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Zweitprüfer : Prof. Dr. Klemens Hammerer
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Abstract

The present dissertation is concerned with the development and implementation of
a novel scheme for quantitative, numeric approximation of the dynamics of quantum
lattice systems based on the Time-Dependent Variational Principle together with
Monte Carlo techniques in order to include dissipative interactions. The specific
implementation is demonstrated on both common and not yet in-detail explored
Heisenberg- and Fermi-Hubbard models in one and two dimensions. Additionally,
the technical requirements regarding computational complexity and capacity are
discussed, especially with regards toward parallelizable components of the imple-
mentation. Concluding remarks include prospects with respect to application and
extension of the presented methods.
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Entwicklung und Umsetzung eines
neuartigen Schemas zur quantitativen numerischen Näherung der Dynamik von
Quantengittersystemen auf Grundlage des zeitabhängigen Variationsprinzips unter
Zuhilfenahme von Monte-Carlo-Techniken zur Einbeziehung von dissipativen Wech-
selwirkungen. Die Implementierung wird anhand von Beispielen für Heisenberg-
und Fermi-Hubbard-Modellen in einer und zwei Dimensionen gezeigt und erläutert.
Ergänzend erfolgt eine Betrachtung der technischen Anforderungen an rechnerische
Kapazitäten und komplexitätstheoretische Erwägungen, mit besonderem Augen-
merk auf parallelisierbare Komponenten der Implementierung. Abschließend wird
ein Ausblick hinsichtlich der weiteren Möglichkeiten von Einsatz und Erweiterung
der präsentierten Methoden vorgenommen.

Schlagworte: Monte-Carlo-Simulation, Dissipative Dynamik, Lindblad-Gleichung
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Introduction

The quest of the physical sciences is to enhance our understanding of reality. While
the scientific method has many different manifestations, its principles within will
always stay the same: Based upon experience, the scientist formulates a hypothesis
about empirically accessible experiments that can deepen a conviction about certain
causal relations, be it about fundamentals like the law of gravity or its generalization
in relativity as well as the advent of quantum theory. The role of theoretical work
cannot be overstated as it provides a foundation for the inference step by precisely
defining the necessary variables and interactions.

Depending on the discipline and question, the relation between theory and
experiment becomes more and more dialectic – without going into detail, we can
already understand from the above definition that without theory, there is no ba-
sis for a sound experiment, regardless of its sophistication – while, on the other
hand, without experimental validation, any theory becomes hollow and scientifi-
cally meaningless.

The present dissertation treads precisely the thin line in between theory and
practice because it provides both validation for existing models as well as predic-
tive potential about experiments that have yet to be performed. More concretely,
the discipline pursued in this dissertation is that of Quantum Information, the
subbranch of Quantum Mechanics that concerns itself with the treatment of infor-
mation and its transformations where classical information theory fails as badly as
classical mechanics to address the various and wondrous phenomena the quantum
world provides. Topics like Quantum Teleportation, Quantum Key Distribution
and the like have elicited public interest from which Quantum Information has
profoundly benefited. From the scientific point of view, however, the systematic re-
search of many-body systems seems much more valuable in terms of understanding
reality, because these systems are much more common than the highly-engineered
and undisturbed models of Quantum Information theorems and, as we will see, show
a rich variety of quantum effects that shape the macroscopic behavior of the larger
building blocks – like phase transitions on spin lattice systems – that quantum
many body systems aspire to treat.

These many body systems we are concerned with consist of chains of single
particles in one or more spatial dimensions, coupled to one another by individu-
ally targeted interaction terms that model e.g. magnetic or spin interactions. Spin
chains are governed in their behavior by two different kinds of dynamics: First of
all, the coherent propagation with time given by the system’s Hamilton operator,
extended by so-called dissipation, which represents the irreversibility of thermody-
namic processes during the flow of time that inevitably appear in real systems of
interest. Although it has to be said that dissipation does not necessarily mean that
the system is purged of its quantum correlations, one can never truly insulate an
experiment from the outside world, which poses are practical, not necessarily theo-
retical challenge. Dissipation ultimately models the exchange of heat, information,
i.e. the creation and annihilation of quantum correlations. While the research of
many-body systems is often limited by the sheer number of degrees of freedom and
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4 INTRODUCTION

by the question of which of them to ignore, with dissipation the situation is worse:
More often than not an experimentalist observes energy dissipation but cannot tell
which path the lost energy took, i.e. the coupling itself is not merely part of the
equation, but to some extent up for debate. It is one of the primary objectives of
this work to prepare a framework that can systematically determine the form of
dissipation at hand.

The tools at our disposal include concepts such as the variational principle, i.e.
the method that sets out how to minimize a functional on a manifold. By applying
it, we seek answers to the question of how to optimize an algebraic expression given
some constraints. While this seems very broad indeed, its application to Quantum
Information has given rise to both specific and computationally efficient sets of
variational classes. E.g. we introduce why it is useful to stay within a certain class
of states that can be realized as matrix products. The variational class of Matrix
Product States has been applied to many-body systems with great success – first
in the form of density matrix renormalization group ansatzes, and in recent years
through the application of the Time-Dependent Variational Principle, the latter
being shown to be a generalization of the former.

The great benefit of parametrizing the dynamics on Hilbert spaces exponen-
tially big in the system size by means of MPS is that we have a bounded number
of variational parameters to treat – again, bounded in the system size, i.e. num-
ber of particles – that scale much more favorably with regards to the increase of
degrees of freedom when adding particles to the system, when compared to direct
diagonalization. In some cases this means that we can get better answers than
other approximate methods, in others we get answers at all, where other methods
are not practical – which in itself indicates increased insight into the structure and
dynamics of the many-body systems.

Going forth, we show how to introduce stochastic methods that enable the
treatment of dissipative dynamics within the Time-Dependent Variational Principle
through adding Monte Carlo sampling on the level of the variational manifold, i.e.
changing the tangent vector of the variational class on its variational manifold,
i.e. the subspace of infinitesimal action with respect to the effect of the dissipative
dynamics.

By applying the solution of the respective stochastic differential equation, de-
rived from the Quantum Master Equation to the TDVP, we can successfully sim-
ulate the time evolution of mixed states, which cannot in general be treated by
numerical studies and are approximated by sampling from the correct superposi-
tion of product state basis vectors instead of trying to represent them by truncation
schemes. By choosing this approach we gain knowledge about ensemble averages of
interesting system properties, be it an approximation of the (mixed) steady state or
other constants of motion. We then go on to show that the interaction between the
coherent treatment of the Time-Dependent Variational Principle and its dissipative
extension can be performed in a way that permits computational treatment in a
parallel manner such that hundreds of dissipating samples can be calculated in the
time a single coherent treatment would take. It is important to note, though, that
neither is finding a steady state always the primary goal of an investigation, nor
does every setup feature steady states.

Although sampling thousands of instances of stochastically equivalent (and
identically distributed) time evolutions of the same system seems inefficient at first,
the correct reference of computational complexity is the exact solution of quantum
dynamics, achieved by direct diagonalization. This way of solving dynamics is
exponentially more expensive than the numerical schemes developed from the vari-
ational principle and alike, and for the treatment of extensive system we aim to
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investigate outright impossible. As such, the presented method is among the few
numerical schemes that can tackle complex tasks of investigating not only a few (i.e.
O(10)), but dozens (ı.e. O(100)) of interacting quantum particles, which is a vast
improvement over exact analytic treatment, albeit penalized by giving up infinite
accuracy.

While the thorough investigation of experimentally accessible systems was not
the primary aim of this work, we discuss exemplary results of dissipative dynam-
ics on Heisenberg-type systems as well as Fermi-Hubbard models, which are among
the most-studied many-body schemes in physics. The particular benefits of this ap-
proach include both being able to check the method against established treatments
of dissipation and the opportunity to make specific predictions about configura-
tions that could previously not be treated theoretically within the realm of existing
methods, like the case of experimentally accessible chains of 40K atoms subject to
the specific interaction induced by laser driving.

The content of this dissertation is arranged as follows. The first part starts
with a short introduction to the basic terminology of Quantum Information The-
ory in Chapter 1. Afterward, we review the state of the art of the treatment of
quantum spin chains in Chapter 2, followed by a discussion of necessary notions
from Stochastic Calculus in Chapter 4. The remaining technical requirements are
introduced in a thorough review of the Time-Dependent Variational Principle as a
means of solving ground state problems and unitary time evolution in Chapter 3.

In the second part, the research results of this dissertation are presented, start-
ing with Chapter 5, including the derivation of the Monte Carlo Time-Dependent
Variational Principle. We review basic exemplary results on Heisenberg chains of
the XZ, XXZ and ZZ form in Chapter 6, while Chapter 7 treats research performed
on Fermi-Hubbard models providing insights into, e.g. representing the actual form
of Quantum Optical dissipation operators on strongly interacting Rydberg atoms
in optical cavities, such as 40K.

The final chapter is comprised of concluding remarks together with an outlook
regarding future research possibilities enabled by dissipative methods presented
here.





Part 1

Preliminaries





CHAPTER 1

Quantum Information

1. Bases

Before we start fleshing out the tools of Quantum Mechanics, we need to intro-
duce a minimal set of Linear Algebra to make sense of the more advanced defini-
tions. A spanning set of a vector space is a set of vectors |s1〉 , · · · , |sN 〉 such that
|a〉 =

∑
i ai |si〉 is a linear combination that can describe any vector in the space. In

mathematics, we call this a basis. Note, however, that even for a one-dimensional
vector space the definition allows for overcompleteness. Thus, we will usually iden-
tify an orthonormal basis of minimal rank, i.e. the number of basis vectors is dimA
and they are mutually orthogonal:

〈si, sj〉 = δij ∀ i, j ∈ 1, ...,dimA, (1)

where δij is the Kronecker symbol, evaluating as 1 if and only if i equals j and
giving 0 otherwise.

2. Products

2.1. Inner Product

In Quantum Information, just like in the rest of Physics, it all starts with the
Hilbert Space, i.e. a vector space H with an Inner Product that maps two vectors
|a〉 and |b〉 to a scalar. In finite dimension N, this can be explicitly stated as

|a〉 =

 a1
a2
...
aN

 , |b〉 =

 b1
b2
...
bN

 , (|a〉 , |b〉) =

N∑
i=1

ai · bi = 〈a|b〉 , (2)

where 〈a, b〉 is the so-called Dirac notation, 〈a| being the dual vector of |a〉. In the
following we will introduce all necessary tools to explain the research we performed,
but will not deal with the subtleties of vector spaces and functional calculus, where
reference to a textbook like [127] can explain the technical details much better.

2.2. Outer Product

Apart from the inner product, useful for calculating overlaps, we need to explore
the Outer Product as well. Without a proper definition how to compose Hilbert
Spaces, thus facilitating the sheer necessity of dealing with multi-particle systems,
Quantum Information would be a hell of models that cannot be plugged together
but have to be reinvented every time you want to add or remove a degree of freedom.
But since there is an Outer Product, also known as the Tensor Product or Kronecker
Product, we don’t have to worry about the question what a system composed of two
formally independent subsystems looks like. Instead of taking 〈a|b〉 as a product of
a row vector and a column vector, we transpose the operation. Thus, we have to
explain how |a〉 〈b| is defined:

|a〉 〈b| = a⊗ b =

 a1
a2
...
aN

⊗ ( b1 b2 ... bN ) =

 a1b1 a1b2 ... a1bN
a2b1 a2b2 ... a2bN

...
...

. . .
...

aNb1 aNb2 ··· aNbN

 , (3)

9



10 1. QUANTUM INFORMATION

where we define a ⊗ b =
∑

(i,j)∈I×J viwj (ei ⊗ fj), based on the vectors a =∑
i∈I viei ∈ A on a vector space A and b =

∑
j∈J wjfj ∈ B on a vector space

B with respective index sets I and J giving rise to the basis vectors ei ∈ A and
fj ∈ B. Since tensor products of basis vectors are basis vectors of the tensor space,
all we have to explain is the respective tensor basis obtained from {e} and {f}
following the ordered Cartesian product E × F = {(ei, fj) | i ∈ I, j ∈ J}. Note
that the field of the vector spaces is C unless otherwise specified.

Now this construction gives rise to some interesting structure. Basic properties
include

(1) Linearity in both tensor factors:

α(|a〉 ⊗ |b〉) = (α |a〉)⊗ |b〉 = |a〉 ⊗ (α |b〉) (4)

(2) Distributivity:

(|a1〉+ |a2〉)⊗ |b〉 = |a1〉 ⊗ |b〉+ |a2〉 ⊗ |b〉 (5)

This holds for the other subspace mutatis mutandis.

Equipped with these basic properties, we can easily check that scalar products of
tensor products are mapped to the tensor product of scalar products. For vectors
|a〉 , |a′〉 ∈ HA and |b〉 , |b′〉 ∈ HB , we find that for orthonormal bases {ei} ∈ HA
and {fj} ∈ HB the scalar product indeed factorizes:

〈a⊗ b|a′ ⊗ b′〉 = 〈ab|a′b′〉

=
∑
i

〈a|ei〉 〈ei|a′〉
∑
j

〈b|fj〉 〈fj |b′〉 (6)

= 〈a|a′〉 〈b|b′〉 .

Note that we used the notation agreement that

|0〉 ⊗ |0〉 ≡ |0〉 |0〉 ≡ |00〉 . (7)

Since 〈.|.〉 maps elements of the Hilbert spaces to (real) scalars, the tensor product
of the scalar product is mapped to a regular product.

3. Eigenproperties

Before we can explore more exotic properties of operators on Hilbert spaces, we need
to learn about Eigenproperties – i.e. Eigenvectors and Eigenvalues of operators. The
first term refers to a vector |a〉 with the property that for an operator O, |a〉 is an
Eigenvector if and only if

O |a〉 = a |a〉 , (8)

where in turn a is a complex number called the eigenvalue of A. In cases with more
than two dimensions – that is, you cannot guess the Eigenproperties by looking
at the problem, we resort to the characteristic function. Then, the solutions of
c(λ) = 0 ≡ det |O − λ1| are the eigenvalues of O, while the eigenvectors can be
found by reinserting the particular eigenvalues λi into the eigenvalue Eq. (8)).

This furthermore gives rise to the first of many useful representations of an
operator, the diagonal representation, or orthonormal decomposition. Note that
by using the eigenvectors as a unique basis, that albeit is not necessarily complete
with regard to the whole vector space (because the Eigenvalues can be degenerate,
resulting in non-maximal rank of O − λ1), we can describe the operator O as

O =
∑
i

λi |ai〉 〈ai| , (9)
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where {|ai〉} is the set of eigenvectors. For example, for the Pauli matrix σy (we
learn about them in Section 9), the decomposition would read

σy =
(

0 −i
i 0

)
= i(|0〉 〈1| − |1〉 〈0|). (10)

Although possible, numerical determination of large eigenvalue problems is costly.
Advanced and established algorithms like the Lanczos algorithm [110] generally
scale like O(N3) in the number of parameters. While not an issue for static prob-
lems like the identification of atomic orbitals, as we will see, the state space of a
modestly large many-body system can easily comprise a dimension of N = 1010 if no
truncations are applied. Although, under special conditions, this can be improved
to O(N2), it is still computationally intractable. Thus, diagonalization of density
matrices of the whole state space is under no circumstances a feasible method to
solve the kind of system we have in mind.

4. Dynamics

While we will later see more detailed considerations about the evolution of quantum
states, let us briefly discuss, what the basic Postulate of Unitarity means. In
short, after defining Hilbert space, we would like to know how a state |Ψ〉 ∈ H
changes with time. Note that we are considering closed systems, i.e. H is all we
concern ourselves with. Only after discussing Stochastic Calculus will we talk about
thermodynamically ’open’ systems.

Definition 1. The time evolution of a closed quantum system on H is given
by the transformation created by a unitary operator U such that |Ψ(t0)〉 = U |Ψ(t1)〉,
with t0 ≤ t1. U may depend only on t0 and t1.

It is important to note that Quantum Theory does not hand this operator to
us, it only assures us of its existence. Finding and evaluating the correct operator
is one of the prime problems in dissipative systems.

A direct consequence, however, is the existence of a differential equation of
motion, if one explores the classical considerations of Hamilton-Jacobi formalism.
We will not explore the underlying correspondence principle or the classical limit,
but instead look at the Schrödinger equation in its most common form:

i~
d |Ψ〉
dt

= H |Ψ〉 . (11)

The Planck constant ~ is only of practical importance and will be identified with
identity in this work: ~ ≡ 1. The entity H is a Hermitian operator known (for his-
torical reasons emerging from said Hamilton-Jacobi formalism) as the Hamiltonian.

Equipped with these tools we may now conclude that H can be decomposed as

H =
∑
i

ei |Ei〉 〈Ei| (12)

with Eigenvalues {ei} and Eigenfunctions {Ei}, the latter known as the energy
Eigenstates of H. If the Hilbert Space is finite, as we will assume unless noted
otherwise, the spectral decomposition also has finitely many contributing terms.
Educated about this property, we can conclude that the time evolution of any closed
system whose Hamiltonian is not time-dependent is particularly easy to obtain if
one has knowledge about the diagonalization , i.e. the Hamiltonian’s eigenvalues.
In this case we write

U(t) = e−iHt/~ (13)

and find for an arbitrary state vector

|ψ(t)〉 = U(t) |ψ(0)〉 . (14)
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In this situation the ground state, i.e. the eigenstate with the lowest energy, is of
prime interest, as we will later see in Section 8, because oftentimes we can learn
much about the system’s characteristic behavior. For example, a non-degenerate
ground state has zero entropy. Furthermore, although their preparation is often
inconvenient in practice, in quantum information theory ground states are often
used as basis states for either computational or cryptographic protocols as well as
tools for proving various statements because of the fact that we have a certified
lower bound for the system energy: Any operation on the ground state will either
increase the system energy or leave it invariant.

5. The Qubit

Knowing about state spaces, we need to know about “things” in them. Just like
the system does not tell us how its ground state looks like, for some models we
don’t even know how the state space itself looks like. The most basic object of
Quantum Information Theory is the Qubit. While the term usually describes the
two-dimensional state space H = C2, it will very well also denote the abstract con-
cept of a quantum system with two orthogonal basis states, |0〉 and |1〉. Somewhat
analogous to a classical bit of information, the information density of the qubit is 1
bit per qubit, albeit allowing for superpositions of its basis states: |Ψ〉 = a |0〉+b |1〉.
Note that we used the normalization condition 〈Ψ|Ψ〉 = 1, ensuring that |Ψ〉 is a
proper probability density. While the system is in such a superposition state, we
cannot with certainty tell what information the qubit will bear: We have to make
a measurement.

