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Abstract

Coffee production worldwide is threatened by a range of coffee pests and diseases (CPaD).

Integrated management options require an understanding of the bioecology of CPaD and the

prevalent interdependencies within the agroecological context. The comparison of different

shading systems (e.g. shade-grown vs. sun-grown coffee) and the identification of trade-

offs for ecosystem services is still a matter of ongoing debates. There is little quantitative

knowledge of field-level investigation on shade effects and its ecological mechanisms across

environmental and shading system gradients. Considering the increasingly evident effects of

progressive climate change on CPaD, the need to examine the balance of shade effects under

different environmental conditions becomes apparent. With the example of the coffee grow-

ing region of Mt Elgon, Uganda, this project aimed at addressing the complexity of shading

effects on economically relevant CPaD using environmental and production system gradients.

The approach was designed in an interdisciplinary manner, to involve the broader context of

coffee agroforestry systems. The first two chapters of this thesis dealt with general aspects of

coffee smallholder farming. The diversity of existing coffee production systems was charac-

terized along an altitudinal gradient. A typology of production systems based on indicators

related to the vegetation structure was generated and classified as coffee open canopy, coffee-

banana inter-cropping, and densely shaded coffee systems. The typology served as the basis

for comparison across the environmental and production system gradients. In the second

chapter, farmers’ knowledge on CPaD and the role of shade trees was contrasted with expert

knowledge and field observations. Discrepancies regarding CPaD symptomatology, manage-

ment and response to shade were revealed. Tackling institutional obstacles and disentangling

shading effects are therefore a priority for the improvement of plant health management. The

last two chapters focused more specifically on biophysical aspects of Coffee Leaf Rust (CLR,

Hemileia vastatrix ) and White Coffee Stem Borer (WCSB, Monochamus leuconotus). The

effects of environment and production system on CLR abundance were spatio-temporally

variable and either directly, interactive or indirectly mediated by microclimate. The develop-

ment of white coffee stem borer was controlled by the bimodal rainfall, and by altitude and

shade through their effect on minimum temperature. The findings emphasize the enormous

importance of micro-environments for the ecology of CPaD, not least because of its implica-

tions in the context of climate change.

Key words: Coffee agroforestry system, interdisciplinary research, microclimate, climate

change, Hemileia vastatrix, Monochamus leuconotus.



Zusammenfassung

Weltweit wird der Kaffeeanbau durch Kaffeeschädlinge- und Krankheiten (KKS) bedroht.

Integrierte Pflanzenschutzmanahmen setzten ein umfassendes Verständnis der Bioökologie

von KKS und vorherrschenden Wechselbeziehungen im agroökologischen Kontext voraus.

Der Vergleich von Schattierungssystemen (z. B. Kaffeeanbau mit oder ohne Schattenbäume)

bezüglich Kosten-Nutzen-Abwägungen für Ökosystemdienstleistungen wird noch immer disku-

tiert. Es gibt wenige quantitative, auf Feldstudien basierende Erkenntnisse über Schattenef-

fekte und deren ökologische Mechanismen entlang von Umweltgradienten und verschiedenen

Schattierungssystemen. In Anbetracht der Auswirkungen des Klimawandels auf KKS wird

deutlich, dass verschiedene Systeme unter diversen Umweltbedingungen analysiert werden

müssen. Am Beispiel der Anbauregion Mt Elgon in Uganda zielte dieses Projekt darauf ab

die Komplexität der Schattierungseffekte auf wirtschaftlich relevante KKS durch den Ein-

satz von Umwelt- und Produktionssystemgradienten zu untersuchen. Der Forschungsansatz

wurde interdisziplinär konzipiert, um den breiteren Kontext von Kaffee-Agroforstsystemen zu

beleuchten. Die ersten Kapitel befassten sich mit allgemeinen Aspekten von kleinbäuerlichen

Produktionssystemen. Diese wurden entlang eines Höhengradienten basierend auf Vegeta-

tionsstrukturindikatoren in drei Systeme klassifiziert: (1) unbeschattet, (2) beschattet durch

Bananen und (3) beschattet durch Schattenbäume. Die Klassifizierung diente als Vergleichs-

basis entlang der Umwelt- und Produktionssystemgradienten. Im zweiten Kapitel wurden

Kenntnisse der Landwirte bezüglich der KKS und der Rolle von Schattenbäumen mit Fach-

wissen und Feldbeobachtungen verglichen. Es wurden Diskrepanzen bezüglich der Symp-

tomatik, der Pflanzenschutzmaßnahmen und der Rolle von Schattenbäumen festgestellt. Die

Bewältigung von institutionellen Hürden und die Aufklärung der Schatteneffekte sind da-

her eine Priorität für die Verbesserung des Pflanzenschutzmanagements. Die letzten Kapi-

tel konzentrierten sich auf biophysikalischen Aspekte von Hemileia vastatrix, (CLR) und

Monochamus leuconotus (WCSB). Die Beziehung zwischen CLR / WCSB und der Produk-

tionssituation auf verschiedenen räumlichen Skalen wurde analysiert und potenzielle ökolo-

gische Mechanismen der Schattierung diskutiert. Die Auswirkungen von Umwelt und Pro-

duktionssystem auf die CLR-Abundanz waren räumlich-zeitlich variabel und entweder direkt,

interaktiv oder indirekt durch mikroklimatische Verhältnisse vermittelt. Die Entwicklung von

WCSB wurde durch die bimodale Niederschlagsverteilung, und durch Höhe und Schatten über

ihre Wirkung auf die minimale Temperatur beeinflusst. Die Ergebnisse heben die Bedeutung

von Mikro-Umwelten für die Ökologie von KKS hervor, nicht zuletzt wegen ihrer Implikatio-

nen in Bezug auf den Klimawandel.

Schlüsselwörter: Kaffee-Agroforstsysteme, interdisziplinäre Forschung, Mikroklima, Klimawan-

del, Hemileia vastatrix, Monochamus leuconotus.
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1 General Introduction

1.1 Institutional and thematic background

The presented PhD project was conducted within the framework of the BMZ (Federal Min-

istry for Economic Cooperation and Development) funded project entitled ”Trade-offs and

synergies in climate change adaptation and mitigation in coffee and cocoa systems”, a collab-

oration between the International Institute for Tropical Agriculture (IITA), the International

Center for Tropical Agriculture (CIAT) and the University of Göttingen, Germany (i.a.).

The overall goal of the project was the adaptation of vulnerable Arabica coffee and cocoa-

based farming systems to climate change that combine improving farmer income and system

resilience with contributing to climate change adaptation and mitigation. The project target

region for coffee was in the East of Uganda. One of the project outputs was an inventory of

the existing diversity of coffee production systems characterized along climate and intensifica-

tion/shading gradients, in terms of different ecosystem services such as coffee yield quantity

and quality, pest and disease control and climate change adaptation and mitigation. Those

topics were covered by different PhD candidates, and the characterisation of existing coffee

production systems served as starting point and common basis for each doctoral study. The

here presented doctoral thesis deals with subtopics related to coffee pests and diseases.

1.2 Context, justification and objectives

1.2.1 Importance of coffee

Coffee (Coffea arabica L. and C. canephora Pierre ex A. Froehner), is one of the most valuable

export products in the world trade and plays an essential role in the economic and social

environment in more than 80 countries across the tropics (Vega, 2006). For several of Africa’s

economies and rural populations such as Uganda, Ethiopia or Tanzania, coffee is of particular

importance (Taye (2010); Jaramillo et al. (2011)). In Uganda for instance, nearby a quarter of

the country’s export earnings of 2008/2009 was contributed by the export of coffee, generating

employment and income for approximately 1.3 million households (Worldbank (2011)). Coffee

is mainly produced by smallholder farmers who are dependent on the commodity as their

main income, and often tend to lack resources allocated to adequate crop management (Waller

et al. (2007)). The commercial production is based on Robusta and Arabica coffee, whereby

the latter is regarded as the higher-quality species, accounting for approximately 70% of the

total production (Worldbank (2011)). The coffee sector has to deal with a high degree of

production volatility, caused not only by price risks, but also by a range of other unmanaged

risks caused by insufficient crop management, weather events (drought, erratic rainfall) or

coffee pests and diseases (CPaD). Especially in countries where resources for research and

extension are lacking, the coffee sector is highly vulnerable and insufficiently prepared in

order to counteract potential losses due to CPaD (Worldbank (2011)).

1



1.2.2 Coffee production systems, shade management and plant health

Shade trees and its effects on coffee production is a complex issue, which has been discussed

a lot in terms of productivity or quality (Muschler (2001); Vaast et al. (2006); Bosselmann

et al. (2009), i.a.), different aspects of ecology (Tscharntke et al. (2011); Jha et al. (2011);

De Beenhouwer et al. (2013); Jha et al. (2014); Cerda et al. (2017), i.a.) and plant health

(Staver et al. (2001); Soto-Pinto et al. (2002); Perfecto and Vandermeer (2006); Armbrecht

and Gallego (2007); Avelino et al. (2011); López-Bravo et al. (2012), i.a.). Shade effects are

controversially in relation to the pathogen and pest systems: On the one hand, there are pests

or pathogens benefiting from high shade intensities (López-Bravo et al. (2012); Jonsson et al.

(2014), i.a.), while others are negatively hindered (Armbrecht and Gallego (2007); Pardee and

Philpott (2011), i.a.). On the other hand, different diseases or pests with distinct responses

to shade can occur at the same time and location (Staver et al. (2001)). Furthermore,

the positive or negative effects of shaded systems can be variable for an individual CPaD,

depending on the biophysical context (i.e. the biotic and abiotic surrounding of an organism

(HSIE (n.a.))) and spatiotemporal scale (Muschler (2001); Vaast et al. (2006); Van Kanten

and Vaast (2006); Cerda et al. (2017), i.a.). Due to the multi-sided effects of shade not only

on pests and diseases, but also on other relevant, above-mentioned components of the coffee

production systems, it is difficult to define the right shade level or production system in

order to minimize damages from CPaD, while maintaining productivity and complying with

ecological and social claims. Most studies focused on the effect of few factors on a single CPaD

at a specific site. But in spite of the many studies on shade effects on coffee production and

sustainability, there is surprisingly little quantitative knowledge of field-level investigation

on shade effects and its ecological mechanisms across environmental and production system

gradients. However, in the last years there has been a trend to conduct studies which include

environmental, management intensity or socio-economic gradients analysing the effects of

multiple factors on one or a set of response variables (Fig. 1).

The need to examine these issues becomes more apparent considering the increasingly ev-

ident effects of progressive climate change. Pests and diseases threatening coffee production

under current climate are likely to be aggravated by the effects of climate change and variabil-

ity and could bring about serious implications for the coffee sector (Baker and Hagger, 2007).

Recent outbreaks and increased incidences of pests and diseases across coffee growing regions

of Latin America, East Africa and Asia seem to confirm this hypothesis (Baker and Haggar

(2007); Gichimu (2008); Jaramillo et al. (2009, 2011); Kutywayo et al. (2013); Avelino et al.

(2015); Mccook and Vandermeer (2015)). The use of shade trees in coffee farming systems is

often proposed as an option for adaptation and mitigation to climate change and the control

of CPaD (Schroth et al. (2000); Verchot et al. (2007); Lin (2010); Avelino et al. (2011)). How-

ever, beneficial and detrimental shade effects on coffee sustainability and resulting trade-offs

between pest or disease control, crop productivity, adaption and mitigation to climate change

2
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Figure 1: Literature review about studies on shade effects on CPaD Larger points show

studies including an environmental gradient. References: Soto-Pinto et al. (2002); Perfecto and Van-

dermeer (2006); Armbrecht and Gallego (2007); Philpott et al. (2008); Perfecto and Vandermeer

(2008); Pardee and Philpott (2011); López-Bravo et al. (2012); Liere et al. (2012); Jonsson et al.

(2014); De Beenhouwer et al. (2013); Karungi et al. (2015); Pumariño et al. (2015); Balouzat et al.

(2016); Liebig et al. (2016); Cerda et al. (2017); Allinne et al. (2016)

and livelihood benefits have to be taken into account (Rahn et al. (2014)). The balance of

shade effects on coffee sustainability is unsure and needs to be investigated under different

environmental conditions and in the context of climate change.

1.2.3 Study organisms

Coffee pests and diseases pose a danger to coffee production and can affect farmer livelihoods

or even the entire economy of regions or countries (Rutherford and Phiri (2006)). In the past

three decades, CPaD incidences and resulting damages have increased considerably. First

of all, intensification strategies of coffee production such as the use of coffee varieties with

higher yields under full sun exposure and higher inputs of agrochemicals have led to a reduc-

tion of shade levels, which in turn resulted in unexpected pest and disease problems (Staver

et al. (2001)). Moreover, increased pesticides applications generated secondary pest problems,

caused by organisms usually not of economically importance (Guharay et al. (2000)). For

the Ugandan coffee supply chain, CPaD are one of the main constraints for coffee production

(Worldbank (2011)).

The present study focused on three CPaD, which A) were considered as the economically

most important ones based on literature as well as reports of coffee producers of the respective

study region, and B) have been shown to be responsive to different environmental and shading

conditions.
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1. The White Coffee Stem Borer (WCSB, Monochamus leuconotus (Pascoe) [Coleoptera:

Cerambycidae]), which is the second most important pest of Arabica coffee in Uganda

(Egonyu et al, 2015, Jonsson et al, 2014).

2. The Coffee Berry Disease (CBD, Colletotrichum kahawae (Bridge and Waller) [Ascomy-

cota: Glomerellales]), which is the first, and

3. Coffee Leaf Rust (CLR, Hemileia vastatrix (Berkeley and Broome) [Basidiomycota:

Uredinales]), which is the second most devastating fungal disease of Arabica Coffee in

Uganda (Matovu et al. (2013)).

A detailed description for each CPaD, including the geographic distribution, symptoms or

damages, epidemiology or life cycle and control options is provided in the appendix (Fig. 20,

21, 22, 23).

1.2.4 Objectives

The specific objectives are:

1. To create typologies of coffee production systems, in order to assess the diversity of

existing coffee production/shading systems characterized along and altitudinal gradient.

(Chap. 2)

2. To asses farmers’ and experts’ perception and knowledge on CPaD occurrence and

impact and its management. More specifically:

(a) To examine and relate farmers’ perception and knowledge on CPaD to topographic

variables (represented as the altitudinal gradient) as well as the vegetation struc-

ture of the production systems

(b) To contrast obtained results with perceptions and knowledge from scientists and

extension agents

(c) To validate results with own field observations,

in order to identify gaps in knowledge and information flow and to discuss potential

causes for constraints facing farmers and scientists. (Chap. 3)

3. To understand relationships between pest and disease abundance and production situ-

ation and driving ecological mechanisms from the local to regional scale.

(a) For WCSB: (i) To characterize the spatiotemporal development of WCSB, explore

associations to environmental and diverse shade-related indicators and discuss the

underlying ecological mechanism of shading effects emphasizing the role of micro-

climatic modifications. (ii) To analyse and map the spatial pattern of WCSB to

discuss spatially relevant factors related to pest abundance (Chap. 4)
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(b) For CLR: (i) To characterize spatiotemporal variations in microclimatic indicators

and CLR and (ii) to infer direct, indirect and interactive effects of components of

the environment and production system on microclimatic indicators and CLR, in

order to discuss the underlying ecological mechanism of shading effects emphasiz-

ing the role of microclimatic modifications. (Chap. 5)

The general purpose of the proposed project is to contribute to the overall goal of finding

sustainable strategies to adapt coffee production systems to climate change, combining both,

the improvement of farmers livelihoods and production system resilience, and the promotion

of climate smart agricultural practices, including the identification and analysis of potential

trade-offs. For this purpose, controversies concerning the effects of different production or

shading systems on the three selected CPaD at different scales are to be clarified, in order to

reduce productions risks and to sustainably mitigate potential losses.

1.2.5 Remarks on the content and structure

The first two objectives (Chap. 2 and 3) link to the overall project aims (Sec. 1.1) and provide

the contextual framework for objectives 3a and b [Chap. 4 and 5]. A flow chart showing

the objectives and related research questions is provided in Fig.2. The data collection and

analysis for Chap. 2 was carried out jointly with the working group of the overall project. This

dataset served as basis for a joint publication, which was lead by another doctoral student.

Besides the typology of existing coffee production systems, it dealt with topics related to the

sustainability of coffee agroecosystems. Those additional topics were out of scope for the

content of this PhD, therefore only the abstract and relevant sections were included in the

main body of the thesis. The full manuscript is attached in Appendix A.1. Chap. 4 and 5

dedicate on CLR and WCSB, respectively, while for CBD, no separate chapter was prepared.

For CBD, less plots were sampled because it was only abundant at higher altitudes. The

number of sampled plots at high altitudes however could not be increased because of the

already laborious monitoring for CBD. No sophisticated statistical analysis could be applied,

but data of the first season were analysed with a simpler approach in Chap. 3. In Chap. 6, a

general discussion of all chapters is given. Chap. 3 to 5 each include an exhaustive discussion

of the major findings, placed into the general context of the current research. Therefore, the

general discussion will focus on assembling and referring the key findings of the individual

chapters back to the research questions posed in this introduction. Chap. 2 to 5 were prepared

as independent research papers, therefore there are some contentual repetitions. The overall

thesis formatting has been unified for the entire document.
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Figure 2: Objectives and research questions 1 Subtopics of other doctoral candidates. 2 Production

situation = the combination of technical, social, ecological and economic factors (Rabbinge and De Wit

(1989)). 3 The ecological mechanisms of shade analysed in this study mostly related to microclimatic

modifications. Boxes with solid lines show general objectives / research questions, and boxes with

dashed lines show specific objectives / research questions
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2.1 Abstract

Coffee (Coffea arabica) is a major export crop of East Africa sustaining the livelihoods of

millions of smallholder farmers. The viability of coffee in this region is, however, endangered

by multiple factors such as climate change, population pressure and coffee price volatil-

ity. Sustainable intensification through (shade) inter-cropping is believed to improve farmers

livelihoods, facilitate adaptation of coffee production to climate change, and contribute to

coffee sector development and biodiversity conservation. Technical guidance on adaptation

options is currently weak and requires sound understanding of local contexts. Altitudinal

gradients provide a means for analysing coffee production systems in different environmental

contexts that co-vary with altitude, and they provide a rough proxy for many of the issues

relating to climate. Additionally, management decisions unrelated to environment need to be

accounted for. We seek to do this by analysing a range of Arabica coffee systems that differ

in vegetation structure across an altitudinal gradient on Mt Elgon, Uganda, to understand (i)

if and how farmers adapt their production systems to differing climatic conditions, and (ii)

how these different production systems perform. A typology of coffee systems was derived

based on the vegetation structure of 144 coffee plots. Coffee systems were compared along

an altitudinal gradient (1100–2100 masl). Determinants of farmer adoption of different coffee

systems were investigated, highlighting both internal and contextual factors affecting farm-

ers decision-making. Three coffee systems were identified: coffee open canopy, coffee-banana

inter-cropping, and densely shaded coffee systems. The climatic gradient had a clear effect

on system adoption, with shade trees being used to mitigate higher temperatures and more

prolonged drought stress at low altitudes, while inter-cropped banana densities increased at

higher altitudes responding to higher rainfall. Although vegetation structure affected coffee

yield, differences among systems were not significant. Open canopy systems are mainly used

by wealthier farmers who do not depend on inter-crops for food security. Altitude has a

strong influence on coffee yield, benefits of shade trees, and soil quality. Socio-ecological con-

straints, such as farm and household size, and access to forests and markets, play a crucial role

in determining what constellation of ecosystem services benefit farmers livelihoods resulting

in different sustainable intensification pathways. Our findings reveal inherent trade-offs in

socio-ecological conditions, and aligning these is required for achieving the multiple objectives

of livelihood improvement, sustainable intensification of coffee production, and biodiversity

conservation.

2.2 Material and Methods

2.2.1 Agroecological context of the study area

The study was conducted in three neighbouring Ugandan districts (Bulambuli, Sironko and

Kapchorwa) on the slopes of Mt Elgon, the fourth highest (4320 masl) mountain of Africa.
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In a first step, the study area was clustered according to the key variables of climate and

topography (annual temperature, annual rainfall, altitude, slope inclination, slope aspect)

(Fig. 3). The three resulting clusters differed mainly in their altitude and consequently

variables correlated to altitude such as temperature and rainfall. An altitudinal gradient

with three ranges was derived (1100–1400 masl, 1400–1700 masl, 1700–2100 masl). The

study area comprised a total area of 210 km2 (Fig. 3). The soils are classified as inorganic

clays of high plasticity (Mugagga et al. (2012)) and the underlying geology is dominated by

basaltic parent rocks (Schlüter (2008)). The area of Mt Elgon receives an approximately

bimodal pattern of rainfall with the wettest periods in March/April and October/November,

a pronounced dry period from December to February and a period of less intense rain around

July to August (Fig. 4). The wet season is prolonged on higher altitudes compared to

lowlands. Mean annual rainfall ranges from 1200 mm at low altitudes to 1400 mm at mid

altitudes and 1800 mm at high altitudes. The mean annual temperatures are 23◦C , 21◦C

and 18◦C , respectively (Hijmans et al. (2005)). The Mt Elgon region has experienced an

increase in monthly temperatures in the range of 0.4◦C to 1.2 ◦C during the 2001-2011 period

compared to the 1961-1990 period. Intensive rainfall has resulted in numerous landslides on

the mountain slopes and floods on the foothill with hundreds of deaths. Increased drought

periods are particularly a problem in the northern drier region and areas of low altitude

causing stress to crops and scarcity of domestic water availability (Mbogga, 2012).

The area is dominated by agricultural activities with crops grown such as Arabica coffee,

bananas, beans, peas, ground nuts, maize, vegetables, sweet and Irish potato, avocado, mango

i.a.. Coffee is grown under varying levels of shade provided by different shade-tree species

and bananas (Musa spp.), and under sun-exposed conditions. Arabica production is mainly

based on introduced varieties, such as Bugisu local (Nyasa land), SL 14, SL 28 and KP423

(Musoli et al. (1993)).

2.2.2 Selection of participating farmers for Participatory Rural Appraisals and

the classification of existing coffee production systems

The selection of farmers per altitude range followed a stratified random sampling using the

”RAND” function of Excel (Microsoft Excel 2013). For each altitude range and within the

three districts where coffee is grown, the existing sub counties were listed in spread sheets,

random numbers were generated and assigned to each name. The lists were sorted according

to the random number and the first 2 names selected, resulting in a total of 6 sub counties

for the three altitude ranges. Within the selected sub counties, the same procedure was

repeated for the selection of parishes and farmers. Finally, a total of 300 coffee farmers (50

per sub county) were invited for Participatory Rural Appraisals (PRA). They were conducted

(April 2014) in order to introduce the project’s objectives and activities to the participating

communities and to acquire perceptions of coffee yield limiting factors in general and of
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Figure 3: Study area. Location of the study area within the Ugandan Mt Elgon area and the districts

of the study area (Bulambuli, Kapchorwa and Sironko) with indicated sub counties and three altitude

ranges determined by means of a cluster analysis
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Figure 4: Climate diagrams for Mt Elgon area. From left to right: Climate diagrams of low

(1100–1400 masl), mid (1400–1700 masl), and high altitude (1700–2100 masl) based on WorldClim

database (Hijmans et al. (2005))

production constraints due to pests and diseases. PRAs were organized in the six selected

sub counties. Applied tools included rankings, seasonal calenders and focus group discussions

(FAO (1999)) (Appendix 24).

For the classification of existing coffee production systems, a subset of 150 farmers of the

previous PRA list was selected following the sampling procedure described above (random

selection stratified by altitude). One plot for each of the selected farms was chosen to collect

plot scale descriptors of vegetation structure relevant for deriving coffee production system

typologies. Plots were selected according to a set of criteria: 1) A maximum of 1 km distance

from the homestead, 2) a minimum of 80 coffee bushes per plot and 3) the age of coffee bushes

must be above 4 years. Data from six farmers had to be rejected because of unreliable data,

resulting in 144 farmers (44-54 per altitude range).

