
H——Numerical Error M3

[

o
AN
o

- 107’ 10 10
Fourier Frequency f [Hz]

Differential gravitational acceleration [m/s?v/Hz]
'—I
o

Figure 1.7: Typical spectral density of the projected differential gravitational acceleration
(green trace) using a static gravity field model up to degree 180, spacecraft separation of
200 km and orbit height of 400 km. The range acceleration p is shown in red, while non-
gravitational accelerations are omitted. The centrifugal part is comparable in magnitude to
the ranging content for frequencies below 1 mHz. The numerical accuracy of the floating point
arithmetic is shown in black (i.e. orbit integration, computation of range p and acceleration
from spherical harmonics).

2013]. More sophisticated methods like variational-equation approaches (used by CSR, JPL
and GFZ), a short-arc (integral-equation) approach [Mayer-Giirr, 2006] or modified acceler-
ation approaches [Liu, 2008] can reduce the negative effect resulting, however, in increased
complexity and computational costs. These approaches typically compute dynamic orbits
based on a-priori force models, e.g. static and temporal gravity field models, and with empir-
ical parameters, such that these dynamic orbits or arcs match the observations. The residuals
are further minimized by adjusting the spherical harmonics coefficients. Sometimes, the high-
quality gravity fields are obtained by iterative methods, which additionally complicates error
propagation from observations to final gravity field solutions.

If inter-satellite ranging information is used to derive the gravity field, information on
the centrifugal acceleration needs to enter the processing chain at some point, since the
baseline is rotating (cf. GOCE data processing in [Stummer, 2013]). Analysis by Ditmar et al.
[2012] using a modified acceleration approach showed that orbit and centrifugal acceleration
errors can explain the noise level in the Delft Mass Transport (DMT-1) monthly gravity field
solutions for Fourier frequencies between 0.1 mHz and 1 mHz.

One can derive an alternative expression for the centrifugal term using energy conservation
as shown in [Jekeli, 1999] and [Visser et al., 2003], which yields the following result for the
all-important magnitude of relative velocity in eq. (1.15)

|F2(t)]* = 2+ Ey(t) + 2 Ex(t) — 4y/Ex (t) - Ex(t) cos(aft)), (1.16)

with E1 and Es being the specific energy of satellite 1 and 2, respectively, while a(t) is the
angle between the two velocity vectors a(t) = (7, 72). One can express the specific energy,
i.e. the energy per unit mass, of one satellite in the inertial (space-fixed) frame as [Visser
et al., 2003]

t

1 - . .
Ei(t) = §|'Fi|2 = V(7)) + (We x 7%5) - 75 + LO (ng,i - T; dt — Eg, (1.17)
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where the first term is the geopotential with geodetic sign convention, the second term ac-
counts for the rotation of the potential with J. being Earth’s angular velocity. The third
term accounts for energy dissipation, e.g. due to drag, and can be expressed in terms of
accelerometer measurements, while the last term is an energy constant describing the energy
at initial time tg.

In summary, three different methods to describe the centrifugal acceleration can be iden-
tified. The first method (M1) uses eq. (1.13), where |72|? is directly taken from GNSS
observations. The second method (M2) using the angular velocity &ios from eq. (1.15) is
equivalent to M1, if the same GNSS observation is used. However, alternative approaches to
determine &rog are discussed later in section 1.5.1, which might allow for higher precision.
The third method (M3) is based on the specific energy of the spacecraft (cf. eq. (1.16)).

The equivalence of all three methods in the error-free case is shown in figure 1.7, where the
residuals of each method are depicted (lower three traces). The implementation of method
M3 seems to be less precise, with the white noise floor suggesting it is limited by rounding
errors and numerical precision. Later, in section 1.6.2, the susceptibility of the three methods
to noise and error contributions is analyzed.

1.3.4 Direct Acceleration (DA)

The PDGA provides one observation of the gravity field at each epoch for a satellite pair,
while the second time-derivative of the satellite trajectory (sec. 1.1.2) provides additionally
three equations for each vector component per S/C

~ ~

R-VV(iarp) = R - M(farp) - CS = TaRP — g, (1.18)

where non-gravitational accelerations d,, should be subtracted. The matrix M (7) is the
design matrix relating the observations on the right hand side linearly to the SH coefficients
CS. R is a rotation matrix transforming the pseudo-acceleration to an inertial frame. R
could be as well absorbed in the design matrix M. Again, the SH coefficients of the gravity
field can be obtained in a least-squares sense by inverting eq. (1.18), where 7 and @y, on the
right-hand-side can be derived from GNSS and accelerometer, respectively.

1.3.5 Science and Calibration Measurement Bandwidth

The science measurement bandwidth should be selected such that it contains most of the
gravity field signal. As is apparent from figure 1.7, the gravity field signal in the PDGA (and
DA, not shown in the plot) falls off at high frequencies. At some point, the signal to noise
ratio reaches unity and higher frequencies contain only noise. Recording and transmitting
these frequencies to ground should be avoided to save resources.

However, it should be kept in mind that the noise at high frequencies can be used to
assess the sensitivity of instruments and can indicate abnormal instrument behavior.

The upper bound of the science measurement bandwidth is typically given by the Nyquist
theorem as fs/2, where fy is the sampling frequency of the data. Recording data every 5s
yields an upper resolvable frequency of 0.1 Hz, which contains SH degree coefficients up to
degree 500. This is considered to be sufficient, in particular because it turns out in later
sections that unity signal to noise ratio is reached at approx. 0.04 Hz for e.motion?.

The lower frequency bound is a trade-off between scientific return and complexity of
instrument development, verification and costs. For an instrument, a lower bound of 0.1 mHz
requires that all sub-systems and components are verified down to that frequency, implying
a single measurement of approx. 10 hours® to state definitely the noise level at 0.1 mHz. For
e.motion? a natural lower bound at the orbital frequency of 0.18 mHz was selected, since all
SH coefficients produce signals above this frequency.

40.1 mHz corresponds to 2.7 hours, however, due to artifacts in a spectral estimation a longer measurement
is recommended.
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Figure 1.8: Typical PDGA and DA signals at low frequencies expressed as acceleration
amplitude spectral density on a linear frequency axis.

With a science measurement bandwidth (SMBW) of
SMBW : 0.18 mHz < f < 0.1Hz (1.19)

all SH coefficients containing interesting gravity field information can be recovered. However,
there is still some gravity signal at f < 0.18 mHz, as indicated in figure 1.8, because the orbit
repeat frequency w.r.t. the rotating Earth, i.e. the ground-track repeat cycle, is « 0.18 mHz.

Furthermore, it is pointed out that temporal gravity field variations at monthly time
scales and longer, e.g. frequencies f; « 1pHz, do not show up at these frequencies in the
Fourier domain of the PDGA and DA signal. It is not required to extend the measurement
bandwidth to measure these variations. Temporal variations of the SH coefficients produce
sidebands at + f; w.r.t. the tone frequencies within the SMBW.

In the e.motion? study, a novel technique was suggested to continuously calibrate instru-
ments, in particular the accelerometer, with the help of the LRI. The idea is discussed later
in section 1.10. For this, an extension of the higher frequency end by a so-called calibration
measurement bandwidth (CMBW) is suggested

CMBW :0.1Hz < f < 0.3 Hz. (1.20)

At these frequencies, all instruments should be limited by intrinsic noise, which means there
is no gravity signal in the ranging data and no drag signal in the accelerometer data present.
Hence, sinusoidal signals injected for calibration purposes in the CMBW can be recovered by
the instruments.

1.3.6 Definition of the Gravitational Reference Point (GRP)

The GRP is the point used to evaluate the PDGA (egs. (1.13)-(1.15)) and DA (eq. (1.18))
equations. It is usually defined for GRACE-like missions as the center-of-mass (CoM) or
as center-of-gravity (CoG) of the satellite. Ideally, all on-board measurements (GNSS, Ac-
celerometer, Ranging Interferometer) are referred to the GRP, which simplifies gravity field
retrieval.

However, although CoG and CoM are often used interchangeably in literature, the CoG
is defined as the position where the resultant (gravity gradient) torque T vanishes [Feynman
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et al., 2013], i.e.

—

7= | ol (7= o) x 50 &7 Lo, (1.21)
1%

with p being the satellite’s mass density and §(7) = 6‘/(77) being the gravitational acceler-
ation. There is no general solution for this equation. In particular, if a solution exists, it
may be non-unique, i.e. a so-called line-of-action may exist. An alternative but equivalent
implicit definition of the center of gravity Tcoq is given by

st - G(FooG) = fv o(7) - §(7) d&°F, (122)

with mga being the satellite’s total mass. For a parallel (uniform) gravity field over the
volume of the satellite or rigid body, the CoG and CoM coincide, causing confusion due to
their interchangeable appearance in literature. If a unique CoG exists, it is located within
the rigid body and depends on the gravity field, the body’s mass distribution and orientation.

Considering the dependence on attitude and gravity, the author of this thesis does not
see a benefit in using the CoG as a reference point and encourages the use of the CoM, since
it depends only on the mass distribution but not on external properties such as attitude or
gravity field. In addition, the motion of the satellite can be separated into a translational and
a rotational part around the CoM, which is not true if the equations of motion are written
w.r.t. the CoG [Kasdin & Paley, 2011, p. 229].

However, using the CoM to solve the translational equations of motion for a spatially
extended rigid body requires a correction for the non-uniform gravitational field. To derive
the correction, one can expand the gravitational acceleration § around the center of mass in
a Taylor series

Gkmn " Tm " Tn

5 : (1.23)

g(FCoM + 77) ~x g(FCoM) + Gmn - Th +
where gmn = gmn(7com) is the gravity gradient matrix G and the Einstein summation con-
vention is used, i.e. the expression ¢,,, - » can be written as matrix-vector multiplication
G - 7. The vector 7 points from the CoM to other parts of the satellite. The latin indices
m, n, k take values 1..3. The tensor gxmn = Grmn(Fcom) contains the third spatial derivatives
of the geopotential. The gravitational force acting on a satellite is therefore

Mgat - gsat = J p(FCOM + 7:‘) : g(FCoM + T_‘) dg"? (1'24)
\%

Y. — - k -
A Mgat * G(TCoM) + Imn - f p(7) - 7 37 + g$ : J p(F) - T - T 7. (1.25)
\%

|4

Without loss of generality, one can assume the coordinate frame to be centered in the CoM,
thus, the second term vanishes. The third term can be related to the moment of inertia
tensor I, which is defined as

f: I = f p(F) ’ ((T% + T% + T%)(Smn —Tn- Tm) d3F’ (1‘26)
\%4

with 6., being the Kronecker delta. We define the 3 x 3 matrix P as

~ 1 (T2t In 0 0
P:J p~rnormd3F:I—§ 0 Iy + I3z — Ino 0 (1.27)
v 0 0 I + Iog — I33

The moments of inertia tensor I and P are antisymmetric, while the tensor gi,, is symmetric
due to Schwarz’ theorem. Due to this symmetry, many terms cancel out in the product
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Jkemn - Pmn. Finally, one can write the gravitational force acting on the satellite as

- PN gk - P,
Mgat * gsat = Mgat - g(rCoM) + %nm (128)
g111 - P11+ g122 - Poa + g133 - P33
= Msat - §(TCom) + 5 go11 - Pr1 + ga22 - Pao + g233 - Pas | (1.29)

9311 - P11+ g322 - Pog + 9333 - P33

The second term, the extended body correction (EBC), can be written in the case of a
GM /r monopole field as

B 3.GM 2727’; . (3P11 + Py + P33) — 51’2 . (Pllxz + Pzgyz + ngzz)
Gose =5 7 |V (P11 + 3Pz + P33) — 5?J2 : (an2 + P22y2 + P3322) (1.30)
zere - (P11 + Py + 3P33) —bz* - (an + Pooy” + Ps3z )
6. CM 22 (3[11 + Ioo + 133) — 5ax?. (I11x2 + IQQy2 + 1332:2)
=57 yzrz (L1 + 3l + Izz) — 5y® - (Inna® + Iogy® + I332%) |, (1.31)

where (z,y, ) is the CoM position and 72 = 22 + y? + 22.

The moments of inertia are referred to the inertial frame and are therefore dependent
on the S/C attitude. Taking the numerical values for GRACE from [Wang, 2003, p. 23]
and considering nominal S/C pointing along the velocity vector, the moments of inertia
are approximately I, = 390kg-m?, I,, = 7T0kg-m?, 1. = 340kg - m?, where r, a and c
denote the radial, along-track and cross-track direction, respectively. For an orbital altitude
of h = 400km (R = 6771km) and total mass of 420kg, eq. (1.31) has a magnitude of
5-107 m/s? in the direction of the geocenter. Temporal variations are considered to be even
smaller, and can be evaluated using eq. (1.31) but are beyond the scope of this section.

With the gravity gradient being 2.56 - 1076572, this yields an effective separation between
the CoM and CoG of (5-10713m/s?)/(2.56-107%572) ~ 0.2 ym. A sub-micrometer difference
was also obtained by the derivation in [Wang, 2003, p. 23]. Although the magnitude of this
effect is rather small, a correct physical model should account for the drpc effect, in particular
with regard to future missions with higher sensitivity.

It is emphasized that satellite rotations induced by a pure torque, e.g. by magneto-
torquers, keep the CoM and not the CoG constant and therefore allow rotational and trans-
lational motion of a satellite or a rigid body to be separated.

However, the CoM of a satellite should not be considered as fixed, as it changes due to
propellant consumption or the differential thermal expansion of the satellite structure. In
addition, the accelerometer type has implications on the optimal GRP definition, making the
discussion cumbersome.

In this thesis, two different accelerometer concepts are discussed in the following sections.

1.3.7 GRP in Servo-Accelerometer Concepts

The first accelerometer concept utilizes a servo-accelerometer, as in GRACE(-FO), which has
also been selected as the basis for the e.motion? study. For such a concept, the GRP is defined
as the time-averaged S/C CoM position. Furthermore, we define the servo-accelerometer
reference point (RP) as the pivot point of rotations, where pure angular accelerations and
zero linear accelerations are measured by the servo-accelerometer. In the ideal case, this
point is given by the test-mass CoM inside the accelerometer.

If the accelerometer RP and the GRP, i.e. the test-mass and S/C CoM, are co-located,
rotations of the S/C will not disturb the linear acceleration measurement. In addition,
fictitious accelerations discussed in sec. 1.4.3 on the accelerometer are minimized. However,
the accelerometer will measure a small bias, because the test-mass CoG and S/C CoG are
not co-located due to the different offset from the corresponding CoM. Nonetheless, resolving
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this small effect is challenging due to the inherent uncertainty in the bias of accelerometers
(cf. sec. 1.4.3).

It is remarked that a mass-trim maneuver by means of magneto-torquers, as performed in
GRACE [Wang, 2003, p. 17], rotates around the CoM. According to [Wang, 2003] and [Wang
et al., 2010}, the CoM can be co-located with the accelerometer in-orbit to better than 100 pm.
To determine the CoG, a mass-trim maneuver by means of the gravity gradient torque would
be required, which is difficult to realize due to the small magnitude and interference with
other non-gravitational torques.

Recalling the PDGA and DA combination, the dynamics of the GRP are governed by

FGRP R C_igrav + C_ing + C_L)EBC, SC» (132)

while the servo-accelerometer discussed in sec. 1.4.3 provides ideally linear accelerations,

[' ~ dyg + drBe, SC — GEBC, TM- (1.33)

Hence, the DA from eq. (1.18) appears slightly modified

%GRP _f_aEBC, ™ = R'M(FGRP) @ (1.34)
However, dgpc, M ~ 0 is a valid approximation, considering that the correction for the
S/C was already at |dgpc, sc| ~ 1073 m/s? level. This implies that the projected differ-
ential gravitational acceleration (PDGA) from egs.(1.13)-(1.15) also remains valid, if the
non-gravitational acceleration @, is replaced by the servo-accelerometer measurement I

1.3.8 GRP in Drag-Free Concepts

The time-varying S/C center-of-mass location and the difficulty in measuring it can be over-
come by utilizing a drag-free concept (discussed in sec. 1.9). In such a concept, the GRP is
defined as the test-mass CoM, which is physically well-defined and stable w.r.t. the test-mass
geometry. The accelerometer is operated in open-loop mode without suspending the inter-
nal test-mass electro-statically at least not in the sensitive axis. However, the accelerometer
precisely determines the six degrees of freedom of the free-floating test-mass, i.e. position
Zrar with respect to an accelerometer fiducial (reference point) and orientation. Collision of
the test-mass with the accelerometer housing is prevented by actuating the whole satellite in
the translational degrees of freedom, whereby electro-static suspension may be used in the
rotational degrees of freedom to ensure correct pointing of the S/C.

The geometry between the accelerometer reference point and the ranging (interferometer)
reference point needs to be stable. In particular, the vector A connecting both points needs
to be known.

The dynamics of the GRP is influenced by gravitational accelerations Ggray and small
electro-static corrections des, €.g. to ensure inter-S/C pointing and to remove long-term drifts,

FGRP ~ C_i‘grav + C_’:es- (135)

Non-gravitational accelerations such as drag are acting on the S/C but not on the test-mass,
except for the residual deg.

The ranging observation p between the two GRPs is obtained by combining the ranging
observable between the ranging interferometer reference points pis, with the position sensing
from the accelerometers, i.e.

p = pito + A1 - €12 + Ao - €12 — TTM,1 - €12 — TTM,2 - €12, (1.36)

which is illustrated in figure 1.9.

The quantity p can be determined with low noise and is independent of the inherently
unstable S/C CoM. The PDGA and DA observables in the form of eqgs. (1.13)-(1.15) and
eq. (1.18) remain valid, if the non-gravitational acceleration @, is replaced by dcs.
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Pifo
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Figure 1.9: In a drag-free concept, the gravitational reference point (GRP) is defined as
the center-of-mass (CoM) of the test-mass on a satellite. By combining precise position
information from the accelerometer Zty,1 and @y with the ranging information pig, one
can obtain the ranging observation p between both GRPs. The misalignment between the
satellites is exaggerated in this schematic.

In a drag-free concept, the accelerometer can be placed close to the S/C CoM, which might
simplify the analysis and control, since a pure S/C torque will not result in a large translation
of the test-mass. But it is not required, as shown by the LISA and LISA Pathfinder mission
concepts [Danzmann et al., 2017; eLISA/NGO Team, 2012; Danzmann et al., 2007]. For
redundancy concerns, one might consider two accelerometers close to the S/C CoM.

The interested reader is referred to [Reubelt et al., 2014], where the positioning of ac-
celerometers is also discussed.

1.4 Instruments and Observations

In the previous section, the measurement principle of the e.motion? concept and GRACE-like
missions was introduced. In particular, how the gravity field can be obtained from on-board
measurements was demonstrated. It is important to clearly define the instruments, their
observables and expected sensitivity levels to avoid a discrepancy between predicted and
actual sensitivity, as present in the GRACE mission’.

The aim of this section is to provide sufficient information, such that a realistic overall
sensitivity and error model for the PDGA and DA channel can be obtained, which will then
be propagated to the level of gravity fields.

1.4.1 GNSS: Global Navigation Satellite System

Each e.motion? satellite requires a high-quality GNSS receiver which can deliver code, phase
and optional Doppler measurements of the GNSS satellites in view. The GNSS processing
unit is connected to an ultra-stable oscillator (cf. sec. 2.3.4 on USO) and will be capable of
deriving a navigation solution consisting of a 3-d position and velocity vector in real-time.
The accuracy of the on-board real-time navigation solution is required to be better than

054 < 301, (1.37)

for the laser link acquisition and the on-board line-of-sight estimation. Code, phase and
Doppler measurements for all satellites in view are recorded and down-linked as science data
for gravity field recovery. Additional measurements such as radio occultation for atmospheric
studies could be envisioned.

5The errors in current monthly gravity fields [Dahle et al., 2014, GFZ RLO05] are a factor 6 higher than the
pre-launch GRACE baseline sensitivity derived in [Kim, 2000]. This factor was steadily decreased in the past
by advances in data processing.
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During the gravity field recovery, GNSS information is used to derive kinematic time-
resolved 3-d position and velocity vectors of the GNSS antenna phase center. This requires
solving phase ambiguities, corrections for the ionosphere, precise GNSS satellite ephemeris
and so forth. Using S/C attitude information and calibration data, the kinematic position
and velocity of the GRP can be derived from the kinematic position and velocity of the GNSS
antenna phase center.

Kinematic orbits are determined geometrically by the distance to the GNSS satellites,
but they do not exploit additional information, for example, from the gravity field. In this
thesis, the following simplified frequency-dependent isotropic position noise is used

ASD[rgnss k] = (1,1,1)T - ASD[rgnss,E]

2
—(1,1,1)T- (%) +(1cm/\/}E)2, (1.38)

where the subscript E indicates the error part and is based on the logic that a measurement
can be composed into an error-free signal and an error.

The ASD model is shown in figure 1.10 together with true GRACE kinematic orbits
derived by TU Graz [Zehentner & Mayer-Giirr, 2013] for two different days. Since the epoch-
wise covariance information is provided, formal error estimates are also shown. The rms-
value in each component of the noise model is 4 mm with fs = 0.1 Hz, which might seem
low considering that an rms-value of the order of a centimeter is normally given in literature
[Weigelt et al., 2013; Montenbruck et al., 2005]. However, the author assumes that these
rms-values are usually driven by tones or excess noise at the orbital frequency and higher
harmonics, as shown in a plot in [Zehentner & Mayer-Giirr, 2013], and by outliers or non-
Gaussian noise, which is difficult to handle with PSDs. For further information on GNSS
receiver precision and kinematic orbit determination in gravimetric satellite missions, the
reader is referred to [Van Helleputte, 2011].

As will become obvious in subsequent parts of the thesis, precise GNSS observations are
essential for exploiting the full sensitivity of future GRACE-like missions, e.g. of e.motion?.
The author would like to emphasize the following aspects, which may lead to improved
kinematic orbits:

e Availability of low-level data and pre-processing: Commercial GNSS receivers often
perform proprietary pre-processing of measurements, which hampers advances by a
broad scientific community. Thus, declaring low-level data streams as scientific data in
early stages of the mission design could circumvent this issue. Moreover, pre-processing
algorithms within the receiver and on-ground need to be documented well and made
available for users.

e Number of channels: As opposed to terrestrial GNSS observations, satellites in a LEO
usually do not have obstacles, which may decrease the visibility of GNSS satellites,
with the exception being the Earth. However, due to the increased velocity, LEO
satellites usually observe a particular satellite only for a short time, which complicates
solving integer ambiguities. A high number of simultaneous readout channels should be
envisaged, such that all visible GNSS satellies can be tracked. The maximum number
of 10 GPS satellites from GRACE [Montenbruck et al., 2005] is not sufficient nowadays.

e New bands and networks: Tracking of additional bands (e.g. L5 in GPS) and use of the
European GALILEO GNSS network, which is being deployed by the time of writing, and
other networks like GLONASS, BeiDou and QZSS may also improve the measurement.

e Advanced data analysis: e.g. GNSS receiver clock modeling, as suggested in [Weinbach
& Schon, 2013], or modeling of relativistic clock effects, as discussed in section 2.5 of
this thesis.
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Figure 1.10: Kinematic positions and covariance information from [Zehentner & Mayer-
Giirr, 2013] plotted as an ASD. The upper figure is a GRACE-A orbit from 2008-01-01,
while the lower plot shows day 2006-02-06. The coordinate frame is ITRF (IGS05). The
noticeable variability in the magnitude of the co-variance estimates between both days was
not investigated further, but may be caused by ionospheric disturbances driven from solar
activity or by changes in the receiver configuration, e.g. activated occultation antenna.
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¢ Reduction of GNSS multipath effects by selecting appropriate materials for S/C struc-
ture and optimizing S/C structure design and antenna positioning.

e Thorough on-ground characterization of the GNSS receivers and antennas on the fully-
assembled spacecraft, e.g. phase-center variation maps, delays and cross-talk between
channels.

e Two tilted main POD antennas: Due to orbital dynamics of the GNSS receiver, tracked
GNSS satellites appear at low elevation mainly in the ram direction, propagate to the
GNSS antenna zenith and leave at the aft. Two tilted antennas could enhance the
overall field-of-view, while parallel observation of a GNSS satellite with both antennas
could reduce antenna related errors. Furthermore, GNSS-derived attitude information
can be correlated with star camera data. A larger field-of-view enables longer tracking
of satellites, which helps to reduce the number of phase integer ambiguities. Such a
concept was recently analyzed in [Wallat & Schon, 2016].

e Availability of velocity information: To the knowledge of the author, Doppler frequency
measurements were not available in GRACE. Thus, a kinematic velocity could only
be obtained by (imprecise) numerical differentiation of the phase observations at low
sampling rate. Time-differenced phase observations at high rate on the receiver or
at least the Doppler observation from the receiver’s tracking loops might improve the
kinematic solutions.

A potential candidate receiver for an e.motion? mission is the state-of-the-art TriG receiver
[Esterhuizen et al., 2009], which will also be used in GRACE Follow-On [Meehan et al., 2012].
It is a dual processor GNSS receiver with up to 16 antenna input ports and with up 300
configurable satellite signal processing channels [Tien et al., 2012].

1.4.2 Ranging Interferometer

A laser ranging interferometer is capable of measuring inter-satellite distance variations with a
sensitivity of a few tens of nm/v/Hz along the line-of-sight. In general, each interferometer has
a point or an axis of minimal coupling (POMC), where interferometric pathlength changes
upon rotation are minimized. These POMCs are nominally designed to coincide with the
respective satellite GRP. The interferometer provides only biased ranging ppiaseq due to integer
phase ambiguity. The overall noise with contributions from laser frequency noise, spacecraft
attitude jitter, parasitic Sagnac effect, readout noise and many other sources is assumed to
be covered by the following straw man sensitivity formula within the SMBW

VHz f 100 km’

where L is the absolute spacecraft separation and the |/ -term is called the Noise-Shape-
Function (NSF). The latter accounts for an increased noise at low frequency, mostly driven
by temperature fluctuations and by 1/f noise present in many electrical components.

An additional error is induced by the limited knowledge of the DC-scale factor Spc g, in
other words, knowledge of absolute laser frequency, which relates the interferometric phase
measurement to a physical length. The corresponding noise can be described with the spectral
density

nm 10mHz\ 2 L
ASD[pbiased,E](f) =25 A1+ 0.18mHz < f < 0.1Hz, (1.39)

ASD|pbiased, pc-scr el (f) = SSE?E) - ASD|pbiased,m]- (1.40)

This noise is proportional to the actual (measured) signal amplitude ppiased v and the pro-
portionality factor is the fractional laser frequency knowledge SggOE) ~ 107%, which will be

further discussed in section 2.3.2 of the thesis. The time variability of the scale factor (AC
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part) is accounted for by eq. (1.39). It might be possible to fit the DC scale factor in the
process of gravity field retrieval. However, a strong correlation between the interferometer
DC scale factor and a common scale factor of SH coefficients may complicate the correction.
In addition, the large post-fit ranging residuals, e.g. from deficiencies in background grav-
ity field models, make such an approach difficult. Direct correlation of GNSS observations,
i.e. GNSS-derived range, with the interferometry observation is another option. However, the
detailed estimation of the DC scale factor was beyond the scope of this thesis.

In addition to ranging, laser interferometry is capable of providing a measurement of the
local S/C misalignment w.r.t. the line-of-sight by the so-called Differential Wavefront Sensing
(DWS) technique, which is assumed to deliver yaw and pitch misalignment with a noise lower
than

ASD [DWSYaw,E] [ ASD[DWSPitCh,E] < 1 prad/v Hz - NSF(f), (1.41)

where the same noise shape function (NSF) as in eq. (1.39) is considered.
Moreover, a static offset of less than

Yawpias ~ Pitchpias < 10 prad (1.42)

in the interferometer reference frame seems realistic.
GRACE-like microwave dual one-way ranging (DOWR) achieves a sensitivity of the order
of [Kim, 2000, p. 144]

L 2 1.8mHz\* pm
ASD[pbiased,E](f) X <200 km> + ( f > \/m, 0.18 mHz < f < 0.1 HZ, (143)

which is given here for the sake of completeness. The microwave instrument is limited at
high frequencies by the readout noise, which scales with the carrier-to-noise density and can
be assumed to be linearly dependent on the spacecraft separation [Kim, 2000, p. 112]. For a
detailed description of interferometry, the reader is referred to part 2 of this thesis.

1.4.3 Accelerometer

Each e.motion? S/C requires an accelerometer, which is capable of measuring linear and
angular non-gravitational accelerations acting on the satellites, e.g. due to atmospheric drag,
thruster, solar radiation pressure, Earth’s albedo radiation pressure, Lorentz forces and other
unexpected disturbances.

Potential candidates are classical electro-static servo-accelerometers from ONERA, which
have been used in CHAMP, GRACE, GRACE Follow-On and GOCE. Alternatively, a LISA
Pathfinder (LPF)-like gravity reference sensor (GRS) [Danzmann et al., 2007] could be uti-
lized in a drag-free concept. All of these inertial measurement devices utilize a metallic
high-density cuboid test-mass, which is located well shielded inside the accelerometer hous-
ing with a gap to the walls. ONERA instruments prefer a few micron thin wire to charge
the test-mass at AC frequencies (~ 100 kHz) and to polarize it at DC [Frommknecht et al.,
2003], while the LPF GRS test-mass is kept neutral without physical contact using UV light
discharge [Danzmann et al., 2007, p. 12]. Electrodes in the housing can be used either to sense
the position and orientation of the test-mass (also called proof-mass) by capacitive means,
or to apply a force or torque by electro-static means. Usually, the electrodes are arranged
pair-wise on the axes, such that the common signal provides linear accelerations and the
differential signal the angular quantity.

ONERA accelerometers are typically servo-controlled in all degrees of freedom, meaning
that the test-mass is centered and aligned with high gain and bandwidth in the accelerometer
housing. The actuator signal is calibrated and provides a measure of the linear and angular
non-gravitational acceleration. Obviously, the proof-mass will not follow a geodesic, but will
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follow the accelerometer housing and S/C. However, the deviation from the geodesic can be
derived from the actuator signal.

If a drag-free system is utilized, some degrees of freedom are operated open-loop without
electro-static suspension. In this case, the non-gravitational acceleration is given by the
second time-derivative of the capacitive position sensing. However, to avoid physical contact
between proof-mass and housing, the S/C utilizes a drag-free control loop, which actuates
thrusters to re-center the S/C and accelerometer housing w.r.t. the proof mass. Typically,
such a geodesic (free-fall) motion of the test-mass cannot be realized in all degrees of freedom
due to constraints, e.g. in e.motion? due to inter-S/C pointing. A further challenge is to
suppress cross-talk between servo-controlled and drag-free degrees of freedom.

In the LISA Pathfinder mission, one of the GRS units is operated in the sensitive axis
in drag-free mode [Armano et al., 2016b], while the second GRS uses electro-static forces
only at very low frequencies out of measurement band to avoid long-term drifts. Both GRS
units feature an optical readout of the respective test-mass along the sensitive axis which
provides, in combination with DWS, three degrees of freedom out of six. Capacitive sensing
is used for the other degrees of freedom as well, in parallel to the interferometric readout. A
high sensitivity of capacitive sensing can, in general, be achieved with a small gap and high
voltages between test-mass and electrode housing [Danzmann et al., 2007, p. 7], although a
larger gap is favorable for drag-free operation due to the low bandwidth of thrusters and the
accompanied motion of the test-mass.

For e.motion?, a servo-accelerometer was considered sufficient with a sensitivity half-way
between the GRACE Follow-On accelerometer and the GOCE in-orbit accelerometer perfor-
mance (cf. figure 1.11), under the premise that drag-compensation is available (cf. sec. 1.9).
As the GOCE mission utilized six accelerometers mounted on a common platform, with each
instrument providing readout for six degrees of freedom, sufficient redundancy is present to
assess the in-orbit accelerometer noise floor [Stummer, 2013, sec. 5.1.3] also at low frequencies.
The obtained noise level of ~ 10~1! m/sQ\/E does not agree with the pre-launch predicted
sensitivity of ~ 10712 m/s?>v/Hz [Marque et al., 2010; Christophe, 2013] to the understanding
of the author of this thesis. One potential explanation could be that the pre-launch predicted
sensitivity considers only intrinsic instrument noise, while the total noise may be larger, as
will be discussed. In the e.motion? study, the conservative sensitivity of in-orbit GOCE
accelerometers was considered.

At high frequencies, the e.motion? accelerometer requirement was relaxed (cf. black trace
in figure 1.11), since ranging is dominating the PDGA observation at high frequencies anyway.

The dashed green line at the top of figure 1.11 indicates the GOCE drag-free performance
[Sechi et al., 2011], i.e. the deviation of the proof-mass trajectory from a geodesic. In 2016, the
LISA Pathfinder mission showed a superb in-orbit drag-free sensing noise of ~ 3 fm/(s?+/Hz),
measured optically between the two free-falling test-masses on-board [Armano et al., 2016b].
For LISA Pathfinder, the actual deviation from geodesic motion, e.g. due to electro-static
suspension and perturbing forces, can be considered to be (far) below ~ 1072 m/(s?v/Hz)
for all frequencies f > 0.1 mHz (priv. comm. Sarah Paczkowski, AEI).

Such a performance is not directly transferable to LEO gravimetric missions. On one
hand, the thermal, magnetic, gravitational and non-gravitational disturbances are higher
for LEO missions. On the other hand, LISA Pathfinder was designed to push the limits
of available technology and to act as experimental scientific platform with, for example, a
well-balanced self-gravity field [Armano et al., 2016a], low noise truster and high complexity,
which was accompanied by notable costs.

However, the benefit and feasibility of a gravimetric drag-free mission is still a key topic
for future geodesy missions. Hence, this aspect is revisited in section 1.9.

For now, a servo-controlled accelerometer is considered, with the accelerometer refer-
ence point co-located with the S/C CoM. It is emphasized that such a measurement of
non-gravitational accelerations in a rotating S/C frame is susceptible to various fictitious
accelerations. A simplified model for the accelerometer measurement of linear accelerations
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Figure 1.11: Noise levels of accelerometers along the sensitive axis for various missions
(solid lines). The GOCE drag-free trace (dashed green) denotes the precision of geodesic
motion, while all other lines denote the sensing performance.

—

I'imeas,SRF 10 the spacecraft (science) reference frame (SRF) can be written in the following
form [Klinger & Mayer-Giirr, 2016; Frommknecht et al., 2003]

—

Fmeas,SRF :5§ARF'§' (@-F—Q;?-F—2@-?—@-F+}A¥ARF-6ng+E2+6EBC>
+b+ 7, (1.44)

where @, contains the non-gravitational linear accelerations in the inertial frame acting
on the S/C, 7i is the intrinsic instrument noise, b contains biases, S is a scale factor or
geometry matrix, which is ideally the unity matrix, but may contain scale factors and cross-
coupling between the axes [Klinger & Mayer-Giirr, 2016, eq. 3. ISLARF is the rotation matrix
transforming from the inertial frame into the accelerometer reference frame (ARF), while
5}}ARF denotes the uncertainty in the ARF axes w.r.t. the SRF. G is the gravity gradient, @
the angular velocity tensor of the ARF and SRF frame and 7 is the offset between test-mass
CoM and S/C CoM. Eg is the quadratic coupling, which can be written as

EQ = (]%ARF : C_ing)T : I?Z : ﬁARF : C_ing, (145)

with .[?2 containing the quadratic coupling terms as diagonal elements. The extended body
correction dgpc accounts for non-uniform gravitational acceleration of the S/C and test-mass

dEBC = GEBC, SC — AEBC, TM: (1.46)

which has been introduced in section 1.3.6.

The e.motion? accelerometer requirement from figure 1.11 is considered to account for all
potential error contributions from eq. (1.44), and in particular for the fictitious accelerations,
and not only for the intrinsic noise 7. It is defined for the science measurement bandwidth
from 0.18 mHz to 0.1 Hz along the two sensitive accelerometer axes in radial and along-track
direction by

ASD[I'x g] = ASD[I'y g]

4 4
:4.10—1182;](1@.\/(“1}}12) +1+<10iHZ> . (1.47)
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The requirement for the less sensitive cross-track axis is relaxed by one order of magnitude
to

4
_1j0 I 1mHz f
ASD[I'zg] =4-10 S2\ﬁ + 1+ <10mHz> . (1.48)

The axes X,Y,Z refer to the accelerometer reference frame (ARF), but are roughly aligned
with radial, along and cross-track direction, respectively. For the angular acceleration sen-
sitivity an effective lever-arm of d; = 10 mm between the sensing electrodes is assumed and
only the less-sensitive axis is taken into account as baseline for all axes

ASD[T'z k]
dy

d 1mHz\* 1
—4.10°8 s;jE'\/( H} Z> +1+ (101{le) . (1.49)

The matrix S in eq. (1.44) is a critical component and requires particular attention.
Consider the along-track x-axis of the accelerometer to be independent of the other axes.
The ratio between the true in-orbit value Six true and the best estimate Six estim., determined
e.g. from on-ground calibration, is a fractional scale factor

ASD[wx ] =ASD[wy ] = ASD[wz k]| =

g Sextrue SACD 4 SO 1 4 SAC9), (1.50)

Sxx,estim.

ideally close to unity. The subscripts S and E stand for the signal and unknown error,
respectively.

It is recommended to distinguish between the DC (zero frequency, mean) part and fluc-
tuations (AC) within the measurement band, i.e.

ACC ACC ACC
SSCV(f) = Shes) + Shes (). (1.51)

The noise coupling into the measured acceleration I' from the DC scale factor uncertainty
depends on the measured signal, while the AC scale factor fluctuations are multiplied in a
worst-case assessment by the maximum non-gravitational acceleration I'y .y, i.e.

PSD[T's k] = (Shes)? - PSD[Fineas] + I

max

- PSD[S{ s 1. (1.52)

For example, the second contribution does not show up in typical noise measurements, where
one tries to measure zero acceleration.

For the PDGA signal, the non-gravitational acceleration along the line-of-sight is of im-
portance. Hence, cross-talk from other axes due to a misaligned accelerometer need to be
prevented. A misalignment would also show up as change in the DC scale factor S](D%CS ),
Other important aspects such as accelerometer saturation and requirements for the scale
factors are taken into account later in section 1.9, which deals with drag-free operation and

drag compensation.

1.4.4 Star Cameras

A star camera typically consists of one or several sensor heads and a processing unit. The
sensor heads image the starry sky onto a photosensitive array (e.g. CCD), which provides a
two-dimensional digital picture. The processing unit compares the location of the stars on
the picture with a star catalog and derives the orientation of the sensor head w.r.t. the starry
sky, which is practically an inertial frame. For an overview of the working principle and data
processing of star cameras, the reader is referred to [Frommknecht, 2008] and [Bandikova,
2015]. Multiple sensor heads are required, since illumination by the Sun or Moon can blind
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the sensor head. GRACE used two sensor heads, while GRACE Follow-On will utilize three
sensor heads to avoid parallel blinding of all heads by Sun and Moon. It is also evident that
future missions should utilize at least three sensor heads. Analyses of star camera noise and
errors as well as of camera head data fusion in the context of GRACE can be found in [Indcio
et al., 2015; Harvey, 2016] and [Bandikova & Flury, 2014].

The information provided in [Bandikova & Flury, 2014] was used to assess the sensitivity
of the measurement. A noise of approximately 10~° rad/(sv/Hz) at 0.1 Hz and proportionality
to the Fourier frequency f, i.e. blue noise in angular rate ASD domain, is considered for the
two sensitive axes. Integration yields a white noise level of approx. 16 prad/+/Hz.

The orientation of the star camera heads in GRACE allows the S/C roll axis to be
retrieved with highest precision in hot redundant operation of heads, while the other axes are
degraded due to influences from the less-precise sensor head boresight axes [Bandikova, 2015,
Fig. 5.2], in particular in case of non-optimal sensor head fusion. With recent advances,
e.g. optimal fusion [Bandikova, 2015, Fig. 5.5] and debugged stellar aberration correction
routines [Harvey, 2016], a simplified isotropic noise model for the angles («, 3,7), relating
the satellite attitude to an inertial frame, is considered for e.motion?

01Hz\?
0.0 Z), (1.53)

f

where a noise-shape function was introduced to allow for an increased noise at low frequencies
due to thermal variations and drifts.

It is noted that angular biases between star camera frames, satellite (science) frame and
other instrument frames, arising from thermal or launch load effects, need to be calibrated
in-orbit. A typical magnitude of a few milliradian can impose operational challenges for
instruments with tight pointing requirements, e.g. laser ranging interferometers.

ASD[(a, 3,7)7] = (1,1,1)7 - 16 prad/v/Hz - \/1 + (

1.4.5 Tone Errors

The recent sections focused on stochastic error models, i.e. noise, and partly on errors with
systematic behavior such as biases or scale factors. However, measurement errors can also
have a deterministic origin, e.g. they may be caused by periodic excitation of temperature.
Noise shows a continuous distribution of power over frequency, while sinusoidal signals have
power at a particular discrete frequency, i.e. delta peaks. Noise is characterized by a power
or amplitude spectral density with units of e.g. meter/ v/Hz, while tones are described by an
amplitude unit e.g. meter.

Tone errors are modulations of the instrument output driven by periodic excitations of
environmental quantities such as

e Temperature

Magnetic field

Atmosphere / Ionosphere

Gravitational Potential

e S/C inertial attitude

All of these environmental quantities have a pronounced variation at the orbital or twice the
orbital frequency for a LEO satellite and, thus, can be written as

E(t) = > (acn - cos(2m forbnt) + agp - (27 forpnt)) (1.54)
n=1

where two amplitudes (acn, asn) per frequency were used instead of the equivalent represen-
tation of one phase and one amplitude (cf. eq. 5-8 in [e.motion? Team, 2014]).
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n/rev PDGAg pE [nm] | Tg [pm/s?]
1 100 pm = 126 pm/s? 25 32
2 20 pm 2 101 pm/s? 5 25.5
3 5um = 46 pm/s? 1 11.5
4 0.8 pm = 16 pm/s? 0.2 4
5 0.16 pm = 5.1 pm/s? 0.04 1.25
6 0.032pum = 1.5pm/s? | 0.008 0.25

Table 1.1: Tone error requirement for the PDGA observation of a SST link (second column),
and flow-down onto S/C instrument level (third and fourth column). The ranging values pg
are half-roundtrip requirements for a single LRI-instruments (per S/C). The accelerometer
values ' are given per instrument (or per S/C).

n/rev ‘ GNSS [mm] ‘
1 4
2 4

Table 1.2: Tone error assumption for GNSS and orbit determination.

Usually, the susceptibility of an instrument to this environmental quantity £ can be
described by a coupling factor cps ¢, which may be time or frequency dependent, such that
the measurement error Mg is given by

Mg = ey - €, (1.55)

with the equation being deployed in the frequency or the time domain. One should also
recall that non-linearities in a dynamic system produce higher-harmonics at integer multiples
of the excitation frequency, yielding a comb of tones with decreasing amplitude. Since Earth’s
gravity also produces a comb of sinusoidal signals in the PDGA as well as in the direct satellite
acceleration (DA), it is important to study the effect of tones on gravity field retrieval in order
to be able to set proper requirements at instrument level and to develop strategies to mitigate
this error in gravity field recovery.

A first, but preliminary, step in this direction has been done in [e.motion? Team, 2014,
sec. 5.1.5]. Gravity field recovery has been performed twice, with and without induced tones.
From these results, tone amplitude requirements were derived, such that science objectives in
terms of gravity field precision are met. The instrument tone requirements for the two prime
instruments of the PDGA, accelerometer and interferometer, are adopted from the e.motion?
study and shown in table 1.1. The tone error in the final PDGA observation is distributed
equally on the four instruments per link, two accelerometers and two interferometers, with
following formula

PDGAg =2-pg +2-Tg- (20 fom - n)?, [m]. (1.56)

However, the approach did not take into account an adopted gravity field recovery algorithm,
which is capable of handling tone errors. Hence, it is very likely that these requirements can be
relaxed with algorithms taking tone errors into account, as will be discussed in section 1.7.2.

Tone errors in the orbit determination have not been handled in the e.motion® study.
However, based on the covariance information of the kinematic orbit as shown in figure 1.10,
a tone error of 4mm at 2/rev frequency is assumed here. Interestingly, the covariance in-
formation does not show an increased error at 1/rev frequency, which might be caused by
deficiencies in the error modeling. In this thesis, an additional tone amplitude of 4 mm at
1/rev frequency is assumed, as summarized in table 1.2.
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It is beyond the scope of this thesis to derive and justify tone error requirements for all
instruments. However, the author of this thesis would like to outline a roadmap on this issue
for future studies. As these satellite gravity mission studies usually consist of different groups,
which are concerned, for example, with gravity field recovery, instrument design, spacecraft
design and so on, it is advised to provide separated dedicated work packages, which can be
performed in parallel.

First, the time series of environmental quantities at the S/C position like magnetic field
strength, temperature (or incident solar irradiation) and S/C attitude needs to be determined
for the particular mission design baseline. From these, the sinusoidal characteristics such as
amplitude and frequency can be determined for each environmental parameter.

The remaining tasks

3. Gravity field recovery: development of potential strategies to cope with tone errors and
the definition of maximum acceptable tone error in the instruments for the different
strategies

2. Instrument design: deriving the transfer functions of the instruments from environmen-
tal parameters such as temperature, magnetic field and attitude to the measurements
such as ranging or accelerations

1. Spacecraft design: derivation of transfer functions from environmental quantities in-
orbit to instrument boxes using a S/C model

need to be iterated with respect to the spacecraft design, such that the final tone errors
permit the science objectives to be met.

1.4.6 Proposed Data Processing

Many instruments on-board a GRACE-like mission are capable of measuring the same phys-
ical quantities, e.g. attitude, baseline angular velocity, inter-spacecraft distance. This redun-
dancy should be exploited to validate and calibrate the different instruments against each
other and to optimally combine the data streams to obtain the baseline state with least er-
rors. A baseline state means here quantities which fully describe an e.motion? link, consisting
of two satellites, for the gravity field recovery. The baseline state is ideally derived by an
integrated parameter estimation and serves as the interface to gravity field recovery. From a
time-series of baseline state quantities, as illustrated in the scheme in figure 1.12; the SH co-
efficients can be computed. However, the (co)variance information of SH coefficients contains
information on deficiencies in the a-priori information of the integrated parameter estimate
and should be fed back, resulting in a recursive approach.

Although this strategy might be a matter of dispute, as some groups prefer to use directly
low-level or raw observations, the author of this thesis prefers a clear separation between
baseline state parameter estimation and gravity field recovery. The complexity of both steps
individually is already enormous, making a single step procedure from raw observations to SH
coeflicients almost impossible to follow. Additionally, the two step procedure from figure 1.12
allows the easy comparison, validation and improvement of different methods of gravity field
recovery without bothering with low-level corrections, e.g. from temperature.

However, the first step of baseline state parameter estimation needs to be open for a
broad scientific community, well documented, replicable and should be improved steadily
and frequently, considering input from gravity field recovery groups. An open question in
data processing remains regarding the use of a-priori gravity field information in the first
step, which has not been addressed here.

The interested reader is also referred to the section on Integrated Instrument Analysis
and Calibration (sec. 1.10 on page 68).
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Figure 1.12: Flow diagram of the proposed e.motion? data processing chain.
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1.5 Baseline State

The next sections address the recovery of Earth’s gravity field from simulated observations.
This requires that baseline state quantities, in particular the gravitational reference points,
are determined from instrument observations. For the purpose of this thesis, a simplified ap-
proach was selected instead of the integrated parameter estimation introduced in sec. 1.4.6.
An idealized servo-accelerometer concept is considered, where the accelerometer reference
point, interferometer reference point and S/C CoM coincide. Furthermore, the GNSS obser-
vations refer to the S/C CoM instead of the GNSS antenna phase center.
The following straightforward formulas for the GRP have been used

. _ TGRP,1,GNSS + TGRP2, GNSS Punbiased
TGRP,1,GNSS+IFO ~ 5 —E126N8s T 5 (1.57)
. _ TGRP,1,GNSS + TGRP,2, GNSS | - Punbiased
TGRP,2,GNSS+IFO ~ 2 T e2GNss o (1.58)

where 7GRrp1/2,anss is the GRP (=S/C CoM) position derived solely from GNSS kinematic
orbits. Such a definition of the GRP incorporates a low noise distance between the GRPs.
This is important, because the GRPs are used to evaluate the potential function on the left
hand side of the PDGA observation equation (eq. (1.13)) and the right hand side contains
the precise ranging information.

The offset, which is required to transform the interferometrically measured biased ranging
Phiased (t) into a correct (unbiased) distance, is computed with

Punbiased (t) = Pbiased (t) —{Pbiased) + {|TGRP,1,GNSS — TGRP,2,GNSS ), (1.59)

offset

where () denotes temporal averaging.
The line-of-sight - the baseline - is estimated here from GNSS observations at each epoch
according to

TGRP,2,GNSS — TGRP,1,GNSS
|FGRP,2,GNSS — TGRP,1,GNSS|

€12,M = (1.60)

Since the GNSS-derived GRP position is known at the cm/ v/Hz level and the satellite sep-
aration is of the order of 100km, the angular jitter of the GNSS-derived baseline is of the
order of 0.1 prad/+/Hz.

The previous equations are, in many aspects, simplified and hence suboptimal. For ex-
ample, they do not consider the different noise characteristics of GNSS and ranging interfer-
ometer observations, e.g. at very low frequencies the interferometric ranging may become less
accurate due to drifts compared to GNSS-derived distance. Additionally, the line-of-sight
estimation dismisses attitude information from other instruments, e.g. DWS, accelerometer
and star camera with respective noise characteristics.

However, these simplifications allow analytical formulas for the expected noise level in the
PDGA channel to be derived in subsequent sections.

1.5.1 Line-of-Sight Angular Velocity
The line-of-sight or baseline angular velocity has been defined by (cf. sec. 1.3.3)

- - N Flo X 7o 7‘712;
WLOoS = €12 X €12 = 7 ‘2 = 7a]
12

where 7.?12,L is the relative velocity between both S/C GRPs perpendicular to the LOS. It can
be computed straightforward from the GRP position (eq. (1.58)), however, alternative ways to
determine it will be discussed in sec. 1.8. Since precise ranging information is only available
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along the LOS, the precision of the angular velocity is dominated by GNSS uncertainties
(cf. eq. (1.38)) and the error (denoted with subscript E) in the angular velocity can be
considered in the PSD domain as

T 2. (27rf)2 . PSD[TGNSS,E]
L? '

PSD[@Lose] ~ (1,1,1) (1.61)
where L is the inter-spacecraft separation. Because the assumed position noise is isotropic,
i.e. each vector component has the same PSD, the noise in the angular velocity is isotropic
as well.

It will turn out subsequently, that &r,og is a critical quantity. The precision of &r,0g can
be improved by utilizing more precise orbits than directly available from GNSS observations,
which are introduced next.