Quantum measurements are represented by positive operators {O†iOi ≥ 0} on
the Hilbert space H, where its index i refers to the set of outcomes. Since producing
a measurement will have an outcome, we demand that the probabilities pi for each
outcome must sum to unity:∑

i

pi =
∑
i

〈Ψ|O†iOi|Ψ〉 = 1 (15)

Sneakily we introduced here the correct notation for the operators Oi acting on the
state |Ψ〉. The most common way of representing operators on Hilbert spaces is the
use of a matrix algebra with elements from the n×n matrices denotedMn×n, that
is, if we have a basis of dimension n, the corresponding vectors are 1× n-matrices.

If the sum in Eq. (15) evaluates to one because all outcomes together must be
of stochastic nature, we can infer how probabilities are calculated:

pi = 〈Ψ|O†iOi|Ψ〉 . (16)

We will now use this notation to exemplify the computational basis {|0〉 , |1〉} of the
qubit. Note that we can define a measurement O as e.g. O0 = |0〉 〈0|, O1 = |1〉 〈1|.

Using 〈i|j〉 = δij for an orthonormal basis, it is easy to see that

p1 = 〈Ψ|O†1O1|Ψ〉 = (a 〈0|+ b 〈1|) |1〉 〈1| |1〉 〈1| (a |0〉+ b |1〉) = b2, (17)

since 〈0|1〉 = 0. It should also be noted that in this particular case O0 and O1 are
projections: O2

i = O. While observables need not have this property, is is useful,
when available, since it allows for effortless spectral decomposition that we already
know.

5.1. Phase

Together with “topological”, an abomination of a term, the notion of Phase is one
of the most diversely and variously used throughout all of physics. As we will see
later, even throughout this monograph we will have more than one concept called
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a phase. Still, considering the qubit only, the phase is one of the more accessible
concepts.

If we, for example, look at the state vector eiθ |Ψ〉, where |Ψ〉 itself is a state
vector on the state space and θ is a real number, we say that the two states |Ψ〉 and
eiθ |Ψ〉 are unitary equivalent, since they give the same measurement statistics. We
may furthermore call both eiθ and the number θ itself the global phase of |Ψ〉.

Regarding unitary equivalence, it should be easy to see that

〈Ψ|e−iθO†iOie
iθ|Ψ〉 = 〈Ψ|O†iOi|Ψ〉 , (18)

since eiθ is a complex number thus commuting with operators O†iOi and clearing
out with e−iθ to one.

6. Composition of quantum systems and entanglement

If we remember the tensor product of Eq. (3), we now should expose one of the
more peculiar aspects of quantum mechanics: entanglement.

Looking at states on a system of two qubits, more precisely given as

Hcomp = H1 ⊗H2, H1+2 = C2 ⇒ Hcomp = C4, (19)

we can define a state |Ψ〉 on Hcomp as

|Ψ〉 =
|00〉+ |11〉√

2
(20)

and subsequently notice that it has a most puzzling property: We cannot decompose
it into a product of single qubit states, i.e.

∀ |a〉 ∈ H1 ∧ ∀ |b〉 ∈ H2 : |Ψ〉 6= |a〉 |b〉 . (21)

7. Density operators

While it is common and useful to introduce the language of quantum mechanics in
terms of state vectors, the density operator is a much more powerful concept.
We will review basic properties in this section, but only understand its benefits
when discussing the peculiar nature of mixed state sampling in Chapter 5. The
usual definition is given by

ρ ≡
∑
i

pi |Ψi〉 〈Ψi| , (22)

where the vectors |Ψi〉 represent the pure states of the respective system and pi
is a probability distribution, such that for every possible contribution i there is a
non-vanishing probability to prepare the term |Ψi〉 〈Ψi|.

The resulting density operator for a system dimH = d is a matrix of dimension
d × d, hence coining the synonymous term density matrix . It provides a way
of talking about systems where the state of the quantum system is not completely
known. Also, this is a more thorough way to highlight the inherent stochastic nature
of quantum mechanics, since the density matrix can be interpreted as an ensemble
of systems all prepared in the same state and subject to the same dynamics:

ρ
U−→ UρU† =

∑
i

piU |Ψi〉 〈Ψi|U†. (23)

Note how ρ transforms like a second-order tensor, while |Ψ〉 transforms like a first-
order tensor, just like matrices and vectors respectively and we can thus calculate
probabilities as

p(i) = tr(O†iOiρ), (24)
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where tr denotes the trace of a matrix, i.e. for A ∈Mn

tr(A) =

n∑
i

Aii. (25)

7.1. Properties

If a system can be described by ρ = |Ψ〉 〈Ψ|, i.e. if and only if it can be represented
by a single unique wave vector (up to unitary equivalence), the system is in a pure
state.

If, on the other hand, the state is comprised of a decomposition of pure states,
like ρ =

∑
i pi |Ψi〉 〈Ψi|, it is called a mixture or, more precisely, mixed state. This

concept of a mixture is more pronounced in settings where the preparation of a pure
state is not feasible and one ends up with an ensemble of states, weighed by their
respective probability, i.e. if one were to measure specifically pure state amplitudes.

Of all statements about density operators, particularly the positivity condition
and trace condition seem useful:

Theorem 1. Any density operator ρ =
∑
i pi |Ψi〉 〈Ψi| is a positive operator,

i.e. suppose that |ϕ〉 is an arbitrary wave function in state space. Then we can
check that

〈ϕ|ρ|ϕ〉 ≥ 0, (26)

since ∑
i

pi 〈ϕ|Ψi〉 〈Ψi|ϕ〉 =
∑
i

pi| 〈ϕ|Ψi〉 |2 ≥ 0. (27)

Please note: Proofs for the following elementary statements can be found in [127]
unless explicitly proved or otherwise noted.

Theorem 2. Any density operator ρ =
∑
i pi |Ψi〉 〈Ψi| obeys the trace condi-

tion:

tr ρ =
∑
i

pi tr(|Ψi〉 〈Ψi|) =
∑
i

pi = 1. (28)

Furthermore, only knowing about pure and mixed states is enlightening as far as
state space structure is concerned, but not beneficial on its physical regard. We
need to be able to distinguish the two possibilities.

Theorem 3. ρ is pure if and only if tr(ρ2) = 1. Whenever tr(ρ2) < 1, ρ is a
mixed state.

Before discussing statistic properties of the density operator, it seems appro-
priate to address a common misconception. Although we can usually determine
Eigenproperties with relative ease (if the system complexity allows for practical
ways of doing it), their significance is diminished by the fact that the density oper-
ator, unless pure, portrays really an ensemble average of mixed states. Let us look
at an example.

Example 1. Suppose we are given a density matrix

ρ =
2

5
|0〉 〈0|+ 3

5
|1〉 〈1| , (29)

then the system is in the state |0〉 with probability 2
5 and in the state |1〉 with

probability 3
5 . If we furthermore define wave functions as superpositions of the

basis vectors with different amplitudes, say

|ϕ〉 =

√
2

5
|0〉+

√
3

5
|1〉 , |µ〉 =

√
2

5
|0〉 −

√
3

5
|1〉 , (30)
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we can check that indeed, if we chose a preparation ρ′ = 1
2 |ϕ〉 〈ϕ| +

1
2 |µ〉 〈µ| that

assigns equal probabilities to |ϕ〉 and |µ〉,

ρ′ =
1

2
|ϕ〉 〈ϕ|+ 1

2
|µ〉 〈µ| = 2

5
|0〉 〈0|+ 3

5
|1〉 〈1| = ρ, (31)

albeit realizing a different preparation. Since the identical density matrices cannot
exhibit different behaviors for different preparations, i.e. being statistically equiva-
lent, one should, as far as arguments about stochastic characteristics are concerned,
not attribute special relevance to the basis choice of Eigenproperties.

As a consequence, we can pose the question, what conditions can be given for
two ensembles to share the same density operator. But actually that is given by
the orbit the global phase of the density matrix generates:

Using Eq. (18), we can state a similar statement for density operators. Suppos-
ing two (not necessarily normalized) sets of basis vectors |ψ〉 and |ϕ〉, we furthermore
suppose that

ρ =
∑
i

|ψi〉 〈ψi| =
∑
j

|ϕj〉 〈ϕj | . (32)

To find the conditions for when this is true, we decompose ρ =
∑
k λk |k〉 〈k| with

orthogonal states |k〉 and positive coefficients λk. But then we can deduce that

|ψi〉 =
∑
k

vik
√
λk |k〉 (33)

as well as

|ϕj〉 =
∑
l

wjl
√
λl |l〉 . (34)

Combining Eq. (33) with Eq. (34), we immediately see that for a unitary matrix
u = vw† we have that

|ψi〉 =
∑
j

uij
√
λj |ϕj〉 , (35)

such that ∑
i

λi |ψi〉 〈ψi| =
∑
i,j,k

uiju
†
ik

√
λjλk |ϕj〉 〈ϕk| (36)

=
∑
jk

(∑
i

uiju
†
ik

)√
λjλk |ϕj〉 〈ϕk| (37)

=
∑
j

λj |ϕj〉 〈ϕj | . (38)

We conclude that two ensembles generate the same density matrix if and only if
they are connected by a unitary transformation like that of Eq. (35).

7.2. Bloch sphere

One important representation of this phenomenon can be realized in two dimen-
sions with the notion of the Bloch sphere. Although only illustrative in nature,
it will help in understanding the very structure of the state space. Given a state in
a superposition of basis states |Ψ〉 = Λ |0〉+ γ |1〉, we first remember that normal-
ization demands that |Λ|2 + |γ|2 = 1. But then this condition is identical to Euler’s
identity sin2 x+ cos2 x = 1, hence

|Ψ〉 = eiµ
(

cos
Θ

2
|0〉+ eiϕ sin

Θ

2
|1〉
)
, (39)

where µ, Θ and ϕ are real numbers. First we notice that since eiµ is a global factor,
it does not at all change the statistics of the state. Secondly, however, we realize
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|↑〉

|↓〉

~ez

~ey

~ex

|ψ〉

θ

φ

Figure 1. The Bloch sphere. The 2-dimensional state space
of a qubit with basis states |↑〉 = r and |↓〉 = −r along the
central axis. The convex hull is spanned by the polar decom-
position (r, θ, φ) of the convex combinations |ψ〉 = cos

(
θ
2

)
|↓〉 +

eiφ sin
(
θ
2

)
|↑〉 = cos

(
θ
2

)
|↓〉+ (cosφ+ i sinφ) sin

(
θ
2

)
|↑〉.

that this parametrization of the state is like a unit vector on a 2-Sphere. We can
see that the particular sphere is dual to the state space of a qubit, which as we have
already seen, is H ∼= C2. With these tools we are able to draw the state, a vector
in two dimensions, into the diagram of the state space in Fig. 1.

Notice that for pure states and the condition tr ρ = 1, the Bloch vector has unit
length and is thus lying on the surface of the unit sphere while mixed states will
lie within the volume. This has far-reaching implications using measure theory, i.e.
mixed states are dense in the state space, while the pure states (again, up to unitary
equivalence), are finite. However, in this examination we want to concentrate on
representations for a moment. While it is already clear how to put a vector into
the Bloch sphere, we can also find representations for density matrices. By means
of writing

ρ =
1+ ~r · ~σ

2
, (40)

where ~r is a three-dimensional vector with length |~r| ≤ 1 and ~σ is the vector whose
three components are the Pauli matrices

σ0 = ( 1 0
0 1 ) , σ1 =

(
0 1
−1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (41)

we can directly identify ~r with the state ρ. Note that the indices {1, 2, 3} are
typically identified with the spatial directions {x, y, z}.

Unfortunately, the human brain is not good at imagining n-spheres for n ≥ 3
(and most people, like the author of this dissertation, will have problems with
n = 3 already), such that visualizations of higher-dimensional state spaces are hard
to produce. Also, higher-dimensional convex hulls are in general not spherical.
We will thus either come back to this picture and try to find ways to project
them to a low-dimensional submanifold or refrain from giving a certain imaginable
representation altogether.
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7.3. No-cloning Theorem

Although algebraically simple, the impact of the no-cloning theorem by Wooters and
Zurek [187] is even more important in quantum information than the uncertainty
principle, because it touches the level of elementary computability: if a quantum
state cannot be cloned, no measurement-based tomography can answer the question
to a mixed state what its “real” coefficients were – we can only observe what (pure)
state it became. Moreover, prohibited cloning means that we cannot use classical
error correction in quantum communication.

Theorem 4. Suppose there are two identical Hilbert spaces HA and HB, with
|Φ〉A ∈ HA. We also suppose that |e〉B ∈ HB is independent of |Φ〉A, i.e. the total
state can be described as

|Ψ〉AB = |Φ〉A ⊗ |e〉B ∀ |Φ〉A ∈ HA. (42)

There is no operation such that Ô (|Φ〉A ⊗ |e〉B) = |Φ〉A⊗|Φ〉B, unless |e〉B = |Φ〉B,
obviously.
Proof. The only way we can ever hope to clone the system would be to apply
a unitary U = e−iHt ∈ (HA ⊗ HB), since we must not perform a (projective)
measurement on |ΦA〉, because it would project the state into an Eigenstate. But
this means that U cannot act in such a way for an arbitrary state in HA and hence

〈e|B〈φ|A|ψ〉A|e〉B = 〈e|B〈φ|AU†U |ψ〉A|e〉B = 〈φ|B〈φ|A|ψ〉A|ψ〉B , (43)

which implies that either 〈φ|ψ〉 = 1 or 〈ψ|φ〉 = 0. By contradiction Wooters and
Zurak concluded that pure quantum states cannot be cloned. Note that the result
has been generalized to mixed states by the Non-Broadcast Theorem in [9]. �

Note that although rarely stated this way, product states, being separable, can
be cloned just like classical states. But since the interesting parts of quantum
mechanics cannot be performed with just product states, it is usually omitted in
the conception of the no-cloning theorem as a no-go theorem.

7.4. Partial trace

By now we got a basic understanding of composite systems and why entangled states
are the precise reason that composite systems cannot be described by the individual
evolutions of its subsystems. We will now review properties of composite systems,
further developing the understanding of the operational structure they feature.

First of all, we will introduce the reduced density operator. For a composite
system ρAB ∈ HA ⊗HB comprised of distinct, yet interacting physical systems A
and B, we can define the reduced density matrix by

ρA = trB(ρAB). (44)

This operation is know as taking the partial trace. In [127] it is defined as

trB (|a1〉 〈a2| ⊗ |b1〉 〈b2|) ≡ |a1〉 〈a2| tr (|b1〉 〈b2|) , (45)

where |a1〉 6= |a2〉 ∈ HA and |b1〉 6= |b2〉 ∈ HB . Note that there is the additional
requirement that the partial trace is linear in its input, but since it is straightforward
to see that this has to be the case unless one does not want to keep normalization of
states on the respective Hilbert space, we will not comment on this. With this new
tool, however, it is not a priori clear whether the result of a partial trace trB does
imply any useful information about system A, but we will show that it produces the
correct statistical measurements of the subsystem A. Looking at a product state
ρAB = ρ⊗ µ first, we check that

ρA = trB (ρ⊗ µ) = ρ tr(µ) = ρ. (46)
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This is the expected result, because product states will just decompose into products
when taking the partial trace. Now what about a state whose decomposition is not
separable? A famous example is the so-called Bell state

ρ =

(
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

)
, (47)

because it shows entanglement – a property we already talked about briefly. It does
particularly mean that it cannot be decomposed into products of density matrices,
hence

ρ1 = tr2(ρ) (48)

=
1

2
(tr2(|00〉 〈00|) + tr2(|00〉 〈11|) + tr2(|11〉 〈00|) + tr2(|11〉 〈11|))

=
1

2
(|0〉 〈0|+ |1〉 〈1|) =

1

2
. (49)

One of the most puzzling properties of this example is that, while ρ12 being a pure
state, its components are mixed states, because

tr

((
1

2

)2
)

=
1

2
< 1. (50)

In other words, the composite state ρ is completely determined while both subsys-
tems ρ1 and ρ2 are completely unknown.

7.5. Schmidt Decomposition

While the importance of Erhard Schmidt’s work on linear algebra cannot be over-
stated in any way, especially the decomposition named after him will serve us
dearly, because it enables a new view on composite systems that is vital in the later
formulation of Finitely Correlated States and consequently Matrix Product States
in Chapter 2. The statement goes as follows:

Theorem 5. Suppose Ψ is a pure state on a composite system A ⊗ B. Then
there exists a set of orthonormal basis vectors |eA〉 ∈ A and another set of orthonor-
mal basis vectors |eB〉 ∈ B with equal properties, such that

|Ψ〉 =
∑
i

λi |eA〉 |eB〉 , (51)

with 0 ≤ λi ∈ R and
∑
i λ

2
i = 1. The numbers λi are called Schmidt coefficients.

An important consequence of this observation is that for pure states of com-
posite systems many properties of its constituents are identical until measurement
as well. To see this, we can look at the decompositions

ρA =
∑
i

λ2
i |eA〉 〈eA| ,

ρB =
∑
i

λ2
i |eB〉 〈eB |

and readily check that the eigenvalues and Schmidt coefficients are identical for
both systems. Note that for this property to hold there is no need to consider
identical systems only. The Eigenvectors might have different interpretations, but
we can be sure of the Eigenvalues by all means.
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7.6. Purification

Entanglement can be somewhat puzzling, but we want to present an even more
surprising property of non-separable states now: If a system HA is finite and em-
bodies a mixed state ρ, we can always certify that there is a system HB and a pure
state |Ψ〉 ∈ HA ⊗ HB , such that trB (|Ψ〉 〈Ψ|) = ρ. The basic idea in this case is,
beneath positivity of the density operator, the Schmidt decomposition from above.
While we already learned that for identical systems we will have identical Schmidt
decompositions for a bipartition, a similar argument can be made for arbitrary
systems. First observe that, of course, we can write

ρ =

n∑
i=1

µi |i〉 〈i| (52)

for some basis {|i〉} ∈ HA. If we now add some system HB (with some basis {|j〉})
and compose them as by a tensor product HA ⊗HB , we can write the total state
as |Ψ〉 =

∑
i

√
µi |i〉 ⊗ |i〉 and prove by expanding the partial trace:

trB(ρ) = trB(|Ψ〉 〈Ψ|)

= trB

[(∑
i

√
µi |i〉 ⊗ |i〉

)(∑
k

√
µk 〈k| ⊗ 〈k|

)]

= trB

∑
i,k

√
µiµk |i〉 〈k| ⊗ |i〉 〈k|


=
∑
i,k

δik
√
µiµk |i〉 〈k| = ρ. (53)

Note that the purification need not be unique, since the decomposition of Eigen-
values into square roots is not either. This is usually not of practical interest, since
the whole construction is virtual in the sense that the purified system HA ⊗ HB
in general will not be of practical interest – for this reason many publications call
it a reference system only – if we were to purify every mixed state we encounter,
if a comment on this matter is allowed, we might as well wait for the universe to
terminate to determine its (purified) wave function.