2.2.3 Data collection

In April/May 2014, vegetation structure was measured on the 144 selected plots. The alti-

tude and plot boundary coordinates were recorded using Garmin eTrex GPS. Plot size was

calculated based on plot boundary coordinates. The number of coffee bushes, banana mats

and stems, and shade trees were counted on the entire plot and densities (in number per

hectare) were calculated. Shade tree species were identified and the number of species per

plot recorded. The canopy closure as an indicator for average plot shade was estimated using

a Forestry Suppliers spherical crown densiometer (convex model A) according to (Lemmon

(1957)) at four positions within the plot. A composite soil sample of the topsoil (0-30cm)

was taken from each plot and analysed for organic matter, soil pH, total nitrogen, available

phosphorus, and exchangeable potassium using standard methods (Okalebo et al. (1993)).

The slope was measured using Suunto Tandem Global Compass/Clinometer. Soil erosion was

evaluated visually. Data on age of the coffee bushes, yield, coffee management, perceived oc-
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Table 1: Typology coffee shading systems based on K-means clustering

CO, n = 54 CB, n = 44 CT, n = 46

Mean SE Mean SE Mean SE

Coffee density (coffee ha−1) 2255a 125 2094a 127 2095a 112

Banana density (bananas ha−1) 29a 17 1496b 105 278c 82

Shade tree density (trees ha−1) 63a 6 49a 6 144b 16

Shade tree species richness 2.8a 0.2 2.7a 0.2 6b 0.4

Canopy closure (%) 21a 1.4 28b 1.4 48c 2

SE = Standard error. Means within rows with different letters indicate significant dif-

ferences (one-way ANOVA, p<.05). Clustering was based on a total of 144 plots, which

were sampled in May 2014. In 2015, 22 additional plots were included and classified ret-

rospectively. CB = Coffee-Banana System, CO = Coffee-Open System, CT=Coffee-Tree

System.

currence and impact of coffee pests and diseases, and livelihood characteristics were obtained

through structured farmer interviews during farm visits.

2.2.4 Data analysis

Data analysis was done using R statistics (R Core Team, 2014). The typology of coffee

production systems was based on variables related to vegetation structure. Variables included

were shade tree and banana densities per unit area, shade tree species diversity and canopy

closure. K-means clustering was performed with standardized data in order to minimize the

effect of scale differences. The variables were compared between the resulting coffee systems

using the one-way ANOVA (with Tukeys post hoc test).

2.3 Results

Three distinct coffee production systems were identified, namely a sparsely shaded open

canopy coffee system (CO), a coffee system with high banana densities (CB) and a highly

tree shaded coffee system (CT) (Table 1).

Vegetation structure of the coffee systems showed a relationship with altitude. Banana

density was higher on mid and high altitude compared to low altitude (one-way ANOVA with

Tukey post-hoc test, p<.05), while shade tree density, shade tree species richness and canopy

cover were higher on low altitude compared to mid and high altitude (one-way ANOVA

with Tukey post-hoc test, p<.05). Due to these spatial differences in banana and shade tree

densities a significant association between the coffee production typologies and altitude range

was found (X2, p < .001). The majority of plots assigned to the CT system were found at

lower altitudes between 1000–1400 masl, while more CB and CO systems were present at mid

to high altitudes between 1400–2200 masl. Only few CB systems were found on low altitude.
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3.1 Abstract

The scientific community has recognized the importance of integrating farmer’s perceptions

and knowledge (FPK) for the development of sustainable pest and disease management strate-

gies. However, the knowledge gap between indigenous and scientific knowledge still con-

tributes to misidentification of plant health constraints and poor adoption of management

solutions. This is particularly the case in the context of smallholder farming in developing

countries. In this paper, we present a case study on coffee production in Uganda, a sector

depending mostly on smallholder farming facing a simultaneous and increasing number of

socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK

on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of

the production systems; (ii) to contrast results with perceptions from experts and (iii) to

compare results with field observations, in order to identify constraints for improving the

information flow between scientists and farmers. Data were acquired by means of interviews

and workshops. One hundred and fifty farmer households managing coffee either at sun ex-

posure, under shade trees or inter-cropped with bananas and spread across an altitudinal

gradient were selected. Field sampling of the two most important CPaD was conducted on a

subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with

respect to their distribution across altitudes and perceived impact are partially concordant

among farmers, experts and field observations (ii) There are discrepancies among farmers and

experts regarding management practices and the development of CPaD issues of the previous

years. (iii) Field observations comparing CPaD in different altitudes and production systems

indicate ambiguity of the role of shade trees. According to the locality-specific variability

in CPaD pressure as well as in FPK, the importance of developing spatially variable and

relevant CPaD control practices is proposed.

3.2 Introduction

Natural and social scientists have emphasized the need to incorporate farmers’ perceptions

and knowledge (FPK) into research programs in order to establish and successfully imple-

ment sustainable pest and disease management strategies (Bentley and Thiele (1999); Norton

et al. (1999); Heong et al. (2002); Van Asten et al. (2009)). Particularly in countries where

smallholder farming faces multiple socio-ecological challenges, the potential impact of newly

developed management technologies is supposed to be narrowed if farmers are not involved

into the design of agricultural research (Röling et al. (2004)). The scientific community has

therefore acknowledged that the lack of understanding what farmers know and how they

make decisions may reduce the chances of success of integrated pest and disease programmes

(Heong (1985); Morse and Buhler (1997)).

Several perception studies, mainly examining farmers knowledge and applied management

practices on crop pests and diseases at a certain location have been conducted for annual crops
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such as rice (Rubia et al. (1996); Norton et al. (1999); Joshi et al. (2000); Price (2001)), maize

(Songa et al. (2002); Wyckhuys and O’Neil (2007)), cotton (Ochou et al. (1998)), legumes

(Bottenberg (1995); Trutmann et al. (1996)), millet (Tanzubil and Yakubu (1997); Youm

and Owusu (1998)), cassava (Manu-Aduening et al. (2007)) and diverse vegetables (Chitere

and Omolo (1993); Norton et al. (1999); Obopile et al. (2008); Adam et al. (2015)). Similar

documentation for perennial and tropical fruits and agroforestry trees or shrubs is scarce (Van

Mele et al. (2001); Nyeko et al. (2002); Segura et al. (2004); Cerdán et al. (2012); Valencia

et al. (2015)).

Perception studies regarding pests and diseases of coffee (Coffea arabica and C. canephora)

are rare, despite its high relevance for the economy of developing counties (Talbot (2004)).

The role of coffee becomes evident considering its social, economic and environmental impor-

tance across multiple scales, from the household to the global level. In most coffee producing

countries, a large proportion of production depends on smallholder farming and is exposed

to simultaneous and interdependent challenges of social, ecological and economic nature (Le-

ichenko and O’Brien (2002)). One of those challenges is climate change, faced by coffee

farmers worldwide. Arabica coffee will be significantly affected by climate change and vari-

ability. On the one hand, increased temperature causes the loss of suitable Arabica growing

areas resulting from a shift of respective areas from lower to higher altitudes. On the other

hand, regular vegetative and reproductive growing cycle processes of the plant and related

biotic constraints such as pests and diseases are affected by more variable seasonal patterns

(Läderach et al. (2010, 2011); Davis et al. (2012); Jassogne et al. (2013); Avelino et al. (2015);

Bunn et al. (2015); Craparo et al. (2015); Mccook and Vandermeer (2015); Ovalle-Rivera

et al. (2015)). CPaD which are already troublesome under the current climate are likely

to be aggravated by the effects of climate change and variability. They could entail serious

implications for the coffee sector. Recent outbreaks and increased incidences of CPaD have

already been reported around the world Baker and Haggar (2007); Gichimu (2008); Jaramillo

et al. (2009, 2011); Kutywayo et al. (2013); Avelino et al. (2015); Mccook and Vandermeer

(2015). In coffee based production systems, shade trees are often proposed as an option for

both, pest and disease management and adaptation to climate change (Schroth et al. (2000);

Verchot et al. (2007); Lin (2010); Avelino et al. (2011)). Trees associated with coffee limit

extreme temperatures, reduce solar radiation and buffer fluctuations in air temperature and

humidity in the plantations (Vaast et al. (2006); Siles et al. (2010b); Avelino et al. (2011);

López-Bravo et al. (2012)). Nevertheless, beneficial and detrimental shade effects result in

trade-offs between climate change mitigation, adaptation and livelihood benefits at different

scales which have to be investigated (Rahn et al. (2014)).

The few studies focusing on farmers perceptions and local knowledge of CPaD revealed

that farmers have a detailed knowledge of shade trees and its impact on environmental ser-

vices, including CPaD (Cerdán et al. (2012)). These authors concluded that agricultural

projects could fail to meet expectations if local knowledge is not well understood. Further-
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more, Segura et al. (2004) have found that a knowledge gap between research institutions

and farmers concerning their main crop health problems explains the low adoption of exist-

ing pest management technologies. The ignorance of scientists regarding farmers knowledge

and priorities as well as their socio-economic background has been an important contributing

factor to this gap.

Coffee is grown in a range of varying agroecological conditions. Accordingly, FPK is

connected to specific localities with related ecological context (Bellon (1995); Jansen (1998);

Mahiri (1998)). Including the environmental as well as the production system components

is therefore crucial (Wyckhuys and O’Neil (2007)). Understanding how farmers perceive and

manage CPaD under different production situations and across spatial scales allows for giving

relevant spatially explicit recommendations.

In this paper we present a case study on Arabica coffee in Uganda. The objectives of

this study are (i) to examine and relate FPK on CPaD to topographic variables as well as

the vegetation structure of the production systems; (ii) to contrast obtained results with

perceptions and knowledge from scientists and extension agents and (iii) to validate results

with field observations, in order to identify gaps in knowledge and information flow and to

discuss potential causes for constraints facing farmers and scientists in the face of climate

change.

3.3 Material and Methods

3.3.1 Methodological framework of the study

A summary of the methodological framework for the comparison between FPK, expert know-

ledge and field observations is shown in Fig. 5.

3.3.2 Study area

This study referred to the same area and farms as described in Sec. 2.2.1 and 2.2.2.

3.3.3 Data collection

(i) Farmer survey

A structured interview with a mix of closed-ended and open-ended questions was used to

inquire information about farming structures and management practices, the farmers’ socio-

economic background and perceptions about a selection of nine CPaD (Table 2). For the

latter, farmers were asked a sequence of repetitive questions (Table 3) which were reformulated

for the different CPaD. Photographs of the organisms and typical symptoms and damages

were used during the interviews. All questions referred to the plot that was previously

selected for deriving the coffee system typology. The questions were related to the preceding

production year.
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Figure 5: Methodological framework of the study. Comparison between FPK, expert knowledge

and field observations with regard to a selection of variables related to CPaD and along a gradient

of altitude and production system. Horizontal dashed arrows indicate between which levels (Farmers,

Experts, Field) the variables have been compared to. Roman and Arabic numerals correspond to

collection and analysis of data as described in the subsequent sections. (i) Farmer survey, (ii) Expert

workshop, (iii) Pest and disease field assessments, 1-7 correspond to the sequence of questions asked

to farmers shown in Table 3
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Table 2: List of CPaD used in interview survey

CPaD Scientific name Abbreviation

White coffee stem borer Monochamus leuconotus WCSB

Coffee berry borer Hypothenemus hampei CBB

Antestia bug Antestiopsis spp. AB

Coffee berry moth Prophantis adusta CBM

Root mealy bug Pseudococcus spp. RMB

Coffee leaf miner Leucoptera coffeella CLM

Green scales Coccus spp. GS

Coffee leaf rust Hemileia vastatrix CLR

Coffee berry disease Colletotrichum kahawae CBD

Table 3: List of questions posed to the farmers

No. Question

1 Is CPaD present in your coffee plots?

2
How severe is CPaD in rainy and dry season? Please score severity (1 = present but not

a problem; 2 = minor problem; 3 = intermediate problem; 4 = major problem

3 Has the severity of CPaD changed over the last 5 years?

4 How do you control CPaD?

5 Did you change your control strategies in the last 5 years?

6 Do you think that the applied control strategies are effective?

7 At what time of the day do you apply pesticides?

8
Have you met an extension officer in the last year? If yes, which recommendations

did you get?

9 Do you think that shade trees or bananas can influence CBD? If yes, why?

Questions 1 - 7 where asked for each of the 9 CPaD

(ii) Expert workshop

Experts from the Ugandan coffee sector, including entomologists, technicians from the na-

tional coffee research institute (NaCORRI) and the academic sector, were invited to a work-

shop. Experts were asked questions concerning CPaD abundance, management, development

over the past five years and the role of shade trees. These questions were derived from an

adjusted version of the pests and diseases section of the farmer questionnaire. Subsequently,

results of the interviews conducted with the farmers were presented and analysed within an

open discussion.
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(iii) Pest and disease field assessments

Based on the results obtained through farmers and experts, the two CPaD perceived as

the most severe ones (WCSB and CBD) were monitored from June 2014 to February 2015.

A subset of 34 plots distributed along the altitudinal gradient was selected out of the 148

farms. Since the interest was to study the effect of the altitude and production system on the

most important CPaD, non-probability sampling was used in order to select similar portions

of plots assigned to a certain production system and altitude range. Some plots showed

no or a very low coffee productivity as a consequence of old coffee bushes or inappropriate

management practices. Because the relevance of non-productive coffee for a CPaD assessment

is questionable, those plots were excluded from the monitoring. In spite of the assignment

of each plot to a certain typology, the within-plot heterogeneity of shade and sun conditions

remained quite high. Therefore, sub-plots of each 15 coffee bushes were used in order to

capture the specific conditions representative for the respective coffee system. A varying

number of sub-plots, depending on the plot size, structure and shape was established. For

instance, a small or narrow plot where shaded or sun-exposed patches were confined to a

certain area within the plot, only one or two sub-plots were considered. In total, 68 sub-plot

were established. Per sub-plot, five coffee bushes for WCSB and three for CBD assessments

were marked. A total of 335 coffee bushes were sampled for WCSB assessments. Incidence,

i.e. the proportion of infested bushes, was recorded five times: during the minor dry season

in June, before the harvest in August, during the rainy season in October, after harvesting

in December, and during the dry season in February. The lower trunks, up to 2 m above

the collar level of the coffee bushes were examined. The number of bushes showing any signs

of stem girdling or boring by WCSB were counted. CBD intensity was assessed as berry

loss due to CBD every other week as Mouen Bedimo et al. (2008) have done. Since CBD

is practically absent below 1500 masl, it was only monitored in the mid and high altitude

range. Therefore, only 129 coffee bushes were sampled. For the analysis, the high altitude

range was split into two sub-ranges.

3.3.4 Data analysis

Maps were produced using ArcMap (Version 10.2.2) ESRI (2014). The elevation layer was

generated with 90 m resolution from the digital elevation model (DEM) of the shuttle radar

topography mission (SRTM) (Reuter et al. (2007)). The administrative borders were derived

from the GADM database (Hijmans et al. (2005)). Data analysis was conducted using the R

software package (RStudio Version 0.98.983, R Core Team (2014)). All tables and graphs were

generated using the ggplot2 (Wickham (2016)), lsmeans (Lenth et al. (2016)) and stargazer

(Hlavac (2015)) packages of the R environment.
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(i) Farmer survey and (ii) Expert workshop Descriptive statistics were used to analyse

the information obtained from farmers and experts. Relations derived from the farmer survey

were analysed using non-parametric statistical tests. The relation between perceived impact

and altitude range as well as production system was tested using the Kruskal-Wallis test.

The relation between occurrence and altitude as well as production system was tested using

Fishers’ exact test. Further relationships such as the association between pesticide use and

the perceived impact of CPaD and the collaboration with an extension officer were analysed

using the χ2 and the Mann-Whitney test.

(iii) Pest and disease field assessments Field data on WCSB incidence and CBD inten-

sity were analysed using generalized linear models (GLM) (Nelder and Wedderburn (1972)).

For both models, the two categorical predictors of interest, altitude range and production

system, as well as its interactions were included. The proportion of infested coffee bushes by

WCSB and the total number of lost berries due to CBD per plot were used as the response

variables. A quasi-binomial regression model was used to model WCSB incidence as the

predicted odds of coffee bushes infested versus coffee bushes not infested at the plot level. A

negative binomial model was fit to the data on CBD intensity as the mean number of lost

berries due to CBD per plot. The likelihood ratio test was used to compare the goodness

of fit of the full model against the null model. Based on these fitted model parameters, all

pairwise comparisons between production systems were performed (analogously to Tukeys

HSD).

3.4 Results

Participatory rural appraisals

For all locations along the altitudinal gradient, pests and diseases were ranked as the major

constraint for coffee production, followed by low soil fertility, lack of extension services, and

changes in weather patterns. For the low altitude, poor flowering and old coffee trees were

also mentioned to be the cause of low yields. For the mid altitude, intense mixed cropping,

soil erosion and lack of shade trees were named as limiting factors. CPaD (Table 2) common

to all altitudes were the WCSB, CBB, AB, and CLR. Additionally, CBD was reported to

be an economically important disease for the high and the mid altitudes. Although actual

yield losses due to CPaD are difficult to quantify and are a product of interactions between

diverse biotic and abiotic factors, the general importance farmers assign to coffee crop health

is shown.

3.4.1 (i) Farmers’ perceptions and knowledge on coffee pests and diseases

In the following section, FPK on CPaD corresponding to the questions of interest listed in

(Table 3) are shown.
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The perceived CPaD occurrence and impact (Table 3, questions No. one and two) were

analysed by altitude and by production system. Perceived CPaD occurrence in the three

different altitude ranges is shown in Fig. 6. The occurrence in % of CBM, CLM, GS and

CLR was similar at low and mid altitude but lower at high altitudes. For CBB and RMB

highest occurrence was reported at mid altitudes. The occurrence of WCSB was negatively

related to altitude, while AB and CBD were positively related to it. The perceived impact

of WCSB and CBD appeared to affect coffee productivity most (Table 4). Scores for WCSB

were significantly higher at low and mid altitudes, while for CBD highest scores were found

at high altitudes (Table 4)). Regarding the different production systems, the occurrence of

WCSB and CLR is higher in plots that were assigned to the CT systems (Fisher’s exact test,

p = 0.12, p = 0.18 respectively). On the contrary, CBD occurrence is significantly lower in

CT systems than in the CB and CO systems (Fisher’s exact test, p < .05). The perceived

impact of WCSB is significantly higher in CT systems (Kruskal-Wallis test, p < .05).

Figure 6: CPaD occurrence perceived by farmers. Proportion of farmers who reported CPaD to

be present to farmers where CPaD were not present per altitude range. Low altitude n = 57; Mid

altitude n = 41 ; High altitude n = 50. Fishers’ exact test (* significant at p < 0.05; ** significant at

p < .001; *** significant at p < .0001

Concerning the development of CPaD issues in the past five years, farmers generally did not

perceive a crucial change towards a higher or lower CPaD pressure.

Management practices applied by the interviewed farmers to control CPaD are listed in

Table 5. WCSB, perceived as one of the most abundant and severe pests, was controlled by

the majority of farmers, either with synthetic insecticides or by cultural methods, such as

stumping. The other pests were reported to receive either none or chemical control. The most

widely used insecticide was the organophosphate fenitrothion. Almost half of the respondents
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Table 4: Comparison of perceived impact scores between altitude ranges

Perceived severity score

Altitude range Seasons

1100–1400 masl 1400–1700 masl 1700–2200 masl Dry Rainy

CPaD M SD N M SD N M SD N M SD M SD N

WSCB 3.09 0.92 56 3.66 1.06 37 3.36 1.26 40 3.85 1.09 3.05 1.35 133

CBB 2.56 1.31 32 2.49 1.12 29 2.51 1.08 27 2.3 1.32 2.65 1.18 88

CLR 2.33 0.57 45 3 0.7 39 2.4 1.14 34 3 1.15 2.4 1.1 128

CBD 2 2.08 10 2.24 1.11 24 2.93 0.55 37 2.07 1.15 3.14 1.29 71

AB 2.76 1.39 34 2.5 0.84 28 2.3 1.23 35 2.46 1.22 2.44 1.04 104

CBM 2.11 1.15 42 2.24 0.88 31 2.59 1.11 31 2.58 1.19 2.32 1.08 81

RMB 2.55 1.46 29 2.22 1 31 2.43 1.51 21 2.55 1.16 2.29 1.09 97

CLM 2.72 1.53 46 2.89 0.97 32 1.82 0.55 28 2.18 1.23 2.07 1.11 117

GS 1.91 1.15 46 3.1 0.73 35 2.83 1.58 36 2.24 1.14 2.04 1.17 106

Impact scores: 1 = present but not a problem; 2 = minor problem; 3 = intermediate problem; 4 = severe

problem; 5 = major problem. Mdn = Median, MAD = Median absolute deviation, n = Sub-sample size.

Bold labelled rows indicate significant differences between altitude ranges (Kruskal-Wallis test, significant at

p < .1 and p < .05 respectively

did not control diseases, a rather low percentage applied fungicides (mainly copper-based

compounds), and a smaller part used insecticides to control CLR and CBD. A relationship

was found between the use of pesticides and altitude (Fishers’ exact test, p < .05). The use

of both, fungicides and insecticides, was significantly higher in the high altitude range than

compared to mid and low altitudes.

Table 5: Farmers’ CPaD management practices

WCSB CBB AB CBM RMB CLM GS CLR CBD

No control (%) 12 39 35 39 36 51 41 48 49

Insecticides (%) 53 57 60 52 31 44 56 15 17

Fungicides (%) 0 0 0 0 1 1 2 31 20

Cultural (%) 28 1 0 3 28 0 1 4 10

Traditional (%) 7 3 5 6 4 4 0 2 4

Percentages are based on the total number of respondents (n = 148). Traditional practices included

plant extracts such as chilli tincture, diverse herbal extracts or manure

More than 90% of all respondents relied on the effectiveness of the used chemical products.

However, no significant difference in perceived impact has been found between the farmers

who rely on chemical control compared to those who did not.

43% of the respondents have met an extension officer in the past two years. The most
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frequent recommendation farmers received was the repeated use of chemical insecticides and

fungicides. Farmers have not mentioned further details, such as the type of product, its

concentration or frequency of application. Accordingly, a significant association between

having met an extension officer and the use of chemical products was found (χ2 test, p < .1).

Regarding farmers’ perception and knowledge about the role of shade trees for CPaD, the

majority of respondents (73%) believed that no relationship, neither positive nor negative

exists. Most of the remaining respondents (87%) believed that shade trees promote CPaD,

mainly due to their capability to act as alternative hosts for insect pests. Few respondents

considered shade trees to be helpful, for instance as hosts for birds and beneficial insects.

3.4.2 (ii) Expert knowledge

Experts from the Ugandan coffee sector evaluated WCSB, CBD and CLR to be the largest

constraints to plant health and yield. Furthermore, it has been mentioned that RMB has

become a serious pest affecting the region, especially in the dry season. Experts explain that

WCSB, CLR and RMB have evolved to a more serious problem in the last 5 years. They

suspect that the increasing emergence is related to a change in climatic patterns. Increasing

temperatures are supposed to be responsible for the propagation of CLR into higher altitudes,

while extended dry spells are considered to favour the life cycle of RMB.

Proposed CPaD control strategies by experts are listed in Table 6. Besides chemical

treatment, diverse cultural methods were suggested to be effective. For WCSB for instance,

non-conventional methods such as wrapping or smoothing the stem to interfere with the

females’ oviposition were mentioned to be effective. For CBB, picking up infested berries

from the ground and the coffee bushes during and after the harvest was suggested to be

an effective cultural method, as well as biological control methods, for instance using the

entomopathogenic fungus Beauveria bassiana. For CLR and CBD general phytosanitary

measures, the use of resistant varieties and the regulation of shade were recommended as

further control strategies besides the use of copper-based fungicides.

Experts generally implied interactions between shade regimes and the intensity of CPaD.

The incidence of WCSB, CLR, CBD and AB was believed to be favoured by shade trees

and bananas, and consequently CT or CB systems. They were said to create a suitable

microclimate which is conducive for infestation and infection processes. On the contrary, GS

and RMB were observed to be negatively affected by shade and hence to be rather an issue in

CO systems. CBB has been reported to be an issue in both, shaded and unshaded systems.

No known relation has been mentioned for CLM and CBM.