1.5.2 (Reduced-) Dynamic Orbits

The GNSS-derived kinematic orbits are based on multilateration and do not exploit infor-
mation on the dynamics of the GNSS receiver. The errors in the kinematic orbits can be
understood as readout noise, which can be decreased by using additional information or
constraints, e.g. from

e Energy conservation: The energy of the satellite as the sum of kinematic, potential,
rotational and dissipated energy is preserved along the orbit. Evaluating the potential
energy requires a-priori knowledge of the gravity field.

e Accordance with ranging: The ranging instrument provides precise distance mea-
surements along the line-of-sight, which can constrain the GNSS observation error along
one axis.

e System dynamics and a-priori-knowledge of the gravity field: Approximate
a-priori knowledge of the gravity field can constrain the GNSS observation error sig-
nificantly, if the satellite’s equations of motion are utilized. If the non-gravitational
accelerations are considered in the dynamics, this approach complies typically with the
energy conservation constraints.

Some caution is required, since one aims to measure the gravity field but tries to incorporate
some a-priori knowledge of the gravity field, which might bias the solution. However, with
GRACE-like missions, one aims to measure a small time-variable gravity field signal on an
approximately 10.000 times larger static field, which should be well known.

A straightforward approach is to use an orbit integrator in combination with best-knowledge
force models to derive an orbit trajectory, which approximates the GNSS (kinematic) observa-
tions, i.e. best-fit to the kinematic orbit. This so-called dynamic precise orbit determination
uses only a few free parameters such as the initial state vector of the satellite and a few
quantities describing the force models (e.g. drag coefficient) [Bertiger et al., 1994]. In the
so-called reduced-dynamic precise orbit determination (RDPOD) additional free parameters
are introduced to account for errors in force models as well, and to allow an optimal synthesis
of dynamic and geometrical information [Bertiger et al., 1994].

The accuracy of the (reduced-)dynamic orbits is limited by the knowledge of the forces
acting on the satellite and by the accuracy of the kinematic orbits. Such forces can have a non-
gravitational origin, e.g. atmospheric drag, solar radiation pressure, but also a gravitational
origin, which has a large static part, high-frequency contributions (periods of hours and
days) and a monthly signal, which one actually tries to measure. The latter one cannot be
assumed to be a-priori knowledge. The high-frequency tidal and non-tidal content, as well as
non-gravitational accelerations, need to be reduced from observations by background models.

An estimation of the errors in the (reduced-)dynamic orbits with regard to the true
trajectory is not straightforward, since the true trajectory is not known for real orbits. The
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precision of the accelerometer and the ranging instrument are usually sufficient, such that
these errors are not dominating the dynamic orbit determination.

In this thesis, the position noise in (reduced-)dynamic orbits "rppop g is approximated
by colored noise with spectral density obtained by finding the values for the corner-frequency
fe and n in

1

ASD[7rprop,e| = ASD[FgrpE] - 15 (/L)

(1.62)

with the help of simulated orbits.

Therefore, it is assumed that the accuracy of gravitational and non-gravitational back-
ground models can be expressed as equivalent SH geoid error. For different accuracy levels of
this a-priori gravity field, the best-fit orbital arcs are computed using a numerical integrator
and multi-dimensional numerical optimization to find the initial state vector. The best-fit
arcs minimize the rms 3-d distance to the kinematic GRP orbits over the arc period, which
is approximately half of the orbital period. The assumed a-priori gravity field knowledge is
shown in the upper-left plot of figure 1.13. Case 1 does not contain errors in the a-priori
gravity field, hence only the noise from GNSS observations is present. Case 4 is adopted as
realistic baseline for the error in the background modeling.

Typical differences between true simulated orbit position and (reduced-)dynamic orbit
position are shown in Figure 1.14, where also a model with f. = 1mHz and n = 3 is shown.

In the same manner, the angular velocity of the baseline is determined. The resulting
model reads

/200 k
ASD[wros,grpPOD] (f) ~ 2+ 1070 1ad/(sv/Hz) - (1% //5milz)? - (fnipf/lo mHz) (1.63)

and is shown on the two lowest panels in figure 1.13. The lower left panel indicates the
fluctuations in the angular rate, determined as the difference &r,os RDPOD — WLOS, True and
rss’ed after spectral estimation over the x,y, z components for the four different cases. The
actual signal 1,08, True is shown as the dark blue trace, while the light blue trace is the angular
velocity noise derived from pure GNSS errors. One can conclude that (reduced-)dynamic
orbits provide baseline angular velocities with significantly lower noise compared to the GNSS-
based angular velocity. The lower right panel shows the angular velocity components in the
RTN frame (see caption) for the noise in case 4 and the actual signal. The signal and
noise in the tangential (T) component, i.e. along the LOS, is significantly smaller and should
actually vanish as per its definition but is likely caused by numerical inaccuracies®. The
model (eq. (1.63)) approximates the noise for the normal (cross-track) and radial direction.

It should be noted that the dependence on the baseline length p in eq. (1.63) was estimated
from reproducing the plots for satellite separations of 10 km, 50 km and 100 km.

The plot on the upper right of figure 1.13 shows the acceleration error of the (reduced-
)dynamic orbit w.r.t. the true orbit. Even if no background model errors are present, as in
the magenta case 1 trace, the (reduced-)dynamic orbit does not correspond to the true orbit
due to the GNSS noise. As a result of common-mode rejection of errors, since both satellites
experience a similar environment, the relative acceleration noise between the satellites is lower
(middle left plot) than the absolute acceleration error of one satellite (upper right plot). The
error in the relative acceleration 7 is strongly connected to the centrifugal term \G)’LOS\QN- P
in the PDGA, as the first time derivative of the baseline angular velocity &rog contains 7a:

€12 X T12 — 2 - WLos - P
P

HLos = (1.64)

The middle right plot shows the noise in the centrifugal acceleration |Gros|? - p.

®The RTN frame of one of the S/C was used instead of the RTN frame of the baseline.
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Figure 1.13: (Upper Left:) Different cases of accuracy for the a-priori gravity field, used
to derive (reduced-)dynamic orbits from kinematic orbits. A lower error in the a-priori field
implies a lower error in the (reduced-)dynamic orbit. Case 1 is not shown, since it has no
error. (Upper Right:) Error in acceleration (root of sum of squares - rss’ed - over z, y, z) for
a single satellite for the different cases. The acceleration noise in the kinematic orbits (GNSS)
is shown in light blue. (Middle Left:) Relative acceleration (rss’ed over x,y, z) between the
two satellites for the different cases. (Middle Right:) Errors in the centrifugal acceleration
term of the PDGA for the different cases. (Lower Left:) Error in the angular velocity (root
of sum of squares over z,y,z). (Lower Right:) Error in the angular velocity for case 4
and the signal in a local orbit frame (RTN: Radial, Tangential /Along-Track, Normal/Cross-
Track). All plots assume an orbit height of 400km and a spacecraft separation of 200 km.
The gravity field is considered up to degree 180.
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Figure 1.14: The simulated precision of (reduced-)dynamic orbits for a satellite at height
h = 400 km height and with the background model errors from the cases given in figure 1.13
(upper left). The traces correspond to the root of sum of squared values over z,y, z in the
spectral domain.

The propagation of tones into the (reduced-)dynamic orbit and the corresponding angu-
lar velocity is done in the following way: It is assumed that differential transverse position,
e.g. radial or cross track direction, is subject to common-mode rejection between the (nearby)
satellites in a link, such that the 4 mm tone amplitude of kinematic orbits (cf. sec. 1.4.5) is
suppressed to amplitudes of a; = 0.3 mm and ag = 0.1 mm at 1/rev and 2/rev frequency, re-
spectively, in the (reduced-)dynamic orbits. From these amplitudes a,, the following formula
is used to obtain an error in the angular velocity

2
WLOS,E,Tones = Z

n=1

s - SIN(27 forpt - ) + ap e - COS(2T fornt - 1)
p

: 27rforb .z (165)

which translates into the following error in the centrifugal acceleration term:

- - 4
5% p~ 2 [@pc| - WLOS E, Tones * P = T, " WLOSE Tones * (1.66)
or

1.6 Sensitivity Model

In section 1.3, the two primary relations between the Earth gravity field and observables were
derived: On the one hand, one can obtain the SH coefficients from the projected differential
gravitational acceleration (PDGA, LL-SST) and on the other hand, directly from the orbit
trajectory (direct acceleration, DA, HL-SST). In section 1.4, error models of the measure-
ments were introduced. In this section, measurement errors are propagated into PDGA and
DA, such that rigorous sensitivity models for PDGA and DA are obtained. In the subsequent
section 1.7, the errors are then related to gravity field solutions.

1.6.1 Direct Acceleration (DA)

Let us denote the error-free, i.e. true, satellite GRP position with the subscript “T,GRP”.
Measurements and errors are denoted with the subscripts “M” and “E”, respectively, such
that one obtains

TT,GRP = T™M,GRP — TE,GRP = "M — T'E (1.67)
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The term 7g grp contain errors in the determination of the GRP, i.e. GNSS errors. From

eq. (1.18), one easily arrives at an expression for the satellite’s 3-d direct gravitational accel-
>

eration DA in an inertial frame

N —~ R —~ ~ .,

DATrue(t) = M(TT,GRP) . @ + Qng, T = M(rM,GRP) . @ - G- TE + Qng, T (1.68)

=M + C_ing,l\g —G - TE — TE — Gng,E, (1.69)
MeastI;ement Er;:)rs

where the gravity gradient G relates a position error to an acceleration. The non-gravitational
accelerations are given by dpn,. The noise in the observation of the direct acceleration (DA)
can be approximatively expressed as power spectral density by

PSDIDAg](f)~  [|GI[Z - PSD[is] + (27 f)" - PSD[7is] + PSD[Gng ]
2
~ <8§2> + (2nf)* | - PSD[7] + PSD[dng 5], (1.70)
TOrb

where several approximations were used to derive a handy equation. The square root of
the expression is visualized in fig. 1.15 as light blue dashed trace, which has a white noise
floor at low frequencies and is increasing with f? (in the ASD domain) due to the double-
differentiation.

In general, the gravity gradient G in eq. (1.69) is time-dependent and it is mixing the
different vector components. The dominating part of the gravity gradient G is due to the
zero degree term (point-mass, PM), which is typically written as [Seefelder, 2002, eq. 4-16]

W GM (PR FT.R an® [ FFT FTF
GPM(T) = T3 (3 7"2 - 'I°2 : ]]-3><3> = T2b <3 7"2 - T2 . ]].3)(3) (171)
or

where 1343 is the identity matrix and Ty, = 27 - 4/73/GM is the orbital period of a circular
orbit at height |7]. The eigenvalues of Gpy are

(1G]1o0s = 11Gllo0/2, =1|Gl|o0/2) (1.72)

with the matrix norm ||G||, ~ 872 /T3, ~ 2.5-1079s72 for a LEO satellite, which cor-
responds to the value for the gravity gradient in radial direction. Eq. (1.70) assumes the
worst-case coupling along the radial direction and is valid as long as the noise in 7g is
isotropic, which has been assumed for the GNSS observations (cf. eq. (1.38)). The validity of
the simplified model in eq. (1.70) is shown in figure 1.15, where the direct acceleration vector
components of a satellite at 400 km orbit height are depicted together with the errors.

The error traces are based on instrument GNSS noise, which is differentiated twice to
yield the acceleration noise plus the contribution due to evaluating the acceleration at the
wrong position, which is depending on G. The latter is not a direct measurement error but
rather a disturbance of the gravity retrieval process that shows up, for example, if post-
fit residuals are computed. It is an error in independent variables in the context of least-
squares estimation. In contrast to ordinary least squares, where the independent variables
are considered as error-free, the so-called total least squares estimation considers errors in
both dependent and independent variables and is therefore favored within this thesis. The
total least squares estimation uses a modified covariance matrix for data weighting. The error
model represented by eq. (1.69) can be understood as covariance information for the total
least-squares problem (cf. sec. 1.7.1). However, the difference between a total least-squares
and an ordinary least-squares estimation is expected to be rather small for the DA, since the
white noise from the independent variables is dominant only for frequencies below 3 mHz.

The signal trace in y direction in figure 1.15 has a lower amplitude level, because the
orbital plane is oriented in the xz-plane in the inertial frame in this particular example.
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Figure 1.15: ASD of the direct satellite acceleration in x,y and z directions in an inertial
frame. The errors in x,y and z in the acceleration induced by position (and according
acceleration) errors agree with the model shown as light blue dashed trace. An orbit height
of 400 km was used. Only gravitational accelerations from a static field (EGM96) were
considered.

1.6.2 Projected Differential Gravitational Acceleration (PDGA)

The procedure of the previous subsection is used to derive the errors for the projected dif-
ferential gravitational acceleration as well, starting with the error-free expression as given by
the left-hand side of eq. (1.13)

dag = €12T,GRP - R - VViar cre, (1.73)

where the subscript “T” indicates true (error-free) quantities.

The true line-of-sight vector €121 grp and the true differential potential ViaT crp are not
accessible and can only be determined from measurements (subscript “M”), thus measurement
errors (subscript “E”) are present. Using eq. (1.67) for both satellites and the gravity gradient
é, one arrives at the following expression, which considers errors in the potential term:

dag = €121,GrP - B - VViaT aRP
~ €1oT,arP - R - VViam — €12T,crRP - R - (G(FlM) -71E — G(am) - F2E) : (1.74)
The rotation matrix R transforms vectorial quantities from the Earth-fixed to the Space-fixed

frame. By introducing directly the inertial quantities with the following tilde-notation, one
reduces the complexity of subsequent equations:

VWi = R- Vi, (1.75)
G:=R-G. (1.76)

To consider errors in the true line-of-sight vector €121 grp, one can exploit that €ja1 grp
and €1oM,GrRp = €12 are normalized and that cos(z + dx) ~ cos(x) — 0z - sin(z), which
provides

Sag ~ Eam - VVian — Elan - (é(ﬁM) -71E — G(Fan) -F2E>

— ag - [B1av % VViau] (1.77)
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with the angle ag = X (€12m,aRP; €12T,cGRP) denoting the angle between the true LOS and the
measured LOS. The magnitude of this angle can be approximated as |ag| ~ |Fi2g, 1 |/|T120m]
with 79g, 1 being the relative transverse position error w.r.t. the line of sight. The first
term in eq. (1.77) is the measured projected differential gravitational acceleration. The next
two terms are caused by errors in the position: the second term accounts for errors in the
gravitational potential, while the third term accounts for an error in the LOS direction (ag).
It is sufficient to aApproximate the potential difference 1712 a (in the third term) and the inertial

gravity gradient G in eq. (1.77) to first order by a spherical gravity field of a point-mass (PM)
Earth, since it is by far the dominating contribution and these quantities are additionally
multiplied with small errors terms. For clarity, a subscript “PM” is added to these quantities.
One should note that with this approximation, one does not need to express V12M7PM and

Gpu explicitly in terms of SH coefficients @, which one aims to determine later on.

For a spherical gravity field and circular satellite orbits, the expression |€jap X 6Vl2M7PM’
vanishes. However, it is kept as variable ¢, to remind that elliptic orbits or non GRACE-like
constellations may lead to a coupling of LOS-direction estimation errors into the PDGA:

Ca(t) = |E1ana(t) x VVisngpn(1)]- (1.78)

Hence, one obtains

~ ~

dag ~ €1aM - VViom —@ian - <GPM(F1M) -71e — Gpym(Tanr) - FQE) — QE * Ca, (1.79)

N J

errors

where the errors are often ignored in the literature, because they are contained in the inde-
pendent variables, e.g. on the left-hand side of a linear equation A - ¥ = b.
In the same manner, one can expand the right hand side of eq. (1.13)
dag =p1 — (Gng2,T — dng1,T) * €127 — XT
=pM — PE — (Gnga M — Gng1 M) - €12M + (Gng2 E — Gngl E) - €12M

+ |€12m X (GngaM — Gngi M) |- ap — Xum + XE, (1.80)
where the centrifugal part is kept in the variable “X”. By combining eq. (1.77) and eq. (1.80)
and collecting all error terms one ends up with

PDGA(t) =pm — Gng2,MLOS + Gngl M,LOS — XM
— PE + Gng2 B1LOS — Gngl,E,LOS + |€12M X (Gnga,M — Gngi M) | - R

+ €1oM - <GPM(F1M) - TR — éPM(FQM) . FQE) + ag - co + XEg. (1.81)

The first line contains the pure measurements. The two other lines are error terms in the
observations. The measurement of the centrifugal part denoted as Xy; and the error in the
measurement Xy may be expressed in three different ways, based on egs. (1.13), (1.15) and
(1.16) as discussed in sec. 1.3.3

> 2 -2
x(® _ Ml Ay (1.82)
M M

b 2 .9 5 .
1 T12M P M T12M . M
Xé)z—ﬂE‘<| | _12\/[>+2'|7"12E|'|pM|_2‘PE'p

PR P M
NS AP ST U | P S (1.83)
PM PM
(2) _ 1~ 2
Xy = [@rosm|” - pm (1.84)
Xﬁf) =2 |Grosm| - oM - [BLos k| + [GLosml® - pr (1.85)
¥® _ o Eni + Eov — 2v/Ena - Eavcos(Bu) Py (1.86)
® _ 9. _ M .
M M
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with

t

B = V(7)) + (@ x 7ing) - it + f {ng,iM - Fg dt — Eav, i€ {1,2} (1.87)
10

B = £ (Fim, Tam)- (1.88)
A rigorous derivation of the error for the energy-based centrifugal term XS’) is not given
here, since it is cumbersome with lengthy expressions. As will be seen subsequently, all three
representation are dominated by GNSS velocity errors. Other authors have also shown that
energy-based gravity field retrieval is dominated by GNSS velocity errors [Jekeli, 1999; Visser
et al., 2003]. To improve readability, all error terms are numbered as T; by rewriting eq. (1.81)

PDGA(t) =pm — Gng2,M,LOS + Gngl,M,LOS — XM + ZE (1.89)

)

An approximative noise model for the PDGA is provided as

PSD[PDGAg](f) = Y | PSD[T}], (1.90)

where the single terms are summarized in table 1.3 and visualized for a typical parameter set
in figure 1.16. The ranging noise term has been complemented by scale factor variations, as
discussed in sec. 1.4.2

p(t) — pu(t) + S5 - pm(t). (1.91)

Furthermore the accelerometer measurement I'; on the i-th S/C has replaced @ g and is
supplemented with scale factor terms, as discussed in sec. 1.4.3,

ACC ACC
ang,iB,LOS(t) ~ TigLos(t) + SI(DC,i,E) ‘Tinmros(t) + 5&c,i,E) (t) - Tinm,Los(t)- (1.92)

In many studies on future geodesy missions, in particular in the ones which are based on
quick-look simulations, only the first two terms from the table 1.3 are considered: T}, the
ranging noise along the LOS, and Ty, the accelerometer noise along the LOS. For GRACE-
and GRACE Follow-On-like sensitivity levels, this might be sufficient. However, for further
advanced missions it is not sufficient to simply state that an decrease in ranging and ac-
celerometer noise yields a better gravity field, as complex interdependencies start to play a
role.

One should note that the centrifugal part of the PDGA decreases faster with frequency
than the ranging part (solid black and dark blue traces in figure 1.16). All three methods
to describe the baseline centrifugal acceleration (M1, M2, M3) yield the same precision for
the centrifugal acceleration (red, green and black dots overlap in the plot). The precision is
determined by GNSS (velocity) errors. The analytic noise models for the centrifugal term,
egs. (1.83) and (1.85) shown as solid red and dashed dark blue traces, agree well with the
numerical data (red, green and black dots in figure 1.16). A unity signal-to-noise ratio for
the centrifugal acceleration is reached at ~ 10 mHz in figure 1.16.

Position uncertainties of the kinematic GRP, as assumed in eqs. (1.38) and (1.58), lead
to a non-negligible effective noise of the order of 1078 m/s?v/Hz in the PDGA measurement
(green trace Ty). It arises due to the fact that the evaluation point (position) of the SH gravity
field is fluctuating and is an error in the independent variable in the context of least-squares
adjustment. One has to use the GRP as defined in sec. 1.5 instead of the GNSS position
for the evaluation of the gravity field, if one wants to utilize precise ranging observables,
because the GNSS errors along the LOS are significantly higher than the ranging noise. T5 is
also an error in the independent variable and is caused by inaccuracies in the measured LOS
direction, as well as T3, which is coupling non-gravitational accelerations into the PDGA.
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Figure 1.16: Spectral density of the PDGA signal and error contributions for an orbit height
of 400km and L = 200km. Non-gravitational accelerations have been omitted. The upper
dark blue and dashed black trace indicate the PDGA signal and the centrifugal acceleration,
respectively. The centrifugal acceleration is part of the PDGA signal. The measurement error
in the centrifugal acceleration for all methods (M1, M2, M3) is the same (overlap in the plot)
and crosses the centrifugal acceleration signal at roughly 10 mHz. The green traces show the
error contribution from orbit position errors (7}), which is also above the instrument noise
of accelerometer and interferometer proposed in the NGGM-D (e.motion?) study. Traces
labeled with model are the simplified analytic expressions from table 1.3.

T% describes the uncertainty in the absolute knowledge of frequency or wavelength of the
ranging instrument, which relates the phase measurement to a physical length. 73 accounts
for the similar scale factor uncertainty in the accelerometer. Ty considers fluctuations of the
accelerometer scale factor within the measurement band and should actually be covered by
requirements on instrument level as in the LRI. T is the effect of an offset in the unbiased
ranging observable (cf. eq. (1.59)), which is typically negligible, as it is of the order of AL/L ~
10~7. Thus, it is smaller than the DC scale factor uncertainty of the ranging interferometer,
which will be discussed in the second part of this thesis. T1%,7Tg,Ty, T19 are not shown in
figure 1.16 for the sake of readability.

Furthermore, one can conclude that the here presented analytic (simplified) PSD models
in table 1.3 match the PSDs from numerical (time-series) data in figure 1.16.

The sensitivity of the direct acceleration (DA) is limited by GNSS errors. This is expected,
since the gravity field is derived from the orbit trajectory and accelerometer data is only used
to correct for non-gravitational effects. However, in the analysis so far the PDGA approach
cannot utilize its precise ranging or accelerometer measurement, due to the noise in the
centrifugal acceleration term caused by inaccuracies of kinematic orbits (denoted within this
thesis often as GNSS or GRP position noise). For energy-based gravity field retrieval, this
error is usually expressed in terms of velocity. Expressing the centrifugal term in terms of the
baseline angular velocity did not provide better results, since the baseline angular velocity
Wros is determined most precisely by means of GNSS (cf. section 1.5.1). This is the reason
why in-situ approaches such as the acceleration approach or energy-balance approach cannot
be applied directly to data processing of real missions, as mentioned in sec. 1.3.3.

In the next section, many noise contributors are reduced by utilizing reduced-dynamic
orbits, which have been introduced in sec. 1.5.2.
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i | Term description Time-Domain T; Spectral Domain, approx. PSD[T;]
1 | Ranging Noise, 2nd time derivative —PE (2rf)* - PSD[pg]
2 | Accelerometer Noise along LOS +I2eros — ' ELOS 2-PSD[I'g Los]
- ~ T2
3 | LOS error into non-grav. acc. €1aM X Aﬂw,i - ﬂriv |- ag Wmoooo - PSD[rg,gNss]
o . A 7 . . 2 2
4 | GRP position error in potential mwmi Q%ZGMZV ﬁwm % - PSD[rg,gNss]
—e1am - Gpm(Tam) - ToE orb
2
5 | LOS error in grav. potential QE * Co mwmw,wo - PSD[rg,gnss]
6a | Centrifugal acc. error M1 ch from eq. (1.83) ﬁ - PSD[rg,anss]
2 2
6b | Centrifugal acc. error M2 N%v from eq. (1.85) EMJ% - PSD[wg,Los]
: IFO) .. 1FO)\ 2
7 | Ranging DC-scale error — _Auobv - PM A%Wobvv - (27 f)* PSD[pm]
8 | Accel DC le f %WWWO% ‘TamLos (Acc)\?
ccelerometer scale factor error (ACC) 2. A,w_uoqm v - PSD[I'M max,LOS]
~Spore “LimLos
9 | Accelerometer AC scale factor variati Sica - Taanos ACC PSD[S {25
ccelerometer scale factor variations (ACC) . 2. DC,M,LOS * [Sacr ]
—SxciE - FimLos
10 | Ranging Bias Error PDGAy; - % PSD[PDGAy;] - %

Table 1.3: Error terms of the projected differential gravitational acceleration (PDGA) and dominating power spectral densities (PSD) for a GRACE-

like configuration. R, is the orbit height w.r.t. the geocenter. Ty, is the orbital period given by Ty, = 27 - A 0

noise PSD[rg gnss] is given in eq. (1.38).

6371 km+iorp,

~1/2
GM vwv . The assumed GNSS
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Figure 1.17: Spectral density of the PDGA signal and error contributions for an orbit
height of 400km and L = 200km. The PDGA signal is composed of the sum of ranging,
centrifugal acceleration and non-gravitational accelerations shown as solid dark blue, black
and green traces, respectively. Two green traces are depicted to indicate the signal variability
between different days and are direct plots of the GRACE Level-1B accelerometer data. The
observation noise of each contribution is shown as dashed dark blue, black and green line. The
gray thick line roughly indicates the GRACE (post-fit) residuals for the year 2006 as given in
[Ditmar et al., 2012]. The light blue and magenta traces are additional error contributions,
as given in table 1.3. The model of the centrifugal acceleration and position noise is based
on reduced-dynamic short arcs, as discussed in section 1.5.2.

1.6.3 Revised PDGA Sensitivity

Figure 1.16 is reproduced with GRACE instrument noise levels instead of with e.motion?
noise levels by utilizing the models from sec. 1.3.3. The results and additionally the real
GRACE residuals as given in [Ditmar et al., 2012] are plotted in figure 1.17. These post-fit
residuals can be compared to the noise models.

It is noted that the residual noise in GRACE for frequencies between 0.2 mHz and 2 mHz
can be explained by errors in the centrifugal term (dashed black trace in figure 1.17), which
are due to the limited accuracy of force models, in particular of the gravitational background
models. Such inaccuracies also manifest as an error in the precise orbit determination (posi-
tion and velocity of satellites). However, the noise model is based on the simple assumption
that the background models are as good as the monthly mean gravity signal (for SH de-
grees < 60). A more precise analysis would require the assessment of the errors in actual
background models and propagating them into short arcs of reduced-dynamic satellite orbits.
Also, stationarity of the signals needs to be considered. Such an analysis is beyond the scope
of this section.

Frequency regions higher than approximately 14 mHz are dominated by microwave rang-
ing instrument noise, as also stated in [Ditmar et al., 2012]. Particularly, above 30 mHz, the
ranging signal should contain only noise, since gravitational and non-gravitational signals are
below the noise level. The noise in GRACE residuals for intermediate frequencies, roughly
between approximately 2mHz and 14 mHz, cannot be explained by the models derived in
this thesis. Ditmar et al. [2012] also assigned the noise in this region to unknown physical
ortgin. The excess noise observed at the orbital frequency of 0.18 mHz is likely caused by
deterministic excitation and tone errors of all instruments.
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1.7 Gravity Field Recovery

In the previous section 1.6, the error and noise terms in the projected differential gravitational
acceleration (PDGA) as well as in the direct satellite acceleration (DA) were analyzed, which
are used to derive Earth’s gravity field. In this section, the different noise contributions are
assessed at the level of spherical harmonics.

1.7.1 Method

In this thesis a linear relation between the gravity field SH coefficients CS and the measure-
ment vector M, either the PDGA or the DA, is utilized

M=D-CS, (1.93)

where each element of the vector M is a measurement at a particular epoch. The matrix
D is the design matrix. The well-known ordinary least-squares (LSQ) solution obtained by
inverting the normal matrix N = DTD yields

CSisq=N"'-DT-M, (1.94)
which minimizes the Euclidean norm of (post-fit) residuals
|4 Csq — M. (1.95)

This least-squares solution is a so-called best linear unbiased estimate (BLUE, cf. Gauss-
Markov-Theorem) if the noise in the measurement vector M is uncorrelated, i.e. Gaussian
white, with variance ¢? and vanishing mean. The (co-)variance matrix of estimates aﬁt =
o2 N1 [Bjorck, 1996, p. 4] contains the variances for each fit parameter, i.e. SH coefficients,
on the diagonal as well as the co-variance information as off-diagonal elements.

If the noise in the measurement vector is correlated, one can obtain a BLUE by considering
the (co-)variance matrix Cy of measurements/observations. The LSQ solution is then given
as the weighted least squares solution [Gans, 1992, p. 28]

~ o~ A\l A~
@Lscg:(DT.W-D) DT-W - M, (1.96)

with the weight matrix W = 6’1\7[1 and the (co-)variance matrix of estimates as Che =
A~ a1
<DT W D) . A drawback of the ordinary LSQ is the assumption of an error-free de-

sign matrix f), which is derived from error-free independent variables. By using the total
least-squares estimation, also errors in the independent variables can be considered. Then
the weight matrix is complemented by (co-)variance information of the independent variables
Civ [Gans, 1992, p. 33|

—~

A~ |
W = (KM Oy - K+ Ky - Cry - Kfy) ; (1.97)

where the matrices K contain partial derivatives, such that IA(M is the identity matrix for a
linear problem as discussed here (eq. (1.93)).

Usually, additional assumptions and simplifications are applied, such that the weight ma-
trix W becomes a Toeplitz form or sparse, which can simplify computations. Alternatively,
various methods exist to estimate the measurement (co-)variance matrix iteratively by analy-
sis of post-fit residuals (cf. Variance Component Estimation [Kusche, 2003; Mayer-Giirr, 2006]
[Liu, 2008, sec. 3.4]). Additionally, decorrelation of (post-fit) SH coefficients is widely used
[Kusche, 2007; Kusche et al., 2009], e.g. since an estimation of the measurement co-variance
matrix in the presence of errors in the time-variable gravity background models is non-trivial.
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Also striping in GRACE gravity field maps is associated with correlations of SH and can be
reduced by decorrelation filtering [Swenson & Wahr, 2006].

It is noted that the measurement (co-)variance matrix can contain information on stochas-
tic as well as on non-stochastic errors. The latter ones could be caused for example by tone
errors in the instruments.

1.7.2 Handling Tone Errors in Gravity Field Recovery

Tone errors have been introduced in section 1.4.5 and are sinusoidal errors in measurements.
Tone errors cannot be treated with the same means as noise, since noise is a stochastic process
and tone errors are deterministic errors, which, for example, do not average out. Different
ways for mitigation of tones in gravity field recovery are sketched here:

e Correction of data in pre-processing: If the exciting physical process variables
(e.g. temperature) are measured or can be deduced from background models and if the
a-priori coupling factor knowledge is sufficient, the corresponding data streams can be
corrected in pre-processing for tone effects.

e Fitting of tone amplitudes: If knowledge of the tones is insufficient, tone amplitudes
can be fitted together with SH coefficients. Ideally, tone errors with a drifting phase
should be considered. Such an approach can absorb the combined error of several in-
struments and the post-fit (co-)variance matrix provides correlations between the tones
and particular SH coefficients. Such correlations are expected, since for example the
zonal coefficients have most of their signal at integer multiples of the orbital frequency,
as shown for C g and Cs2 in figure 1.5.

¢ Notching of frequencies: By assuming a high stochastic noise at tone frequencies as
(a-priori) instrument (co-)variance information, signals at these frequencies are down-
weighted in the gravity field recovery. Although it is not the correct way of handling
deterministic errors, it may still provide sufficient results and does not require additional
parameters to be fitted.

In this thesis, the second approach of these approaches, fitting of tone amplitudes, is
exploited, which basically declares the tone errors as a type of signal one aims to recover
together with SH coefficients. Since errors in the time-variable background models are con-
sidered in the form of a simplified stochastic model, the (co-)variance information for the DA
or PDGA measurement can be described by stochastic means, in particular in terms of PSDs.
Whitening filters (cf. [Monsky, 2010, sec. 4.6.5]) are used in this thesis for decorrelating the
measurements and the design matrix before constructing and inverting the normal matrices.

Since the sensitivity models derived in section 1.6 contain also the errors due to indepen-
dent variables, e.g. the gravity gradient term in eq. (1.70) and the Ty term in table 1.3, the
weighting filter uses the (co)variance information from eq. (1.97) Thus, the SH coefficient
estimation is performed in a total least-squares sense.

1.7.3 Results: Direct Acceleration (Single Satellite)

The gravity fields obtainable from pure kinematic orbits (no dynamic POD) of one polar
satellite at 400 km height with repeat cycle /a = 466/30 are shown in figure 1.18 for a
typical 30-day solution with 30-86400s-0.2 Hz-3 ~ 1.5-10° observations (all xyz components).
The lowest trace is a sanity check and is a closed-loop simulation without any measurement
errors. The trace has been enhanced by a factor of 10% to improve readability of the figure.
Considering GNSS noise as shown in figure 1.15 yields traces with an error of 5 mm at degree
30, which is comparable to results from [Zehentner & Mayer-Giirr, 2013] shown as black
crosses. When noise whitening (decorrelation of measurements) is used, reasonable results
are obtained for the formal errors (magenta dashed trace), which coincide with the true errors
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Figure 1.18: Geoid rms-error per SH degree for gravity fields from kinematic trajectory
(direct acceleration, HL-SST) of a single polar satellite at h = 400km. The thick time-
variable gravity field trace has been replotted from fig. 1.3.

(magenta solid) as one would expect. In particular, the very low SH degrees improve, since
they gain weight in the fit due to the low noise of the measurement at low frequencies. If tone
errors are included in the GNSS measurement, the low degree coefficients degrade (black solid
trace), in particular the C20 coefficient. The tones at 1/rev and 2/rev frequency have a high
correlation with the C20 and other zonal coefficient, as one can already see on figure 1.5 on
page 13 and by evaluating the inverse normal matrix, if tone amplitudes are a fit parameter
(cf. fig. 1.19). The error in the C20 coefficient without tones is ~ 9 - 1072, while tones with
4mm amplitude increase the error to above 10710, Fitting tone amplitudes together with SH
coeflicients reduces the error by a factor of 2 in the simulations performed here.

It is well known that monthly GRACE gravity field solutions cannot resolve the C20
coefficient very well and it is recommended to obtain this coefficient from SLR measurements
based on multiple satellites [Cheng et al., 2011]. Due to geophysical effects, the C20 coefficient
oscillates with annual and semi-annual periods with an amplitude of approx. 1071 [Chen &
Wilson, 2008]. Errors in the tide background models, in particular in the solar tide S
constituent, are supposed to appear aliased at these frequencies and complicate retrieval of
this signal [Ray et al., 2003; Chen et al., 2009]. One should note that also the 8’ angle, the
angle between sun vector and orbital plane, changes with semi-annual period. This likely
leads to cyclic thermal changes at semi-annual and annual periods and possibly modulating
tone errors within GNSS, KBR and ACC at these periods. Also the decreased sensitivity of
monthly C20 estimates [Ogawa, 2010, Fig. 2.3] could be produced by tone errors at 1/rev and
2/rev frequency, as pointed out here. It might be beneficial to evaluate if GRACE gravity
fields based on pure kinematic orbits exhibit the same degraded sensitivity for C20 as the
full solutions containing PDGA and DA information to pinpoint the origin of the decreased
sensitivity for C20.

Adding kinematic information from a second (close-by) satellite would reduce the rms of
SH coefficients by a factor of 4/2 in figure 1.18 (not shown), since the number of observations
is doubled. A 70° inclined satellite, e.g. of the Bender configuration as proposed in the
e.motion? study, shows degraded sensitivity for a global gravity field (orange trace) due to
the polar gaps.

A non-polar mission will in general show poor global SH geoid rms values and the metric
should be adopted, e.g. a latitude dependent weighting in the spatial domain could be used.
In addition, regularization methods are required, since the least-squares adjustment of SH
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Figure 1.19: Correlations between SH coefficients and twelve tone fit parameters t¢;, which
are sine and cosine components in x,y and z direction for frequencies at once and twice the
orbital frequency. For each SH coefficients « in the triangular plot, the color value in the

plot has been computed as \/ 12 cov(a, t5)2/(cov(a, @) - cov(t;, t;)) from the inverse normal
matrix. Negative orders denote S coefficients, while positive orders denote C' coefficients.

coefficients (up to high degrees) is ill-posed for a non-polar satellite [van Lonkhuyzen et al.,
2002]. Therefore, the scenario described by the orange trace considered only a gravity field
up to degree 30, since it was solvable without regularization.

1.7.4 Results: Single Pair

The sensitivity of the direct acceleration (HL-SST) allows to retrieve the geoid at degree 10
with approximately 1 mm rms-error, while degree 35 has an rms-error of 1 cm in figure 1.18.
The PDGA sensitivity in terms of geoid error is shown in figure 1.20 for different individual
noise contributions. The ranging instruments (KBR or LRI, black traces) show the lowest
noise. The accelerometer noise is comparable to the noise induced by uncertainties in the
LOS direction, denoted as T5 within this thesis, which is in good agreement with figure 1.16
on page 43. The uncertainties in the GRP position, mainly caused by GNSS (kinematic)
errors and imprecision in background gravity field models, picked up via the (reduced-)
dynamic orbit determination, are denoted as T (solid magenta trace). Keeping this in mind,
a comparison with results from [e.motion? Team, 2014, Fig. 7-22] reveals that other gravity
retrieval approaches from different institutes yield a similar geoid rms-error of 0.1 mm for
degree 90, if errors in background-models are omitted.

The geoid errors from the uncertainty in the centrifugal acceleration is dominating in
figure 1.20. Recall, that this error was modelled based on (reduced-) dynamic orbits and an
assumption for the knowledge of the background models. Often, as in the e.motion? study,
the analysis of GRACE-like mission studies starts with simplified simulations, which do not
consider background model errors, and is concluded with realistic (full-scale) simulations,
which consider background model errors. Comparison with [e.motion? Team, 2014, Fig. 7-23]
for the two-satellite case shows that the centrifugal acceleration error model used here is in
agreement with the results from full-scale simulations, given by 0.1 mm at degree 15 and
2mm at degree 90.

Although the centrifugal acceleration error rolls off quickly between 1 mHz and 10 mHz
in figure 1.17, it still spoils high degrees of SH in gravity field solutions. One should keep in
mind that noise at high frequencies degrades only the high SH degree coefficients. However,
noise at low frequencies affects both low and high SH degree coefficients (cf. figure 1.5 on
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Figure 1.20: Geoid rms-error per SH degree for gravity fields from projected differential
gravitational acceleration (PDGA, LL-SST) of a polar GRACE-like pair with 400km orbit
height, 200 km spacecraft separation and with 3/a = 466/30 repeat-orbit. The thick gray
trace denotes the time-variable monthly gravity field and has been replotted from fig. 1.3.
The different traces labeled T; refer to the error terms from table 1.3 on page 44.

page 13).

Tone errors in the PDGA as shown in figure 1.17 on page 45 yield an error of ~ 0.6-1071% in
the C20 coefficient (not shown in the plots), which is roughly of the same order of magnitude
as the geophysical signal. However, if tone amplitudes are fitted together with SH coefficients,
the error could be reduced by a factor of 2. The free parameters are the tone amplitude and
phase, but both parameter are considered to be constant over one month of data.

The dependency of geoid errors on orbit height and S/C separation is illustrated in fig-
ure 1.21, which considers the instrument and noise models within this thesis. For higher S/C
altitude, the higher SH degree coefficients start to degrade, while a shorter S/C separation
increases the error in all degrees. Combination of PDGA and DA information on the level of
normal equations improves the gravity field solution slightly for SH degrees between 20 and
60, although the geoid error of pure DA observations is always higher than the PDGA error
(cf. figure 1.18). However, as shown by the red trace in figure 1.21, the DA noise falsifies
the geoid slightly at high SH degrees above 100, which might be caused in this thesis by
non-optimal data weighting and decorrelation.

1.7.5 Results: Dual (Bender) Pair

The results for the single polar pair constellation obtained in this thesis are compatible with
the results from the e.motion? study obtained by various institutes. Finally, the gravity field
results from the combination of two satellite pairs in a Bender configuration are shown in
figure 1.22. The results are obtained by combining the normal matrices and are compared
to full-scale simulations from the e.motion? study. The magenta traces are the results for
a single polar pair from the previous section. Adding information from an additional 70°
inclined satellite pair does not simply improve the noise in the gravity field by a factor of
v/2 but rather by an order of magnitude in the shown root-mean-square error per SH degree.
For SH degrees between 20 and 60, the geoid error is at 0.02mm and comparable with the
e.motion? results.

Unfortunately, for higher SH degrees, the approach followed here to consider background
model errors as a stationary noise within the centrifugal acceleration with a particular PSD
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Figure 1.21: Geoid rms-error per SH degree from PDGA measurement of a single polar pair
for different orbit heights (h) and spacecraft separation (L). All traces contain accelerometer,
ranging and centrifugal acceleration noise. The red trace indicates the combination of PDGA
and DA measurements from both satellites.

produces too optimistic results. One main outcome of the e.motion? study was the feasibility
of 1 mm geoid rms error at degree 130 for the suggested Bender configuration, whereby the
results here show 0.2 mm geoid error at SH degree 130. However, this circumstance has not
yet been investigated further.

1.7.6 Discussion

The previous sections contain a derivation of the gravity field measurement from first princi-
ples. The sensitivity of the main instruments was discussed together with methods to obtain
baseline state quantities from measurements. From these an error analysis of the projected
differential gravitational acceleration (PDGA or LL-SST') and of the direct acceleration (DA,
HL-SST) was performed. Finally, the sensitivity was transfered to the level of SH coefficients,
yielding an end-to-end simulation.

It was shown that a Bender configuration, as proposed in the e.motion? study, signifi-
cantly reduces the errors in Earth gravity field estimates compared to a single pair mission.
Furthermore, aspects such as the ability to determine the C20 coefficient were addressed.
The acceleration approach was favored in the analysis, because it establishes a linear relation
between observations and SH coefficients. This linearity leads also to a straightforward error
propagation from observations to gravity field. However, the drawback of the acceleration
approach is a deficiency in the centrifugal acceleration term. It was stated that the centrifu-
gal acceleration term can be written in terms of a transverse relative velocity, in terms of
the baseline angular velocity &p,og or in terms of energy. However, all three representations
turned out to be equivalent.

To overcome the issue, the derivation of more precise orbits, i.e. reduced dynamic orbits,
is inevitable but requires a-priori information of the force models and of the (instantaneous)
gravity field. The problem of gravity field determination needs to be solved in combination
with precise orbit determination (POD). This entanglement complicates the analysis, since
errors in the POD and of the gravity background models propagate into other quantities
such as the S/C position and then finally into the final gravity field solution in a non-trivial
way. However, it is indisputable that gravity field retrieval in combination with precise orbit
determination can provide high resolution gravity maps, as has been demonstrated even in
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Figure 1.22: Geoid rms-error per SH degree from PDGA measurement of a single polar pair
at an orbit height of 419km, /o = 464/30 and 100 km spacecraft separation (in magenta),
compared to the Bender configuration with an additional 70 ° inclined satellite pair (5/a =
461/30) in red and black. F.E. denotes formal errors. The dashed lines are independent
results as obtained in the e.motion? study.

the lunar GRAIL mission [Konopliv et al., 2013].

In this thesis, the error in the POD-part was considered by deriving a stationary noise
model for the centrifugal acceleration term based on an assumption for the knowledge of
an a-priori gravity field and based on an orbit fit of short arcs. This is a strong simpli-
fication but allowed to use the acceleration approach with its benefits, e.g. no linearized
equations as in (reduced-)dynamic orbit determination. The results for the single polar pair
are compliant with current GRACE post-fit residuals and provide an understanding of critical
parameters for future missions. Unfortunately, the results for the double Bender pair are too
optimistic (at high SH degrees) compared to full-scale simulations with proper consideration
of background model errors, but the significant benefit of a second inclined pair could be
demonstrated.

1.8 Centrifugal Acceleration Sensing

The observation technique for GRACE and GRACE Follow-On as well as various mission
proposals for future SST geodesy missions is based on precise ranging between satellites,
measurement of non-gravitational accelerations by means of an accelerometer, orbit deter-
mination using a GNSS receiver and other auxiliary measurements such as star cameras to
measure spacecraft attitude. As discussed in the previous sections, the centrifugal (CF) accel-
eration of the baseline cannot be measured with sufficient precision with current techniques
and needs to be derived by means of (reduced-)dynamic orbit determination, usually implic-
itly in the gravity retrieval process. The author of this thesis is convinced that a precise
measurement of the baseline centrifugal acceleration would simplify the gravity retrieval and
would reduce the effect of background model errors in the gravity field solutions. Therefore,
this section is dedicated to a brief feasibility assessment of different ways to measure this
baseline centrifugal acceleration.

The baseline centrifugal acceleration PDGAcr can be written in accordance to eq. (1.13)
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as
2, 2 <2 ;’2
712 P T12,1 -
| '—p: =L ol (1.98)

PDGAcr

where the precise (unbiased) inter-satellite ranging p is combined with less precise velocity
information. Obviously, an improvement of GNSS observations would provide better abso-
lute S/C positions as well as a more precise relative position vector 712 and therefore more
precise centrifugal accelerations. Strategies to improve the kinematic GNSS orbits have been
addressed in section 1.4.1 but are likely only capable to provide an incremental improvement.
By linearizing eq. (1.98) and using L for the time-averaged unbiased ranging p(t), one can
derive the noise in terms of the power spectral density in the centrifugal acceleration term,

lwLos.poxl?\'
PSD[PDGAcrg](f) ~2-L- | |wLospeyl? | - PSD[@Los e](f), (1.99)

lwLos.pez?

which is a vector product and forms together with the noise in the accelerometer and range
acceleration the main contributors of the overall PDGA (LL-SST) sensitivity. We can as-
sume here that the mean angular velocity &r,ospc is constant in an inertial frame, e.g. for
GRACE-like missions it points in cross-track direction of both S/C with a magnitude of
27 /To,. Without loss of generality one can choose a coordinate frame, such that only a
single component is non-zero in &r,og,pc, and hence, only a single component of PSD|[dr,0s k]
is of importance.

Recalling figure 1.16 on page 43, the centrifugal acceleration noise should be ideally at the
sensitivity level of the accelerometer and ranging instrument. For simplicity, the accelerome-
ter is taken as reference, because it is the dominating noise source at low frequencies. Thus, a
requirement for the measurement noise of the angular velocity along the sensitive axis would
be based on the noise of the accelerometer I'x g, (cf. eq.(1.47)), i.e.

ASD[wreg](f) i= ASDIIxE](])

= . 1.100
2L 27 /Top, (1.100)

Evaluation of the required sensitivity for L = 200 km and 74,1, &~ 55508, which corresponds
to h ~ 400 km, yields values of

ASD[wreq](f = 1074 Hz) ~ 1107 rad/(svHz)
ASD[wreq](f = 1073 Hz) ~ 2- 10" rad/(sv'Hz). (1.101)

As will turn out in the next paragraphs, where different methods to determine or measure
Wros are discussed, reaching such a sensitivity is extremely challenging, if not impossible.

It is remarked that the baseline angular velocity in an e.motion? or GRACE-like missions
is equivalent to the GOCE S/C angular velocity. However, as the baseline length between
accelerometers in GOCE is approx. 10° times smaller than L = 200 km, the sensitivity for the
angular velocity can be relaxed by this factor. In the GOCE mission, the gradiometer and
S/C attitude was measured by star cameras and by the gradiometer (accelerometer pairs),
with a pre-launch specified peak-sensitivity of 1- 107" rad/(sv/Hz) at 5mHz [Stummer, 2013,
Fig. 6.3].

1.8.1 Accelerometer, Star Camera and Laser Interferometry

An alternative method to derive the baseline angular velocity &rog other than by satellite
velocities is possible by a combination of measurements from an inertial measurement unit
(IMU) and LRI pointing information, typically via Differential Wavefront Sensing (DWS).
The IMU can be an accelerometer, star cameras, a gyroscope or a sensor fusion result of all
of them.
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Each IMU measures the angular rate of the corresponding satellite w.r.t. an inertial frame,
while information on the LOS direction is available from LRI pointing measurements. If both
satellites perfectly faced each other, the LRI pointing signal would be zero (or constant) along
the orbit, while the measured angular rate of the IMU on both satellites is equal to the baseline
angular velocity. However, as the satellites are prone to attitude jitter, the accelerometer and
star camera angular rate measurements are contaminated by jitter noise. This attitude jitter
is measured by the LRI on each satellite and can be used as correction in post-processing.

We wish to derive the sensitivity of the combination of the IMU measurement and LRI
pointing. Consider an IMU capable to measure the orientation of the satellite body frame
(SBF) w.r.t. the inertial frame (IF) in all 3 degrees of freedom, e.g. a star camera, a gyroscope
or an accelerometer (angular accelerations). Note that only the star camera is capable to
measure an unbiased attitude w.r.t. the inertial starry sky, while gyroscope and accelerometer
need additional information to resolve an initial bias, e.g. from sensor fusion.

Such an IMU measurement provides a rotation matrix relating the SBF to the IF

~

Rsprorr = Ra(@) - Ry(8) - R.(v), (1.102)

where «, 5 and 7 describe the rotation angles for rotations around the x, y and z axes,
respectively.

Without loss of generality it is assumed that the orbital planes are oriented such that the
angular velocity predominantly points in y-direction, i.e.