8. Entropy

To understand the supposed paradox of entanglement better, we will introduce the
information theoretic measure of uncertainty, the quantity entropy introduced by
C. Shannon in [157]. We will shortly review the classical side of things because it
will be crucial in understanding both similarities and disparities of the Quantum
approach to Information Theory. In classical terms, the uncertainty about any
classical random variable X can be quantified in the following way.

Definition 2. Suppose that X be a classical random variable with associated
probabilities {p1, · · · , pn}, then the expression

H(X) = H(p1, · · · , pn) =
∑
x

px log px (54)

is called the Shannon entropy of X.

By log we denote the logarithm to base 2, which can be considered “natural”
as far as bits and qubits are concerned. An operational motivation for this quantity
is that the entropy precisely gives the amount of bits needed for an optimal coding
scheme, given we wanted to transfer information about a “source” X over some
physical channel. This result, known as Shannons noiseless coding theorem is true
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H(X) H(Y )

H(X,Y )

H(X|Y ) H(Y |X)I(X,Y )

Figure 2. Conditional entropy. Entropy overview for two non-
separable random variables: The blue and green circles stand for
the entropies H(X) and H(Y ) respectively, while the parts with-
out the intersection give the conditional entropies H(X|Y ) and
H(Y |X). The central, overlapping part is the mutual information
I(X,Y ) and both sets together form the joint entropy H(X,Y ).

for both classical and quantum channels and can be reviewed for example in [94],
such that we may simply conclude that the Shannon entropy is a good measure of
information, or, more precisely, uncertainty. If we are to use the somewhat foggy
expression of “information” throughout this thesis, it will denote bits of certainty
relative to some entropy measure. The close analogue of the smallest classical
and quantum information units – bits and qubits – also gives rise to the analogue
formulation of a quantum version of entropy [177].

Definition 3. For a quantum ensemble ρ, we call

S(ρ) ≡ − tr(ρ log ρ) ≡ −
∑
i

λi log λi (55)

the Von Neumann entropy of ρ, whereas the λi denote the Eigenvalues of ρ.

We will not go into great detail why this analog is a good definition because one can
explain a great deal about different approaches. In our case the quantum analog
proved to be useful over time, and thus we might as well occupy ourselves with the
how, while we refer to [5, 88, 103] for a more thorough discussion of the why and
discuss some important elementary properties instead. Also, note that from now on
we will only deal with Von Neumann entropies, and will thus use the term entropy
exclusively for its quantum version.

8.1. Properties of the Von Neumann entropy

(1) The entropy is non-negative. While this seems clear from the definition,
note that it is zero if and only if the state is pure.

(2) Conversely, the entropy is maximal for the completely mixed state: S(1d ) =
log d with dim(H) = d.

(3) Following from the Schmidt decomposition, we can see that for a compos-
ite system ρAB ∈ HA ⊗HB we have that S(ρA) = S(ρB).
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8.2. Entropies of composite systems

Now we will explore the last statement a bit further. The implications of entropy
behavior for composite systems will prove to be quite illuminating. First of all, note
that one can show that S(ρ⊗σ) = S(ρ)+S(σ). This is of particular interest since we
will often explore systems comprised of products. While this statement is not true
for mixed states, it provides a solid starting point when using Matrix Product States
that factorize, because it will give rise to so-called area-laws (see Section 2.1.2).
There are a number of additional derivative properties worth discussing.

(1) Joint entropy:

S(A,B) ≡ − tr
(
ρAB log(ρAB)

)
. (56)

(2) Conditional entropy:

S(A|B) ≡ S(A,B)− S(B). (57)

(3) Mutual Information:

S(A : B) ≡ S(A) + S(B)− S(A,B) = S(A)− S(A|B) = S(B)− S(B|A). (58)

Please refer to Fig. 2 for a more pictorial representation of these statements. Also
note that while the Shannon entropy expression H(X) ≤ H(X,Y ) holds, this
is not true for Von Neumann entropy. We can invoke the entangled Bell state

|Ψ〉 = |00〉−|11〉√
2

again to see that indeed S(A,B)|ρAB = 0, since |Ψ〉 is pure, albeit

its subsystems being maximally mixed, thus resolving S(A|B) to being actually
negative. One of the more prominent properties of the Von Neumann entropy is
subadditivity [160]. Besides more exotic statements, the basic quantum analogue
is the Araki-Lieb inequality:

Theorem 6. Also known as entropy triangle inequality, the theorem states that

S(A,B) ≥ |S(A)− S(B)|. (59)

The proof is given in the original work by Araki and Lieb [6].

Its greatest benefit for us dealing with Matrix Product States will be that we
can extract significant knowledge from observations of entropies of subsystems,
which allows us to measure the entropy of small blocks of the system instead of the
whole system at once, thus sparing the costly task of restoring the complete density
matrix.

8.3. Monogamy of entanglement

Until now we defined entropy as a measure of information about a system. While
this proposition will be sustainable throughout this thesis, we now will highlight
that the implication that non-zero entropy necessarily means factual lack of knowl-
edge is, in fact, not correct. The reason is, of course, quantum entanglement, and
more specifically, its so-called monogamy [132]:

Theorem 7 (Coffman,Kundu,Wooters). Given three qubits A,B,C, one may
quantify the correlations between the subsystems with some continuous entanglement
measure CU,V ∈ [0, 1] that behaves like an entropy. For maximally entangled qubits
A,B we have that

C2
A,B + C2

A,C ≤ C2
A,(BC). (60)

The rigorous proof of the statement can be found in [25].

In other words, if two subsystems are maximally entangled, a third system can
not share any more entanglement with the entangled systems. This is important
because it clearly states that entanglement can be understood as a limited property
of a system in its entirety, but also has to be considered for the subsystems at hand.
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9. Spin

Despite its various intricacies, Quantum Spin is a simple natural toy model for
dealing with logical qubits. We will first explain its basic properties and then
explore how we can use it as a means to instigate somewhat practical Quantum
Information.

When Otto Stern and Walther Gerlach found that (electrically neutral) silver
atoms show a bipartite distribution after going through a specially prepared mag-
netic field [61, 62] that would only act on the atom’s magnetic moments, it was one
of the most surprising observations of 1922 and the then-young Quantum Theory.
While it is widely considered impossible to directly undertake a Stern-Gerlach-like
experiment with charged particles, it was subsequently deduced that the observed
angular momentum could not be credited to the macroscopic momentum compo-
nents of the silver atoms but established instead that there exist quantum particles
bearing intrinsic momentum, called spin for discrimination. Some opinions have
likened this to a current running in a loop, but although this seems like a good way
to visualize angular momentum, spin does not have any electrical properties apart
from magnetic coupling and shall thus, for the remainder of this work, be treated
as a property of particles that behave like labels and act only on couplings, when
they are engineered in that way.

This intrinsic quantized spin is one of the fundamental properties of elementary
particles (albeit some of them bearing spin “0”, it is a property every particle
has) and one of the most interesting degrees of freedom to explore, since its very
particular coupling properties make it the perfect candidate for a logical qubit.
There can be no doubt that spin itself is a profoundly interesting concept, but
in this work we will humbly concentrate on its impact on Quantum Information.
Before we can discuss applications, we have to learn about Lie algebras and the
structure spins gives rise to.

First of all we will look at the most simplistic case – a spin- 1
2 -system. Such a

system, known as a Fermion, follows very peculiar rules. Its internal Hilbert space
H 1

2
is two-dimensional, because there are two basis vectors only, |1/2〉 and |−1/2〉,

i.e. the measurement outcomes of the Pauli-z-matrix σz =
(

1 0
0 −1

)
. If we remember

the Stern-Gerlach experiment, it seems opportune to repeat measurements in all
three spatial directions. If one were to, say, perform successive measurements
in both x− and z-direction, one would find that the spin property measurement
cannot be performed with full precision – it is subject to the so-called Heisenberg
uncertainty relation [181, 98]:

Proposition 1. Suppose there is a quantum state |Ψ〉 and two observables
X and Y that have non-zero commutator [X,Y ]. Then the deviations σX =√
〈X2〉 − 〈X〉2 and σY =

√
〈Y 2〉 − 〈Y 〉2 fulfill an inequality of the form

σXσY ≥
| 〈Ψ| |[X,Y ]| |Φ〉 |

2
, (61)

known as their uncertainty relation, where 〈X〉2 = | 〈Ψ|X|Ψ〉 |2 refers to the eval-
uation with regard to |Ψ〉, thus uncertainty of observables is a relative measure
depending on the state. Furthermore, it seems worthwhile to remind ourselves that
we set ~ ≡ 1, otherwise obscuring the usual way of presenting the lower bound of
the inequality as ~

2 .

Being one of the most well-known results of quantum mechanics, there exists
an operational misconception about the uncertainty relation that mixes up uncer-
tainty and “disturbance”. While we will not discuss the philosophical implications
of the question whether there is such a thing as a (non-)disturb-able wave function,
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we still feel the need to note that Heisenberg’s uncertainty principle itself actually
makes no such claims. Without additional interpretational overhead, only a statis-
tical interpretation, namely that for repeated measurements of X and a respective
number of measurements on Y the ensemble average will satisfy the inequality,
makes proper sense of the statement with regard to the present work.

Coming back to spin systems, we can check that indeed the set of Pauli matrices
from Eq. (41) share mutually non-vanishing commutators:

[σ0, σz] = 2iσy; [σx, σy] = 2iσz ⇒ [σi, σj ] = 2iεijkσk. (63)

A basis of the vector space of 2 × 2-matrices over C, the Pauli matrices are most
useful as we will see in all kinds of representations of spin systems. Note that σ0 is
not considered a Pauli matrix throughout most of the literature. Though, it is the
missing piece in the orthogonal basis of the matrix vector space. The vector space
they span is homomorphic to the group representation of SU(2), which has a nice
visualization: the Bloch sphere we already introduced.

10. Spins as logical qubits

We are now ready to explore the algebraic and operational properties of the spin.
Whenever a physical system is two-dimensional, i.e. it is of the form H = C2,
whatever the physical realization, it can be mapped to a spin-1/2 and vice versa.
The fundamentally invariant postulates of quantum mechanics allow to treat all
two-dimensional systems alike, be it a vibration-coupled ion in a trap [17, 134,
14], a charge in one (or possibly more) quantum dot(s) [93, 106] or the spin of a
laser-cooled molecule [139, 7]. For each of these realizations, all that matters is to
find the suitable implementation of three operators: σz and the ladder operators
S+ and S−. The ladder operators are defined by their action on the basis states,
that will be explicitly denoted by |+〉 and |−〉 for spin systems. Depending on the
implementation they might be identical to the logical states |0〉 and |1〉, but do not
need to be:

S+ |+〉 = 0, (64)

S+ |−〉 = |+〉 , (65)

S− |+〉 = |−〉 , (66)

S− |−〉 = 0. (67)

As you can see they either “flip” the state of the spin or annihilate the state, which
stems from the fact that “adding” a positive quantized momentum to a system
where it already is maximal will result in no state at all – you cannot change the
spin value beyond −1/2 and 1/2. Note that although spin is quantized, we can
speak of superpositions of basis states |+〉 and |−〉; of course it is feasible to write
down a state of the form |Ψ〉 = α |+〉+ β |−〉, and furthermore useful to adopt the
ensemble interpretation that ¯σz |Ψ〉 ∈ [−1/2, 1/2], where measuring a mixed state
ensemble would result in values between the quantized basis states. Reciprocating
from the interpretational intermission in Proposition 1, of course, this does not
mean we will ever be able to see a spin with value −0.231 – but on average this is
the outcome of the σz-measurement.

One can now argue that coupling two such spins is the minimal requirement
to see actual physics happening, but we will skip this exercise and continue with
the introduction of chains after taking a sidestep toward the second quantization
formulation of quantum mechanics.
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11. Second Quantization

While the investigation of spin ladder operators already sneakily introduced second-
quantized operators, we wish to keep the bigger picture in scope and give a more
thorough introduction to a concept foreign even to many physicists, although, con-
trary to somewhat popular belief, it is, of course, a tool to make things easier
rather than more complicated. In the case of second quantization, Paul Dirac and
his contemporaries were looking for a way to improve on the concept of particle
exchange: Whereas in classical mechanics every particle has “a label” that iden-
tifies it with certainty, there are a priori indistinguishable particles in quantum
mechanics, thereby giving rise to particle exchange symmetry. That is, if particles
are identical, the physics must not change if we are to exchange particles. But in
turn that means wave functions must be identical too:

|ΨB(· · · , ri, · · · , rj , · · · )〉 = + |ΨB(· · · , rj , · · · , ri, · · · )〉 (68)

and

|ΨF (· · · , ri, · · · , rj , · · · )〉 = − |ΨF (· · · , rj , · · · , ri, · · · )〉 , (69)

where the labels B/F mark bosonic and fermionic particles respectively. This is
no problem as long as we act on a system without change of particles, but, in
essence, this means that whenever a particle is created or annihilated, the wave
function must be symmetrized or antisymmetrized to satisfy the constraint. Sec-
ond Quantization offers a way out by adopting a different perspective: When asking
for the number of particles, we can realize that this is a (both macroscopically and
microscopically) measurable quantity, thus giving rise to a proper observable, for
which we can, of course, pose the question what its Eigenstates are. It should be
noted that this way of phrasing the fundamental observation of symmetry in quan-
tum mechanics somewhat implicitly states the famous Pauli exclusion principle
[135]:

Definition 4. It is impossible for two electrons of a poly-electron atom to have
the same values of the four quantum numbers (n, l, ml and ms). For two electrons
residing in the same orbital, n, l, and ml are the same, so ms must be different
and the electrons have opposite spins.

While stated for atomic occupation numbers, this was the basis for the many-
body statistics later derived (independently) by E. Fermi and P. Dirac [50, 39]. It
turned out [53] that the concept of Fock space is a very elegant answer. V. Fock
defined it as a direct sum of tensor products of single-particle-spaces H such that

Fα(H) =

∞⊕
n=0

SαH
⊗n = C⊕H ⊕ (Sα (H ⊗H))⊕ (Sα (H ⊗H ⊗H))⊕ · · · , (70)

where F stands for the Fock space and Sα denotes the symmetrized or antisym-
metrized states of two or more identical particles, α denoting whether we are dealing
with bosons or fermions. Fock could subsequently prove for the completion of the
direct sum that inner products of states on this space converge:

〈Ψn|Ψn〉α =
∑

i1,...in,j1,...jn

a∗i1,...,inaj1,...,jn 〈ψi1 |ψj1〉 · · · 〈ψin |ψjn〉 , (71)

|Ψα|2 =

∞∑
n=1

〈Ψn|Ψn〉α <∞. (72)

Returning to this hypothetical number operator, we can now write down its prop-
erties:
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Given a pure state of n particles, a “good” way of parametrization seems to be
to write down the decomposition into a product of states on the respective factors:

|Ψ〉α = |φ1, φ2, · · · , φn〉α = |φ1〉 |φ2〉 · · · |φn〉 . (73)

It seems opportune to omit non-occurring states and instead of writing down a list
of infinitely many zeros, decompose the state into a set of occupation numbers:

|[nα]〉 ≡ |n1, n2, · · · , nα, · · ·〉 , (74)

where the notion [nα] naturally defines that there are nα particles in the state |α〉.
A most educated question would be to ask whether this decomposition has to be
of product form since we saw before that quantum mechanics allows for entan-
glement of pure states. Indeed, even for second quantization there can be found
Fock-entangled states like the famous Schrödinger cat states [68], which should act
as an operational hint that second quantization is a worthwhile concept, although
naturally, for a theoretician the definitions suffice. It is still most fascinating that
these predictions have already been implemented in the lab, up to ten-photon-
entanglement [113] as recent as 2010. Furthermore we note that due to the afore-
mentioned Pauli exclusion principle, no two Fermions can share the exact same
state, such that

nα =

{
0, 1 fermions,

0, 1, 2, 3, · · · bosons.
(75)

We shall denote the case of no particles by |0〉 ∈ C, and is called the vacuum state.
For completion of the space, it acts as the unit of the tensor product, i.e. |0〉 ≡ 1.

11.1. Creation and Annihilation operators

Of course, changing perspective is not enough to justify the use of second quantiza-
tion. It must resolve to practical use. This is given by the creation and annihilation
operators, that automatically inhibit the symmetrization properties in demand.

Starting from the vacuum state |0〉, we demand that for all n > 0, applying a
certain operator a† should add a particle to the state:

a† |n〉 =
√
n+ 1 |n+ 1〉 , (76)

whereas its adjoint a should remove it:

a |n〉 =
√
n |n− 1〉 . (77)

Repeated application allows to reach arbitrary particle numbers:

a†
n

|0〉 =
√
n! |n〉 . (78)

We furthermore observe that for (identical) bosons there is a canonical commutation
relation

[a†, a] = 1, (79)

while for (identical) fermions, we have the canonical anti-commutation relation

{a†, a} = 1. (80)

For different particles α, β we always have that [a†α, aβ ] = 0.
Since every subspace of occupation numbers is finite, the states |n〉 , |m〉 can be

normalized such that 〈n, n〉 = 1, 〈n,m〉 = 0 ∀ n 6= m and

a†a |n〉 = n |n〉 , (81)

where we call n̂ = a†a the number or particle count operator.
Note that while some publications consequently denote operators by the hat sym-

bol ,̂ we will only denote operators in such a way where confusion is likely.