3.4.3 (iii) Field observations

Table 7 shows the β coefficient, standard error and odds ratio of the quasi-binomial regression

model examining the effects of the altitude range and production system on WCSB incidence.
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Table 6: CPaD control practices proposed by experts

CPaD Control practice

WCSB Stem banding, wrapping, stumping, Chemical, stem smoothening

CBB Chemical, biological, cultural (picking infested berries)

AB Chemical, cultural (removal of bugs and eggs)

CBM Chemical, cultural (removal of infested berries)

RMB Cultural (trapping with legumes), chemical, mineral fertilizer, organic manure

CLM Chemical, cultural, improve plant nutrition, encourage natural enemies

GS
Cultural (use of mulch to control attendant ants), chemical (stem banding

using insecticide)

CLR Chemical (copper-based), regulation of shade intensity, resistant varieties

CBD Chemical (copper-based), resistant varieties

A change from high to mid altitude significantly increases the predicted odds for WCSB

incidence (OR = 9.3). On average over the three altitude ranges, CT systems exhibit increased

odds ratios of infestation. There are combined effects of the two predictors as indicated

by the significant interaction term in Table 7. Fig. 7A shows an interaction plot of the

predicted WCSB incidence by coffee production systems and altitude ranges. The effect of

the CT system on the predicted probability of WCSB incidence is especially pronounced at

high altitudes, while no significant effect of production system can be shown at mid altitude

ranges.

Table 7: Quasi-binomial model results examining individual and interaction effects of altitude range

and production system on WCSB incidence

Coefficient Std. Error Odds Ratio

Low Altitude 0.499 1.233 1.65

Mid Altitude 2.234∗ 1.121 9.33

CO −1.253 1.703 0.29

CT 3.165∗∗∗ 1.108 23.69

Low Altitude x CO 2.557 1.904 12.89

Mid Altitude x CO 0.442 1.861 1.56

Low Altitude x CT −1.179 1.393 0.30

Mid Altitude x CT −3.286∗∗ 1.309 0.04

Constant −2.639∗∗ 0.999 0.07

∗p<.1; ∗∗p< .05; ∗∗∗p<.01. n = 35, Φ (estimated dispersion parameter) = 1.86, Likelihood ratio

test: p < .001. Constant refers to the logit mean at high altitude and the CB system (reference

level). The remaining coefficients are differences of the given level to the reference level (at logit

scale). CB = Coffee-Banana system, CO = Coffee-Open canopy system, CT = Coffee-Tree system.
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Table 8 shows the β coefficient and standard error of the negative binomial regression model

examining the effect of the altitude range and production system on CBD intensity. The

expected log count of berries fallen due to CBD is significantly increased in the CO system

(β coefficient = 1.3). Fig. 7B shows the interaction plot of the predicted count of lost berries

due to CBD by coffee production system and altitude range. The increasing effect of the CO

systems is particularly pronounced at the high altitude range. The effect of the production

systems at the high and highest altitude ranges shows similar tendencies.

Table 8: Negative-binomial model results examining individual and interaction effects of altitude

range and production system on CBD intensity

Coefficient Std. Error

Mid Altitude −0.514 0.479

Highest Altitude −0.791 0.681

CO 1.289∗∗∗ 0.465

CT −0.109 0.474

Mid Altitude x CO −1.659∗∗∗ 0.642

Highest x CO −0.264 0.826

Mid Altitude x CT −1.072 0.667

Highest Altitude x CT −0.314 0.972

Constant −2.520∗∗∗ 0.364

∗∗∗p<.01. n = 21, Log Likelihood = −88.754, θ = 4.041∗∗∗, (1.440) (dispersion parameter of the

negative binomial family, std.error in parentheses), Akaike Inf. Crit. = 195.507, Likelihood ratio

test: p < .001. Constant is the mean count at log scale at high altitude and CB system. CB =

Coffee-Banana System, CO = Coffee-Open System, CT = Coffee-Tree System.

3.5 Discussion

The main purpose of the paper was to draw attention to FPK concerning CPaD and their

management as well as the role of the inter-cropped bananas and shade trees. Contrasting

FPK with existing scientific knowledge and field observations helps to identify gaps in knowl-

edge and lack of information transfer. Our findings show that CPaD perceptions with respect

to their distribution across altitudes and perceived importance are to some extent concordant

among farmers, experts and field observations. However, discrepancies among farmers and

experts regarding the development of CPaD issues over the previous years as well as CPaD

management practices have been unveiled. Furthermore, field observations comparing CPaD

in different environments and production systems have shown the role of shade trees to be

ambiguous. In the following sections, the comparison between FPK, expert knowledge and

field observations corresponding to the questions of interest (Table 3) are discussed with a
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Figure 7: Interaction plots of the least-squares means (back-transformed by inverse-link function

to original response scale) based on the fitted models. Effect of coffee production systems on (A)

predicted probability of WCSB incidence and (B) predicted number of lost berries due to CBD at

different altitude ranges. Production systems with the same letter do not differ significantly (Tukey-

type comparisons of glm-parameters, p< .05, tested separately for each altitude range). An interaction

is given if the difference between coffee systems of one altitude range differs significantly from the

difference between coffee systems of another altitude range. CB = Coffee-Banana System, CO =

Coffee-Open System, CT = Coffee-Tree System

focus on the two most important CPaD (WCSB and CBD). Identified knowledge gaps as well

as challenges facing both, researchers and farmers are discussed in the context of a changing

climate.

Occurrence, impact and development of coffee pests and diseases (Table 3, ques-

tion 1-3)

Farmers perceived WCSB abundance to decrease from low to high altitudes. Similarly, the

field sampling showed higher incidences at mid and low altitudes and lower incidence at high

altitudes. In fact, WCSB infestation is reported to be an issue of lower altitudes where

mild temperatures prevail (Hill (1983)). However, changes in climatic patterns resulted in

the extension of coffee growing regions and hence a gradual spread of WCSB into higher

elevations up to 1700 masl (Tapley (1960)). Climate trend analysis in Uganda has shown

that over the past 25 years, rainfalls have decreased while temperatures have increased (Funk

et al. (2012)). WCSB is a serious pest which has been estimated to cause yield losses up to

25 % in other countries such as Zimbabwe (Murphy et al. (2008)). According to farmers’ and

experts’ perceptions as well as field observations, WCSB can be considered as the most serious

pest in the Mount Elgon region. Additionally, WCSB infestation levels might aggravate under

future climatic conditions. A recent study conducted by Kutywayo et al. (2013) in Zimbabwe

estimated the impact of climate change on the potential distribution of WCSB and found
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that areas suitable for WCSB infestation may considerably increase in the future. Although

farmers of our study did not perceive a change in the distribution or infestation levels of

WCSB, its spread into higher altitudes was also shown in this study.

Almost a fifth of the farmers located at low altitudes have reported the presence of CBD,

most probably due to misidentification or confusion with another disease showing similar

symptoms. CBD is known to be particularly severe at high altitudes (> 1600 masl), where

higher humidity and cooler temperatures prevail (Griffiths and Waller (1971)). In other

African coffee production countries, CBD has been shown to cause yield losses up to 80

% (Wintgens et al. (2004)). Infection levels in the present study did not exceed 30 %.

Nevertheless, CBD can be considered as the most severe disease of the higher altitudes of

the Mount Elgon region. The field sampling has shown that CBD intensity was highest at

altitudes between 1700–1900 masl. In recent years, farmers and experts did not perceive

a change in CBD intensity. However, areas located at altitudes above 1900 masl currently

providing suboptimal conditions for CBD might become more suitable under future climate

conditions.

Coffee pest and disease management strategies and extension service (Table 3,

questions 4-6)

The ability to properly identify CPaD, as well as some basic knowledge about pest and dis-

ease epidemiology are fundamental requirements to successfully control pests and diseases

and increase productivity. This case study has shown that farmers’ knowledge about dis-

eases was generally less established than compared to insects, a common issue that has been

found in other studies as well (Van Mele et al. (2001)). The consequence of this lack in

understanding the differences between diseases and pests is the relatively high percentage

of farmers, that erroneously treat fungal diseases with insecticides. The diversity of control

strategies adopted by farmers is quite low. Common phytosanitary principles, for instance

strip-picking at the end of the harvest season as an important measure to control CBB and

CBD (Damon (2000); Rutherford and Phiri (2006)), are rarely followed. Non-conventional

strategies which experts mentioned, such as stem-smoothing and stem-wrapping to suppress

WCSB (Rutherford and Phiri (2006); Murphy et al. (2008)) are not known or applied by

farmers. A recent study found a coffee variety (KP423) which showed resistance to WCSB,

while traditional management practices, including stem-smoothing and stem-wrapping were

claimed to be ineffective (Egonyu et al. (2015)). The commercial Arabica coffee varieties

currently used are susceptible to CBD and CLR (Musoli et al. (1993)). Newly introduced

varieties (Catimor NG9257, Elgon CB, Indian selections 5A and 6) which have been tested

for CLR resistance in Uganda could be a potential option (Matovu et al. (2013)).

Whether farmers are not aware of existing control practices, or intentionally decide not

to adopt them, has yet to be found out. In the presented case study, poor extension service
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as well as passive cooperatives most likely contribute to the poor information flow between

producers and institutions where agricultural knowledge is generated. The fact that at higher

located sub counties, a higher pesticide use, but also a generally better understanding of pest

and disease biology was found, could be linked to the abundance and proximity to diverse

coffee cooperatives, sellers, and an agricultural research and extension institute. It is possible

that farmers of higher altitudes are putting a higher priority on coffee production as compared

to low altitude. Due to advantageous environmental conditions, high altitude has a positive

effect on coffee quality (Decazy et al. (2003); Avelino et al. (2005)). Farmers might obtain

higher prices for their coffee, which enables them to invest more in their coffee production.

Another driving factor for the high pesticide use could be the high yield loss farmers suffer at

high altitudes due to CBD. A higher demand for agrochemical inputs in turn might increase

the market for agrochemical suppliers and hence improve the accessibility to products.

Another consequence of the poor extension service is the role which pesticide sellers are

assigned to. As the ones being present and accessible on the ground, they are often asked by

farmers for advice, a situation which is well known in many developing countries (Heong and

Escalada (1997)). A more objective training on pesticide use, promoting not only economic

and environmental, but particularly human health benefits, would be preferable. The most

frequently used product in this study was fenitrothion, an organophosphate unlicensed in

the European Union (Yoshida et al. (1987); EU Pesticides database (2012)). Experts have

explained that fenitrothion is not the best choice in terms of health risks, but that it is widely

used in the region because of its affordability for resource poor farmers. It is all the more

concerning that the majority of the interviewed farmers does not use protection equipment

while handling pesticides. Therefore, extension workers have been instructed to discourage

the use of fenitrothion and to replace it with less hazardous pesticides. Above all, farmers

of the study region reported on fake agrochemical products on the market, causing financial

losses and potential health risks (Fishel (2015)).

According to the experts, the lack of common guidelines and recommendations for pest

and disease management adapted to a certain region and production system is a further

problem. The fact that different institutions exist, each with their own findings and rec-

ommendations, causes confusion or even inconsistency among recommended management

strategies. It was expressed that there is a need for a functional common platform that syn-

chronizes and merges the information from different sources, develops communication and

dissemination material and sends joint extension agents to communicate with farmers and

vice versa. A recently launched initiative of the Ugandan coffee sector is a step forward to-

wards the improvement of farmers’ technical skills, including pests and diseases management.

This cooperation between actors of the public and private coffee sector released comprehen-

sive collection of training material to guide and improve extension work along the national

coffee value chain (Café Africa (2014)).
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The impact of the production system for coffee pests and diseases (Table 3,

question 7)

Farmers and experts perceived the occurrence and impact of WCSB to be higher in CT

systems. This agrees with the findings of our sampling as well as with other studies, where

WCSB infestation grade was found to be higher in plantations under a high level of shade

(Rutherford and Phiri (2006)). The mechanism of the effect of shade trees on WCSB still

has to be investigated, however according to the experts and literature it is believed to be

based on modifications of microclimatic factors, especially humidity, favouring the beetles’

life cycle (Kutywayo et al. (2013); Jonsson et al. (2014)). A recent study conducted in the Mt

Elgon region by Jonsson et al. (2014) found that the shading effect is especially pronounced

at mid altitudes. In contrast, our results have shown that the conducive effect of shade on

WCSB is notably pronounced at high altitudes. On the one hand, these different findings

could be explained by the range of included altitudes. While Jonsson et al. (2014) examined

a high altitude range of 1717–1840 masl, our study comprised altitudes between 1700–2200

masl. In the highest altitudes where low temperatures prevail, conditions turn unfavourable

for WCSB populations. The buffering effect of shading, in particular increased minimum

temperatures, could therefore play a significant role, making conditions for the establishment

of WCSB favourable or even possible at all. On the other hand, the study areas were located

on different slopes of Mt Elgon. The effect of varying rainfall patterns which has been shown

to differ between north-eastern and south-western slopes (Hamilton and Perrott (1981)) could

also explain the different results.

Regarding CBD intensity, farmers and experts perceptions, as well as field observations

revealed that it is lower under shaded conditions (CT Systems). In fact, shade trees have

been shown to help controlling CBD. Mouen Bedimo et al. (2008) suggested that shade trees

intercept rainfall and therefore decrease the propagules’ dispersion. The detailed mechanism

still has to be confirmed. Other possible mechanisms could be microclimatic modification of

the dew point or the reduction of fruit load under shaded compared to unshaded conditions.

Currently WCSB and CBD seem to be the most threatening biotic constraints for coffee

production, not only in the Mt Elgon region, but also in other East African highlands (Mur-

phy et al. (2008); Hindorf and Omondi (2011)). They are both under-researched organisms,

where scientific knowledge about the life cycles or epidemiology, as well as knowledge about

alternative hosts, natural control agents and the role of shade trees is scarce. Considering

the assumption that climate change might cause a shift of suitable coffee growing areas into

higher altitudes (Läderach et al. (2008, 2010); Davis et al. (2012)) the situation aggravates.

CPaDs are likely to follow the migration of the host to expand their geographic range to the

same future suitable coffee growing areas (Rosenzweig et al. (2001)). CBD is already a serious

disease in the highlands and might migrate into even higher areas. WCSB is already showing

the trend of expanding into higher altitudes (Kutywayo et al. (2013)). Since shaded coffee
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production systems are strongly considered as an option to adapt to climate change, more

research is needed to pinpoint how shade trees influence the dynamics of CPaD. The topic of

the sun-shade issue and its relation to different aspects of coffee production, including coffee

health, has been subject of many studies (Beer et al. (1998); Muschler (2001); Vaast et al.

(2006); DaMatta et al. (2007); Dossa et al. (2008); Bosselmann et al. (2009); Avelino et al.

(2011); Teodoro et al. (2010); López-Bravo et al. (2012)). However, the topic remains con-

troversial. Firstly, most studies describe average effects, while interactions between shading

and environment, influencing CPaD jointly are almost never taken into account. Secondly,

unexpected trade-offs between beneficial and detrimental shade effects might emerge. In the

currently most suitable altitude range for Arabica production, WCSB and CBD have shown

opposing relations to shade. While WCSB infestation was found to be favoured by shade,

CBD intensity resulted to be lowered under shaded conditions. Here, estimating yield losses

is the only way to assess production systems in terms of pest and disease regulation (Avelino

et al. (2011)). These kind of trade-offs, as well as others related to other components and

processes of the coffee production (eco)system have to be taken into account while suggesting

sustainable solutions for pest and disease management and climate change adaptation strate-

gies. In practical terms this means that the national coffee sector will need to design and

adjust guidelines, recommendations and training material for extension workers and farmers

to the variability of site-specific conditions.

3.6 Conclusions

In this case study it was shown that not only the insufficient information transfer within

the researcher - extension agent - farmer relationship was responsible for existing knowledge

gaps. Furthermore, other institutional and political issues at national level as well as a

lack of information that still has to be generated concerning options to manage CPaD in

different production situations was responsible for suboptimal management strategies. Gaps

in knowledge about CPaD and management at present and in the context of a changing

environment exist across different levels. At the farmer level, a basic understanding of CPaD

and their identification, as well as existing control strategies are often not well known. A

better information flow via extension work, trainings and workshops would assure that pre-

existing and newly generated knowledge from science reaches the farmer. Vice versa, at the

science level, awareness regarding what technologies are known and accepted by farmers is

essential to find out why developed control strategies are not adopted.

A common knowledge gap from farmers to scientists was the role of the production system

for CPaD. Further research on mechanisms between shade-trees and CPaD dynamics under

varying environmental conditions and resulting trade-offs will be relevant for Uganda and

other East African countries. National authorities of the coffee sector play an important

role in assigning adequate importance to those issues by providing capacities and promoting
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relevant research programs. Because the majority of the total coffee export volume of Uganda

is Robusta coffee, less research capacities of scientists and extension agents are invested in

Arabica coffee. However a significant part of the export value is generated by the production

of Arabica coffee. Since it is more sensitive to both, biotic and abiotic constraints, its economic

importance for Uganda and the need to also prioritize national research on it becomes evident.

Finally, participatory and integrated pest management strategies have to be designed

according to the spatial variability of agroecological conditions as well as rural infrastructures.

The presented example of coffee production in Mt Elgon showed that more participatory

approaches are needed in order to achieve sustainable agricultural development. Hereby,

farmers as the initial and executive body within the coffee value chain have to be involved as an

active contributor for the development, implementation and impact assessment of agricultural

extension and research programmes.
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4.1 Abstract

The white coffee stem borer (WCSB) Monochamus leuconotus is a destructive pest of Arabica

coffee in eastern and southern Africa. Documentation on outbreaks, spatio-temporal devel-

opment and the relation to different environmental conditions and coffee production system

is limited. To underpin effective control measures, we studied aspects of local and regional

pest drivers in the Mt Elgon region, Uganda. At the local scale, we (i) characterized the tem-

poral development of WCSB and explored associations to environmental and shade-related

indicators. During two growing seasons and on 84 coffee plots, we recorded WCSB inci-

dence/infestation and microclimate on an altitudinal gradient and different shading systems.

The bimodal rainfall, altitude, and shade affected WCSB development through their effect

on minimum temperature. At the landscape level, we (ii) analysed and mapped the spatial

pattern of WCSB. Data on WCSB incidence were collected on 180 plots in one year. Pest

incidence showed a spatial arrangement varying by districts. A relation to human movement

and the landscape context contributing to pest spread are suggested. We verified that the

shading effect found in the local context was also expressed at the broader scale. WCSB

control measures should be synchronized with the bimodal rainfall patterns, and emphasis

should be given to identify and limit pathways of pest spread from highly infested to new

areas.

4.2 Introduction

Stem borers of the Cerambycidae family are severe pests of Arabica coffee (Waller et al.

(2007), Egonyu et al. (2015)). They have become more important with the banning of dield-

rin insecticide and poor management associated with low coffee prices (Waller et al. (2007)).

Studies of the bioecology of the important coffee stem borer Xylotrechus quadripes in south-

east Asia and India underpin recommendations of its sustainable management (Venkatesha

and Dinesh (2012); Thapa and Lantinga (2016)). The white coffee stem borer (WCSB,

Monochamus leuconotus) is similarly destructive on Arabica coffee in Africa (Waller et al.

(2007); Jonsson et al. (2014)), but has received less attention. Up to 80% of coffee farms in

eastern and southern Africa were infested and suffered crop damage (Kutywayo et al. (2013),

Egonyu et al. (2015)).

Early instars of WCSB ring bark the plants, affecting the vascular transport system so that

heavily-affected young trees may die (Schoeman et al. (1998); Vega et al. (2006); Rutherford

and Phiri (2006)). Because the pest develops inside the trunk, it is difficult to control. There

are few economically-effective chemicals, so that management is limited to laborious stem

treatments such as manual removal (Vega et al. (2006); Egonyu et al. (2015)). More recently

research has sought alternative such as plant resistance (Egonyu et al. (2015)), biological

control (Karanja et al. (2010)), and pheromones for trapping systems (Murphy et al. (2008)),

but these are in their early stages. Nevertheless, any control method requires understanding
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of the pests bioecology and its interrelations within the production agroecosystem.

There is some information on the life cycle of WCSB, and its reproductive and feeding

behaviour from laboratory and field studies (Knight (1939); Tapley (1960); Gichuhi et al.

(2016)). There are only limited data, however, on WCSBs spatiotemporal development,

outbreaks, and their relation to environment and shade management. As other insect pests,

WCSB is expected to expand its altitude and latitude limits in response to climate change

as well as through changed development patterns and inter-generational timing (Porter et al.

(1991); Kutywayo et al. (2013); Bjorkman and Niemela (2015)). WCSB responds to shade,

with higher infestation in shaded compared to sun-exposed coffee. Depended on altitude,

the shade effect is more pronounced at either low (Jonsson et al. (2014)) or high altitudes

(Liebig et al. (2016)). The effect is hypothesised to be due to differences in microclimate. The

interaction between shading and changed climate in the future is a trade-off in the broader

context of adaptation to climate change. In coffee agroecosystems, shade is often seen as

an option for an adaptation to future climates (Lin (2007)). It is therefore important to

understand if and how shading and other environmental, agronomic and temporal aspects

affect WCSB abundance.

We compared WCSB abundance along altitudinal gradients and coffee shading systems,

varying in their shade tree diversity and quantity. On the one hand, we use a comparative

approach on these gradients to better understand conflicting results of shade effects on pest

ecology. Many studies of the past have shown contradictory results on shading effects on coffee

pests and diseases because they were site-specific (Avelino et al. (2012); Allinne et al. (2016);

Boudrot et al. (2016)). Focusing on a specific site makes decision-making and upscaling of

management practices difficult, because the complexity of agroecological systems expands

among spatial units (Kogan (1998)). On the other hand, the altitudinal gradient covers a

range of environments and moreover allows us to estimate potential responses to climate

change (Hodkinson (2005)).

At the local scale, we (i) characterized the temporal development of WCSB and ex-

plored associations to environmental (altitude) and shade-related indicators. We discussed

the underlying ecological mechanism of shading effects emphasizing the role of microclimatic

modifications. At the landscape level, we (ii) analysed and mapped the spatial pattern of

WCSB to discuss further, spatially relevant factors related to pest abundance.

4.3 Material and methods

4.3.1 Study area

This study referred to the same area and farms as described in Sec. 2.2.1 and 2.2.2.
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Figure 8: A) Location of the sampled plots within the study area. The squared area contains

plots used for assessing the temporal development of WCSB and associations to altitude and shade-

related indicators at plot scale (i). Spatial distribution of WCSB at landscape scale (ii) used all the

sites shown. B) Monthly mean temperature (mean of daily dry bulb temperature) and accumulated

precipitation from January–December 2015
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4.3.2 Plot selection and characterization

We selected sites based on a survey made in 2014 (Liebig et al. (2016)). In summary, along

the three altitude ranges we created typologies of shading systems using descriptors of the

vegetation structure. Table 1 (Sec. 2.3) shows which shade-related descriptors we used

and how we characterized them. We collected data from 35 plots in the 2014/2015 and

49 plots in 2015/2016 season to characterize the temporal development of WCSB and its

association to altitude and shade-related indicators (i). Plot size ranged between 0.03 –0.5

ha. Farmers usually prune attacked stems during the dry season and stump plots that were

heavily attacked. Stumping is a pruning technique leading to the removal of all the foliage

by cutting the trunk at 30 cm from the ground. We discarded any plots that were completely

stumped in the first season but conserved the ones which were sparingly pruned for the

second season. We treated data for each year of the latter as independent (Avelino et al.

(2006, 2007)), giving a total of 84 plots. We installed temperature data loggers (iButton

DS1923) on a subset of 27 plots (three replicates for each shading system by three altitudes).

We installed two screened loggers (Holden et al. (2013)) on each plot at the height of 1.50 m,

and set them to record each hour during the 2015/2016 season.

For the spatial analysis (ii), we selected 180 plots (including the plots used for (i)) in the

seven coffee-producing districts of Mt Elgon. We allocated each plot to one of the three shade

systems and the appropriate altitude class (Table 13, supplementary material).