B(t) = wpc -t + 05(1). (1.103)

Additionally, the LRI measures the line-of-sight (LOS) with respect to the SBF on each S/C.
The DWS-derived LOS €}9gpr can be written as

1
E1gspr = Ry(DWS,) - R.(DWS;) - | 0 . (1.104)

0 |SBF

It was assumed without loss of generality that the nominal LOS direction is along the z-axis
in the SBF. Furthermore, the DWS measurement angles DWS,,, DWS; were used. Finally,
the line-of-sight vector in the inertial frame is given by

€12)1IF = RsBr-IF - €12/SBF- (1.105)

With these definitions, one arrives with the help of an algebraic software such as Mathematica
at a linearized formula for the angular velocity vector

. 0 —((5’}/ + 5DWS‘h) - WpC
WLos = 512|IF X 512\IF ~ | wpc | + 6p + 0DWS, . (1106)
0 5% + SDWS}, + 6ax - wpa

v~

WLOS,DC WLOS,E

This formula shows the coupling of errors (denoted with ¢) into the final angular velocity.
Using this eq. (1.106) in eq. (1.99), one notices that the y-component is the linear domi-
nant component in the power spectral density. The noise in this sensitive angular velocity
component can be described in the power spectral domain as

PSD[wros ] = PSD[wmu] + (27f)* - PSD[§DWS, ], (1.107)

where the first term is the noise in the angular rate derived from the IMU, i.e. 3 in eq. (1.106),
and the second term is the noise in the LRI pointing measurement.
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Figure 1.23: Sensitivity of different measurements of LOS angular velocity expressed as
spectral density. The signal is given for a GRACE-like constellation at 400 km height and
with 200 km separation. The magenta requirement trace corresponds to eq. (1.100). IMU:
Inertial Measurement Unit (Laser Fiber Gyroscope), SCA: Star Camera, DWS: Pointing
measurement of the LRI

The corresponding numerical models are given in eq. (1.49) and eq. (1.41), which yields
for the accelerometer IMU

PSD[WLOS,E,ACC-i-LRI] ~2 - PS]?Q[::;;CE] +2- (27Tf)2 . PSD[DWS,E] (1.108)
2
(4 -10"%rad/(s*v/Hz) - \/<1H}HZ>4 +1+ <10rJ:1PI)4>
= @ fP
+2-(2nf)? - 1072 rad?/Hz - NSF?(f) (1.109)

and for the star camera IMU (cf. eq. (1.53))

PSD[wros scatiri] ~2 - (27f)% - PSD[asca ] + 2 (27f)? - PSD[DWS,E] (1.110)
2

f
+2-(2nf)? - 1072 rad?/Hz - NSF?(f) (1.111)

2
~2.(2rf)?- | 16 prad/vHz - \/1 + (0'01 HZ)

The numerical values over frequency are visualized in figure 1.23. For comparison, the sensi-
tivity of the commercially available laser gyroscope ASTRIX®?200 from Airbus’ is shown as
green trace. According to the specifications, the instrument is capable to reach an angular-
random-walk noise of 0.00012° /v/hr, which translates to approx. 3.6-10~8 rad/(sv/Hz). Since
the LRI pointing information would be the dominant noise source, it was assumed that the
DWS or pointing readout (eq. (1.41)) can be improved from 1prad/v/Hz by one order of
magnitude to 0.1prad/+/Hz for the green trace. Even potential Sagnac atom interferometers
[Barrett et al., 2014] would not provide better sensitivity than the GNSS kinematic-derived
baseline angular velocity.

"http://www.space-airbusds.com/en/equipment /astrix-200.html
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One can conclude that with currently available instruments one can not perform an in-
dependent measurement of the baseline angular velocity with a noise level better than the
required eq. (1.101) shown as magenta trace in figure 1.23.

1.8.2 Sagnac-Interferometry

A very prominent way to measure angular velocities is to exploit the Sagnac effect, which
causes an accumulation of a phase difference between a clockwise and a counter-clockwise
propagating wave, if the setup is rotating in inertial space [Malykin, 2000]. The phase differ-
ence expressed as pathlength Az can be computed from

Ap =" (1.112)

where ¢ is the speed of light and 77 the normal vector of the area A. A laser ranging in-
terferometer is in general susceptible to the Sagnac effect and one needs to ensure that it is
sufficiently small to not disturb the ranging measurement. In the GRACE Follow-On LRI the
area A is approximately 200 km-0.6 m due to the racetrack configuration. The angular veloc-
ity signal, which is caused by the gravity field with an amplitude of approx. 1073 rad/ (S\/E)
at a Fourier frequency of 107* Hz (cf. figure 1.23 on page 55), produces a parasitic ranging-
signal of the order of 400 nm/v/Hz - sin(f), where 6 is the angle between the normal vector
of the area A and . Since sin(f) is close to zero in the GRACE Follow-On concept, the
parasitic Sagnac contribution is below the sensitivity requirement of the LRI.

One could consider to develop a more sophisticated laser ranging interferometer, which is
capable of distinguishing between the Sagnac effect and ranging (longitudinal displacement).
Such a concept would be beneficial, since it directly measures the angular velocity of the
baseline. However, to reach a sensitivity of 1- 107! rad/(sv/Hz) in the angular velocity with
the optimal case of sin(f) ~ 1, one would still need a ranging sensitivity of 107> m/v/Hz,
which is far beyond feasibility for low frequencies.

Also sophisticated large ground-based ring laser gyroscopes [Schreiber et al., 2001, 2009],
which exploit the Sagnac effect and can be used to monitor Earth’s rotation rate, hardly
achieve the sensitivity in eq. (1.101).

1.8.3 High-Resolution Star Camera

An alternative approach could be to utilize additional high-resolution star cameras on each
S/C, which are aligned with respect to the nominal line-of-sight direction. The idea is to
measure star positions with high precision as well as laser light from the distant S/C. Since the
distant S/C is co-moving, it will appear as fixed star, while the (real) stars in the background
appear to move with the orbital rate wpc. The required angular velocity sensitivity translates
to an attitude sensitivity of 16 nrad/ VHz at low frequencies. Assuming a star position readout
sensitivity of 0.1 pixel/v/Hz and a sensor with 4096 x 4096 pixels, the required field-of-view
for the high-resolution star camera would be 650 urad x 650 urad. However, this requires
resolving very faint stars in order to have at least a few objects in the field-of-view and
therefore feasibility is rather questionable. More details can be found in the section on the
acquisition sensor in the second part of this thesis (cf. sec. 2.3.10).

In summary, no suitable method could not be identified within this thesis, which would
improve the centrifugal acceleration measurement. The best mean remains to be based on
precise orbit determination due to the very large S/C separation.

1.9 Drag-Free and Drag-Compensation

The GRACE and the GRACE Follow-On missions do not utilize drag compensation with high
duty cycle. However, sporadic thruster activations are required for orbit and constellation
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maintenance [Yoon et al., 2006]. The GOCE mission used an ion propulsion system to
compensate non-gravitational accelerations [Canuto, 2008]. For space-based interferometers
such as LISA and LISA Pathfinder, a drag-free system is essential. Although the terms
drag-free and drag-compensation are used interchangeably in literature, here, the following
distinction is introduced: A drag-free system has a test-mass (or proof mass) following a
so-called geodesic, meaning that it is influenced only by gravitational forces, i.e., it is free-
falling. In particular, the coupling between spacecraft and proof-mass is very weak within a
particular frequency band, which is usually the (science) measurement bandwidth (MBW).
Typically, a drag-free mode can be realized only in a few degrees-of-freedom of a test-mass,
especially if several drag-free test-masses are present in a satellite [Danzmann et al., 2007,
LISA Pathfinder] or if the satellites form a constellation and inter S/C pointing is required
[eLISA/NGO Team, 2012; Danzmann et al., 2017].

Position sensors measure the position and orientation of the test-mass within the space-
craft or accelerometer, either capacitively or laser interferometrically. The signal is fed back
into a controller, which commands actuators of the satellite to produce a linear and/or an-
gular acceleration to keep the proof-mass centered within a housing. However, at very low
frequencies, i.e. below the interesting measurement band, drifts of the test-mass and S/C
need to be reduced by electro-static suspension, e.g. for orbit and formation maintenance.
The non-gravitational accelerations I' are obtained by differentiating the position informa-
tion. A drag-free concept is illustrated in figure 1.24 (bottom). Accelerometers in the context
of drag-free systems are often called inertial sensors or drag-free sensors.

In contrast, drag-compensation usually utilizes a servo-accelerometer, where the proof-
mass position is measured by capacitive sensing and the proof mass is centered within the
accelerometer with high control-loop gain and high bandwidth by electro-static means (cf. up-
per panel in figure 1.24). The actuation signal (voltage), which is ideally proportional to the
electro-static force applied to the test-mass, provides the non-gravitational accelerations. The
accelerometers by the French company Onera used in CHAMP, GRACE, GRACE-Follow-
On and GOCE are of the latter servo-controlled type. For a drag-compensation concept,
the measured non-gravitational accelerations, which are derived from the electrostatic feed-
back signals acting on the test-mass, are fed back into another outer control loop, which
actuates the satellite by means of thruster and torquers to counteract the non-gravitational
accelerations (cf. center panel in figure 1.24).

The main difference between drag-compensating and drag-free systems is the bandwidth
of the electro-static suspension, which is a continuous parameter. Hence, the difference be-
tween both concepts is gradual and not black-and-white. Drag-compensation uses two nested
control-loops within the measurement bandwidth, while drag-free operation utilizes only the
Attitude and Orbit Control System (AOCS) loop within the measurement bandwidth. In
an ideal drag-free concept, the proof-mass follows a geodesic. While in drag-compensation,
the proof-mass follows a geodesic only in case of infinite AOCS loop gain. In the case of
finite AOCS loop gain, the high electro-static suspension couples the proof-mass and the
S/C strongly. Any disturbance on the S/C produces a deviation from geodesic motion of the
test-mass, which is, however, suppressed by the finite AOCS loop gain.

Because the proof-mass has non-negligible motion inside the accelerometer housing in
case of drag-free operation, the definition of the gravitational reference point for gravity
recovery was adopted in sec. 1.3.6 (and following). In a drag-free mission, the well-defined
and stable proof-mass CoM needs to serve as ranging reference point. As the S/C shields the
non-gravitational disturbances such as drag and solar radiation pressure, the proof-mass is
ideally only influenced by gravitational accelerations.

1.9.1 Characteristics of Non-Gravitational Accelerations

A potential drag reduction system, either drag-compensating or drag-free, needs to counter-
act the non-gravitational accelerations caused by residual atmospheric drag, by radiation
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e.g. solar or Earth’s albedo radiation pressure, and by Lorentz force. Atmospheric drag is
considered dominant, as future gravity missions will most likely utilize a lower altitude than
GRACE. The drag force can be computed according to [Montenbruck & Gill, 2000, eq. 3.97].
FITRF

. 1 -
FiragiTRF = —= - COp - A+ p - |Firre|? - (1.113)

2 Firre|

where ITRF refers to an Earth-fixed frame, A is the cross-section area of the S/C, Cp is the
drag coefficient and p is the atmospheric density. The density p is a function of the satellite’s
altitude and position and it depends strongly on the solar activity, usually characterized
by F10.7 flux, and geo-magnetic activity, usually characterized by K, or A, coefficients
[Montenbruck & Gill, 2000]. The solar activity exhibits a 11-year cycle. Based on figure 3-20
from [e.motion? Team, 2014], the following approximate formula for the atmospheric density
p between 300 km and 500 km altitude can be derived

10.0 - 3=A/100km (high case)
h =400km + Ah) ~ 10 kg/m® - 1.114
d ) 8/ 0.4 - 10~ Ah/100km (low case) ( )
With Cp = 2.2, A = 0.97m? and 7 = 7600 m/s this translates to a drag force of
0.616 mN - 3~Ah/100km (high case)
F(h =400km + Ah) ~ 1.115
( ) {0.002 mN - 10~ 4R/100km (low case) ( )

The result illustrates the large range between high and low solar activity. Spectral analy-
sis of the atmospheric drag on a LEO satellite reveals that next to a static part, the sig-
nal power is concentrated at (low) integer multiples of the fundamental orbital frequency
[Frommknecht, 2008, p. 53]. Moreover, Zijlstra et al. [2005] pointed out that atmospheric
models lack frequency-continuous signals when compared to accelerometer data and suggested
a method to model short-term variations by producing an appropriate filter. For a compre-
hensive report on atmospheric density models, also in comparison with satellite accelerometer
data, the reader is referred to [Doornbos et al., 2009].

In this thesis, the spectral behavior of worst-case non-gravitational accelerations for
e.motion? was approximated rigorously based on the green trace in figure 1.25 by

m?2 1

PSD|ang max =3-1 -t ’
SD[ang max](f) = 3 - 10 st-Hz 1+ (f/0.2mHz)2’

(1.116)

which is shown as dashed light blue trace in the same figure.

It is remarked here that accelerometry in GRACE is perturbed by short twangs, which
might be caused by vibrations, probably induced by insulator foil at the nadir side of the
S/C [Peterseim, 2014]. Also, electro-magnetic susceptibility of the accelerometer, e.g. to
heater switching, has been reported [Peterseim, 2014]. The design of the GRACE Follow-On
satellites was partly optimized to reduce these effects. A potential NGGM mission needs to
address these issues as well, in particular if the accelerometer data is used in a control loop
for drag reduction.

Other non-gravitational disturbances from solar radiation pressure, Earth’s and Moon’s
albedo radiation, unexpected disturbances and Lorentz effects, where the charged S/C in-
teracts with the geomagnetic field, are not covered here in detail. The interested reader is
referred to [Frommknecht, 2008]. It is assumed that all these effects are covered by eq. (1.116).

In this section only linear accelerations are considered, a similar analysis needs to be
performed for angular accelerations.

1.9.2 Requirements on the Accelerometer

The characteristics of non-gravitational accelerations can be used to derive requirements on
the accelerometer. The maximum mean force as given by eq. (1.115) at 400 km height is
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Figure 1.25: Drag compensation requirement (dark blue trace) expressed as residual non-
gravitational acceleration ASD along the LOS. The dashed light blue trace is a worst-case
assumption for the maximum level of non-gravitational accelerations at e.motion? orbit height
(~ 400 km). Drag compensation is not required above 4-10~2 Hz, since even under worst-case
assumptions, the non-suppressed acceleration would be sufficiently small. The green trace of
a typical GRACE accelerometer signal corresponds to L1B data from the year 2007.

0.6 mN, which corresponds to 7.5 - 107" m/s? with a satellite mass of 800kg. With margin
and converting to peak values, an accelerometer dynamic range of +6 - 107°m/s? has been
specified for e.motion?.

Due to the quantization noise arising form the finite number of bits in analogue-to-digital
converter, e.g. high-end 24-bit ADCs, the resulting quantization noise is of the order of
(cf. eq. 2.314)

12-107%m/s? - 27N 12.1075m/s? - 2724

V6 fs - V6 -10Hz

for such a dynamic range.

~ 107 m/s*VHz (1.117)

The amplitude spectral density of non-gravitational accelerations in the worst-case as-
sumption is approximately 10~%m/s?v/Hz at 1 mHz (cf. figure 1.25). The sensitivity of the
accelerometer is at approx. 4 - 107! m/s?v/Hz, yielding a signal-to-noise ratio of 25000.

However, this implies that the accelerometer mean (DC) scale factor SI(D%CC) (cf. sec. 1.4.3
on accelerometers) needs to be known to one part in 25000 or to 4 - 1075. A survey of scale
factor requirements in missions and studies is given in table 1.4. Current accelerometers,
e.g. the one used in GRACE Follow-On, achieve an absolute knowledge of about 2%. Al-
though some concepts state a knowledge at the parts-per-million (ppm) level, details on the
technical realization are not provided.

Recall that the scale factor induced noise in the accelerometer measurement is governed
by (cf. eq. (1.52))

PSD[s 6] = (S )? - PSD[Tieas] + T2

max

-PSD[S\ e ], (1.118)

which shall be below the overall accelerometer noise PSD[I"x g| or at least below the PDGA
sensitivity, which is limited at high frequencies by the ranging instrument. One needs to
define values, i.e. requirements, on all of the four terms in eq. (1.118). These need to be
iterated, until suitable and achievable values are obtained for all of the quantities.
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In the e.motion? study, a DC scale factor knowledge requirement was proposed by the
author of this thesis as

She S =2-107% = 0.2%, (1.119)

which was considered already demanding. However, with a dedicated continuous in-orbit
calibration, which will be discussed in the subsequent section 1.10, such a value is achievable.

)

A requirement for the AC scale factor SI(X%C}S stability within the measurement bandwidth

is proposed as

1 1mHz\?
S =107 ik (II}Z> +1,  0.18mHz < f < 0.1 Hz, (1.120)

which is considered achievable by the author of this thesis. From this requirement, one can
state that maximum in-orbit non-gravitational accelerations I' .y of less than

Fmax, req — Ong, max, req = 1078 m/327 (1121)

will comply with the accelerometer sensitivity requirement. Thus, a drag-reduction scheme is
required on both S/C, which reduces the in-orbit non-gravitational accelerations below this
value.

The last missing requirement from eq. (1.118) is the one for PSD[I'ycas], i.e. on the
highest level of in-orbit non-gravitational accelerations within the science frequency band.
An expression, which is compliant with the PDGA sensitivity and S](DACC’?e)q, is proposed here
as

\/ PSD|[Tmeas, req)(f)

= ASD[ang, 0, reql (f)

1

= 103% \/2-PSD[T|(f) + (27 f)* - PSD[LRIJ(f) - 0.1 (1.122)

for frequencies 0.18mHz < f < 40mHz. The factor 1/4 accounts for two satellites and
margin, while the factor 0.1 in the square-root is also a margin, which ensures that the
accelerometer scale factor is not limiting the PDGA sensitivity, even if the LRI noise is one
order of magnitude below the requirement PSD[LRI]. The sensitivity along the sensitive axis
of the accelerometer is labeled as PSD[I'] = PSD[I'x ]| (cf. eq. (1.47)).

Numerical values for eq. (1.122) are shown as solid dark blue trace in figure 1.25. The
frequency band for the requirement ranges from the fundamental orbital frequency up to the
unity gain frequency, where non-gravitational disturbances reach the sensitivity of the PDGA
sensitivity (~ 40mHz). For comparison, the drag-reduction requirement in the Alenia-Team
[2010] study was at 1078 m/s?y/Hz between 1 mHz and 100 mHz, which is stricter at higher
frequencies. A similar requirement to eq. (1.122) has been suggested by the author of this
thesis during the e.motion? study, but was revised for this thesis.

It will turn out subsequently that eq. (1.122) is a design driver for drag-reduction schemes
based on drag-compensation, while drag-free requires smaller fluctuations at low Fourier fre-
quencies (cf. dashed dark blue trace in figure 1.25).

1.9.3 Selection of Drag Reduction scheme

If drag compensation, i.e. reduction of non-gravitational accelerations, is required only to
e maintain the orbit height and therefore the ground track repeat cycle,

e avoid accelerometer saturation due to constant along-track atmospheric drag,
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Concept /Mission/Study Knowledge | Stability within MBW
Alenia [Alenia-Team, 2008] 0.02 % 5-107%1/+v/Hz
FGM [Reubelt et al., 2014] 0.01 % 1-107%1/vHz

e.motion [e.motion Team, 2010] - -

NG2 [NG2-Team, 2011] 0.001 % 1-107¢
GRACE-FO [Foulon, 2013] 2% unknown
GOCE spec [Kramer, 2002] 0.1% 1-1072
GOCE diff. [Cesare, 2002] 0.01 % <1-107°1/v/Hz

Table 1.4: Accelerometer scale factor requirements in different missions and studies. The
column labeled “Knowledge” refers to the DC (mean) scale factor accuracy.

a feed-forward or DC-compensation approach can be utilized. This means that the attitude
and orbit control system (AOCS) of the S/C is commanded to produce a constant (DC)
linear acceleration, which compensates the average along-track drag over time-scales of days to
months. As shown in the technical note in Appendix A, the accelerometer dynamic range of an
Onera-type accelerometer is sufficiently large, such that saturation due to drag does not occur
at orbit heights greater than 420 km. However, there might be scientific or technical reasons
to use drag compensation within the measurement band, such as the limited knowledge of the
accelerometer scale factor. This led to the derivation of the drag-compensation requirement
in eq. (1.122) and finally to a selection of an e.motion? baseline [e.motion? Team, 2014],
where the S/C compensate non-gravitational accelerations with a control loop, i.e. within
the (science) measurement frequency band.

The use of a drag-free concept was only briefly addressed in the e.motion? study. The
feasibility of a drag-free system as in LISA and LISA Pathfinder has not been shown, to
the author’s knowledge, for a LEO orbit. Drag-free offers the advantage of a well-defined
gravitational reference point and a weak coupling between test-mass and S/C, which results
in a weak coupling of actuator and sensor errors into the motion of the test-mass. Decoupling
the spacecraft from the measurement and using a well-shielded proof-mass as reference point
as done in LISA and LISA Pathfinder should therefore be further investigated for LEO gravity
missions. A starting point for this is provided in the next subsection.

1.9.4 Preliminary Drag-Free Assessment

An important aspect for the assessment of the feasibility of a drag-free system is the residual
test-mass motion, i.e. translation and rotation, within the inertial sensor, as it needs to
be sufficiently small to avoid collision of the proof-mass with the housing. For simplicity we
consider in the following the motion only in the line-of-sight direction, as the non-gravitational
accelerations are considered to be pre-dominant in this direction. The maximum displacement
dx can be computed from a spectral density of (residual) non-gravitational accelerations ang res
as a function of the bandwidth corner frequency fqco by

dxpk ~ 3 \/JOO (27 f)=* - PSD[angres](f) df, (1.123)

where the pre-factor 3 converts the rms-value to a zero-peak (99.7 % probability) value under
the worst-case assumption of a completely Gaussian residual acceleration. The factor would
be v/2 for sinusoidal residual accelerations. fqco denotes here the upper frequency bound
of the electro-static actuation band or the lower frequency bound of the AOCS bandwidth
(cf. the transfer function at the bottom in figure 1.24).

Figure 1.26 shows the residual test-mass motion as a function of the frequency bound
faco for different levels of residual non-gravitational accelerations, which are taken from fig-
ure 1.25. As the solid dark blue trace in figure 1.26 shows, if non-gravitational accelerations
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are compensated according to the solid dark blue trace in figure 1.25 and the test-mass is
not electro-statically actuated at frequencies higher than 0.18 mHz, the proof-mass CoM mo-
tion within the housing is of the order of 2mm. One could reduce the test-mass motion by
choosing a smaller drag-free bandwidth and actuating electro-statically at higher frequen-
cies. However, this would lead to a servo-accelerometer with the aforementioned drawbacks.
Alternatively, the level of the residual non-gravitational forces needs to be reduced, i.e. by
increasing the AOCS loop gain. Therefore, a drag-free requirement has been derived and is
shown as dashed dark blue trace in figure 1.25 with flat low-frequency shape, which leads to
a residual test-mass motion of approx. 120 pm. Such a motion could be tolerable and electro-
static actuation of the test-mass would then be required for frequencies below 0.18 mHz,
which are below the (science) measurement band.

The required AOCS loop gain for the drag-compensation and drag-free case is depicted
in figure 1.27, which is the minimum required suppression factor of non-gravitational distur-
bances. As thrusters can typically provide sufficient linear momentum at low frequencies, the
shown loop gain is considered to be realistic.

The requirements for drag-compensation and drag-free systems have been formulated
along the line-of-sight. In principle this is sufficient, as the gravity field is sensed along the
line-of-sight. Practically, the orthogonal axes need to be considered as well, as cross-coupling
between axes cannot be neglected, but a relaxation by a factor of 10 to 100 is likely possible.
Also the cross-talk between rotational and translational degrees as well as the exact equations
of motions of the test-mass needs to be taken into account, but such an analysis is beyond
scope of this thesis.

Regarding the angular degrees of freedom, the plot shown in figure 1.28 illustrates the
variation of the test-mass orientation within the housing. The plot assumes that the e.motion?
S/C points exactly along the line-of-sight. The line-of-sight rotates with a mean angular
rate of 27 /T4, in the inertial frame but has also variations within the science measurement
band due to oblateness of Earth and higher moments of the gravity field. The test-mass
is considered to rotate with constant angular velocity, i.e. no torques from gravity gradient
or electro-static suspension occur. The variation of 1mrad per orbital revolution suggests
that a 300 pm gap size for a cuboid test-mass with a 50 millimeter side length is sufficient to
cope with the angular variation and translation. Moreover, strong electro-static suspension
of the angular degrees of freedom is likely not required within the measurement bandwidth.
The traces from figure 1.28 have been converted into spectral densities, which are shown in
figure 1.29 for the sake of completeness.

In summary, no obvious show stopper for a LEO drag-free concept could be identified,
however, the analysis is restricted to a very simplified domain. For example, it was assumed
that the sensitivity and characteristics of the servo-accelerometer hold as well for a drag-free
position sensor. The sensitivity of such position sensing accelerometers was not discussed.
However, these preliminary positive results can hopefully stimulate further research on drag-
free concepts in the context of gravimetric missions.

The here derived information on the AOCS loop gain and the remaining non-gravitational
acceleration after drag-reduction (eq. (1.122)) can be used to derive further requirements on
the thrusters, which are addressed in the next section and apply to drag-compensation with
a classical servo-accelerometer and to drag-free concepts using position sensing.

1.9.5 Actuator Technologies

The linear and angular accelerations required to compensate non-gravitational disturbances
can be produced by various actuators. Pure torque on a satellite can be generated by means
of magnetorquers, also called torque rods, which are based on electromagnetic coils. They
produce a magnetic field, which generates a torque in the geomagnetic field. Usually, an
additional magnetometer is used to measure the geomagnetic field at the satellite. The
GOCE, GRACE and the future GRACE Follow-On missions utilize these actuators. Mo-
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Figure 1.26: Residual test-mass motion dx along the LOS for a drag-free concept, where the
test-mass is not electro-statically actuated within a drag-free frequency band, as a function of
the drag-free bandwidth and for different levels of (residual) non-gravitational accelerations.
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Figure 1.27: Required AOCS loop gain for the drag-free and drag-compensation case ac-
cording to figure 1.25, i.e. the ratio of the maximum external acceleration (light blue dashed
curve) over the dark blue traces in the figure.
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Figure 1.28: Angular variations of the test-mass w.r.t. the accelerometer housing for the
drag-free case. The S/C is considered to point exactly along the line-of-sight. The test-mass
rotates torque-free with a particular initial angular velocity. The shown period corresponds
to three orbital revolutions.
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Figure 1.29: Spectral densities of angular jitter of the test-mass as shown in figure 1.28.
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mentum wheels are considered as problematic, as vibrations may disturb the accelerometer
measurement. Potential thruster technologies are

e Continuous Cold Gas: A pressurized gas tank is connected to a thruster, consisting
basically of a nozzle. A valve controls the flux. This type of thrusters is used in, among
others, GRACE and GRACE Follow-On and provides usually a specific impulse I,
around 65s for nitrogen. Micro-Newton Ny cold-gas thrusters manufactured by TAS-I
have been characterized for the GAIA mission [Jarrige et al., 2014]. The thrust noise
was below 1 1N/+/Hz for frequencies below 2 mHz at a thrust level of 500 uN. The overall
tested thrust range was 1 pN (Igp ~ 50s) up to 1mN ([g, &~ 63s). These thrusters are
being used on LISA Pathfinder [Armano et al., 2015] as well as the Colloid thrusters®.

e PWM Cold Gas: The Formosat-5 satellite utilizes a cold-gas system with pulse-width
modulation developed by the German company ASTY. Over 10° actuation cycles have

been demonstrated, resulting in a > 10 year lifetime for a PWM switching frequency of
3 Hz.

e Kaufman Ion Thruster: Such gridded ion thrusters ionize the propellant atoms
(usually xenon) in a chamber with electrons, which are generated by a cathode and
accelerated towards an anode. The ions are accelerated as well in an electrostatic field
between two grids and ejected, providing the recoil momentum transfer. Charging
of the satellite is counter-acted by a neutralizer, which emits electrons to neutralize
the ejected plasma. The GOCE mission utilized such a type of thruster with 100 mm
diameter grid manufactured by Qineti@ Ltd. The thrust range from 0.6 mN to 20.6 mN
[Wallace et al., 2011] can be achieved with specific impulses from 500s to 3500s over
the thrust range, while the electrical power demand is specified from 55 W to 585 W
over the thrust range [Edwards et al., 2004]. The thrust noise level is 1.2mN/v/Hz at
1 mHz and 121N/+/Hz at high frequencies.

e RIT: Radio-frequency gridded ion thrusters use conducting coils to produce electro-
magnetic fields (with MHz frequencies) in the discharge chamber, which accelerate free
electrons and ionize the propellant. No cathode in the discharge chamber is required as
for the Kaufman type. These thruster are capable to achieve super high bandwidths,
i.e. they have short reaction times. An extensive description and performance analysis
is provided in [e.motion? Team, 2014, section 4.4]. A maximum thrust of 2mN should
be sufficient for a gravimetric mission at > 400 km altitude (cf. eq. (1.115)), which can
be achieved with a 35 mm diameter grid. Measurements of a 25 mm unit exist and show
a thrust noise of 10 pN/\/m at 10mHz and at 200 pN setpoint [e.motion? Team, 2014,
Fig. 4-20]. The ASD decays towards higher frequencies with 1/f. A specific impulse
between 500 to 4000 s over a thrust range from 50 uN to 2 mN is specified in [e.motion?
Team, 2014, p. 54].

e Colloid Thruster: These micro-newton ion thrusters are also called electrospray
thrusters and emit ionized liquid droplets of propellant. The LISA Pathfinder mission
utilizes this type of thruster, which has been a US contribution, next to the cold-gas
system. The specified thrust ranges from 5pN up to 30 uN with Iy, > 150s and with
a specified noise level of 0.1 1N/+/Hz for frequencies below 1 mHz [Ziemer et al., 2007],
whereby the actual noise performance is significantly better according to the publica-
tion.

Due to their higher specific impulse I}, ion thrusters require significantly less propellant
(mass) with the drawback of higher electrical power consumption. The preliminary assess-
ment of propellant demand for a 10 year mission lifetime shows that a N9 cold-gas propulsion

8Initially, it was intended to use Colloid and FEEP thrusters, but the latter were changed to cold gas.
“http://www.advancedspacetechnologies.de/
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Figure 1.30: Requirement for thrust noise to reach the drag-compensation or drag-free
requirement in figure 1.25. The thrust noise is referred to a set-point of 0.6 mN.

for the e.motion? baseline of 420km altitude is sufficient, where 43 kg are required for drag
compensation and 14 kg for attitude control [e.motion? Team, 2014, p. 42]. For a constellation
at 360 km altitude a combination of cold-gas and electric propulsion was suggested.

In closed-loop operation of a drag-reduction system, the actuator noise is suppressed by
the loop gain in the same way as the external disturbances. Since the requirement for the
residual non-gravitational accelerations ASD[an&DCQreq]( f) with active drag-reduction has
been defined (cf. figure 1.25) as well as the AOCS loop gain K(f) (cf. figure 1.27), one can
derive a requirement for the thruster noise ASD[Fryn req](f) according to

ASD[FrnN req(f) = L ASD[ang DO req](f) - K(f) - Mgat. (1.124)

10
Scaling by factor of 1/10 is assumed to account for several active thrusters, thrust vector
variations and sufficient margin. The results in figure 1.30 for a satellite mass of mg,; = 800 kg
are equal for the drag-compensation as well as for the drag-free case. The thrust noise
requirement holds for the set-point of 0.6 mN corresponding to the maximum expected thrust
(eq. 1.115), while lower setpoints are considered to have a lower noise.

Pulse-width modulation (PWM) thrusters need some precautions concerning the ac-
celerometer design, as the accelerometer internally resolves the PWM signal. A PWM signal
appears as a comb of spikes, which decay in amplitude to high frequencies. The roll-off is
enhanced as the pulses are not perfectly rectangular, but the actual shape depends strongly
on the characteristics of the thruster. A theoretical example is shown in figure 1.31. The
internal accelerometer bandwidth needs to be sufficiently high, such that all signals are pro-
cessed. Otherwise, they could alias into the science measurement band (0.18 mHz to 0.1 Hz).
In other words, the accelerometer needs to resolve internally each PWM switching cycle suffi-
ciently well. In a digital processing context, this means that the sampling frequency needs to
be sufficiently high to avoid aliasing due to undersampling. Another concern regards aliasing
by downsampling: The internal accelerometer signal needs to be downsampled to a conve-
nient rate for down-link transmission, e.g. to 1Hz. Therefore, a strong anti-aliasing filter
(AAF) is required, as it needs to suppress the signal in the AAF band in figure 1.31 below
the measurement sensitivity, e.g. to 1072 m/(s?v/Hz).

In summary, different thruster types exist with key figures such as maximum thrust, which
depends on the final selected orbit and solar activity, the specific impulse, which drives the
propellant mass demand, and thrust noise, which needs to comply with the residual level of
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Figure 1.31: Pulse Width Modulation signal of thruster with switching frequency of 2 Hz
(dark blue trace) with the e.motion? accelerometer sensitivity requirement shown in red.
Higher frequencies are not labelled as the roll-off frequency of the PWM signal is not known.

non-gravitational accelerations after drag-reduction. The here derived requirement for the
thrust noise is demanding, but can be fulfilled by the low-noise cold gas system or colloid
thrusters. RIT thrusters are close to the thrust noise requirement and further iteration of the
drag-reduction concept might lead to a relaxation of the requirement, e.g. the maximum non-
gravitational acceleration level includes ample of margin, which might be too conservative.

1.10 Integrated Instrument Analysis and Calibration

For future gravimetric missions, an integrated instrument analysis and calibration becomes
more important, because more measurements of the same physical quantities are available.
This is depicted in figure 1.32, where the upper part shows the main scientific measurement
instruments (green boxes) and the physical baseline state quantities (blue boxes, cf. sec. 1.5)
for GRACE and the lower part for the e.motion? concept. As shown in the figure, both mis-
sions can obtain ranging information from GNSS and a dedicated ranging instrument (KBR
or LRI). The precision and accuracy of the measurements is not shown in the plot. However,
this cross-link can be used to improve the kinematic orbit determination or to estimate the
offset in the biased inter-satellite ranging. In the e.motion? concept, the additional channel of
attitude information from laser interferometric DWS and steering mirror orientation leads to
an increased density of interconnections. For example, the precise GNSS-derived line-of-sight
can be compared to the line-of-sight estimate on each satellite, which is based on DWS and
star camera information.

In the data processing scheme proposed in section 1.4.6 on page 32, the baseline state
quantities (blue boxes in figure 1.32) are obtained by solving a single system of equations,
taking into account all available information. Note that the block diagram in figure 1.32
is simplified in many aspects and does not reflect all interconnections and steps, as various
calibrations are missing, e.g. temperature, scale factors, offsets and so forth.

Two major calibrations will be addressed in the next sub-sections. One is regarding the
accelerometer (DC) scale factor, and the other is the attitude correction for the laser ranging
instrument (box labeled A.C. next to to the LRI in figure 1.32), which causes a coupling
of rotations into the ranging measurement. The last sub-section addresses briefly thermal
aspects in the design of future missions.
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Figure 1.32: Block diagram of instruments (measurements) and baseline state variables

for the GRACE mission (top) and e.motion? (bottom). Abbreviations: SCA: Star Cameras,
ACC: Accelerometer, LRI: Laser Ranging Instrument

69



1.10. INTEGRATED INSTRUMENT ANALYSIS AND CALIBRATION

1.10.1 Calibration of Accelerometer Scale Factor

This calibration is driven by the necessity to determine the accelerometer DC scale factor
S]()%CC) precisely to a level of 21073 in-flight (cf. sec. 1.9.2), which is assumed to be beyond
the capability of predictions based calibrations made on ground.

In the e.motion? proposal, the use of dedicated calibration tones was suggested by the au-
thor of this thesis [e.motion? Team, 2014, sec. 5.2.4], which can be conveniently implemented
in a drag-compensation or drag-free control loop. A natural idea is to produce a signal which
can be measured simultaneously by accelerometer and LRI. The ratio of both measurements
provides the scale factor of the accelerometer, as the LRI scale factor can be assumed to be
accurate to approx. 1076, The sinusoidal calibration signal, which is fed to the thruster, is
shown in orange in figure 1.32. Ideally, the calibration frequency (band) should not overlap
with the science measurement band, which is used for gravity field determination, as this
simplifies data analysis.

For a future gravimetric mission with approx. 400 km orbit height, a calibration band
between 0.10 Hz and 0.30 Hz is suitable, since only instrument noise and no signal is expected
in the accelerometer and ranging measurement (cf. figure 1.33). The modulation of thrust
by the calibration signal, injected into the AOCS loop used for drag-reduction, is directly
measured by the accelerometer. However, it also changes the satellite dynamics, e.g. position,
and therefore the inter-satellite distance, which is measured by the LRI. By using calibra-
tion signals with different frequencies on both satellites, a continuous calibration of both
accelerometers in a link is possible with the LRI.

The calibration tones do not require additional propellant if the mean of the calibra-
tion tone is used to compensate the average (DC) atmospheric drag. Consider an average
drag force of 50 uN, which can be compensated by an oscillating thrust between 5N and
95uN. This yields an acceleration rms-peak amplitude of 3.98 - 1078 m/s? at the calibration
frequency in the accelerometer measurement and an equivalent 100 nm rms ranging distance
variation in the LRI, if the calibration tone frequency is 0.1 Hz and a satellite mass of 800 kg
is assumed. Averaging for three orbital periods (T ~ 16600s) yields a spectral density peak
magnitude of 5.13 - 10~%m/(s*>v/Hz) or equivalently 13 pm/v/Hz. To reach a signal-to-noise
ratio of 500, which is equivalent to estimating the accelerometer scale factor to 2 - 1073, the
ranging measurement noise needs to be < 25 nm/ VHz, corresponding to the actual sensitivity
requirement (cf. eq. (1.39)) at the high end of the science measurement band. A tightening
of the LRI requirement for the calibration band could be envisioned, as the two main noise
contributors of the LRI roll-off at high frequencies. The following requirement

nm 0.1Hz\* L
ASD iase =25—" : 5 1H 3H 1.12
SD[pbiased, k] (f) 5@ < 7 > o O1Hz< [ <0.3Hz (1.125)

allows to measure the accelerometer scale factor with an accuracy of 2-1073 for all frequencies
in the calibration band (0.1 Hz...0.3 Hz).

The instrument sensitivity level of interferometer and accelerometer in e.motion?, the
respective expected signal level and the calibration tones are depicted in figure 1.33.

Although the calibration modulates the position of the satellites, the precision of the
GNSS observations is not sufficient to resolve the sub-mm effect. The calibration tone ampli-
tude in the range-domain could be enhanced by a higher thrust variation or by using lower
frequencies. However, the first option would result in an increased propellant demand and
the second option yields a superposition of calibration signal and a high signal from orbital
dynamics, i.e. gravity field, and is therefore considered unfeasible.

The here discussed accelerometer scale factor calibration was initially introduced for
a drag-compensation concept with servo-accelerometer and neglects any non-linearities or
quadratic coupling. However, in a drag-free concept with a test-mass motion of +120 pm and
+1mrad (cf. sec. 1.9.4) such effects might be non-negligible.
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Figure 1.33: Calibration tones within a calibration band, induced by the drag-reduction
control loop, are measured by accelerometer and LRI. This allows one to retrieve the ac-
celerometer scale factor. The stated ENBW is valid for the calibration tones but not for the
traces labeled with “typical” in the legend.

1.10.2 Calibration of Rotation-to-Ranging Coupling

The spacecraft rotation-to-ranging (or pathlength) coupling is one of the major error con-
tributors in the ranging observation, either with laser or microwave radiation. It mainly
results from the non-perfect pointing of the S/C along the line-of-sight due to disturbance
torques and forces in orbit in combination with an offset between the center-of-rotation and
ranging reference point, e.g. microwave antenna phase center or TMA vertex in GRACE-FO
like laser interferometry. In addition, the baseline (line-of-sight) is not rotating at a constant
angular rate (cf. light blue trace in figure 1.23), which requires active steering of the S/C.
If the satellite misalignment in yaw (y(t)), pitch (p(t)) and roll (r(¢)) is written as a vector
= (y(t),p(t),r(t))7, the error coupling into the ranging observation p due to one spacecraft
can be expanded as a power series to quadratic order as

cyy 0 0
op(t) ~ (cy,cp,cr) - U+UT - [ cpy cpp O |-u. (1.126)
Cry Crp Cpp

The critical coupling angles are yaw and pitch, corresponding to an offset between ranging
reference point and CoM perpendicular to the line-of-sight, while the interferometer is less
susceptible to roll rotations and offsets along the line-of-sight. A coupling of 1mm/rad
corresponds to an offset of 1 mm in non-LOS direction.

Detailed discussion of the coupling is postponed until section 2.6. It is remarked here that
the linear (and quadratic) coupling is minimized by design in the case of the GRACE Follow-
On and e.motion? LRI to < 0.1 mm/rad, while the GRACE (FO) microwave system has a
linear coupling of the order of a few mm/rad [Horwath et al., 2010]. Unfortunately, the cou-
pling factors cannot be determined credibly to a precision better than approx. 0.1 mm/rad
on-ground in case of the LRI, while the microwave precision is even lower due to the ap-
prox. 1.5m offset in LOS direction.

Thus, in-orbit estimation is typically performed by correlating attitude information with
the range measurement in the process of gravity field recovery. However, due to the large
unmodelled signal in the ranging data, i.e. post-fit residuals, the determination of the coupling
coefficients to a level of better than 0.1 mm/rad is questionable. One should also consider
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that the S/C CoM may be unstable at the level of 0.1 mm/rad due to differential thermal
expansion, thermo-elastic deformations and other effects.

A promising approach for a calibration would be based again on calibration signals in
form of periodic pointing variations with magnitude u. in yaw and pitch, potentially also in
roll, and at high frequencies, where no gravity signal is present, e.g. around 0.15Hz. The
accuracy for estimating the yaw ¢, or pitch ¢, coupling factor can be computed with

5= 25Dlenl (1.127)

Uc,rms * \/T,

where ASD[pg] is the sensitivity of the ranging measurement. Considering an integration
time of T' = 45 min and a pointing excitation of u. = 25 prad,,us = 35.4 pradpy, one arrives at
a sensitivity of ¢ ~ 20 pm/rad. This means the offset between ranging reference point and
CoM can be determined to 20 pm every 45 min in the plane perpendicular to the line-of-sight.

Such an excitation would also allow one to compare continuously the angular measure-
ments from accelerometer, star cameras and LRI DWS and in particular track the S/C CoM
quasi-continuously, instead of sporadically as currently performed in GRACE [Wang, 2003].

As linear accelerations falsify the calibration, pure torque actuators like magneto-torquer
or reaction wheels should be envisioned. The maximum torque Ty,,x required to produce
the sinusoidal excitation u,. is simply given in case of linearized Euler equations by Tiax =
I uepy- (2 fc)z, where f. = 0.15Hz is the excitation frequency. In a worst-case assumption
with a S/C moment of inertia of I = 500kg - m?, one obtains Tjuay = 0.015kg - m?/s2. Such a
torque can be produced by rotating a solid disk with m = 2kg and 20 cm diameter sinusoidally
with frequency f. by 100 degrees (forth and back). These reaction wheels, which should be
distinguished from fast-spinning momentum wheels, could produce the required sinusoidal
pointing excitation, but one needs to ensure that the induced micro-vibrations are negligible.

A potential calibration or validation of the accelerometer by a well-defined torque might
be considered as well but requires further analysis.

Alternatively, the torque Tiax = 0.015 kg - m?/s? can also be exerted with a magnetic lin-
ear dipole moment of approx. 600 A - m? in Earth’s magnetic field with B = 2.6 - 107> Tesla
(worst-case at 400 km height). However, such dipole moment would require likely several
magneto-torquers, remarkable electric power and mass resources and special means to mit-
igate electro-magnetic interference with other instruments. In addition, the simultaneous
availability of the torque in all required axes, due to the 3-d structure of the geo-magnetic
field, needs further analysis.

1.10.3 Thermal Monitoring and Control

An aspect of the integrated instrument analysis is the correction of scientific measurements
for temperature effects, either temperature fluctuations with resulting measurement noise or
periodic temperature variations with resulting tone errors. Temperature-induced errors have
been reported for the star cameras, e.g. angles between the sensor heads [Harvey, 2016], for
the accelerometer in terms of a susceptibility of the order of 10~ m/(s? - K) [Foulon, 2013]
and for the ranging interferometer (cf. sec. 2.3.6).

The temperature sensitive parts of the main scientific instruments, e.g. laser frequency
stabilization or accelerometer electronics, need to be located in a thermally stabilized zone.
Proper selection of passive and active thermal control in several stages needs to ensure a
thermal stability of better than 10 mK/+/Hz for the LRI [e.motion? Team, 2014, sec. 5.3.7.3]
within the science measurement band, which is demanding due to the LEO orbit with chang-
ing sun incidence angle and open paths to space for the optical instruments. Furthermore,
the variation in temperature should not exceed 0.1 K per orbital revolution in the thermally
stabilized zone to suppress tone errors.

To verify the in-orbit thermal stability, and to enable precise corrections of science data in
post-processing, high-performance temperature sensors have been suggested as scientific pay-
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load on e.motion? [e.motion? Team, 2014, sec. 5.5.1]. They shall be read out at a sufficiently
high sampling rate, e.g. 0.1 Hz. Suitable sensors with electronics have been developed for the
LISA Pathfinder mission [Sanjudn, 2009] and reach a sensitivity of better than 1 mK/v/Hz at
a Fourier frequency of 1 mHz.

In general, it is recommended to consider the temperature stability already in early stages
of the S/C design and to account for a precise measurement of temperature.

1.11 Summary & Conclusion

The first part of this thesis revisited and extended the e.motion? concept as a future gravi-
metric satellite mission, consisting of two satellite pairs in low Earth orbits in a so-called
Bender configuration. The aim of the mission is the measurement of Earth’s time-varying
gravity field on a monthly basis. In the beginning, the composition of Earth’s gravity field
has been introduced (sec. 1.1.1), together with the basic concepts to measure it (sec. 1.1.2).
The e.motion? proposal is based on a combination of GNSS-based high-low satellite-satellite-
tracking and ranging-based low-low satellite-satellite tracking.

In many aspects, gravimetric missions with accelerometry and ranging have overlap with
missions from fundamental gravitational physics, which can yield fruitful technology transfer
as demonstrated by laser ranging interferometry (sec. 1.1.3). From a gravitational physics
perspective, Earth’s gravity field produces a curvature in the fabric of space-time, which is
measured by e.motion?.

Some boundary conditions of e.motion?, e.g. the rationale behind the selection of orbits or
altitude, have been explained (sec. 1.2), prior to a mathematical description of the gravity field
measurement (sec. 1.3). It was discussed that each spherical harmonic (SH) coefficient of the
gravity field induces a comb of sinusoidal signals at different frequencies in the observables.
However, as the gravity field is composed of an infinite number of coefficients, the power
distribution is quasi-continuous over frequency. By selecting a science measurement band
from 0.18 Hz to 0.1 Hz, most of the gravity field signal can be recorded for later gravity field
recovery.

The definition of the gravitational reference point (GRP) was addressed in section 1.3.6,
which is, loosely speaking, the reference point of the satellite which all measurements are
referred to. The difference between center-of-gravity and center-of-mass GRP was pointed
out, as well as the fact that missions utilizing drag-free control should choose a different GRP
compared to missions utilizing servo-accelerometers.

The characteristics of the different scientific instruments and their sensitivity models were
introduced (sec. 1.6) and propagated to the final observables of the projected differential
gravitational acceleration (PDGA) and the direct acceleration (DA). Comprehensive error
models with various contributions revealed that the pure intrinsic instrument noise level of
accelerometer and interferometer are not sufficient to assess the final sensitivity of gravity
field observations. Instead, errors in gravity background models, in GNSS observations as
well as instrument errors beyond simple noise, e.g. scale factors, need to be considered. It
was shown that the analysis is compatible with the GRACE gravity field post-fit residuals
(sec. 1.6.2), providing confidence on the validity for the future e.motion? mission.

The baseline (or line-of-sight) centrifugal acceleration was identified as a critical compo-
nent. It can be written in terms of the baseline angular velocity, which can be derived from
GNSS observations only with insufficient precision. This issue was completely neglected in
the initial e.motion? study but was overcome here by replacing the kinematic orbits with
more precise reduced-dynamic orbits. However, the simulation of the full dynamic-orbit de-
termination, which accounts for realistic background gravity field models, was beyond the
scope of this thesis and the precision was derived by a simplified model (sec. 1.5.2).

In sec. 1.7, the sensitivity models of PDGA and DA have been translated to gravity fields
and SH degree variances. The acceleration approach was preferred due to its linear relation,
which allows to easily propagate errors from observation to SH coefficients. For example,
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different strategies to handle tone errors have been considered (sec. 1.7.2), which improve the
measurement of particular SH coefficients being highly correlated with tone errors, e.g. C20.
The gravity field results for a single polar satellite pair obtained by the here-presented method
was comparable to the results obtained previously in the e.motion? study by independent
other groups. In case of the e.motion? Bender constellation with two pairs, a significant
improvement over a single-pair constellation could be demonstrated, making an e.motion?-
like mission favorable. Unfortunately, the here-obtained result was significantly better and
probably over-optimistic compared to full-scale simulations from the initial e.motion? study,
which is possibly due to the simplified handling of errors in reduced-dynamic orbits.

However, the simulation approach from first principles, via instrument sensitivity models
to the final SH gravity field coefficients, allowed to identify critical aspects of the mission
design. One is the aforementioned centrifugal acceleration, which is not measured directly
with high precision by instruments but contains almost as much gravity field information as
the ranging data. A dedicated measurement would certainly improve gravity field solutions,
and was hence discussed in sec. 1.8. However, the here-suggested different methods showed
that it is non-trivial to measure this quantity more precisely than with GNSS or precise orbit
determination.

Another interesting aspect for future missions is the consideration of drag-reduction
schemes (sec. 1.9), which are required generally to maintain the orbit repeat cycles and
to avoid accelerometer saturation. The latter fact does not apply for the e.motion? parame-
ters as shown in Appendix A. Another benefit of drag-reduction, or more precisely reduction
of non-gravitational forces, is a decreased susceptibility for accelerometer scale factor varia-
tions. These have been identified as a driving requirement and made drag-reduction within
the measurement band mandatory for e.motion?.

Although the initial e.motion? study used servo-accelerometers and drag compensation
as baseline, the feasibility of a drag-free concept for a LEO gravimetric mission remains an
open interesting question. In particular, the demonstrated superb sensitivity of the LISA
Pathfinder spacecraft [Armano et al., 2016b], orders of magnitude below the noise of servo-
accelerometers, in combination with other advantages such as physically well-defined GRP,
advertise the promising technology for future gravimetric missions. For e.motion?, a prelim-
inary assessment on feasibility in sec. 1.9.4 showed positive results and first requirements on
thruster noise and AOCS loop gain were provided but require more thorough analysis in the
next years.

The last section 1.10 elaborated means of in-orbit calibrations and corrections of measure-
ments for e.motion? and potentially other future gravity missions. Two calibration schemes
were introduced. The first one due to the need to determine the absolute accelerometer scale
factor to a level of 0.2%. It is based on sinusoidal thrust modulations in the calibration band
(0.1Hz to 0.3Hz) injected via the AOCS control loop. It is found that this would not in-
crease the average propellant consumption required to maintain the (roughly) geodesic orbit
and corresponding repeat pattern. The idea behind the scheme is to measure the calibration
tones on both S/C in a link with the accelerometer and with the ranging instrument in paral-
lel, which allows one to derive the accelerometer scale factors, in particular because the LRI
scale factor is more stable. With the precise scale factor, the accelerometer measurements can
be converted into actual physical non-gravitational accelerations at the specified e.motion?
accelerometer sensitivity level.