26 1. QUANTUM INFORMATION

It is precisely the relation in Eq. (81) that also proves that indeed the Fock
states are eigenvalues of the number operator but is a both semantically and di-
dactically moot point whether one should introduce the Eigenvalue relation as the
basic assumption of second quantization or consequence of the exchange principle.
In the end, it should be clear that this is an elegant way to rephrase many-body
systems, i.e. pragmatically speaking, if it is of use, we shall not bother too much
about its genesis.



CHAPTER 2

Correlated Spin Systems and its Dynamics

Supposed we could control quantum systems individually, such that each of them
had a logical representation |+〉 / |−〉 that could be treated as a single spin. Al-
though a historic perspective on this question will tell you that it indeed is difficult
to achieve this, small chains of dozens of spins can be addressed with today’s exper-
imental realizations [63, 40]. The natural question is, how the theoretical treatment
of such systems looks like. While this thesis will become more detailed in the fol-
lowing chapters, we aim to give an overview of spin chains here such that the jump
to the results sections will not be overly discontinuous.

1. Spin Lattices

When it comes to the question of highlighting suitable toy models, physicists never
tire to come up with simpler, yet more generic systems. However, one can hardly
argue that in terms of accessibility the spin chain can be matched. Moreover,
spin lattices are a well-established testbed for quantum computational approaches
[117, 155] as well as being realizable in the lab with relative ease – if one can ever
speak of such a thing regarding the manipulation of single quantum particles at
all. We may now familiarize ourselves with the notion of a lattice. Most abstractly
spoken, a lattice is any collection of quantum systems that can be ordered by
some geometric or graph-theoretic rule. As such, although we will limit ourselves
to chains and their Cartesian products, one can easily imagine more intricately
structured systems. Figure 3 shows some basic examples of lattice configurations.
But how can one describe those systems mathematically?

First of all note that we can take a naive, albeit constructive approach and
notice that for each individual system we can describe an individual Hilbert space
Hn. Note furthermore that while the total number of elements of the lattice might
be infinite, we demand that it be still countable in the set-theoretic sense. One can
give all kinds of theoretical reasons for this, but at the heart of a numerical method
lies the fact that we want to make predictions about some fraction of the physical
world, thus accepting that using classical computers for this endeavor, both our
representation and knowledge will necessarily remain finite. There is a point to be
made about allowing infinite local Hilbert spaces, but we want to keep in mind that
in principle everything we are about to explore should one day be replicated in a
lab, every experimentalist will concur that, although academically existent, infinite
local dimensions are of little practical relevance unless someone manages to create
tools of infinite precision – a thing we already ruled out in Chapter 1. Thus, we
will be speaking of lattices with possibly infinite spatial extension, but finite local
dimension.

The most abstract description is probably that of a direct sum of the local
Hilbert spaces, or mathematically more precise: a co-product of vector spaces for
that matter: The Hilbert space of a quantum lattice can be given as

Hlattice =

N⊕
n=1

Hn, (82)

27
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a)

b)

c)

d)

Figure 3. Exemplary lattice configurations. a) One-
dimensional lattice with next-neighbor edges. b) (Two-
dimensional) square lattice. c) Honeycomb lattice: vertices are
connected in a hexagonal pattern. d) Irregular lattice: without
translation invariance, this example is that of an arbitrary graph.

where the generating operation of the co-product Hfull = H1 ⊕H2 is

|Ψ〉 ⊕ |Φ〉 , (83)

where |Ψ〉 ∈ H1 and |Φ〉 ∈ H2 are vectors on their respective spaces “glued together”
by writing their components as one large vector:

|Ψ〉 =

 Ψ1

Ψ2

...
ΨN

 , |Φ〉 =

 Φ1

Φ2

...
ΦM

⇒ |Ψ〉 ⊕ |Φ〉 =



Ψ1

Ψ2

...
ΨN
Φ1

Φ2

...
ΦM

 , (84)

where dimH1 = N and dimH2 = M .
Note the structural difference to the tensor product: While dim(H1 ⊗ H2) =

dimH1 · dimH2, for the direct sum the dimension of the resulting space is the sum
of the dimensions of its factors: dim(H1 ⊕H2) = dimH1 + dimH2.



2. FINITELY CORRELATED STATES 29

It is vital to understand that in contrast to the tensor product, which is the cor-
rect physical representation

⊗
nHn of the coupled system, the direct sum merely

acts as an abstraction layer to allow for orderly treatment of local operations of
sites that are independent – whenever we perform physics on more than one lattice
site, the dynamics governing coupling of lattice subsets follow the tensor structure
and operators acting on more than one site are of the form O = O1⊗O2⊗· · ·⊗ON
as introduced in Eq. (3) on page9. Since the numerical treatment of the exponen-
tially growing dimensions of the tensor product is complicated, we will have to use
methods suited to this challenge and shall start by introducing Finitely Correlated
States to see how Matrix Product States came to life and can be of use.

2. Finitely Correlated States

One particular ansatz for this seemingly self-contradictory task has been invented
by Fannes, Nachtergaele and Werner [48, 49] in 1992 and 1994 respectively. Their
approach basically aimed at an efficient representation of valence bond states, but
as we will see, its use ultimately extends far beyond that initial scope.

Since the original definitions are proposed in the language of C*-algebras of
(possibly) infinite systems, we refer to the well-known textbook [15] by Bratteli
and Robinson for the basic definitions. Deep understanding of this section is not
necessary for the following work, but will subsequently highlight the emergence of
the Matrix Product Formalism that we use extensively.

Throughout their work on Finitely Correlated States (FCS), Fannes, Nachter-
gaele and Werner base their approach on the chain algebra AZ =

⊗
iAi ∈ Z, with

identical C*-algebras on each site. Note that there is no geometry “present” at
this stage of the definition. Their idea then basically resolves to the concept of
an ancillary vector space B that is used to model the correlations between all the
different bonds of the chain.

Together with the definition of AZ a state can subsequently be reconstructed
by a map e : A⊗ B → B and two elements (notation by FNW) ρ ∈ B∗ and e ∈ B.
They make a point that for spin chains this can be restricted to a finite vector space
and the proposition that e, ρ, e be positive in the C*-algebraic sense. They already
prove that the class of C*-finitely correlated states is a *weakly dense convex subset
of the set of translation invariant states, pointing out that this will make it a useful
tool for translation invariant states. They subsequently use their class of states for
the calculation and construction of ground states of translation invariant systems,
but do not pursue the idea of time evolution. Before introducing ways of efficient
approximate time evolution, we will have to see how to transform a family of states
with finite correlation into a truly variational class.

2.1. Entanglement and Correlations

We briefly introduced the notion of entanglement in Chapter 1, but to really grasp
its implications we need to apply the quantum information tools to composite sys-
tems, like spin chains. With the research on lattice systems, physicists are always
eager to test the quantum nature of single particles. While this is, without a doubt,
interesting in its own regard, it seems even more worthwhile to ask for genuine quan-
tum properties of the systems, not its constituents. Apart from the von Neumann
entropy there are other measures of entanglement, such as the concurrence [141].
While they are intrinsically different, the qualitative statements are equal. How
can we tell that entanglement is more than a random correlation? The answer lies
in the differentiation of correlations into classical and explicitly quantum parts. Of
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a)

∂I

b) ∂I

Figure 4. Boundary of a sublattice. ∂I is given by the
blue nodes of the graph, because they share edges with nodes
from outside the sublattice. a) One-dimensional lattice. b) Two-
dimensional, non-regular example. Note that only one of the sites
in the set I does not belong to its boundary, because of the geom-
etry of the set.

course quantum systems can (and for the most part, do) exhibit classical correla-
tions, but the subtleties and wonders of this construction are quantum in nature.
To see this, we will quickly look at correlation inequalities of the Bell-type.

2.1.1. Bell Inequality. John Bell’s seminal work [91] addressing the famous Ein-
stein-Podolski-Rosen paradox [43] essentially proved that quantum mechanics in-
deed is complete in the sense that neither are there (local) hidden variables nec-
essary to describe “reality”, nor does the wave function necessarily represent a
physically “real” object. While we note, again, that it is not the scope of this work
to address the philosophical implications of this observation, it lies very well in our
interest what the mathematical implications are. To this end, we will straightaway
concern ourselves with the generalization of Bell’s argument, commonly known as
CHSH inequalities referring to John Clauser, Michael Horne, Abner Shimony, and
Richard Holt’s work from 1969 [24]. In it, they devise the following gedankenexper-
iment: Given a bipartite quantum system HA ⊗ HB with bipartite measurement
outcomes, i.e. measurement of A results in either a or a′ with equal probability and
measurement of B results in either b or b′, they propose the following measure of
correlation:

−2 ≤ S ≤ 2, (85)

where

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′) (86)

and of course, E(a, b) = δab for a single measurement. Like Bell for his version of
the proposition, they also show that there are sets of events where this bound can
be violated by quantum mechanics, but by no means by classical probability theo-
ries. We will not give a derivation of the proof because it is not the central theme
of this work, but nevertheless the finding that quantum mechanics, i.e. specifically
quantum entanglement, give rise to a unique form of fundamentally different cor-
relations is what sparks our interest. We have seen before how entanglement can
be expressed as linear combinations of non-separable states of composite systems.
Since entanglement is such a fundamental quantity of quantum mechanics, we need
to be able to understand its impact on many-body systems, if we are to subject
them to dissipation that potentially changes the correlation behavior of the system.
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2.1.2. Area laws. One of the deeper insights into quantum spin systems comes
from the understanding of entanglement and its limitations, namely of the fact
that it is subject to monogamy. The fact that two maximally entangled states do,
under no circumstances, share entanglement with another system, is the foundation
of area laws. Heuristically, we consider the following situation: Assume a set of
qubits on a plane, for simplicity, each interacting with neighboring spins only, i.e.
an unordered many-body system. Equipped with nothing else but the knowledge
about entanglement monogamy, we conclude that if the number of spins is finite, so
must be the total amount of entanglement on the graph that is formed by mapping
qubits to vertices and next-neighbor-interactions to edges. Indeed, we can see
that this is true iteratively (see Fig. 4): Moving along the graph, we attribute
maximal entanglement to any pair we encounter. Now, while depending on the
graph geometry there might be vertices that cannot be maximally entangled with
their neighbors because all of them already have a partner, we can count the number
of maximally entangled pairs in a finite region of dimension d and, following [44],
observe that the entropy of that set L must be

S(ρI) = |I| log(d)− d|I|−|O|

2 log(2)
(87)

for an arbitrary inner set I ⊂ L and its outer complement O = L \ I, which is a
volume law really, because it is linear in the number of particles. This is what one
would expect from a set of (thermal) random states because there is no a priori
ordering applied. The boundary of a one-dimensional subset of a one-dimensional
system necessarily consists of only the sites that define the boundary, i.e. w.l.o.g.,
we can assume that the boundary consists of exactly one or two site(s), depending
on the fact whether we look at periodic or open boundary conditions of the lattice:

∂I = i ∈ I : ∃j ∈ L \ I with ||i, j|| = 1, (88)

where i and j denote the position of the vertices. An area law for this region then
clearly must have the form

S(ρI) = O(1). (89)

It has been shown (see e.g. [130, 175, 174]) that this is the case for many of the spin
systems we are interested in, if they have a gapped Hamiltonian (see Section 3.7
for remarks about criticality). It seems opportune to stress some nomenclature
at this point: Different publications do have different terms for the two things
addressed here as boundary and inner structure. Although the mathematical term
boundary (or surface) is usually more precise in the topological sense, we will also
speak of the edges and the bulk of a system whenever practical considerations are
to be included. The reason for this is that physical systems do not care about set-
theoretic properties. You cannot observe the part of the system that is in the ε-ball
of the surface. All we can see in the lab is whether the behavior is different when
there are approximately the same order of neighboring sites in both directions of
the observed spatial dimension versus the case where there are not.

This property is of vital importance for numerical methods in order to be able
to understand the time scales on which (dissipative) processes happen. Area laws
bound the correlation transport between particles that do not directly interact, i.e.
especially for extended systems we have to keep in mind that not only interaction
strength plays a role, but also the question how fast information propagates through
the bulk of the lattice.
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si−2,1
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Figure 5. Valence bond theory. One virtual lattice site con-
sists of two atoms with one unpaired electron each. Either one of
the two spins in such a bond then interacts with one of the spatial
nearest neighbors, such that the resulting lattice has alternating
pairs of spins connected physically and virtually.

3. From FCS to MPS

While Finitely Correlated States have proven their ability to model spin-lattice
ground states, the aim of this work, and much that came before it, was to allow
for a more intricate look at the physical properties of such systems, like phase
transitions and approximate dynamics. FCS are a powerful and general tool, but
lack a straightforward way of restricting oneself to finite systems with very specific
demands – simply because their purpose lies in the thorough treatment of infinite
systems.

If we are to model actual physical models, it will prove to be hard, if not outright
impossible, to tell an effortfully engineered logical qubit to unify all correlation
properties of an infinite C*-algebra in its behavior – which is not to say that the
FCS constructions does not have its merits – albeit, for real systems with real
caveats we will need to be able to look at finite systems with finite boundary
conditions.

First of all, note that there are different ways of motivating Matrix Product
States. We will try to give a coherent picture with FCS in mind but might refer
to additional material where a general survey seems appropriate. Indeed, it seems
remarkable from a mathematician’s point of view that the way Matrix Product
States came into fruition was not through generalization, but rather a reduced
application of it – in [137], Cirac et. al. use the FCS theory as a basis to construct
a specific, finite structure out of it. We shall see how they approached this:

They consider N spins on a “ring”, i.e. a one-dimensional lattice with periodic
boundary conditions. Then one can adopt what is called the valence-bond construc-
tion: With each site we identify two (virtual) spins of momentum quantization 1/2,
i.e. internal dimension d = 2. This theory is based on the observation [31] that
certain molecules form bonds based on overlapping atomic orbitals, thus pairing
the effective wave functions of their respective electrons.

Looking at Fig. 5, we can identify one of each site’s two parts as a bond with
their respective neighboring site, coupled by a tensor product, turning the product
of dimension d2 into an entangled bond:

|I〉 =

d∑
α=1

|α, α〉 . (90)

Instead, analogously to the FCS, a map is applied to every site of the lattice:

F =

N∑
i=1

d∑
α,β=1

Ai,α,β |i〉 〈α, β| , (91)

where α and β correspond to the virtual systems. Cirac et. al. then write Ai for
the whole tensor Ai,α,β by contracting around the virtual indices and subsequently
observe that in terms of a product basis, the components of the lattice state are
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given by the matrix product

tr (Ai1Ai2 · · ·AiN ) . (92)

It is straightforward to see how to obtain the complete state, again following [137] in

the convention that with the introduction of A
[k]
i , these being matrices of dimension

dm × dm+1 with d1 = dN+1 = 1, we can write

|Ψ〉 =

d∑
i1,··· ,iN=1

tr
[
A

[1]
i1
A

[2]
i2
· · ·A[N ]

iN

]
|i1, i2, · · · , iN 〉 . (93)

This construction is called a Matrix Product State (MPS) and we shall notice
that it is neither normalized nor unique and subsequently proceed to illustrate basic
properties and applications.

3.1. Explicit MPS examples

Before being able to present the systems we investigated, let us briefly familiarize
ourselves with the formalism of Matrix Product States.

3.1.1. GHZ state. One of the most prominent, yet sufficiently simple examples
is the famed Green-Horne-Zeilinger state [67]

|GHZ〉 =
1√
2

(|000 . . . 0〉+ |111 . . . 1〉) , (94)

i.e. a system of length N and internal dimension d = 2 in the computational basis
{|0〉 , |1〉}. The natural choice of bond dimension is D = 2, since it can be easily
seen that the Schmidt rank of every bipartition is bounded by 2 and the matrices
of the product are

A
[0]
i = ( 1 0

0 0 ) , A
[1]
i = ( 0 0

0 1 ) . (95)

It seems opportune to note that although the state is maximally entangled according
to most entanglement measures, the MPS representation is strikingly simple.

3.1.2. W state. In the zoo of useful toy states, the W state [41] |W 〉 = |100〉+
|010〉 + |001〉 is kind of an antagonist of the GHZ state |000〉 + |111〉. While the
latter will decay into nonentangled pure states |00〉 or |11〉 upon measurement of one
of its subsystems in the computational basis, the W state will leave its bipartite
entanglements undisturbed. This more complex correlation structure is somewhat
mirrored in the MPS representation: For an exact representation we have to choose
D ≥ 2 and find

A
[0]
1 =

(
1 0
0 1

)
A

[1]
1 =

(
0 0
1 0

)
A

[0]
2 =

(
1 1
1 −1

)
A

[1]
2 =

(
1
2 0
0 1

2

)
(96)

A
[0]
3 =

(
1 0
0 1

)
A

[1]
3 =

(
0 0
1 0

)
In this representation, we can see very clearly the entanglement structure: Each
set of decompositions has one matrix with only one entry (thus entangling two
subsystems) and one with two entries, that entangles all three subsystems. With
this structure in mind, we can understand that a single measurement does not
collapse the entanglement between non-measured subsystems, but will decrease the
total entanglement of the system: If, for example, we look at the density operator
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of the system before and after measurement, we can see that

tr3(|W 〉 〈W |) = tr3(|100〉 〈100|+ |100〉 〈010|+ |100〉 〈001|
+ |010〉 〈100|+ |010〉 〈010|+ |010〉 〈001|
+ |001〉 〈100|+ |001〉 〈010|+ |001〉 〈001|) (97)

= |10〉 〈01|+ |10〉 〈10|+ |01〉 〈10|+ |01〉 〈01|+ |00〉 〈00|
= 2 [(|10〉+ |01〉)(〈10|+ 〈01|)] + |00〉 〈00| ,

no matter the outcome of the measurement. It is precisely this robustness against
particle loss that makes |W 〉 one of the most interesting prototypes for Quantum
Computation and Quantum Communication, whenever the entanglement is to be
used as a resource, e.g. in entanglement distillation schemes [69, 70].

Lifting this argument to larger systems, we can understand why it is important
not to limit the bond dimension of an MPS too much: Multipartite entanglement
will result in higher Schmidt rank than bipartite entanglement. Thus, we would
lose out on important physical correlation properties, if the variational class of the
MPS is too narrowly chosen. (For this property, see Section 4.1 of Chapter 3.)

3.2. Properties and applications of MPS

First of all notice that we can realize any state in the way Eq. (93) details, if only
the bond dimensions D are sufficiently large. Cirac et. al. thus correctly note that
this is only then a useful characterization of a class of states once one bounds the
bond dimension from above. It is also clear that MPS will only ever be useful in a
computational perspective if we can ensure that such a truncation does not destroy
too much information.