4.3.3 Data collection

Data on the temporal development of WCSB at plot scale (i) We collected data in

two growing seasons from 2014/15 and 2015/16. Plots were heterogeneous in structure and

size. Per plot we systematically selected 5–15 bushes representing the shading system of the

whole plot. We avoided bushes that were too old (> 30 years) or too young (< 5 years) and

those on plot borders to avoid boundary effects. We sampled a total of 767 coffee bushes in

both years.

We examined all stems up to two meters above the collar level of each bush for WCSB

infestation. Stem borer damage differs depending on the life stage of the insect (Fig. 25,

supplementary material). New infestations, visible by the typical ringbarking phase, are

characterized by frass (EIs) on the bark surrounding the entry hole. Older damage (barked

areas and entry holes) has no frass, while exit holes, from which adults have emerged (EM),

all are circular and larger than entry holes. The number of orthotropic stems per marked

coffee bush was counted and damages were recorded for each stem.

We monitored four times in 2014/2015 (June, August, October, and December) and eight

times in 2015/2016 (February, March/April, May/June, July, September, and November

of 2015, and January and February of 2016). We derived two plot-based indices of pest

infestation. WCSB incidence was the number of bushes showing any signs of infestation as a
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proportion of the total number of bushes sampled in each plot. The rate of new infestation

was the difference between the number of new entry holes of two consecutive dates as a

proportion of the total number of stems and sampled bushes per plot.

Data on the spatial distribution of WCSB at landscape scale (ii) We established

transects of 15 coffee bushes, using the same criteria as described above, to score the presence

of signs of WCSB. WCSB incidence (the number of bushes showing any signs of infestation as

a proportion of the total number of bushes sampled in each plot) was calculated. We sampled

in February –April 2016, corresponding to the activity peak of early-instar ringbarking (Fig.

25, supplementary material).

4.3.4 Data analysis

Data on the temporal development of WCSB and associations to altitude and

shade-related indicators at plot scale (i) We analysed seasonal development of WCSB

graphically, plotting the rate of new infestation against a sampling date. We analysed the ef-

fect of altitude and shading on WCSB incidence (maximum annual infestation value per plot)

using a generalized linear model with a Poisson error structure. We tested model suitability

and goodness of fit with the AIC and likelihood ratio test. We then used post-hoc pairwise

comparisons on the interaction terms. We used a three-step procedure to analyse associations

between the maximum WCSB incidence, the altitude, and the four descriptors of shading.

Because relationships were not linear, we transformed each input variable using hierarchi-

cal clustering (Table 14, supplementary material). We then used multiple correspondence

analysis as a precursor to profile clustering, using only the first dimensions to stabilize the

clustering (Kristensen (2003); Husson et al. (2010)). We extracted monthly means of min-

imum and maximum temperatures from the hourly data and applied a linear mixed-effects

model with the plot ID as the random factor. We assessed goodness of fit with AIC and R2

for the mixed models.

Data on the spatial distribution of WCSB at landscape scale (ii) We analysed

and mapped the spatial pattern of WCSB distribution in the whole Mt Elgon region in a

two-step process. We first analysed the spatial autocorrelation among sites. We used semi-

variograms to visualize the extent of spatial autocorrelation and how it behaved over distance.

We then fitted an empirical variogram using least squares. Next, we modelled the spatial

distribution of WCSB in relation to the altitude and geographical coordinates. We used a

generalised additive model with a negative binominal error distribution to accommodate the

non-linear relationships between the predictors and response variables (Hastie and Tibshirani

(1990)). Incorporating the geographic coordinates enabled the model to account for spatial

autocorrelation (Dormann et al. (2007); Miller (2010)) and to model WCSB distribution

dependent on altitude for each level of the shade systems. We plotted the additive effects of
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altitude and shade on the predicted WCSB infestation with confidence intervals. We mapped

the WCSB predictions for the entire region on a 1-km grid based on altitude and geographic

location.

Softwares and packages We used R software (R Core Team , 2016) with RStudio (Version

0.99.903) and following packages for data analysis: ”FactorMineR” (Husson et al. (2016)),

”lsmeans” (Lenth et al. (2016)), ”lme4” (Bates et al. (2014)), ”spdep” (Bivand et al. (2016)),

”geoR” (Ribeiro et al. (2001)), ”mgcv” (Wood (2001)), ”ggplot2” (Wickham (2016)) and

”raster” (Hijmans and van Etten (2014)). We used ArcMap (ESRI, 2014) to produce the

maps. We used the 90-meter resolution digital elevation model of the shuttle radar topography

mission and the administrative borders from the Data.Ug database (http://maps.data.ug/).

4.4 Results

4.4.1 (i) Temporal development of white coffee stem borer and associations to

altitude and shade-related indicators at plot scale

Temporal development of WCSB The temporal pattern of WCSB is shown in Fig. 9.

In both seasons, the number of new entry holes increase with time, showing infestation peaks

in the periods from December to February of both seasons, and from May of the second season

(2015/16). The WCSB incidence was affected by the altitude range, coffee shading system

and the interaction between the two predictors (Fig.10). Overall, the WCSB incidence was

highest in CT systems, whereat this effect was expressed most at high altitudes (Table 15 of

supplementary material).

Associations to altitude and shade-related indicators The multiple correspondence

analysis showed a significant association between the used input variables. The leading six

components, which explained 66.8 % of the variance, were subsequently used in an hierarchical

classification (Fig.11). The two clusters with higher incidences (45 and 46 % of infested bushes

on average, respectively) are related to high numbers of shade trees, tree species and canopy

closure. The third cluster was from high altitudes. Cluster two with the second lowest mean

WCSB incidence shows lowest values on the number of shade trees, the number of shade tree

species and canopy closure. The cluster with the lowest WCSB incidences (15 %) had a high

density of banana mats. Clusters three and five were, respectively, from high or low altitudes,

but the other clusters covered the entire altitudinal range.

Canopy minimum air temperature showed a significant interaction between altitude, shade

system and month (p<.001), while for the maximum temperature, only the main effects were

significant (p<.001) (Fig. 12). At high altitudes and consistently over time, CT systems

showed significantly higher minimum canopy air temperatures (least-squares mean = 14.7◦C)

than compared to the other systems (CB = 13.9◦C and CO = 13.1◦C). For the other altitudes,
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Figure 9: Seasonal development of WCSB. The rate of increase in the number of new entry holes.

Means with standard errors starting from the second monitoring date are plotted. M1 refers to the

first monitoring date of each season. The mean number of entry holes per plot (relative to the total

number of stems/total of sampled bushes) of the first date was 0.85 for the 2014/15 and 0.83 for the

2015/16 season, respectively

Figure 10: Interaction plot of the least-squares means of predicted probability of WCSB incidence

(back-transformed by inverse-link function to the original response scale) based on the fitted GLM

model by altitude category and coffee system. Differences between coffee systems are indicated by

different letters (Tukey-type comparisons of GLM-parameters, p <.05, tested separately for each

altitude category). CB = Coffee-Banana System, CO = Coffee-Open System, CT=Coffee-Tree System.

The interaction was very highly significant (p < .001)
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Figure 11: Clusters based on hierarchical classification (mean values within the squares). Shading

represent the standardized means. WCSB =WCSB incidence (proportion of infested bushes), CanClos

= Canopy closure (%), NoSTS = Shade tree diversity, No ST ha = Shade tree density (trees ha−1),

No BS ha = Banana density (mats ha−1)

differences between systems were less pronounced, but more between months. CO systems

had the highest maximum canopy air temperatures at all altitudes. (Table 16, supplementary

material).

4.4.2 (ii) Spatial distribution of white coffee stem borer at landscape scale

Analysis of spatial autocorrelation There were high incidences of WCSB in the districts

of Kapchorwa and Bulambuli, and lower incidences around Kween and Bududa (Fig. 13A),

with significant spatial autocorrelation (Moran I coefficient, p < .05). The semi-variogram

(Fig. 13B) shows nugget effect between degree and range of the spatial autocorrelation,

indicating that the spatial structure only explained part of the variability in WCSB incidence.

Spatial autocorrelation decreased with distance and reached plateau at approx. 25 –30 km.

Influence of altitude and geographical coordinates on distribution of WCSB

Generalized additive models were used to describe the effect of altitude, the geographical

location and the coffee shading system on WCSB incidence. The model showed a significant

effect of both predictors, altitude and geographical location on WCSB incidence (Table 9).

Fig. 14 shows the response curve for WCSB in dependence of altitude for each level of the

coffee shading system. There are no differences in WCSB response in the different systems
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Figure 12: Minimum canopy air temperature (left) showing the second-order interaction between alti-

tude, coffee system and month. CB = Coffee-Banana System, CO = Coffee-Open System, CT=Coffee-

Tree System. (p<.001) (Table 17, supplementary material). Maximum canopy air temperature (right)

showing the main effects of month of the year, altitude and shade system (p<.001). Differences

between altitudes and coffee systems are indicated by different letters (Tukey-type comparisons of

GLMM-parameters, p <.05)
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Figure 13: (A) WCSB incidence according to geographic location. (B) Spatial dependency of WCSB

incidence. Semi-variance is the mean square deviation, which is plotted against the distance between

points

Table 9: Results of generalized additive model showing approximate

significance of smooth terms 1

edf Ref.df Chi.sq p-value

s(altitude) x CB 3.451 4.269 10.747 0.039474 *

s(altitude) x CO 3.538 4.383 8.962 0.074417 .

s(altitude) x CT 2.318 2.823 5.302 0.099687 .

s(Lat,Long) 9.898 13.203 36.033 0.000721 ***

R-sq.(adj) = 0.305 Deviance explained = 42.3% n = 179

1 s()= coefficients for smooth/spline terms. edf = estimated degrees

of freedom

below an altitude of around 1700 masl, however above this altitude, the model estimated a

slightly higher WCSB response in CT systems, while no differences were estimated for the

other systems.

Maps based on the models of altitude and geographic location show that highest infes-

tations are predicted in altitudes below 2000 masl (Fig. 15). We predict high risk in the

districts of Kapchorwa and Bulambuli as well as the lowlands of Mbale and Manafwa, and

lower risk in Bududa and Kween

4.5 Discussion

We showed that the development of the white coffee stem borer is controlled by the bimodal

rainfall, and by altitude and shade through their effect on minimum temperature. Pest

incidence showed a spatial arrangement varying according to the districts. A relation to

human movement and the landscape context contributing to pest spread are suggested.
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Figure 14: Output of the fitted generalized additive model showing the smooth effect of altitude.

Hatch marks on the x-axis indicate the distribution of variable values, dashed lines are the confidence

intervals. The y-axis shows the additive effect on the log scale, and for each panel is standardized to

a mean value of zero

Figure 15: Predicted number of infested coffee bushes per plot (back-transformed data) by geographic

location
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(i) Temporal development of WCSB and associations to altitude and shade-

related indicators at plot scale

Temporal development of WCSB WCSB phenology and its link to the bimodal rainfall

pattern agree with former studies (Knight (1939); Tapley (1960)).The peaks can be attributed

to the phenological stages where new entry holes were bored (Fig. 25, supplementary mate-

rial). There were more attacks in the short rains (October/November, 2015/16) than in the

long rains (March/April, 2015/16). Growers implement control measures during the post-

harvest (dry) season that reduce residual infestation to low levels. Higher infestation at the

start of the short rains in October might result from less time spent on pest management

during the harvest season (Table 18, supplementary material). Moreover, the duration of the

WCSB life cycle varies with latitude and altitude (Waller et al. (2007)), enabling the pest

to coordinate its life cycle with conducive environmental conditions (Gichuhi et al. (2016)).

Identifying that WCSB adults emerge in synchrony with the rainfall patterns suggests that

control measures might be focused at the start of the two rainy seasons. Control options

that aim to prevent oviposition such as smoothing the stem bark (the females lay eggs under

the bark scales), wrapping, or insecticide banding (De Villiers (1973); Egonyu et al. (2015))

should be synchronised with bimodal rainfall pattern. Once the larvae have penetrated the

bark, preventative control options are inefficient. Inadequate timing might be a reason why

those methods have remained inconclusive (Murphy et al. (2008); Egonyu et al. (2015)).

Associations between WCSB, altitude and shade-related indicators WCSB infes-

tation is highest in coffee systems with high shade tree density and diversity (Murphy et al.

(2008); Jonsson et al. (2014); Liebig et al. (2016)). Poikilotherms depend on ambient temper-

atures (Bale et al. (2002)), therefore the modification of thermal environment by shade is a

possible mechanism. Altitude drives WCSB populations (Waller et al. (2007)), but is only de-

cisive in connection with other factors of the agroecosystem. The interactive effect of altitude

and the coffee system on minimum temperatures might be key for WCSB at high altitudes.

Where mean atmospheric temperatures are too low (the optimum is 25 ◦C, (Schoeman et al.

(1998); Gichuhi et al. (2016)), increased minimum temperatures in shaded systems (CT) ap-

pear to enable WCSB establishment. This could be important for WCSB adults during the

reproductive and oviposition phases as well as early larval stages. At lower altitudes with

favourable mean atmospheric conditions, minimum temperatures are not a limiting factor.

Accordingly, differences in WCSB infestation and minimum temperature between systems

are negligible. White coffee stem borer probably prefers shaded habitats to allow it more

flexibility to regulate its body temperature. Interactions between the macroclimate and abi-

otic or biotic factors create a complex thermal landscape. The resulting local microclimate

is heterogeneous in space and time, and has a decisive effect on the bioecology of insects

(Hodkinson (2005); Sears et al. (2011)). In mountain habitats, the ecological importance of
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microclimates is more important than habitats at lower altitudes. The variability in radi-

ation, atmospheric pressure and interactions with local factors create habitats for insects,

regardless of the mean air temperature (Hodkinson (2005); Mani (2013)).

There are other shading mechanisms possible, such as light level. Females seem to prefer

darkness for oviposition, although WCSB is not generally attracted by light (Knight (1939);

Schoeman et al. (1998); Gichuhi et al. (2016)). Shade trees are unlikely alternative hosts for

WCSB, since only some wild Rubiaceae species are known to host it (Dufpy et al. (1957)).

Management is another possible driving factor for the pest. We found lower infestation

in systems shaded by bananas, where coffee is better managed than in the other systems.

The intercropped system receives more attention, and women are involved in the process,

increasing the labour input. Moreover, bananas are sold, which enables farmers to invest

more in agronomic inputs (Van Asten et al. (2011); Jassogne et al. (2013)).

(ii) Spatial distribution of WCSB at landscape scale

Spatial heterogeneity also determines variation in WCSB infestation, indicated by both the

spatial autocorrelation and the incidence map, which shows different aggregations at the

district level. The effect of altitude is inconsistent. All plots in the Kween district (above

1800 masl), had low infestation as expected (Hill (1983)), but plots in the neighbouring

Kapchorwa district at high altitude had high infestation. The area around Bududa and

northern Manafwa, at low and mid altitudes had low WCSB infestation. Although altitude

does affect WCSB, there must be other factors involved. One potential factor may be the

surrounding landscape from which, depending on the species, pests may spill over across both

habitats and managed agricultural systems (Tscharntke et al. (2005), Werling and Gratton

(2010)). The amount of surrounding land covered by coffee is likely to be important, as it

is for other coffee pests (Avelino et al. (2012); Banks et al. (2014)). The flight capacity of

WCSB is only up to one mile (Tapley (1960)). It might therefore benefit from connected coffee

growing areas because the chances for migration into new coffee fields are increased (Avelino

et al. (2012)). Moreover, Kween is relatively new to coffee production, has fewer coffee plots

and less infestation than the older district Kapchorwa. Coffee was established in Kapchorwa

many decades ago and WCSB infestations are widespread. There is spatial autocorrelation up

to 25 –30 km, which might indicate human intervention. Many of the farmers in this study

use pruned coffee wood for firewood and construction (Table 4, supplementary material).

Any trade in the wood risks spreading pests or diseases to other farms and regions as for

WCSB in Malawi and Zimbabwe (Murphy et al. (2008)) and coffee diseases, such as coffee

wilt disease (Gibberella xylarioides) (Baffes (2006); Belachew (2016)).
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4.6 Conclusions

Ecologically relevant microenvironments have been understudied and its relevance under-

stated (Potter et al. (2013); Sunday et al. (2014); Stigter (2015)). The impact of spatial

variability and interactions with the local environment on pests and diseases is essential for

understanding agricultural systems and the development of IPM strategies (Dormann et al.

(2007); Sciarretta and Trematerra (2014)). This is especially relevant for the analysis of po-

tential future climate effects on pest dynamic in tropical mountain areas. GIS techniques to

visualize the spatial distribution of pests are useful tools for the implementation of extension

services and studies on pest ecology (Nansen et al. (2003); Gonzalez-Redin et al. (2016)).

Incorporating cropping system effects in modelling tools to evaluate pest performance in a

certain system is a need for future modelling efforts (Colbach (2010); Cerda et al. (2017)).

Predicting pest response with globally interpolated climatic data might therefore fail to cor-

rectly predict future pest performance (Faye et al. (2014); Rebaudo et al. (2016)).

Based on our findings in this study, we recommend: (i) At the local scale, preventive

control actions should be synchronised with the onsets of the rains during the flight periods

of adults. During the entire growing season, infested plants should be traced and if necessary

eradicated. Infested plant material should not be used for construction or for sale. (ii) At

the regional scale, the movement of coffee wood (e.g. selling for firewood or construction)

should be strictly controlled to avoid dispersal of WSCB to new areas. Extension agents

should emphasize to growers the pathways of pest spread between coffee-growing areas, to

limit dispersal from highly-infested to new areas.
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Theresa Liebig1, 2, 3, Fabienne Ribeyre5, Peter Läderach1, Piet van Asten2, 7, Laurence Jassogne2,

Hans-Michael Poehling3, Jacques Avelino4,5,6

1Climate Change, Agriculture, and Food Security (CCAFS), International Center for Tropi-

cal Agriculture (CIAT), AA 6713, Cali, Colombia

2Climate Change, Agriculture, and Food Security (CCAFS), International Center for Tropi-

cal Agriculture (IITA), Kampala, Uganda

3Institute of Horticultural Production Systems - Section Phytomedicine, Leibniz University

of Hanover, Hanover, Germany

4CIRAD, UPR Bioagresseurs, F-34398 Montpellier, France

5Department of Research and Development, Tropical Agricultural Research and Higher Ed-

ucation Center (CATIE), Turrialba, Costa Rica

6Inter-American Institute for Cooperation on Agriculture (IICA), San José, Costa Rica
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5.1 Abstract

Shade effects on coffee pests and diseases are ambiguous because they vary depending on the

biophysical environment. Using the case study of Coffee Leaf Rust (CLR, Hemileia vasta-

trix ) on Arabica coffee we demonstrate relationships between the environment (represented

by altitude) and production systems and their effects on disease intensity. In Mt Elgon,

Uganda, we (i) identified microclimatic indicators explaining CLR variability and charac-

terized their spatiotemporal variations. We (ii) integrated effects between the environment,

production systems, microclimate and CLR into a conceptual framework and formulated

a piecewise structural equation model to understand directional relationships. During one

growing season, we sampled CLR incidence and microclimate on plots (n = 49) assigned to

different production systems and distributed along an altitudinal gradient (1000–2200 masl).

We show how altitude and production system affect CLR development through their effect

on key microclimatic indicators (diurnal temperature range (DTR), dew point temperature

(DP), i.a.). These varied as a function of the environment, production system and season.

In systems with high shade density and diversity, humidity related indicators decreased with

altitude. These differences were most pronounced during the rainy seasons. DTR was con-

sistently higher in sun exposed systems and increased with altitude. At low altitudes where

differences in microclimatic variables between systems were small, differences in CLR inci-

dence were marginal. At mid and high altitudes, highest CLR incidence occurred in the

production system showing low DTR and high DP. We conclude that the effects of the envi-

ronment and production system on CLR abundance are spatio-temporally variable and either

direct, interactively or indirectly mediated by the microclimate.

5.2 Introduction

Coffee–agroecosystems are interaction networks consisting of anthropogenic, topographic,

meteorological, edaphic and biological components, which vary in space and time (Wagenet

(1998); Corwin (2013)). The performance of the coffee system with respect to different

ecosystem services is a function of complex space and time-dependent interactions, which

can emerge as trade-offs or synergies (Cerda et al. (2017)). Therefore, pest and disease

management strategies rely on understanding the complexity of the agroecosystems (Avelino

et al. (2006, 2007); Willocquet et al. (2008); Allinne et al. (2016)).

The performance of coffee (e.g. productivity (Beer et al. (1998); DaMatta (2004); Vaast

et al. (2006)), quality (Muschler (2001); Bosselmann et al. (2009), biodiversity (Perfecto et al.

(2004); Teodoro et al. (2010)), sustainability (Beer et al. (1998); Jha et al. (2011, 2014)) under

shaded vs. sun-exposed conditions has been explored in numerous studies. Beneficial shading

effects on coffee production through the mitigation of microclimatic extremes have been

quantified and are generally well-established (Barradas and Fanjul (1986); Lin (2007); Siles

et al. (2010a)). It has also been acknowledged that the extent to which shaded systems are
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advantageous depends on the biophysical context (Muschler (2001); Oberthür et al. (2011);

Cerda et al. (2017)). Since shading effects vary across sites, its impacts on coffee pests

and diseases are ambiguous (Schroth et al. (2000); Staver et al. (2001); Soto-Pinto et al.

(2002); Avelino et al. (2004, 2006, 2011); López-Bravo et al. (2012); Jonsson et al. (2014)).

Few studies were conducted across different temporal and spatial scales or focused on the

effect of multiple factors and response variables. With the availability of both spatial data

and more sophisticated statistical tools to evaluate networks of causal relationships (Grace

(2006); Lefcheck (2016)), recent research addresses the complexity of agroecosystems (Liere

et al. (2012); Boreux et al. (2013); Allinne et al. (2016)).

Shading modifies the environment for pests and diseases directly or indirectly via changes

in the microclimate, or by creating habitats for beneficial or competitive organisms (Soto-

Pinto et al. (2002); Avelino et al. (2004); Pumariño et al. (2015)). Likewise, shade modifies

the environment for many other components of the system, e.g. coffee physiology and pro-

ductivity, soil, water, as well as biodiversity, which in turn may also be related amongst

themselves and with pests and diseases (Muschler (2004)). Moreover, these ecological mech-

anisms of shade are altered by greater spatial factors, such as macroclimatic variations along

altitudinal or latitudinal gradients (Staver et al. (2001); Avelino et al. (2011); Cerda et al.

(2017)).

The case of Coffee Leaf Rust (CLR, Hemileia vastatrix ) illustrates how shade can oper-

ate in two antithetic pathways: (i) Shade may aggravate the disease due to modifying the

microclimate to conditions more favourable for the fungus. ii) Simultaneously, shade may

also regulate yield, which in turn could negatively affect the pathogen because attack inten-

sities are more acute when fruit load is high (Avelino et al. (2004, 2006)). CLR has caused

tremendous damage for the Arabica coffee sector of the Americas over the past few years

(Avelino et al. (2015); Mccook and Vandermeer (2015)). The combination of suboptimal

management and meteorological factors were responsible for the heavy outbreaks and this is

expected to play a role under future climate conditions (Avelino et al. (2015)). In Africa, CLR

is the most devastating disease of Arabica coffee after Coffee Berry Disease (Colletotrichum

kahawae) (Matovu et al. (2013)). In Uganda, the impact of CLR became apparent in the

1940s when areas of land typically producing Arabica, had to be replaced with Robusta coffee

(Musoli et al. (1993); McCook (2006)).

In this study, we infer direct, indirect and interactive effects of the altitude and coffee

production system on microclimatic indicators and CLR. We (i) identified microclimatic

indicators explaining CLR variability and characterized their spatiotemporal variations. We

then (ii) integrated effects between the environment, production systems, microclimate and

CLR into a conceptual and statistical framework to understand directional relationships.
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5.3 Material and Methods

5.3.1 Study area

This study referred to the same area and farms as described in Sec. 2.2.1 and 2.2.2. The

traditional varieties (SL 14, SL 28 and Nyasaland) are highly susceptible to CLR (Musoli2001,

Matovu2013).

5.3.2 Plot selection and characterization

We selected sites based on a survey made in 2014 (Liebig et al. (2016)). In summary, along

the three altitude ranges we created typologies of shading systems using descriptors of the

vegetation structure. Table 1 (Sec. 2.3) shows which shade-related descriptors we used and

how we characterized them. Based on those typologies, a total of 49 plots (0.03–0.5 ha) were

used for the present study.