The second calibration scheme (sec. 1.10.2) regards the S/C rotation-to-ranging coupling,
which is a major error contributor in the range observation. With small sinusoidal pointing
excitations of the S/C in the calibration band, the coupling coefficients can be determined
sufficiently well, providing the ability to correct the ranging data for gravity field recovery
and to validate other angular measurements from star cameras and accelerometer.

Furthermore, the third correction scheme (sec. 1.10.3) attempts to utilize high-performance
temperature sensors, since the temperature correction of science data will become more im-
portant in the context of an integrated data analysis in future gravity missions with advanced
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Figure 1.34: Overview of the e.motion? concept as presented within this thesis.

sensitivity. However, such corrections cannot circumvent solid thermal design of the S/C.
This fist thesis part is concluded with figure 1.34, which summarizes the e.motion?

strument concept.

in-
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Part 2

Laser Interferometry in Space

Distance and distance changes can best be determined precisely by means of electro-magnetic
radiation simply because length is defined by the propagation velocity, the speed of light ¢,
of such radiation in vacuum (cf. SI definition of length!). Two commonly used techniques
are:

e The measurement of the propagation time At of a laser pulse or of a modulation feature
on the light. This can provide the absolute distance d via the relation

d= [H) At. (21)

Such a direct time of flight measurement requires precise clocks and precise time stamp-
ing of the emission and arrival of the light pulse. Absolute accuracies at millimeter level
are currently achievable, e.g. by laser rangefinder [Eisele, 2014]. This technique is also
used, for example, in lunar laser ranging to determine the absolute distance between
Earth and Moon.

e The continuous measurement of the phase of electro-magnetic radiation by means of
interferometry. Electro-magnetic waves are described by an oscillating electro-magnetic
field vector. The phase is part of the state of the electro-magnetic field vector and is a
repetitive feature propagating with the speed of light. For light, the phase can not be
directly measured, since it changes too quickly, but by using interferometry the phase
can be indirectly determined by overlapping the measurement wave with a reference
wave. This allows the phase difference between the measurement wave, which traversed
the distance one aims to measure, and the known reference wave to be determined.
The phase difference can be directly converted to a pathlength difference via the wave’s
frequency or wavelength. However, the repetitive or oscillating nature of the phase
prevents the determination of the absolute distance. Instead, a time-resolved biased
distance, which means the time-varying distance up to an unknown constant offset, can
be measured. Loosely speaking, in interferometry, one determines the distance with the
help of a ladder. The separation between the rungs of the ladder is the electro-magnetic
wavelength. The distance to the next rung of the ladder, which can be understood as
the phase, can be measured precisely. However, the actual rung number is unknown.

Both techniques can also be combined, as it is widely used in Global Navigational Satellite
System (GNSS) applications with a rough absolute but unprecise code measurement and a
precise but biased phase measurement. Radio and microwave signals are routinely used for
ranging purposes, but are less suited for high precision metrology due to the long wavelength.
Lasers in the visible or near-IR part of the spectrum enable relative measurements in the
nano-, pico-, and even femtometer regime using interferometry.

Optical interferometers as high precision inter-satellite ranging instruments have been
developed in the context of the LISA mission since the 1990s [Bender et al., 1998; Danzmann

!General Conference on Weights and Measures 1983, Comptes rendus de la 17¢ CGPM (1983), 1984, 97

76



PART 2. LASER INTERFEROMETRY IN SPACE

et al., 2017]. The LISA mission aims to resolve inter-satellite distance variations with a noise
level of a few picometers (1072 m/+/Hz) at millihertz frequencies between satellites in a quiet
deep-space environment with approx. 2.5 million km (2.5 - 10° m) separation between space-
craft. Nowadays, such sensitivities are routinely achieved in laboratories at short time scales,
but stabilization of the optical setups and of the readout electronics over long timescales
(millihertz regime) is demanding. In addition, LISA technology is capable of determining the
absolute inter-satellite distance to sub-meter accuracy by applying additional modulations
on the laser link.

In the last decade, optical space interferometry was also considered for space missions
to measure Earth’s gravity field and resulted in the Laser Ranging Interferometer (LRI) on-
board GRACE Follow-On. The LRI is a technical demonstrator to be launched in 2018 with
a sensitivity requirement of 80nm/+/Hz for Fourier frequencies above 10 mHz. For future
gravimetric missions this technology is expected to be used as the primary inter-satellite
ranging instrument. In these missions, determination of the absolute inter-satellite distance
is performed by means of GNSS and dedicated absolute ranging is not considered necessary.

This second thesis chapter provides an overview of the current state of inter-satellite laser
ranging interferometry and addresses potential improvements for future instruments. The
author of this thesis has been and is still involved in the development of the GRACE Follow-
On LRI, which is the first inter-satellite laser ranging interferometer, and the author has
provided substantial input within the e.motion? mission study on the general payload con-
cept and on the laser interferometry, which resulted in a published comprehensive report
[e.motion? Team, 2014]. For this thesis, many of the ideas have been revisited, advanced and
embedded in a broader context together with completely new aspects.

The outline of this chapter is as follows. The basics of the theory of relativity are re-
viewed in section 2.1, as relativistic effects need to be considered in the data analysis and
are crucial for a precise understanding of the range measurement. The next section 2.2 is
used to introduce fundamental interferometer techniques such as phase retrieval methods and
interferometric observables, e.g. longitudinal phase, differential wavefront sensing (DWS) and
differential power sensing (DPS). The third section 2.3 is concerned with the technology for
subsystems of laser interferometers, e.g. laser sources, photodiodes, phasemeters, clocks, and
so forth. The main specifications, figures of merit and driving requirements are introduced as
they set the boundary conditions for the following study and discussion of interferometers.

Although the field of optical inter-satellite ranging interferometry is just emerging, various
optical layouts and designs have already been suggested in literature for gravimetric missions
[Kawamura et al., 2009; eLISA/NGO Team, 2012; Danzmann et al., 2017; e.motion Team,
2010; e.motion? Team, 2014; Dehne et al., 2009; Sheard et al., 2012; NG2-Team, 2011; Alenia-
Team, 2010] and for the gravitational-wave mission LISA [Bender et al., 1998; d’Arcio et al.,
2010]. A systematic approach to the field has been attempted here by categorizing the
concepts at different levels, namely at the level of functional concepts and at the level of
optical layouts. The former one includes one-way ranging, dual-one way ranging, transponder-
based ranging and, briefly, passive retro-reflectors, while the latter one is divided into on-
axis and off-axis layouts. The different functional concepts, which are to a large extent
independent of the actual interferometer design, are studied in section 2.4. Mathematical
models of the phase observables are derived for the main functional concepts and the potential
error contributors are discussed including laser frequency noise, relativistic effects and timing
errors. In addition, the relation between phase observables and the instantaneous range
between the satellites, which is typically used in the data analysis of gravimetric missions, is
established. Although optical interferometry differs in many aspects from ranging by means
of radio-waves, e.g. microwaves, some parallels exist and are stressed in this section.

Important contributors to the phase-derived biased range measurement are effects due
to the inter-satellite propagation, which include relativistic effects due to the finite speed of
light and fluctuations from the ionosphere or atmosphere. These are called photon time of
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flight corrections in this thesis, and are addressed in sec. 2.5. Within sec. 2.4 and 2.5 one
obtains the precise relation of the phase measurement to the instantaneous range, so that the
equations and provided corrections, e.g. for relativistic effects, can be readily used in actual
flight-data processing and in the simulation of realistic data streams for studies of future
missions.

Section 2.6 addresses principles of the actual instrument design that can be roughly sep-
arated into aspects regarding the minimization of ranging errors and into aspects regarding
the optimization of the signal strength and signal-to-noise ratio, the so-called carrier-to-noise
density. One major contributor to the ranging errors is the so-called attitude-to-ranging cou-
pling, which is described in this thesis with the help of reference points of the interferometer.
These reference points attempt to provide a geometrical representation of the typical coupling
factors of S/C attitude into the phase-derived range measurement. It turns out that these
points can be used as a figure of merit and characterization criteria for designs, e.g. off-axis
vs. on-axis designs. Moreover, the well-definedness and the stability of these points are im-
portant aspects, since these points can be understood as the fiducial points for the biased
range measurement. The second half of section 2.6 is concerned with the carrier-to-noise
density, which is driven on the one hand by the received power and on the other hand by the
wavefront overlap within the interferometer. Detailed models are derived for both quantities.

Section 2.7 contains a survey of optical layouts, which have been proposed so far for
space laser ranging instruments. The location of the reference points in the different layouts
is discussed and it is pointed out that the optical design should include a retro-reflection
property of the light. An off-axis layout with a corner-cube retro-reflector, which is well
understood from previous work and which offers various advantages, is suggested for a future
e.motion?/NGGM mission. It incorporates various learned lessons Moreover, an on-axis
layout could be derived and proposed as alternative for future missions, which offers the
same advantages as the off-axis concept, however, with the capability to include a telescope
in the laser link.

Both proposed optical layouts have various free parameters, such a beam sizes or telescope
magnification, which are optimized with the help of optical power link budgets and parametric
studies in section 2.8. The budgets are a helpful tool to ensure that the carrier-to-noise density
(discussed in sec. 2.6) is sufficiently high and, thus, the instrument can perform the phase
measurement in the operational conditions including satellite misalignments. It turns out that
an on-axis design with a telescope does not provide much benefit in a gravimetric satellite
mission. However, the proposed on-axis layout may still be a viable option even without a
dedicated telescope as it may show a reduced complexity due to the lack of a corner-cube
retro-reflector.

Finally, section 2.9 concludes this thesis part with a summary and some finishing remarks.

2.1 Introduction to Relativity

Ranging interferometry in GRACE-like missions and even in GNSS would not work without
proper consideration of relativistic effects, which manifest as delays due to the finite speed
of light and due to gravity, as the time dilation of clocks on-board the satellites or simply as
relativistic corrections to the equations of motion. Most effects can be described as corrections
to the classical Newtonian theory. Here, the basic concepts and ideas of special and general
relativity are recalled, but an in-depth introduction to relativity is beyond the scope of this
section and the interested reader is referred to [Misner et al., 1973], [Kopeikin et al., 2011]
and [Schutz, 2009].

In the classical Newtonian theory, the motion of a rigid body, such as a GRACE-like
satellite, can be decomposed into the translation of the center of mass and the rotations
of the body around the center of mass. The translations are governed by Newton’s law of
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motion

27—,-\ .
() = T = o, 2.2)

while the rotation can be described with Euler’s equations. Equation (2.2) states that the
second time derivative of the center of mass position 7;(¢) of the i-th S/C, i.e. the acceleration
d;, is proportional to the force F acting on the satellite. The symbol m denotes the mass
of the satellite. It is noted that the acceleration contains gravitational and non-gravitational
contributions. The force and acceleration show a dependency on the S/C attitude, which
means that for precise simulations and calculations all six degrees of freedom need to be
considered simultaneously.

In Newtonian and Galilean theory, the time t is an absolute global parameter. However,
since Einstein’s theory of relativity, it is known that time is not an absolute parameter. Even
ideal error-free clocks accumulate the time at different rates depending on various factors such
as their speed or gravitational potential. In the context of relativity, it is advantageous to
describe the trajectory of a point-mass or a particle through space and time as a four-vector

2 (t) = (a7, 21,27, 7) = (co - £, 75(1))T, (2.3)

which is called the world line. The 3-dimensional trajectory or orbit 7; through space is now
supplemented by the coordinate time ¢. Moreover, there exists the proper time 7;(¢), which
an error-free and co-moving clock would display for the particle. The proper time is the error-
free on-board time of the satellites in the context of this thesis. The symbol ¢ is the constant
proper speed of light in vacuum, which is nowadays defined as exactly 299 792 458 m/s [Petit
et al., 2010]. Recall that the components of the position 7; indicate the distances along
different axes from the coordinate frame origin, and distances are in general defined via the
propagation time of light and the constant cy.

The theory of general relativity currently provides the most precise means with which to
describe gravitation on macroscopic scales. It can be accessed from a geometrical perspective,
where it states that an object with a particular initial position and velocity and solely under
the influence of gravitation will follow the shortest world line through the four dimensional
space-time. The term short with regard to a world line requires the definition of a distance in
the four dimensional space-time, which differs from the classical Euclidean distance for purely
spatial trajectories. The squared length of an infinitesimally short section of the world line,
the so-called interval ds?, is defined in general relativity (GR) by the metric tensor Guv as

ds? = g, (28) - dat - da”, (2.4)

where the Einstein summing convention was used, meaning that the expression on the right
hand side is summed over each index that appears once up and once down. Greek indices
such as «, (8, p and v can range from 0..3. Thus, the previous equation can be written as a
left- and right-sided multiplication of the vector &; = z$* with the 4 x 4 matrix g,,. It should
be noted that world lines can be categorized into time-like (s> < 0), light-like (s? = 0) or
space-like (s? > 0) curves.

The metric tensor g, is, in general, a function of the time and position z{* and of the
matter and energy content in space-time. In the absence of matter and energy?, the space-
time is said to be flat and can be described in Cartesian coordinates by the metric tensor

-1 0 0 0

~ ~ i 0 1 00

Juv = Nuy = N = 0 010 (2.5)
0 0 0 1

Zand in absence of exotic objects such as black holes
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This is the so-called Minkowski metric and represents the domain of special relativity (SR).
In the presence of matter and energy, i.e. with gravitation, the space-time is curved and the
metric tensor deviates from eq. (2.5). For the rather small mass and energy density present
in our solar system or in the vicinity of Earth, it is beneficial to express the metric tensor
guv With a perturbation h,, as

G (7)) = M + o (27). (2.6)

The metric perturbation can be understood as a generalization of the gravitational potential
from Newtonian theory. With this perturbation, the shortest world line, for example, results
in an elliptic trajectory in the case of a satellite orbiting the Earth.

Although SR seems to be restricted to a small domain of validity, it is of great importance
due to the fact that locally, in a sufficiently small region around the origin of a coordinate
system, the metric tensor can be made flat by a proper choice of the coordinate system. This
is a consequence of relativity, which means that the equations describing the laws of physics
are the same in all admissible frames. For example, the physics within a (small) satellite can
be considered in a flat spacetime, e.g. relativistic effects between on-board instruments are
negligible, light propagation obeys the classical rules on the satellite, and so forth.

In this thesis, relativistic effects become important for the definition of the on-board time
(sec. 2.3.4), the derivation of the phase observable (sec. 2.4) for different functional concepts,
and for relativistic corrections of the light propagation time (sec. 2.5). For the computation
of the orbit trajectory and relativistic effects of LEO satellites, an Earth-centered and quasi-
inertial coordinate system is advantageous, which will be introduced next.

2.1.1 The Geocentric Celestial Reference System (GCRS)

The GCRS, or the realization denoted as Geocentric Celestial Reference Frame (GCRF), is
well-suited for describing the motion of satellites around the Earth and to simulate inter-
ferometric ranging observations in a gravimetric mission. It is a kinematically non-rotating
frame with respect to the solar system barycentric coordinate system (BCRS). The origin of
the GCRS is co-located with Earth’s center of mass and the z-axis is roughly along Earth’s
angular velocity vector. The exact orientation of the GCRS axes w.r.t. the BCRS is not
relevant for the purpose of this thesis.

Transformations between the GCRS and the rotating Earth-fixed International Terrestrial
Reference System (ITRS), where Earth’s geopotential is (almost) constant, are specified in
the IERS conventions [Petit et al., 2010].

The coordinate time ¢ of the GCRS is a theoretical time, which an ideal clock would
provide far away from Earth, i.e. in the absence of a gravitational field, and co-moving with
Earth’s center, i.e. at rest in the GCRS. Although the initial epoch t = 0 is irrelevant for the
purpose of this thesis, the so-called Geocentric Coordinate Time (TCG) has been established
[Petit et al., 2010, sec. 10.1]. The TCG time is related to the terrestrial time (TT) by the
constant Lg [Petit et al., 2010, sec. 10.1] by

=1-Lg=1-6.969290134 1010 (2.7)

The terrestrial time is realized, for example, by the Terrestrial Atomic Time (TAI) or by
the GPS time and both time scales have (approximately) the same rate as the SI second
on the geoid. Thus, the TCG time used to derive the satellite’s trajectory and simulated
observations is different from the time typically used on Earth. Hence, all constants relying
on the second need to be properly scaled for simulations to account for the correct time
system, e.g. the GM value of a gravity field model [Gurfil & Seidelmann, 2016, sec. 3.8].
The commonly used metric tensor for the GCRS is given in eq. (B.4) in the appendix B.
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2.1.2 Equations of Motion

The equations of motion for a massive or massless test-particle in a gravitational field are
governed, in the context of general relativity and in absence of other forces, by the geodesic
equation
2, .1 a B
o (x,V).di.di’
d\2 aBXT N dA

— (2.8)
where the Einstein summing convention was used again. The so-called Christoffel symbols
r aﬁ(:vi” ) are defined in appendix B and depend on the metric tensor and, hence, on the
four-dimensional position x}, which is commonly called an event. The symbol A is a scalar
parameter of the motion such as the proper time 7;. An equivalent equation with respect to
the coordinate time ¢ instead of parameter A is [Kopeikin et al., 2011]

d2zF k dz® dazP 1 dz® dzf dzF

etk dr? da? A Gith k=13 2.9
i I A T PR PR (2.9)

The geodesic equation is the analogon to Newton’s equation of motion. As the mass
and energy density in our solar system is rather small in terms of relativistic effects, such
relativistic effects can be described by so-called Parameterized Post-Newtonian (PPN) ap-
proximations [Misner et al., 1973, §39.11 PPN Equations of Motion| [Kopeikin et al., 2011,
sec. 6.1.5], where one can write the spatial equations of motion as a function of the coordinate
time ¢ by

d?7(t)
de?

A derivation of dppn can be found in appendix B with the final solution given in eq. (B.28)
to eq. (B.30). Thus, the satellite trajectory can still be obtained by numerical integration,
but requires some additional computational effort.

The proper time 7 of a particle or satellite can be determined from the relation [Soffel &
Langhans, 2012, p. 54]

1
dr? = —— ds?, (2.11)
C
0

which allows the proper time of the satellite 7; to be written as a line integral along the
geodesic world line [Kopeikin et al., 2011, eq. 3.225]

¥ dr(t) 1 (" \/ dzt  da
() = At = — — g (1)) - —% . =L d¢ 2.12
nt) = | Tt = - [ ooy GG (212
t/ .
Si‘f 1 — [73(8)[2/cR dt. (2.13)
0

The proper time 7 of a LEO satellite deviates slowly from the GCRS coordinate time ¢t. The
small drift is mainly caused by the absolute velocity of the S/C within the GCRS and by the
gravitational time dilation. The magnitude of the drift of the proper time in a LEO can be
derived from the previous definition as

dr; s GM
dri ) o IO GM 1 10710~ 0.65.107° ~ -1 1079, (2.14)

which assumed |7(£)2 ~ 7600m/s, GM = 3.986 - 101*m?®/s? and r = (6378 + 400) km.
Although the effect seems small, it is still measurable, as will be discussed in sec. 2.3.4 on
USO clocks. In addition, a modulation of the proper time also implies a modulation of the
apparent laser frequency, which can yield non-negligible phase variations in interferometry.
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It is remarked that the equations of motion (cf. eq. (2.10)) are also valid for a photon. A
photon follows a so-called null-geodesic, i.e. the interval ds? vanishes along a photon world
line. Since interferometry measures the phase of electro-magnetic waves, it is necessary to
understand how the phase evolves through space-time. In [Misner et al., 1973] it is shown that
the phasefront of an electro-magnetic wave also follows such a geodesic, thus, it seems natural
to switch between the equivalent wave and photon interpretations of light, where required.
With proper selection of initial conditions for position and velocity one can numerically
integrate eq. (2.10) in the GCRS to obtain the light path. However, one has to note that the
coordinate velocity of a photon is not equal to the proper vacuum speed of light ¢q in general
relativity. It equals ¢g in a flat space-time metric (cf. eq. (2.5)), and thus, in any local Lorentz
frame along the light path. In general relativity, one can find at each point in space-time a
coordinate frame, the local Lorentz frame, where the metric is flat close to the point, i.e. one
has a Minkowski metric as in special relativity in the neighborhood of the point.

A derivation of the coordinate speed of light ¢, in the metric of the GCRS is given
in appendix B and can be written as a function of the photon position 7, the normalized
propagation direction d and the GCRS coordinate time t:

cn(t, 7, d) = co/ng:(t, 7, d). (2.15)

One could write the apparent slow down due to the space-time curvature in the form of an
equivalent refractive index ng(t,7,d ). The proper time and the coordinate speed of light are
of importance, as they influence the ranging observables obtained by laser interferometry.

2.2 Introduction to Interferometry

An interferometer utilizes the process of interference, which means the coherent superposi-
tion, i.e. addition, of waves with subsequent detection of the intensity. The resulting intensity
pattern is different from the intensity patterns of the individual waves. Interference can be ob-
served for acoustic waves, matter waves, surface water waves as well as with electro-magnetic
radiation such as light, microwave or radio waves. Waves can interfere destructively, meaning
a local annihilation, which can be used, for example, for active acoustic noise cancellation
[Hansen, 2002]. Due to conservation of energy, destructive interference at one location is
accompanied by constructive interference at another location. The interference result at a
particular detection point depends on the state of the involved wave, i.e. on the phase and
polarization of the waves at the point.

This thesis chapter focuses on interference of electro-magnetic waves, light in particular.
Such waves can be described by the real-valued electric field vector E (7, t) and the real-valued
magnetic field strength H (7,t), which both depend on the evaluation point 7 and time t.
There exists a connection between both field quantities, which will be introduced later. For
the moment, only the electric field is considered and it is assumed that the coordinate system
originates at the source of the electro-magnetic field, i.e. it is the rest-frame. Furthermore,
general relativistic effects are omitted, which means that the space-time is flat.

Under such conditions one can write a generic model for a monochromatic vectorial electric

field as

E(7,t) = B(F.t) - Eo(F) - cos(2nvt + ¥(F)) = Re (EC(F, t)) , (2.16)

which contains the normalized polarization direction ]3, the amplitude Ey, the phase ¥(7)
and the frequency v. For the sake of easing some algebraic operations, a complex electrical
field E¢ can be defined analogously as

EC(F, t) _ P'C(T—») . Eo(’f’_&) ) €i~(27rut+y7(F')) _ E'C(,F) . 6z'~(27rzzt+d7('r7'))7 (217)
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where the time-dependence of the polarization vector was dropped, because circular or ellip-
tical polarizations can be achieved by a phase difference between the vector components of
pe. Throughout this thesis, quantities in the complex domain show a superscript c.

The phasefronts of a wave are the surfaces of constant phase, i.e. all 7 fulfilling ¥(7) =
const. Such a phasefront propagates locally and in vacuum with the speed of light ¢y along
the direction of the local wave vector k:

k(7)) = V(7). (2.18)

In general, the field quantities such as E and E° obey Maxwell’s equations. However, in optics
the radiation typically shows a preferred direction and forms a beam. Many (analytical)
beam models fulfill Maxwell’s equations only under paraxial approximations, which means
for points close to the preferred axis.

The phase ¥ for many beam or wave models can be written in the form of

U() = —ko - 7 — $p(7), (2.19)

with a constant wave vector Eo defining the preferred direction and with another slowly
changing and model-dependent phase term ¢p. The local wave vector k and the constant
wave vector kg have the norm

k= |ko| = |k| = 2mn/X\o = 2mnw/cq, (2.20)

where )\g is the vacuum wavelength and n is the refractive index of the medium. The phase
term ¢p(7) is a constant for plane waves and has a parabolic form in the case of Gaussian
beams, for example.

The instantaneous phase ®(7,¢) of any electro-magnetic wave is defined here as the argu-
ment of the cosine function in eq. (2.16), i.e.

O(7,t) = 2mvt + W(7) = 2mvt — ko - 7 — ¢pp(7). (2.21)

One can show [Zhou et al., 2007; Carter, 1972] that the phase ® approaches spherical phase-
fronts, i.e.
2mn - r

ot (r,t) = 2nvt — k- r = 270t — v (2.22)
0

in the far-field along the direction of ko, where |#] = r is much larger than the transverse
spatial extension of the electric field.

Thus, the instantaneous phase of the electric field increases monotonically with time.
Furthermore, the phase is proportional to the distance between the source and evaluation
point 7 in the far-field, i.e. spherical phasefronts are formed. The proportionality factor is
the wave number k. This linear relationship is exploited in (laser) ranging interferometry to
measure distance changes.

It is important to note that the time-derivative of the phase is an instantaneous frequency
v or an instantaneous angular frequency w, i.e.

w= %@ = 27v. (2.23)

The instantaneous phase ® as introduced and discussed here is a purely theoretical quan-
tity, which can not be measured directly, because only the electric field vector E and the
cosine of the phase is accessible. The cosine function is an even function, which makes the
sign of the phase physically irrelevant. Moreover, the cosine function is a periodic function
with 27 periodicity. Hence, the phase can only be determined modulo 27, which is com-
monly called phase wrapping as values larger than 27 appear wrapped into the interval 0..27.
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However, sufficiently dense consecutive measurements of the phase allow the phase jumps to
be unwrapped as long as the phase change between consecutive measurements is sufficiently
small, which will be utilized in the next subsection on phase retrieval and tracking.

The instantaneous phase value ® of the wave E propagates along the wave vector E(F)
through space. This allows the phase value at a particular time ¢ and position 7" to be written
in the form of a retarded time, i.e.

O t) = O(F  t — At) = O(F' t) + 27v - At + §op, (2.24)

where At is the propagation time of the phase value, i.e. the time of flight of a photon from
the position 7’ to the detection point 7. The last summand d¢g is the phase change in
the model-dependent phase ¢ between the emission point 7 and the evaluation point 7,
which can often be omitted, since it is usually sufficiently constant. For example, for classical
Gaussian beams d¢p is the change in the Gouy phase. This method of rewriting the phase
at the detection point 7 and time ¢ as the phase value at the location 7/ and time ¢’ =t — At
is essential for the precise description of the ranging observables in subsequent sections.

It is insightful to form the time-derivative of the first two terms of the previous equation.
The derivative of the first term ®(7(t),¢) can be written with the help of eq. (2.21) as

1 dd((t),6) 1 0b(F(t),t) oF 1 od((t),t) 1 -
At w er  atwm a vty (2:25)
while the second term ® (7', ¢ — At) yields
1 do(7’,t — At) dAt
w @ Vw v (2:26)

In the first result, the Doppler effect is expressed with the velocity ¥ of the detection point
7, while in the second result the same Doppler shift is expressed with the time derivative of
the propagation time At = At(7(t),7’). Both descriptions are equivalent.

In the next sections, radio waves are considered. They are electro-magnetic waves with
frequencies up to several gigahertz or, in other words, with wavelengths larger than a few
millimeters. Such waves can be directly converted to electrical signals by antennas and
processed with electronics. It is assumed that an antenna converts the electrical field vector
E into a scalar voltage or current signal y(t), i.e.

E(7 1) — y(t) = ay - cos(®y(1)). (2.27)

For radio waves, the frequency of the voltage y(t) is equal to the electric field frequency v and
the amplitude a, is assumed to change only very slowly w.r.t. the oscillation period of y(t).
The relation between the phase ®, of the scalar signal and the instantaneous phase ® of the
electro-magnetic wave will be addressed in a subsequent section for light fields (cf. sec. 2.2.2).
As a first step, different techniques to recover the phase, i.e. the argument of the cosine, for
a single scalar input are addressed in the following section.

2.2.1 Phase Retrieval and Phase Tracking Techniques

Phase retrieval and tracking of a measured oscillating signal y(t) means the determination of
the phase ¢, and ®, in

Y(t) = ay - cos(Py(t)) = ay - cos(2m fyt + @y(t)). (2.28)

Here, ®, is decomposed into a time-proportional part 27 f,¢, which describes most of the
repetitive structure of y(t), and the much smaller phase variations ¢,(t), which typically
contains the desired ranging information.

The frequency of electric signals in this section is denoted with the symbol f, while the
previous section used the symbol v for frequencies of electro-magnetic waves, e.g. for light.
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The word phase is a vague word, as it may refer to the instantaneous phase ®,, which
is monotonically increasing with time, or it may refer to phase variations ¢,(t), where a
constant phase ramp is already removed. Sometimes, phase is limited to a range of 7 or 2,
and sometimes it is an unwrapped phase with the domain of real numbers. In most cases,
the meaning can be deduced from the context.

Phase retrieval and tracking is typically performed in the digital domain. It is therefore
assumed that the signal y(t) is digitized with a sampling frequency fiample larger than twice
the oscillation frequency ®,/(27), i.e.

1 do,
Nyquist theorem : > 2 fy =2. —. 2.29
yqul rem fsample f51gnal o dt ( )
The most common technique for recovering the phase of y(t) is to demodulate it into the
in-phase I component and the out-of-phase quadrature (). The demodulation is performed
by multiplicative mixing with a reference oscillation at a frequency f;, so-called heterodyning,
ie.

I(t) := y(t) - cos(2m ;1)

= 5 - (cos(2m(fy, + fr)t + ) + cos(2m(fy — Fr)t + 2,)) (2.30)
Q(t) = y(t) - sin(27f:1)

= 5 - (n@n(fy + )t + 9y) +sin(2n(fy — f)t +0y). (231)

The scheme is illustrated in fig. 2.1. The I and @ signals are low-pass filtered (LF') to remove
the oscillations at the sum frequency. If the input signal has a non-vanishing mean value,
one needs to filter out f, and f, as well. The phase of y(t) with respect to the reference
frequency f, can be obtained with

@1g(t) = arctan2 (LF(Q(t)), LF(1(t))) , (2.32)

while the rms-amplitude is

a1qms(t) = v/ LF(I(1))% + LF(Q(1))2. (2.33)

The two argument arctan2 function considers the sign of both I and @ to determine the
phase in all four quadrants with a range of 27 compared to the classical arctan(Q/I) with a
range of m. The bounded or wrapped phase ¢;g(t) is the result of the phase retrieval. For
the purpose of ranging interferometry, the phase can be unwrapped by tracking the phase
changes and removing the phase jumps. This yields the measured instantaneous phase ®,eas
of the signal y as

Pineas(t) = 27 frt + unwrap|ero(t)] = 27 frt + @ro(t) + 27 - m(t), (2.34)

where m(t) is a time-varying integer determined by an unwrapping algorithm [Wand, 2007,
sec. D.2].

The phase ®peas differs from the true instantaneous phase ®, by an integer multiple of
27

Pryeas(t) = @y(t) + 27 - n, n e N. (2.35)
This offset is inaccessible, as the considered electric field model (cf. eq. (2.16)) is periodic with
time. In some applications with transient effects of electro-magnetic waves, e.g. generation

of waves, it might be useful to define the absolute value of the phase. However, within the
scope of this thesis, the absolute value of the instantaneous phase is irrelevant.
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The reference frequency f, can differ slightly from the actual frequency of the signal y(t),
because a small mismatch appears as a phase ramp within the phase prq(%).

The I and Q demodulation, i.e. multiplication with sine and cosines, is the foundation of
the Fourier theory. For example, the complex Fourier coefficient c¢ is given by

¢ = LF(I(t)) + i - LF(Q(1)), (2.36)

if the low-pass filtering consists of forming the average and f, is an integer multiple of
fsample/IN with N being the number of samples forming a batch of samples. N is the so-called
length or size of the Discrete Fourier Transform (DFT). If one uses a single frequency f, to
demodulate the signal, it is denoted as a Single-Bin Discrete Fourier Transform (SBDFT).
The more general DFT computes an equally spaced spectrum with N bins by demodulating
the input with N equally spaced frequencies in parallel.

The phase obtained by a SBDFT is the average phase within the batch of N samples.
Thus, the phase ¢rq is available with a sampling rate of fgample/N and variations of ¢rg(?)
on time scales shorter than N/ fsample can not be recovered. SBDFT is well suited for signals
where the frequency of the signal y(¢) is known a-priori and quite stable, i.e. only small phase
variations ¢, (t) are expected (cf. eq. (2.28)):

d do
Wy Py
dt dt
Furthermore, phase unwrapping typically requires the phase change between consecutive
phase samples to be smaller than :

(2.37)

N dey <. (2.38)
f sample dt

Both requirements are met for the laser interferometry on-board the LISA Pathfinder satellite

and, in fact, the on-board phasemeters use the SBDFT at a fixed reference frequency f, of

1.0kHz.

However, the variations of ¢, are typically large in inter-satellite ranging interferometry
due to the relative velocity of the satellites. Thus, the limitations imposed by eq. (2.37) and
(2.38) are severe and the SBDFT is not well suited. One can overcome the limitations with
an extension of the & demodulation, which is phase tracking by means of a (digital) phase-
locked loop (DPLL). This scheme is illustrated in fig. 2.2 and utilizes a variable frequency f,,
which is stored in a so-called phase increment register (PIR). It is derived from the feedback
of prg. The variable and instantaneous frequency in the PIR is continuously integrated
within the numerically controlled oscillator (NCO) and the resulting phase is stored in a
phase accumulator (PA), which is used to derive the sine and cosine components for the I&Q
demodulation through a look-up table.

For ranging interferometry, this phase tracking system can be designed with a high gain
and bandwidth of the feedback control loop, such that the internally measured error signal
¢1q is close to zero. Thus, the value of the phase accumulator directly provides a continuous
and unwrapped phase P eas. An analytical model for the phase observation of an ideal DPLL
is

" lde,

t/
(I)meaS(t,) = 27TJ |fr| dt = f T
-0 t=0| dt

dt, (2.39)

which is always positive and monotonically increasing.

DPLL phase tracking is a common and well-established technique and can be implemented
conveniently in digital FPGA circuits [Gerberding, 2014]. It will be utilized in the GRACE
Follow-On mission for laser ranging as well as microwave ranging, is commonly used in GNSS
receivers and is also foreseen in the LISA mission.

More details and alternative methods such as zero-crossing detection for phase retrieval
are addressed in the section 2.3.7 on phasemeters.
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Figure 2.1: The electro-magnetic radio waves are transformed into an oscillatory voltage
y(t), amplified, digitized and IQ-demodulated to obtain the phase g and amplitude aiq rms
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Figure 2.2: Working principle of a digital phase-locked loop (DPLL) used for phase retrieval
and tracking. The electro-magnetic radio waves are transformed into an oscillatory voltage
y(t), amplified, digitized and 1Q-demodulated to obtain the phase ¢iq, which is fed back to
the numerically controlled oscillator (NCO). A more realistic scheme can be found in sec. 2.3.7
on the phasemeter.
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2.2.2 Optical Detection

So far, phase retrieval was discussed for electro-magnetic radiation with wavelengths larger
than a few millimeters and for electrical signals. The other side of the electro-magnetic
spectrum, with wavelengths smaller than 1mm, is usually denoted as the optical part of
the spectrum, where the oscillation frequency is larger than 30terahertz and too fast to
be resolved directly by electrical signals. For the sake of completeness, it is noted that the
frequency range between 300 GHz and 30 THz is commonly called the terahertz gap, as neither
conventional detectors nor sources from optics or electronics can be used at these frequencies.
However, bridging the gap is being attempted as described in the overview article by Sirtori
[2002].

The photoelectric effect provides a means of accessing the intensity of electro-magnetic
radiation, i.e. the time-averaged energy flux. The directional instantaneous energy flux is
typically expressed as the Poynting vector S (t), which has units of watt per square meter
(W/m?) and is defined by

S(7,t) = E(F,t) x H(F,t) = Re(E°(F, 1)) x Re(HE(F, 1)) (2.40)

where H is the magnetic field vector of the light field with units of A/m and E has units of
V/m. The norm of the time-averaged Poynting vector is the intensity with units of W/m?. For
time harmonic fields with temporal dependency 2™, it is given by [Triger, 2012, eq. 3.65]:

—

1 . . .
<S>(F,t):§-Re(EC(F,t)xHC*(F,t)) o <|B(F1)2> - és. (2.41)

The star * denotes complex conjugation. The vector <S> is proportional to the squared
electric field |E|?, because the magnetic field H can be expressed in terms of the electric field
F as

1
Co - Ho - K

. 1 .

N

ﬁ(ﬁ t) =

where pg is the magnetic permeability of vacuum and p is the permeability of the medium.
The direction of the time-averaged Poynting vector € is parallel to the local wave vector kin
isotropic non-conducting dielectric media, i.e. parallel to the gradient of the phase function
or phasefront. This can be easily shown for plane waves [Triger, 2012, eq. 3.65] or spherical
waves, but a general proof for arbitrary vector fields from Maxwell’s first principles seems to
be non-trivial, because the local wave vector k is not well-defined.

In fact, a general method to define a scalar phase function ® and the local wave vector
E(F) from vector field quantities E and H may be a relation in the form of?

<S>(7t) V(7

<S>(m)|

—

€s

E N

(2.43)

Since the energy flux is proportional to the squared electric field, light detectors such as
e.g. those using the photoelectric effect are referred to as square-law detectors. For example,
a photodiode provides a photocurrent Iy,

Iph = nPDf <§> dﬁ, (2.44)
PD

where npp is the photodiode responsivity with units of A/W and the brackets denote temporal
averaging. The domain of spatial integration in eq. (2.44) is the active area of the photodiode,

3More generally, one should use the cross product of electric displacement D and H instead of S , since E
is not perpendicular to k in birefringent media [Trager, 2012, eq. 5.77]. This also means that the energy is

not transported along the electric phase normals k in such media.
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where 77 is the normal vector of the active area surface. Detectors in the optical domain can
not resolve the fast oscillation at optical frequencies and can provide only the intensity, in
contrast to antennas and radio waves.

If a light field E with single frequency v and constant amplitude is impinging on the
photodiode, the resulting photocurrent is constant and proportional to the optical power P
within the active area. However, if two electric fields E, and Ey with nearby frequencies v,
and v, are overlapped, i.e.

—

Ec(,,;»’ t) _ E;(F) . i2myttipy E_:f(’l?) . gi2murttipr
ﬁc(ﬁ t) _ ﬁ;(m . ei2myttipy + ﬁf(?) . ei27rwt+i<pr’ (2'45)

they produce a photocurrent given by

1 . - " _
Ipn(t) = e - & Re [ | By i)+ Be) < g9
+ €i27r§yt+i6<p . Ef(f) % ﬁ;*(f»)

+€—i27r5l/t—i5cp . E';(F) % ﬁf* (7:’) dﬁ] ) (2.46)

The first line is time-independent and yields the sum of the incident light power of both
beams, i.e. P, + P, where P, and P, are the light power levels of Ey and E'}, respectively.
These values would be measured in the absence of interference, i.e. if only a single beam
is present (cf. eq. (2.44)). The difference phase dp = ¢, — ¢, and difference frequency
0v = vy — v, have been introduced as abbreviations. One can show that the integrand in the
second and third line is oscillating at the difference frequency dv, e.g.

Re [eiZﬂéutJri&p _ Eﬁ(F) » ﬁﬁ*(f’?) | gi2mvt—idp E;(F) « ﬁf*(f)] (2.47)
= cos(2mdvt + 6p) - Re(ES x HE*) — sin(2movt + 0p) - Im(EE x HE*)
+ cos(2mvt + 8p) - Re(ES x HE*) + sin(2m0vt + o) - Im(ES x HE*) (2.48)
— cos(2méut + 6p) - Re(ES* x ﬁ;) + sin(276vt + 6¢p) - Im(ES* x ﬁ;)
+ cos(2movt + idp) ~Re(E§ x HE) + sin(2wéut + 6¢p) - Im(E; x H) (2.49)
— cos(2m6ut + 6¢) - Re(E* x FI; + E; x HE)
+sin(2m0vt + d¢) - Im(ES* x HE + ES x HE) (2.50)
~ Re [emévtmv (ES x HS + ES x ﬁg*)] . (2.51)

Using the result eq. (2.51) in eq. (2.46) allows the final photocurrent to be written in the
common forms

Ion(t) = npp - (Py + P, + Re(ei2movt+ide . ac)) (2.52)
=npp - (Py+ Pr) - (14 c¢-cos(2mdvt + dp + 1)), (2.53)
=npp - (Py+ P +2-+/Py- P, -n-cos(2mévt + 6 + 0)) , (2.54)

where a® denotes the complex oscillation amplitude, ¢ € [0..1] is the so-called interferometric
contrast defined by

2-7/P,- P, -
P el ! R PO (2.55)

P, + P,
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Figure 2.3: These block diagrams illustrate frequency down conversion by electrical mixing
(left) and by optical square-law detection (right). High-pass filtering is used to remove a bias
in the electric signal.

and 7 and 9 are the amplitude and phase obtained by the complex overlap integral

: E¢* x He + ES < H* dit
\/ﬁezﬁ _ 2 SPD - T (256)
y T
2 Yop (B EE) ’ (% + ﬁ) — (Eg* Ey) : E; — (B k) - ES* dii
= R (2.57)
Y T

_ ep B - Eg ds
Ny

where dS denotes the surface element. It was assumed here that the beat frequency v can
be resolved by the photodiode.

The 7 is often called the heterodyne efficiency and is a measure of the similarity of
both electric fields. It is independent of the absolute power level of each beam due to the
normalization by P, and P.. Eq. (2.56) is a general expression considering the vectorial
nature of light, which is not commonly found in literature to the knowledge of the author.
The last approximation i in eq. (2 58) considers that the phasefronts are almost parallel to the
photodiode surface, i.e. k: and k, are parallel to 77, which implies that El7.

In the derivation of the photocurrent Ipy(t) (cf. eq. (2.54) and (2.45)) an artificial sep-
aration between the phase ¥ and d¢ = ¢, — ¢, has been introduced. Such an approach
typically eases the computation, because ¢, and ¢, can be used to describe the macroscopic
phase, which includes the effect due to the accumulated optical pathlength traversed by the
light field, while ¥ accounts for a smaller phase effect due to the geometry of the wavefronts.
However, these phases can not be distinguished in the measurement.

The oscillatory photocurrent Ipn(t) is usually amplified and converted into a voltage
using a transimpedance amplifier (TTA). If the voltage (or current) is high-pass filtered, such
that the static part is removed, one can say that the optical frequencies v have been down-
converted to a new frequency dv similar to the process in electrical mixing (cf. fig. 2.3).

In a subsequent stage, the phase of the voltage (or current) can be recovered with the
aforementioned phase measurement techniques (cf. sec. 2.2.1).

Thus, in optical interferometry, the phase of the light field Ey is obtained by optical mixing

(2.58)

with an optical reference field E} to produce an oscillation frequency accessible to electronics,
followed by electrical mixing within the DPLL to zero frequency for phase retrieval. Therefore,
the measured phase depends on the stability of the optical reference field ET and on the
stability of the clock driving the reference oscillation within the DPLL.

Eq. (2.54) is also applicable in the case of homodyne interferometry, when the reference
and measurement fields have the same carrier frequency, i.e. v = 0. This type of readout
has no oscillatory time-dependence. In such a scheme, a change in the phase ¢, of the light
field is related to a phase change in the photocurrent, whereby the sensitivity

/Py P -n-sin(py, — @ +0) (2.59)

de
dnpy
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vanishes for ¢, —, + 1 = 0, at the so-called bright-fringe or dark-fringe setpoints, where the
cosine term in eq. (2.54) is maximal or minimal, respectively. The sensitivity is maximized
at the mid-fringe, i.e. ¢, — ¢, + 1 = 7/2. The direct relation between measured power and
phase can be advantageous for the detection of tiny phase changes, as the sensitivity can be
enhanced by increasing the light power, but requires an optical power stabilization and the
ability to handle higher optical powers. In addition, homodyne interferometers require that
the dynamics of the tracked object, and hence the changes in the optical phase ¢,, are slow
enough, such that the optical reference phase ¢, can follow it to maintain the setpoint.

On the first glance, a homodyne scheme seems beneficial, as only single mixing in the
optical domain is performed. In fact, homodyne schemes for gravimetric inter-satellite ranging
have been considered experimentally by Nagano et al. 2004, 2005] and Yeh et al. [2011], who
state a dynamic range of cm/s for the relative velocity. However, this would require well-
matched satellite orbits and most likely an active control of the relative velocity between
satellites in a gravimetric mission.

Another difficulty with homodyne schemes is that the DC photocurrent, and hence the
phase readout, is falsified by omni-present low-frequency electronic noise and variations of
the optical power, the reference voltage and the wavefront overlap 7. In a heterodyne readout
scheme, the desired phase is encoded at a convenient (sub-)radio frequency dv, where most
error contributions are sufficiently small. The demodulation to a DC “frequency” for phase
retrieval is performed digitally within the PLL in the phasemeter, where a phase-value can
be stored and transmitted mostly unaffected by low-frequency variations.

Heterodyne phase readout with phase tracking by means of a digital PLL is considered
in this thesis as the baseline for future gravimetric missions, mainly due to the mature
technology and significant heritage from the development of the LISA and GRACE Follow-
On missions. Such a readout is capable of handling low received light power, e.g. in the
picowatt regime, which is typically encountered in inter-satellite ranging. The sensitivity of
the phase readout is sufficient even under these low-light conditions, which means that several
other noise sources are limiting the ranging sensitivity. Another advantage is the dynamic
range in terms of the maximum relative velocity between satellites, which has been so far
designed to handle a few m/s, corresponding to Doppler shifts of a few MHz in the optical
frequency. However, a potential extension to a larger dynamic range is considered possible
[e.motion? Team, 2014, sec. 5.3.2.3]. This is an important aspect for future gravity missions
with advanced satellite constellations and orbits, e.g. pendulum [Elsaka, 2010] or even precise
(optical) high-low satellite ranging [Schlie et al., 2015].

2.2.3 Differential Wavefront Sensing (DWS)

Differential Wavefront Sensing [Morrison et al., 1994] is a technique for measuring the relative
phasefront tilt between two laser beams or light fields. It utilizes a segmented photodiode as
shown in fig. 2.4. If the interfering light fields are tilted with respect to each other, the phase
of the left two segments (A and C') differs from the phase of the right two segments (B and
D). The phase differs between upper and lower segments if a phasefront tip is present, The
linear combinations

+pc— B — + B — 0 —
DWSyy, = PATFCOIBIID - pwsy, — PATEREC D (2.60)

are called DWS signals and have units of radian, where the radian refers to the phase of
the photocurrent. Unfortunately, various conventions with different signs and normalization
factors exist. Therefore, clear documentation of the used implementation in hard- or software
is mandatory. A coherent combination of the different segments is also possible, where the
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Figure 2.4: Working principle of Differential Wavefront Sensing (DWS) with a segmented
photodiode. The phasemeter returns the DWS signals DWSy, and DWSg;;, as well as the
longitudinal phase ¢, which contains the ranging information.

phase is weighted with the heterodyne amplitude, i.e.

DWSy; = arg (a§ + a% + ag + af)

= arg (aA €A L apg-e B £ ap - €%C +ap - e*i‘f’D) , (2.61)
DWStip = arg (a$y + af + af + afy)

= arg (aA €A L apg - e¥B 4 ac-e 0 ap - e_i‘PD) , (2.62)

which is equivalent to eq. (2.60) up to a factor of 2, if all segments have the same heterodyne
magnitude. The complex oscillation coefficient a§ with X € {A,B,C, D} was defined in
eq. (2.52), whereby the magnitude is ax = |a$|.

The relation between the differential geometrical phasefront tip and tilt directly in front
of the photodiode and the DWS signal is, in general, dependent on the wavefront (amplitude
and phase) of both light fields, the area and orientation of the segments and the slit width
between segments. Proper selection of beam parameters yields a linear relation between
geometrical tilt and DWS around a working point with aligned phasefronts. For example,
the linear coupling factor for plane waves impinging on a photodiode with radius rpp is
[Sheard et al., 2012]

16 - rpp

2.63
D, (2.63)

mpws =
which has units of rad/rad, meaning an electrical phase (angle) over a geometrical an-
gle. For a typical photodiode size of rpp = 0.5mm and A = 1064nm, this results in
mpws = 2506rad/rad. For more realistic beams with non-flat intensity, the coupling is
of similar magnitude and can be computed numerically by eq. (2.58). This large magnifica-
tion mpws allows tiny differential phasefront tilts to be resolved. In particular, if mpwg and
the orientation of the reference phasefront is known, DWS provides a precise measure for the
orientation of the measurement beam. Another reason for the excellent DWS performance is
the common mode rejection of errors among different segment channels.
The longitudinal phase @jong, i.e. the ranging information, can be obtained from the phase
of the coherent sum of all segments, i.e.

Plong = arg (aA €A 4 ap - e¥B 4 ac - ¥ 4+ ap - ei“"D) , (2.64)

which is equal to the phase obtained by a single element photodiode in the limit of vanishing
slit (gap) width.
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Photodiode

Figure 2.5: The average phase on the photodiode, i.e. the longitudinal phase, changes from
d-2m/X to d - cos(a) - 2w/ by rotating the plane waves around the pivot point. For plane
waves, the average phase over the circular photodiode is the same as the phase at the center
of the diode.

It is noted that zeroing DWS in the case of typical laser beams implies a maximization of
the wavefront overlap 7 of the coherent sum of all segments. This maximizes the heterodyne
amplitude and the signal-to-noise ratio of the longitudinal (ranging) phase measurement.

Another remark concerns the coupling between phasefront misalignment and the longi-
tudinal phase. In general, the DWS signals couple strongly to the longitudinal phase ¢jong if
rotations of the phasefront are not performed around the photodiode center. This is shown
in fig. 2.5, where the effective lever arm d yields a rotation-to-phase coupling according to

Ap=d-(1—cos(a)) -2n/A~ —d-a?/2- 21/ (2.65)

In the plane wave approximation, d is simply the length given by the projection of the wave
propagation direction k onto the vector from the photodiode center to the pivot point. The
quadratic coupling vanishes if the reference beam is rotated by the same amount around the
same pivot point, such that DWS is zeroed again. In practice, an imaging system is often
used to image the rotation pivot point onto the photodiode center, which reduces the effective
lever arm d to a value close to zero.

2.2.4 Differential Power Sensing (DPS)

In the same manner as DWS utilizes a linear combination of the phases from different seg-
ments of a quadrant photodiode, the DPS readout is formed by a linear combination of the
DC photocurrents P of each segment

Piet — Prignt  Pa+ Pc— Pp— Pp

DPSx = - ,
X Piotal Py + P+ Pc + Pp

DPS :R:Op_Pbottom:PA+PB_PC_PD (266)
¥ Piotal Pi+ Pp+ Pc+Pp’ '

Normalizing the DPS signal to the total beam power makes it independent of beam power
fluctuations. If a single circular Gaussian beam is centered on a quadrant photodiode, each
segment receives approximately one quarter of the total light power. A slight de-centering
results in an imbalance between the segments. DPS is a useful tool for centering a beam on a
photodiode or vice versa, to center the photodiode w.r.t. a beam. After calibrating the DPS
signal with well-known translations, DPS can be used to measure beam walk on a photodiode
in terms of physical length, with a common resolution at the micrometer level.