3.2.1. Expectation values. In order to illustrate the advantage of the MPS con-
struction, we first explain how to calculate expectation values.

For an operator in product form, say, O = ⊗Nn=1On, where On acts on a single
site only, i.e. locally, expectation values are efficiently computable:

〈Ψ[A]|O|Ψ[A]〉 = tr [EO1
(1)EO1

(1) · · ·EON (N)] , (98)

where the superoperators EOi(i) are, following Haegemann et.al. [73], defined like
this:

EO(i) =

D∑
α,β=1

〈α|O |β〉
(
Aβ(i)⊗Aα(i)

)
. (99)

The operator O can be understood as acting on the virtual (ancillary) indices of
the MPS, contracting the ancilla space of CDn ⊗ CDn with effective range n − 1.
The superoperator in turn is a second-order tensor in A, thus inhibiting dimensions

CD
2
n−1 ⊗ CD2

n . When we speak of “efficiency” though, you have to keep in mind
that the whole expectation evaluates in O(D6), although Haegemann et. al. have
demonstrated optimizations to O(D5) by exploiting the tensor structure. The cor-
rect figure of comparison, of course, is inverting the density matrix of the complete
product space, which scales, as we know, exponentially in D. We will see in The-
orem 8 how we can calculate expectations even more efficiently depending on the
boundary type of the system.

3.2.2. MPS from slightly entangled states. Another way of introducing MPS has
been established by G. Vidal in his work on Slightly Entangled Sates [176], i.e. many-
body systems with limited quantum correlations. We will not discuss the relation
to finitely correlated states in detail and instead point the reader to the fact that
this particular ansatz comes from computational considerations: The aim of Vidal’s
research was to prove that pure states with restrictively bounded entanglement can
be simulated efficiently. Yet, it is remarkable that the construction he proposes can
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be easily rephrased in terms of an MPS as follows: Consider a system of qubits
with states |0〉 and |1〉. Invoking the Schmidt decomposition again, we can see that

one such state |Ψ〉 ∈ H = C2N can be written as

|Ψ〉 =

1∑
i1=1

1∑
i2=1

· · ·
1∑

iN=0

ci1···iN

N⊗
j=1

|ij〉 , (100)

where the coefficients are defined as

ci1···iN =
∑

α1,··· ,αN−1

Γ[1]i1α1
λ[1]α1

Γ[2]i2α1α2
λ[2]α2

· · ·Γ[N ]iNαN−1
. (101)

Here, λ[l] contains the Schmidt coefficients of the bipartition [1l] : [(l + 1)n]. By
contraction in either direction over the virtual indices, i.e. λ ↔ Γ or Γ ↔ λ one
obtains Eq. (93). This also nicely illustrates that there is some freedom in the
choice of matrices, a thought we briefly mentioned before. We will explore the
gauge freedom of the MPS formalism more detailed in Chapter 3.

Vidal subsequently showed that this construction can be found for all pure
states, although it is not always an efficient representation. We shall see why this
is the case.

If we look at the definition of ci1···iN and the fact that there is a sequence of N
sums in the definition of the state, it should become apparent that Vidal makes a
Schmidt decomposition at every bond of the chain, sweeping from one side to the
other this way. Starting at site 1, he sets

|Ψ〉 =
∑
α1

λ[1]α1
|φ[1]α1

〉 |φ[2 · · ·n]αn〉 , (102)

such that every Schmidt vector for site 1 is now expanded in some computational
basis {|φ〉}. Iterating this scheme N − 1 times yields the MPS of Eq. (100). To un-
derstand the computational complexity, we can check each decomposition’s Schmidt
rank. We calculate the maximal Schmidt rank

Sχ = log2(max rank (Γ)) (103)

and infer that if and only if this quantity is bounded by O(logN) the representation
scales polynomially in N , making this a viable computational scheme. Also, notice
that we just used the Schmidt rank as an entanglement witness in the sense that
observing Schmidt rank larger than one means the state is non-separable. We will
later see why this is important when we try to represent mixed states, where this
circumstance is particularly annoying.

3.2.3. Connection to DMRG. One of the most striking advantages of the MPS
picture is that it can explain the success of the density matrix renormalization
group (DMRG) better than its original conception was able to explain. A scheme
for studying one-dimensional many-body systems (much like we will do in the fol-
lowing chapters, albeit without dissipation) [183, 182], for a long time its practical
use was apparent [138], while a solid and complete theoretical justification could
not be given, until it became clear that it can be considered a variational method
in the realm of MPS representations.

As an aside, it is one of the more ironic instances of science, that the sheer
realization of how the two methods are interconnected conjured up unrest among
DMRG-inclined people – since DMRG was there “before”, they feel that tradition-
ally speaking the MPS formalism should be subsumed under the DMRG framework,
albeit generalizing it to some extent. We will not burden ourselves with the politics
of nomenclature and simply explain how things fit together. It is our hope that
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although sometimes hurt by the incongruence of seemingly contradictory nomen-
clature and definitions it will be possible to find a comprehensive view about the
matter of numerical variational methods in Quantum Information.

Created for finding ground states of systems with zero temperature, DMRG at
its heart is a variational method that works by iteratively putting sites together to
“blocks” that can be diagonalized for certain conditions. Using deliberate reduc-
tion of the state space truncating less probable degrees of freedom, one can show
[156] that this method is more useful for ground state problems than it is for time
evolution. As we proceed to explain this in detail, we will also directly notice the
limitations.

Consider a lattice of N sites again. The idea is to constructively generate the
“full” Hilbert space by adding sites to an initial block in the following way: We start
with a block [B] comprised of n << N sites. For this block, we can readily give its
ground state by diagonalization of the Hamiltonian H. For the first iteration step,
the basis is explicitly known and we can proceed to add sites. This is performed
by taking a similar block [B’] at the other side of the chain and adding two sites in
between, such that the resulting scheme is [B a a’ B’]. While in principle the total
state space would be the tensor product of its factors, DMRG imposes additional
conditions to reduce the state space, like demanding total spin equal to zero if the
spin in the previous iteration step was zero, thus truncating all states with non-
zero spin components. Although it is clear that we have to be careful about this,
especially if the system could have phase transitions regarding spin, in general,
we observe that this is a reasonable ansatz. Next step in one iteration process is
to diagonalize again using Lanczos [110] or Davidson [35] sparse algorithms. It is
crucial to decide how many basis vectors are kept, e.g. the ground state for sure and
several excited states might prove to be better than the ground state alone. Then
the density matrix for the block [B a] is reconstructed and [a’ B’] is considered as a
thermal heat bath for this matter. Again, we keep the largest, thus most probable
eigenvectors and truncate the rest. With the reconstructed density matrix we have
effectively calculated the new block [Bnew] =̂ [B a] and can start the next iteration.
A pictorial explanation of this process is given in Fig. 6.

This scheme is explained in much more detail in, e.g. [156] and we shall see how
this compares to matrix product states. First of all note that while the construction
above is the most common way of formulating DMRG, one can indeed replace the
two intermediate vectors [aa′] and replace them by one: [ã]. When following this
path one can show that for ground states this is exactly equivalent to a (variational)
MPS method, as long as there are no excitations involved, in this particular case
the fixed truncation error of DMRG costs dearly, while an MPS will simply have
higher Schmidt rank and, albeit being computationally less efficient due to higher
bond dimensions, can at least represent an excited state. For a comprehensive
treatment of the comparison at hand, see again [156]. What this section should
emphasize, however, is that for any problem there might be different methods with
different benefits and drawbacks. We will later discuss the intricacies of dissipative
dynamics in certain methods, and for that matter it will prove useful to have some
basic understanding of the tools at hand. To this end, we shall discuss one more
such tool.

3.3. The canonical form

When we mentioned that the state in Eq. (93) is not unique, this comment was in
anticipation of this section because it is one of the greatest strengths of the MPS
formalism.
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[B] [B’]

[B] [B’][a] [a’]

[Bnew] [B’new]

Figure 6. DMRG iteration scheme. In the first step, the half-
chain block [B] is diagonalized to find its approximate ground state.
Afterward, a smaller block [a], comprised of one site (and possibly,
but rarely more sites), is added at the center of the total chain. The
superblock [B a] then is treated as the new block [Bnew]. The dual
[B’] is used to either model a heat bath coupling or for providing
proper boundary conditions in case of finite length.

The usual way of showing this is by example: If we consider the transformation

A[i]si −→ X[i]A[i]siX[i+ 1]−1, (104)

we can easily see that it does not alter the state if A is normal and X is non-
singular. Following [176] again, we recall that Eq. (93) can be considered in terms
of open boundary conditions (OBC) if the outermost matrices are vectors, i.e.
D1 = DN+1 = 1. Vidal then proved the following set of statements, that are more
comprehensively stated in [137]:

Theorem 8 (Completeness and canonical form). Any state Ψ ∈ Cd⊗N has an
OBC-MPS representation of the form

|Ψ〉 =
∑

i1,...,iN

A
[1]
i1
A

[2]
i2
. . . A

[N−1]
iN−1

A
[N ]
iN
|i1 . . . iN 〉 (105)

with bond dimension D ≤ d[N/2] and the following holds:

(1)
∑
iA

[m]
i A

[m]†
i = 1Dm ∀ 1 ≤ m ≤ N ,

(2)
∑
iA

[m]†
i Λ[m−1]A

[m]
i = Λ[m] ∀ 1 ≤ m ≤ N ,

(3) Λ[0] = Λ[N ] = 1 and each Λ[m] is a Dm+1 ×Dm+1 diagonal matrix which
is positive, full rank and satisfies tr Λ[m] = 1.

Although we will not replicate the full proof, we may sketch the reasoning: Con-
sidering Eq. (104), we can see that we can reorganize the statement such that it
reads as

A
[m]
i A

[m+1]
j =

(
A

[m]
i X

)(
X−1A

[m+1]
j

)
. (106)

Iterating Schmidt decompositions as we are already familiar with, we can start from
either the left or the right to end up with a state that is unique up to permutations
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and degeneracies in the Schmidt decomposition, while the Λ[m] are now diagonal and
contain the Eigenvalues of the reduced density operator ρm = trm+1,...,N (|Ψ〉 〈Ψ|).

To wrap this section up, we will give the full conditions on the canonical form
depending on whether we sweep from left or right. For the right-canonical form,
we demand that ∑

si

A[i]si(A[i]si)† = 1, (107)∑
si

(A[i]si)Λ[i](A[i]si)† = Λ[i− 1], (108)

while the left-canonical form imposes∑
si

(A[i]si)†A[i]si = 1, (109)∑
si

(A[i]si)†Λ[i− 1]A[i]si = Λ[i]. (110)

As a last note to this section, we did not mention periodic boundary conditions so
far. While technically very similar to open boundary conditions, bearing one extra
term, we will see in Section 4.1 of Chapter 3 that this will make it hard to simply
apply a sweep-through algorithm that acts on one site (or two neighboring sites,
for that matter), because we might get a recursion conflict at the edge of the chain.

3.4. Translation invariance

While being close to finitely correlated states, it sometimes seems strange to first
narrow our view such that we can understand the concept of open boundary condi-
tions, implicitly concerned with finite lattices, before we can generalize the concept
back to periodic boundary conditions again – in short, systems that are similar to
FCS, albeit also finite in representation and simulation.

Also, the difference from the algebraic point of view is indeed very simple
– just make every operator act translation-invariantly – but complicated from a
computational perspective: It is not a priori clear whether we can lift the canonical
form to this case, but we shall see how we can solve this.

First of all, it is a priori clear that a state Ψ given as an MPS with identical
Schmidt decompositions for all bipartitions, i.e. the A[i]s being equal, A[i] = A[1] ∀i,
exhibits translation invariance. But neither does it prove whether the converse is
true, nor, equally interesting from a computational perspective, how to obtain such
a form, and whether it is canonical or at least comparable to the canonical form.
To make a statement about this, we refer to [137], specifically their Theorem 3:

Theorem 9. Every translation-invariant pure state with periodic boundary con-
ditions (PBC) on a finite chain has an MPS representation with site-independent

matrices A
[m]
i = Ai, i.e.,

|Ψ〉 =
∑

i1,...,iN

tr (Ai1 . . . AiN ) |i1 . . . iN 〉 . (111)

If we start from an OBC MPS representation, to get site-independent matrices
one has (in general) to increase the bond dimension from D to ND (note the N-
dependence).

Proof. Since the proof is both constructive and instructive, we will replicate
it. We start from an MPS with open boundary conditions as defined in Eq. (93)
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and define matrices of dimension N ·D for 0 < i < d− 1:

Bi = N−
1
N


0 A

[1]
i

0 A
[2]
i

. . .
. . .

0 A
[N−1]
i

A
[N ]
i 0

 . (112)

We can now answer what MPS this is equal to:

d−1∑
i1,...,iN=0

tr (Bi1 . . . BiN ) |i1, . . . , iN 〉 (113)

=
1

N

N−1∑
j=0

d−1∑
i1,...,iN=0

tr
(
A

[1]
i1+j

. . . A
[N ]
iN+j

)
|i1, . . . , iN 〉 , (114)

where ij = ij−N if j > N – which in turn states, using the fact that the latter is
by construction translation-invariant, it is equal to Eq. (111). �

As an easy example we can again use the N -dimensional W state |W 〉 =
1√
N

(|1 . . . 0〉+ |01 . . . 0〉+ · · ·+ |0 . . . 1〉). We recall that for open boundary con-

ditions the optimal bond dimension is D = 2, but this is of course, not sufficient
to represent a translation-invariant MPS. Appendix 1 of the aforementioned work
by Perez-Garcia et.al. also proves that there is no TI representation with smaller
bond dimension than (N ·D).

3.5. Gapless and frustration-free Hamiltonians

Before starting the investigation of more complex many-body models, some more
preparations are in place. In ?? we briefly mentioned the observation that for
infinite systems the Hamiltonian will have (in one or the other way) an infinite
amount of Eigenvalues. Of course, in a mathematical sense these are rather points
in a continuous spectrum. Depending on the question whether this bulk of states
arises, like for an atom, above some excitation threshold or, worse, near the ground
state, the analysis of a system can become much more complicated, culminating in
the observation that a system can be gapless altogether, i.e. without energy gap
between ground state and first excited state.

There are two important points to mention here. First, we have to under-
stand that, since we want to work on finite chains, the arguments given by Fannes,
Nachtergaele and Werner in [48] for the existence of a uniquely determined finitely-
correlated ground state do not apply anymore. Still, understanding systems with-
out a gap is important because, as we will see, in reality many systems of practical
importance are gapped, but the energy threshold is so small that with numerical ac-
curacy of approximate systems (i.e., apart from direct diagonalization) it looks (and
hence, behaves) gapped. This point was first observed by Perez-Garcia, Verstraete,
Wolf and Cirac in [137] and solved by the concept of parent Hamiltonians.

A parent Hamiltonian is a Hamiltonian that is constructed to be gapped as
well as close to the original Hamiltonian – it basically tries to capture the physics
of the gapless system without sacrificing too much of its intricacies. While certainly
perceived as “reverse engineering”, the fact that one always has the option to look
at the result and refuse it can be seen as a first, albeit formally crude way of
variational ansatz. But before discussing its implications, we shall see what the
construction looks like.
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First of all we observe the inverse problem: for any given MPS |Ψ〉 we can
construct a Hamiltonian that has |Ψ〉 as its ground state, simply because we can
create the trivial case of engineering a matrix in a canonically extended basis con-
taining |Ψ〉 as Eigenvector with the lowest Eigenvalue in its diagonalization. Of
course, this does not necessarily capture physical systems, and so have to come
up with a non-trivial scheme that perturbs the original Hamiltonian in a way that
does not change its properties much. Perez-Garcia et.al. use the property of block-
injectivity for this matter, a proposition that can as well be traced back to the
seminal papers already known: [48, 137]. We first informally state that an MPS
can be brought into standard form when blocking sites together: Suppose we have
that Ajk ≡ Ai2k−1

Ai2k . Then we can quote the following theorem from [51]:

Theorem 10. After blocking, any MPS can be written in a standard form where
the matrices Ai have the following properties:

(1) The Ai are block-diagonal: Ai = ⊕Dj=1A
j
i ⊗ Γj where Aji ∈ Mlj (the

space of lj × lj matrices) and the Γj are positive diagonal matrices from
Eq. (101).

(2) The Ai span the space of block-diagonal matrices: spaniAi =
⊕D

j=1Mlj⊗
Γj.

(3) For all j and for all Aj denoting the MPS tensor defined by the submatrices

Aji , the map εj := E
Aj
Aj

has spectral radius one, with 1 as the unique

eigenvalue of modulus 1, and with eigenvectors εj(1) = 1 and ε∗j (Λ
j
A) =

ΛjA, where ΛjA > 0, tr(ΛjA) = 1, where EBA : X 7→
∑
iAiXB

†
i is a map

from left to right indices and vice versa.

Property 2 with every Γj = 1 is called block-injectivity; in particular, if
D = 1, and Γ1 = 1, A is called injective.

Given a tensor (Ti)αβ with virtual indices α, β and a physical index i, we define
the span of T as

span{T} := span

{∑
i

tr[TiX] |i〉 |X ∈MD

}
,

with another projector corresponding to T , Π[T ] being the orthogonal projector
onto span{T}⊥.

Regarding one or more tensors as a block, the authors of [51] write T = A
c

− A,
such that

span{A
c

− A} = span

∑
i,j

tr(AiAjX) |i, j〉 |X ∈MD

 .

Note that the tensors need not be next neighbors from the right hand side of the
relation alone, but will nevertheless be by virtue of the plausibility of the physical
indices where we want neighbors to be neighbors, avoiding problematic unraveling
conditions for e.g. higher spatial dimensions. This helps us to define the actual
property we are looking for:

Definition 5. Let |Ψ(A)〉 be a block-injective MPS and let

hi,i+1 = Π[A
c

− A]

be a block representation. Then we call H =
∑N
i hi,i+1 the parent Hamiltonian.