5.3.3 Data collection

On each plot, we systematically selected nine coffee bushes on a cross-shaped transect repre-

senting the production system of the whole plot. We avoided exhausted, too old (> 30 years)

or too young (< 5 years) bushes and those on plot borders to avoid boundary effects. On

each coffee bush, six branches in the lower, mid and higher vegetation storey (two per storey)

and facing towards different directions were marked. CLR was assessed in approximately

six-week intervals from the beginning (March) until the end (December) of the 2015 growing

season (seven monitoring dates in total). We installed temperature and relative humidity

data loggers (iButtonDS1923) on a subset of 27 plots (three replicates for each system by

three altitudes). We installed two screened loggers (Holden et al. (2013)) on each plot at the

height of 1.50 m, and set them to record each hour during the 2015/2016 season.

Explanatory and response variables Explanatory variables included the altitude range

(representing a set of topographical indicators), and coffee production system. Microclimatic

variables served as both response variables as a function of the altitude range and coffee pro-

duction system, as well as explanatory variables for CLR. Microclimatic variables explaining

CLR variability were generated and selected in two steps. First, literature was reviewed to

identify microclimatic variables driving CLR epidemics (Table 10). Identified variables (or a

related variable if the measurement was not available) were derived from our microclimate

recordings, totalling nine microclimatic variables (Table 10). Second, to select time periods

for each variable, four-week time intervals for each monitoring date were extracted. The final

number of potential CLR driving microclimatic variables totalled 63 (nine variables times

seven monitoring dates). CLR incidence, i.e. the number of diseased leaves as a proportion

of the total number of healthy leaves, determined by the short internode resulting from the
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dry season, (Avelino et al. (1991)) per bush was the response variable. Explanatory and

response variables are summarized in (Table 11).

5.3.4 Data analysis

(i) Identification of microclimatic indicators and characterization of spatiotem-

poral variations of microclimate and CLR We identified microclimatic variables and

corresponding 4-week time intervals by plotting them against CLR incidence (CLRmax). We

excluded highly autocorrelated predictors by estimating the correlation coefficients matrix.

The maximum CLR incidence (CLRmax) and the selected microclimatic variables were

plotted per altitude range and coffee production system to illustrate the spatiotemporal

variations. Differences among the altitude and production system gradients, were tested

with the method described in the following paragraph.

(ii) Formulation of a piecewise structural equation model (SEM) Based on litera-

ture and field observations, we developed a priori conceptual model of the possible underlying

relationships between components of the environment, coffee production system, microcli-

mate, coffee productivity and coffee pests and diseases (Fig. 16). Table 11 shows which

variables were considered and how they were used in the subsequent analysis.

We used a piecewise structural equation model (SEM) to infer direct and indirect effects

of topography and coffee production system on CLRmax via microclimatic indicators. SEM

is a statistical framework used to understand causalities within complex natural systems

(Grace (2006); Shipley (2016)). The hypothetical causal relationships are represented in a

graphical model, where each path describes directional relationships between variables. We

used piecewise SEM enabling generalized linear models to be fit to different distributions,

including those typical for pest and disease data. Individual paths are estimated separately

and then combined to a series of equations to estimate direct and indirect effects within the

system. (Lefcheck (2016)).

The piecewiseSEM was constructed based on the conceptual model in Fig. 16 and the

results of the selection procedure of potential microclimatic variables. First, each response

variable (the microclimatic variables and CLR), representing the component models or paths,

were fitted as linear or generalized linear models in dependence on individual or combined

predictors. For each path, the best model was selected by Akaike information criterion (AIC).

Then, the individual models were combined to a list of equations and applied to the piecewise

SEM function. Non-significant paths (p > .05) were excluded from the overall model. The

Shipley’s test of d-separation was used to test whether significant paths were missing. The

Fisher’s C statistic evaluated the overall fit of the piecewise SEM.

Softwares and packages We used R software (R Core Team , 2016) with RStudio (Version

0.99.903) and following packages for data analysis: lsmeans (Lenth et al. (2016)), lme4 (Bates
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Table 10: Literature review on microclimatic variables driving CLR epidemics1)

Microclimatic

drivers of CLR
Reference Description

Derived variables for

selection procedure 2)

Temperature

(Mean, maximum

or minimum)

Nutman &

Roberts (1963)

Rayner (1961)

De Jong (1987)

Bimodal relation to spore

germination / appressorium

formation. Optimum range:

21–25◦ C. De Jong (1987)

reported 16–28◦C. Appressorium

formation is stimulated by low

temperatures

(1) Mean daily,

(2) mean nightly3,

(3) maximum,

(4) minimum

temperature,

Diurnal

temperature

range (DTR)

López-Bravo

et al. (2012)

Avelino

et al. (2015)

Lower DTR favors CLR

infection and reduces the

latent period of infection

(5) DTR

Light

Nutman &

Roberts (1963)

Rayner (1961)

Bock (1962)

Light has a retarding but

not inhibiting effect on

spore germination, which

is favored by darkness,

but also occurs by day

-

Humidity (RH)

and rainfall

Nutman &

Roberts (1963)

Rayner (1961)

Bock (1962)

Kushalappa

et al. (1983)

The presence and duration

of liquid water is essential

for germination and infection.

Rainfall plays a role in

wetting the undersurface of

leaves and in spore dispersal

(6) RH,

(7) Dew Point (DP),

(8) Number of hours

with temperatures <

DP at night3,4,

(9) Number of hours

with RH >95% at night3,4Leaf Wetness

Avelino

et al. (2004)

López-Bravo

et al. (2012)

Bebber

et al. (2016)

Higher leaf wetness

frequency / duration

favours CLR intensity

1) Based on Avelino et al. (2004). 2) For each monitoring date, the mean of the 4-weeks in-

terval (counting backwards from the monitoring date) was extracted. Given a latent period of

approximately three weeks (Leguizamon et al. (1985))) and incubation period of four to seven

weeks (Rayner (1961)), the four-week interval was considered as reasonable. 3) In East Africa,

infection processes occur between 10 p.m. and 8 a.m. (Rayner (1961)), therefore some variables

representing the night time hours were extracted. 4) Based on an empirical model (Rowlandson

et al. (2015)), leaf wetness duration is equal to the number of hours in which the RH (measured

1.5–2.0 m above the ground) is equal or greater than 90 %

52



Table 11: Recorded, explanatory and response variables

Available /

recorded variables

Explanatory /

response

Variables

Description

Topoclimate1 :

Altitude (masl)

Slope (◦)

Slope aspect (◦)

Explanatory Altitude class (Alt.)

Key variables of climate and

topography were subjected to a

cluster analysis. The determinant

variable was altitude, with the

remaining variables being correlated.

Low: 1100–1400 masl

Mid: 1400–1700 masl

High: 1700–2200 masl

Vegetation structure:

No. of shade trees / ha,

No. of shade tree species,

No. of banana mats / ha,

Canopy Closure (%)

Explanatory

Typology of coffee

production system

(CS)

CB = Coffee-banana system

CO = Coffee-Open canopy system

CT = Coffee-Tree system

CO system shows lowest, and the

CT system highest shade levels.

Microclimate:

Temperature (◦ C),

Relative humidity (%)

Explanatry/

Response

Microclimatic

indicators 2

Disease indicator:

CLR
Response

Maximum CLR

incidence (%)

(CLRmax )3

The maximum disease incidence

(mean per plot) per season.

Monitoring dates:

(1) March/April, (2) May/June,

(3) July/August, (4) September,

(5) October / November

(6) January (7) February

1) Topographic variables (altitude, slope and slope aspect) of the study area were generated from

a digital elevation model (90m DEM) of the shuttle radar topography mission. 2)Microclimatic

indicators resulting from the selection procedure described in the subsequent data analysis section.
3) The maximum incidence of the season was reported to be a good indicator of epidemic intensity

(Kushalappa et al. (1980); Silva-Acuña and Zambolim (1999); Avelino et al. (2006))
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Figure 16: A priori conceptual model of the possible underlying relationships between components

of the environment, coffee production system, microclimatic indicators, coffee productivity and coffee

pests and diseases. Ovals represent latent constructs (unobserved variables), and boxes manifest (ob-

served) variables. Exogenous constructs (independent variables) are indicated by ξ, and endogenous

(dependent variables) by η. Numbers 1–27 refer to literature references (Fig. 19, supplementary mate-

rial). Arrows indicate the directional relationships between latent constructs, representing individual

paths to be modelled in the piecewiseSEM approach. Grey shaded fields show the variables used in

the subsequent piecewiseSEM. The indicated sub-system shows the relation between topoclimate and

coffee system, both characterized by a set of observed variables, modifying the environment for CPaD

either directly and/or indirectly via microclimate

et al. (2014)), ggplot2 (Wickham (2016)) and piecewiseSEM (Lefcheck (2016)) and corrplot

(Wei (2013)). We used ArcMap (ESRI, 2014) to produce the maps. We used the 90-m reso-

lution digital elevation model of the shuttle radar topography mission and the administrative

borders from the Data.Ug database (http://maps.data.ug/).

5.4 Results

5.4.1 (i) Identification of microclimatic indicators and characterization of spa-

tiotemporal variations of microclimate and CLR

Microclimatic variables and time periods related to CLRmax are shown in Table 12. Results

of the selection process are shown in detail in Fig.26 and 27 of the supplementary material.

Fig. 17 shows the seasonal patterns of selected microclimatic indicators grouped by alti-

tude range and coffee system. The mean night time temperature (TempN) differed between

the three coffee systems in the period between May and September. It was lowest in CT
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Table 12: Selected microclimatic variables

Selected microclimatic variables 1
Selected time

periods 2

Night temperature (TempN) 3 July–Sept.5

Dew point temperature (DP) 4 May–Nov.

Number of night hours with RH >95 % (RH95)3 Sept.–Nov.

Diurnal temperature range (DTR) 4 Sept.–Nov.

1) Variable selection based on literature review (Table 19). 2) Remain-

ing variables and time periods excluding highly correlated predictors.
3) Means per night. 4) Means per day (24 h), 5) Time periods within a

variable of microclimate were autocorrelated and hence were combined

to one variable for the piecewiseSEM (e.g. dew point temperature of

the four time periods were used as the mean dew point temperature

for the period between May–November)

at low, in CB at mid, and in CO systems at high altitudes. The diurnal temperature range

(DTR) was higher in CO systems in all altitudes, but less pronounced in the low altitude

range. The dew point temperature (DP) at low altitude was constantly lower in CO systems

over the season. At mid altitude, the mean DP over the season was lower in CT systems,

while differences were marginal at high altitudes. The number of night hours with relative

humidity > 95 % (RH95) in CO systems was lowest at low altitude and highest at high

altitudes, while at mid altitudes it was highest in CB systems.

Fig. 18 shows the CLR disease process of the 2015 / 2016 growing season as a sigmoid-

shaped growing curve typical for a polycyclic epidemic. At low and mid altitudes, symptoms

appeared approximately two months after the rainy season (June/July), when newly grown

leaves were fully developed. An exponential increase in CLR incidence followed across the

short dry spell around August/September and the second rain flush in October/November,

peaking in the main dry season during December until February. The amount of disease at

low and mid altitudes was similarly high, while incidence was lower at high altitudes, where

CLR developed after the second rainy season. CLR incidence in the different systems did not

differ at low altitudes. At mid and high altitudes, there was a downward gradient of disease

incidence from CB to CO and CT systems.

5.4.2 (ii) Formulation of a piecewise structural equation model

The piecewiseSEM was fitted to infer the effects of the selected microclimatic variables, the

altitude class and coffee system on the maximum CLR incidence. Each component model,

corresponding to the five response variables (the four selected microclimatic variables (Table

12) and CLRmax ) represented one path. Two (DP (May–Nov.), DTR (Sept.–Oct.) of the

four response functions for the microclimatic variables were significant paths (p<.05). Finally,
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Figure 17: Microclimatic indicators over the 2015 / 2016 growing season. Variables represent

monthly means with standard errors. CB = Coffee-Banana system, CO = Coffee-Open canopy system,

CT = Coffee-Tree system. Altitude ranges were low (1100–1400 masl), mid (1400–1700 masl) and

high (1700–2200 masl). Loggers with missing data were excluded
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Figure 18: CLR disease process curves of the 2015 / 2016 growing season. The curves represent the

average CLR incidence per monitoring date (n = 49), grouped by altitude range and coffee production

system. CB = Coffee-Banana system, CO = Coffee-Open canopy system, CT = Coffee-Tree system.

Altitude ranges were low (1100–1400 masl), mid (1400–1700 masl) and high (1700–2200 masl)

the list of component models consisted of three equations:

(1) CLRmax ∼ Alt cat x CS + DPMN + DTRSO,

(2) DPMN ∼ Alt cat x CS,

(3) DTRSO ∼ Alt cat + CS

Where CLRmax is the maximum disease incidence, Alt cat the altitude category, CS the coffee

production system, DPMN the average dew point temperature of May-Nov and DTRSO the

average diurnal temperature range of Sept–Oct. CLRmax was fitted as a generalized linear

model with a negative binominal distribution, and DPMN and DTRSO as linear models.

The piecewiseSEM (p > .05, Fishers C, AIC = 59.01) showed interactive, direct and

indirect effects of the altitude classes and coffee systems on CLRmax (Fig. 22). CLRmax was

predicted to be lower in CT systems, (β = - 3.00156, p < .0001), but was also determined by

an interacting effect of altitude and system. Highest CLRmax were predicted in CO systems

at low altitude, but in CB systems at mid and high altitudes. DPMN was higher at low and

mid, compared to high altitudes (β = 3.1892, p < .0001, β = 1.4821, p < .0001, respectively)

and there was a combined effect of altitudes and systems with lowest values in CO systems

at low, and in CT systems at mid altitudes (β = 0.6929, p < .05 and β = -0.6220, p < .05).

DTRSO was highest in CO systems (β = 3.4354, p < .0001) and lowest at mid altitudes (β

= -1.5199, p < .05). The Model showed indirect effects of altitude and coffee systems on

CLRmax, mediated by the microclimatic variables. DTRSO was negatively (β = -0.2731, p

< .0001) and DPMN positively (β = 1.5577, p < .001) related to CLRmax.
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Figure 19: Final path model selected through the piecewise SEM procedure. Solid arrows show

positive, dashed arrows negative paths. The standardized coefficient for each path from the individual

models are illustrated. Reference categories (not shown) for the coffee production system and altitude

range are CB and high altitude. Crosses indicate an interacting effect of two categories. Shipley’s test

of d-separation was used to estimate the overall fit of the model (χ2 test on the Fisher’s C statistic

results in p > .05 if no paths are missing). CT = Coffee-Tree system, CO = Coffee-Open system,

Alt. = Altitude range; low (1100–1400 masl), mid (1400–1700 masl), DTRSO = Diurnal Temperature

Range (September–October 2015), DPMN = Average Dew Point temperature (May–November 2015),

CLRmax = the maximum disease incidence
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5.5 Discussion and Conclusions

We have shown that the effects of the environment (altitude) and coffee production system

(shading) on CLR variability are either direct, interactive or indirectly mediated by key

microclimatic indicators. Our case study on CLR illustrates an approach also applicable to

other (patho)- systems to describe interactions in agroecosystems.

Literature on microclimatic drivers shows that among others, CLR development is de-

pended on variables related to the presence of liquid water and temperature (Nutman and

Roberts (1961); Rayner (1961); Kushalappa and Eskes (1989); De Jong et al. (1987); Avelino

et al. (2004); López-Bravo et al. (2012)). The microclimatic indicators we identified as CLR

drivers (DP and RH95) relate to dew formation. We also found temperature related variables,

especially the DTR, to be decisive for CLR. A lower mean DTR results in shorter latency pe-

riods because the temperature is closer to its optimum for infection processes (Rayner (1961);

Waller (1982); De Jong et al. (1987); López-Bravo et al. (2012); Avelino et al. (2012)). Night

temperatures also affect CLR epidemics. Since germination is favoured by darkness (Nutman

and Roberts (1961); Bock (1962)), most infections occur at night if night temperatures are

high enough (Rayner (1961)).

It is well established which main factors drive CLR epidemics. However, few studies

have investigated how those microclimatic drivers themselves vary in space and time and

how this in turn would be related to CLR. We showed that microclimatic indicators varied

as a function of the season, altitude and the coffee production system. At higher altitudes,

humidity indicators decreased in the systems with highest shade (CT) compared to the lowest

shade density and diversity (CB and CO). This contradicts the widely-accepted notion of

higher moisture and leaf wetness in shaded versus non-shaded systems (Barradas and Fanjul

(1986); Beer et al. (1998); Morais et al. (2006). The consistently highest DTR values of CO

systems agreed with reports of existing literature (Barradas and Fanjul (1986); Beer et al.

(1998); Morais et al. (2006); Lin (2007)). However, while differences at low altitudes were

negligible, they strongly increased with altitude.

The variability of microclimatic variables across altitudinal gradients, production systems

and seasons can be explained by processes of surface energy fluxes (Shuttleworth (2012)).

Dew formation is driven by the interplay between air moisture, temperature variations and

cooling of plant surfaces via radiation (Xiao et al. (2013)). This in turn is influenced by

cloudiness, wind speed, soil water content and water vapour pressure and hence by altitude

and vegetation cover (Linacre (1982); Dai et al. (1999); Pounds et al. (1999); chao Liu et al.

(2006); Zhou et al. (2007); Chen et al. (2013)). Diurnal fluctuations are extreme at high

altitudes and under sun-exposed conditions. The reduced atmospheric pressure causes higher

maximum and lower minimum temperatures due to rapid insolation and reduced radiation

(Linacre (1982); Mani (2013)). Clouds as well as shade tree cover buffer these effects, which

on the one hand results in a lower DTR in shaded systems (Dai et al. (1999)), but also reduced
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night-time radiation (Morais et al. (2006)), and hence less dew formation. In contrast, reduced

minimum or night temperatures in unshaded systems increase the nocturnal soil emissivity

and hence, dew formation. Those dynamics are furthermore altered by the seasons. Changes

in solar radiation, precipitation and cloudiness imply a seasonality in surface energy fluxes

and hence microclimate (Dai et al. (1999); Xiao et al. (2013)). Our data also show these

seasonal effects. DTR was lowest and DP / RH95 was highest during the rainy seasons

(Apr./May and Oct./Nov.), when cloud cover was high.

Differences in microclimatic conditions driven by the environmental and seasonal context

influence CLR dynamics. Highest CLR incidence was found at mid altitudes and in CB

systems, where DTR was low and DP high. The same reasoning applies for high altitudes,

although disease incidence was low due to low mean temperatures. At low altitudes, differ-

ences between systems in both microclimatic variability and CLR incidence were minor. Our

results agree with findings of other studies, where CLR was reduced at high altitudes in highly

diversified systems (Avelino et al. (2006); Cerda et al. (2017)). CLR development was also

related to the seasonal changes of microclimate. The microclimate differed between altitude

ranges and systems during the rainy seasons. In the first season, this may be less important

because leaves that are not fully developed are resistant to infection (Eskes (1982)). In ad-

dition, fruit loads, positively related to CLR severity (Avelino et al. (2006)) are low during

this time. Leaf susceptibility grows with fruit growth (Kushalappa et al. (1980)), therefore

microclimatic conditions during the second rainy season might be decisive. In coffee grow-

ing regions with a pronounced dry season such as in our study area, the residual inoculum

is minimized by the shedding of diseased leaves and lack of new infections (Bock (1962)).

However, in areas without a clear dry season, microclimatic conditions might influence the

inter-seasonal survival of rust spores and disease built-up in the subsequent season (Waller

(1982)).

The mediated effects of the environment and coffee production system through the local

microclimate on CLR are fundamental. They co-occur however, as shown in our conceptual

model, with a diversity of other influencing factors. Though not addressed in the present

study, they are conceptually incorporated within the piecewiseSEM. The altitude range and

the production system are latent constructs, therefore their direct and interacting effects

must be mediated through further mechanisms and variables one way or the other.

Our results validate approaches of other studies that showed how production situations

(the ecological, technical, social, economic context of agricultural systems (Rabbinge and

De Wit (1989)) and crop management are linked to crop health and that they can be consid-

ered as proxies for microclimate (Avelino et al. (2004); Savary et al. (2016)). This is not only

important for pests and diseases in coffee-based, but also other tropical agroecosystems that

form heterogeneous mosaics of small thermal microhabitats (Dangles et al. (2008); Potter

et al. (2013); Charbonnier et al. (2014)). The impact of microenvironment on crop health

are understudied and their ecological relevance understated (Hodkinson (2005); Faye et al.
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(2014); Stigter (2015); Pincebourde and Suppo (2016)). This is especially relevant in the

context of adaptation to climate change (Stigter and Ofori (2014a,b,c)).
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6 General Discussion

The purpose of the study was to shed light on the complexity of shade effects on three eco-

nomically important Coffee Pests and Diseases (CPaD), namely Coffee Leaf Rust (CLR),

White Coffee Stem Borer (WCSB) and Coffee Berry Disease (CBD) under different environ-

mental conditions. In the long run, a better understanding of the interplay of intrinsic pest

and host plant characteristics with an emphasis on the role of microclimatic factors will help

to improve the development of CPaD control strategies which sustainably mitigate potential

losses, and thereby, improve production system resilience.

This thesis aimed at contributing to this purpose by approaching the issue in an inte-

gral manner. To understand the broader context of a system, spatial and temporal as well as

socio-economic factors were taken into consideration . The idea to address this complexity us-

ing gradients of environmental, production systemic or socio-economic nature, was motivated

by conclusions repeated in many studies on the balance of shade effects on coffee sustain-

ability: Shade effects are site-specific, they are dependent on a specific production situation,

characterized by the set of environmental, agronomic, socio-economic (including cultural and

political) conditions, and are therefore not consistent across scales. Consequently, recommen-

dations on shade management cannot be generalized but must be adapted to local conditions.

There is a high diversity of production situations where coffee is grown, and with the example

of Mt Elgon, this study gives insight into one out of many coffee growing regions.

In the following, the key findings and conclusions are briefly presented once again by

referring back to the research questions posed in the introduction (Sec. 1.2.4 and Fig. 2). In

addition, limitations and assumptions, as well as applications and implications of the study

are discussed.

6.1 The importance of participatory approaches for agricultural research

in smallholder farming systems in the tropics

The diversity of existing coffee production systems along an altitudinal gradient was catego-

rized into three distinct systems, namely a sparsely shaded open canopy coffee system (CO),

a coffee system with high banana densities (CB) and a highly tree shaded coffee system (CT)

(Chap. 2). The current state of knowledge of producers, experts and science on CPaD and

its management showed, that perceptions with respect to CPaD distribution across altitudes

and perceived importance are to some extent concordant among farmers and experts. They

agreed on WCSB, CBD and CLR to be the major threats to coffee plant health in the region.

On the one hand, this information was used to prioritize the CPaD surveys for the subsequent

objectives (Chap. 4 and 5). On the other hand, gaps in knowledge and information flow were

identified as causes for constraints that farmers and experts face related to CPaD. Many farm-

ers either did not adopt available control strategies or lacked a comprehensive understanding

about pest and disease epidemiology. This showed that ultimately, it is institutional obsta-
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cles (the improvement of national extension services, pro-actively acting cooperatives, access

to quality (non-fake) products, access to markets) that must be overcome to improve plant

health management. The use of information, recommendations and inputs for coffee crop

management, often based on scientific work, is limited if it is not available for the producers.

But even if knowledge and technologies are available to farmers, the usual one-way informa-

tion flow from scientists to farmers should be improved. Instead of presuming ignorance from

farmers’ side, the technology or agricultural practice itself should be questioned, and failures

communicated back to extension and science (Chambers (1990)). Clearly, those higher-level,

institutional, political and paradigm issues must be addressed first, before agricultural tech-

nologies can succeed. Content-wise, this might seem far off the scientific questions posed in

this thesis. However it is part of the system and ultimately relates to the overall but central

objective of many projects related to the sustainable intensification of agricultural production

systems, i.e. the improvement of production system resilience and farmers livelihoods.