The DPS signals are linear in the displacement for a nearly centered beam [Wanner, 2010],
but non-linearities appear for considerable offsets. The linearity factor depends on the actual
beam shape and size, as well as on the photodiode size and gaps. If two beams with compa-
rable power levels are impinging on the diode and both are subject to beam walk, DPS in its
simple form cannot provide useful information. However, since inter-satellite interferometers
are typically operated with one powerful and one weak beam, DPS approximately indicates
the beam position of the powerful beam.
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In summary, in laser (ranging) interferometry the phase of the light fields is used to mea-
sure distance changes, because the phase at a receiver depends on the traversed distance of
the light, or in other words, on the propagation time of the light field. Since the phase at
optical frequencies is not directly accessible to electronics, one compares in an interferome-
ter the measurement light field, which contains the ranging information, to a reference light
field with stable phase and frequency. The case with two fields of equal frequencies yields
a homodyne interferometer. However, due to the orbital dynamics in inter-satellite ranging
one prefers a heterodyne scheme with slightly different optical frequencies. This difference
in frequency corresponds to different slopes in the instantaneous phase of the light fields
(with respect to time). By overlapping the light fields and subsequent photodetection one
obtains an oscillating photocurrent at the difference frequency which contains the ranging
information encoded in its phase. The phase of the oscillating photocurrent, which is the
phase difference between both light fields, can be retrieved by a digitial phase-locked loop
(DPLL) within a phasemeter. By using segmented photodiodes one can obtain the ranging
signal, which is often called the longitudinal phase, from the average phase of all photodiode
segments, while differential combinations of the segments allows information on the phase-
front tilt between the light fields, so called DWS signals, and on the position of the light
beams on the photodiode, so-called DPS signals, to be retrieved.

2.3 Optical and Interferometer Technology

The following subsections introduce the currently available technology and subsystems which
are typically required and used to build laser ranging interferometers. The basic working
principle of the subsystems and the relevant figures of merit and design drivers with regard
to ranging interferometry are introduced. The information in these subsections allow to study
the sensitivity limits of ranging instruments in the following parts of this thesis.

2.3.1 Laser

Optical inter-satellite interferometry requires a source of continuous, coherent, single fre-
quency light. Two key parameters are the wavelength and the optical power. The field of
gravitational wave detection by means of optical interferometry prefers 1064 nm light, which
has grown historically, as optical components out of fused silica show low absorption at this
wavelength [Schnabel et al., 2010]. In particular, solid-state Nd:YAG (Neodymium doped Yt-
trium Aluminum Garnet) laser crystals with a non-planar ring oscillator (NPRO) structure
advanced in the last decades yielding a high mechanical stability, a narrow line-bandwidth
of a few kHz and a large separation between longitudinal modes. The actual laser crystal
is usually pumped optically by dedicated pump laser diodes at another wavelength. Space-
qualified lasers of this type are commercially available from the company Tesat-Spacecom
GmbH, which also delivered the LISA Pathfinder and the GRACE Follow-On lasers, both
with an optical output power of a few tens of milliwatt. A higher output power can be
achieved by laser amplifiers as used, for example, in the Laser Communication Terminals
[Muehlnikel et al., 2012].

ESA recently started activities in the development of a NGGM-High Stability Laser [Nick-
laus et al., 2014a], which is specified to provide up to 500 mW frequency stabilized 1064 nm
laser light for future gravimetric missions (cf. fig. 2.6). A laser system for space-applications
ideally delivers the light in a single-mode polarization maintaining fiber with a high polar-
ization extinction ratio or as a free beam in a TEMy, mode with a linear or well defined
polarization. As the intrinsic, free-running frequency stability of lasers is generally insuf-
ficient for precise ranging, the lasers need the capability to tune the frequency with high
bandwidth, so that they can be locked to an external frequency standard. For example,
an NPRO crystal can be tuned at low-frequencies via a typical temperature coupling of
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approx. 3 GHz/K and with higher bandwidth via a piezo-electric transducer with typical cou-
pling of approx. 1 MHz/V. Other candidate technologies are the Distributed Brag Reflector
(DBR) laser, the Distributed Feedback (DFB) laser or a fiber laser [Numata et al., 2010;
Trobs et al., 2009], which can also provide radiation with a wavelength of 1064 nm.

Although the use of semiconductor DBR or DFB laser diodes seems advantageous due to
the lower mass and lower power consumption, these laser types usually emit strongly elliptical
beams, which require additional beam shaping or acceptance of significant losses in the fiber
coupling efficiency. An additional concern is the relative intensity noise (RIN) at frequencies
used for the phase readout (> 4 MHz). Therefore, the final complexity of such new systems
needs to be assessed and compared to an NPRO laser. It is noted that in [Alnis et al., 2008]
diode lasers at 972nm have been locked to cavities using AOMs and in [Trobs, 2005] a DFB
laser has been locked to a cavity with residual (in-loop) frequency noise of 1kHz/+v/Hz at
10 mHz.

Preliminary requirements and key figures for an e.motion? laser, which can serve as a
starting point for further discussion and iteration, are shown in table 2.1. A critical issue is
the required long lifetime of the laser system, as optical systems are susceptible to degradation
due to contamination, radiation, space corrosion and premature aging. In particular, laser
diodes such as the pump diodes for an NPRO gain medium have shown failures on a previous
mission [Ott et al., 2006] and efforts have focused on improving their reliability, also driven
by the rising need in optical communication applications. Space-qualified hermetically-sealed
arrays of pump diodes with multimode fiber output and utilizing cold-redundancy have been
reported [Traub et al., 2007; Hildebrand, 2005] together with a reliability of 0.9998 over
a 10years lifetime and with 10 W of optical pump power (cf. fig. 2.7). In general, it is
recommended to operate laser diodes at low electrical and thermal load, which corresponds
to a low optical output power, as this enhances the lifetime (cf. so-called Arrhenius model
[Gale, 2008]). Additional engineering efforts are required regarding the thermal dissipation
of a high power laser subsystem on a satellite, but this is considered less critical for a laser
output power < 1 W in gravimetric missions.

One can consider other common wavelengths such as 1550 nm or 532nm for the laser.
The wavelength influences the divergence of a Gaussian beam, in particular the spot size at
the distant satellite, as well as the photodiode responsivity or more precisely the photodiode
quantum efficiency. The divergence of the beam can also be adjusted using the waist size of a
Gaussian beam, while the quantum efficiency can be improved from approx. 60% at 1064 nm
to above 90% under ideal conditions (cf. sec. 2.3.3 on photodiodes). The latter is beneficial
for the signal-to-noise ratio of the instrument, but it does not reduce the noise in the range
measurement. Although a smaller wavelength implies a higher ranging precision for a fixed
phase readout sensitivity, interferometry in gravimetric missions is currently limited by laser
frequency noise and spacecraft attitude jitter noise, which does not improve with a shorter
laser wavelength. Therefore, the author of this thesis currently does not think it is necessary
to change the well-established wavelength and discard the associated mature technology.

2.3.2 Optical Frequency Standard

The optical frequency v of a laser is important, because it sets the scale for converting a
physical displacement Ad to an optical phase change Ay measured by interferometry:
Ap ¢ Ay
Ad=="H.20 - ZF 2.67
2r v 27 ( )
Precise knowledge of the physical distance (in meters) is required in gravimetric missions,
since the ranging data is processed with other physical observations such as accelerations.
Thus, an error in the absolute value of the frequency or wavelength appears as a static scale
factor error. In addition, fluctuations of the frequency are of importance as these appear as a
noise in the interferometric distance measurement. However, the exact coupling of frequency
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Parameter Value Comment
Laser Wavelength A 1064 nm
Operation Mode CW Continuous wave
Laser Power 500 mW Beginning of Life
in SM-PM Fiber 400 mW End of Life

For Phase Readout Noise
(cf. sec. 2.6.9)

RO RIN Peak TBD Avoidance of AC saturation

In-orbit scale factor for

RIN for f >4MHz | < 1071%1/Hz

Knowledge of A Lppm converting phase to length
LFN at 1 mHz < 10%Hz/vHz
LFN at 1 Hz < 10°Hz/v/Hz
Lifetime > 10 years Mission lifetime

Table 2.1: Key figures and requirements of a laser system for a potential e.motion? mission.
Abbreviations: SM-PM: Single Mode and Polarization Maintaining; LFN: (Free-Running)
Laser Frequency Noise; RIN: Relative Intensity Noise; RO: Relaxation Oscillation

Cavity & freq.
stabilisation
electronics

Commercial Seed Laser
(NPRO, 25 mW)

T

Power stabilisation NPLE
electronics ot Psic ooy

Z Fraunhofer

nr

L .

Pump Diode

Figure 2.6: Breadboard of the NGGM High Stability Laser. Image courtesy of SpaceTech
Immenstaad GmbH, Germany.
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Figure 2.7: (Left:) NPRO laser for LISA Pathfinder from Tesat-Spacecom GmbH with
approx. 35 mW optical output power at 1064 nm. (Right:) Tesat Pump Module with physical
dimensions of 40x40x25 mm?® and a mass of 150 grams. The unit can deliver up to 5 W optical

power at a wavelength of 808 nm [Schwander, 2006]. Image courtesy of Tesat-Spacecom
GmbH.

fluctuations into the observations depends on the interferometer concept and this discussion
is postponed until section 2.4, which introduces functional concepts.

The true frequency virue of the laser light, which may be stabilized by an external fre-
quency standard, can be expressed as

Vtrue(T) = Vdesign T dvpc + 51/LFN(7_)a (268)

where Vgesign is the known design frequency, dvpc is a small static error in the frequency, and
ovppn(7) are the small time-variable fluctuations with zero mean. The time 7 denotes the
proper time for objects on the satellite, which may differ from the coordinate time ¢, but the
difference is only of importance in later sections. With this notation, one can approximate
the true wavelength A¢rye as

€0

Vtrue (7_)

(2.69)

>\true =

~ )\design : <1 - 5VDC - 5VLFN(T>) ;

Vdesign Vdesign

which shows that the fractional and not the absolute frequency errors are of importance for
the fractional error of the wavelength.

Recall that the instantaneous phase ® of a light field E° o €? was defined for a monochro-
matic light field at constant frequency as (cf. eq. (2.21))

O(7, 1) = 2mvT + WU (7). (2.70)

Using this, one can write the phase of a light field from an error-prone laser source as

’

o7, 1) = 277f Virne () d7 4+ ¥(7) (2.71)
7=0
= 27 - (Vdesign + OvpC) T + 27‘("[ dvLpn(T) dT +¥(7), (2.72)
—— =0
Vtrue,mean h -
QLN (T)

which is a phase ramp with a slope proportional to Virye mean and which is increasing monoton-
ically with time 7. Furthermore, it contains phase fluctuations ®1rpx due to laser frequency
noise. The spatial dependence of the phase ¥ (7) has no relevance here.

A first indicator of the frequency stability of laser light is the linewidth, but more in-
formative is the spectral density of the frequency noise, i.e. ASD[dvrpN](f) with units of
Hz/+/Hz, which can be easily converted to a fractional stability or Allan variances.

97



2.3. OPTICAL AND INTERFEROMETER TECHNOLOGY

Frequency standards are commonly categorized into macroscopic and microscopic. Macro-
scopic standards are usually cavities, where the frequency is defined by the separation between
two mirrors. A fraction of the light to be stabilized is injected into the cavity and kept res-
onant using the so-called Pound-Drever-Hall technique [Drever et al., 1983]. Resonances
occur not at a single particular frequency, but whenever the round-trip distance is an integer
multiple of the wavelength. The frequency separation between adjacent resonances is called
the free-spectral range (FSR), vpsr = ¢/(2 - Leay), and is approximately 1.5 GHz for a 10 cm
long cavity. Therefore, a cavity can provide only stability but not accuracy, i.e. the absolute
frequency value needs to be determined by other means, e.g. from calibration of the laser
wavelength w.r.t. set-points of the laser such as the crystal temperature.

Relevant noise sources for the frequency stability of cavities are shot noise and readout
noise, residual laser amplitude modulations, intrinsic thermal noise and environmental con-
tributions such as accelerations, vibrations and temperature variations. The intrinsic thermal
noise of cavities can be computed by means of the fluctuation-dissipation theorem [Numata
et al., 2004; Kessler et al., 2012] and contributions from the spacer, the mirror coating and
substrate need to be taken into account. For room-temperature, the frequency noise limit
from thermal noise (TN) of a mature cavity design is given approximately by

~— [1Hz A
=7-107%1/vVHz - 1Hz v, (2.74)

f

which is shown as red solid trace in fig. 2.8. Experimental verification of this limit is provided,
for example, by Notcutt et al. [2006] and Chen et al. [2013] and it is shown by the solid
light blue trace. One has to mention that such a stability can be achieved in well-shielded
ground-experiments but may not be attainable in a low Earth orbit with constraints on mass,
dimensions and temperature stability.

The GRACE Follow-On LRI frequency noise requirement

30Hz/vVHz - /(1 + (3mHz/f)2) - (1 + (10mHz/f)?), 2mHz < f <100mHz  (2.75)

has been fulfilled by an ultra-low expansion (ULE) glass cavity with a 77.5 mm spacer from
Ball Aerospace and Technologies Corporation [Thompson et al., 2011]. Alternatives to linear
cavities, which are often called Fabry-Pérot cavities, are long fiber interferometers. These
have shown a stability of 30 Hz/v/Hz at Fourier frequencies f > 15mHz [McRae et al., 2013].
In such a concept, the long fiber is used to form an unequal arm interferometer that measures
the laser frequency fluctuations. These measured fluctuations are used to control the laser
frequency, which effectively stabilizes the laser frequency or wavelength to the length of the
fiber.

Instead of stabilizing the wavelength to a macroscopic length, microscopic frequency stan-
dards use the energy transition levels of atoms or molecules. A prominent example is an iodine
cell, containing molecular iodine '?"I,, which has absorbing hyperfine transitions near 532 nm.
A 1064 nm laser can be frequency-doubled and locked to such a transition, providing a precise
absolute frequency. Breadboard setups for space-applications have demonstrated a stability
below the GRACE Follow-On LRI requirement [Doringshoff et al., 2010; Schuldt et al., 2012]
(cf. dashed light blue trace in fig. 2.8). As the frequency of the transition R(56)32 — 0 is
known with a relative uncertainty < 10~!! [BIPM, 2007], the laser frequency is known to
much better than the required 1ppm from table 2.1, once the frequency is locked to such
standard.

For comparison, the frequency stability of current clocks is depicted in fig. 2.8, which
is given for the Pharao cesium space clock in terms of Allan deviations by oy (Tavg) =
10_13/\/@ [Delva et al., 2012] and for the most precise clock in 2015 by oy (Tavg) =
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Figure 2.8: Laser frequency stability requirement in the GRACE Follow-On mission (dark
blue trace) and for NGGM (black trace). A typical free-running NPRO frequency noise
(green trace) is approximately reproduced from [Trobs, 2005]. The thermal noise limit (red
trace) agrees well with experimental data as given in [Chen et al., 2013] (light blue trace).
The iodine cell performance is from [Doringshoff et al., 2010]. The corresponding fractional
stability with units of 1/4/Hz is given on the right axis of the plot. For comparison, the
stability of current clocks is shown in magenta: (i) the Pharao cesium clock [Delva et al.,
2012] in the ACES experiment on the ISS, (ii) an optical lattice clock in a ground laboratory
experiment [Nicholson et al., 2015] (iii) the GRACE USO and a NGGM USO stability (see
sec. 2.3.4). The frequency noise for all traces is referred to 1064 nm wavelength, i.e. rescaled
to a carrier frequency of 282 THz.

2.2 - 10710/, /Tavg [Nicholson et al., 2015]. The Allan deviations are translated into spectral
densities according to [Ferre-Pikal & Walls, 2001, Table 1]

ASD[6V|(f) ~ 0y - \/Tavg - V21, if 0y(Tavg) € 1/y/Tave- (2.76)

An iodine cell, as well as a linear rigid Fabry-Perot cavity, seem to be the most promising
candidates for optical frequency standards in a NGGM mission. The following requirement
for the frequency stability of the frequency standard in a NGGM mission is proposed:

1
"1+ f/200mHz’

ASD[0VLEN req ) (f) = 20 Hz/vVHz - 4/1 + (10 mHz/ f)2 (2.77)
It is compulsory for 1 mHz < f < 300 mHz and is a goal for f < 1 mHz, as the interferometer
is not the limiting instrument in the line-of-sight acceleration (PDGA) sensitivity at these
frequencies. Compared to eq. (5-31) in [e.motion? Team, 2014], a second factor has been
added to describe a decreasing frequency noise at Fourier frequencies f = 30 mHz (cf. black
trace in fig. 2.8), which is required for the calibration of the accelerometer with the LRI in
the frequency band 100 mHz < f < 300 mHz (cf. section 1.10).

In general, the frequency stability needs to be achieved under the environmental conditions
on the satellite. Thus, the susceptibility to temperature, magnetic and electric fields as well
as rotations needs to be taken into account. For example, centrifugal forces deform the cavity
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and induce a frequency change [Herrmann, 2008], which depends on the cavity geometry and
position of the cavity within the satellite. Even if the pointing of the satellite is ideal along
the line-of-sight, the baseline angular velocity of 107° rad/sv/Hz at 1mHz (cf. fig. 1.23) can
lead to a centrifugal acceleration of 6.3-108 rad /s>4/Hz at 1 mHz, which shall not change the
fractional cavity length of the order of 10713, Detailed structural, mechanical and thermal
analysis is therefore essential.

2.3.3 Photodiodes and Photoreceiver

Photodiodes convert an optical power into an electric current by exploiting the inner pho-
toelectric effect. In so-called semiconducator PIN diodes with an undoped intrinsic (I) layer
between a p- and n-doped layer, the absorption of most photons takes place in the intrinsic
region. The material, and in particular the bandgap energy, of the semiconducting I-layer
defines the spectral response or wavelength dependent responsivity npp(A) of diodes. For a
1064 nm wavelength, detectors made of Indium gallium arsenide (InGaAs) offer the highest
responsivity of approx. 0.67 A/W. Silicon sensors usually achieve only approx. 0.4 A/W or
less at this wavelength, but are better suited for the visible spectrum as shown in fig. 2.9. The
internal quantum efficiency (IQE), i.e. the ratio of produced primary electrons over absorbed
photons, cannot exceed unity, because the photodiodes are operated in a regime where the
photon energy roughly matches the bandgap energy, which excludes multi-photon absorption.
Therefore, the responsivity npp(A) is limited to approx. 0.85 A/W for 1064 nm light, which
can be computed with

npp(A) = thcje (2.78)
where h is the Planck’s constant, cq is the speed of light, e is the elementary charge and
EQE is the external quantum efficiency. An IQE < 1 implies additional internal losses
e.g. due to electron-hole recombination. External losses such as reflection or transmission of
photons need also to be considered and are accounted for by the EQE, which is the ratio
of photoelectrons over incident photons. For example, the refractive index of Ings3Gag47As
[Dinges et al., 1992] is roughly n(A = 1064nm) ~ 3.65 — 0.26:¢ and results via the Fresnel
equation in a normal incidence power reflectivity of R = [n—1|2/|n+1|? ~ 32.6%. Impedance
matching by means of an anti-reflection coating on the active area mitigates this effect and
can yield an overall external quantum efficiency of > 80%. It is noted that a non-negligible
part of the light is still reflected at the photodiode, which needs to be considered in the
optical stray light analysis.

Another important photodiode property is the bandwidth fgw, where the photocurrent
response from an oscillatory optical stimulus drops below 3dB. It is usually limited by the
junction capacitance Cy, since the cut-off frequency fpw is inversely proportional to the
square-root of the capacity

1
fBW aoC \/Ci(] (2.79)

The junction capacity depends on the area of the detector. If signals up to 20 MHz
need to be detected, an area below 1 mm? should be envisaged. Typical capacities are in the
region of a few tens of picofarads for satellite interferometric applications, where the diodes
are operated in photoconductive mode with a reverse bias voltage, which additionally reduces
the capacitance. High-speed single element photodiodes with gigahertz bandwidth exist, but
have the size of only a few ten micron.

With regard to the space environment and the space qualification of diodes, radiation
induced increase of dark current and changes in responsivity have been reported [Gill et al.,
2005]. However, these issues have been addressed and are nowadays not substantive [Joshi
et al., 2006].
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Figure 2.9: Typical spectral responsivity npp(A) for silicon and InGaAs photodiodes. The
black dashed lines indicate different values of the external quantum efficiency (EQE) given
as the ratio of produced primary photoelectrons over incident photons.

Figure 2.10: Photograph of a large circular single-element photodiode (center), a small

quadrant-photodiode with barely visible gaps (bottom), and a large quadrant photodiode
(right).
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Figure 2.11: (Left:) A typical microscope image of a 1 mm diameter quadrant photodiode
with four segments. The yellow-white outer parts are the electrodes, which are connected via
wires at the four edges. The pale blue parts denote the active area of the segments. The gap
size between the segments is roughly 50 pm in this image. (Right:) A typical DC homogeneity
of a segmented quadrant photodiode is shown as determined from the photocurrent. A small
laser beam was used to perform a two-dimensional scan over the diode and the colorfunction
indicates the summed photocurrent of all segments. Image courtesy of German Fernandez
Barranco (AEI).

Furthermore, for silicon photodiodes used at 1064 nm wavelength, an abnormal low band-
width has been reported [Diekmann, 2013, sec. 4.2], which might require further investigation.

A remark is given on avalanche photodiodes, which can achieve a significantly higher
spectral responsivity due to the generation of secondary electrons in an avalanche process,
which might appear beneficial. However, secondary electrons do not enhance the signal to
noise ratio of (photon) shot noise limited interferometers such as in the LISA mission. In
addition, avalanche photodiodes are typically operated at a high reverse bias voltage » 30V,
which increases the complexity of the electronics and the dark current. Moreover, the excess
noise due to the inherently unstable gain makes this type of photodiode less favorable for
low-noise phase tracking interferometry, where a large DC photocurrent and a small AC
modulation is present. Nevertheless, these devices might be of interest for detecting weak
light fields in the initial link acquisition, such as in the LITE mission [Boroson, 1993].

Several quadrant photodiodes have been space qualified for the GRACE Follow-On mis-
sion. A typical diode is the commercially available FCI-InGaAs-Q1000 by OSI Opotoelec-
tronics Inc., which offers low cross-talk between neighboring segments and low dark current
< 15nA. It has a diameter of 1mm and a gap size of 45pm. A typical measurement of
response uniformity over the active area is shown in fig. 2.11 (right), where issues such as
asymmetry between segments, occultation by objects such as wires or parasitic reflections,
e.g. from the housing, are not apparent.

In heterodyne interferometry, the photocurrent consists of a bias and a small modulation
from the optical beatnote, which needs to be converted to a voltage by a transimpedance
amplifier, typically in several stages. In the first stage a split into a DC and an AC path
is recommended to simplify electronic design. A variable gain for the AC and DC path can
ensure an optimal digitization of the AC and DC signals over mission lifetime, considering
degradation in laser power and the uncertainties in the power link budget, for example. A
characteristic of the whole photoreceiver, formed by the electronic amplifier and the photo-

diode, is the equivalent input current noise [Cervantes et al., 2011]. A typical performance
of

ASD[Ipr](f) = 5pA/vHz,  4MHz < f < 20 MHz (2.80)

has been shown in laboratories and in the GRACE Follow-On LRI on-ground testing. The
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equivalent input current noise can be modeled for an active operational amplifier as [Cervantes
et al., 2011]

PSD[Ipr](f) = PSD[L](f) + PSDIL](f) + PSD[1a](f) + PSD[L/](f), (2.81)

where PSD[1,,] is the amplifier current noise, PSD[/;] is the thermal Johnson noise (of the
feedback resistor), PSD[I4] is the shot-noise from photodiode dark current and the last term
PSD[I,] accounts for the amplifier voltage noise, which couples into the equivalent input
current noise. It is noted that the equivalent input current noise PSD[Ipr]|(f) increases
towards higher frequencies due to PSD[I,](f) [Cervantes et al., 2011, cf. eq. 4], which is in a
well-designed photoreceiver driven by the intrinsic capacitance of the photodiode segment.

The overall current noise PSD[Ipr] can be converted to a noise equivalent optical power
(NEP) via the responsivity or to a voltage noise via the transimpedance gain. Other figures of
merit to be considered are, for example, the phase stability over temperature and frequency,
electrical power consumption and channel cross talk.

An analytical model for the photoreceiver, which converts two optical fields such as
E<(7,7) oc ¢®(T) and E;(F, 7) o €/®¥(7) impinging on the photodiode (segment) into voltages
y(7), can be written as

yDC(T) ~ Gpc - npD - (Py + Pr) + 5pr7 DC (2.82)
yac(T) ~ Gac - Hpr [npD 24/ Py- P -n-cos(Pp(1) — Oy(1) + 19)] + 0YPR, AC (2.83)
~ Gac - npp 2/ Py Pron-cos(®p(7) — @y(7) + 9 + Tpr) + dypr, Ac, (2.84)

where P, and P, are the total power values of the impinging individual light fields on the
active area, and which have been defined in sec. 2.2.2 on optical detection. The photodiode
responsivity with units of A/W is denoted as npp. The transimpedance gains with units
of V/A for the DC and AC paths are labeled Gpc and Gac, respectively. The spatially
averaged overlap between both fields \/ﬁew has been specified in eq. (2.58). Compared to
sec. 2.2.2, the expressions are supplemented here by the term Ypgr, accounting for the effect
of the photoreceiver transfer function and additional noise dypr ac/pc-

The GRACE Follow-On photoreceivers [Barranco et al., 2017], and photoreceivers in
general, are complex analog electronic systems. They are optimized to have a flat amplitude
response within the photoreceiver measurement band, e.g. 4 MHz..20 MHz, and to have a high
suppression out of this band. A transfer function is a good means with which to characterize
photoreceivers for ranging interferometry. This is the ratio of output over input in the
frequency domain and is commonly expressed in terms of the (discrete) Z transform H¢(z),
in terms of the Laplace transform H€(s) or in terms of the Fourier transform H¢(f). Recall
that in this thesis, complex quantities are supplemented with the superscript ¢. The Hpgr
operator in eq. (2.83) denotes the application of the photoreceiver transfer function onto the
time series in the argument. It is assumed that the transfer function Hpgr is normalized
to unity at low frequencies. However, in practice, the product of gain and transfer function
(Gac-Hpr) is difficult to separate. Moreover, under the assumption that the transfer function
has a flat amplitude response, it is justified to consider only the phase response of the transfer
function, which was used in the recast from eq. (2.83) to (2.84).

Although transfer functions offer an accurate way to describe and compute the output
from a given input and they provide much insight and information, they are sometimes
impractical and need to be approximated. Here, the transfer function of the photoreceiver
(or subsequently of the phasemeter) is impractical, because it describes the behavior of the
device in the operational frequency band, e.g. 4 MHz..20 MHz, which is decades away from
the science measurement band of the actual ranging data, e.g. 0.18 mHz to 0.1 Hz. This
is advantageous for the ranging sensitivity, because the ranging information is encoded at
high frequencies where it is less susceptible to omni-present low-frequency noise. However,
in principle, the precise simulation of ranging data requires data streams at a MHz sampling
rate, where one can apply the transfer function. Fortunately, this can be avoided by exploiting
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the fact that the input signals are stationary to a good approximation on the time scale of
the sampling rate of the science data, i.e. the input signal has a fixed frequency on a time
scale of 1 or 10 seconds. This allows the effect of the photoreceiver transfer function to be
written as an additive term Ypgr(fpeat) in the phase, depending on the input frequency of
the signal fipeat, rather than the more general form as a convolution of the transfer function
impulse response with the time-series. In some sections of this thesis, e.g. when the working
principle of the phase-locked loop is explained in sec. 2.3.9, this justification does not hold,
and the general transfer function formalism from control loop theory is used.

A generic description of the photoreceiver transfer function is given by a polynomial
formula, e.g.

TPR(fbeat) = QPR off + QPR,lin * |fbeat‘ + QPR,quad * |fbeat‘2 + ..., (285)

where the beatnote frequency, i.e. the input frequency to the photoreceiver, can be derived
from eq. (2.84) as

1 D, —®
fbeat = 5" d‘ (T) y(T> i 19| . (286)
2 dr

The linear term apg jin denotes the delay of the output signal w.r.t. the input signal, i.e. a time
shift by a frequency-independent amount A7pg. This can easily be shown in the frequency
domain by using the time-shift rule, e.g.

signal output B g(t — ATpr) F e~ 2 fATPR . Flg(r)]
signal input B g(7) Flg(1)]
_ e—iwaATpR' (2.88)

— HY(f) (2.87)

The result in the last line represents a linearly decreasing slope in a Bode phase plot of H¢(f),
which allows the delay time with units of seconds to be written as ATpr = —apRr jin/(27 rad).

The GRACE Follow-On photoreceivers exhibit apg jin & —0.2rad/MHz [Barranco et al.,
2017] and have a negligible quadratic term apgr quad- A similar magnitude can also be con-
sidered for future missions. This corresponds to an equivalent delay of Arpr ~ 32ns. The
constant phase offset apr g can be neglected, because it is simply a further offset in the
biased range.

The linear delay apgin is mostly common mode between the channels of the photore-
ceiver, if the same cables and cable lengths are used and if the channels are designed symmet-
rically, e.g. on the electric circuit board. However, a non-negligible phase difference among
channels in the combined photoreceiver and phasemeter chain might remain. This phase dif-
ference needs to be calibrated on-ground and removed within the computation of the DWS
signals in the phasemeter, as it would falsify the DWS signals.

The DWS signals are not susceptible to a common phase change in all four channels.
It is often sufficient to apply a static phase-offset correction for each channel in the DWS
calculation, i.e. up to the first term in eq. (2.85). In theory, the second linear term could also
be corrected by a phasemeter, however, this was not utilized so far to the knowledge of the
author.

Thus, the longitudinal phase and ranging information contains the average effect of apr 1in
of all channels, which needs to be removed in post-processing. A conservative accuracy of
10% is assumed for the correction in this thesis, i.e. the remaining effect of the photoreceiver
transfer function is

Tpr,pp(T) & =27 0.1 - ATpR - fheat (), (2.89)

which corresponds to a delay of approx. 3.2ns.
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2.3.4 Ultra-Stable Oscillator (USO)

The USO is an electrical frequency reference, similar to the optical frequency standards
discussed in sec. 2.3.2. It is also used as a clock that triggers all on-board satellite instru-
ments and that provides the time-tag to the measurements. Fluctuations in the frequency
correspond to a timing jitter. Typically, satellite USOs consist of a quartz crystal, which
is a piezoelectric resonator with mechanical eigen-frequencies ranging from kHz to several
hundred MHz depending on the crystal geometry and harmonic number. The electrical sig-
nal is generated by an oscillatory circuit, which is kept in resonance with the mechanical
eigen-frequency or its harmonic.

The USOs in GRACE and GRACE Follow-On are used to generate the microwave carrier
for the microwave ranging instrument via electrical frequency multiplication. Hence, the
USOs act as a length reference for the microwave ranging instrument, in the same way as
the cavity is a length reference for the laser ranging instrument. The typical science-grade
USO frequency stability with units of Hz/v/Hz, e.g. in GRACE, is approximately 1 order of
magnitude worse than the optical frequency stability (requirement) of a cavity, as shown in
fig. 2.8.

Oscillators are usually characterized by their short-term stability in terms of the IEEE
recommended single-sideband phase noise £(f) and by their long-term stability in terms of
an Allan variance o7 (7). The single-sideband (SSB) phase noise £(f) is nowadays defined
as one half of the one-sided power spectral density of phase fluctuations PSD[pyso] [IEEE,
1999, table A.1] or frequency fluctuations PSD[ fuso]:

PSD[wuso](f) _ PSD[fusol(f)
(2mf)? I

The SSB phase noise £(f) is commonly expressed in units of dBc/Hz, which is the relative
power in decibels with respect to the carrier in a 1 Hz bandwidth. It was historically the power
of the noise in one sideband due to phase fluctuations in a 1 Hz bandwidth and normalized to
the total signal power consisting of carrier plus sidebands. The old definition required that
amplitude fluctuations were negligible and that the total noise power was small, such that a
small angle approximation was valid. However, with the new definition, the phase noise can
be expressed unambiguously [IEEE, 1999] and the SSB phase noise is trivially related to a
spectral density

2 L(f) = PSD[pusol(f) = (2.90)

1 rad? L)
PSD[¢uso](f) = 5 L, 10

[£] = dBc/Hz, (2.91)

where, for example, a single-sideband phase noise of £ = 50dBc/Hz corresponds to a one-
sided power spectral density of 50 - 10® rad?/Hz.

The GRACE mission utilized oven-controlled quartz oscillators (OCXO) manufactured
by JHU/APL with a mass of 3.2kg, 2.3 W electrical power demand and a phase noise of
L(f = 10Hz) = —112dBc/Hz = 6.3 - 10~ '2rad?/Hz for a carrier at 76 MHz [Weaver et al.,
2004]. This translates to a phase noise of L(f = 10Hz) = —135dBc/Hz at a carrier frequency
of 5 MHz and is comparable with commercial compact ultra-low noise oscillators such as the
OCXO0 8607 from OSCILLOQUARTZ, however, this model is now deprecated and no longer
available. A similar performance can be considered for a potential NGGM USO, which is
depicted together with various other oscillator types in fig. 2.12. The functional model of the
here proposed NGGM USO requirement can be written as

4 f a
= > ha R (2.92)

a=0

with hg = 1.0 - 107" rad?/Hz, hy = 1.0 - 10~ rad?/Hz, hy = 5.0 - 107®rad?/Hz, hy =
3.2 - 107 rad?/Hz and hy = 3.2 - 107 '%rad?/Hz. This requirement has been derived from
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Figure 2.12: Typical single-sideband (SSB) phase noise of oscillators. All values have been
rescaled for a 5 MHz carrier. This figure is an updated and modified version of a plot shown
in a tutorial by John R. Vig [Vig, 2014].

a relaxation of the OCXO 8607 specification at high frequencies and, at low frequencies,
from values given in Thomas [1999] on the estimated GRACE USO performance before the
launch, which were a bit optimistic. The spectrum of phase fluctuations PSD[puso](f) can
be converted to an Allan variance 05 (1) by [Ferre-Pikal & Walls, 2001]

2 _ 2 (! PSD[fusol(f) sin'(xf)
o, (1) = ()2 J;) 72 72 df (2.93)
2 (! PSD[puso](/) sind(rr
S h (xrf)ds. (29)

where fy is the carrier (USO) frequency and f, is the measurement system bandwidth. The
inverse transformation from Allan variances to low-frequency (< 1Hz) phase noise is non-
trivial, as knowledge of the high-frequency phase noise (> 1 Hz) and knowledge of f;,, which
is usually not provided, are required. Furthermore, one needs to assume a particular shape
(functional model) of the low-frequency phase noise. A derivation of the phase noise from
Allan variances for the GRACE USO is given in [Thomas, 1999] and it is shown in fig. 2.12
as a blue dashed-dotted trace.

The Allan deviation of the NGGM USO requirement is shown as a magenta trace in
the lower panel of fig. 2.13, which is comparable with the red trace of the GRACE USO
performance as specified in table 2.2 and with the GRAIL USO stability. The dark blue
trace indicates the timing accuracy of GNSS in post-processing, where a position uncertainty
at centimeter level (white noise) yields a timing uncertainty at a 107'%s/7 level. The lower
panel of fig. 2.13 shows that the satellite clock should only be steered in-orbit or in the
ground processing towards GNSS time at low frequencies or at averaging times higher than
few hundred seconds. In fact, the USO clock offset correction in the GRACE data is provided
every 300sec [Ko & Tapley, 2010; Fackler, 2005].

The red dashed line in the upper panel of fig. 2.13 shows the laser frequency noise of
the optical cavity as defined by eq. (2.77), while the dashed green line is the thermal noise
limit of cavities at room temperature. Although optical frequency standards can reach a
higher stability, the transformation of optical frequencies to electrical signals usually requires
a complex frequency comb. Hence, utilizing a single optical frequency standard for laser
interferometry and as on-board clock is a non-trivial task.

The amplitude spectral density of USO phase fluctuations ASD[pyso](f) can be con-
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Figure 2.13: Typical Allan deviations (square root of Allan variance) for various oscillators.
The upper panel is an updated and modified version of a plot shown in a tutorial by John R.
Vig [Vig, 2014]. The lower panel shows the potential NGGM USO requirement with respect
to other comparable USOs.

Tavg NGGM USO Requirement | GRACE USO
0.2s 1.3-10712 (1.2-10715) 4-10712
25 2.3-1071 (1.9-10713) 210713
10s 1.9-10713 (1.9 - 10713) 2-10713
100s 2.3-1071 (2.3-10713) 3-10713
1000s 4.5-1071 (4.5-10713) 5-10713
10000s | 1.3-10712 (1.3-1071?) -

Table 2.2: Allan deviation oy (7avg) of USO fractional frequency stability computed for a
measurement system bandwidth f;, = 10kHz and in brackets for f;, = 10Hz. The GRACE
USO performance is taken from Weaver et al. [2010].
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Figure 2.14: The amplitude spectral density of the proper time 7(¢) of a GRACE-like
satellite (red trace) due to relativistic effects, in comparison with GNSS timing jitter (green
trace) and USO clock stability (black traces). The magenta trace is a (rough) analytical
model for the timing error after post-processing on ground. The axis on the right side is the
timing jitter multiplied with 20 m/s.

verted to the equivalent timing jitter dTyso by

ASD[puso](f)
2m fo

where fp is again the nominal USO frequency. Every non-static on-board measurement is
falsified by timing jitter. For example, if the relative velocity between two satellites is 1m/s,
a timing jitter of 1 ns/ v/Hz leads to a noise of 1 nm/ v/Hz in a range measurement. This error
is caused by the inability to correctly determine the sampling time in the desired time frame.

For further discussion of the on-board time it is necessary to consider relativistic effects
and to introduce the time frames correctly. The satellite dynamics, the instantaneous inter-
satellite range and the gravity field recovery are typically performed or defined in the GCRS
coordinate system (cf. sec. 2.1.1). The coordinate time ¢ of the GCRS is the so-called Geo-
centric Coordinate Time (TCG). The ideal error-free time of a satellite and of all on-board
instruments, as measured by error-free clocks on the satellite, is given by the proper time 7; on
the i-th S/C (cf. eq. (2.12)). The proper time can be expressed as a function of the coordinate
time ¢ and it can be computed in simulations by a numerical integration of eq. (2.12).

The general definition of a time from an oscillator is

27 ng fi,USO,true(Ti,) de/

27Tfi,USO,nom

ASD[é1uso](f) = (2.95)

T¢7USQ(T1') = , (2.96)
where fi USO nom i the nominal oscillator frequency and f; yso true(7) is the true but unknown
instantaneous frequency of the oscillator, which is prone to noise and errors. For the purpose
of this thesis, it is sufficient to write the solution of eq. (2.96) as

7;,us0(Ti(t)) = 7i(t) + 675, uso(7i(t)) + 074,US0,0ff» (2.97)

where 7; yso is the timing jitter of the USO (cf. eq. (2.95)) with zero mean and 07; yso off is
a static or very slowly varying offset.

A typical result of the proper-time 7;(t) w.r.t. the coordinate time ¢ for a GRACE like
satellite is shown as a red trace in fig. 2.14 in terms of an amplitude spectral density. The
shown signal arises due to the time dilation caused by the orbital velocity and the gravitational
potential. In addition, the black traces show the USO timing jitter noise 67; yso discussed
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here. The USO error can be estimated and corrected by the GNSS-based precise orbit
determination for low Fourier frequencies ( f < 4mHz ~ 1/250s ). The precision of the
GNSS-based timing can be computed from ¢y - A7 = Ar, which is shown as the green trace
for an assumed position noise of ASD[Ar] = 3cm/v/Hz. However, this correction works
only in post-processing on ground, since the in-orbit derived GNSS position, the so-called
navigation solution, is accurate to a few ten meters only.

It is apparent from fig. 2.14 that the pronounced peaks of the proper time 7; and hence
of the USO time 7; yso (red trace) at the orbital frequency and higher harmonics can be
resolved by the clock time solution of the GNSS-based precise orbit determination.

An analytical model for the timing jitter with incorporated GNSS clock error estimates
from post-processing (PP) can be formulated as

2-10710s/v/Hz

ASD[dm,uso.pp](f) = 1 (F/3mHz)L5’

(2.98)

which is shown as the magenta trace in fig. 2.14. This expression is used later to estimate
the sensitivity of ranging instruments more realistically.
The USO timing offset d7; yso ot from eq. (2.97) is assumed to be of the order of

5Ti,USO,OH ~ 100 ps, (299)

which corresponds to 3cm. This offset induces a delay, but is uncritical for laser interfer-
ometry as will be shown in later sections, since other digital delays and delay uncertainties
exceed the 100 ps value.

A further remark is given here on a statement found in [Yeh et al., 2011], where it
was claimed that the USO becomes obsolete in a homodyne interferometer, because the
coupling of timing jitter into the ranging observation via the phase ramp from the frequency
offset is removed. Indeed, the susceptibility to timing jitter can be reduced, however, as
the frequency offset and the Doppler shift due to the range rate are of the same order, the
advantage is rather incremental. Moreover, precise clocks improve the orbit determination,
and gravimetric missions should still use a high-performance low-noise science grade USO
clock.

Finally, it is noted that additional requirements for the USO regarding spurs (tones),
radiation hardness and magnetic and electric susceptibility need to be assessed, but are
beyond the scope of this section.

2.3.5 Retro-Reflectors
Hollow Corner-Cube Retro-Reflectors (HCCRR)

A retro-reflector is typically a passive optical system which reverses the propagation direction
of a ray, independent of the angle of incidence, as long as it is within the field-of-view of the
retro-reflector. In general, the exiting ray will be offset laterally w.r.t. the incident ray.
A widely used type of retro-reflector is the corner-cube, which consists of three mutually
orthogonal plane mirrors. The intersection point of all three mirror planes is the so-called
vertex. Corner-cubes can be further classified into solid and hollow types.

In the solid case, the three mirror planes can be obtained by cutting a solid glass cube
diagonally and applying a highly-reflective (HR) coating on the outer planes. The diagonal
face is anti-reflective (AR) coated and serves as entrance aperture. Solid corner-cubes have
the advantage of a higher acceptance angle (field-of-view) [Yang & Friedsam, 1999] due to
refraction compared to hollow corner-cubes, which consist simply of three well aligned mir-
rors (cf. top part in fig. 2.16). Due to the absence of light propagation in glass and its purely
reflective nature, hollow corner-cube retro-reflectors (HCCRR) are preferred by the author
of this thesis for precise ranging interferometry. In addition, they offer interesting properties
regarding the optical pathlength, which is illustrated in fig. 2.15 (for two dimensions). The
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Figure 2.15: Ray-tracing through a right-angled prism, which is the 2-d equivalent of a
3-d hollow corner-cube retro-reflector (HCCRR). The accumulated geometrical pathlength
k1 + ko + k3 is twice the separation d between vertex and virtual plane in all four sub-plots.
(Upper left:) Nominal light path. (Upper right:) HCCRR rotated around its vertex.
The lateral separation between ingoing and outgoing ray remains as 2 - s. (Lower left:)
The ingoing beam is rotated. (Lower right:) Non-required portions of the HCCRR may be
removed to provide a physically accessible virtual vertex point.

accumulated geometrical and optical pathlength through a HCCRR is invariant under rota-
tions of the HCCRR around the vertex, i.e. under changes of the direction of the incident ray.
However, one should note that the virtual detection plane defining the pathlength has to stay
normal to the ray direction. Not-required portions of the mirrors can be removed, such that
the vertex becomes a virtual point well-defined by the intersection of the mirror planes, as
sketched on the lower-right panel in fig. 2.15. This allows collocation of the HCCRR vertex
with the accelerometer reference point and S/C center of mass. Furthermore, it should be
noted that a HCCRR is the generalization of a two-dimensional right-angled prism into three
dimensions.

The lateral separation between the ingoing and outgoing ray is determined by the lateral
separation between ingoing ray and the vertex (cf. upper-right panel in fig. 2.15). The
HCCRR in the GRACE Follow-On LRI with a 60 cm lateral offset is called the Triple Mirror
Assembly (TMA). It is mounted together with the accelerometer and star cameras, as shown
in fig. 2.16. The tube-like design maximizes the free space between the TMA structure and
vertex to almost the maximal possible value of approximately one half of the lateral offset.
In addition, the hollow tube acts as a protection for the light path. The nominal incidence
angles of the light on the three TMA mirrors are 60°,60° and 45°. This changing angle in
combination with the fact that the mirror normal vectors are not located in a single plane
requires special attention regarding polarization changes as analyzed diversely in literature
[Liu & Azzam, 1997; Player, 1988; Scholl, 1995; Bieg, 2015; He et al., 2013]. A corresponding
analysis for the GRACE Follow-On TMA and potential future missions can be found in
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Figure 2.16: (Top:) A ray-tracing path through a hollow corner-cube retro-reflector (HC-
CRR) consisting of three mutually perpendicular mirrors. (Center:) An early CAD-model
of the accelerometer and triple-mirror assembly (TMA) without star cameras on the main
equipment platform (MEP) in GRACE Follow-On. Image courtesy of SpaceTech GmbH
Immenstaad. (Bottom:) Photo of final assembly consisting of accelerometer, TMA and
star cameras prior to integration into the GRACE Follow-On S/C. Image courtesy of Airbus

Defence and Space GmbH.
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(a)

Figure 2.17: An exemplary interferogram of a hollow corner-cube retro-reflector with cir-
cular open aperture from [Ai & Smith, 1992]. The center point is the vertex. Three physical
edges exist in a corner-cube, but due to reflection six segments appear with different deflection
angles due to imperfect alignment of the mirror planes. Image courtesy of OSA Publishing
with granted permission for fair use under US copyright law.

appendix D.

The GRACE Follow-On LRI is designed such that the light is reflected three times in
a particular order at the mirrors. However, if a full (non-virtual) corner-cube is used with
light entering closely to the vertex, there are in total six different possible paths with three
reflections through a HCCRR, depending on the location of the first reflection [Liu & Azzam,
1997]. Hence, different portions of an extended beam may travel different paths and yield a
mixture of different polarization states for the retro-reflected field. This polarization change
makes HCCRRs not straight-forward to use in optical cavities [Peck, 1962].

Moreover, the output directions of the different portions are altered in the presence of man-
ufacturing tolerances of a HCCRR, as shown in an exemplary interferogram in fig. 2.17. The
sharp edges yield a segmented structure, whereby each segment is caused by a different path
through the HCCRR. Similar interferograms have been used to measure the anti-parallelism
of the GRACE Follow-On TMA [Schiitze, 2014]. It is non-trivial to measure parallelism over
a separation of 600 mm due to the difficulty to obtain or manufacture flat bars or mirrors of
sufficient size, which can serve as a reference.

If a HCCRR is used as an on-axis retro-reflector, the segmentation of the beam with
the associated polarization and direction changes needs to be considered. Furthermore, the
influence of the non-reflective vertex needs to be taken into account. High-quality HCCRRs
can reach a co-alignment error of less than an arcsecond (<4.84 urad) with a wavefront quality
close to that of a flat mirror. The physically compact tube-shaped retro-reflector of GRACE
Follow-On has been designed to reach a co-alignment error of less than 50 prad with error
contributions from temperature variations, zero-G effects, moisture release, reference flat bar
uncertainties and manufacturing (alignment) tolerances. The Retroreflector in Space (RIS),
a full HCCRR with an open aperture of 50 cm, reached an accuracy of a few prad [Sugimoto
& Minato, 1996].

The geometrical and optical pathlength through an ideal error-free HCCRR is twice the
distance to the vertex (cf. caption of fig. 2.15). Furthermore, rotations around the vertex do
not change the pathlength. However, if the HCCRR has non-perfectly aligned mirror planes,
rotations around the vertex yield a rotation-to-pathlength coupling, whereby the vertex is
still the intersection point of the mirror planes. This error coupling is analyzed in appendix E
together with anti-parallelism errors of a TMA.
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For a potential future NGGM mission, where the accommodation of an interferometer
in the S/C can be considered unconstrained and in an early stage, a more compact retro-
reflector design is recommended. This would allow the use of a highly rigid structure with
enhanced anti-parallelism, most likely of the order of a few arcseconds.

Alternative Retro-Reflector Designs

Another well-known type of retro-reflector is the cat’s eye. It is typically designed out of a
primary lens and a secondary reflective curved or flat surface. Types with two half spheres
as shown in fig. 2.18 have also been analyzed [Goldman, 1996]. A good starting point for
the analysis of such retro-reflector is the paraxial ABCD formalism, as performed by Snyder
[1975]. A retro-reflector ABCD matrix is given by

—~ -1 0
A@R_.<O _4>, (2.100)

which can be used as the target expression for finding the correct focal lengths or distances
in the design phase. The two diagonal elements in the matrix indicate a pure reflection of
the ray’s lateral displacement at the optical axis and the inversion of the ray direction. This
might suggest that such cat’s eye retro-reflectors can be used to produce a large lateral offset,
however, the ABCD formalism holds only in the paraxial approximation, i.e. when the ratio
of lateral offset over lens curvature radius is small.
The negative identity matrix Mgrg implies that the beam mode, e.g. the complex ¢-
parameter of a Gaussian beam, is not changed by a retro-reflector, i.e.
C C
ﬁw=éqf3= g (2.101)
¢¢+d -1

at least in the paraxial approximation, which is the domain of validity for the ABCD for-
malism. However, aberrations and imperfections of the curved surface alter the wavefront
quality, making flat surfaces preferable where applicable. A suggestion for an on-axis retro-
reflector, naturally arising after studying the paper by Snyder [1975], is shown at the bottom
of fig. 2.18. It consists of a lens and a flat surface. The ray’s origin and the flat surface are
located in the focal planes of the lens. The focal length of the lens should be as large as
possible to mitigate aberrations.

It is noted that the accumulated optical pathlength for the on-axis ray and the tilted
ray are equal because they traverse different paths in glass (cf. black and red rays in the
bottom part of fig. 2.18). This becomes especially obvious if the optical system is unfolded
at the mirror, which yields an ideal 1:1 imaging system. A wavefront tilt at the entrance
plane results in a pure tilt at the exit plane without changing the absolute phase in an ideal
imaging system. Equivalent is the statement that spherical wavefronts are reproduced in the
image plane. Hence, the shown origin of the rays in the focal plane is the pivot point of zero
rotation coupling, similar to the vertex in a HCCRR.

Such an on-axis retro-reflector is used in a later section for the optical layout of an on-axis
interferometer.