The authors also show that this construction is robust enough to ensure the
gap is not closed in the thermodynamic limit.
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3.6. AKLT model

While the previous examples are illuminating from an abstract point of view, we
want to increasingly concentrate on many-body systems as our main subject. One of
the most important and easily accessible models is the so-called Affleck-Kennedy-
Lieb-Tasaki state, which is the unique ground state of the AKLT Hamiltonian
[1, 2, 47]

H =
∑
i

SiSi+1 +
1

3
(SiSi+1)2. (115)

The model deals with spin-1 particles, but that statement is misleading in the
sense that we will show that the AKLT state is constructed from composed spin-
1/2 systems. The idea is then to use the symmetrized triplet states

|+〉 = |↑↑〉 ,

| 1 〉 =
|↑↓〉+ |↓↑〉√

2
, (116)

|−〉 = |↓↓〉

with total spin S = 1 for the internal degrees of freedom while the bonds are
described by the singlet state

| 0 〉 =
|↑↓〉 − |↓↑〉√

2
. (117)

We shall now proceeded to see how the AKLT model can be encoded into a
D = 2-MPS. For this matter we define two vectors, |ϕ〉 = |ϕ1, . . . , ϕN 〉 and
|µ〉 = |µ1 . . . , µN 〉 representing the two spins per site. Together with a matrix
K that mediates the interaction between neighboring sites,

K =

(
0 1√

2

− 1√
2

0

)
,

we can now compose this a state

|ΨK〉 =
∑
ϕ

∑
µ

Kµ1ϕ2
Kµ2ϕ3

. . .KµNϕ1
|ϕµ〉 (118)

that has periodic boundary conditions. If we want to cut the chain open, we just
remove the first matrix of the expression. While this is not the formal expression
in “AKLT-language”, it should sufficiently illuminate the fact that it can indeed be
expressed as an MPS. It will be interesting to see the similarities with the Heisenberg
model, which we introduce in Section 3.8. Although not identical, we can formulate
the hypothesis that Heisenberg chains, unless frustrated, can be approximated well
by Matrix Product States.

3.7. Criticality

The second objection to the applicability of generic FCS is in its semantic nature
similar to the argument brought up in Section 3.5, but different in the sense that
it arises from a variational argument based in Quantum Complexity Theory called
criticality. It is not an uncommon observation that critical systems are in general
not gapped (and the question whether they are is even undecidable [32]), but we
will approach the subject from a different angle: In a classical Heisenberg chain of
spins that are either up- or downward oriented, we can observe situations where a
site can become frustrated, which can e.g. be described by an ansatz like this:

H =
∑
G

−ti,j Si · Sj , (119)
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|Ψa〉 = |↑〉 |Ψb〉 = |↓〉

|Ψc〉
!

6= |↑〉
!

6= |↓〉

Figure 7. Frustrated system. Given a system of three mutually
connected sites of qubit dimension representing spin orientation, it
is easy to show how to geometrically frustrate that system. With
the proposition that neighboring spins should, by action of the
system Hamiltonian H, align anti-parallel, this can obviously not
lead to a self-consistent ground state for the depicted graph.

where G is the graph topology of the lattice under consideration, t is the coupling
strength between to sites i and j and Si/j representing the inner product of the spin
algebra in question, which can be of Pauli-type {σx, σy, σz}, if the spin values are
|1/2| and more complex angular momentum operators for more complex systems.

Also, see Fig. 7 for a pictorial explanation how we can easily create very basic
systems that already possess geometrically frustrated spin configurations.

Different conditions demand mutually exclusive spin configurations. Starting
from a randomly ordered lattice configuration we would like to undergo dynamics
that subsequently place the lattice in its ground state, whether at zero temperature
or above. One can show [161] that depending on the parameters of coupling and
magnetic field term adiabatic cooling [164, 82] and other dynamics may converge
to energies not at all near the ground state. It was particularly the realization that
this effect can occur in reasonably interesting systems that led to the exploration
of robust methods to circumvent this numerical challenge.

It seems particularly noteworthy that this very effect seems to be interconnected
with all kinds of computational problems [90]: Without invoking exotic epistemic
arguments it is already interesting to see that the emergence of frustrated systems
in nature goes along with strikingly simple ways of mathematically describing their
structure (albeit not their solutions, obviously). In other words: If a thing as simple
as a 2-dimensional Heisenberg chain can be frustrated, it seems also opportune to
imagine much more complicated systems in chemistry, biology or of even more
macroscopic scale frustrated in certain logical degrees of freedom. However, recent
research indicates that noise represented as perturbations [3] can lead to regularizing
effects on Hamiltonians. Although the ansatz presented in the cited article above
is not directly connected to our research, it acts as a firm hint that noise acts as
a computational resource in the sense that it can be used to actually increase the
amount of certainty in critical systems, i.e. decrease its entropy.

In fact, recently it was shown [66] that indeed frustrated and non-frustrated
Hamiltonians show stark differences in their scaling behavior: Somewhat expectable,
the aforementioned reference establishes that the correlation length of a system is
bounded as a function of the spectral gap.

3.8. Heisenberg model

Systems of Heisenberg-type are arguably among the most well-studied models in
the world of physics, yet exhibit a so rich variety of phenomena, that research can
hardly be categorized as finished – it is a simple truth that its structure allows
for both simplistic ansatzes that describe basic quantum mechanics as well as very
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complex systems depending on the focus of research. Studying basic magnetic prop-
erties, they can be used to abstract many-body localization, magnetic properties
of semiconductors and their phase transitions and even rudimentary ansatzes of
molecule-folding.

The overarching assumption is that neighboring spins (of value 1/2) minimize
the energy by aligning anti-parallel, thus giving rise to Hamiltonians of the form

H = −J
N∑
j=1

σjσj+1 − h
N∑
j=1

σj , (120)

where J is the interaction strength of the spins and h is the (constant) magnetic
field. Despite the näıve interpretation of strictly momentum-coupled spins, in an
experimental realization of the model the couplings J need not strictly be 1, for
example in optical lattices. Also, it can, of course, be different when the dynamics
of a different, albeit closely related system are to be mapped onto a Heisenberg-type
model.

As is widely known, systems of this type are solved in one dimension by the
Bethe ansatz [11]. Since the Time-Dependent Variational Principle can solve it as
well this is more of a historical marginalia: We will use analytics where available to
verify numerical procedures but will also notice where we venture into the uncharted
territory of non-integrable systems. Before introducing the variational methods at
our disposal, we shall proceed to explain the general Heisenberg model. In three
spatial dimensions, it takes the form

H = −1

2

N∑
j=1

(Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1 + hσzj ), (121)

where the couplings JX , Jy, Jz can be mutually different, which gives rise to the
number of complex phenomena this model allows to study. Also, since the Hamil-

tonian acts on the Hilbert space given by (C2)
⊗N

, it exhibits 2N − 1 degrees of
freedom – a scaling that we know becomes hard to simulate with exact methods
for as little as 4 sites.

There are two important special cases worth mentioning. On the one hand, we
can simplify the Hamiltonian to a form like

H = −Jz
N∑
j=1

σzjσ
z
j+1 − gJz

N∑
j=1

σxj (122)

that is called the one-dimensional Ising model. Among the first spin systems
studied, it was solved in 1921 by Ernst Ising in his dissertation after Wilhelm Lenz
proposed it as a suitable topic [86]. Ising (somewhat implicitly) showed that there
is no phase transition, although the thermodynamic theory of criticality was in its
infancy at best and it took twenty more years until Lars Onsager solved the two-
dimensional case [129, 12], in which a phase transition can be found. Despite its
seemingly simple structure, the Ising model certainly inspired physicists to sharpen
their theoretical tools to be able to solve more complex variations of its theme.
It was later shown that the three-dimensional Ising model does not exhibit an
analytical solutions [46], but can be tackled with numerical methods only, like
molecular field approximations in the Landau theory [111, 154] or Monte Carlo
simulations [142, 115].

In the case that J = Jx = Jy 6= Jz, on the other hand, the system is called
an XXZ-Heisenberg chain. It is considerably less complex than the case Jα 6=
Jβ ∀α, β ∈ {x, y, z} but still features many more properties worth exploring in
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comparison to Ising-type systems. In Section 1 of Chapter 6 we will study such an
XXZ ansatz as well.

If the couplings Jα are positive, we expect ferromagnetic behavior, whereas
negative coupling privileges anti-ferromagnetic behavior in more than one dimen-
sion. Research of this particular ground states gave rise to another adaption of the
model, namely the models by Hubbard et al., as we present in the next section.

3.9. Hubbard model

Proposed by John Hubbard in 1963 [83], this model of second quantized particles is
the most influential abstraction in solid state physics dealing with phase transitions
between conducting and insulating phases.

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + U

N∑
i=1

ni↑ni↓, (123)

where the sum consequently is over neighboring sites and the cs are the second-
quantized creation and annihilation operators as shown in Section 11 of Chapter 1.

3.9.1. Jordan-Wigner transformation. In the next chapter, we will review and
expand the Time-Dependent Variational Principle acting on Matrix Product States,
usually stated for spin lattices. Since we want to treat Fermi-Hubbard models
as well in Chapter 7, it seems opportune not to try and reinvent the wheel for
this kind of structure. An observation from Eugene Wigner and Pascual Jordan
from the 1920’s proposed a transformation between spin-1/2-lattices and its second
quantization [92] – obviously not with the way we utilize it in mind because it
was three decades prior to the formulation of the Hubbard model. Nevertheless, it
proves robust enough to allow effortless conversion of models whenever the tools
or numerics demand it. Suppose we look at a chain of spin 1/2 particles, then we
already know that they obey the canonical anti-commutation relation in Eq. (79):

{σ+
i , σ

−
i } = 1, {σ+

i , σ
+
i } = 0 = {σ−i , σ

−
i }. (124)

It seems opportune to try and presume whether they also obey these relations for
different lattice sites i 6= j, but in fact we easily check that they do not:

[σ+
i , σ

−
j ] = 0 = [σ+

i , σ
+
j ] = [σ−i , σ

−
j ]. (125)

However, Jordan and Wigner have shown how to restore the commutation relation
by adding a phase factor depending on the previous lattice sites:

Suppose that

ci = eiφiσ−i with φi = π
∑
j<i

σ+
j σ
−
j , (126)

then we can check the commutators again:

{ci, c†j} = δij , {c†i , c
†
j} = 0 = {ci, cj}, (127)

because we observe that

eiπσ
+
i σ
−
i = eiπni = 1− 2ni, (128)

where ni = σ+
i σ
−
i , directly analogous to Eq. (81) from Chapter 1. That means that

within the scope of the Jordan-Wigner transformation next-neighbor-interacting
spins can indeed be treated as fermions.

Before putting this useful armory of second-quantized knowledge to use in
Chapter 7 about applications of the Fermi-Hubbard model, we finally can explain
how variational methods help in numerically calculating approximate solutions to
computationally difficult problems.



CHAPTER 3

Variational Ansatzes in numerical Many-body
Physics

Ever since realizing that Matrix Product States prove to be efficient representations
of certain classes of quantum states, it has been an obvious question how one
could exploit the representational symmetry not only to find ground states but for
questions regarding dynamics (i.e., time evolution) as well. This chapter aims to
give an overview of the state of the art both regarding the method of choice in this
thesis (the Time-Dependent Variational principle) as well as highlighting benefits
and drawbacks of comparable methods, among them tools we already mentioned,
such as DMRG and Matrix Product Operators as well as methods specifically suited
for the simulation of dynamics, such as Variational Monte Carlo.

1. The variational principle

While we, among many physicists alike, will imply that the time-independent vari-
ational method is a specific, albeit general, method of finding solutions to a number
of physical and mathematical problems alike, in truth it is not so much a method
but the basic mathematical observation that extremizing a suitable function that
encodes the relevant information about the problem at hand can yield insights to
that problem, sometimes even solving it straightaway, i.e.

δI(x, δx) = 0, (129)

where we can observe that for I =
∫
Ldt we obtain a classical Lagrangian.

Of course, we are not the first to observe this property [118, 45, 89]. Much
earlier, Fermat’s principle both variationally solves a specific problem as well as it
is an application of ’the’ variational principle, just like the principle of least action
in classical mechanics is.

In quantum mechanics there is an important distinction between the time-
independent [89] and time-dependent version [60], as we will see. That is for two
reasons. First of all, time does not behave like a standard observable [180, 153],
thus it cannot (easily) be subject of variation as a degree of freedom. Secondly, and
due to the first, physicists over and over find that static problems are easier to solve
most of the time. Historically, the variational method was known from the very
beginnings of quantum mechanics, while the Time-Dependent Variational Principle
took some 50 years to become of interest. It seems wrong to imply that ’it was
not there’ before, since quantum mechanics did not change to allow the principle
to emerge, but rather directions of research, in particular Quantum Information,
needed to evolve into a state where questions would be raised that could not be
answered without generalizing the Variational Principle to include time. That is,
questions of time evolution as well as the observation that including time into
static variational calculations can be beneficial were not addressed as detailed as
the TDVP allows before powerful computers became the common tool of research.
Although the main part of this dissertation solely relies on the time-dependent
variational principle, it seems prudent to treat its ancestor in detail as well. We

45
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will also see how the time-independent variational principle gives rise to DMRG
and its derivatives.

1.1. Derivation

While the most general perspective on variational methods would be to really start
from the original principle of least action and how it ties in with Lagrangian me-
chanics, we will not address this part of science history, but focus on quantum
mechanics instead. Regarding notation, we will follow a nomenclature close to [72].

Here, we have basically only one option, i.e. using basic spectral theory that
assures that for every physical system (i.e. one that can be treated using a Hamil-
tonian operator), we have a ground state, and as such, a lower bound on the energy
expectation:

E(0) ≤ 〈Ψ|H |Ψ〉
〈Ψ|Ψ〉

, (130)

where E(0) is the ground state energy corresponding to the smallest Eigenvalue.
For some variational ansatz |Ψ(z)〉 with variational parameters z, we can directly
see that

H(z̄, z) =
〈Ψ(z̄)|H |Ψ(z)〉
〈Ψ(z̄)|Ψ(z)〉

(131)

serves as a template for variational minimization of the ground state energy within
some variational manifold M, i.e. the linear span of Ψ(z̄, z) for all z̄, z ∈ C. We
can clearly see that a priori this need neither be the whole Hilbert space, nor a
particularly physically sound class, albeit being valid in the sense that we can check
its normalization and existence in the respective Hilbert space. If we so choose, it is
certainly easy to find variational classes that do not approximate the ground state
in question at all. As with all variational methods it will be inevitable to spend
some time on an educated guess before blindly applying the method.

As a side-remark we shall generally assume throughout this thesis that any
variational class be holomorphic in z̄ and z or whatever the variational parameters
are called. Note that this assumption does not change any result w.l.o.g., but will
prevent complicated terms of mixed dependency to show up.

Returning to the time-independent variational method, we can now ask the
question what kind of condition can be imposed such that we can certify a “good”
approximation. We observe that certainly

∂

∂zi
H(z̄, z) = 0,

∂

∂z̄i
H(z̄, z) = 0

(132)

characterizes an optimum regarding the derivative of the variational class, this
being close to a gradient method. Whether the solution one finds is robust with
regards to other physical properties however remains to be seen. Also, we will make
use of the shortcut ∂i = ∂

∂zi
and declare use of Einstein’s summation convention

aib
i ≡

∑
i aib

i unless otherwise noted.
Once a ground state candidate is obtained with satisfying accuracy, it is not

uncommon to chose a new ansatz orthogonal to that state to gain knowledge about
low-lying excitations. However, with the set of conditions at hand it is not possible
to study the bulk of higher excitations or even band structure. But this is no
general limitation – if we are given a set of other conditions (e.g. incorporating
more spectral properties), we might very well find ourselves equipped with tools to
gain knowledge about physics far from the ground state.

Still, among others, [145, 151] suggested – albeit for classical mechanics – as
early as 1870 that restriction to a finite set of state vectors {|Ψi〉 ∀i = 1, 2, . . . , N} is
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a worthwhile ansatz. Although intuitively one could conclude that for problems on
high-dimensional spaces this is a futile endeavor, it turns out that due to the fact
that ground states (and low-lying excitations to a lesser extent) usually have the
least correlation with states outside the variational manifold, if chosen “correctly”,
i.e. in such a way that some approximation to the ground state can be found in

M = span{|Ψi〉}. (133)

Consequently, known as the Rayleigh-Ritz method, one can obtain flow equa-
tions of the form

HΨz = ENΨz, [HΨ]ı̄,j = 〈Ψı̄|H |Ψj〉 , [NΨ]ı̄,j = 〈Ψı̄|Ψj〉 . (134)

with the expansion |Ψ(z)〉 = zi |Ψi〉.
In conjunction with parent Hamiltonians, this method can easily be applied

to quantum many-body systems. Of course there are problems with the scaling
behavior when increasing the number of sites (i.e. particles), but this is the case for
all methods, since we know that the limit of such systems is an infinite-dimensional
case with (likely) infinite correlations.

Coming back to the more abstract time-independent variational principle, one
can raise the question whether the variational manifold M has to be a proper
vector space. The answer is no, as long as we have other means to certify that
approximations on (or tangential to) the variational plane capture relevant physical
degrees of freedom. In this way it is sometimes possible to find variational classes
that seem odd as a constructive approach, but converge very fast even with low-
order methods. Furthermore, physicists using the variational principle never tire
to explain how it does not exhibit the sign problem [116, 100, 166] many Monte
Carlo-methods suffer from.

It is vastly successful as the foundation of Hartree-Fock ansatzes to mean-field
theories [77, 78, 54, 158] as well as density functional theory [85, 81, 104] and of
course density matrix normalization group.

2. DMRG

Along the path that led to the seminal works on DMRG by S. White [183, 182],
among others especially the studies on Numerical Renormalization Group
(NRG) [186, 108, 18] proved vital for both its success as well as spread and use.

NRG directly lends its ansatz from a slightly adapted time-independent vari-
ational principle to explain impurities in metals with non-monotonic resistivity
behavior. While the scope sounds very special, the method Wilson et al. derive
would still have been generic if it would not be for the logarithmic discretization
scheme they use: They found that describing band gaps becomes necessarily ex-
ponentially complicated the closer the method converges to the Fermi energy of
the conducting phase. Their solution is to discretize the band into segments that
become logarithmically smaller converging to the Fermi energy.

Although not historically sound, NRG can be recognized as an evolutionary
link between early variational methods and DMRG itself, since DMRG was able
to fill both conceptual and numerical shortcomings when applying NRG to Hub-
bard or Heisenberg systems, as explained in e.g. [156, 178]. We already learned in
Section 3.2.3 that DMRG is well-suited to finding ground states [138].