Agricultural scientists often view their research discipline through a very narrow window,

neglecting the fact that many internal linkages exist within the agroecosystems systems of

resource-poor farmers (Pimbert (1994)). In recent years however, there has been a growing

number of research projects striving for the implementation of more system oriented ap-

proaches. In the presented PhD project, specific questions around the role of shade trees and

its effects on three major CPaD were addressed. Those results will feed into the framework

of the overall project (”Trade-offs and synergies in climate change adaptation and mitigation

in coffee and cocoa systems”), where different aspects of coffee production are analysed to

adapt vulnerable coffee systems to climate change and to improve farmer income and system

resilience. By including the perspective of producers, socio-economic aspects as part of the

system were taken into debate. Like this, other issues and gaps, also important to recognize

were identified, and could help to prioritize future studies or interventions that are better

directed to the needs of a region and its farmer communities. The chapter concludes by em-

phasizing that more participatory approaches should be applied in research programs aiming

at sustainable agricultural development.

6.2 Microenvironments as a key role in agroecosystem and its importance

for climate change

As farmers remarked, CPaD abundance varies dependent on the biophysical and production

system context. Finding out how CPaD abundance is related to the production situation at

different scales, as well as to discuss underlying ecological mechanisms was the objective of

Chap. 4 and 5. Aspects of the production situation referred to the coffee production system,

representing a set of indicators related to the vegetation structure of the system, as well as

the altitude range, representing a set of topographic and climatic factors. The environmental

gradients and longitudinal data collection allowed to consider spatial and temporal scales.
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The central ecological mechanism of shading focused on was the modification of microclimate

and its potential effects on CPaD.

For WCSB, the potential role of minimum temperatures, modified by the interactions

between environmental and production system factors was discussed. Especially at high alti-

tudes, where minimum temperatures were buffered by the vegetation cover, it was suggested

to be decisive because pest habitats could establish regardless of the mean atmospheric en-

vironmental conditions (Hodkinson (2005); Mani (2013)).

Also for CLR it was shown that the effects of the environment and production system on

CLR abundance are spatio-temporally variable and either direct, interactively or indirectly

mediated by the microclimate. We highlighted how the identified key microclimatic indicators

(diurnal temperature range (DTR), dew point temperature (DP) i.a.) varied in function of

the environmental and seasonal context, and how this in turn affected CLR abundance.

In a nutshell, the role of microclimatic effects on both studied organisms can be captured

in a central statement of this thesis: The significance of microenvironments for the ecology of

the regarded CPaD is crucial and therefore, generalized assumptions of shade effects on CLR

and WCSB do not hold, not only, but also because of the described spatiotemporal variations

in microclimate. This has implications for both, research and practice:

From a scientific point of view, it has been recognized that the impact of microenviron-

ments on small organisms, although of enormous importance, is understudied (Stigter (2008);

Sears et al. (2011); Mani (2013); Potter et al. (2013); Faye et al. (2014); Stigter (2015); Pince-

bourde and Suppo (2016), i.a.), and that there is no common approach to predict patterns

of microclimatic diversity (Woods et al. (2015)). This of course is not only important for re-

search in coffee-based, but also other, especially tropical agroforestry systems and landscapes,

where traditional systems form a heterogeneous mosaic of small microhabitats (Dangles et al.

(2008); Potter et al. (2013); Charbonnier et al. (2014)). Without doubt, and to link it with the

main purpose of this and numerous other research initiatives: The importance of microhab-

itats and its modifications are absolutely central in the context of adaptation to a changing

climate (Stigter and Ofori (2014a,b,c)), which (i.a.) will be complicated by the impacts of

pest and diseases (Verchot et al. (2007); Syampungani et al. (2010); Schoeneberger et al.

(2012), i.a.). Consequently, microclimate changes must be considered in research questions,

hypothesis and approaches around climate change adaptation and mitigation, especially if

they are of predictive nature.

However, precisely this is often neglected in modelling climate change impacts on pests

and diseases (Potter et al. (2013); Faye et al. (2014); Stigter (2015); Woods et al. (2015);

Pincebourde and Suppo (2016)). In recent times, more and more scientists claim that there

are equivocations about the extent of physical climate change effects on organisms, e.g. about

how species ranges will be shifted (Buckley and Kingsolver (2012a)), and that those equivo-

cations or uncertainties will remain central obstacles in predicting when and to which extent

it will happen (Woods et al. (2015)). Because those uncertainties are also reasoned by the
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fact that actual responses of organisms experienced at the local scale are less predictable by

global, coarse-scale climatic data, recent research efforts emphasized the relevance of fine-

scale climatic data to model responses at a scale that actually reflects the climatic reality of

species (Potter et al. (2013); Faye et al. (2014); Pincebourde and Suppo (2016)).

Uncertainties about the predictability of species responses to climate change were the rea-

son why no CPaD response under future climate conditions was predicted in this study. The

research questions and the sampling design (across the altitudinal gradient) were conceived

to discuss the results particularly with a view on climate change. One of the original objec-

tives was to model WCSB distribution in different shading systems and under future climate

conditions. Because of the following reasons, this objective was abandoned / modified.

The two main approaches to model species risk or distribution, referred to as inductive

or deductive, were revised. Inductive or correlative models infer a species response from the

climatic conditions of the known distribution. They work with presence / absence data as

input variables, resulting in an output describing the probability of presence or absence of a

species at a certain location. Deductive or mechanistic models use detailed knowledge from

the laboratory, e.g. life table data, to infer the relationship between a specific climatic factor

(e.g. temperature) and a specific species response (e.g. number of generations per year)

(Venette et al. (2010); Eyre et al. (2012)).

An inductive approach such as MAXENT (Phillips et al. (2006)) was ruled out because

of following reasons: 1) WCSB is established in virtually all Arabica growing areas of Africa,

therefore knowing how probable it is that WCSB appears is irrelevant (see Fig.20). Instead,

it is relevant to know about a potential change in infestation degree (e.g. alteration in the

number of generations per year due to changes in temperature). 2) The climatic data used to

model future scenarios are based on broad-scaled general circulation models, resulting in the

same problem of ”broad-scaled climatic data vs. experienced fine-scaled microenvironment”

described above. 3) Inductive models are increasingly criticised because of their simplicity

and high degree of uncertainty (Venette et al. (2010); Buckley and Kingsolver (2012b)).

The use of a mechanistic model was considered as more useful. Models like CLIMEX

(Sutherst et al. (2007)) or ILCYM (Tonnang et al. (2013)) incorporate components to model

phenologies and are powerful tools for pest and disease risk analysis. However, life table data

of different constant temperatures must be available. Such data are not available for WCSB

because of its long-life cycle (Gichuhi et al. (2016)).

The faced difficulties for realising this objective reflects a common scientific problem.

Within the scientific community, the misuse of models for pest and disease risk analysis is

recognized. This has even prompted scientist to develop decision support tools designed

to facilitate the decision on whether a modelling exercise is appropriate, given the data

availability and the considered species (Eyre et al. (2012)).

For those reasons, the spatial analysis component of the study was modified to a question

relating to the present situation, but with relevance for the future as well. The results on
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the spatial analysis of WCSB around Mt Elgon have important implications. They suggest

a solution on how WCSB control could be improved by synchronizing control measures with

the rainfall pattern. Moreover, they showed that emphasis should be given to identify and

limit pathways of pest spread from highly infested to new areas.

Coming back to the starting point of the discussion on the significance of microenviron-

ments for the ecology of the regarded CPaD and its implications for science and practice: Also

from a practical point of view, it is clear that an understanding of the coffee agroecosystems

must include microclimatic management and manipulation (Stigter (2015)). Agroforestry

systems are a substantial and multi-functional resource providing socio - cultural, economic,

and ecological services (Cornell and Miller (2007), i.a.). The implications are evident and

relate again to the importance of participatory and site-specific research as discussed before.

Scaling processes to achieve impact are non-linear processes, hence the approach of ”find

out what works (in one place) and do more of the same (elsewhere)” might produce adverse

result (Wigboldus et al. (2016)). This transfer of technology paradigm, which since the green

revolution has been handled as so called top-down extension, should be adapted to the more

diverse and risk-prone cropping systems used in many tropical countries (Chambers (1990)).

Here, finding a balance between top-down and bottom-up, or generalized and locality-specific

extension will remain difficult for scaling up and scaling out initiatives.

To finalize the discussion on this topic, the following statement by (Stigter (2015)) comes

straight to the point of the issue: ”The general biases in both agricultural and social sci-

ences combine to conceal microenvironments, understate or exclude them in statistics, and

undervalue their importance for livelihoods.”

6.3 Challenges of data acquisition and analysis in the context of agricul-

tural research in smallholder farming systems in the tropics

CLR is probably the best researched coffee disease. The intention for this chapter was

therefore not primarily to describe relations which are only valid for CLR, but rather to

exemplify an approach to analyse a system which cannot be described with a simple ”y ∼ x”-

approach. In the following, limitations but also opportunities in the process of data sampling

and analysis in the context of highly divers and heterogeneous systems will be discussed.

Data sets of agroecological studies conducted under real conditions are often complex

and messy. They might not comply with the assumptions of conventional statistics, and

hence require more sophisticated, non-standard tools to be properly analysed (Johnson and

Milliken (2004); Bolker et al. (2009, 2012); Lefcheck (2016)). First, as mentioned repeatedly,

agroecosystems are complex, and resulting datasets are multi-faceted: They usually follow

non-normal distributions and often involve random effects and collinearity (Graham (2003);

Bolker et al. (2009)). Despite the availability of non-parametric approaches such as GLMs

and GLMMs, those models are difficult to fit and even challenging for statisticians (Bolker
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et al. (2009)). Furthermore, although those models offer a non-parametric alternative, the

assumption of linearity remains to be an issue. Second, because habitat data are so complex,

numerous variables with sufficient sample size at different spatial and temporal scales are

aimed to be recorded. This requires a high logistical and financial effort (Vaughan and

Ormerod (2003)), and datasets might be messy because financial and human resources are

lacking. In addition, the involvement of farmers in agricultural research (although desirable)

entails risks concerning the quality of the data. Biophysical researchers often have little

experience in social science, and inaccurate information might results from misunderstandings

between farmers and scientists (Van Asten et al. (2009)).

Many of those obstacles were faced in this project at some point: Since our data orig-

inate from field surveys, and hence uncontrolled conditions, they are highly heterogeneous.

Although farms were selected in such a way as to minimize factors which would make a com-

parison difficult (Sec. 2.2.2), heterogeneity due to different environments and management

was conserved. Almost all response variables are non-normal and follow binomial, negative

binomial or Poisson distributions, which is the norm for pest and disease data (Bolker et al.

(2009)). Many of our data were collinear, making the selection process of microclimatic vari-

ables for instance quite challenging (Sec. 4). Because of lacking human resources, the sample

sizes for CBD were insufficient for a sophisticated analysis including repeated measures or

random factors (Sec. 1). Working in an area like Mt Elgon is also a logistical challenge. The

data collection was often delayed, especially during the rainy season where the fertile, but

very heavy and sticky clay soils up the mountains makes driving almost impossible. Even

political events, such as the presidential elections in 2016 had an impact by delaying the

samplings. Finally, data acquisition in collaboration with farmers was difficult because the

communication was indirectly through translators.

Despite the resulting challenges for data collection and analysis, this data heterogeneity

also offered opportunities. First, from an academic perspective, the non-applicability of

conventional statistical methods inevitably leads to an exploration of more modern methods,

offering innovative and useful alternatives. Tools like piecewiseSEM, which was applied to the

CLR data, enable the establishment of internal validity (defined as ”the ability of a researcher

to argue that observed correlations are causal”, (Roe and Just (2009)) and gave qualitative

indications on processes within the considered sub-system. For the WCSB analysis, the

use of categorical data combined with MCA, an approach considered as useful especially

for analysing plant disease and pest data (Savary et al. (1995)), offered a viable alternative.

Furthermore, the application of the GAM enabled to model a non-linear relationship between

WCSB and altitude. Therefore, this thesis also turned out to include an exhaustive revision

of statistical tools and integrated analysis approaches relevant for agroecological studies.

Second, because the agroecological context remained practically undisturbed, the study

has ecological validity. Inferences are meaningful for that specific setting because they provide

a real reflection of the truth (Roe and Just (2009)). The results and implications related to
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farmers’ perception and spatiotemporal dynamics of CLR and WCSB described in Chap. 3 -

5 provided insightful and important information useful for farmers in the respective growing

region. Concrete conclusions as a base for possible decision-making support are compiled in

the subsequent section.

6.4 Conclusions and outlook

This study revealed several facts, linkages and gaps related to farmer-scientist knowledge

transfer, shading systems and CPaD abundance as well as future research needs. The findings

may contribute to sustainable solutions for farmers and extension services in the studied area,

but conceptually also for other coffee growing regions.

Farmer-scientist knowledge transfer

• There is potential to strengthen farmers knowledge capacities by improving the exten-

sion service system. Based on the identified knowledge gaps, regional or sub county-

based training programs should emphasize following topics:

- CPaD diagnostics to enable farmers to identify and distinguish between CPaD

- Available CPaD management practices

- Correct use of pesticides

- Identification and use of different Arabica varieties with different traits (especially

CPaD resistance)

- Paradigm shift away from the common believes on the role of shade trees (i.e.

alternative hosts for CPaD or nutrient competitor of coffee)

• In turn, improving the extension service and communication with farmers could strengthen

feedback mechanism on the efficiency of recommended control strategies and CPaD

surveillance and improve the understanding about why farmers opt for or against a

certain practice.

• There is potential to better approach and target joint issues of farmer communities by

the formation of farmer groups or cooperatives. Such groups might improve:

- Information sharing on coffee crop management practices, CPaD outbreaks, cli-

mate events or market prices, among others

- Information on available certification bodies and active cooperatives in the region

- Joint problem-solving, e.g. issues with fake pesticides
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Shading systems and CPaD abundance

• The shading system to reduce CPaD pressure can be adopted depended on environ-

mental conditions and farmers needs.

- At low altitudes:

∗ The environmental conditions for CLR are currently optimal, and the system

effect is neglectable. The use of CLR resistant varieties would be an option,

especially if the cup quality (a common trade-off when using rust resistant va-

rieties) is not the priority. Low-land, compared to high-land coffee, is generally

of inferior quality

∗ WCSB infestation is associated with shade tree density and diversity, however,

especially at low altitudes, the removal of trees would rise trade-offs for the

mitigation of climate change effects as well as the provision of tree resources

from within-farm trees. Therefore, WCSB control must aim at (1) Removal

and eradication of heavily infested stems, (2) Preservation of infested stems

with manually removal of young larvae, (3) Prevention of new infestations

by applying cultural or chemical control methods during the emergences and

oviposition periods (shortly after rainy seasons) (4) The limitation of WCSB

spread by eradicating pruned infested wood material, (5) The use of systemic

insecticide, if accessible and affordable

- At mid altitudes:

∗ Because of the combination of high dew formation and low diurnal tempera-

tures during the rainy seasons, CB systems provided conducive conditions for

CLR. Since banana mats grow fast, a proper pruning during the rainy seasons

to improve ventilation in the plot and hence reduce dew formation might help

to hamper CLR epidemics. Introducing more shade trees might also reduce

dew formation, however, could result in better conditions for WCSB

∗ For WCSB, the same reasoning as for low altitudes applies

- At high altitudes:

∗ The high CBD pressure in unshaded systems is the major issue at high al-

titude. Banana systems, which are already adopted by many farmers, are

currently the best option because they would reduce CBD and keep WCSB

infestation low. However, with climate change and the predicted reduction in

diurnal temperature ranges, CLR might get more prevalent at higher altitudes

as well and might follow the same inferences as currently at mid altitudes (con-

ducive conditions under CB systems). The use of CBD and / or CLR resistant

varieties is an option as well, but might compromise the cup quality, which

makes high-land coffee distinguishable
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∗ The limitation of further WCSB expansion is of high priority at high altitudes

since is not present on many farms yet. This is also important as a preparation

to future climate conditions: If minimum temperatures rise as predicted and

more shaded systems are adopted, conditions at high altitude might improve

for WCSB

Further research topics

• The benefits and trade-offs of various shade tree species as well as their spatial arrange-

ments on different ecosystem services

• More control options must be developed, implying a better understanding about the

pests ecology and biology. This thesis established preliminary indications and hypothe-

ses on several topics which need to be further explored:

- Pathways of WCSB spread across the landscape

- Food preferences (coffee varieties, age of coffee bushes, wood characteristics)

- Biological control options and pheromone traps

• The development of CBD and CLR resistant Arabica varieties which do not compromise

cup quality

• Common guidelines and tools for data collection to further promote the inclusion of

indigenous knowledge into biophysical studies should be developed

Clearly, the central statement and hence ”take-home message” of this thesis is the importance

of microenvironments for the development and establishment of the analysed CPaD, and

the resulting implications for CPaD management in the present and future. In coffee-based

agroforestry systems, shade trees will most likely continue to play an important role, especially

under future climate conditions. Research on its benefits and trade-offs must include the

perspective of producers. Their actions are, first and foremost, driven by their own necessities

at the household scale, and less by global issues or consumer’s demands on sustainability.

Ultimately, the best way to achieve positive outputs, outcomes and impacts is by using

inputs representing the interests and needs of all stakeholders.
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Tech. rep., Centro Agronómico Tropical de Investigación y Enseñanza.
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Bunn, C., P. Läderach, O. Ovalle-Rivera, and D. Kirschke (2015): “A bitter

cup: climate change profile of global production of Arabica and Robusta coffee,” Climatic

Change, 129, 89–101.

CAB Direct (n.a.): “Hemileia vastatrix. [Distribution map].” http://www.cabi.org/

dmpd/abstract/20163365139, Accessed: March 02, 2017.
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Abstract 

Coffee (Coffea arabica) is a major export crop of East Africa sustaining the livelihoods of millions of 

smallholder farmers. The viability of coffee in this region is, however, endangered by multiple factors such 

as climate change, population pressure and coffee price volatility. Sustainable intensification through 

(shade) intercropping is believed to improve farmers’ livelihoods, facilitate adaptation of coffee production 

to climate change, and contribute to coffee sector development and biodiversity conservation. Technical 

guidance on adaptation options is currently weak and requires sound understanding of local contexts. 

Altitudinal gradients provide a means for analyzing coffee production systems in different environmental 

contexts that co-vary with altitude, and they provide a rough proxy for many of the issues relating to climate. 

Additionally, management decisions unrelated to environment need to be accounted for. We seek to do 

this by analyzing a range of Arabica coffee systems that differ in vegetation structure across an altitudinal 

gradient on Mount Elgon, Uganda, to understand (i) if and how farmers adapt their production systems 

to differing climatic conditions, and (ii) how these different production systems perform. A typology of 

coffee systems was derived based on the vegetation structure of 146 coffee plots. Coffee systems were 

compared along an altitudinal gradient (1100 – 2100 m.a.s.l.). Determinants of farmer adoption of 

different coffee systems were investigated, highlighting both internal and contextual factors affecting 

farmers’ decision-making. Three coffee systems were identified: coffee open canopy, coffee-banana 

intercropping, and densely shaded coffee systems. The climatic gradient had a clear effect on system 

adoption, with shade trees being used to mitigate higher temperatures and more prolonged drought stress 

at low altitudes, while intercropped banana densities increased at higher altitudes responding to higher 

rainfall. Although vegetation structure affected coffee yield, differences among systems were not significant. 

Open canopy systems are mainly used by wealthier farmers who do not depend on intercrops for food 

security. Altitude has a strong influence on coffee yield, benefits of shade trees, and soil quality. Socio-

ecological constraints, such as farm and household size, and access to forests and markets, play a crucial 

role in determining what constellation of ecosystem services benefit farmers’ livelihoods resulting in 

different sustainable intensification pathways. Our findings reveal inherent trade-offs in socio-ecological 

conditions, and aligning these is required for achieving the multiple objectives of livelihood improvement, 

sustainable intensification of coffee production, and biodiversity conservation.  

 

1. Introduction 

Trees in tropical agricultural systems have gained increased interest due to their climate change mitigation 

(IPCC 2000) and adaptation potential (Lin 2010; Lasco et al. 2014; Minang et al. 2015). Additionally, 

there is an increased recognition that tropical biodiversity in rural landscapes can have high conservation 

value while sustaining rural livelihoods (Perfecto et al. 1996; Schroth et al. 2004; Chazdon et al. 2009; 

Baudron & Giller 2014). These interests in trees within agricultural areas have been accompanied by a 

shift in scale of analysis from the plot to the farm to the landscape level (Tittonell et al. 2005; Perfecto & 

Vandermeer 2010; Sayer et al. 2013). Meanwhile, many diversified coffee and cocoa agroforestry systems 

are being intensified by removing shade trees and reducing shade tree species richness in pursuit of higher 

yields and increased profitability (Garcia et al. 2010; Ruf 2011; Jha et al. 2014). This trend is incentivized 

by the public and private sectors to increase export and value chain earnings in response to increasing 

global demand (FAO, 2015). 

In Sub-Saharan Africa the crop yield gap is particularly high, and coffee has been identified by various 

national and international agencies as a focus crop for development interventions (e.g. MAAIF 2010, 

USAID 2011). Next to the challenge of increasing yields in a sustainable way, the coffee sector is 

confronted with a changing climate that is altering the environmental conditions on which coffee 

production depends (Jaramillo et al. 2011; Davis et al. 2012; Bunn et al. 2015; Craparo et al. 2015; Ovalle 

et al. 2015). This is putting at risk the livelihoods of coffee farmers and related ecosystem services (Bunn 

et al. 2015; Magrach & Ghazoul 2015). In East Africa, where the majority of Arabica coffee (Coffea 

arabica) is grown on the African continent, the current suitable climatic range for coffee production is 
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found in highland areas, and often on steep mountain slopes bordering remnant Afromontane rainforest 

with high biodiversity conservation and ecosystem service values. Climate change is expected to shift the 

suitable area for coffee production up the slopes.  Hence, adaptation to climate change will be required 

to sustaining coffee production in the area. 

The production systems will need to adapt i) to rising mean temperatures and shifts in mean precipitation 

rates and patterns, and ii) to extreme events. The former are long-term, slow-changing climatic events, 

while the latter occur rapidly and over a very short time span. Second, there are i) technical adaptation 

strategies, such as genetic modification of crops, changes in the location of production, irrigation, or the 

development of agroclimatic forecasting systems, and ii) ecosystem based approaches that improve system 

resilience (Schroth & Ruf 2014; Vignola et al. 2015; Perfecto & Vandermeer 2015:225).  

There is consensus that the potential yield increase should be reached through sustainable intensification 

(SI), rather than conventional intensification (Tilman et al. 2002). But, various definitions of SI exist and 

there is considerable debate regarding the means to reach this goal (Kuyper & Struik 2014; Tittonell 2014; 

Cook et al. 2015). While there are a multitude of pathways towards SI in the context of climate change 

adaptation, there is sufficient evidence that African smallholders are often unable to benefit from the yield 

gains offered by improved technology due to small farm size, insufficient inputs of nutrients and organic 

matter, and limited access to markets (see Tittonel & Giller, 2013; Harris & Orr, 2014). Because of these 

lacking requirements, an ecosystem-based adaptation approach based on ecological intensification is a 

promising strategy towards SI and climate change adaptation in the East African smallholder farming 

context. 

The use of shade trees is a popular example of ecosystem-based adaptation and ecological intensification 

as it helps to ensure the provision of important ecosystem services such as erosion control, pollination, 

and natural pest control, in addition to buffering microclimate extremes, reducing coffee transpiration and 

soil evaporation loss and increasing nutrient cycling (Beer et al. 1998; Vaast et al. 2005; Lin 2007, 2010). 

Diverse agroforestry systems have been shown to increase food security of smallholder farmers and 

increase or diversify their sources of income (Rice 2011; Schroth & Ruf 2014; Altieri et al. 2015). Coffee 

yields in intensive non-shaded systems can, however, be higher than in shaded systems, provided that 

environmental and management conditions are optimal (Beer et al. 1998; DaMatta 2004; Haggar et al. 

2011). Trees and their effect on micro-climate can promote pests and diseases and increase light, water 

and nutrient competition (Beer et al. 1998; Avelino et al. 2011; Cannavo et al. 2011; Lopez-Bravo et al. 