2.3.6 Optical Components and Optical Bench

The main optical components in an interferometer are beamsplitters, fiber couplers, photo-
diodes, polarizing beamsplitters, mirrors, lenses, waveplates and polarization filters. Most
consist of a substrate on which an optical coating is deposited. Transmissive optical com-
ponents such as beamsplitters and lenses are composed of a transparent isotropic substrate,
typically glass, with a wavelength dependent refractive index between 1.4 and 1.9. BK7 and
fused silica are commonly used glass types in off-the-shelf components with some typical
physical properties shown in table 2.3.
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Figure 2.18: (Upper left:) Ray-tracing through a spherical ball retro-reflector consisting
of two half spheres constructed out of the same material. (Upper right:) Ray paths through
a cat’s eye retro-reflector with a lens and a reflective curved surface. (Bottom:) A retro-
reflector design with a lens and flat reflecting surface.

An important aspect for the interferometer design is the temperature dependence of the
refractive index dn/dT, which is typically accompanied by a mechanical linear expansion
with coefficient «. This coefficient of thermal expansion (CTE) of the substrates should
be compatible with the mounts and baseplates of the components. The optical pathlength
change As upon temperature change AT can be computed with [Triger, 2012, eq. 5.127]

As=AT-L-G=AT-L-(dn/dT+a-(n—1)). (2.102)

If the total pathlength through the glass in the sensitive path of the interferometer is L =
10cm and the temperature fluctuations at the components are 07(f) = 10mK/v/Hz, one
obtains a resulting pathlength and ranging noise of 8.3 nm/v/Hz for fused silica. Glasses with
minimal As/AT coupling are called athermal glasses, e.g. Ohara S-PHM52, but they have
the disadvantage of being more difficult to polish and shape due to brittleness [Heinzel, 2002,
LTP].

The variety of optical payloads that have been launched and used in space [Qian, 2016]
provides sufficient technology heritage such that effects from the space environment on com-
ponents out of glass or birefringent materials, e.g. for wave plates, are well understood and
considered uncritical. Most prominent of these effects are radiation induced absorption and
density (refractive index) changes in glasses [Gusarov et al., 2002]. Space-qualified optical
coatings are also available and need to withstand the radiation and the atomic oxygen flow
if directly or indirectly exposed to sun light or space in a LEO.

As most of the interferometer setups are planar, it is natural to use a common baseplate
for the optical layout. High-precision interferometers such as those in LISA Pathfinder and
planned for LISA use a glass ceramic with ultra-low CTE and superb flatness, such as the
ULE-glasses by Cornig, Ohara Clearceram-Z or Zerodur with o < 0.1 ppm/K (cf. fig. 2.19).
Substrates can be fixed permanently with a space-qualified technique called hydroxide catal-
ysis bonding [Elliffe et al., 2005], yielding a quasi-monolithic structure which can survive the
launch loads and resist temperature variations. An alternative to bonding is gluing of com-
ponents, which is easier to manufacture and which can also provide stable optical systems if
the glue layer is thin.
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Glass n dn/dT [ppm/K] | a [ppm/K] | G [pm/(K - m)]
N-BK7 1.5067 1.1 7.1 4.7
Fused Silica | 1.4496 8.1 0.55 8.3

Table 2.3: Properties of glass in vacuum for A ~ 1064nm. The linear thermal coefficient
of expansion is denoted with «, while G is the temperature coefficient of optical pathlength
change for a substrate with 1meter length, i.e. G = dL - d(As)?/dT. All values are taken
from the SCHOTT AG product catalogue.

For the gravimetric GRACE-FO LRI a costly ultra-low CTE bench was not required.
This is because, on one hand, the sensitivity requirement is relaxed to nanometers compared
to picometers, and on the other hand, the LRI design cancels many phase fluctuations on
the bench in the final ranging observable. The optical components in the LRI are tightly
enclosed and fixed in a titanium block, which reduces the thermal fluctuations due to the
large surrounding thermal mass (cf. lower-right part of fig. 2.19). The CTE of titanium is well
matched to the CTE of the BK7 glass used in the LRI [Nicklaus et al., 2014b]. In addition,
the nearly sealed design minimizes contamination of optics. Mitigation of particulate and
molecular contamination should already be addressed in early stages of a potential NGGM
interferometer design, as it might be beneficial to operate some sensitive components at a
higher temperature, which can reduce the contamination, or to budget for some decontami-
nation heaters, as in the LRI.

A metal optical bench, e.g. out of titanium, is a viable option for an NGGM-like laser
interferometer as suggested in the e.motion? proposal [e.motion? Team, 2014].

2.3.7 Phasemeter

The main purpose of a phasemeter is the tracking of the phase of the MHz signals provided
by each photodiode segment and photoreceiver (cf. eq. (2.84)). Fast electronics based on
Field-Programmable-Gate-Arrays (FPGAs) have proven to be suitable [Shaddock et al., 2006;
Gerberding, 2014], and FPGAs have been optimized for space applications at least since the
late 1990s [Mavis et al., 1998]. Additional electronics such as Digital-to-Analog and Analog-
to-Digital (DAC/ADC) converters are required to control a potential steering mirror, the
laser, the frequency stabilization, and to read in additional signals such as the AC and DC
channels of the photoreceiver, steering mirror and laser sensors. Additionally, a phasemeter
needs to support different modes, for example, science operation or signal acquisition, which
requires complex logic [Ales et al., 2015].

The GRACE Follow-On LRI phasemeter has been developed by JPL/NASA. A European
study for the LISA Metrology System developed a phasemeter up to TRL 4 [Barke et al.,
2014]. Such a LISA-like phasemeter (cf. fig. 2.20) offers additional features to reach the
desired pm/v/Hz sensitivity in a deep-space environment, e.g. corrections for USO drifts,
ADC timing jitter subtraction, capability for data transfer via modulation of the laser light
and absolute ranging with a pseudo-random code.

In a low Earth orbit with available GNSS and with a ranging sensitivity goal of nm/+/Hz,
such features are not required. Therefore, a NGGM phasemeter can be based on the LISA
metrology system, however, with a substantial reduction in complexity. Some effort is still
required to reach TRL 6 or higher, in particular, to achieve a decrease in power consumption
and dissipation, as well as improved thermal stability.

The frequency band of the phase tracking is a key figure that typically ranges from 4 MHz
to 20 MHz [Bykov et al., 2009]. The lower limit should be sufficiently high so as to stay above
frequency regions with significant laser relative intensity noise (cf. section 2.3.1 on lasers) and
other omni-present low frequency noise sources, which might otherwise lead to a saturation of
the phasemeter ADC channels. The phase retrieval already requires an oscillatory (AC) signal
with zero mean. Hence, the high-pass filter can be designed to define the lower frequency of
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Figure 2.19: (Upper left:) The flight optical bench of LISA Pathfinder (Upper right:)
An optical bench CAD model for LISA (Lower left:) Bonding of optical components of
the LISA Pathfinder optical bench. The three fingers define the position of the component
while the bond is established. (Lower right:) A model of the optical bench in the GRACE
Follow-On LRI. This subfigure image courtesy of SpaceTech Immenstaad GmbH.
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Figure 2.20: (Top:) A typical FPGA-based 4-channel phasemeter for laboratory experi-
ments developed at the AEI Hannover. (Bottom:) An engineering breadboard of a LISA-like
phasemeter developed by DTU Space (Denmark), Axcon ApS (Denmark) and the AEI (Ger-
many). It is based on FPGAs and a modular design. The mainboard is equipped with a clock
module, five ADC module with 4 channels each and a DAC module (4 channels). Images
from [Barke et al., 2014].
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Figure 2.21: Block diagram of a single channel of a digital phase-locked loop (DPLL)
phasemeter. The quadrature (Q) component is used as an error signal ¢, pprr, which in
turn is used to derive the phase increment register (PIR), containing the current frequency
of the digital reference signal. Integrating the PIR yields the phase accumulator (PA), which
is the phase of the digital local oscillator within the phasemeter. Decimation of the phase
accumulator, for example, by means of cascaded integrator combs (CIC), yields the final
phase output ¢py of the single phasemeter channel. A phase-wrapping correction (PWC)
is applied to remove negative side-effects arising from filtering a noncontinuous signal, such
as smoothing and ringing. The average phase (Avg.) and the DWS signals are formed from
multiple channels.

Clock / USO

the band prior to digitization (cf. fig. 2.21). If the beatnote frequency approaches zero, which
in the limit corresponds to homodyne detection, the signal amplitude is attenuated by the
filter until the phase lock is lost.

The upper limit of 20 MHz is given by the bandwidth of the photoreceiver, in particular
of the photodiode itself, as it acts as a low-pass filter (cf. section 2.3.3 on photodiodes) and
by the increasing noise of the photoreceiver towards higher frequencies. If the upper limit
is increased, e.g. by using smaller photodiodes and choosing appropriate analogue electronic
components, the clock frequency of the FPGAs and the associated sampling frequency of the
digital part becomes the limiting factor. Typically, a low-pass anti-aliasing filter (AAF) is
implemented prior to digitization, which removes frequencies higher than half the sampling
frequency (Nyquist-theorem) or even lower. This avoids aliasing of high frequency noise into
the measurement band during digitization.

Although a larger bandwidth appears beneficial, one should keep in mind that it is more
complicated to ensure a well-behaved amplitude and phase response of the photoreceiver
and phasemeter in a larger bandwidth. If the inter-satellite dynamics require a very high
bandwidth of the phasemeter and the clock frequency is limiting, one can consider using the
aliased beatnote. This desired undersampling is a technique that is used in the LISA metrol-
ogy system for the 75 MHz pilot tone measurement [Barke et al., 2014, p. 27], for example.
But this has far-reaching consequences on laser link acquisition and overall performance, and,
to the knowledge of the author, was not well studied yet.

The phase tracking algorithm within a phasemeter is typically based on a digital phase-
locked loop (DPLL) as depicted in fig. 2.21. Compared to fig. 2.2 in the section on optical
detection and phase retrieval, the scheme here shows some additional parts and the arctangent
was removed, because for a sufficiently strong phase-lock one can utilize the small phase
approximation (arctan(x) ~ x). In the following, an accurate analytical model for the phase
observable ppy for a single channel of the phasemeter is derived, which is later used to
compute more complex interferometer signals as well as the longitudinal phase given by the
average of several segments.

It should be recalled that the input to the phasemeter, i.e. the output of the photoreceiver,
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Figure 2.22: Exemplary spectral density of the photoreceiver AC channel, i.e. the phaseme-
ter input yi,. For a time series much shorter than the orbital period, the signal appears
quasi-monochromatic with a single frequency (red trace). Laser phase noise and ranging
induced phase changes widen the peak. The frequency is time-varying in a long time series
(dark blue trace). The noise floor is shaped by the band-pass filter in the photoreceiver with
corner frequencies at 4 MHz and 20 MHz.

can be written for the purpose of this thesis as
Yin(T) = V2 - an - c08(Pin (7)) = V2 - ain - c08(Wmean - T + 00in (7)), (2.103)

where the mean angular beatnote frequency wWmean = 27 fheat,mean is of the order of MHz times
2m. The mean is formed over a few orbital periods. Of course, the apportioning of the phase
Dy, iNtO Wiean - 7 and dpyy, is performed artificially for the sake of the analysis. The phase
variations ®;, and dp;, contain the ranging signal with frequency content below 1 Hz and
laser phase noise with frequency content below 100 kHz, e.g. for a free-running laser. These
two contributions are depicted in terms of the spectral density in the upper panel of fig. 2.24.
The only difference between ®;, and dyy, is a phase ramp, which is usually not visible in
frequency-domain plots.

The rms-amplitude aj, is considered to vary only very slowly, e.g. below 1Hz, and is
rescaled by v/2 to form the peak value in eq. (2.103). The proper time 7 is used instead of
the GCRS coordinate time ¢, which indicates that signals are defined in the local Lorentz
frame of the S/C.

The input signal y;, defined by eq. (2.103), which is exemplarily shown in terms of a
spectral density in fig. 2.22, is demodulated within the digital phase-locked loop (DPLL) into
an in-phase (I) component and an out-of-phase (quadrature ) component by multiplication
with a digital reference signal (cf. fig. 2.21). The low-pass filtered Q component is proportional
to sin(ye,pprL) & @e,ppLL if the reference sinusoid has a similar frequency and phase as the
input signal. This error signal ¢, ppr1, is used in a feedback control loop to adjust the digital
reference frequency in the phase increment register (PIR), such that ¢, pprr, is zeroed. The
I component contains the magnitude of the input signal, if the error signal is zero. The PIR
is quasi-continuously integrated by the numerically controlled oscillator (NCO) and yields
the phase of the reference signal, which is stored in the phase accumulator (PA). The phase
accumulator is a register with a finite number of bits, and hence the ever increasing phase
causes regular overflows of the PA. These result in jumps in the phase and would cause ringing
of the filtered and decimated output. To resolve this issue, one can deliberately introduce a
phase-reducing jump by a well-defined amount in the PA prior to overflow and then correct
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Figure 2.23: Bode plot of an exemplary closed-loop transfer function HS(s) of a digital
phase-locked loop (DPLL). It has been (approximately) reproduced from fig. 4.3 in [Gerberd-
ing, 2014].

for the filter response of the jump directly in the phasemeter®. This is called phase-wrapping
correction (PWC) in fig. 2.21. As a result, the filtered output contains a sharp jump and no
artifacts such as ringing.

Alternatively, one can also use the digital frequency in the PIR, which is not subject to
wrapping, for decimation and as science data. This requires a (trivial) integration in on-
ground processing. However, since the JPL phasemeter in GRACE Follow-On utilizes the
phase as science data, the analysis in this thesis follows the same approach.

A DPLL is, in general, a non-linear system due to the presence of a mixer. Furthermore,
it provides several outputs from a single scalar input, such as the amplitude apprr,, the phase
¢ppLL and often the error signal ¢, pprr,. However, one can synthesize a single scalar output
yppLL according to

YDPLL = ADPLL * COS(¥DPLL + ¥e,DPLL) (2.104)

X ADPLL * COS(QODPLL) = apPpPLL * COS (27T f poLL(T)dT> . (2.105)

Thus, the DPLL performs a phase measurement by fitting a digital sinusoid to the input
signal. The digital copy is typically cleaner, since most of the noise power at frequencies other
than the oscillation frequency is rejected by the DPLL. This digital copy allows an effective
transfer function for the DPLL in the Laplace domain to be defined as

Hi(s) = W (2.106)

which includes contributions from the analog-to-digital converters (ADCs) and the DPLL
itself. This transfer function is defined only for the MHz band shown in fig. 2.22. Similarly,
one can define a transfer function for the phase variations, i.e.

HS(s) = W (2.107)

4To the knowledge of the author, this principle originates from the GRACE-FO LRI team at JPL
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which has typically a flat amplitude and phase response up to the bandwidth of the DPLL, for
example, fioop,pPLL, &~ 50kHz. An exemplary Bode plot of the closed-loop transfer function
HS(s) with a higher DPLL bandwidth of 300 kHz is given in fig. 2.23. The open-loop gain (not
shown in the figure) crosses unity at the Fourier frequency fiop,ppr1, and phase fluctuations
in d¢e pprr, (cf. fig. 2.21) at lower frequencies are suppressed by the loop. It should be noted
that the open-loop and the closed-loop transfer function HS(s) depend on the amplitude ai,
and on the instantaneous beatnote frequency fyeat, i-€.

f beat (7-) i

:27T

d®;, (1)

2.108
dr ( )

The transfer function HS(s) is defined up to the MHz band, but it is well defined also for
low frequencies, where the ranging information is encoded (cf. red trace in upper panel of
fig. 2.24). It is sufficient to use a sampling rate of the order of 1Hz or 10Hz to record the
ranging data in-orbit or to simulate such observations. Since the transfer function of the
DPLL, here HS(s), is basically unity at such low frequencies, one can approximate the effect
of the DPLL transfer function as an additive term Yppry,. This has also been done for the
transfer function of the photoreceiver (cf. sec. 2.3.3), i.e.

@ppLL(T') = 27 - f, SopLL(7)dT ~ @iy (77) + const. + TppLr (foeat (7')) + dpm,  (2.109)
To

where fpeat is the beatnote frequency and where the noise due to imprecise phase tracking
was accounted for by the addend dppy;. The effect of the DPLL transfer function on the
phase Ypprr, is the argument of H{(s) and can be described in a general way as a polyno-
mial (cf. eq. (2.85)) in the phasemeter measurement bandwidth. The linear part in Ypprr,
w.r.t. fheat corresponds to a phase delay by a time A7yso pprr,, which is always non-zero due
to the finite clock frequency of the digital logic. This delay is generally defined with respect
to the USO time, since the USO clock is driving the digital logic.

So far, the derivation did not properly consider the USO clock driving the phasemeter.
The USO clock time Tygo relates the apparent (digital) frequency in the phasemeter fpprr,
which is measured with respect to the USO time, to the proper true frequency of the input
signal fpeat(7), which is measured with respect to the proper time 7, via

Joeat (T) - druso
fopLL(Tuso) dr

(2.110)

The relation is only approximative, as it is assumed that fpprr contains noise and minor
effects due to transfer functions.

Hence, a more precise description of the DPLL phase, which yields the same result as
eq. (2.109), reads as follows

TUso
¢ppLL(TUso) = 27 J forLL(Tuso) druso (2.111)

TPM,on

50 druso) !
= 27 - J fbeat(T) . dTUS() + 5QOPM + TDPLL (2.112)

TPM,on dT

~
apparent freq. in phasemeter

~ ©in (1 = 40 (Ts0)) + const. + dppm + Toprr, (2.113)

where the arbitrary start time of phase tracking 7py on yields the constant in the last line and
is a manifestation of the fact that interferometry can only measure a biased range. In fact,
the constant is ideally an integer multiple of 27, since the reference signal in the DPLL is
in-phase with the input signal. This condition can not be easily incorporated in the integral
form (eq. (2.112)) and was not explicitly written in the last line, because many effects can
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cause a deviation of the constant from an integer multiple of 2. The integer ambiguity can
often be resolved in GNSS applications, however, for space interferometry with a wavelength
of 1m or less, this is normally impossible and not necessary due to the limited accuracy of
absolute ranging.

The equivalence of eq. (2.109) and (2.113) implies that a wrong USO time does not falsify
the phase-tracking result directly, e.g. the digital reference oscillation within the DPLL still
follows the input oscillation. However, a wrong USO time falsifies the result indirectly due
to a changed sampling of the results, thus, one does not assign the correct time to the digital
phase samples. For example, the received phase values pppry, are taken at specific USO
instants of time (7yso = 0,1,2,3,...), however, one is interested in the corresponding GCRS
coordinate time ¢, because most of the higher-level data analysis is performed with respect to
the coordinate time t. One can assume that the USO time Tygo(¢) is estimated by computing
the relativistic effects, i.e. proper time 7 of the S/C, and by applying corrections for drifts
and low-frequency variations of the USO with respect to GNSS observations. This estimated
and best-knowledge USO time Tygo est () contains an USO timing jitter noise and an offset
with respect to the real USO time, i.e.

TUSO,est (T(t)) = 7(t) — 07uso(7(t)) — 0TUsO,0ff (2.114)

This can be approximated as

T = TusO,est (T) + 0TUSO(T) + 0TUSO,0ff = T(TUSO,est) & TUSOest + 0TUSO (TUSO est) + OTUSO,off
(2.115)

which allows the phase in eq. (2.113) to be written as

Qi (T) & Pin(TUSO,est + 0TUSO + 0TUSO0ff) X Pin(TUSO,est) + 0PPM,USO (2.116)

where the phase ®i,(Tuso,est) 1S, for example, the received phase sample from the S/C, which
is to our best knowledge taken at the proper time Tysoest- However, the errors in the
estimate, d7yso and 07yso,off; are the USO timing jitter and the timing offset, respectively
(cf. sec. 2.3.4 on USO). Both contributions are combined into the phasemeter USO error
dppMm,Uso, which is given by

d(I)in
dppnuso ~ ——= - (07uso(T(1)) + Tuso o) (2.117)
= 27 freat (T(t)) - dTUsO(T(t)) + 27 freat (T(1)) - TUSO,0f- (2.118)

This error is not a classical measurement error but arises from the limited accuracy of the
sample time. In addition, the error includes assumptions on the accuracy of the final orbital
positions from GNSS observations, since these are used to reduce the magnitude of d1yso.

Another step to be considered for the realistic modeling of the phasemeter output is the
decimation. The internal phase ¢pprr, from the phase accumulator is decimated in two (or
even more) stages to a rate of approx. 10 Hz for transmission to ground. Decimation means
here anti-aliasing filtering and downsampling of the data (cf. fig. 2.21). The effect of two
typical decimation filters is shown as a Bode plot in the middle and lower panels of fig. 2.24.
One can conclude that the magnitude of the ranging data is almost unaffected by decimation
filtering, since the ranging data is at frequencies well below to the first notch frequency. More
complicated filters as in the GRACE Follow-On LRI can achieve a deviation from unity of less
than 107 in the science measurement band between 0.1 mHz to 0.1 Hz. The phase response
of these filters is linear, i.e. they cause only a delay by a time ATyso pec, which needs to be
defined with respect to the USO time, because it is a digital decimation filter.

Thus, it is reasonable to model the effect of the decimation filters by

©pM(TUso) = Hpec2 [Hpect [¢DPLL(TUS0)]] & ¢pPLL(TUSO) + YDec, (2.119)
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with
TDec ~ TDGC(T) = Qﬂ—fbeat('r) : ATUSO,Dec: f < 0.1 HZ7 (2120)

which holds only for Fourier frequencies below 0.1 Hz. For higher frequencies, the decimation
filters also change the amplitude of the phase, however, this is of little interest as these
frequencies are noise dominated in gravimetric missions.

The effect of the decimation filters is deterministic and can be easily determined from
the phasemeter implementation. Hence, one can correct the received phase values ¢py in
on-ground post-processing. However, the term Ype: is kept in the equations as a reminder
of this issue.

With the decimation and the USO induced phase errors, one can finally write the phase
observable ¢py in terms of the coordinate time ¢ as

QOPM(t) = q)in(T(t)) + &PPM,USO + YTpopLL + TDec +590PM + const., (2.121)
M—’_-J

Tpum

The output of the phasemeter ppy(t) in eq. (2.121) is the input phase ®, of yi,, but
falsified by phase errors due to the USO timing uncertainty d¢pn,uso and by the phasemeter
transfer function Ypy. The latter is predominantly a delay by a time A7ysopm, which
means that the phase Tpy has a strong linear dependence on the input frequency fpeat. The
delay time A7ygo pm is driven by the decimation filters (Ypec), while the delay from Yppry,
is negligible, because the DPLL is a fast control loop. In the following, it is assumed that the
effect of the transfer function Ypy; is a pure delay. This is non-trivial to achieve in practice,
as it requires a highly-developed and mature phasemeter.

Under this assumption one can use an alternative expression for the phasemeter output:

QDPM(t) = (I)in(T(t) — ATUSO,PM) + 590PM,USO + 0T pm +590PM + const., (2.122)
~0

with a total delay time ATysopm = ATuso,ppLL + ATusopec. The effects of the transfer
functions are deterministic and can be reversed in ground-based post-processing. This raises
the question on the potential accuracy of a post-processing (PP) reduction of the term Ypy
in eq. (2.121), or of the delay time Arygopm in eq. (2.122). Here, we simply assume that
the delay ATyso,pm can be determined to 25ns, which corresponds to one clock cycle of a
40 MHz phasemeter, such that one obtains

ITpMPP & 27 freat (T(1)) - 2518, f <0.1Hz, (2.123)

for the error of the correction in post-processing.

In the following, the magnitude of the noise terms dppn,uso and dppy is addressed. An
upper bound for the former, the USO timing errors, can be given by taking into account a
maximum fixed frequency fpeat,max, Which yields

PSD[6¢pm uso] (f) ~ (27 - foeatmax)” - PSD[07uso.pp](f)
+ (27 - f - 0TUsO.0f)> - PSD[®1](f), (2.124)

where PSD[dTuso,pp] is a spectral density of USO timing jitter. A maximum frequency of
20 MHz in combination with eq. (2.98) yields an USO jitter induced phase noise of less than
6 mrad/v/Hz. This is equivalent to a ranging noise of less than 1nm/v/Hz (cf. the magenta
trace with the right axis in fig. 2.14). The second summand, depending on PSD[®;,](f) and
on the timing offset 67; yso,or & 100ps (cf. eq. (2.99)), is a delay that has the same effect
as the delay uncertainty of the phasemeter transfer function in eq. (2.123), but a different
physical origin. The delay uncertainty of the phasemeter transfer function and the delay due
to the USO timing offset are indistinguishable in the model for the phasemeter observable
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discussed here, and as the assumed uncertainty in the delay of the transfer function is much
larger than the USO timing offset, one could omit the USO timing offset, though it is kept
in this thesis for the sake of generality and completeness. In addition, it is remarked that
the PSD[07yso,pp] is based on assumptions on the final accuracy of the satellite orbits in the
GCRS. In the context of GRACE microwave ranging, the error term dppn,uso is called the
time-tag correction error [Kim, 2000].

The sensitivity of the phase readout of a phasemeter PSD[dppyn], expressed as power
spectral density with units of rad?/Hz, is given by the inverse carrier-to-noise density C/No,
ie.

1rad?

PSD[‘S‘PPM] = m7

(2.125)

which also holds for the phase-tracking within GPS receivers [Langley, 1997, eq. 16]. This
expression is called system noise in the context of GRACE KBR ranging [Kim, 2000].

The carrier-to-noise density C'/Ny is the sinusoidal beatnote rms power, usually expressed
in terms of the input photocurrent with units of A2 _ in the context of laser interferometry,

divided by the noise power spectral density of the photocurrent, evaluated at the beatnote
frequency and with units of A2 _/Hz,

rms

Signal RMS Power

C/No = CNR = —=< = PSD

(2.126)

The C/Ny, often also abbreviated as CNR, has units of Hz, but is commonly expressed as
dB-Hz.

At low C/Np, the PLL within the phasemeter may be susceptible to cycle slips and shows
an increased readout noise, while even lower C'/ Ny may result in loss of the phase lock. Hence,
a phasemeter should be able to continuously track the phase of input signals without cycle
slips for signals with a C'/Ny higher than, for example,

C/Noreq = 70.0dB-Hz = 10710 Hy, (2.127)

which is the required minimum during science mode in the GRACE Follow-On LRI project.
This requirement corresponds, via eq. (2.125), to a phase readout noise of 0.3 mrad/\/E
or a ranging equivalent fluctuation of 53 pm/y/Hz with 1064 nm radiation. Thus, even if
the interferometer is operated at the minimum C'/Ny value, the phase readout noise is not
limiting the ranging sensitivity of current and future gravimetric missions, which also means
that these interferometers are not shot-noise limited.

A phasemeter can operate at lower C'/Ny, if the PLL bandwidth and hence the integrated
noise in the PLL bandwidth is reduced. However, this implies a lower loop gain and a slower
control loop, thus, the dynamics of the tracked phase need to be smaller. The author of this
thesis currently sees no necessity for investigating such modifications.

An automatic gain control in the photoreceiver chain is recommended in order to avoid
saturation and profusion of the dynamic range of the ADCs. The resolution in terms of bit-
depth of ADCs and the high sampling rate should be selected such that quantization noise
of ADCs is not limiting the phase readout performance (cf. sec. 2.6.9 on the carrier-to-noise
density)

Alternative methods for phase retrieval and tracking such as zero-crossing phasemeters
have been investigated in the context of the LISA mission [Pollack & Stebbins, 2006], where
effectively the integer and fractional number of zero-crossing of the oscillating signal are
counted in a time interval. Although the LISA phase readout sensitivity (~ 1yucycle/v/Hz)
was demonstrated in a breadboard experiment, some questions regarding low-frequency noise,
aliasing and (optical) intensity fluctuations remain open, at least to the knowledge of the
author of this thesis. Moreover, a zero-crossing phasemeter completely discards information
between the zero-crossings and is not capable of tracking a superposition of several beatnotes.
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Furthermore, as stated in [Barke et al., 2014, p. 40], such a zero crossing phasemeter would
require a challenging 2.7 GHz reference clock frequency to reach LISA-like sensitivity for a
20 MHz beatnote frequency.

2.3.8 Steering Mirror

A steering mirror in the context of satellite laser interferometry is typically a glass substrate
with a highly reflective coating mounted onto a tip and tilt actuator. Figures of merit are
the dynamic range, precision and the actuation bandwidth. Typically, one is interested in
fine and fast steering mirrors in inter-satellite laser interferometry. The two main available
technologies are voice-coil or piezo-electric actuators, while sensing of the orientation can be
performed by optical, capacitive or inductive means. A closed-loop operation using a servo-
controller and feedback of the sensing signal is recommended, as it reduces overshoots, effects
due to mechanical resonances and hysteresis.

Fast steering capability is required for a potential laser link acquisition search in particular,
where the laser beam is deflected in a pattern to scan an uncertainty cone. Phase and
amplitude fidelity, or at least stability of the transfer function with respect to on-ground
calibration over the operational frequency band, is important in order to avoid distortions
between the commanded and the actual pattern. The electrical power demand and thermal
loads due to dissipation are additional constraints especially in the laser link acquisition
phase.

After successful link acquisition, the pointing signal for the steering mirror can be derived
with the desired precision with the Differential Wavefront Sensing technique by the inter-
ferometer. As such a control loop minimizes the DWS signal, pointing information is not
present in the DWS anymore but instead in the commanded steering mirror position or its
integrated sensor. Hence, these sensors need to be sufficiently accurate in terms of absolute
angles and precise in terms of noise.

More general requirements on robustness against radiation, mechanical and thermal loads
as well as against electro-magnetic interference need to be taken into account. Since the
steering mirror is a moving part within the S/C, one needs to ensure that induced micro-
vibrations are tolerable. This includes assessment of potential side-effects on an accelerometer
or test-mass.

The GRACE Follow-On LRI Fine Steering Mirrors, with a mechanical range of ap-
prox. +5mrad, are provided by Airbus Defence and Space GmbH. They have flight heritage
and utilize voice-coil based actuators with Eddy current sensors from Kaman Aerospace
Corp. The servo-controller for closed-loop operation is implemented in two nested stages in
the LRI. The servo-controller of the inner loop, which stabilizes the mirror orientation to a
particular setpoint with the Kaman sensors, is implemented in the Optical Bench Electronics
(OBE). The outer loop, the actual DWS pointing loop, is implemented in the Laser Ranging
Processor (phasemeter). A typical steering mirror for laboratory experiments is shown in
fig. 2.25.

In general, a steering mirror produces a significant rotation-to-pathlength coupling, often
called rotation-to-piston coupling, when used for precise interferometric applications. This
holds even for gimbaled setups, where the pivot point is nominally located on the front
mirror surface. Three axis actuators with tilt, tip and piston degrees of freedom are available
and used, for example, in astronomical telescopes [Alloin & Mariotti, 1994]. However, they
require a dedicated approach for measuring the piston (pathlength) change. The rotation-
to-pathlength coupling has been extensively studied in the LISA context [Chwalla et al.,
2016; Schuster et al., 2016], e.g. for the in-field pointing [Brugger et al., 2014] of the LISA
telescopes. The coupling can be minimized by an interferometer design that is to a large
extent immune to longitudinal motion of a steering mirror, such as the GRACE Follow-On
LRI or the concepts discussed later in this thesis.
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Figure 2.25: A voice-coil based fast steering mirror FSM-300 from Newport Inc. as used in
an AEI laboratory.

2.3.9 Frequency-Offset PLL and DWS Loops

In subsequent sections, transponder-based ranging schemes are discussed, as optical interfer-
ometers in the LISA and GRACE Follow-On missions utilize this concept. A transponder
receives light (or signals) and transmits an amplified version of the light (or signals). Optical
transponders for interferometry need to achieve a stable and well-known relation between
the optical phase of the received light and the phase of the transmitted light. Moreover, the
direction of the transmitted light needs to be controlled in most interferometers, such that
the emitted light of the transponder returns to the sender. In principle, both aspects can
be fulfilled with an extension of the phasemeter functionality and with additional actuators,
as shown in the block diagram in fig. 2.26. Two interfered light fields are impinging on a
quadrant photodiode and each segment of the photodiode provides a photocurrent, which is
amplified and converted to a voltage by the photoreceiver. The phasemeter tracks the phase
of each segment. An average phase of all channels yields the longitudinal phase, i.e. the rang-
ing information, while the differential phase between segments (DWS, and DWS},) measures
the differential phasefront tilt and tip between both interfered light fields (cf. sec. 2.2.3 on
DWS).

In addition to the digital phase-locked loop (DPLL) used to track the phase, extra control
loops are present in fig. 2.26. The two loops shown in the figure are called DWS loops. They
use the DWS signals as the input and derive the error signals from a comparison with set-
points DWS;, g and DWS, o. The resulting error signals are used in a controller to derive the
actuator signals in two directions, for example, for a steering mirror. The steering mirror
changes the direction of the local laser beam, and hence the differential phasefront tilt and
tip at the photodiode, until the DWS signals match the desired set-points. Typically, these
set-points are zero and the phasefronts are parallel at the photodiode. Parallel phasefronts at
the photodiode output port of the recombination beamsplitter also cause parallel phasefronts
at the other beamsplitter port, which is labeled TX light in fig. 2.26, due to reciprocity of
light. Instead of deflecting the local laser light with a steering mirror, one can also actuate the
attitude of the S/C, which changes the direction of RX light in a S/C fixed coordinate frame.
Different beam pointing schemes will be discussed in detail in sec. 2.7 on optical layouts.

The other control loop shown in fig. 2.26 is called the frequency-offset PLL, which uses the
average phase of all segments. This longitudinal phase is compared to a phase-ramp stored
in the register PAref, which is simply the integral of a constant frequency f,g. The resulting
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Figure 2.26: A block diagram of a DPLL phasemeter with a frequency-offset phase-locked
loop (PLL) and a DWS control loop. The frequency-offset PLL shown here uses a temperature
actuator and a piezoelectric transducer (PZT) to control the frequency of the local laser. The
DWS control loop utilizes a tip and tilt steering mirror as an actuator. The science data
telemetry contains the ranging information as the phase of the channel ¢pyr, the heterodyne
amplitude apy, which is the I-value, and the phase error signal e pu, i.e. the Q quadrature
value, for each phasemeter channel.

error signal is used in a controller to derive an actuator signal for the frequency actuators of
the laser, e.g. typically a piezoelectric-transducer (PZT) and temperature actuators such as
Peltier elements for an NPRO laser. Temperature actuators are required, as PZTs have only
a limited actuation range. Temperature control is used at low frequencies, while PZTs have
a high bandwidth. Both actuators change the frequency and phase of the local laser. As will
be derived subsequently, this loop forces the measured longitudinal (average) phase to follow
a constant phase ramp with frequency fog, which implies that the phase of the local laser
follows the phase of the received light, offset, however, by the frequency fog. Thus, it enables
the above mentioned operation as a transponder.

In principle, the frequency-offset PLL can be modeled with a single element photodiode
and with reduced complexity, as shown in the block diagram in fig. 2.27. The phasemeter
output without feedback, i.e. the loop is opened by setting Hprr pzr = 0, can be readily
derived from the block diagram in the Laplace domain as

(OL) _ c _ HC c c c c c c
epu (8) = (Prx — Pro +VU°) - Hpr - Hipc - HppLr - Hbeer - Hbeeo
+0¢pnmuso + 09pu - Hpeer - Hpeca: (2.128)

where each quantity is a complex-valued function (superscript ¢) of the complex frequency
parameter s = o + iw. The DPLL transfer function Hfp;; has been introduced as Hf in
sec. 2.3.7. The term ¥ accounts for a phase change due to the wavefront overlap over the
active area of the photodiode and d¢py; 5o denotes noise due to USO timing jitter. Although
physically not completely correct, it is assumed that the quantity propagating in the overall
block diagram is a phase, which is sufficient for the purpose of this section. It is remarked
that the phases ®;y and ®f are defined here at the (relativistic) event A, i.e. the position
and time, which means the instance of interference and reception at the photodiode. Another
event B for the light emission at the laser is marked in the figure, which will be used in a
later section. The symbol D 4p means a delay from event A to B.

It is advisable to compare the previous Laplace representation to the previously derived
time-domain form, which can be obtained from eq. (2.84) and eq. (2.121) as

(p%%%) (7’) = |(I)RX(7') — ®10 (T) + 9+ TPR| + &PPM,USO + YTpm + dppym + const. (2.129)
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Figure 2.27: A simplified block diagram of the frequency-offset PLL, where the measured
phase is used to lock the phase of the local laser with an offset frequency wog to the incoming
light field.

PrLo

One should notice that the transfer functions H¢ from ADC, DPLL, and the two decima-
tion filters correspond in the time-domain to the term Ypy;, which holds only under the
assumptions discussed in sec. 2.3.7 on the phasemeter. Otherwise, both representations are
equivalent.

In addition, it should be noted that the optical phase of the local oscillator (LO) laser
beam can be written as

fo(s) = (P1(s) + AV(s)) - Dpal(s), (2.130)

where ®f is the optical phase of the laser, and includes laser phase fluctuations, e.g. due to
laser frequency noise. The phase AWU¢(s) due the temperature and PZT actuators vanishes in
case of an open loop. However, in the closed-loop case, one can express AV¢ as a function of
drx and Ppo by taking into account the loop contributions (in counter-clockwise direction
in the block diagram). This yields an implicit equation for the local oscillator phase of the
form

Lo(s) = (PL(s) + AVS(s, Po)) - Dials), (2.131)

which can be analytically solved for ®f(s). It is anticipated that the open loop gain of the
frequency-offset PLL is large, i.e.

| Hp 71+ Temp (8)| = [Hpzr(8) + Hiemp(s)] » 1, (2.132)

where the following abbreviations for the individual loop contributors are introduced:

Hpyr(s) = Hfas,PZT(3> - Hppc(s) - Hf’LL,PZT(S) (2.133)
H%emp(s) = Hfas,Temp(s) : H]CDAC(S) ’ ngLL,Temp(s) : HE’LLPZT(S)' (2134)

Further useful abbreviations are

HE(S) = Hpg(s) - Hipc(s) - Hpprr(s) - Hpeer () (2.135)
Hfoop(s) = ngZT+Temp(5) : H[():(S) ’ D]CBA(S) (2136)
. HE o (5)
Hépa(s) = (2.137)

1+ Hﬁoop( )7
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where Hﬁoop(s) is the large total open loop gain, while the closed-loop transfer functions
HEpq(s) and Hy(s) have a magnitude close to one. With these definitions one can write the
phase ®1,0 as

—woft/S + 8¢yt - Hperr ®7 - Dia
Bo(s) = Hpg (@C +9¢ 4+ —= el ) + (2.138)
L L RX He 1+ Hfop
_ d0¢ . H¢
N Bl 4 0 4 /ST }ﬁ PM * ~Decl (2.139)
p
1
+H07'(‘I’E'D1%A—<DCRX—190)
Loop
+ 1 . <w0ﬁ/8 — 6(P%M ) ch)ecl)
Hﬁoop Hg

where the last approximation holds for a large open loop gain, i.e. Héj o ~1—1 /Hfoop. All
terms except the constant wyg are a function of the complex frequency parameter s. The first
line in the approximation represents the infinite gain limit (|Hf,,,(s)| — o0), where the phase
of the LO light &1, corresponds to the phase of the RX light ®rx but shifted in frequency
by weg. Furthermore, ®1,o contains a contribution from ¢, which is a slowly-varying phase
term arising from averaging the electric fields over the active area of the photodiode. The
second line is proportional to the inverse open loop gain and is a correction for a high but
finite open loop gain. This line contains the phase noise of the laser ®¢ and the phase of
the RX light ®%, both of which might have a high magnitude. The third line is another
correction for a high but finite open loop gain, which can be neglected, because dppm uso is
a small phase readout noise and the wyg/s term has only a DC component.

It is remarked that the LO phase at the event of emission at the laser B (cf. fig. 2.27) can
be readily derived from the previous equation as

_ Pro(s)
D§A(s)’
which will be used in a later section to derive the phase of the transmitted beam.

In the same manner, it is straightforward to compute the phasemeter output in case of
closed-loop operation as

PR(s) (2.140)

(CL)

c (OL)
. HE 5(8) - w ©pnp (S)
A (5) = By () - Tecalo) o i

off
+ §ppM,Uso(8) + — . (2.141)
1+ Hf, Op(s)
The first summand in eq. (2.141) is the constant phase ramp, the second term accounts for
USO timing jitter and the third term is the highly suppressed open loop phase (cf. eq. (2.128)).
Under the assumptions of high loop gain Hy,,, and of a pure constant phase delay in
HE .5 by ATyso,pec2, one can obtain the following time-domain expression

cL
@%M)(T) ~ woft  (Tuso(T) — ATUso,Dec2) + 0pM,Uso + const. + O (

. (2.142)
Hﬁoop >
which contains in the first summand the constant phase ramp, which is delayed by the delay
of the second decimation filter, and the USO timing jitter.

It will be shown in sec. 2.4.4 on the transponder-based ranging concepts that the loop
gain is sufficiently high for the approximation and that the O(1/Hf term can be omitted

if, for example, the following open loop gain is assumed

oop)

1646 Hz? - 1/360000 + 1.4 - 107 Hz—2 - f2 + 40Hz 4 - f4
| Hio0p ()] ~ |HpzrsTemp (f)] ~ V . |

(2.143)
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Figure 2.28: A model of the open loop gain of the frequency-offset PLL, as specified by
eq. (2.143).

which is depicted by the green trace in fig. 2.28. This total loop gain has been derived from the
transfer functions of the PZT and temperature loop, which are the red and dark blue traces
in the plot. The open loop gain within the GRACE Follow-On LRI can be considered to be
even higher’. Thus, the frequency-offset PLL can be designed such that phase variations, as
measured by the phasemeter in open loop, are suppressed at 1 mHz by a factor of 10" or
more.

The model of the frequency-offset PLL discussed here will be used in section 2.4 on
functional concepts to derive a model for the phase observable in transponder-based ranging
schemes.

2.3.10 Acquisition Sensor

Laser interferometers have a narrow angular field of view, which is why precise pointing of
laser beams along the line-of-sight and with an eventual point-ahead angle is crucial to en-
able tracking of the light’s phase. This is particularly challenging, since mechanical loads
from launch and thermo-elastic deformations yield misalignments between the on-board in-
struments that differ from on-ground calibrations before launch. Furthermore, the real-time
estimates of the line-of-sight direction on the satellites depend on the accuracy of the local
S/C position, the local S/C attitude as well as on the accurate knowledge of the distant S/C
position.

Once the link is closed and the DPLL in the phasemeter is locked, precise DWS signals can
be used to minimize residual misalignments and to optimize the signal-to-noise ratio of the
interferometric link. Although the GRACE Follow-On LRI is capable of acquiring the link
without a dedicated acquisition sensor, such a device can significantly reduce the complexity
of the acquisition phase. This sensor is typically called a focal plane array (FPA) and can be
based on common CMOS (Complementary metal-oxide-semiconductor) or on common CCD
(charged coupled device) technology. Its function is the same as a digital camera sensor with
a moderate number of pixels.

Light from the distant S/C is focused by an focusing system, e.g. by a simple lens, onto the
two-dimensional CMOS/CCD pixel array. A tip or tilt of wavefronts in front of the focusing
system due to local S/C or instrument misalignment yields an offset in the spot location
from the nominal position at the FPA, similar to the working principle of a Shack-Hartmann
sensor, autocollimator or star camera. This measured misalignment can be minimized by

Spriv. comm. with Kirk McKenzie, JPL/NASA, February 2017
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Figure 2.29: The OWL SWIR 320 focal plane array from Raptor Photonics with an InGaAs
chip.

S/C actuators or fed forward into laser beam steering actuators.

As pointing information from the acquisition sensor needs to be referred to the optical
axis of the interferometer, accommodation of the sensor on the optical bench is recommended
to mitigate effects of misalignments.

A potential candidate device is the compact OWL SWIR 320 camera from Raptor Photon-
ics with specifications shown in table 2.4 and a photograph in fig. 2.29. The camera dissipates
less than 10 W of electrical power with activated thermo-electric cooling of the chip. Cooling
of the chip is recommended in order to reduce the dark current driven by thermal generation
of electrons, which is a major noise contributor in low-light cameras. An alternative device
is the SU320KTS-1.7RT from Goodrich Corp, which also utilizes InGaAs for photodetection
and is also sensitive at 1064 nm for this reason.

A typical CCD dark current density jy for InGaAs of [Boisvert et al., 2008]

jg = 3.06 - 10" nA fem? - ¢ 0T3V/AT (2.144)

implies that a pixel of the size 30 pm x 30 pm produces on average approx. ngax = 10* dark
current electrons per second at T' = 253 K = —20° C. According to the well-known shot noise

formula for Poisson processes, this dark current fluctuates with a variance 0'r21 shot Of
b}

Jrzl,shot = Ndark T NPE, (2.145)

where npg is the number of actual photo-electrons. The dark current electrons accumulate
in the pixel bins, even if no light is incident, and produce shot noise.

The overall camera noise (rms) per pixel in terms of electrons consisting of shot-noise,
readout noise and ADC quantization noise can be written as [Holst & Lomheim, 2011]

2 2 2 2

On,sys ~ On,shot + On,readout + On,ADC> (2146)
where other noise sources such as reset-noise, on-chip and off-chip amplifier noise and pattern
noise are omitted. Furthermore, it was assumed that a background image and hence the
average dark current is subtracted. The readout noise oy readout 18 typically specified by the
manufacturers, while the quantization noise o, Apc is [Holst & Lomheim, 2011]

TNwell

o _ el 2.147
nADC = 5 ( )
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Sensor Type InGaAs PIN-Photodiode

Active Pixel 320 x 256

Pixel Pitch 30 pm x 30 pm

Active Area 9.6 mm x 7.68 mm

Quantum Efficiency @ 1064nm | > 60 %

Noise (RMS) < 700e~ (Low Gain), < 150e~ (High Gain)
Pixel Well Depth > 3Me~ (Low Gain), > 120ke™ (High Gain)
ADC 14 bit

Exposure Time 500 ns to 40 ms

Interface Cameralink

Table 2.4: Specifications of the OWL SWIR 320 camera from Raptor Photonics.

where b denotes the number of available ADC bits and nep is the full-well capacity in terms
of electrons.
Finally, the signal-to-noise ratio (SNR) of a pixel can be defined by

SNR = —PE (2.148)

Further aspects regarding the optics and the design of the acquisition sensor, calculation of
SNR and the discussion of the expected accuracy of the angular measurement is postponed
to sec. 2.6.12 on laser link acquisition.

It is remarked that an acquisition sensor could be operated as a narrow field of view
(FoV) star tracker, if the software is extended. This would allow the device to be used
continuously and not only for sporadic acquisition events. However, this only makes sense,
if the acquisition sensor FoV is large enough to detect several stars for most of the time.
While star trackers are typically designed to have a FoV of >100 deg? [Lindh, 2014, p. 4],
an acquisition sensor requires a small FoV or a high number of pixels to precisely resolve the
direction of the incoming laser wavefront.

The angular density of stars on the celestial sphere up to a certain apparent magnitude
is shown in table 2.5. The highest detectable apparent magnitude for a sensor depends on
various aspects, e.g. sensor spectral responsivity, intrinsic noise and coatings of the optics
that direct incoming light onto the sensor. A narrow bandwidth coating centered at the laser
wavelength is certainly beneficial for laser link acquisition as it reduces stray light and can
mitigate risks from over-exposure, e.g. induced by blinding due to the Sun or Moon. On the
other hand, such a coating reduces the available optical power of the stars for star tracking.

Although using the acquisition sensor as a star tracker is a viable option, it adds significant
complexity and constraints on the acquisition sensor subsystem. As such an acquisition
sensor has not been designed nor utilized in inter-satellite interferometry, this thesis does not
consider a star-tracking mode as a baseline in order to reduce the complexity in this early
phase.

Furthermore, the author recommends the revision of the LISA acquisition sensor design,
which has a very narrow FoV with a low resolution in terms of pixels [AEI-TN, 2011], re-
garding the expected average number of stars within the FoV in star-tracking mode.
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Apparent Magnitude N stars / degree?

4958 0.120

6

7 15256 0.370
8 44772 1.085
9 128421 3.113
10 349741 8.478

Table 2.5: The typical star density on the celestial sphere from http://www.hnsky.org/
star_count.htm. The total sphere has 41253 degree?. N is the total number of Tycho2 or
UCACA4 catalogued stars up to the apparent visible magnitude. The table assumes a uniform
distribution of stars over the celestial sphere.
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2.4 Functional Concepts

In general, inter-satellite ranging interferometry measures distance variations between satel-
lites by exchanging laser light. Before designing the interferometer, some boundary conditions
need to be clarified, e.g. the expected maximum and minimum inter-satellite distance and
the expected relative velocity along the connection line and transversally. These aspects are
determined by the satellite constellation and orbits. A comparative tabular overview for the
missions LISA, LISA Pathfinder and GRACE Follow-On is given in table 2.6, which also
addresses other interferometric aspects such as the phase readout method. The GRACE
Follow-On column is exemplary for a gravimetric in-line satellite formation and most of the
numbers are applicable to the e.motion? concept.

For LISA and GRACE-like missions the inter-satellite distance p can be approximated by

p(t) = po + Pmod - SIN(27t/Tioq) + 0p(t), (2.149)

which consists of a constant bias pg, an approximately sinusoidal modulation with amplitude
Pmod and dp(t) containing small variations compared to ppeq. The variations dp(t) contain
most of the scientific information, e.g. on the fine gravity field structure in case of e.motion?
and GRACE or on gravitational waves in case of LISA. The modulation period is usually
given by the orbital period, whereby a second strong modulation at twice the period may be
present due to eccentric orbits or orbit mismatch between the satellites. Thus, the spectrum
of p(t) contains a few dominating tones, which might be even not in the frequency band of
the science data, and a quasi-continuous distribution of signal power over frequencies as the
interesting science data (dp(t)).

The quantity p(t) is the instantaneous range between the gravitational reference points
(cf. sec. 1.3.6 on GRP) on each S/C, which can be considered here as the center of mass of
each S/C, i.e.

p(t) = pinsi(t) = [F1(t) — 72(t)]- (2.150)

This equation and the constituents are defined in the GCRS, which is a quasi-inertial non-
rotating system.

As already discussed in the first part of this thesis, future gravimetric missions require
inter-satellite range measurements over a distance of 100 km..200 km with a sensitivity be-
tween 25 nm/ v/Hz and 50 nm/ v/Hz at a Fourier frequency of 0.1 Hz. The science measurement
band ranges from approx. 0.18 mHz to 0.1 Hz. The maximum range rate, i.e. the relative ve-
locity along the line-of-sight, is below 5m/s. With clarified boundary conditions, different
functional concepts for inter-satellite interferometry can be assessed. In the next sections,
the most common concepts, namely one-way ranging, dual one-way ranging, transponder
and retro-reflector based ranging, are introduced and their respective sensitivity limits and
constraints are discussed.