As successful as DMRG was when finding ground states, both convergence
and efficiency in simulating time-evolution was not it’s main scope. An extension
that aims to remedy these shortcomings has been found in the Time-Evolving
Block Decimation (TEBD) [191]. Given the time propagator e−iHdt, per-site
treatment by the DMRG fails if the Hamiltonian does not exhibit locality properties.
It can be argued that for next-neighbor interactions the DMRG can be adapted in
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the following way: The aforementioned propagator is subjected to the Lie-Trotter
decomposition [165] and decomposed into a product of local unitaries, if possible.
This procedure basically returns an MPO (see next section) that can subsequently
be truncated back to lower-dimensional Schmidt rank. While the process itself is
flexible enough to treat a multitude of systems and interactions, drawbacks include
the fact that the truncation accuracy is hard to quantify as well as the observation
that usually energy conservation cannot be guaranteed. Additionally, symmetries
like translation invariance may be broken. The basic problem, as was pointed out
by [73], is that the Trotter-step leaves the variational manifold. While not a priori
unsolvable, incorporating the necessary conditions into the Trotter step is, as we
will argue in Section 4.1, not the optimal treatment of the problem.

After all, by learning about TEBD, we understand that DMRG indeed is a
variational method, since the way of finding ground states basically optimizes over
an MPS representation. It is important to note however, that although all micro-
configurations are upper bounds to the ground state energy, the iteration itself
need not be monotonous, because the specific truncation imposed by the respective
Schmidt decompositions is not. In 2013, Wouters et al. proved [188] a Thouless-like
theorem for the MPS manifold that shows how to parametrize it without redundant
degrees of freedom, subsequently showing that it is identical if one was to use it as
the basis for a DMRG algorithm of the same bond dimension, apart from the fact
that for DMRG-based methods there is no straightforward answer on how to make
sure to project infinitesimal time steps back to the manifold in an optimal way.

This, together with works by Stoudemire et al. [159] showing that for almost-
orthogonal representations the bond-dimension can be radically reduced, makes
DMRG outright equivalent to MPS ansatzes using the time-dependent variational
principle, basically reducing the pragmatic difference to using different parametriza-
tions. Granted, practitioners will object that this is only true insofar as formal
equivalence is concerned – actual implementations and their skillful handling of
symmetries and gauge-freedom will make one or the other implementation prefer-
able depending on the problem at hand. For the finer details we however refer to
Section 4 of the derivation of the time-independent variational principle for MPS.

3. Matrix Product Operators

Following the likes of [156], to understand the scope of the MPO formulation, we
would like to consider a single MPS coefficient 〈σ|Ψ〉. It can be calculated explicitly
as

〈σ|Ψ〉 = Γσ1λ[1]Γσ2 · · ·λ[N − 1]ΓσN

= Mσ1Mσ2 . . .MσN−1MσN , (135)

where we set Mσi = AσiV λ[i], where V is a matrix with orthonormal columns such
that the local basis can be written as |ai〉 =

∑
σi+1,...

Vai,σi+1··· |σi+1 . . .〉, which in

turn implies that the whole expression consists of valid Schmidt decompositions
only. Moreover, we can consider using this formula to express coefficients of oper-
ators:

〈σ|O |σ〉 = Wσ1σ
′
1Wσ2σ

′
2 . . .WσN−1σ

′
N−1WσNσ

′
N , (136)

where we need to add a second physical index to accommodate the second ’leg’ of
the operator. Compared to DMRG visualizations, it seems imperative to note that
they differ only by means of focus. While DMRG is mainly concerned with the
unraveling of the physical indices, an MPO can in principle act on all indices.

The rule of MPS that ingoing and outgoing legs must be equal is thus lifted to
MPOs as well. By studying the relevant literature of MPOs, we can conclude that
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any operator can be decomposed into an MPO like this:

O =
∑

σ1,...,σN ,σ′1,...,σ
′
N

c(σ1...σN )(σ′1...σ
′
N ) |σ1, . . . , σN 〉 〈σ′1, . . . , σ′N |

=
∑
σ,σ′

Wσ1σ
′
1Wσ2σ

′
2 . . .WσN−1σ

′
N−1WσNσ

′
N |σ〉 〈σ′| . (137)

If we were to unravel the index pair (σ, σ′), we can see that indeed the form is
identical to a simple MPS expansion. Of course, one has to be careful in actually
performing the decomposition into an MPO, since, much like with MPS, it could
be exponentially complex with a faulty choice of basis or bond dimension, but
can be as good as Nd2D2D2

W , where DW is the total MPO dimension. Still, the
added benefit of MPOs lies simply in the fact that they can safely be applied to
an MPS and will return an MPS – albeit at the dimension of the product of the
MPS and MPO dimensions. The argument is as follows. Using Nσi

(bi−1,ai−1),(bi,ai)
=∑

σ′i
W

σiσ
′
i

bi−1bi
M

σ′i
ai−1ai , we can show

O |Ψ〉 =
∑
σ,σ′

∑
a,b

(
W

σ1,σ
′
1

b0,b1
W

σ2,σ
′
2

b1,b2
. . .
)(

M
σ′1
a0,a1M

σ′2
a1,a2 . . .

)
|σ〉

=
∑
σ,σ′

∑
a,b

(
W

σ1,σ
′
1

b0,b1
M

σ′1
a0,a1

)(
M

σ′2
a1,a2W

σ2,σ
′
2

b1,b2

)
. . . |σ〉

=
∑
σ,σ′

∑
a,b

Nσ1

(b0,a0),(b1,a1)N
σ2

(b1,a1),(b2,a2) . . . |σ〉

=
∑
σi

Nσ1Nσ2 . . . |σ〉 , (138)

where we include dummy indices a0 ≡ 1 ≡ b0.
Put into perspective, Matrix Product Operators are useful whenever we have

long-range interactions that cannot be addressed in an otherwise elegant manner,
like absorbing them into periodic boundary conditions. We shall proceed to explain
how MPOs can be used in variational calculations.

The typical way of looking at variational calculations is also true for Matrix
Product Operators: We want to find a ground state for our problem, be it a Hamil-
tonian, a time-dependent Hamiltonian or a dissipative superoperator. In the case of
MPOs, the most common ansatz [172], that can still be traced back to proceedings

like [138], is to directly minimize 〈Ψ|H|Ψ〉〈Ψ,Ψ〉 using an alternating least squares (ALS)

method.
In difference to “pure” DMRG-based approaches, the minimization need not

be happening one block after the other, but can, in case of local terms, be done
for whole parts of the chain at once. If this is the case, the bond dimension of the
MPS resulting from application of the MPO can be controlled much better than
for iterative schemes in DMRG.

Throughout the evolution, a general approach would be to start from a small
bond dimension to subsequently take this as a starting point for a variation with
larger bond dimension. Although practical experience tells us that more often than
not ground states do not exhibit large bond dimensions, variational optimizations
toward them very well do. That is the crucial point here: Just like for DMRG and
the Time-Dependent Variational Principle, the computational complexity proposes
a tradeoff with regard to accuracy. Moreover, MPOs impose a more complicated
unraveling, because the contraction tensor network is larger by at least one auxiliary
dimension, if not more.
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Working toward the ground state, one can then produce an MPS approximation
like above, minimizing ||H |Ψ0〉 || with respect to e.g. the Euclidean norm, where
|Ψ0〉 is a first guess for the ground state after some convergence assertion to the
MPO evolution. As you can see, this is not very far from the Time-Dependent Prin-
ciple acting on the MPS variational manifold, but this scheme has other problems,
namely the fact that with an MPO we can not guarantee that the ansatz state will
represent a physical state [102], because the variational manifold does not restrict
to physically realizable states, i.e. being positive and inhibiting tr(|Ψ0〉 〈Ψ0|) = 1.
In the case of unitary evolution with a Hermitian Hamiltonian, this would only be a
problem for cases where one would introduce non-zero temperature through means
that do not resolve to using an auxiliary system, but it has been shown [33, 179,
191, 170] that this poses an increasingly difficult challenge, the more general the
introduced dissipation is, like we review in Chapter 5.

4. The Time-Dependent Variational Principle

Although the basis for the deep understanding of time-dependent usage of the
variational principle we possess today can be traced back to research of Dirac
[38], Frenkel [56] and others in the early beginnings of quantum theory, it took
half a century until its implications to simulation of quantum systems was fully
appreciated [112]. Real-time evolution of systems, that could be considered both
close to laboratory conditions as well as theoretically accessible, could be treated
numerically only after the emergence of scalable computing power beginning in
the 1980’s and later, when DMRG gave rise to schemes of time-evolving block
decimation [191] as a first glimpse at the power of the TDVP. Although it is our aim
to not only simulate real-time evolution, but moreover generalize it to dissipative
applications, we will need to understand quantum dynamics in a broader sense and
will thus have to verbosely derive the TDVP flow equations.

As a side-note, for readers not interested in the detailed derivation, a concise,
evolved insight of state of the art TDVP algorithms and applications, that developed
over the last few years, can be obtained from, e.g. [71, 8].

4.1. Derivation

First of all, we observe that in contrast to standard quantum mechanical problems
(and the time-independent variational principle), we need to start from a time-
dependent equation of motion.

While it seems obvious that such an equation of motion can be found by im-
plying time-dependence to a Hamiltonian, its impact regarding interpretations of
quantum mechanics, physics and the universe itself cannot be understated. For the
matter of this thesis however, it is no more but the linear partial differential equa-
tion that gives rise to wave functions as solutions of quantum mechanical problems.
Although this is an understatement of political correctness (of course there are
“interpretations” of any of the three things mentioned above that can safely be ig-
nored), we will leave it at this and proceed with the precise, indisputable definition
of that equation of motion:

i~
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 . (139)

Again, in this equation the ~ is there for brevity and familiarity, but for the remain-
der of the thesis we assert that ~ ≡ 1. If the variational class does not span the
whole Hilbert space – as is most often the case – even infinitesimal time evolution
(i.e. applying the operator e−iH(t)dt to the initial state |Ψ(0)〉) will generally leave
the variational manifold M. The time-dependent variational principle will enable
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|Ψ(a(t))〉

TM(a)

|∂iΨ(a)〉

|∂jΨ(a)〉

PTH |Ψ(a)〉

H |Ψ(a)〉

|Ψ(a)〉

M

Figure 8. Pictorial illustration of the variational mani-
fold M and its tangent plane T. The path of the varia-
tional flow, represented by the Matrix Product State |Ψ(a(t))〉, on
the variational manifold M(a), is shown together with its deriva-
tives ∂i |Ψ(a)〉 and ∂j |Ψ(a)〉 with respect to variational parameters
ai, aj at time t. The shaded area below depicts the tangent plane
TM(a), to which the discretely with respect to time propagated
state H |Ψ(a)〉 is projected, resulting in the expression PTH |Ψ(a)〉.

us to create an approximation to the infinitesimally evolved state vector that stays
in the variational manifold by projecting in an optimal way.

Following notation from [73] by Haegeman et al., we begin with a geometric
argument and later return to the action principle. Given a wave function |Ψ(a(t))〉,
we can input it into the TDSE in Eq. (139)) to obtain the expression

ȧi |∂iΨ(a(t))〉 = −iH |Ψ(a(t))〉 , (140)

where |Ψ(a(t))〉 is an MPS on an infinite spin-1/2 lattice of the form

|Ψ(a(t))〉 =

d∑
{sk}=1

v†L (Πn∈Za
sn) vR |s〉 , (141)

with |s〉 ≡ |· · · s1s2 · · ·〉 and vL/vR are two D-dimensional vectors. The variational
parameters form a set of D×D-matrices As and can be subsumed under a collective
index i, such that ai = Asα,β is a dD2-dimensional vector – a format we know from
Chapter 2. The derivation does not depend on the specific form of lattice – it can
without trouble be adapted to finite cases.

Looking at the format of Eq. (140), we identify a linear combination of tangent
vectors to the variational manifold M on the left hand side, while the right hand
side −iH |Ψ(a(t))〉 is simply a general vector in Hilbert space. Osborne et al.
thus correctly conclude that the equation cannot have an exact solution for the
variational parameters ai.
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Instead, an approximation has to be performed. The logical candidate for this
is an orthogonal projection minimizing

||ȧi |∂iΨ(a(t))〉+ iH |Ψ(a(t))〉 ||, (142)

which can be identified as

〈∂̄Ψ(ā(t))|∂iΨ(a(t))〉 ȧi = −i 〈∂̄Ψ(ā(t))|H|Ψ(a(t))〉 . (143)

Notice that the expression on the left hand side now contains the Gram matrix of
the tangent vectors:

gı̄,j(ā, a) = 〈∂ı̄Ψ(ā(t))|∂jΨ(a(t))〉 . (144)

We define the transfer matrix E =
∑d
s=1A

s ⊗ Ās and assume that it has exactly
one eigenvalue 1 with left and right eigenvectors (l| and |r). They are of dimension
D×D, Hermitian and full rank when reshaped to quadratic matrix form. Also, we
demand that they obey normalization such that

(l|r) = tr(lr) = 1. (145)

Osborne et al. furthermore assume that all other eigenvalues of E lie within the
unit circle such that the spectral radius of E − |r)(l| is smaller than one.

With these additional conditions we can now propose what it would mean to
have an operator O acting on neighboring sites:

O(ā, a) =
〈Ψ(ā|O|Ψ(a)〉
〈Ψ(ā)|Ψ(a)〉

=(l|
d∑

s,t=1

Ot1...tn,s1...sn (as1 · · · asn)⊗
(
āt1 · · · ātn

)
|r). (146)

It seems possible that this operation is efficient, but we have yet to verify this. The
explicit discussion of computational complexity is performed in the next section.

We now approach the lengthy endeavor to specify the explicit form of the
tangent vector: For a translation invariant Hamiltonian H =

∑
N∈Z = TnhnT−n

in nearest-neighbor form, where h acts on sites zero and one only, T denoting the
shift operator, we find that the tangent vector Bi can be given as

Bi |∂iΨ(a(t))〉 =
∑
n∈Z

Tn
d∑

sk=1

v†L (· · ·As−1Bs0As1 · · · ) vR |s〉 . (147)

We observe that for an infinite one-dimensional lattice

b̄′̄ıgı̄,jb
j =|Z|

[
(l|Ebb′ |r) + (l|Eab′(1− E)−1Eba|r)

+(l|Eba(1− E)−1Eab′ |r) + |Z− 1|(l|Eab′ |r)(l|Eba|r)
]
, (148)

bı̄ 〈∂ı̄Ψ(ā)|H|Ψ(a)〉 =|Z|
[
(l|Haa

bb |r) + (l|Haa
ba |r) + (l|Haa

aa (1− E)−1Eab |r)

+(l|Eab (1− E)−1Haa
aa |r) + (|Z| − 2) (l|Eab |r)(l|Haa

aa |r)
]
, (149)

with the shortcuts Hab
cd =

∑d
s,t,u,v=1 〈s, t|h|u, v〉 (aubv)⊗

(
c̄sd̄t

)
and Eab =

∑d
s=1 a

s⊗
b̄s, where E ≡ Eaa . Note that (1− E)−1 is the pseudo-inverse of (1− E):

(l|(1− E)−1 = 0 = (1− E)−1|r), (150)

i.e. acting on the left or right Eigenvector of E gives zero. The cardinality factors
of order O(|Z|) are due to the infinite chain length and cancel out. For a system
of finite size N this works mutatis mutandis, but does not solve the problem that
the last term of the right hand side of Eq. (148) diverges anyway. Indeed, Osborne
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et al. show that they disappear once one restricts the evolution to tangent vectors
orthogonal to the state vector such that

〈Ψ(a)|∂iΨ(a)〉 bi = |Z|(l|Eba|r) = 0 (151)

and that it is globally optimal in M. In fact the tangent plane contains the state
itself. That means, while we could perform an infinitesimal change in that direction,
we should not do it, because it would only result in a change in norm or phase,
which is not what we want.

4.2. Properties

Looking at Eq. (148), we can see that only expectations occur within the equations
of motions, i.e. the TDVP is a symplectic method that preserves (all) constants of
motion and the variational parameters can be decomposed into generators of the
respective system symmetries. This is a profound advantage compared to Monte
Carlo methods, where symplectic structure can only be retrieved for special cases of
very simple symmetries and also helps with the exploration of translation-invariant
systems. Just like for DMRG, we find that if the system has translation-invariant
blocks, we can further increase the computational efficiency.

Moreover, the symplectic structure gives rise to full time-reversal symmetry,
useful for real-time evolution applications where one can use real-valued Hamilto-
nians, see [167] for an approach that uses “trotterized” evolution to achieve this.

It is important to bear in mind that the absence of a Trotter error as a matter
of principle means that there is no need for a inevitable decrease in dt for accuracy
reasons. While we will concern ourselves with dissipative systems that are precisely
not time-reversible and have, due to their inherently decorrelating nature, not much
symmetry – if at all – it is important to keep in mind that the method in principle
is, i.e. if a specific symmetry presents itself to us, the TDVP toolkit is equipped to
exploit it.

4.3. Examples and algorithms: evoMPS

Finding schemes for computational work in science is a noble endeavor, albeit not
the whole work. Implementing algorithms to check and prove and extend the scope
of mankinds understanding is a likewise humble task. In case of the TDVP, there
are two implementations of particular noteworthiness. First and foremost, Jutho
Haegemann implemented a great deal of the propositions in [73] and his PhD the-
sis [72]. The influence of his work on the development of MPS-based numerical
schemes cannot be understated. Still, for the matter of this thesis we make use of
the evoMPS framework, written and maintained by A. Milsted et al. [120], fur-
thermore in the spirit of open access science published under the free GPL license
and thus freely extendable.

Originally started as part of A. Milsted’s MSc project, it has over the last
years become a mature implementation of the TDVP that will form the basis of
our extension regarding dissipation. In this section we give a basic overview of inner
workings, features and applications.

Based on [73] and [122] in particular, evoMPS is implemented using the Python
programming language using the SciPy [29] modules with advanced optimized
linear algebra solver libraries LAPACK [27] and BLAS [26].