2012). Furthermore, coffee planting density can be significantly increased in a monoculture context. A 

recent study even questioned the benefit of shade trees to buffering microclimate extremes. Shade trees 

increase the minimum temperature and this is found to have a worse impact on Arabica coffee 

performance than increasing maximum temperatures (Craparo et al. 2015). 

Other considerations are equally important. Managing a diversified agro-ecosystem and engaging in 

certification schemes that incentivize the adoption of such systems might increase management complexity 

and the resulting additional workloads might adversely affect other livelihood activities, particularly if the 

capacities and skills required are not part of local knowledge (Beer et al. 1998; Vellema et al. 2015). 

Furthermore, provisional services other than coffee such as fruits, timber, and fuelwood might be equally 

important. Understanding the interaction between all these factors is crucial for enabling SI in the context 

of climate change. Because these relationships are highly context dependent, adaptive intervention 

measures are required that allow for addressing system complexity (Giller et al. 2011; Vignola et al. 2015). 

In order to gain insights regarding appropriate means towards SI through ecosystem-based adaptation, this 

study aimed at understanding (i) if and how farmers adapt their production systems to differing climatic 

conditions, and (ii) how these different production systems performed. We analyzed existing management 

practices and the related vegetation structure along an altitudinal transect, reflecting differences in mean 

temperature and precipitation. This was done by i) classifying existing coffee systems at plot level according 

to vegetation structure, ii) comparing the trade-offs of the identified coffee systems regarding coffee yield 

and biodiversity, and iii) investigating determinants of adoption of each system.  
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2. Methods 

2.1 Study area  

The study was conducted in two districts (Bulambuli and Kapchorwa) of Mt. Elgon, Uganda, an extinct 

volcano on the border between Uganda and Kenya of 4321 m altitude (Fig. 1). In order to cover a 

heterogeneous area in terms of environmental conditions, a cluster analysis including key variables of 

climate and topography (annual temperature, annual rainfall, altitude, slope, slope aspect) was performed 

(Fig. 1c). The three resulting clusters differed mainly in altitude and consequently the variables correlated 

with altitude such as temperature and rainfall. The clusters form an altitudinal gradient of < 1400 m.a.s.l., 

1400 – 1700 m.a.s.l., and > 1700 m.a.s.l. The selected plots lie within an area of 210 km
2

 and border the 

Afromontane rainforest located above 2200 m.a.s.l, protected as Mount Elgon National Park. Local 

farming communities depend heavily on this forest for construction materials, stems used as crop-

supports, and biomass for charcoal making and firewood. (Sassen et al. 2013, 2015; Sassen & Sheil 2013). 

 

Fig. 1. a) Location of the study area within Uganda, Mount Elgon area, b) Districts of study area (Bulambuli, Kapchorwa), c) Study 

site with indication of three altitude ranges (determined by means of cluster analysis), sub counties and sample plots. 

Using the FAO soil classification, the soils of the study area are mainly Nitisols with presence of 

Phaeozems at low altitude (De Bauw 2015). The climate is influenced by dry northeasterly and moist 

south-westerly winds, resulting in less rainfall on the north western transect as compared to elsewhere on 

the mountain. A bimodal rainfall pattern prevails in the area, with the wettest period during March/April 

to October/November, and a pronounced dry period from December to February and a period of less 

intense rains around July to August (Fig. 2). The wet season is prolonged on higher altitudes compared to 

lowlands. Mean annual rainfall ranges from 1200 mm at low altitudes to 1400 mm at mid altitudes and 

1800 mm at high altitudes. The mean annual temperatures are 23°C, 21°C and 18°C, respectively (Hijmans 

et al. 2005). According to Mbogga (2012), the Mount Elgon region has experienced an increase in monthly 

temperatures in the range of 0.4 °C to 1.2 °C during the 2001-2011 period compared to the 1961-1990 

period. Intensive rainfall has resulted in numerous landslides on the mountain slopes and floods on the 

foothill with hundreds of deaths. Increased drought periods are particularly a problem in the northern 

drier region and areas of low altitude causing stress to crops and scarcity of domestic water availability 

(Mbogga, 2012). 
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Figure 2: Climate diagrams of a) low (1100 - 1400 m.a.s.l.), b) mid (1400-1700 m.a.s.l.), and c) high altitude (1700-2100 m.a.s.l.) 

based on WorldClim database (Hijmans et al. 2005) 

 

2.2 Plot selection 

Participating coffee farmers were selected in a stratified random manner to obtain a representative sample 

of the existing production systems of the region. Administrative boundaries were used to make fieldwork 

more practical in terms of connecting to farmers and accessibility. In a first step two sub-counties per 

altitude class were selected, followed by two parishes within each sub-county, three villages within each 

parish, and 10 coffee farmers within each village. Finally one plot per farmer was selected. Participatory 

rural appraisal was conducted in each sub-county to familiarize farmers to the research objectives and 

activities, and to acquire local knowledge and perceptions concerning existing coffee production systems 

and activities, advantages and disadvantages of used shade trees and production constraints. A rapid self-

assessment with respect to the coffee production systems (shaded mainly by trees, shaded mainly by 

banana, not shaded) served as an orientation for the final selection of 150 farmers (50 per altitude range) 

for the subsequent survey. Data from four farmers had to be rejected because of unreliable data, resulting 

in 146 farmers (48-49 per altitude range).  

2.3. Data collection 

During the months of April and May 2014 vegetation structure was measured on the 146 selected plots. 

The altitude and plot boundary coordinates were recorded using Garmin eTrex GPS. Plot size was 

calculated based on plot boundary coordinates in R Statistics (R Core Team, 2014). The number of coffee 

bushes, banana mats and stems, and shade trees were counted on the entire plot and densities (in number 

per hectare) were calculated. Shade tree species were identified and the number of species per plot 

recorded. The canopy closure as an indicator for average plot shade was estimated using a Forestry 

Suppliers spherical crown densiometer (convex model A) according to Lemmon (1957) at four positions 

within the plot. A composite soil sample of the topsoil (0-30cm) was taken from each plot and analysed 

for organic matter, soil pH, total nitrogen, available phosphorus, and exchangeable potassium using 

standard methods (Okalebo et al. 1993). The slope was measured using Suunto Tandem Global 

Compass/Clinometer. Soil erosion was evaluated visually. Data on age of the coffee bushes, yield, coffee 

management, perceived occurrence and impact of coffee pests and diseases, and livelihood characteristics 

were obtained through structured farmer interviews during farm visits. Outliers were identified by statistical 

process (box-plots and dotcharts in R) and empirical knowledge.  

2.4 Typology of coffee systems 

Data analysis was done using R statistics (R Core Team, 2014). The typology of coffee production systems 

was based on variables related to vegetation structure. Variables included were shade tree and banana 

densities per unit area, shade tree species diversity and canopy closure. K-means clustering was performed 

with standardized data in order to minimize the effect of scale differences. The variables were compared 

between the resulting coffee systems using the one-way ANOVA (with Tukey’s post hoc test).  
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2.5 Coffee yield 

Multiple linear regression models were used to determine the effect of vegetation structure, altitude, 

management variables, pest and disease scores, and soil properties on coffee yield. Yield was log-

transformed to meet the conditions of normality and homogeneity of variance. Collinearity among 

independent variables was identified by means of the variance inflation factor (car R package). Stepwise 

elimination was done in a two way procedure; first by eliminating independent variables with variance 

inflation factors higher than three, followed by identifying model with lowest AIC. The independent 

variables used in all models included coffee planting density (coffee plants ha
-1

), shade (%), banana density 

(bananas ha
-1

), shade tree density (trees ha
-1

), shade tree species richness, altitude, mineral fertilizer 

application (kg ha
-1

), fungicides application (kg ha
-1

), insecticides application (liters ha
-1

), farmers scores (0-

5) on pests and diseases; White coffee stem borer (Monochamus leuconotus), coffee leaf rust (Hemileia 

vastatrix), coffee berry disease (Colletotrichum kahawae), and coffee berry moth (Prophantis smaragdina), 

and soil properties; pH, organic matter (%), nitrogen (%), phosphorous (ppm), potassium (cmol kg
-1

 soil).  

2.6 Biodiversity 

Comparison of tree species diversity between coffee systems was done by using species accumulation 

curves, and Shannon and inverse-Simpson diversity indices. Rènyi diversity profiles were plotted to 

examine if farm categories and altitude ranges could be ranked from low to high diversity. Species 

accumulation curves were calculated with the BiodiversityR package (Kindt & Coe, 2005). Native tree 

species were defined based on the potential natural vegetation types of the study area (van Breugel et al. 

2014). The potential natural vegetation of the study area is Afromontane rain forest in the high altitude 

area and dry and moist Combretum wooded grassland subtype on low and mid altitude areas. 

2.7 Determinants of adoption of different coffee production systems 

The determinants of adoption of the different coffee production systems were investigated by means of a 

multinomial logistic regression approach (Hosmer and Lemeshow, 2000). Possible factors determining 

adoption were investigated first with coffee open sun systems as the baseline category and secondly with 

coffee-banana systems as baseline category. This allowed for estimating both the probability of a farmer 

adopting either the coffee-banana or coffee tree systems, instead of coffee open sun and the probability of 

a farmer adopting coffee tree systems instead of coffee-banana systems. As explanatory variables we used 

a number of possible variables that are believed to impact decision making (table 1), they are classified as 

socio-economic, social network, consequences and expectations, and contextual factors. Analysis was done 

with the “mlogit” R package (Croissant 2013). 

3. Results 

 

3.1 Coffee agro-ecosystem classification of Mt. Elgon, Uganda 

Three distinct coffee production systems were identified, namely a sparsely shaded open canopy coffee 

system (CO), a coffee system with high banana densities (CB) and a highly tree shaded coffee system (CT) 

(Table 2). Vegetation structure of the coffee systems also showed clear relationship with altitude. Banana 

density was higher on mid and high altitude compared to low altitude (one-way ANOVA with Tukey post-

hoc test, p<0.05), while shade tree density, shade tree species richness and canopy cover were higher on 

low altitude compared to mid and high altitude (one-way ANOVA with Tukey post-hoc test, p<0.05). Due 

to these spatial differences in banana and shade tree densities a significant association between the coffee 

production typologies and altitude range was found (X2

, p < 0.001). The majority of plots assigned to the 

CT system were found to be situated at lower altitudes between 1000 – 1400 m.a.s.l., while more CB and 

CO systems were present at mid to high altitudes between 1400 – 2200 m.a.s.l. Only few CB systems were 

found on low altitude. 
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Table 1: Factors analyzed as possible determinants for adoption 

Adoption factors Variable Description 

Socio-economic Gender Value 1 if gender of household head is male 

Age Age of household head (years) 

Education Highest education level of household head 

Wealth Number of Tropical Livestock Units (TLU) 

Coffee importance • Total number of plots 

• Number of coffee plots 

• Number of coffee plots of total number of plots 

family size and age Number of family member above 16 years divided by total number of family 

members 

   

Social network Member of cooperative Yes or no 

Extension service How often the farmer has been visited by extension service 

Certification Yes or no 

Access to borrow money Yes or no 

   

Consequences and 

expectations 

Positive effects of 

intercropping 

Coffee quality, soil fertility, weeds, wind break, P&D control, timber, humidity, 

food, fodder, erosion control 

 e.g.: Soil fertility is higher in intercropping systems = 1 

Negative effects of 

intercropping 

Reduced productivity, host for P&D, increased workload, physical damage, 

more external inputs required, takes too long to grow, competition for 

nutrients 

 e.g.: Nutrient competition is a problem in intercropping = 1 

   

Contextual factors Altitude Low, mid, high 

Slope Flat (<10%), steep (>=10%) 

Aspect N,E,S,W 

Plot-history • Land-use before converted to coffee plot 

• Year converted to coffee plot 

 Dist. Between homestead and 

plot 

Distance in meters 

 

Table 2: Vegetation structure of coffee production systems with means and standard errors 

 Coffee open canopy Coffee-banana Coffee-tree 

 n = 54 n = 44 n = 46 

Coffee density ( coffee ha-1) 2255a ± 125 (SE) 2094a ± 127 (SE) 2095a ± 112 (SE) 

Banana density ( bananas ha-1) 29a ± 17 (SE) 1496b ± 105 (SE) 278c ± 82 (SE) 

Shade tree density (trees ha-1) 63a ± 6 (SE) 49a ± 6 (SE) 146b ± 16 (SE) 

Shade tree species richness 2.8a ± 0.2 (SE) 2.7a ± 0.2 (SE) 6b ± 0.4 (SE) 

Shade (%) 21a ± 1.4 (SE) 28b ± 1.4 (SE) 48c ± 2 (SE) 

Means with different letters indicate significant differences (one-way ANOVA, with Tukey post-hoc test, p<0.05)  

 

3.2 Coffee yield 

No significant yield differences were found between the coffee systems irrespective of altitude (ANOVA, 

p<0.05). This does not mean that vegetation structure has no effect on yield (table 3). Overall, coffee yield 

is increased by coffee planting density and shade tree density but negatively affected by shade tree species 

richness. Altitude, mineral fertilizer application and soil potassium content also favoured higher yields, 

while the coffee berry moth negatively affected yields. The low shade tree densities of the CO systems 

positively affected coffee yields, next to mineral fertilizer and insecticide application, while fungicides were 

inappropriately used. Banana densities had a positive effect on coffee yields of CB systems, next to altitude, 

mineral fertilizer application and soil phosphorous content. On the contrary, the coffee berry moth 

appeared to be a problem for coffee production in CB systems. Too much shade and high shade tree 

species richness negatively affected yield of CT systems, while the application of insecticides and high soil 

potassium content favoured yield. 
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Table 3: Estimated model coefficients of linear model, with significance levels, and adjusted r
2

 for coffee yield per 

hectare and coffee yield per coffee tree 

 Response = Log(Yield[green bean kg ha
-1

]) 

 Models per Coffee System 

 All systems CO CB CT 

Intercept 5.8 *** 7 *** 4.8 *** 8.4 *** 

Coffee density (bushes ha
-1

) 0.0002 .    

Shade (%)    -0.03 *** 

Banana density (bananas ha
-1

)   0.0005 *  

Tree density (trees ha
-1

) 0.004 ** 0.005 .   

Tree species richness -0.15 **   -0.17 ** 

Altitude (m.a.s.l.) 0.0006 *  0.001 *  

Mineral fertilizer (kg ha
-1

) 0.0006 ** 0.0006 * 0.008 .  

Fungicides (kg ha
-1

)  -0.04 **   

Insecticides (lit ha
-1

)  0.07 **  0.03 * 

Coffee Berry Moth (score) -0.15 *  -0.3 ***  

Soil P (ppm)   0.01 **  

Soil K (cmol kg
-1

 soil) 0.25 *   0.5 * 

Adjusted r
2

 0.26 0.3 0.43 0.51 

Significance: *10%, **5% ***1% 

 

 

3.3.6 Tree species richness 

The total tree species richness found on the plots was 37 with 69% of the tree species being indigenous to 

the area. Two indigenous tree species (Cordia africana and Ficus spp.) made up 50% of tree species 

abundance. Overall tree species richness was significantly higher in coffee-tree systems compared to the 

other systems (figure 4) but not when compared on high altitudes (table 4). No significant difference was 

found between CO and CB. In the sparsely shaded coffee systems, 66% of the 23 tree species are 

indigenous. In coffee-banana systems, 69.5% of the 22 tree species are indigenous, while in the coffee-tree 

systems, 70% of the 29 tree species are indigenous. Cordia africana is the dominant tree species in CO 

and CB systems with 35% and 24% average occurrence, respectively, while Ficus spp. is the dominant 

shade tree species in CT systems. The Rény diversity profiles (figure 5) indicate highest diversity in CT 

systems followed by CB and CO systems. Plots on low altitudes have highest tree species diversity but no 

difference is found between plots on mid and high altitudes, since their diversity profiles intersect.  Species 

are not evenly distributed in any of the coffee systems nor on any of the altitude ranges. The Shannon and 

the inverse Simpson index report on the tree species diversity of the three coffee systems and altitude 

ranges with highest diversity at low altitude and lowest at high altitude and highest diversity in CT systems 

at low and mid but not at high altitudes. At high altitude diversity was highest in CB systems. The richness 

estimators Jacknife 1 and Bootstrap indicate that 21 to 37 more species were needed to have complete 

species inventories of the study area (table 4). 
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Fig. 3: Tree species accumulation curves with confidence intervals for a) coffee-tree (CT), coffee-banana (CB), and coffee open 

sun systems (CO) and b) low, mid, and high altitude. 

Figure 4: Rény diversity profiles for a) the coffee systems and b) the altitude ranges. 

 

Table 4: Total plot area, tree richness, abundance and diversity indices compared between the different coffee systems and altitude 

ranges. 

Coffee system Total plot 

area 

[ha] 

Richness 

(mean) 

Richness estimators Abundance 

[per ha] 

(mean) 

Shannon 

index 

Inverse-

Simpson 

index 

   Jack1 Boot    

CO 7.8 23 29 26 365 (47) 2.13 5.05 

CB 5.3 22 31 26 221 (42) 2.18 5.82 

CT 7.6 29 34 32 751 (99) 2.48 7.53 

        

Low 8.8 31 37 34 814 (93) 2.46 7.11 

Mid 5.4 22 30 26 239 (44) 2.16 5.57 

High 6.5 18 25 21 284 (44) 2.05 5.38 

        

All 20.7 37 43 40 1337 (65) 2.45 6.98 

 

 Low altitude  Mid altitude  High altitude  

 CO CB CT p CO CB CT p CO CB CT p 

Tree density (trees ha-1) 86 72 146 * 65 55 264 *** 48 46 122 *** 

Tree species richness 20 11 27 *** 11 12 15 * 11 13 9  

Inverse Simpson 4.9 4.7 6.9 *** 4.3 4.7 6.6 *** 4.6 5.8 4.7 * 

Significance: *10%, **5% ***1% 
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3.5 Determinants of coffee system vegetation structure 

Maximum likelihood estimates of parameters in the multinomial logistic regression of the reduced model 

are presented in table 3 together with the significance level and the odds ratio (Exp(β)). The full model is 

not presented due to lack of significance of many of its variables and high AIC. The odds ratio is the factor 

explaining how much more likely (or unlikely) it is to adopt (a) coffee-banana or coffee tree systems instead 

of coffee open sun and (b) coffee tree systems instead of coffee banana, after a one unit change in the 

explanatory variable. Altitude has a significant influence on adopting coffee-tree systems. A one-unit 

change in altitude range (from mid/high to low) increases the likelihood of a farmer to adopt coffee tree 

systems followed by coffee open canopy systems. Hence, on low altitude it is least likely that a farmer 

adopts a coffee-banana system. The fewer coffee plots a farmer has the higher the likelihood he intercrops 

with shade trees followed by intercropping with banana. The higher the proportion of household members 

above 16 years (i.e. the fewer children below 16 years per household) the more likely farmers adopt CO 

systems. More CO farmers perceive intercropping as resulting in nutrient competition, whereby no 

perceived differences between CB and CT farmers were found. The model allowed a good distinction 

when the systems are compared to CO but not when CB and CT are compared. 

 

Table 5: Estimates for adoption of coffee system type (reduced model with lowest AIC) 
 Variables β  Wald Exp(β) 

Coffee-bananaa Intercept 2.176 ** 8.373  

 Low altitudec -1.125 ** 4.141 0.325 

 No. of coffee plots -4.084 * 3.380 0.017 

 People>16y Quotient -2.341 ** 4.484 0.096 

 Nutrient competitionc -1.095 ** 3.843 0.335 

      

Coffee-treea Intercept 1.256  2.503  

 Low altitudec 1.614 *** 11.441 5.022 

 No. of coffee plots -7.745 *** 8.093 0.000 

 People>16y Quotient -1.771 * 2.458 0.117 

 Nutrient competitionc -1.522 *** 6.570 0.218 

      

Coffee-treeb Intercept -0.920  1.306  

 Low altitudec 2.739 *** 24.750 15.466 

 No of coffee plots -3.661  1.547 0.026 

 People16 quotient 0.570  0.206 1.768 

 Nutrient competitionc -0.427  0.393 0.652 

      

AIC: 257.896 

Chi2 test of the model: 59.258*** 

Pearson test: 256.679  

Nagelkerke R2: 0.378 

Significance: *10%, **5% ***1% 
a The reference category is coffee open sun 
b The reference category is coffee-banana 
c The reference category is 0, i.e. mid and high altitude / no nutrient competition 

 

4. Discussion 

 

4.1 Climate induced constraints driving vegetation structure 

The climate gradient with higher temperatures and increased drought stress at low altitude affected 

farmers’ choice regarding vegetation structure significantly. Farmers adapted their farming practices to 

these adverse conditions mainly by increasing shade using a diversity of tree species. Bananas, on the other 

hand, appear less favorable in the drier and hotter low altitude areas (see also van Asten et al. 2011a) as 

both coffee and banana require large amounts of water (Carr 2012). Farmers at low altitude, therefore, 

intercropped banana at lower densities, and CB systems were less prevalent. By contrast, the higher rainfall 
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at higher altitudes allows for increased intercropped banana densities. This is clear evidence of ecosystem-

based adaptation to differences in mean temperature and precipitation. The non-significant differences 

between coffee yields among systems across all altitudes is surprising, as we had expected that low shaded 

systems would outperform highly shaded systems under optimal climatic conditions, as documented in 

the literature (e.g. Beer et al. 1998; Vaast et al. 2008; Pinard et al. 2014). For example, Vaast et al. (2008) 

found shade to benefit coffee production under intensive management levels but suboptimal climatic 

conditions. Pinard et al. (2014) found that shaded coffee was more productive compared to coffee 

monocropping under optimal climatic conditions but low management intensity. Other previous studies 

in the area have already shown insignificant yield differences between coffee systems (van Asten et al. 

2011b; van Rikxoort et al. 2013; Wang et al. 2015), although they did not compare systems within similar 

climatic conditions. Regression analysis further indicated, that while many of the CO systems would benefit 

from increased shade cover, the highly shaded tree cover of some of the CT systems negatively affected 

coffee yield, but no clear relationship between shade, altitude and coffee yield was found. On the other 

hand, increased banana densities appeared to have a positive effect on coffee yield on higher altitudes, but 

required sufficient nutrients to account for competition. As there are no evident yield differences between 

the analyzed coffee systems, the different patterns of system adoption along the altitude gradient can be 

explained by additional socio-economic factors. 

 

4.3 Socio-economic constraints driving vegetation structure 

Next to biophysical factors related to altitude (e.g. climate, soil) and coffee system components 

(microclimate modification from intercropping banana and trees, competition for water and nutrients) that 

clearly affect many of the ecosystem service benefits of the analyzed systems, social aspects additionally 

determine what benefits are preferred by the farmers. Farmers’ constraints, such as issues around food 

security (farm size, household size, access to markets and forests, etc.), production constraints (coffee 

management knowledge, labor, access to inputs, credits, etc.) and objectives (e.g. importance of coffee as 

livelihood strategy) influence farmers choices related to coffee plot vegetation management.  

In this study, altitude, number of coffee plots, the ratio of kids per household, and the belief that nutrient 

competition is an important constraint to intercropping, was most decisive in farmers’ adoption of coffee 

system. Altitude, one of the main drivers affecting adoption of CB and CT systems, is not only a proxy for 

climate but also for the proximity to forest resources at high altitudes, particularly firewood (Sassen et al. 

2015), and distance to important markets such as the city of Mbale. Farmers at low altitudes depend much 

more on trees to mitigate climatic effects due to increased temperature and prolonged dry season. They 

also rely on tree resources from farm trees, owing to the lack of trees outside the coffee plots where land-

use is primarily dedicated to annual crops. 

Labor intensity was not significantly different between systems and altitude ranges. Farm and household 

size, as well as the importance of coffee as a livelihood strategy, did, however, seem to play an important 

role regarding coffee system adoption. Intercropping, particularly with shade trees, is associated with 

smaller farms, larger household sizes, and fewer cultivated coffee plots. Sassen et al. (2015) found that the 

most populated areas on Mt. Elgon were also the ones with highest tree densities, which corroborates our 

results. It can be concluded, therefore, that CO systems are only possible if land requirements for meeting 

household food needs result in a ‘land surplus’ rather than a ‘land gap’ (Hengsdijk et al. 2014). This 
implies that self-sufficiency is the primary driver in decision making regarding coffee plot structure.  