At first, the general one-way ranging phase observable is derived, which can be written
in terms of the instantaneous range pinst(t). However, the phase is only to first order propor-
tional to the range, and many corrections and errors are present due to special and general
relativistic effects, due to errors arising from the specifics of the optical interferometer design
(sec. 2.6) and due to other effects such as clock errors and laser frequency noise.

2.4.1 Derivation of One-Way Ranging

The simplest form of a displacement measurement can be realized by measuring radio-waves
or light, both electro-magnetic waves, emitted by a laser aboard a S/C. If emitter and receiver
are in relative motion, the apparent frequency of the wave at the receiver is shifted due to
the Doppler effect (cf. eq. (2.26) in sec. 2.2). By integrating the Doppler shift frequency in a
phase tracking loop, one obtains a phase (cf. eq. (2.121)), which is to first order proportional
to the biased distance in ranging interferometry (cf. eq. (2.22)). A sketch of a one-way ranging
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LISA LISA Pathfinder GRACE F.O.
# of Spacecraft 3 1 2
Avg. p ~ 2.5 Mkm 38 cm 200 km
Max. p 5m/s ~ 0 5m/s
Max. Doppler Shift 5 MHz ~ 0 5 MHz
Max. pmod 10000 km ~ 0 4 km
Modulation Period 1 year 93 min
Max. p 1 pm/s? ~ 0 6 mm /s>
Max. Doppler Rate 1Hz/s ~ 0 6 kHz/s
Max. vi2 | 200m/s ~ 0 250m/s
Point Ahead Angle 1.4 prad ~ 0 1.6 prad
Beam Div. O1x ~ 2prad n.a. ~ 140 prad
Environm. Condition Deep-Space Deep-Space, LP LEO
Concept Transponder | Several MZ IFOs Transponder
Readout Scheme Heterodyne Heterodyne Heterodyne
Phase Retrieval DPLL SBDFT DPLL
Beatnote Frequency 4..20 MHz 1.0kHz 4...20 MHz
Laser Wavelength 1064 nm 1064 nm 1064 nm
Science Meas. Band 0.1mHz..0.1 Hz 1mHz..0.1 Hz 0.1mHz..0.1 Hz
Ranging Sensitivityf ~ 10 pm/ VHz < 10pm/ vHz 80nm/ vHz
Z9pucycl./v/Hz | Z9pcycl./vHz | 275mceycl./v/Hz
On-Orbit Ranging Sensitiv. 35 fm/v/Hz
LFN Reduction Transponder i Transponder
TDI Equal-Arm IFO
Time Reference USO per S/C USsO USO per S/C
+ CTT Single Common GNSS avail.
Ranging Ref. Point(s) Test-Mass Test-Mass Virtual at
CoM
Absol. Laser Ranging Yes, ~ 1 m Not Req. Not Req.
accuracy (GNSS avail.)
(Optical) Data Transm. Yes Not Req. Not Req.

Table 2.6: Comparison of three missions utilizing laser interferometric distance measure-
ments. The relative velocity along the line of sight is denoted as p, while / is the corresponding
acceleration. The transversal relative velocity between the satellites vi2 | is measured per-
pendicular to the line of sight. Further abbreviations: LFN: Laser Frequency Noise, LP:
Lagrangian Point; f1x: Gaussian beam divergence of TX beam; CTT: Clock Tone Transfer;
1: Pre-launch requirement; MZ: Mach Zehnder; I: Measure and subtract
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Figure 2.30: (Upper Part:) Simplified one-way ranging scheme by means of (optical)
interferometry. (Lower Part:) Minkowski diagram of the light path in a one-way ranging
scheme. At each event A, B, C, ... the future light cone was indicated with two lines, since light
can reach only these regions. Within the interferometer setup, i.e. in the local Lorentz frame
(LLF) of the S/C, the light is deflected and hence not a straight line. Inter S/C propagation
in free space between events D and C' is shown as straight line. The instantaneous range
pinst and the photon path of an ideal range measurement between both CoM (green arrow)
are shown as well.

scheme by means of optical interferometry is shown in the upper panel of fig. 2.30, whereby
it is also applicable in similar form to electro-magnetic waves, e.g. microwaves.

The specifics of the optical implementation of the interferometer are not considered in
this section, i.e. the interferometer is simply a black box with input and output laser beams.
With eq. (2.121) one can write the observed phase ¢py of the phasemeter as

opmj(ta) = [Pinj(75(ta))] + dpm,Uso,; + dppa,; + Ye,; + const. (2.151)

where t4 is the GCRS coordinate time of the measured phase sample, as provided by the
phasemeter. The emitter satellite is labeled with subscript ¢, while the receiver is S/C j
as shown in fig. 2.30. It is reminded that the phase ¢pyy); is actually recorded in the local
Lorentz frame (LLF) of the receiver S/C j. The time associated with a particular phase
value is given in the time frame of the on-board USO, however, for the formula, the time has
been converted to the GCRS coordinate time. Errors due to the conversion are covered by
d0ppm,Uso,j- The digital phase sample at time ¢4 from the phasemeter is equal to the phase
®;,(7(t4)), which is the phase of the input signal to the phasemeter up to the effect of the
transfer function Ypyr; and the errors dppa,uso,j + 0@pM,;-

The phase of the phasemeter input, which is the photoreceiver output, can be written as
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(cf. eq. (2.84))

| Pin j (15 (Ea)| = |@45(75(ta)) — jy;(75(ta)) + I; + Terj| (2.152)
==x ((I)i|j(Tj(tA)) — (I)j‘j(Tj(tA)» + 9 + Tpr, + const. (2.153)
where ®;; and ®;; are the absolute optical phase values of the light from S/C i and S/C j,

respectively, expressed in the local Lorentz frame of S/C j and with respect to the proper
time 7;. These are the phase values of the light fields at the center of the active area of the
photodiode. The phase term ¥; is obtained from the overlap integral of wavefronts over the
active area and is expected to change only very slowly. It accounts for the effect of spatially
averaging the phase of the light fields over a macroscopic active area. The phase change due
to the transfer function of the photoreceiver is denoted with Tpg ;.

The absolute value (magnitude) was removed in the second line (eq. (2.153)), which eases
the equations later on. Recall that the sign of the phase of a scalar signal such as @y, is ill-
defined, because only the cosine of the phase is physically accessible and the cosine function
is an even function. The measured phase of the phasemeter ppy; starts at zero, when the
instrument is turned on, and it increase monotonically with time. However, the input to
the phasemeter ®;, is defined here analytically as a phase difference and can be positive or
negative. One can replace the magnitude by the sign + without loss of generality, if the upper
sign is selected for ®;; > ®;;, which practically means that the frequency of the received
light is higher than the frequency of the local laser light of the receiver. Such a frequency
ordering is well defined and can not swap during normal operation of the phasemeter, because
the phasemeter is not capable of handling zero crossings of the beatnote frequency, i.e. of the
frequency difference (cf. sec. 2.3.7 on phasemeter).

The phasemeter output ¢py can be described in good approximation as the difference of
the phase of the two optical fields impinging onto the photodiode. The event of impinging
light fields in the GCRS is labeled in the following as Tyjccrs = (co - ta,7j,pp(t4))T, which
is a point in the four dimensional space-time. The position of the photodiode in the GCRS is
denoted with 7 pp. Events offer the advantage that they fix the time and position and they
can be converted unambiguously with transformations between different coordinate systems.
Thus, one can use a simplified notation 74 and express arguments of functions with a shorter
notation, e.g. f(7a) = f(ta,7a).

The paths or world lines of the light fields are shown in the Minkowski diagram in the
lower panel of fig. 2.30 as red and blue lines. Several events (A, B,C...) are marked: the
reception of light and measurement of phase (A), light emission on the receiver and emitter
(B and E) and the free space propagation between C' and D.

The phase of the light fields at 74 had to propagate through space-time to reach that
event, i.e. one can think of photons carrying or forming the phase information. The light field
of the local laser on the receiver S/C has an electric-field vector E; o €'®ili and it’s phase
can be described with the help of eq. (2.72) at the event of emission Tp by

®,;(T) = 2nvj; - 7j(tB) + PLrN; (75 (tB)) + A¥B (2.154)

where ;); is the true and mean laser frequency with units of Hertz of the laser on S /C j as
measured in the S/C j LLF, i.e. in the rest frame. One can reduce the number of symbols
in subsequent equations by using the corresponding angular frequency w = 27wr. The laser
frequency fluctuations are expressed in terms of a phase noise ®1ry, ;, while all other phase
contributions to the laser light are covered by AV¥p ;.

However, since the photon path denotes the path of a constant phase®, the phase at the
event of emission and the phase at the event of reception are equal, i.e.

®;1;(7i(ta)) = ©5);(Ta) = @;;(75(tB)) = P;;(TB) (2.155)
= wjj - Ti(ta — Atpa) + Prpn,;(7j(ta — Atpa)) + AVp (2.156)

In [Misner et al., 1973] it is shown that the phasefront of an electro-magnetic wave follows a null-geodesic,
i.e. it is a photon path.
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where Atpa = t4 — tp was used to denote the time difference in the GCRS system between
both events. Some second order phase effects arising from the evolution of non-trivial wave-
fronts (keyword Gouy phase) are omitted here, i.e. a plane wave approximation is used. Such
effects are not of relevance for this section and are introduced when more realistic light beam
models are considered.

With eq. (2.156) one obtains the light’s phase from the local receiver laser at the pho-
todiode of the receiver S/C. This worked out easily, because all the quantities are defined
in the same local Lorentz frame. However, for the phase of the light from the emitter, one
needs to transform the optical light phase from the LLF of S/C i into the LLF of S/C j. For
this, one can use the fact that the light’s phase is Lorentz invariant, i.e. it does not change
upon transformations. This can be easily shown for plane and spherical waves, because the
phase can be written as the invariant product of the four-wave vector and the four-position
[Shiozawa, 2013, sec. 2.5]. However, it also holds for more complex waves. The value of
the phase is simply the number of passed wave crests, and hence, independent of the frame.
Furthermore, the instantaneous real electric and magnetic field vectors vanish for particular
values of the phase, which suggests that they are zero in all frames.

It is interesting to note that the electric field vector E, the magnetic field vector H and
the Poynting vector S are not Lorentz invariant. Thus, the polarization vector changes upon
transformation from one to the other S/C 7.

The Lorentz invariance of the phase states that the phase in the coordinate system of the
emitter S/C i is equal to the phase in the coordinate system of S/C j at the same event,
e.g. for Tyu:

D;);(Ta) = ©4;(Ta) (2.157)

The right-hand-side can be expressed in the same way as eq. (2.156) with Atga denoting
the propagation time of the phase from the event of emission 7r to the event of reception
Ta, while the left-hand-side can be expressed in the most general form as an integral over a
time-variable instantaneous observed angular frequency w;;(7;). Hence, one can re-write the
previous equation as

i (ta)
®;);(7i(ta)) = f w;|j(7;) d7j + const. (2.158)
= (Dm . Tz‘(tA — AtEA) + (I)LFN,i(Ti(tA — AtEA)) + A\IJEJ', (2.159)

where the integral start time was omitted and accounted for by an arbitrary constant. This
equation can be considered as a definition for the instantaneous observed angular frequency
w;|j(75). The arbitrary constant arises from the lacking (relativistic) synchronizations of the
proper times 7; and 7; and is not of importance here.

The reception event 74 and the event time ¢4 were used for the derivation, however, it is
obvious that for a continuous measurement one can set t = t4. Now it is easy to determine
the apparent frequency of the received light for the receiver S/C v;;(7;(t)) as
1 dd; ;(7;(t))

_ ‘dTi(t—AtEA) 1 . d(I)LFN,i(Ti(t_AtEA»

% de - V1|Z de + % d’Tj (2160)
(- dTi(t — AtEA) 1 d(I)LFN,i(Ti(t — AtEA)) dt

dr; 1 do i dm dAt dt
_ <Vi|i T COTLENG T> : <1 _ EA) (2.162)

& 2 T dn & a )

_ 1 d®ypng dAtga dr; de -1
= (7 + — . LN 1= Rl il 2.163
<V’" tor dr; |tE) ( dt |t> dt |tp < dt ), -’ ( )

"A Lorentz boost mixes the electric and magnetic field vectors. However, since both vectors are in-phase
for linearly polarized light, the phase of the oscillation does not change.
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where the first bracket in the last line shows the instantaneous laser frequency at the time
of emission (tg) in the LLF of the emitter S/C. The second bracket is the classical Doppler
shift, which becomes obvious due to Atga = Atgpa(t) & pinst(t)/co with the instantaneous
S/C distance pingt(t) in the GCRS. The last two terms are present in a relativistic Doppler
theory and give rise to effects such as the so-called transverse Doppler effect, where a frequency
change is observed only from transverse motion due to time dilation [Rindler, 2012, sec. 3.2].
Eq. (2.163) can be readily employed in simulations, since all the quantities can be determined.

Finally, by using eqs. (2.151), (2.153), (2.156) and (2.159), one can formulate a single
expression for the phasemeter observation of the receiver S/C as:

opm|;(t) = L@y - Ti(t — Atgpa) £ Prpni(7i(t — Atpa)) £ AVg;
wjj - 7j(t = Atpa) F Qren,;(7;(t — Atpa)) T AVp;
¥ + Tpr,j + 69pMm,Us0,; + 0¢pM,; + Tpu,; + const. (2.164)

H+ -+

The first line contains the phase of the light from the emitting S/C, the second line contains
the phase of the local laser light, and the third line contains the phase contributions due to the
wavefront overlap ¥, the photoreceiver Tpgr, the USO timing error d¢pn,uso, the phasemeter
delay Tpy, and the phase readout noise dppy. The first two lines were expressed in terms
of the propagation time between the photon emission and reception event.

Eq. (2.164) is a generic one-way or single path ranging observation, which is expressed in
terms of photon time of flight At between events. It accounts for relativistic effects, which
manifest in the appearance of the proper time 7 and as changes in At. In the following, some
algebraic manipulations are performed to partly separate the relativistic from non-relativistic
effects. For this reason one can define a delta proper time d1 according to

ot(t) =t — (1), (2.165)

which increases only slowly with a rate of d7/dt = §7(¢) ~ 107?s/s (cf. eq.(2.14)). A spectral
density plot of 7, which is also applicable to d7, is shown as the red trace in fig. 2.14. It is
remarked that 7 has practically no signal at frequencies higher than 1 Hz. Thus, with the
definition, one can approximate the delayed proper time as

T(t— At) =t — At — 67(t — At) (2.166)
~t— At —07(t) + At - 07(¢), (2.167)
which is justified and accurate, because the delay due to the photon time of flight At is always

much smaller than 1second in gravimetric missions.
The laser phase noise can be approximated rigorously as well:

<I>LFN,i(7'i(t — At)) = (I)LFN,i(t — At — 57'(t) + At - 57"(15))
~0
~ Prpni(t) — dwrpn(t) - At, (2.168)

because it decays towards high frequencies and the delay At is small. The quantity dwrpn =
2mdvLpN is the angular laser frequency noise. Furthermore, it is noticed that ®ypy is a sta-
tionary stochastic variable with zero mean, which means that spectral properties are invariant
under time-shifts.

Moreover, a second definition concerning the optical angular frequencies w;; and w;; is
introduced:

!
-+
&

!
+I
| Bl B

W

il , (2.170)

140



PART 2. LASER INTERFEROMETRY IN SPACE

where @ denotes the mean frequency and AG = |w;;—@;;| is the positive difference frequency,
which is the positive angular beatnote frequency. If these new quantities are used in the
phasemeter observable, it is helpful to use the assumption that the Doppler shift from w;;
to &;); is smaller than the difference frequency Aw, which makes the statements @;; > @;;
(= @;; > ®;|;) and w;; > wj|; equivalent. Initially, the upper sign of + and F was used for
Wj|j > wj|j, but with the new assumption it also holds for w;; > w;|;, which is much easier to
handle for practical calculations.

In summary, one can approximate the carrier phase terms in @pyy); as

+ Wi - ‘(t—AtEA)$<D~U-Tj(t—AtBA)
AG AQ AG
~ 4@ $wAtEA+7wt——wAtEA+w5n(t—AtEA)——5Tz(t—AtEA)
AG A& A®
$(Dti<bAtBA+7wt——wAtBA-I-wéT](t—AtBA)——67'](t—AtBA)
A
=4+A0-tF Q- AtEB—T (AtEA-i-AtBA)

A
& (0ri(t — Atga) — o7i(t — Atpa)) — 7“’(%@ — Atpga) +0mi(t — Atga))
A
=+A0-tF&-Atgp — -5 (Atgpa + Atpa)

AD
@ - (013 — 0T;Atga — 07 + 67jAtpa) — i (073 — 0T Atga + 07 — 0T;AtgA),
(2.171)

where the new propagation time Atpp = Atga — Atpa appeared. It is the time difference
between the photon emission on the emitting S/C and photon emission of the local laser on
the receiving S/C in the GCRS system (cf. fig. 2.30). The laser phase noise terms can be
written as

+ Orpni(Ti(t — Atga)) T Pren,;(75(t — Atpa))
~ +Prpn,i(t) T dwren, - Atpa F Pren,;(t) + dwren,; - Atpa, (2.172)

which is a sufficient approximation for the purpose of this section.
Combining the previous approximations into ¢pyyj; yields

opm|j(t) = +AD -t F @ - Atpp + Prpni(t) F Prrn (1)
F dwrrN,i - Atpa £ dwrpn,; - Atpa
Fow- (67‘1 — 57']')
Fow- (+57"j - Atpa — 07 - AtEA)

A~ AQ
- (AtEA"‘AtBA)—T (073 — 0T Atpa + 07 — 0T;AtpA)
+ AVp; F AV ; £ 9, + Tpr,j + dppm,Uso,; + 0vpm,j + TrM,j
+ const., (2.173)

with upper signs applying for the frequency ordering &w;;; > wj;. The first term in the first
line contains a monotonically increasing phase ramp, given by the beatnote frequency A&.
The second term is typically the ranging observation, which will be addressed subsequently.
The next two terms indicate the laser phase noise @1y of both S/C. The second line contains
further fluctuations of the laser, which are expressed as laser frequency noise dwppn. The
third line includes the effect of time dilation and is responsible for a transverse Doppler effect.
The fourth line describes further relativistic corrections, which are multiplied with the mean
optical frequency @. The fifth line has terms proportional to the beatnote frequency A,
while the terms on the last lines have been addressed previously and contain effects due to
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wavefront overlap ¥;, photoreceiver transfer function Ypgr j, USO timing error dyppwm,uso,;,
interferometric phase readout noise dppn,; and phasemeter transfer function Ypy ;. The
constant bias indicates that with laser interferometry one can not determine the absolute
inter-satellite distance but only a biased range.

So far, the observation equation for pyy;(t) is independent of the actual desired mea-
surement, i.e. the instantaneous range pinst(t) between both S/C CoM in the GCRS. It is
important to state the coordinate system, because the instantaneous range, and distance in
general, is a quantity depending on the coordinate system due to relativistic effects such as
length contraction. The ranging information in a phase observation shows typically up as a
product of an optical frequency @ times a propagation time At, here, it is the second term
in the first line in eq. (2.173). The time difference Atgp is the photon time of flight from
emission on the sender S/C to the photodiode at the receiver S/C minus the time of flight
from the local laser to the photodiode on the receiver craft. It can be separated into three
contributions, namely into the desired instantaneous range pinst, into contributions from the
interferometer instrument dtgpif, and into corrections to the inter-satellite time of flight
AtPQ,corr:

Atgpp = Atga — Atpa (2.174)
= Pinst(t)/co + AtPQ,corr(Q +6tEB,ifo(t)~ (2.175)
Atpo

The term Atpg expresses the light propagation time between the hypothetical events P and
Q (cf. fig. 2.30), which means between emission of the light wave at the emitter CoM and
reception of the light at the receiver CoM at GCRS coordinate time ¢. This would be the
ideal, error-free, and relativistically correct ranging measurement. However, Atpg differs
from the actual measurement Atgp by dtgp if, which is the error due to the interferometer
instrument. The proper vacuum speed of light is labeled as ¢y. Eq. (2.175) is revisited in
subsequent sec. 2.5 on photon time of flight corrections.

It is remarked that the delta terms Aw,d7 and 67 in eq. (2.173) are orders of magnitude
smaller then the mean optical frequency @, hence, mutual products of these delta terms
are even smaller and can be approximated or neglected. Furthermore, the magnitude of At
terms expressing the time of flight between both S/C, such as Atgp or Atgy, is dominated by
Pinst(t)/co. For this reason one can approximate terms in pyy|;, which have a small magnitude
and which contain a light propagation time A¢. With this in mind one obtains from eq. (2.173)
the following final expression for the one-way ranging (OWR) phase observable

@;%VLR) (1) = +A0 -t T @ - pinst(t)/co F @ - 0tpB,ifo(t) = Prn,i(t) T Prrn,;(t)

AD
F OwLFN,i - Pinst (t)/co £ dwrpn,j - Atpa — - Pinst (t)/co

A .
Fw- (57}' — 57']') Fw- Athporr — Tw((STi + 57‘j) +Q-07 - pinst(t)/c()

+ AVp; ¥ AV ; +9; + Tpr; + dopm,uso,; + 0vpm,j + Trm;
+ const., (2.176)

where the terms with small magnitude were omitted, i.e.
AtBA AL~ AD - (57’Z . AtEA % 57"]' . AtBA % J_F(SwLFN,j . AtBA ~ 0. (2.177)

The first and second line in eq. (2.176) contain the non-relativistic terms, while the third
line accounts for the relativistic effects. One aim of this thesis chapter is to show that all
the constituents in eq. (2.176) are understood and can be removed in post-processing, so
that one can recover the instantaneous range between both S/C center of mass or GRPs.
Similar equations will be derived in the subsequent sections for the other and more relevant
functional concepts such as the transponder scheme. However, at first, the relevance of some
terms in eq. (2.176) is analyzed.
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Figure 2.31: (Left panel:) One-way ranging noise due to (laser) frequency noise (LFN)
for different frequency standards or requirements with a S/C separation of L = 100km.
The equivalent laser frequency noise with units of Hz/v/Hz is shown in fig. 2.8. The gray
trace indicates the frequency noise of microwaves, which are derived from the USO stability
discussed in sec. 2.3.4 on the USO. (Right panel:) The black lines at the top show the
expected ranging signals of a GRACE-like constellation with L = 100 km and h = 400 km.
The total ranging signal consists of the sum of time-variable plus static gravity field, however,
both contributions have been separated for illustration. The time-variable signal was derived
from the ESA ESM model [Dobslaw et al., 2015]. The gray bold line indicates the sensitivity
goal of 25 nm/+/Hz x NSF(f). The blue, magenta and green traces show noise contributions
present in (laser) interferometry. All traces consider an optical wavelength of A = 1064 nm.

2.4.2 One-Way Ranging

The one-way ranging scheme as shown in fig. 2.30 is the most simple ranging approach. The
ranging phase observable, i.e. the phasemeter output, was derived in the previous section
with final result for goé%\}'\;m given in eq. (2.176). It is anticipated that the dominant noise
sources are the laser phase noises from the emitter ®rpn ;(t) and from the receiver ®rpn ;(1).
In the following, it is assumed that the wave sources on both S/C have a similar frequency
stability and are uncorrelated, which allows the spectral density of phase fluctuations to be

written as

2r- ASD[Ae](f)
21 f ’

ASD[®rpx,; — Pren;](f) = V2 - ASD[®ren](f) = V2 (2.178)

(OWR)
PM]j
phase (fluctuations) with the wave number 27/\ = 277;);/co, whereby it is neglected for the

moment that the true and mean in-orbit frequency v;); is only known with limited accuracy.

The (laser) frequency noise (LFN) of various sources has been discussed in sec. 2.3.2 on
optical frequency standards and was shown in fig. 2.8. One can use this information and
apply eq. (2.178) to produce the plot shown in the left panel of fig. 2.31. The plot can be
compared to the right panel, where the goal sensitivity of 25 nm/v/Hz x NSF(f) for a NGGM

ranging instrument is depicted (cf. eq. (1.39)). The black traces on the right side show the

(OWR)
PM]j
as the dark blue, magenta and green traces, which correspond to Tpr j, dppm,uso,; and

dppm,j, respectively. Since the one-way ranging scheme utilizes a single interferometer and
phasemeter, these contributions are solely caused on the receiver side.

The green trace on the right panel of fig. 2.31 indicates the phase readout noise denoted
as ASD[d¢pm ;], which is given by the inverse carrier-to-noise density and has been discussed
in the sec. 2.3.7 on the phasemeter (cf. eq. (2.125)). Here, the shown trace uses a carrier-

The phase fluctuations and the phase ¢ can be converted to a length by dividing the

are shown

expected ranging signal. In addition, three noise contributors present in ¢
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to-noise density of 70.0 dB-Hz, which is a worst-case assumption. This noise would be even
lower for a higher carrier-to-noise density or higher signal-to-noise ratio.

The magenta traces show the phase noise due to USO timing jitter dppm,uso,j, which has
been defined in eq. (2.124). The two different magenta traces indicate different underlying
timing jitter ASD[d7yso]. The solid magenta line considers a stability as specified for the
NGGM USO in sec. 2.3.4. The dashed magenta line assumes the post-processed timing jitter
ASD[d7uso, pp|, which also includes information from GNSS and was defined in eq. (2.98).
Both magenta traces are based on a worst-case beatnote frequency of 20 MHz, which can be
considered as an upper limit for the jitter noise contributor. The noise due to the USO timing
offset (cf. eq. (2.124)) has been omitted here, but will be shown in a subsequent section.

The dark blue traces on the right panel of fig. 2.30 cover the effect of the photoreceiver
transfer function ASD[Ypg ;], which is predominantly a phase delay. The solid blue line
indicates the raw coupling (cf. eq. (2.85)), while the dashed blue trace includes the effect of
a post-processing correction (cf. eq. (2.89)).

It should be noted that even the best frequency standards can not reach the goal sensitiv-
ity, which makes this functional concept unpractical for a GRACE-like or NGGM gravimetric
mission. The laser noise can be significantly reduced by two-way ranging schemes, which will
be introduced in the next subsections.

In addition, there are some other technical difficulties, which arise in one-way schemes.
For example, the laser frequency on emitter and receiver needs to be stabilized to similar
absolute values, shifted only by a few MHz, in order to avoid zero-crossings of the beatnote
frequency at the photodiode (cf. sec. 2.3.7 on phasemeter). Moreover, the emitter satellite
has no information on the correct pointing of the laser beam and would require divergent
beams to strike the distant S/C.

However, one-way microwave ranging is commonly used in satellite Doppler tracking. The
sensitivity of such microwave Doppler tracking can be assessed with the gray trace on the left
panel of fig. 2.30, where the NGGM USO frequency stability (cf. table 2.2 and the magenta
solid-dotted trace in fig. 2.8) were used to plot the equivalent ranging noise due to phase
fluctuations. This means the USO acts as frequency standard and source to produce the
radiation. The noise spectral density of roughly 5pm/v/Hz - (1Hz/f)'3 at high frequencies
(f ~ 1 Hz, not shown in the plot anymore) corresponds after averaging for 60 s with a sampling
rate of 1 Hz to a line-of-sight (1¢) rms velocity error of

1 1/2Hz 2 1/2
=7 (L&]H (5pm/¢ﬁz- (1Hz/f)'3. (27rf)) df) ~ 26 1m/s, (2.179)

which agrees well with the typical performance in one-way Doppler tracking of 30 pm/s [less
et al., 2012]. In eq. (2.179), the 1/4/2 rescales the dual USO noise level from fig. 2.31 to a
single USO level, since the ground station can utilize a more precise clock.

2.4.3 Dual One-Way Ranging (DOWR)

The dual one-way ranging scheme is basically a duplication of the one-way ranging scheme
as shown in the sketch (cf. upper panel of fig. 2.32) and in the Minkowski diagram (lower
panel). Both S/C emit, receive and interfere light. Phasemeter on-board of each S/C track
the phase. The DOWR is characterized by a common reception time t4 = t4 = t, which is
achieved in post-processing by interpolating the data streams.

For the analysis of the DOWR phase observable © one can directly use eq. (2.176) for
w%?vlv’\;m. To derive the observation on S/C i, the following rules can be applied. First, all
indices ¢ and j are exchanged. Secondly, the signs + and F are exchanged, because the
frequency ordering is opposite on the other S/C. Furthermore, all event labels A, B, ... are
replaced by the corresponding primed quantities (cf. fig. 2.32)). One arrives at the following

144



PART 2. LASER INTERFEROMETRY IN SPACE

S/C1 () S/C 2 (j)
—_——_——— === == ~N 7 - - - - - - - = -~
g i | | | \ | Gz [
uso D C uso
| o o @ ) '
| — o e !
I Laser / Wave Source |C D’| Laser / Wave Source | |
\ \ ]

Local Lorentz Frame

S/C2(j)

Spatial
Coordinate(s)

Cet A
Time
A I
/
N
S
g 5!
S/
/
/ Spatial
/ Coordinate(s)
] /4 b 7/ R / /

' ]

Figure 2.32: A sketch of a dual one-way ranging interferometer. The Minkowski diagram
in the central panel shows the actual light paths, while the bottom panel shows the light
paths (green) of an ideal range measurement between the two CoM or GRP of the S/C.
Furthermore, the instantaneous range pi,s is depicted.
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expression for S/C i

@%%V?;R) (t) = +A@ -t £ & - pinst(t)/co @ - St g ifo(t) F Prpn,;(t) = Pren,i(t)

AD

+ dwLFN,j - Pinst (t)/co — ——

5 * Pinst (t)/CO

Fw- ((STZ (57']) Atp/Q/ corr — % . (57—] 4 6,7_2)

Jw plnst( )/CO
F A‘I’Ef,j + AVUp ; T 9 + Tpr; + 09pPM,UsO,i + 0PPM,i
+ Tpm, + const., (2.180)

(

which can be combined with ¢py, OWR) to cancel the major laser phase noise terms ®1pN and

to provide the DOWR phase:
Ot) = Phani - (8) = pha (1)

2@ pinst(t)/co + @ - (0tEBito(t) + 0t pr B ifo(t))
(5WLFNi + OWLFN,;) - Pinst(t)/co

@ - (AtpQcorr + Atprgy corr) F @ - (67 + 75) - pinst(t)/co
+ (A\IJE’Z- — A\I’EIJ) (A\IJBJ — A\I/Brﬂ-) + 9 F 9
— TpR,j — 0pM,USO,; — 69pM,j + TPR: + 090PM,USO,i + d9PMi
— Tpm,; + Tpwm,; + const. (2.181)

o

The first summand in the first line in eq. (2.181) contains the ranging information, i.e. twice
the instantaneous distance between both S/C CoM. The second summand accounts for inter-
ferometer instrument errors (dtig ), such as attitude-to-ranging coupling in both OWR, paths.
The second line contains the laser frequency noise of both lasers. The third line contains
delays due to relativistic effects and ionosphere (AtpQ corr + Atprgr corr), Which will be ad-
dressed in sec. 2.5. The second addend in the third line is a relativistic modulation (oc §7).
Line four contains the static or only very slowly varying laser phase variations (AW¥), which
are highly suppressed due to the difference of unprimed and primed quantities. Furthermore,
1 accounts for the phase variations of the light fields over the active area of the photodiode,
which is determined by the overlap integral of the electric fields. The next line contains fur-
ther contributors, which have been discussed in the previous one-way ranging section. The
last line contains the phasemeter transfer function Tpyr ; and the constant bias, which should
remind the reader that one can not determine the absolute inter-satellite distance, but only
a biased range.

The DOWR phase observable ©(t) contains twice the inter-satellite distance. However,
it can be converted to a (phase) equivalent distance pg(t) by

pol(t) = m + escr, (2.182)
where Wegt. is the best-knowledge mean angular frequency of both S/C, since the true mean
in-orbit frequency @ = (w;; + w;;)/2 is not known. This introduces a small scale factor
error egcr, which depends on the magnitude of O(¢). In sec. 2.3.1 on the laser, an in-orbit
knowledge for A of 1ppm was stated as realistic for cavity-based frequency standards with
NPRO laser. Thus, the range with unit of meters can be obtained from the phase with an
accuracy of 1 ppm. This is not a classical noise source but a multiplicative error. It is depicted
by the orange trace in the lower panel of fig. 2.33.

The (phase) equivalent distance pg is to first order the desired instantaneous inter-S/C
distance pinst. However, deviations are present due to noise, errors and relativistic effects.
One major noise source is laser frequency noise, which is shown in the upper panel of fig. 2.33
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Figure 2.33: (Upper panel:) Dual one-way ranging (DOWR) noise due to (laser) frequency
noise (LFN) for different frequency standards or requirements with a S/C separation of
L =100 km. The equivalent laser frequency noise with units of Hz/v/Hz is shown in fig. 2.8.
(Lower panel:) The black lines at the top show the expected ranging signals of a GRACE-
like constellation with L = 100km and h = 400 km. The total ranging signal consists of the
time-variable plus static gravity field, however, both contributions have been separated for
illustration. The time-variable signal was derived from the ESA ESM model [Dobslaw et al.,
2015]. The gray bold line indicates the NGGM sensitivity goal of 25nm/v/Hz x NSF(f).
All traces consider an optical wavelength of A = 1064 nm and refer to a single-way distance,
i.e. they are summands in pg(t) (cf. eq. (2.182)).
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Figure 2.34: Amplitude spectral density of different noise contributions in a dual one-
way ranging measurement. The y-axis refers to the (single-way) distance fluctuations, al-
though the DOWR phase is to first order proportional to twice the distance. This plot
assumes an inter-satellite distance of L = 100km. Other parameters for this plot are
Amicrowave = ¢/24GHz = 1.25cm, Aager = 1064nm, C'/Ny = 70.0dB-Hz and maximum
beatnote frequencies (for timing jitter) of 20 MHz and 1 MHz for laser and microwave, re-
spectively.

for various frequency standards or experiments. The thick black trace is the NGGM laser
frequency noise requirement (cf. eq. (2.77)), which will be assumed as baseline in the fur-
ther discussion. It is below the gray sensitivity goal curve, which is 25nm/v/Hz x NSF(f)
(cf. eq. (1.39). One should note that the frequency stability of a free-running NPRO laser is
insufficient (green trace) and needs to be improved with a dedicated frequency standard.

The lower panel of fig. 2.33 shows other constituents of ©(¢) and pg(t) in the spectral
domain. The magnitudes of the phase readout noise dppyr and of the timing jitter noise in
depm,uso are scaled by 1/ v/2 in the ASD plot compared to the one-way ranging scheme, since
two uncorrelated phasemeters and USOs are present in DOWR. The effect of the phasemeter
transfer function Ypy; can be corrected in post-processing (cf. sec. 2.3.7). The dashed light
blue trace illustrates already the effect of the error in the correction 6 Ypn pp, which is mod-
eled here as a simple delay of the phase output by 25ns per phasemeter (cf. eq. (2.123)). Since
the effect of the transfer functions T from phasemeter and photoreceiver are not stochastically
driven, they are assumed to add up linearly and are hence not rescaled by /2. The shown
dark blue photoreceiver Tpg line is based on the post-processing correction (cf. eq. (2.89) as
well.

The second magenta line at the bottom illustrates the negligible effect from the USO
timing offset d7yso o, Which is a second term in the USO induced phase error dppn,uso
(cf. eq. (2.118) and (2.124)) with the following PSD expression in the DOWR case:

(27 - f - 0TUSO0ft)” - PSD[SD%?\X?;R)] + (27 f - 6TUSOLft)” - PSD[SO;?\X\\;R)]

(2.183)
For this trace, an offset of 67yso o = 100 ps was assumed per S/C, which can be understood
as the systematic bias or slowly varying offset in the time stamping of phase samples. In
contrast, the timing jitter accounts for fluctuations within the science measurement frequency
band. The offsets d7yso o can be caused by errors in the required interpolation of phase
samples to a common reception time. However, this offset corresponds to a a further delay
next to delays from the uncertainty in the phasemeter and photoreceiver transfer functions,
which are assumed to be larger. The three lines showing the errors due to delays (Ypnm, Tpr
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and USO time offset) in fig. 2.33 are based on the assumption that the DOWR is realized with
a frequency standard and not by a free-running laser, such that the actual phase measurement
is dominated at low frequencies by the ranging (Doppler) signal on both S/C. If free-running
lasers would be used, laser phase noise would dominate the phase measurement and the errors
due to delays would be driven by the laser phase noise. Thus, DOWR with free-running lasers
is more demanding in terms of requirements on delays and timing offsets.

Many relativistic contributions related to the proper time cancel out in eq. (2.181) for
© compared to the one-way ranging observable gp{;?vIWR), for example, the terms related to
the transverse Doppler effect or, more generally, to the gravitational and special relativistic
frequency shift. These are proportional to the product of optical frequency and proper time
(@-07). The typical magnitude of the remaining term @ - (67; + 97;) - pinst (t) /co in eq. (2.181)
is shown by the red trace in the lower panel of fig. 2.33, which can be regarded as uncritical.
Moreover, it can be corrected in post-processing due to its non-stochastic nature. This
term can be understood as the remaining effect of the gravitational and special relativistic
frequency shift in the DOWR combination, whereby most of the effect (@ - d7) is canceled by
the two-way ranging combination. Many other relativistic contributions on the propagation
time between the satellites are absorbed in Atpg corr + At prgr corr and will be addressed in a
subsequent section.

The DOWR scheme is used by the microwave ranging instrument in GRACE and GRACE
Follow-On. An approximate frequency stability of microwave radiation is indicated by the
dashed red trace in the upper panel of fig. 2.33, which was derived from the USO stability
discussed in sec. 2.3.4. It is remarked that the frequency stability of the microwave radiation
is approximately one order of magnitude lower than the stability of the laser light. Hence, the
anticipated larger gain in sensitivity of a laser interferometer cannot solely be caused by the
frequency or phase noise of the radiation with units of rad/y/Hz or Hz/v/Hz. The sensitivity
difference between a microwave and a laser ranging system is illustrated in fig. 2.34, where
the laser frequency noise dwrry, the phase readout noise dppyr and the timing jitter noise
dpm,uso are shown for microwave (red traces) and for a laser instrument (black traces). One
should notice that the microwave instrument is limited by phase readout noise dppy;, which
is called in the GRACE KBR context system noise [Kim, 2000], and timing jitter dppm uso,
while the interferometer is limited by frequency noise dwrrn. The timing jitter and phase
readout noise scale with the wavelength, which is a factor Apicrowave/Alaser & 10* smaller for
the laser light. The used worst-case value for the carrier-to-noise density of 70.0 dB-Hz in the
plot is in agreement with the value from [Kim, 2000, p. 112] for the microwave instrument
and is also realistic for a laser ranging instrument (see sec. 2.3.7 on phasemeter). However,
is is stressed that other important noise contributions such as the spacecraft pointing jitter
and the ionospheric noise have been neglected in this comparison.

Another difference due to the wavelength concerns the beatnote frequencies on both
satellites. A range rate of 5m/s between the satellites induces a frequency Doppler shift
of approx. 5 MHz for 1064 nm laser light, while the same rate causes 400 Hz at a wave-
length of 1.25cm. To avoid zero crossings of the beatnote frequency, the USOs on-board of
each GRACE satellite are detuned by 99 Hz [Dunn et al., 2003], which corresponds to ap-
prox. 20 ppm or 0.5 MHz at the 24.5 GHz K band. A crystal oscillator frequency can be easily
altered by a change in the geometry. As laser interferometry exhibits larger Doppler shifts
in terms of Hertz, the offset frequency needs to be higher, e.g. at 10 MHz, but the fractional
detuning is smaller around 0.035 ppm, if a 1064 nm laser wavelength is assumed. Such a small
but well-defined detuning is difficult to achieve directly with laser frequency standards and
would likely require additional frequency shifting components to the author’s knowledge.

A transponder scheme can be envisioned to circumvent this issue, which will be explained
in the next sections.
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2.4.4 Derivation of Transponder-based Ranging

In this functional concept both S/C receive and emit laser light and both perform an in-
terferometric phase readout, as in the DOWR case. One satellite emits frequency stabilized
light at an event E in the Minkowski diagram in fig. 2.35. This S/C with active frequency
stabilization is denoted as master (M). The distant S/C denoted as slave receives the light
at coordinate time t4 and performs a phase readout with the interferometer and phasemeter,
which can be written as (cf. eq. (2.164)):

Sﬁgﬁ)s(tA) = t0nn - Tm(ta — Atgpa) £ Prpn v (Ta(ta — Atpa)) £ AVE

F wg|s - Ts(ta — Atpa) F Prrn,s(Ts(ta — Atpa)) F AVps

+95(ta) + Tpr,s + 0pm,Uso,s + d¢pms + Tpm,s + const., (2.184)
where the first line contains the phase of the light received from the master, the second
line contains the phase of the local light and the third line contains additional contributions
from interferometry, such as the phase due to wavefront overlap (dg), contributions from
the transfer function of the photoreceiver and phasemeter (1) as well as USO timing errors
dopm,uso,s- The previous expression can be approximated as (cf. eq. (2.176))

oL . . . _
<,0§3M|)5 = +AG - taA F@- pinst(ta)/co F@ - 6tppin(ta) £ Prrnm(ta) F Prrn,s(ta)

w
F OWLEN,M - Pinst (f4)/co + dwrpN,s - Atpa — - Pinst(ta)/co
A
— (

Fw- (67—]\/[ - 67—5) Fow- AtPQ,corlr - 67—M + 67—5) +w- 67’]\/[ . pinst(tA)/CO

+ AV F AVR g+ 95 + Tpr,s + 00pM,Uso,s + 0vpm,s + Teum,s
+ const., (2.185)

The upper sign applies in the expression, if the laser frequency of the master laser wyyy/ is
higher than the frequency of the slave S/C wg|g. Furthermore, as in the DOWR case, it is
assumed that the relative velocity between both S/C along the line of sight pingt is low enough
such that the Doppler induced frequency shift does not change the frequency ordering, i.e.

Pinst/Co * Warivr < |Ws|s — @ar|al (2.186)

However, the slave S/C uses the measured phase in a feedback control loop, the so-called
frequency offset phase-locked loop (PLL) as explained in sec. 2.3.9, to zero the difference
between the measured phase and a reference phase ¢, = woft - Tuso + const. This is achieved
by actuating the laser frequency, which can be modeled here by an adjustment of AWg, which
was so far simply a slowly-varying phase term of the laser. The actual measured closed-loop
phase has been derived in the frequency domain in eq. (2.141) in sec. 2.3.9. If the loop gain
Hi 0p is sufficiently high, one can obtain a simple time-domain expression of the closed-loop
phase measurement as (cf. eq. (2.142))

CL
@éM‘)S(Ts(tA)) X Wof|s * TUSO,5(Ts(ta)) — Woft,s - ATUSO,Dec2,5(Ts(t4))

> (2.187)

+ dppm,uso,s + const. + O (
Loop

where the first term is a phase ramp with constant frequency wog s, the second summand
depends on the delay time of the second decimation filter in the phasemeter. This term
is almost constant, however, it may contain a small relativistic modulation and is for this
reason kept for further analysis. The third addend denotes the USO timing error of the phase
measurement, which arises from the conversion of the on-board phase measurement to the
GCRS coordinate time t. It contains the effect of timing jitter and of the timing offset. The
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Figure 2.35: Transponder ranging scheme, where the slave spacecraft locks its laser with
an offset frequency to the incoming light field. The lower plot shows the corresponding
Minkowski diagram of light paths (red and blue arrows) in a transponder concept. The green
arrows indicate the light world lines of an ideal range measurement between the CoM of both

S/C.
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Figure 2.36: Constituents of the closed-loop phase gogf\;f)

¢ on the slave S/C. The frequency
offset PLL open loop gain Hiy,qop has been defined in ed. (2.143). The laser phase noise
for master and slave is based on the NGGM frequency standard and on the free-running
NPRO stability, respectively, shown by the green and black trace in fig. 2.8. The magenta
trace considers already post-processing corrections (cf. eq. (2.124)). The phase variations
have been converted to equivalent displacement spectral densities under the assumption of a

wavelength of A = 1064 nm.

jitter induced phase noise depends on the frequency of the beatnote, which is weg and can
be considered of the order of 27 - 10 MHz for the slave S/C. The phase noise induced by the
static offset ATyso o depends on the measured phase variations in the measurement band,
which are suppressed and negligible in closed-loop operation on the slave satellite. Thus, as
in the DOWR case, the term d¢pwm uso,s is dominated by timing jitter and is shown in terms
of the equivalent displacement noise as magenta line in fig. 2.36.

To justify the omission of the O(1/Hy,oop) term in eq. (2.187), one needs to ensure that the

open loop phase contributions are suppressed by the open loop gain Hyop to a negligible level,

(OL) .
pM|s ATe the free-running

laser phase noise from the slave S/C (®rpn s, green trace), the laser phase noise from the
frequency-stabilized master laser (®rrn,as, black trace) and the actual ranging signal arising
from the Doppler shift (pinst(t), red trace), which is implicitly given by the propagation time

between both S/C (Atga) in eq. (2.184). Thus, the open loop phase variations cp%ol\}f)s are

which is shown in fig. 2.36 as well. The dominant contributors to ¢

suppressed by the control loop to a level below 1 nm/ VHz as apparent from fig. 2.36.

The delay term wog,s - ATuso,Dec2,s i eq. (2.187) is a pure digital delay of the second
decimation filter, and hence it is dependent on the USO clock rate. However, as the USO
clock time is a good approximation for the proper time, one can approximate it rigorously
with the help of the delta proper time (cf. eq. (2.165)):

Woft,s * ATUSO,Dec2,5 ~ Woff,s - NUSO,Dec2,5 - (1 — d75)
= const. — Woff,s 'NUSO’DeCZS - 0Tg, (2.188)

where Nuso Dec2,s is the proper delay in the local Lorentz frame of the S/C. The magnitude
of Muso pec2,s is determined by the sampling rate of the science data, which is the output of
the second decimation filter. The effect of this term on the phase is negligible even with a
worst-case assumption of NUSO’DGC%S ~ 1s and with weg g = 27 - 10 MHz, which is indicated
by the light blue trace in fig. 2.36. Thus, a post-processing correction of this term is not
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required but would be possible.

In summary, the phase readout at the slave S/C is in good approximation a constant ramp
over time without ranging information. This zero measurement was obtained by imprinting
the phase information from the received light of the master satellite onto the laser light
of the slave S/C. It is important to notice that the same light used for interference and
photodetection on the slave S/C is also transmitted back to the master. The phase of the
light at the emission event B on the slave S/C in fig. 2.35 can be directly deduced from
eq. (2.140) and (2.138) as

Pp(1s(tp)) = +Prx(7s(tB) + ATBA,5) + Us(7s(tB) + ATBA.S) + d¢PM,S

F woft,s - (Tuso,s(tB) + ATy s(tp) + Atea,s) + O (1/Hroop,s) (2.189)
= +Ppx(75(ta))

+95(7s(ta)) + 0ppa,s(Ts(ta)) F wott,s - TUso,s(Ts(tA))

F wott,s - ATp,s(ts) + O (1/HLoop,s) (2.190)
= +oupm ™™ (tE) + PrEN v (Ti (tE)) + AV E M

+95(75(ta)) + 0ppa,s(Ts(ta)) F wotr,s - Tuso,s(Ts(ta))

F wott,s - ATp5(t8) + O (1/Hroop,s) (2.191)

where ®rx(7(t4)) is the received phase at event A, i.e. the first line of eq. (2.184), which
was used in the recast to obtain eq. (2.191). The phase of the emitted light 5 at the slave
S/C does not contain contributions from the slave laser, e.g. no carrier phase wg|g - 75 and
no laser phase noise ®rpn, 5, because these are suppressed by the control loop and absorbed
together with other terms in O (1/Hroop,s). The light phase ®p is positive, however, the
sign of the frequency shift w.g g depends on the frequency ordering between master and slave
laser. Furthermore, as in the DOWR case, it is required that the Doppler frequency shift is
smaller than the offset frequency, such that the frequency order can not be reversed by the
relative motion between S/C. This means that eq. (2.186) is equivalent to

Pinst/C0 - War|m < Woff, S (2.192)

which provides an operational lower limit for the selection of the offset frequency wyg g de-
pending on the (maximum) expected relative velocity pinst. In the following discussion, the
generic value of wog g = 27 - 10 MHz is kept, which fulfills the condition in eq. (2.192) for the
gravimetric mission concepts discussed in this thesis.

The term A7, g in eq. (2.191) is a delay due to the effect of the transfer functions from
photoreceiver, ADC, DPLL and first decimation filter on the slave S/C (cf. transfer function
Hy in sec. 2.3.9). Although this delay is constant in the local Lorentz frame of the slave
S/C, i.e. the proper delay with respect to the proper time of the satellite, it may show a
small variation in the GCRS coordinate time t. Therefore, the term is kept for a subsequent
evaluation.

The emitted light of the slave S/C propagates back to the master, where it is interfered
with the local laser light and the phase of the beatnote is read out. Again, one can exploit
the Lorentz invariance of the phase, which allows the phase at the reception event A’ on
the master satellite to be written simply as the phase at the emission event ®g on the slave
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satellite. This yields

SOPM|M(tA’) = i(DM|M . TM(tA/ — AtB/A/) + (I)LFN,M(TM(tA/ — AtB/A/)) + A\I’B/,M

F ®p(7s(tn))

FOm(ta) + Tera(tar) + 0ppmuso,n(tar) + oepmar(tar)

+ Ypwm,ar(tar) + const. (2.193)
= o ™M (tar — Atprar) £ Orpn v (Tar(tar — Atprar)) £ AVpr

Fomm - m(ta — Atpa) F PLen v (Tar(tar — Atpar)) F AVE
FUs(ts(tar — Ataar)) F dppm,s(Ts(tar — Atgar))

+ Wot,5 - TUs0,5(Ts (tar — Ataar)) + woft,s - AT 5(thy — Atpar)

Fm(tar) + Term(tar) + 0ppmuso,n(tar) + 0ppn s (tar)

+ Ypm,m(tar) + const. T O (1/Hroop,s) , (2.194)

which is a very generic description of the phase observable on the master S/C. It is noted that
the proper time of the master (757) as well as of the slave (7g) S/C appear in the equation.
Furthermore, one-way photon propagation times from the slave to the master, such as At 44/,
and round-trip delays, e.g. Atgys, are present.

The same approximations as in sec. 2.4.1 on the one-way ranging can be used to assess the
magnitude of the single contributors and to derive a relation to the instantaneous range pipgt.-
At first, terms with the optical frequency wysas » 10'%rad/s are considered. It is recalled
that the proper time 7 is increasing with a rate of almost 1s/s in the GCRS, while the delta
proper time is 07 = t — 7 (cf. eq. (2.165)) and has a rate of the order of 67(t) ~ 107%s/s
(cf. eq.(2.14)). Furthermore, the photon propagation time At for distances on a single S/C,
one-way between both S/C and round-trip between both S/C are of the order of 1078s,
0.33 ms and 0.66 ms, respectively, for an assumed satellite separation of 100 km.

Thus, one can approximate the terms depending on the optical frequency as

‘DM|M . (TM(tA/ — AtB’A’) — TM(tA/ — AtEA’))
= CDM\M ' [tA’ - AtB’A' - 57—M(tA' - AtB’A’) - (tA/ — AtEA’ — 5TM<tA/ — AtEA’))] (2195)

= Wppm - | “Atpar + Atpar +0Ty(tar — Atpar) — 6Ta(tar — Atprar) (2.196)
Aty

~ wpim - (Atpp + 0Tar(tar) — 0T (tar) - Atpar — 0Tar(tar) + 07ar(tar) - Atprar)  (2.197)

~ Waravr - Atepr — O - 0Tm (tar) - 2+ pinst(tar)/c, (2.198)

where the time difference Atgp/ contains mainly the ranging information. This quantity is
a difference between Atga and Atpgy, where Atga is the time of flight of a photon from
the emission event on the master S/C to the reception event at the photodiode after the
round-trip path, while Atgys is the time of flight of another local oscillator photon from the
master laser to the master photodiode. One can write the propagation time Atgp: in terms
of the instantaneous range and correction terms:

= 2 Pinst (t)/CO + AtQPR,COrr +0tito (t)a (2200)
Atgrr

where dtif, contains corrections due to the interferometer instruments on both S/C, e.g. due
to attitude-to-ranging coupling and other pathlength couplings, while Atgppr corr denotes
corrections for the inter-satellite round-trip time, e.g. due to relativistic delays or ionospheric
effects. The term Atgprg is the ideal and relativistically correct round-trip propagation time
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between both S/C CoM shown by the green arrows in the Minkowski diagram in fig. 2.35.
The previous equation is discussed in detail in the subsequent sec. 2.5 on corrections to the
photon time of flight.

The second summand in eq. (2.198) is a relativistic effect, which appeared in similar
form in the DOWR scheme and turned out to be uncritical. It is the remaining effect of
a gravitational and special relativistic frequency shift between the locally used photon for
interference and the round-trip delayed photon. It is pointed out that terms of the form of
optical frequency times delta proper time (w - 67), which contain most of the gravitational
and special relativistic frequency shift, canceled out as in the DOWR scheme. Thus, also the
transverse Doppler effect [Rindler, 2012, sec. 3.2] at the optical (carrier) frequency is highly
suppressed in a transponder concept.

The laser phase noise in eq. (2.194) can be rigorously approximated with the help of
eq. (2.168) as

(I)LFN,M(TM(ZL/A’ — AtB/A/)) — q)LFN,M(TM(tA’ — AtEA/)) (2.201)
= @LFN,M(tA’ — AtB’A’ — (STM(tA/ — AtB’A’))
_(I)LFN,M(tA’ —AtEA/—(STM(tA/—AtEA/)) (2.202)

~ Orpnv(tar) — 2movieN - (Atprar + 0Tar(tar — Atprar))
— (PrrN,m(tar) — 2moveeN, - (Atpar + 0T (tar — Atpar)))
~ —2mévipN M - (—Atpp 4+ 0Tar(tar) — 0Ta(tar — Atgar))
~ 271 - dvppn, M (tar) - (FAtgp — 6Ta(tar) - Atgar)
~ 27 - dvpeN v (tar) - 2 - pinst(tar)/c.

The laser phase variations almost cancel each other, since the phase (noise) is compared to
itself with a small delay. The remaining frequency variations dvprn,as couple via the round-
trip distance (or delay). The round-trip delay Atpas was omitted from eq. (2.205) to (2.206),
because it is multiplied with the small 47 and with dvyrn, a7, which is also much smaller than
the optical frequency (27 - SvLFN M < @ag(ar)-

The phase ramp due to the frequency offset wog s on the slave S/C in eq. (2.194) is driven
by the USO on the slave S/C, which can be rewritten with the help of eq. (2.97) as

Woft,s - TUS0,5(Ts(tar — Ataar))

= Wot,s - Ts(tar — Atgar) + wort,s - 0TUs0,5(Ts(tar — At aar))

= Wot,s * (tar — Atgar — 07s(ta — Atgar)) + woft,s - 0TUs0,5(Ts(tar — Ataar))
N Wolf,s  LAr — Woft,5 - 0Ts(tar) —Wott,s - At + Woft,s - 0TUSO,5(Ts(tar))

v

Woft,s 5 (t4r)

A Woft,§ " tar — Woff,s - 0Ts(tar) — Wotr,s * Pinst(ta7)/Co + 6ot USO,S- (2.211)

It contains a constant phase ramp wog,s - t, which should be ideally modeled via the proper
time, i.e. wog,s-Tg. Because this term depends on the proper time of the slave S/C, it gives rise
to a transverse Doppler effect, however, only for the offset frequency, which is typically of the
order of wog/Wprar ~ 10~7 compared to the optical carrier frequency. Furthermore, a one-
way delay Ataar ~ pinst(tar)/co is present, which also causes a longitudinal Doppler effect
in the offset frequency with a small magnitude (~ 10~7) relative to the primary ranging
information. These terms appear in the phase of the master S/C and may cancel with a
proper combination with the slave data stream in a final ranging measurement, which will
be addressed in the next subsection.

The last approximation concerns the delay term wog g - A7, ¢ from the frequency offset
PLL, which appeared in eq. (2.194). It is the delay from photoreceiver, phasemeter DPLL
and first decimation filter on the slave S/C. This delay is constant in the local Lorentz frame
of the slave S/C, where it is denoted as N, g. However, in the GCRS, the delay appears
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modulated with the proper time of the slave satellite, which can be written as
Woft,§ - ATp.5 ~ Woft,5 -./\/’p75 (1 —07g) = const. — Woft,S -./\/’p75 - 07g. (2.212)

This approximation has been already used in eq. (2.188) for the delay of the second decimation
filter MUSo Dec2,s, which in fact is much larger than N, g, because N, s is part of the fast
high-bandwidth DPLL. Thus, bearing the magnitude of Mygo pec2,s from fig. 2.36 in mind,
one can safely omit this contribution.

2.4.5 Transponder-based Ranging

Summarizing the recent approximations, one obtains for the phase measurement on the mas-
ter S/C in a transponder scheme the following expression:

opmpn(t) & +wot,s -t + (@arjmr T Wott,5/2) - 2+ Pinst (t)/co + @gar - Otigo (£)
+ 27 - SvppN, M (t) - 2 - pinst(t)/co
— Woff,s * 0Ts(t) F Wasar - 67w (t) - 2+ pinst(t)/co £ Oariar - AtQPR corr
F Is(t — pinst(t)/co) F 0ppm,s(t — pinst (t)/co) + ot USO,5
T Onm(t) + Teram(t) + dppm,uso,nm (t) + depmar(t) + Ten, ()
F O (1/H100p,s) + const., (2.213)

The six lines contain 1) a phase ramp due to the offset frequency, the ranging signal and the
interferometer instrument dependent error dt;g, of both S/C, 2) the laser frequency noise, 3)
relativistic terms, 4) and 5) other contributors such as effects from the wavefront overlap,
transfer functions and USO induced timing errors, 6) constant bias and terms of the order
@ (1/HLoop,S)~

One should notice from the second addend in the first line in eq. (2.213) that the instan-
taneous range is encoded at the optical frequency ((IJM| M F woﬁ"s/2), which is actually the
mean angular frequency @ between master and slave laser, i.e.

Bariag + @
—M'M2 oy T Log*s. (2.214)

C’Z) =
In addition, the phase ramp due to the offset frequency and its relativistic modulation (wof,g
d75) need to be removed from pyps to obtain a reasonable ranging measurement. This can

be achieved most easily by subtracting the phase measurement of the slave S/C gol(?cl\/If)S given by

eq. (2.187) from wpyps- In total, one can transform the phase observations in a transponder
scheme to the equivalent (single-way) inter-satellite distance pyg by (cf. eq. (2.182))
CL
co - e (t) = o - Pngis(t)

t. 2.215
12 oo + €scF + const., ( )

PMS =

where @est. denotes the best-knowledge or estimated mean laser frequency of master and
slave laser, and egcp is a scale factor error arising from the difference between @eg. and @.
It is remarked that the previous equation used a combination of phase measurements at the
same coordinate time. Another way to define the phase-derived range is via the delayed slave
measurement, which is equivalent to the previous formula in the high loop gain limit, i.e.

oL
co - pmm(t) —co - <P§>M|)S(t — Pinstest. (t)/co)

pMS = + escF + const., (2.216)

+2- @M|M,est.

which now contains the estimated frequency of the master laser wysjasest. and the estimated
absolute inter-satellite distance pinstest.(t). The latter one needs to be precise to a few
cm/+/Hz and can be obtained from GNSS observations. For the second approach (eq. (2.216))
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Figure 2.37: Different constituents in the transponder-based phase observable
(cf. eq (2.213)). The phase variations have been converted to (one-way) equivalent dis-
placement variations (cf. eq. (2.214)) under the assumption of a wavelength of A = 1064 nm.
All traces are based on the NGGM baseline length L = 100km, except for the requirement
of the GRACE Follow-On LRI

one might omit the simplifications shown in eq. (2.207)-(2.211) for ppyjar, because this leaves

ﬁfﬁfs The validity of eq. (2.215) becomes

apparent, if one expands the phase from the slave S/C:

the offset frequency terms in the same form as in ¢

4

(CL) _ (cL) pMmis drs
SOPM|S(t a pinSt’eSt'(t)/CO) ~ s0PM|S(t) B dTS ’ E ’ plnst,est.(t)/co (2217)
& (pécf\fa)s(t) — Woff,S - pinst,est.(t)/co (2218)

The delayed slave phase measurement contains a term w5, which can cancel the correspond-
ing term in the second addend in the first line of eq. (2.213). Thus, the ranging information is
encoded at the frequency of the master laser in the combination of both phase measurements.

The distinction between the estimated optical frequency of the master S/C and of the
estimated mean optical frequency between master and slave is rather of academic interest
for GRACE Follow-On, since the knowledge of the laser frequency and, thus, the scale factor
error is likely larger than wog /@ ~ 1077,

Most of the constituents of pys, and hence of wpyjar, are shown in fig. 2.37. The black
traces at the top indicate the actual ranging signal between both S/C from the static and
temporal gravity field, which have been separated for illustration in this plot. The gray
dashed trace is the GRACE Follow-On LRI sensitivity with 80nm/v/Hz x NSF;(f), which
is based on a spacecraft separation < 270km. The other traces and the thick gray NGGM
sensitivity goal of 25 nm/v/Hz x NSFy(f) consider a separation of 100 km. The laser frequency
noise shown as thick dark blue line is based on the NGGM stabilized laser frequency noise
requirement (cf. eq. (2.77)), which is far below the actual ranging signal. The scale factor
error egcrp of 1ppm relative to the ranging signal is the orange trace. The dashed purple
line (woft,s - Pinst(t)/co) demonstrates the effect of the Doppler shift in the offset frequency,
however, it appears not as an error if eq. (2.216) is utilized. It would appear as an error if,
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for example, the angular frequency of the master laser (Wps|az,est.) would be used instead of
the mean frequency of master and slave (West.) in eq. (2.215). The red trace indicates the
relativistic modulation of the master laser, e.g. due to the velocity of the S/C and due to the
gravitational frequency shift of the laser light. This effect can be reduced in post-processing
from the measurements, since it is a non-stochastic contribution. The solid magenta line
illustrates the effect of USO timing jitter on the phase ramp on the slave satellite (0@of Us0,5)
and on the time-tags of phase samples obtained on the master satellite (dwpm,uso,a). The
shown curves assume already a post-processing correction, which means that drifts and errors
of both USOs are reduced by GNSS observations (cf. sec. 2.98). At the bottom (magenta
dashed trace) is the error due to the USO timing offset of 100 ps on the master, which is
a second term in dppmuso,m. It is negligible compared to the other delays due to the
uncertainty in the transfer functions (Ypr s + Ypm ar), which are shown combined by the
light blue trace. It is recalled that the effect of the transfer function of the photoreceiver
and phasemeter (ADC, DPPL and first decimation filter) was modeled as pure delay, which
is reduced in post-processing to a value of ~ 25ns. The dashed dark blue trace (wog s - I75)
demonstrates the effect of the relativistic modulation of the frequency offset. It would appear
as an error, if one would derive the range pyg by subtracting a phase ramp in the coordinate
time (wofr,s - ) from @pyg s, instead of using the measurement from the slave S/C, which is
a phase ramp with respect to the proper time (wof,g - 75). Finally, the green trace at the
bottom shows the conservative phase readout noise, which would be caused by a carrier-to-
noise density of 70.0 dB-Hz on both S/C. This choice is conservative, because this numerical
value is the threshold for uninterrupted phase tracking (cf. sec. 2.3.7 on phasemeter), while
the actual signal-to-noise ratio is expected to be higher in nominal science operation. Thus,
the phase readout noise would be even lower.

Two terms from eq. (2.213) are not shown in the figure: the effects on the propagation
time of the light Atgpr between the satellites and instrument induced errors d0tit,. These
will be addressed in subsequent sections of this thesis.

2.4.6 Transponder-based Ranging: Low Gain

The phase observable in a transponder scheme on the master S/C denoted as @pyyar (cf.

eq. (2.213)) and on the slave S/C ‘P;?\/I[JRS (cf. eq. (2.187)) was formulated in the infinite gain
limit (Hjoop,s — o0) of the frequency offset PLL, i.e. expanded to zeroth order in 1/Hjsep.s.
Terms due to finite gain were absorbed in O(1/Hioop,s)-

However, the transponder scheme can also be used with low loop gain, which is quickly
derived in the Laplace domain. It is recalled that the closed-loop phase measurement on the
slave S/C can be written according to the block diagram in fig. 2.27 as

Piars(5) = (@ () = B0 (5)) - Hi(s) - Hieea(s) + F¥(s), (2.219)
which holds for an arbitrary loop gain, i.e. arbitrary Hg +Temp(s) in sec. 2.3.9, because the
gain is implicitly present in the phase of the local laser light ®f . The transfer function of the
photoreceiver, ADC, DPLL and first decimation filter is denoted as H;(s), while Hf ,(s)
is the transfer function of the second decimation filter. The function F¢(s) contains the
wavefront overlap phase ¢ and the USO timing jitter 0y 70, but it is independent of the
loop gain. The phase of the received light ®f(s) on the slave S/C can be written as the
phase of the master laser ®4,(s) delayed by the propagation time Atg4 from master to slave
(see event labels in fig. 2.35), i.e.

Drx(s) = Phs(s) - Dipals)- (2.220)

The phase of the light at the emission event B on the slave S/C has been stated in eq. (2.140)
as

o5 (s) — 2Lols) (2.221)
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One can write the relation between go%;cl\}f)s(s) and ®f(s) with eq. (2.219) and (2.221) as

(CL)
P, (s) — Rx(s) Ppas(s) = F<(s) .
Dia(s)  Dials) - Hi(s) - Hoo(s)
The phase measurement on the master S/C can be approximated as the phase difference
between the phase of the local laser and of the received light

Ponar(s) ~ @y(s) — P5(s) - Dpar(s), (2.223)

where D%, is a delay due to the propagation time from slave to master. It is easy to see
that the linear combination ©y/5(s) of master and slave phase measurements

Onrs(s) = phaiar(s) — X°(s) - piars(s)

(2.222)

= P¢ (S) _®C (S) ) DCEA(S) ' DCBA’(S) _ DCBA/ ) FC(S) (2 224)
e Bals Ba(s) Hi(s) Hpo(s) 7
S ~- e
:DCEA/(S) =D?4A’

yields the result in the second line (eq. (2.224)), which is independent of the loop gain, for

XC(S) _ DCBA’(S) _ DfﬁlA’ (S) ) (2225)

JCBA(S) ’ Hﬁ(s) ’ H]%ecZ(S) Hﬁ(s) ’ Hf)ecQ(s)

The first two summands in eq. (2.224) denote the phase change of the master laser during the
round-trip propagation time Atgys. This difference contains the ranging information and is
independent of the laser phase noise from the slave S/C. The last addend depending on F*
contains the USO timing jitter and the wavefront overlap phase ¥¢ from the slave S/C. The
X¢in eq. (2.225) shows the required transformation of the phase measurement from the slave
satellite to cancel the slave laser contributions in © ;g for an arbitrary loop gain. It consists
of a one-way delay At 44/, which is the time difference between photon reception on the slave
and on the master S/C. Moreover, the effects of the transfer functions Hp and Hp, ., i.e. of
the photoreceiver, ADC, DPLL, and both decimation filters on the slave, need to be reversed.
The reversal of Hj(s) - Hf,.o(s), which are assumed as pure delays in this thesis, has been
implicitly performed in the previous sections. The effect of the transfer functions after this
post-processing reversal was denoted with Tpr + YTpy in most of the previous plots.

In fact, the transformation derived here in the Laplace domain is in agreement with the
time-domain eq. (2.216), where the estimated propagation time pinstest./co corresponds to
At g . Thus, the laser phase variations from the slave S/C are canceled even with finite or
low loop gain, if the transponder combination in eq. (2.216) is utilized for for © g

The phase variations in © ;¢ consisting of ranging information and noises such as master
laser frequency fluctuations are located completely on the master side in a high gain frequency
offset PLL. Thus, the ranging information is distributed asymmetrically between master and
slave S/C. However, more and more phase variations appear in the slave phasemeter output, if
the gain is gradually decreased. This would yield exactly the same results as in the high-gain
limit, if all delays and the propagation time Atgar = pinstest./Co are known without errors. In
practice, there is a higher noise in ©,s5 for a weak phaselock due to the uncertainties in the
delays of the phasemeter and photoreceiver, of the propagation time and of the USO timing
offset. However, the increase in noise would become only noticeable when it exceeds other
noise sources.

In fact, Francis et al. [2015] have suggested to decrease the gain of the frequency offset
PLL in the GRACE Follow-On LRI to test the so-called time-delay interferometry for LISA,
which is essentially a technique to determine the propagation delays and to obtain ©3;g. A
comparison of the low-gain and high-gain transponder scheme and further discussion is post-
poned to the section after next, because an alternative functional concept is briefly addressed
beforehand.
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2.4.7 Passive Retro-Reflector Ranging

A passive retro-reflector concept has been suggested, for example, in [Alenia-Team, 2008] for
a gravimetric mission. The idea is to replace the interferometry on the slave satellite by a
passive retro-reflector, e.g. a corner cube.

As the returned light power to the master satellite scales with L~ in such a concept,
the maximum inter-satellite separation is limited to L « 100km and requires a large open
aperture of the retro-reflector to increase the amount of reflected light and likely a telescope
on the master craft. If a large hollow corner-cube is used, diffraction effects from the edges
and de-polarization effects might degrade the phasefront quality and therefore ranging perfor-
mance. Furthermore, it might become difficult to place the vertex of the large retro-reflector
close to the center of mass of the S/C, and hence to reduce attitude-to-ranging coupling. In
addition, as there is no frequency offset imposed onto the reflected light, the interferometry
on the master satellite needs to handle zero crossings of the beatnote frequency, or additional
frequency shifting components need to be introduced. These points let the author of this
thesis consider such a scheme to be less suited for precise inter-satellite ranging.

2.4.8 Comparison and Summary

This section 2.4 has addressed one-way ranging, dual one-way ranging, transponder-based
ranging and touched briefly on passive retro-reflectors. The one-way ranging turned out to
be unfeasible for a gravimetric mission, because the (laser) phase noise is not suppressed in
such a scheme. One approach to mitigate this issue is to perform a round-trip measurement
by sending the laser light back to the emitter S/C, e.g. by a passive retro-reflector on the
distant S/C. Then one can perform a comparison between the delayed and non-delayed light
phase by beating the round-trip delayed light with the local laser light, which removes the
common phase, while the remaining part is, for small round-trip delays At, the product
of instantaneous laser frequency and round-trip propagation time At. The delay time At
contains the ranging information, while the instantaneous frequency of the light consists of
the (constant) carrier light frequency and laser frequency noise. Thus, the observed phase
is not falsified by laser phase noise anymore but by the laser frequency noise, which turns
out to be beneficial for frequencies in the science measurement band (f « 1Hz) and for S/C
separations present in gravimetric missions.

Although the use of a passive retro-reflector is conceptionally simple, it turns out to
be practically suboptimal due to the scaling of the returned power with the inverse fourth
power of the distance L™* and due to clipping of beams. Furthermore, regular zero crossings
of the beatnote frequency appear due to the sinusoidal modulation of the range rate in
gravimetric missions, which are difficult to handle in heterodyne interferometry. These issues
can be circumvented by transponder-based concepts, where the slave S/C acts as active
retro-reflector. This means the slave S/C amplifies the received light power by transmitting
a power enhanced laser beam with the same phase as the received beam. It is beneficial for
the master S/C and for the slave S/C, which is the transponder, if the transponder introduces
a small frequency-offset into the back-reflected light, such that zero crossings of the beatnote
frequencies are removed on both S/C.

The laser source on the transponder S/C can have a higher phase and frequency noise
than the master laser, because the phase of the slave laser needs to be locked anyway to the
phase of the incoming light field by means of a frequency offset PLL. Typically, the control
loop gain can be made sufficiently high, such that the slave S/C measures simply a phase
ramp due to the offset frequency, while the master S/C measures the phase ramp, the round-
trip ranging information, i.e. twice the one-way Doppler shift, and the laser frequency noise
of the master laser. In principle, one can discard the phase measurement of the slave S/C in
on-ground processing, since the ranging information is in the data stream of the master S/C.
The frequency noise of the master laser does not cancel out, which means that the master
laser should be stabilized to a frequency standard such as a cavity.
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It is remarked that the laser subsystems on both S/C need the capability to actuate
the optical frequency with high bandwidth to achieve a high gain frequency offset PLL on
the slave and to lock the laser to a frequency standard on the master. Thus, the role of
master and slave S/C can be made interchangeable, if both S/C are equipped with frequency
standards and frequency offset PLLs, which introduces cold-redundancy for some parts as
demonstrated in the GRACE Follow-On LRI.

The transponder concept can also be used with an intermediate or low gain frequency
offset PLL, where the phase measurement on the slave is not simply a phase ramp but contains
also ranging information and noise. Then, the phase measurement from slave and master need
to be combined with the correct delay. This delay is the light propagation time from the slave
to the master S/C, in other words, one needs to evaluate the phase measurements from master
and slave at slightly different instances of time. The phase difference removes the phase and
frequency noise from the slave laser and the phase ramp, whereby the correct round-trip
ranging information is restored. However, additional noise is practically introduced in a
low gain transponder, since the delay for the synthesis of the combined phase has a limited
accuracy. It should be noted that a weak phaselock still needs sufficient gain, so that the
beatnote frequencies on both S/C are maintained in the measurement frequency band of the
photoreceiver and phasemeter.

Major advantages of a high-gain transponder are the lower susceptibility to errors in times-
stamps and delays and the cancellation of laser phase noise directly in the optical domain
prior to the photodiodes and digitization in contrast to a cancellation in post-processing.

Similar to the low-gain transponder is a dual one-way ranging (DOWR) approach, where
data streams from both S/C are evaluated at a common (reception) time. It is being utilized
in the microwave ranging of GRACE and GRACE Follow-On. The DOWR synthesis does
not cancel the phase or frequency noise of a particular laser, because both wave sources are
assumed to have the same noise characteristics. Instead, the DOWR removes the phase noise
of both lasers symmetrically for time-scales of the one-way delay time and larger. Thus, what
remains is the laser frequency noise of both lasers scaled by the one-way propagation time.
The DOWR is optimal, if both lasers have the same frequency noise and are uncorrelated,
because it reduces the remaining laser noise by a factor of v/2. The individual phase mea-
surements of both S/C contain the full phase noise of both wave sources, as in the low-gain
transponder. Hence, the DOWR shows also a higher susceptibility to delays and timing
offsets compared to the high-gain transponder.

Although the balanced distribution of phase variations on master and slave S/C in the
DOWR and low-gain transponder is accompanied with higher susceptibility to timing off-
sets and delays, it has the advantage that the range rate induced Doppler frequency shift
can be distributed onto two photoreceivers and phasemeters. The beatnote frequency of
the photodiode signal on the master, i.e. the slope of the measured phase ramp, consists
in a high-gain transponder concept of the round-trip Doppler shift plus the frequency off-
set, while in the balanced scheme it is only the one-way Doppler plus the frequency offset.
Thus, the maximum relative velocity along the line-of-sight, where the beatnote frequency
exceeds the measurement frequency band of photoreceiver and phasemeter, can be twice as
high under optimal conditions. For example, if one considers an operational frequency band
of 4 MHz..20 MHz and an offset frequency of 12 MHz, it would allow a maximum one-way
Doppler shift of +4 MHz in a high-gain transponder and of +8 MHz in a DOWR scheme.
These values correspond to an approximate maximum range rate of +4m/s and +8m/s for
an optical wavelength of 1064 nm. However, the dynamic range of the high-gain transponder
can be doubled as well, if a time-dependent offset frequency is used to counteract the a-priori
well-known sinusoidal ranging induced Doppler shift.

Dual one-way ranging by means of optical interferometry is difficult to achieve, because
the laser light on both S/C needs to be stabilized to an absolute frequency offset by a few
MHz between satellites. Thus, one can not simply lock both lasers to cavity-based frequency
standards, which have indistinguishable and equally spaced resonance frequencies. Further-
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High noise (slave) and low-noise (master) laser
- cold redundancy of a frequency stabilization possible,
if both S/C equipped with frequency standard
Option 1: High gain frequency-offset PLL on slave SIC
Slave laser does not appear in phase measurements for high gain
No estimation of absolute distance required
Master phase: ~ Ramp + LFN(M) x 2 x L + 2x Doppler
Slave phase: only Ramp
Slave phase measurement in principle not required on-ground
Laser phase noise cancels in optical domain
Higher range rate possible with time-variable offset frequency
Final ranging noise:

Both SIC laser (SIC A + SIC B) same noise

- Dual One-Way Ranging: Common reception time
- Frequency difference between lasers required

to keep beatnote frequency in-band

No estimation of absolute distance required

I A )

— Master phase: ~ Ramp + LPN(A) + LPN(B) + Doppler ~LEN(M) x L x 2
- Slave phase: ~ Ramp + LPN(A) + LPN(B) + Doppler . i .
~ Laser phase noise cancels in post processing Option 2: Low gain frequency-offset PLL on slave S/C

Doppler distributed equally between S/C; ~ PLL required to keep beatnote in-band
higher range rate possible - estimation of absolute distance necessary
~ Susceptibility to timing offsets due - Master phase: ~ Ramp + LPN(M) + LPN(S) + Doppler
to high magnitude of phase measurements - Slave phase: ~ Ramp + LPN(M) + LPN(S) + Doppler
- Final ranging noise: - Laser phase noise cancels in post processing
~LENXLX2Xx1/20 — Doppler distributed equally between S/C;
higher range rate possible
Susceptibility to timing offsets due
to high magnitude of phase measurements
- Final ranging noise:
~LFN(M) x Lx 2

i

Figure 2.38: Executive summary of the comparison of dual one-way ranging (left column)
and of transponder-based ranging (right column). The following abbreviations are used:
Laser Phase Noise (LPN); Laser Frequency Noise (LFN), which is the time-differentiated
LPN; absolute inter-satellite distance (L); Master (M); Slave (S).

more, a cavity has a poor absolute frequency stability, because 1ppm absolute frequency
stability requires a mechanical stability and a manufacturing tolerance of the absolute length
of the cavity at the level of 0.5 picometer (at DC), if optical light with 1pum wavelength is
used.

An executive summary for the comparison of the relevant functional concepts is shown in
fig. 2.38.

In space laser interferometry, such as in the LISA pathfinder mission and in the LISA
mission concept, NPRO lasers at 1064 nm wavelength are favored, since they show a low
intrinsic free-running frequency noise and a low amplitude noise, and they can be easily shifted
in the optical frequency by a few per mill with temperature and piezo-electric actuators.
In general, lasers can stably operate on a single longitudinal mode (frequency) only in a
particular range of setpoints, which can even vary among lasers of the same batch due to
manufacturing tolerances. Thus, frequency standards based on cavities are very prominent
in precision metrology, since they can serve at various frequencies. In addition, they are to
a large degree independent of the wavelength® and of the used lasers as long as the laser can
be frequency locked to the cavity resonances.

NPRO-based lasers with a cavity-based frequency stabilization likely offer the simplest
means to obtain frequency stabilized light in space, not least since both components have
a stand-alone value and can be developed and advanced as independent subsystems. In
combination with a transponder functional concept, they enable precise laser ranging inter-
ferometry. This combination is very appealing for space missions and has been extensively
studied for decades within the LISA mission and it has been qualified for flight, i.e. reached
TRL 8, within the GRACE Follow-On mission by the time of this writing.

The aforementioned advantages and the maturity from the heritage of LISA and GRACE
Follow-On makes transponder-based ranging with NPRO lasers and cavity-based frequency
standards a good choice for future gravimetric missions, especially because the next gener-
ation of gravimetric missions will be likely not limited by ranging noise. Some operational
constraints of this interferometry concept such as the maximum range rate of a few m/s
can be extended with a time-variable offset frequency or even further with more complex
extensions discussed in [e.motion? Team, 2014, sec. 5.3.2.3, enhanced dynamic range.

Detailed expressions for the phase observables in dual one-way ranging schemes and in

8The optical coatings within the cavity are wavelength dependent.
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transponder-based ranging concepts have been derived from first principles in the previous
sections. The constituents of the phase observable depending on the functional concept
have been discussed, while the discussion of corrections to the photon time of flight and the
instrument specific errors dtis,, which contain the major attitude jitter induced noise, are
postponed to the next section and to sec. 2.6, respectively.

The other major contributor to the overall instrument noise is the laser phase or frequency
noise. Furthermore, the analysis in the previous sections showed that the limited knowledge
of the absolute laser frequency of 1 ppm yields a scale factor error, which can be plotted as
an effective noise with a 1ppm magnitude relative to the actual ranging signal. It is not
a stochastic noise and can be, in principle, corrected in post-processing by estimating the
optical frequency in the process of gravity field recovery. This error is specific to gravimetric
missions, as in these missions the ranging information with SI unit of meters is combined
with other measurements, while gravitational wave missions, for example, measure a relative
distance change, i.e. dimensionless strain. It might be rather challenging to improve the
1 ppm value significantly, since in a concept with cavity-based frequency standard, discussed
here, the absolute frequency is derived from the setpoint of the laser. One way to improve
the knowledge on the absolute value of the wavelength is to use a dedicated instrument to
measure it directly in-orbit, e.g. with a wavemeter or diffraction grating. However, these
instruments can hardly exceed the 1ppm resolution to the knowledge of the author, such
that an absolute frequency standard may be more favorable.

In summary, the cavity and transponder based approach is most likely sufficient for the
next gravimetric mission(s). However, as this thesis also aims to advance space laser interfer-
ometry, the following concept is proposed, which is motivated by the findings of the previous
sections.

Challenges in laser interferometry discussed so far are the reduction of laser frequency
noise, improvement of the absolute frequency knowledge and increase of the maximum al-
lowed range rate. Moreover, it should be envisioned to reduce the complexity in the laser
link acquisition (cf. sec. 2.3.10 and 2.6.12). The maximization of the allowed range rate was
addressed priorly (see above). The knowledge of the absolute frequency can be enhanced by
several orders of magnitude with an absolute frequency standard (cf. sec. 2.3.2 on optical fre-
quency standards), e.g. the transitions in an iodine cell are known to a level of approx. 107!,
This would still allow to use a transponder scheme and, for the sake of redundancy, one might
want to equip both S/C with such a standard to make the role of slave and master swappable.
In addition, this yields almost identical S/C, which is often advantageous in terms of the inte-
gration and testing complexity and of accompanied costs. The phase and frequency noise of
a laser locked to an iodine cell is comparable to the frequency noise of a cavity (cf. sec. 2.3.2).
However, if two frequency standards are present on both S/C, one could also operate them
in hot redundancy with a DOWR concept. This would provide two-fold advantages: on the
one hand, the laser frequency noise is reduced by +/2 and, on the other hand, the laser link
acquisition is simplified significantly, since a degree of freedom is removed from the acquisi-
tion search. The disadvantage is that additional frequency-shifting components are required
to obtain the frequency offset between the laser beams for heterodyne interferometry. In
addition, the susceptibility to timing offsets and delays is increased. However, the effect of
these offsets and delays can be regarded as negligible, which has been shown as a matter of
prudence in fig. 2.34. It is noted that the transponder concept could still be used as fallback
option without additional hardware, if a frequency standard fails, for example. In addition, it
is remarked that these changes could be made completely in the back-end of the instrument
and do not require modifications of the optical layout of the interferometer, e.g. the GRACE
Follow-On LRI optical benches could be reused. The advantages of such a concept justify the
higher complexity introduced by additional frequency shifting components, which is a first
assessment made by the author of this thesis.
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2.5 Photon Time of Flight Corrections

The one-way ranging phase observable of a laser interferometer on a satellite j can be written
according to the previous section as (cf. eq. (2.164))

p; L {DW . Ti(t — AtEA) — ‘Dj|j . Tj(t — AtBA) + .-+ 4 const. (2.226)
where ¢; is the measured phase in radian, w;; and w;; are the constant optical angular
frequencies with units of rad/s of the emitter and receiver S/C, respectively, Atp4 and Atpa
are the propagation times of the light from the respective source to the photodetection at

event A. The event labels A, B, ... used here are shown in fig. 2.30. With approximations
given in eq. (2.171) one arrives at the following simplified expression

pj - Atgp +---+ const., (2.227)

Atpa—Atpa

where w is the mean optical angular frequency between w;); and wj;. Terms depending on
the beatnote frequency A® have been omitted in eq. (2.227), because these are significantly
smaller (A@/@ ~ 10~7) and have been discussed to the relevant order already in the previous
sec. 2.4. The actual inter-satellite ranging information is contained in Atgpp ~ Atga.

The most generic expression for a propagation time is given by a line integral along the
path of the photon

[ n).A)
a= [y & (2.228)

where ¢, is the instantaneous coordinate speed of light and n denotes the refractive index of
the media, where the light is propagating. The light path is parameterized with a parameter
s.

In the non-relativistic limit, when the proper time A7 and the coordinate time At are
equivalent, and in good approximation also in a local Lorentz frame (LLF) of a satellite, one
can split the light path into segments and determine the propagation time A7 from piece-wise
segments by

Ngee - GPL
Ar = AOPL _ L Mset ey (2.229)
Co Co

where AOPL is the total accumulated optical pathlength, GPLgeg is the geometrical path-
length of a light path segment and ngeg is the refractive index of the segment. The sum is
taken over all segments and all quantities are referred to the LLF or the non-relativistic limit.
The proper vacuum speed of light is denoted with ¢y = 299 792 458 m/s, which is equal to
the coordinate speed of light ¢, in the non-relativistic limit.

To simplify the succeeding calculations, the light propagation time is expressed as small
variation with respect to the ideal propagation time, which is the propagation time (Atpg)
of a freely and directly traversing photon between the start and end point. Recall that in
inter-satellite laser interferometry the light is guided through optical setups, so-called optical
benches, which are present on both satellites. One aims to measure the distance between
both satellite gravitational reference points (GRPs), e.g. the center of mass (cf. eq. (2.150)).
Thus, the ideal propagation time Atpg is defined by the event ), which denotes the photon
reception at the GRP of the receiver S/C, and event P, which is the corresponding photon
emission at the GRP of the emitter S/C, such that P and @ are connected via a freely
propagating photon.

In addition, in gravimetric missions one is typically interested in the instantaneous geo-
metrical distance pinst between the GRPs. This motivates the expression for Atgpp in terms
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of the desired quantity pinst and correction as done previously, for example, in eq. (2.175):

Atpp(t) = Atpa(t) — Atpa(t) = pinst(t)/co + correction (2.230)
= einst (t)/CO + AtPQ,(:orr(tZ +5tEB,ifo (t) (2231)
o

This equation is a definition for the correction and therefore exact. The correction has
been divided into a term depending on the interferometer and optical benches dtgp i, or in
other words, on local interferometer quantities, and into a term Atpg corr absorbing other
variations in the time of flight between satellites, which are not covered by the non-relativistic
ideal time of flight in vacuum ping(¢)/co. Non-relativistic refers to a static scenario, i.e. non-
moving satellites or parts, and to a flat space-time with the Minkowksi metric tensor applying
to the GCRS.

Even though the instantaneous inter-satellite distance pinst is well-defined, it can not be
measured by the satellites directly. It can only be recovered in post-processing when all
observations are transformed to the GCRS and relativistic and non-relativistic effects are
subtracted from the observations. If pingt/co is supplemented by Atpg corr, Which contains
relativistic corrections and corrections due to the refractive index n, one obtains the ideal
range measurement between the GRPs Atpg. However, the measurement or observation
Atgp differs from Atpg by the laser interferometric error term dtgp if,, which is mainly
because the interferometer does not measure exactly the GRP-GRP distance but the distance
between interferometer reference points.

The correction terms to the photon time of flight Atpg corr can be decomposed into a sum

AtPQ,conr ~ AtSR + AtGR + AtIono + AtAtmm (2232)

with special relativistic effects Atgr, general relativistic effects Atgr, effects due to the
ionosphere Ationo and due to the neutral atmosphere Ataimo. The formulation of Atcy, as a
sum of different effects is an approximation, because the effects are in general coupled. Since
the space-time curvature and atmospheric density is small, deviations of the light path from a
straight line and deviations of ¢, from ¢y are small as well. Hence, the additive approximation
is justified and sufficient for the purpose of this thesis.

The rather arbitrary separation of Atgp into terms Atpg corr and 6tig, is driven by the
idea that Atpgcorr vanishes in the case of the non-relativistic limit and with vacuum as
medium, which eases the comparison and interrelation of dtj, with simulation results of
the interferometers obtained from ray-tracing, e.g. with the AEI in-house developed ifocad
software. In such simplified domain, optical ray- and beam-tracing is typically performed with
fixed optical setups on the time scales of light propagation and dt;s, is expressed with the help
of accumulated optical pathlengths (cf. eq. (2.229)). Whereas the here stressed time of flight
domain stressed here, allows one to evaluate relativistic effects more easily. Furthermore, one
has the advantage that the corrections in Atpg corr can be determined solely between the
GRPs and, hence, they are independent of the state of the interferometer or of the optical
layout.

The expressions Ateor and dtif, are of importance for forward-modeling, i.e. generation
of realistic ranging observations in simulations, and also for the retrieval of the instantaneous
range from flight telemetry with real measured phase values, e.g. in the GRACE Follow-On
LRI. The term dtit,, describing the local interferometry, and the time of flight corrections
Atcorr are analyzed in detail in the following subsections.

2.5.1 Local Interferometry

In one-way ranging, the local interferometry correction dtgp i, to the photon time of flight
can be expressed in a general way with the help of eq. (2.231) as

0tEB.ifo(t) = —Atppi + Atgp j, (2.233)
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where Atpg; is the correction from the emitter S/C and Atgp ; is the correction from the
receiver side. These are time differences between events shown in fig. 2.30. In the non-
relativistic limit and with ideal vacuum (AthmH = 0), one can obtain a more insightful
expression as follows

~ Pinst(t) _ AOPLgs — AOPLga — Pinst ()
co co '

0teBit(t) = Atpp(t) (2.234)
This equation states simply that the interferometer error is the difference between the desired
GRP-GRP distance and the interferometric range measurement, which is the optical path-
length difference of measurement and local oscillator beam. Thus, the local interferometry
correction should be understood here as a heuristic description of all local interferometer ef-
fects, which may contain, among others, temperature or actuator induced optical pathlength
changes and effects from parasitic beams affecting the phase measurement.

It is self-evident that practically dtgpif, can contain an unknown bias, which can not
be resolved by a phase measurement. However, in case of optical simulations, where the
propagation time can be written in terms of the accumulated optical pathlengths, the quantity
0tEB,ifo can be determined with correct bias.

The most important effect in dtgp if, is probably the susceptibility to satellite rotations,
which yields an attitude-to-ranging coupling. This coupling can be interpreted as an offset
between the center of mass of the satellite, which is the pivot point of rotations, and the
interferometer reference point, which can be understood as the fiducial point for the range
measurement. The attitude-to-ranging coupling is in detail treated in sec. 2.6. It should be
noted that the magnitude of 6tgp i, is in sensible interferometers close to the instrument
noise level. Thus, relativistic effects within 6tgp ., which are a few orders of magnitude
smaller, are negligible.

2.5.2 Special Relativity

The special relativistic correction Atsg in the propagation time Atpg between the satellite
GRPs accounts for the effect of the motion of the satellites in the GCRS, which includes
changes due to relativistic length contraction and Sagnac-like contributions. The measured
range by a ranging interferometer contains these effects and they need to be reduced from
the phase observable to obtain the desired instantaneous range pingt. It is assumed for the
moment that the medium, where the light is traversing between the satellites, is vacuum with
n = 1 and that space-time is flat, i.e. the coordinate speed of light ¢,, equals the proper speed
of light ¢y in vacuum.

Under these assumptions, the light is propagating along a straight line in the GCRS with
speed of light ¢y. The photon propagation time between the two satellites labeled ¢ and j
can be obtained from the well-known implicit light-time equation [Montenbruck & Gill, 2000,
eq. (6-23)]

Atpo(t) = Aty;(t) = I75(t) = ﬁ(io_ Aty ) (2.235)

(0)

A successive approximation by iterative means starts with At;;” = 0 and solves

i) — 7 — A

(M) 4y _
At;; (t) = o
The coordinate time t is the reception time of the light, which equals t 4 and t¢ in the context
of this and previous sections. It is assumed that the coordinate position 7, the coordinate
velocity ¥ = d7/dt and the coordinate acceleration of @ = d?#/dt? of both satellites are known,
such that one can approximate the position of both satellites around the measurement time

166



PART 2. LASER INTERFEROMETRY IN SPACE

t by

€2 - a(t)

(t+e) ~7(t) +e-U(t) + 5

(2.237)

This approximation is sufficient, since the time derivative of the acceleration is for gravimetric
missions of the order of @ ~ 0.01 m/s?, which yields with ¢ ~ 1073 sec a displacement error of
€/6-a ~ 10712m. Thus, the above expression describes the satellite position with picometer
accuracy.

With given derivatives one can can approximate the solution to eq. (2.236) after a few
iterations as a Taylor series in c; U by

A _pinst 177, : sz 771 . 771 * Pinst C_iz . F]Z * Pinst (772 . 7:31)2
ti;(t) = 2 9.3 2. 3 2.3 o
0 < - Ch & * €y Pinst
T RO L L 9 S o .
(- w) '4(%"7“3'2‘) G P (@ - i) ~4(Uz‘ i) 05,7, (2.238)
& 2-¢c o

These eight terms of the sum are depicted as spectral density in the upper panel of fig. 2.39
for a typical GRACE-like formation (cf. caption). The legend contains also the average (DC)
part of the terms. It can be concluded that the last two terms have negligible magnitude.
The first summand is the actual instantaneous range, thus, the remaining terms form the
sought special relativistic correction Atgg for the one-way ranging observable, i.e.

AR — Aty - 2 Z)St (2.239)
T T U Ui pimse | @ T pinse | (G T0)® (G- 0) - (T )
c% 2- c% 2. cg 2- cg * Pinst cé
(2.240)

The corresponding correction for the dual one-way ranging scheme can be obtained in a
trivial way by swapping indices, i.e.

At = ALy () + Ai(t) — 2 % (2.241)

This expression is shown in the central panel of fig. 2.39, where all terms were added
summand-wise to maintain the same nomenclature of the traces as in the upper panel. It is

noted that the first term of the correction At(SDROWR), which is the trace labeled as T2 in the
figure, can be written as follows
T Fos T Fos T e Fos o s s B s
i 2]7, LY . i _ Ui 2]1 Y . ji _ Yji . Jji Dinst = Pinst QPmst’ (2242)
€ €0 € € € 0]

where pinst = d4/7;(t) - 7j;(t) /dt is the time-derivative of the instantaneous range with respect
to the GCRS coordinate time ¢. This T2 term is reduced in magnitude compared to the one-
way ranging observable, because the common part of the coordinate velocities between both
S/C vanishes.

The transponder scheme is characterized by a consecutive combination of propagation
times, in contrast to the common reception time in DOWR, which requires a solution to

Atgpr = Atys(t — Atsar(t)) + Atsum(t), (2.243)

where the first summand indicates the propagation time from master to slave satellite (cf. the
events () and P in fig. 2.35) and the second term from slave to master (from event P to R).
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Figure 2.39: Typical spectral content of the constituents of the inter-satellite photon time of
flight: the instantaneous range (traces labeled T1) and special relativistic effects in the time
of flight. (Upper panel:) one-way ranging observable At;;(t) from eq. (2.238); (Central
panel:) dual-one way ranging (At;;(t) + Atj(t))/2; (Lower panel:) transponder scheme
Atgpr from eq. (2.244). The respective terms of the sum with units of time have been
converted to an equivalent displacement. The plots are based on a simulation of a GRACE-
like constellation with L = 200km and h = 400km. The legend contains the mean (DC)
value of each addend of the sum.
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With given satellite position, velocity and acceleration of slave (S) and master (M) at the
reception epoch, one can obtain an approximative solution to the light-time equations as

2+ Pinst 2. ,binst * Pinst 2-dn T Pinst — as - TSy - Pinst

AtQpR = % — C(Q) + C%
(Us - Tonr)? N 2 - Unr - UM - Pinst — 2 US - UM - Pinst + US - TS - Pinst
08 " Pinst C%
+O(cgt, ), (2.244)

which is shown in the lower panel of fig. 2.39 and which defines the special relativistic cor-

rection Atg\és) )

It is repeated that the just derived special relativistic corrections At(S%WR), At(S]?{OWR)

and Atg\és) are part of the time of flight corrections Atpg corrs AtpQ corr + Atprgy corr and
AtpQR,corr, Which have been used in the respective phase observable in eq. (2.176), (2.181)
and (2.213) in sec. 2.4 on the functional concepts.

Although the corrections Atsg depend on the instantaneous range pinst, it is sufficient to
utilize a low precision estimate of pingt within Atgr, e.g. from GNSS observations, because
the magnitude of Atgr is small as shown in fig. 2.39. Thus, it is still possible to recover
a precise instantaneous range pingt from the interferometric phase after reducing the special
relativistic effects with the help of Atgg.

The dominant term of Atgr in the DOWR and transponder case is proportional to the
product pingt - Pinst and this one is also corrected within the GRACE microwave ranging
instrument. GRACE data processing handles this term by the so-called light-time correction
pTOF, which is provided separately in the GRACE KBR Level-1B data streams and defined
by [Kim, 2000, eq. 4.39] [Wu et al., 2006, App. E]

Wwq . Wi wz-—wj
- st - At — A+ S AL, 2.245
PTOF Wi +Wj Pinst Ji Wi +Wj 1y wz'-i-w]' 1y 1] ( )
_ i Atijwi nj - At - w; (2.246)

w; + Wy w; + Wy

with n; = Q_fj . éj,ni = ;- aj;/}inst =0 — "N and At = Atij — At]‘i. As stated in Wu et al.
[2006], the light-time correction is derived by solving the light-cone equation (eq. (2.236))
iteratively, which most likely utilizes reduced-dynamic orbit information. The magnitude of
the correction as provided in the GRACE KBR Level-1B data is shown by the red trace
in fig. 2.42. It exhibits some artifacts at high frequencies, which are probably caused by
some sort of filtering, but these are uncritical as they are below the microwave instrument
sensitivity shown in magenta. The light-time correction has signals above the microwave
instrument noise for Fourier frequencies below 3 mHz.

The GRACE light-time correction is dominated by the first addend in eq. (2.245), which
is almost equivalent to the term derived here in eq. (2.242) and shown by the light blue
trace in fig. 2.42. One can easily derive an expression similar in form to eq. (2.246) with
Atij &~ pinst/co - (1 + ni/co) and Atj; & pinst/co - (1 — 1;/co) from the general DOWR phase
observable

CPOWR) ;- Aty + wj - Aty Wi * Pinst/C0 * Mi — W * Pinst/Co * N

C = R Pinst + 2.247
O Wi+ w; w; + wj Pinst w; + wj o )

which suggests that the propagation times At;; and Atj; in eq. (2.245f). should be replaced by
pinst/co. However, the difference is more of academic than practical relevance for microwave
ranging.

2.5.3 General Relativity

In the general relativistic case, the computation is more complicated due to the non-trivial

metric gop of space-time, which yields a non-uniform motion of a photon in the GCRS and
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effects such as light bending. The coordinate speed of light ¢,, differs from the proper (local)
vacuum speed of light ¢g. However, the light path between the satellites in a gravimetric
mission is in good approximation still a straight line. The light bending angle towards the
geocenter Af, as a function of the inter-satellite distance L is derived in appendix C as

2-GM - L

T (o) (2.248)

Abg(r, L) =
which is well below 0.1 nrad for the in-line satellite constellations discussed here. It is note-
worthy that the light bending falsifies also DWS measurements on the satellites, but this is
uncritical due to the small magnitude. For ranging interferometry, this lateral drift of the
general relativistic photon compared to the special relativistic path is not as important as
the longitudinal separation due to the lower coordinate speed of light ¢, i.e. the delay. As
shown in appendix C, one can compute the delay Atgr with respect to the special relativistic
path in terms of three contributors

Atar(ti, 75, t5,75) = Ateam (s, 75, 15, 75) + At (ts, 75, 5, 75) + Atsm(ts, 75, t5,75),  (2.249)

where Atpy is the delay due to Earth’s monopole gravity field (cf. eq. (C.9)), Atym is
the delay due to Earth’s higher moments of the gravity field (cf. eq. (C.10)) and Atgm
(cf. eq. (C.9)) is the delay due to Earth’s angular (spin) moment, which also curves space-
time and modifies the coordinate speed of light. The Atgy is often called gravito-magnetic
effect. The total propagation time of the photon is Atqr + Atsg under the assumption of
vacuum. The photon emission position 7; at time ¢; and photon reception location 7 at time
tj in eq. (2.249) need to fulfill the light-time equation in a special relativistic sense, i.e.

[7i(t:) — 75(t5)]

=tj — 1, (2.250)
co

because the general relativistic aspect is implicitly in the propagation time.

At first, the validity of the analytical expression for Atpy, Atgyv and Atgy is verified.
This is performed in the following way: A typical GRACE-like satellite orbit is taken, which
has a sampling time of 5s. At each epoch ¢ a photon is launched from the location of the
S/C 7; in the direction dy towards the other distant craft, i.e. along the line-of-sight. The
coordinate speed of the photon ¢, is determined by eq. (B.38), which fixes the initial values
of the photon for a numerical integration of the geodesic equation (cf. eq. (B.27)) in the
GCRS. The photon pa