Belief systems related to the benefits and constraints of intercropping also play an important role. Farmers 

with low intercropped banana and shade tree densities (i.e. CO systems) tend to perceive nutrient 

competition as a major constraint to intercropping. This perception is shared by all coffee stakeholders 

and is disseminated through extension service (Jassogne et al. 2013). Although intercropping might be 

constrained by nutrient limitations in many situations, not intercropping under current situation does not 

necessarily lead to higher yields, as illustrated by our data. 
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4.4 Implications for biodiversity conservation 

On Mt. Elgon, trees improve coffee production to some degree. Beyond coffee production, trees and 

intercropped bananas improve farmer livelihoods, particularly where land is scarce and access to trees 

outside their farms is lacking. This has important consequences for biodiversity conservation and related 

ecosystem services. Controversially, tree biodiversity on coffee plots decreases with altitude and socio-

economic status of farmer, while the area cultivated with coffee increases with altitude, impacting 

biodiversity negatively on a landscape scale. Higher yields were generally found on plots with lower species 

richness, indicating that increased biodiversity conservation within a SI model is a challenge (see also 

Garcia et al. 2010; Boreux et al. 2013; Carsan et al. 2013). This suggests that appropriate incentives will 

be required to retain high biodiversity within the agricultural area of Mt. Elgon. These incentives should 

be based on principles of ecological intensification and taking into account the socio-economic 

heterogeneity of famers’ livelihoods (Giller et al. 2011; Vignola et al. 2015). Based on the historically 

contested relationship between the Mt. Elgon National Park and the farmer communities bordering it 

(Cavanagh & Benjaminsen 2014), we see strong necessity and potential for collaboration. Instead of only 

focusing on protecting the remnant forest, certain measures could conserve biodiversity within the 

agricultural area where synergies with coffee production and farmers’ livelihoods are met (see also 

Baudron & Giller 2014). Ideally, this initiative should be integrated with work conducted by local coffee 

certification bodies which focus on biodiversity. This could also expand to other ecosystem services, such 

as landslide prevention measures, where diversified coffee agroforestry could be strategically promoted on 

landslide prone areas (Knapen et al. 2006; Claessens et al. 2007; Mugagga et al. 2012).  

 

4.5 Sustainable intensification of coffee production in the face of climate change 

Under current management, intercrops and shade do not affect coffee production negatively under 

optimal climatic conditions, nor do they improve coffee production under suboptimal climatic conditions. 

Other management aspects such as nutrient management and pest and disease control play a more 

important role. Under current management, most CO systems could benefit by intercropping more 

bananas and/or shade trees due to the non-significant differences in coffee yield while taking into account 

the additional benefits of fruits, firewood, timber, and mulch provided by bananas and shade trees. 

Significantly higher coffee yields in CO systems could only be achieved if planting densities were increased, 

substantially higher nutrient inputs were applied and if pest and disease control were improved. Although 

CO systems in this study area tended to be owned by wealthier families (more farmland, smaller household 

size) that pursued coffee as a more serious business (more land devoted to coffee), their management is 

still not sufficient to significantly increase yield by reducing potential competition for light, water, and 

nutrients. In East Africa high input systems in smallholder contexts are rarely the case (Tittonell & Giller 

2013), leading to the conclusion that unshaded systems are less appropriate for the majority of East African 

smallholder farmers if not accompanied by changes towards a stimulating socio-economic context allowing 

for adequate management.  

Appropriate management of vegetation structure, with site-specific adapted intercropped species and 

planting densities, provides a valuable approach towards SI (increased overall production per unit area) 

and climate change adaptation (increased resiliency to climate extremes). While this approach to SI 

contributes to the improvement of farmers’ livelihoods, it does not necessarily increase overall coffee 
production, and might potentially conflict with SI goals of the coffee sector. Other important factors that 

might affect coffee yields include improved nutrient management, and pest and disease control. These 

need to consider the resources available to farmers (principally mulch and manure), and the relationship 

between pests and diseases, climate, and vegetation structure, which to a large extent remains unknown.  

This study shows the inherent difficulty in applying SI, as what is interpreted as SI for one stakeholder 

(e.g. farmer) might not hold true for another (e.g. coffee sector). Understanding the relationships and 
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trade-offs between coffee yield increase, farmers’ livelihoods, and biodiversity conservation is therefore 

crucial for effective implementation of SI. Furthermore, different pathways that lead to yield increases 

have different impacts on biodiversity and related ecosystem services (Tscharntke et al. 2012). Learning 

from past successes and failures of intensification pathways that occurred in other regions (e.g. Garcia et 

al. 2010; Boreux et al. 2013; Vignola et al. 2015) with consideration of their costs related to farmers’ 
livelihoods and ecosystem services can contribute in finding adequate models of SI. 

To achieve this, best-fit management practices have to be tailored according to the socio-economic aspects 

of the farming system and their environmental context (table 6; Ojiem et al. 2006; Giller et al. 2011; 

Tittonell et al. 2011; Coe et al. 2014; Lescourret et al. 2015). This requires an enabling environment that 

responds to the socio-ecological heterogeneity of farming systems. Furthermore, eliciting the perceptions 

and interests of different stakeholders, including their definitions of SI, allows to minimize conflicting 

objectives and actions. Using typologies of coffee systems on plot scale, combined with typologies of 

farming systems (livelihood strategies) in contrasting environmental settings enables adequate 

characterization of the socio-ecological heterogeneity. These typologies provide a basis for multi-

stakeholder engagement to explore appropriate interventions and evaluate possible trade-offs and 

synergies. 

 

Table 6 : Management recommandations based on socio-ecological context 

Agro-ecological context: Climate x soil x landscape 

 aec1, aec2, aec3, aeci, … 

Socio-economic context: Farm size, age of farmer, gender, household size, wealth, objectives, etc. 

 sec1, sec2, sec3, seci, … 

Socio-ecological context: aeci x seci  Management recommandations 

 

Conclusions 

This study investigated the potential for ecosystem-based adaptation to climate change along the slopes of 

Mt. Elgon, Uganda as a means towards sustainable intensification. Our results suggest that smallholder 

coffee systems benefit from intercropping, but that the choice of intercrop type is highly dependent on the 

socio-ecological conditions. Climate had a great influence on farmers’ adoption of a certain coffee system. 
While high rainfall amounts at high altitude allow for intercropping high banana densities, farmers 

responded to the high temperature and drought stress on low altitude with increased shade tree densities. 

The landscape setting, such as access to forest and markets, as well as climatic factors, drive the relative 

benefits of different intercrops. High rainfall at high altitudes allowed for high intercropped banana 

densities, which given the remote distance to markets, has importance for food security. Consequently, 

biodiversity conservation within coffee plots was highest furthest from the protected forest, where land-use 

is dominated by annual crops and tree cover outside the coffee plots is generally lowest.  

The study clearly shows that managing vegetation structure to balance the trade-offs among pests and 

diseases, nutrient and water competition, micro-climate, and resilience to climatic and market shocks, is 

highly complex. These relationships also need to be understood in the context of local farmers’ realities. 

Different concepts of sustainable intensification and climate-smart agriculture need to be explored among 

all stakeholders to achieve common understanding and identify appropriate development pathways.  
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A.2 Figures

Host Range

Coffea sp. 

Canthium sp.

Oxyanthus speciosus

Pavetta oliveriana

Randia sp.

Rytigynia schumanii

Vangueria linearisepala

Morphology

3
0

-3
5

 m
m

Egg:

Light cream, 4-5W x 1.5-2L

Larva: 

White / cream

3-5W x 10L mm (at head) / 

5 mm (at tail)

Pupae:

31mm (f), 28mm (m)

Damage

Ringbarking by early instars 

interferes with vascular system 

and causes the bushes to 

become unproductive. 

Furthermore yellowing, shoot 

die-back and defoliation. 

Woodboring by later instars 

weakens the tree structure.

Control

Cultural: Bark smoothening and wrapping

Manual removal of larvae 

Chemical: Until 1958, it was controlled with Dieldrin. Since the withdrawal of it, no other cost-effective 

pesticide has been found. Further tested chemicals included chloradan, fipronil, imidacloprid. 

Biological: Beauvaria bassiana has been tested in the lab

Resistance: C. arabica variety KP423 was gave indications on resistance.

Figure 20: Factsheet Monochamus leuconotus (WCSB), 1.
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Life Cycle

Figure 21: Factsheet Monochamus leuconotus (WCSB), 2. References: Dufpy et al. (1957); Tapley

(1960); Le Pelley (1973); Schoeman and Pasques (1993); Schoeman et al. (1998); Waller et al. (2007);

Karanja et al. (2010); Egonyu et al. (2015); Cerambycoidea (n.a.); Plantwise (n.a.)
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Control

Cultural: Use of resistant 

varieties, shade 

management, maintaining 

plant vigor by proper 

pruning and weeding

Chemical: Copper and

Triazole compounds

Strobilurins

Biological:

Hyperparasites

(Lecanicillium lecanii), 

Endophytic bacteria 

(Bacillus sp.)

Resistance: HDT hybrids 

(Arabica x Canephora, e.g

Catimores, Sarchimores, 

Colombia))

Host Range
Mainly 

Coffea arabica and 

Coffea canephora. 

. 

Symptoms, Morphology & Epidemiology

Symptoms: 

Orange 

powdery 

spots on 

underside of 

leaves & 

chlorotic 

patches on 

upper side, 

defoliation 

Infection: 

Uredospores

need liquid 

water for 

germination. 

Opt. temp.: 

21-25 °C

Appressoria

mostly above 

stomata 

openings

Uredinospores

Uredinium

telospores
Basidium with 

basidiosprores

Dispersal : By 

wind and rain

Latent period: 

+/ 3 weeks

Incubation period: 

4-7 weeks

Figure 22: Factsheet Hemileia vastatrix (CLR). References:Rayner (1952); De Jong et al. (1987);

Kushalappa and Eskes (1989); Waller et al. (2007); Haddad et al. (2009); Vandermeer et al. (2009);

Matovu et al. (2013); CAB Direct (n.a.); Apsnet (n.a.)
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Epidemiology

- All phases of the life cycle depend on liquid water, 

therefore disease process only happens during 

rainy season. 

- More sever at high altitudes (higher rainfall)

Infection and sporulation

- Opt. / Max. / Min. Temp.: for germination and 

lesion formation are 22, 30 and 15 °C, respectively.

- Latent period: 20 days, depending on berry stage

- Conidia are produced on the bark of young twigs 

and berries (the coffee bark and diseased berries 

from overlapping crops are the source of 

inoculum) 

Spread:

- Lateral dispersal between berries via rainwater  

splash, downwards via movement of rainwater 

through the canopy. 

Control
Cultural:

Aeration via pruning, shade management 

and spacing to reduce humidity. Removal of 

harvest residuals, irrigation.

Chemical:

Copper compounds, captafol (among 

others) 

Biological: 

Endophytic antagonists: Fusarium stilboides, 

Colletorichum gloesporioides

Resistance:

HDTs ;Timor hybridsͿ, ͞Ruiru 11͟, ͞Rume

Sudan͟ aŶd ͞Blue Mountain͟ show ͞soŵe͟ 
resistance 

Host Range

Coffea arabica

Morphology and Symptoms

- Conidia are produced from acervular conidiomata on diseased 

berries.

- Progressive anthracnose of young expanding berries, production of 

scab lesions and shedding of young berries. 

- Immature and ripening berries as well as flowers are susceptible, the 

unexpanded pin-head and green expanded berries are resistant. 

Figure 23: Factsheet Colletotrichum kahawae (CBD). References:Rayner (1952); Nutman and

Roberts (1961); van der Vossen et al. (1976); Mulinge (1970); Griffiths and Waller (1971); Waller

(1972); Firman et al. (1977); Waller and Masaba (2006); Waller et al. (2007); Plantwise (n.a.); Cite-

lighter (n.a.)
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1) Agricultural activities during the year 
Key questions: 

a) When are rainy (and dry) seasons? 

b) Cropping periods for different crops (planting to harvesting for annual crops, harvesting 

for perennial crops) 

c) Activities for coffee: When are fertilizer, herbicides, insecticides, fungicides applied, 

when is pruned? 

d) Overlaps with activities for other crops?  

Tool: 

 

Seasonal  

calendar 

 

2) Importance of food and cash crops and Food security 
Key questions: 

a) List 5 most important cash crops of the region and rank them. 

b) List 5 most important food crops of the region and rank them. 

c) What foods do you eat normally? 

d) How often do you eat each of these foods?  

e) Which foods become scarce first during the year and in which months?  

f) During such months, how many times do you eat a day?  

g) If you had a problem to get a good diet last year, what were the reasons for these 

problems? What did the community and households do to resolve these problems? 

Tool:  

 

Ranking 

 

 

 

Group 

discussion  

 

3) The use of shade / banana trees and constraints for coffee production (including P&D) 
Key questions: 

a) Which shade trees (including banana) are prevalent in the community? 

b) Are there more shade trees now than in former times and why? 

c) If you want to plant a shade tree, in which crop would you plant it and why? 

d) What are the challenges in increasing area under shade trees in your field? 

e) What are the yield limiting factors?  

f) Rank these factors according to their severity. 

g) Major P&D problems (in the last 5 years) in rainy and dry season. 

Tool:  

Open 

conversation 

 

Ranking 

 

4) Perception of climate change 

Key questions:  

a) Is climate changing and if yes, what has changed in the last 10 years?  

b) How has climate change affected agriculture? Please rank effects. 

c) What crops are most affected by climate change in agriculture? How is coffee affected? 

d) How do the farmers strategically cope with the changes in climate in coffee production?  

e) In this community, have you received any training on climate change or natural resource 

management? What was the training about? 

f) Are there any bi- laws or rules and regulations governing the use of natural resources in 

this community and if yes mention some of them and who enforces them? 

g) How is the community affected (positively and negatively) from the above mentioned 

bi-laws? 

h) Is the local community involved in the policy formulation? If yes how and when is the 

community involved? 

Tool: 

Group 

discussion 

 

Rank effects 

 

Rank crops 

 

Rank 

strategies 

 

Figure 24: Participatory Rural Appraisals (PRAs). Used tools for baseline survey (March/April

2014)
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Figure 25: Theoretical WCSB phenology showing overlapping generations of 4 subsequent years.

EM = Emergence of adults (with following feeding and mating), OV = Oviposition, HT = Hatching

of eggs, EIs = Early-Instar ringbarking stages feeding on phloem and cambium tissue, LIs = Late-

instar woodboring stages feeding mainly on xylem tissue, P = Pupal stage. Life cycle information

is based on Knight (1939), Tapley (1960), Schoemann et al., (1998) and Gichuhi et al., (2016). The

duration of individual life cycle stages varies depending on study, altitude and latitude, respectively

Figure 26: Selection procedure for micro-climatic variables and respective time periods to use in

piecewise SEM. (A) Visualization of the correlation coefficients matrix between micro-climatic vari-

ables and respective periods, related with CLRmax (verified by plotting CLRmax against each poten-

tial micro-climatic variable. Out of the initial number of 63 variables, 24 showed a relationship with

CLRmax). Numbers refer to monitoring dates: (2) May/June, (3) July/August, (4) September, (5)

October / November
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Figure 27: (B) Remaining 10 variables after exclusion of highly correlated variables (identified via

significant tests of the correlation coefficients) showing its relationship with CLRmax. Since time

periods within a variable of micro-climate were autocorrelated among themselves, they were joined to

one variable (e.g. dew point temperature of the four time periods were joined to dew point temperature

for the period between May–November), resulting in a final number of four micro-climatic variables

used in the piecewiseSEM
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A.3 Tables

Table 13: Dataset for spatial analysis. Number of plots per altitude range and system

Altitude range

Coffee system Low Mid High Total

CB 26 13 20 59

CO 12 13 24 49

CT 40 22 10 72

Total 78 48 54 180

Table 14: Categorization of input data for MCA, WCSB analysis

WCSB n CanClos n NoST ha n NoSTS n NoBM ha n NoS n

1 0 20 10.07 24 3.03 14 1 26 38.78 39 15.8 27

2 0.15 29 25.5 25 28.23 20 3.48 31 1266.56 44 23.9 28

3 0.39 17 47.89 34 56.77 23 6.45 26 34.3 28

4 0.63 17 100.9 18

5 237.29 8

Table 15: Analysis of variance for generalized

model (GLM) for WCSB incidence

Chisq Df Pr>Chisq

Alt cat 9.525 2 <.001**

CS 39.178 2 <.0001***

Alt cat x CS 35.976 4 <.0001***

n = 84, AIC =293.054, likelihood ratio test: χ
2

(1) = 118.79, p < .0001***
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Table 16: Analysis of variance for linear mixed-effects model for minimum and maximum tem-

perature

Minimum Temperature Maximum Temperature

Chisq Df Pr>Chisq Chisq Df Pr>Chisq

Alt cat na 40.72651322 2 <.0001***

CS na 57.56678302 2 <.0001***

Month na 295.9666421 8 <.0001***

Alt cat x CS 61.14309181 4 <.0001***

Alt cat x Month 155.2628247 16 <.0001***

Alt cat x CS x Month 125.9868322 32 <.0001***

n = 142. AIC = 73.687 and R2(combined) = 0.98 (Min. Temp.) and AIC = 553.94 and R2(combined)

= 0.78 (Max. Temp.). Given the strong interactions in the model for minimum temperatures, the global

effects (grey font colour) are not considered.

Table 17: Differences in predicted minimum temperatures between

months by altitude and coffee system

Minimum temperature

Mar Apr May July Aug Sept Oct Nov Dec

Low

CB b a a a a a a a a

CO c a a ab ab ab ab ab b

CT c abc bc abd ad d abcd abc ad

Mid

CB b a a a a a a a a

CO b a a a a a a a a

CT b a a a a a a a a

High

CB b a a a a a a a a

CO e abc ce a d d ad bc abcd abd

CT c ab ab a ab ab b ab ab

Tukey-type comparisons of LMM-parameters, p<.05, tested separately for

each altitude category and coffee systems. Means within rows with differ-

ent letters indicate significant differences (tested for each altitude category

separately)
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Table 18: Stumping activities of farmers based the baseline survey (Chap. 2)

Time of stumping 1) Jan 12.84%

Feb 10.81%

Mar 8.11%

Apr 2.70%

May 0.68%

Jun 0.68%

Jul 2.03%

Dec 2.70%

na 59.46%

Use of pruned stuff 2) Yes 92.57%

Mulching 4.40%

Firewood 46.52%

Kraal construction 15.38%

Animal feed 6.23%

Thatching 24.54%

Sticking 2.93%

No 6.76%

na 0.68%
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Table 19: References for conceptual model illustrating potential relationships between components

of the environment, coffee production system, micro-climatic indicators, coffee productivity and coffee

pests and diseases

1
Rahn Eric, et al. Sustainable intensification of coffee agro-ecosystems in the face of climate change

along the slopes of Mt. Elgon, Uganda, (in preparation)

2

De Bauw, Pieterjan, et al. ”Soil fertility gradients and production constraints for coffee and banana

on volcanic mountain slopes in the East African Rift: A case study of Mt. Elgon.”

Agriculture, Ecosystems & Environment 231 (2016): 166-175.

3
Florinsky, Igor V., and Galina A. Kuryakova. ”Influence of topography on some vegetation cover

properties.” Catena 27.2 (1996): 123-141.

4
Lin, Brenda B. ”Agroforestry management as an adaptive strategy against potential micro-climate

extremes in coffee agriculture.” Agricultural and Forest Meteorology 144.1 (2007): 85-94.

5

Hardwick, Stephen R., et al. ”The relationship between leaf area index and micro-climate in tropical

forest and oil palm plantation: Forest disturbance drives changes in micro-climate.” Agricultural

and Forest Meteorology 201 (2015): 187-195.

6
Tscharntke, Teja, et al. ”Multifunctional shadetree management in tropical agroforestry landscapesa

review.” Journal of Applied Ecology 48.3 (2011): 619-629.

7

Avelino, Jacques, G. Martijn Ten Hoopen, and Fabrice AJ DeClerck. ”Ecological mechanisms for

pest and disease control in coffee and cacao agroecosystems of the neotropics.” Ecosystem Services

from Agriculture and Agroforestry Measurement and Payment.London: Earthscan (2011): 91-117.

8

De Beenhouwer, Matthias, Raf Aerts, and Olivier Honnay. ”A global meta-analysis of the

biodiversity and ecosystem service benefits of coffee and cacao agroforestry.”

Agriculture, Ecosystems & Environment 175 (2013): 1-7.

9
Cerda, Rolando, et al. ”Effects of shade, altitude and management on multiple ecosystem

services in coffee agroecosystems.” European Journal of Agronomy 82 (2017): 308-319.

10

Soto-Pinto, L., I. Perfecto, and J. Caballero-Nieto. ”Shade over coffee: its effects on berry borer,

leaf rust and spontaneous herbs in Chiapas, Mexico.”

Agroforestry systems 55.1 (2002): 37-45.

11

Morais, Heverly, et al. ”Microclimatic characterization and productivity of coffee plants grown

under shade of pigeon pea in Southern Brazil.”

Pesquisa agropecuria brasileira 41.5 (2006): 763-770.

12

Siles, Pablo, Jean-Michel Harmand, and Philippe Vaast. ”Effects of Inga densiflora on the

micro-climate of coffee (Coffea arabica L.) and overall biomass under optimal growing

conditions in Costa Rica.” Agroforestry Systems 78.3 (2010): 269-286.

13
Barradas, V. L., and L. Fanjul. ”Microclimatic characterization of shade and opengrown

coffee.” Coffee arabica (1986).

14
Avelino, Jacques, Laetitia Willocquet, and Serge Savary. ”Effects of crop management patterns

on coffee rust epidemics.” Plant pathology 53.5 (2004): 541-547.

15
Staver, Charles, et al. ”Designing pest-suppressive multistrata perennial crop systems:

shade-grown coffee in Central America.” Agroforestry Systems 53.2 (2001): 151-170.

16
Mayoli, Rose N., and K. M. Gitau. ”The effects of shade trees on physiology of Arabica coffee.”

African Journal of Horticultural Science 6 (2012).

17
Bedimo, JA Mouen, et al. ”Effect of temperatures and rainfall variations on the development of

coffee berry disease caused by Colletotrichum kahawae.” CropProtection 31.1 (2012): 125-131.

18

López-Bravo, D. F., E. de M. Virginio-Filho, and Jacques Avelino. ”Shade is conducive to coffee

rust as compared to full sun exposure under standardized fruit load conditions.”

Crop Protection 38 (2012): 21-29.

19

Vaast, Philippe, et al. ”Fruit thinning and shade improve bean characteristics and beverage

quality of coffee (Coffea arabica L.) under optimal conditions.” Journal of the Science of Food

and Agriculture 86.2 (2006): 197-204.

20
Lock Charles GW (1888) Coffee: Its Culture and Commerce in All Countries.

E & FN Spon, London, England

21
Beer, J., et al. ”Shade management in coffee and cacao plantations.” Agroforestry systems 38.1-3

(1997): 139-164.

22
Avelino, Jacques, et al. ”Topography and crop management are key factors for the development of

American leaf spot epidemics on coffee in Costa Rica.” Phytopathology 97.12 (2007): 1532-1542.

23
Avelino, Jacques, et al. ”Landscape context and scale differentially impact coffee leaf rust,

coffee berry borer, and coffee rootknot nematodes.” Ecological applications 22.2 (2012): 584-596.

24

Vilchez, Sergio, et al. ”Relative influence of plot and landscape scale factors on coffee berry borer

abundance: a variation partitioning hierarchical approach.”

Proceedings, 24th International ScientifiColloquium on Coffee, Association Scientifique

Internationale du Caf (ASIC), San Jos, Costa Rica. 2013.

25
ChaplinKramer, Rebecca, et al. ”A metaanalysis of crop pest and natural enemy response to landscape

complexity.” Ecology letters 14.9 (2011): 922-932.

26
Perfecto, Ivette, and John Vandermeer. ”Spatial pattern and ecological process in the coffee

agroforestry system.” Ecology 89.4 (2008): 915-920.

27
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