Out of the box it handles states on a finite chain with open boundary conditions,
block translation invariant states on an infinite chain (with adjustable block size)
and furthermore block translation invariant states with a localized nonuniformity
on an infinite chain. Also, later additions include experimental implementations
of arbitrary interactions using an MPO extension. We shall now see how the im-
plementation works en detail. One iteration basically takes four steps, that are
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repeatedly performed until the desired result is obtained to some accuracy – this
can either mean that the ground state is found, the error measure has grown so
much that you cannot certify a good approximation result or the scaling parameters
of the system are chosen such that we miscalculated the runtime and now have to
wait until the universe falls dark until the operation is complete – obviously this
is part of the mathematical physicist’s work and should not be regarded as capital
punishment, since most of the time one can change the variational class (e.g. by
adapting the bond dimension) to get fast calculations at the cost of reduced accu-
racy. But before discussing computational complexity, we will introduce the actual
work to be done.

Before calculating the tangent vector the the variational manifold, we have to
evaluate two auxiliary quantities. First of all we need to incorporate the property
of pseudo-invertibility of (1− E) into the flow equations, so suppose that

(K| = (l|Haa
aa (1− E)−1, (152)

where (l|Haa
aa is replaced by (l|Haa

aa − h(l| since (l|(1 − E)−1 = 0. We furthermore
make (1− E) non-singular by substituting

(1− E)→ (1− E) + |r)(l|
and now can solve

K −
d∑
s=1

as†Kas + tr[Kr]l = [(l|Haa
aa ]− hl, (153)

with [(l|Haa
aa ] =

∑
stuv

〈st|h|uv〉
(
āsāt

)†
l (auav) (154)

for the unknown D×D-matrix K with an iterative solver. In evoMPS, this is part
of the update() routine. update() is the wrapper for the basic iteration step of the
TDVP implementation. It explicitly obeys the relation tr(Kr) = (K|r) = 0. After
calculating the K matrices by calling calc K(), we need to calculate an additional
auxiliary variable before we can treat the tangent vectors, i.e. we have to perform
the calculation calc C():

Cst =
∑
uv

〈st|h|uv〉 auav, (155)

such that we can finally obtain

F =

d∑
s,t=1

(V sL)†l1/2Cstr(at)r1/2 +

d∑
s=1

(V sL)†l−1/2

(
d∑
t=1

at†lCts +Kas

)
r1/2. (156)

The flow F now can be identified with the quantity x we need to minimize:

||bi(x) |∂iΨ〉 −H |Ψ〉 ||2 = |Z|tr
[
x†x− x†F − F †x+ constant

]
. (157)

With F =̂ x = x† we conclude that

ȧi = −ib(x∗), (158)

an operation that is performed by the evoMPS function calc B(). To wrap up,
lets look at the whole algorithm again:

(1) Calculate the tangent vector’s projection bi back onto M by
(a) Calculate K from Eq. (153).
(b) Calculate C from Eq. (155).
(c) Calculate x∗ = F from Eq. (157).

(2) Set a(t+ dt) = a(t)− idtb(x∗).
(3) Fix the gauge such that the canonical form is retained and renormalize

the state.
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(4) Calculate observables, increment the time by one step dt.

Notice that in principle the complexity is O(D6), but unraveling the most critical
part – inverting (1 − E) + |r)(l| – into an iterative solution that sweeps through
the sites, Osborne et al. showed that it can be done with O(D3), although one has
to give up arbitrary interactions and be content with nearest-neighbor and next-
nearest-neighbor terms of the Hamiltonian. For a detailed treatment of this matter,
see the supplementary material of [73].

To put the whole scheme to use, we now review the two kinds of time evolution
one can apply.

4.3.1. Imaginary time evolution. Setting dt = idτ , one obtains imaginary
time evolution, technically a Wick rotation by π/2 [184], i.e. a way of adiabatically
observing quantum statistical properties that evolve along phase space trajectories
corresponding to the imaginary time that has passed. It is obvious that one can
access observables like energy expectation this way, but not real-time dynamics, and
for sure not, as we will see in Chapter 5, dissipative dynamics. A minimal working
example of imaginary time evolution is included in the evoMPS distribution and
resolves to using an Euler integration scheme on Heisenberg anti-ferromagnetic
spin-1 lattices. The TDVP algorithm runs until the energy expectation is minimal:

〈∂iΨ|H|Ψ〉 = 0. (159)

In practical implementations this means that one has to set some energy threshold
for more complicated systems, unless we want to wait until the approximation is
on the level of the numerical accuracy of the implemented floating point precision,
which is completely unnecessary and will take uneconomically long.

4.3.2. Real time evolution. In contrast to the previous section, real time evo-
lution is a more ferocious beast.

In RTE, we want to find out what happens to a system under successive infin-
itesimal application of eiHdt, e.g. to find out about entanglement behavior, Rabi-
like dynamics, anyonic chains [52], molecule dynamics [57] or evolution of time-
dependent observables. Unfortunately, Euler integration is not enough to capture
the dynamics to sufficient accuracy, but instead using a time-reversal invariant
numerical integrator is preferable, as can be seen from [73], because the relation
H(ā(t), a(t)) = 〈Ψ(ā(t))|H|Ψ(a(t))〉 drifts more and more the longer we simulate its
evolution, although it should be a constant of motion for an exact calculation. Due
to the non-linear structure of the flow equations (157), H(ā(t), a(t)) is in general
non-separable. Osborne et al. also argue that for real-valued Hamiltonians there is
time-reversal symmetry that is inherited by the TDVP flow. Thus, using a (second-
order) integration scheme that accounts for this, one can obtain stable long-time
behavior, linearly-bounded global error and near-preservation of first integrals [76].
Haegemann [72] has given an explicit mid-point construction for an adapted back-
ward Euler scheme that can solve most of the mentioned problems, and is correct
up to O(dt4). This can be further improved by using higher-order Runge-Kutta
algorithms [152, 109, 19, 75], albeit one observes that for most practical purposes
backwards Euler is sufficient. It can be shown that this method outperforms most
other approaches regarding accuracy, especially time-evolving block decimation –
which is the main concern for real-time evolution, since the dispersion error basi-
cally governs how long of a time one can simulate. We will discuss more intricacies
of RTE when we begin our treatment of dissipative systems.
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5. Variational Monte Carlo

The variational Monte Carlo (VMC) method aims, just like the previously discussed
ansatzes, to approximate the ground state of many-body systems. The method of
choice hereby is Monte Carlo sampling of suitable parameters [124, 23].

Usually, the variational Monte Carlo is defined in this way: Given a variational
class |Ψ(a)〉, we can write down the energy configuration as

E(a) =
〈Ψ(a)|H|Ψ(a)〉
〈Ψ(a)|Ψ(a)〉

. (160)

The right-hand side can be expanded:

〈Ψ(a)|H|Ψ(a)〉
〈Ψ(a)|Ψ(a)〉

=

∫
|Ψ(X, a)|2HΨ(X,a)

Ψ(X,a) dX∫
|Ψ(X, a)|2 dX

(161)

and we subsequently identify |Ψ(X,a)|2∫
|Ψ(X,a)|2 dX as a stochastic integral over an unknown

probability distribution, that can be treated as tuples of random variables – i.e.
the variational parameters. Variational Monte Carlo then aims to minimize the
property

Eloc(X) =
HΨ(X, a)

Ψ(X, a)
, (162)

called local energy. Of course, the Hilbert space dimension grows exponentially,
just like for every other method previously discussed. One benefit of stochastically
evaluating the probability distribution is though, that it can be done in parallel:
While the evaluation of the exact instance has d2 − 1 parameters (keep in mind
that the constraint of normalization as a single separate side condition does not
effectively decrease complexity), stochastic integration of lower-dimensional varia-
tional instances still take a long time, but scales as low as O(N2−4), compared to
O(dN ) for exact solvers. Still, depending on the complexity of the problem and
whether the variational class is constrained by other conditions, such as additional
(e.g. chemical) symmetries [146, 189], VMC also suffers from the fact that for large
particle numbers, higher order correlations become more significant, thereby in-
creasing the complexity of the sampling necessary for accurate results [125]. Using
stochastic methods, it is often too easy to shove off the question about errors toward
the simple declaration that it scales with es ≈ 1√

N
.

However, a variational method, we must consider the conceptual errors as well
[99], i.e. while minimizing over the variance only has the added benefit that its value
can be bounded from below and constructively be calculated, the question remains
whether this is variationally optimal. Of course useful as a measure of uncertainty
about the acquired solution, it has its merits. However, when we consider the
fact that the variation itself can depend on the variance (if some weight is given
to the variance bound and some kind of gradient estimate is taken), it can no
longer function as an unbiased error estimate since it becomes a random variable of
the minimization as well, thus being potentially subject to self-sampling bias. For
example, there are certain publications that have shown that directly using energy
or linear combinations of energy and variance cost functions can increase accuracy
for some systems [162] and that different measures of accuracy have to be taken
into account in this case.

Finally, as a last and fundamental caveat to Monte Carlo Sampling of any
kind acts the well-known sign-problem [116, 100, 166], as already mentioned in the
introduction of this chapter.
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5.1. Time-Dependent Variational Monte Carlo

While VMC is well suited to solving ground state problems, we have yet to see
how the numerical calculation of time-evolving dynamics can be performed. One
such ansatz [22, 21], developed by G. Carleo et al., tries to generalize it using the
Time-Dependent Variational Principle.

The variational class is built upon ansatz wave functions of the form

Ψ(X, t) = exp

(∑
k

ak(t)Ok(X)

)
, (163)

where over a many-body configuration X with operators O(X) the (complex) vari-
ational parameters a(t) are optimized, thus giving rise to the following infinitesimal
step of time evolution:

Ψ(X, a(t+ ε)) = Ψ(X, a(t))

[
1 + ε

∑
k

ȧkOk(X)

]
. (164)

The variational approach consists of the observation that one can estimate the
difference to the exact state by the following argument[20]:

Given the quantities

ZR1 (X, t) =
∑
k

ȧRk Ok(X)− EI(X, a(t)), (165)

ZI1 (X, t) =
∑
k

ȧRk Ok(X) + ER(X, a(t)), (166)

one can calculate the norm difference as

∆2
1(t) =

∑
X

|Ψ(X, a(t))|2
[
ZR1 (X, t)2 + ZI1 (X, a(t))2

]
. (167)

Minimizing the gradient components Z
R/I
1

∂
∂ȧRk

, we find that the flow equations read∑
k′

ȧRk′ 〈OkOk′〉 =
〈
EIOk

〉
, (168)∑

k′

ȧIk′ 〈OkOk′〉 =−
〈
EROk

〉
. (169)

The subsequent implementation makes use of the Metropolis-Hastings algorithm
[119, 80] by sampling the acceptance probabilities P for the transition

Tx→x′ =
1

w(X, t)

|Ψ(X ′, t)|
|Ψ(X, t)|

, (170)

as P = min{1, w(X)
w(X′)}, where w(x, t) is normalization factor, the X ′s are chosen in

a way that guarantees HX,X′ 6= 0, which effectively leads to the situation where
wave functions with greater modulus are more often accepted than less likely ones,
the standard treatment using Metropolis sampling. It is however in its current form
limited to closed systems and as such only mentioned out of academic interest. It
remains to be seen whether this could be extended by methods like the one we are
about to present.





CHAPTER 4

Stochastic Calculus

Dealing with stochastic models, variables and processes, the main application of
stochastic calculus is to answer questions that arise when integrating stochastic
processes - a question that emerged as soon as 1905, when Albert Einstein explained
Brownian Motion as a stochastic process of randomly bouncing particles [42]. This
not only firmly established the existence of atoms, but also helped pave the way
for statistical mechanics as a branch of physics. More than a century later we
know that applications of this field are vast and versatile. In fact, we will see that
in studying dissipation there is a connection to the physical process the scientific
discipline of Stochastic Calculus originates – from Brownian Motion itself.

1. Markov Processes

Before tackling stochastic integration, at least one even more basic ingredient must
be treated. Understanding random variables as random processes is vital to all
branches of statistical mechanics, even more so in quantum mechanics, because, as
we know, the theory is inherently probabilistic. It is thus somewhat consequential
to resort to a fully stochastic treatment of quantum dynamics as not a mere method
to some ends (understanding time evolution), but rather a necessity given by nature
itself.

In the following we will try to confine the used notation to the likes of [58], a
fine textbook and reference to all classical stochastic propositions presented in this
chapter.

In particular, we have to identify systems where measurements yield statistical
results, i.e. where observables are random variables X(t) according to some distri-
bution p(X(t)), with a set of probability densities, such that for values x1, x2, x3 . . .
there exists an identification

p(x1, t1;x2, t2, . . . ) (171)

that describes the system in question completely. The tuples (xi, ti) are an identi-
fication of outcomes xiwith some parameter ti in a way that . . . ti−1 ≥ ti ≥ ti+1 . . .
is a well-defined partially ordered set. If the realization of that order is of temporal
nature, we call the dimension of t time, but since there is no strictly necessary
notion to follow here, it could also be identified with some other quantity as long
as it facilitates a proper ordering that is needed for the definition of a process as a
concept that evolves along the axis of the ordering parameter, e.g. time. Obviously
we did also omit to explain what a proper probability distribution would be. For
the matter of this investigation, we make use of the following convention:

Throughout the dissertation, pX denotes a probability distribution of a
random variable X, such that the relation

Pr[a ≤ X ≤ b] =

∫ b

a

pX(x) dx (172)

gives the information about the respective probability of the interval [a, b] of the
distribution pX for an event x to be happening. Whenever it is clear what random

59
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variable the probability is associated to, we may drop the subscript X for notational
tidiness.

Note that while this can be extended to quantum mechanics in a branch of
stochastics called Quantum Stochastic Calculus [84, 59], up to now this chapter is
an investigation about classical systems and will suffice to derive all necessary tools
for this thesis.

Also, based on Eq. (171), one can of course define the notion of conditional
probabilities for an additional random variable Y (t):

p(x1, t1;x2, t2; . . . |y1, τ1, y2, τ2; . . . ) =
p(x1, t1;x2, t2; . . . ; y1, τ1, y2, τ2; . . . )

p(y1, τ1, y2, τ2; . . . )
. (173)

For a complete description of the evolution of the system including the random
variables X(t), Y (t), one in principle has to have knowledge about the complete
history to be able to make predictions, including all joint probabilities. Such a pro-
cess, where the predictions depend on joint probability history, is called separable,
i.e. if we know all possible joint probabilities. Note that this notion of separability
is different from quantum state separability. This is not a problem though because
apart from defining stochastic processes we don’t need this version.

Going forward, we can start to classify p(x1, t1;x2, t2; . . . ) based on its prop-
erties. First observe that for completely independent events we obtain Bernoulli
trials:

p(x1, t1;x2, t2; . . . ) ≡ Πip(xi, ti), (174)

where an identical process is repeated at all times ti. Now we are left with two
cases: either the past of the process is taken into account, or only the present.

In the latter case, this proposition is called Markov assumption. It requires
that in order to calculate conditional probabilities, only the current instance is to
be taken into account:

p(x1, t1;x2, t2; . . . |y1, τ1, y2, τ2; . . . ) = p(x1, t1;x2, t2; . . . |y1, τ1). (175)

This is precisely the statement made by Einstein explaining Brownian motion: after
microscopic particles have interacted with one another, they obtain a new velocity
vector that is irrespective of their entire history. Likewise, we find that indeed

p(x1, t1;x2, t2; . . . ;xn, tn) = p(x1, t1|x2, t2)p(x2, t2|x3, t3) . . .

. . . p(xn−1, tn−1|xn, tn)p(xn, tn) (176)

for an ordering of events t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ tn. Summing over all mutually
exclusive events, one can eliminate that variable. This important insight has been
found by Chapman and Kolmogorov (see e.g. [101]) and formally reads

p(x1, t1|x3, t3) =

∫
dx2p(x1, t1;x2, t2|x3, t3). (177)

For discrete vector spaces, x can be considered a vector. Without making an effort in
this work to explain similarities in structure to matrix product states, we note that
something like this has been approached [10], where instead of transfer operators the
induction of refined (i.e. lower-dimensional) Master equations is studied. It seems
worthwhile to see and explore whether Markov chains can indeed be formulated in
the language of matrix product states, a question that the aforementioned citation
sadly does not answer exhaustively.

Returning to the derivation of Markov processes, one realizes that the dx
should, formally, of course, be a measure dµ(x), although we have to explain what
measure exactly we want to use. Incidentally, this is the precise question of stochas-
tic integration in the following Section 2. Before introducing integration, though,
we need to discuss continuity of the model process p at hand. Returning to the
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Figure 9. Example of Brownian motion. Simulated Markov
process with drift coefficient µ = 0.5, volatility σ = 0.3 and time
discretization of 0.01 as given in Eq. (186).

Brownian Motion hypothesis of Einstein that, at the time of its publication, could
not be experimentally verified, we realize that in a hard core gas with elastic bounc-
ing all particles can in principle realize all phase space configurations. This does
not produce continuous sample paths since their velocity changes in an instant if a
bounce occurs. Still, the position path still needs to appear continuous, because the
axioms of classical mechanics require it to be. The fast and in-vitro correct conclu-
sion is that in nature there are no true Markov processes because its approximations
are too restrictive. However, the solution to this seeming paradox of trajectory con-
tinuity is that it depends on the coarse-graining scale of the system, whether one
can make this assumption. In the case of Brownian motion, it is obvious that since
the description is macroscopic, so must be the treatment of continuity, i.e. we check
that the memory time of the process in question is so small that continuity is not
a practical, but rather a theoretical question that can be treated constructively.

With that in mind, we can look at visualizations of Brownian motion like
Fig. 9 and realize that in this way of accessing the system, the sample paths are
continuous. But if this is the case, we can start talking about differential treatment.
Non-differentiability of Brownian motion is a known and even prominent property,
but we will see that this does not interfere with the application we have in mind.

More concretely this means that in stochastic calculus one divides the considera-
tions of differentiability between the concept of continuously represented points and
the (discontinuously reciprocating) instant of motion, or, more abstractly, expecta-
tion change. Introducing the class of stochastic differential equations, we need to
treat, what C. Gardiner [58] proposed to call the differential Chapman-Kolmogorow
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equation:

∂tp(x, t|y, τ) =−
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, τ)]

+
∑
i,j

1

2

∂2

∂zj∂zi
[Bij(z, t)p(z, t, y, τ)] (178)

+

∫
dx [W (z|x, t)p(x, t|y, τ)−W (x|z, t)p(z, t|y, τ)] ,

where the quantities Ai, Bij are connected continuously, while W (z|x, t) = 0 for
all x 6= z. W represents the distribution of (non-contiguous) jumps and hence
will be called jump term or Wiener process. Please note that τ does not stand
for imaginary time, but rather the set of times for the event tuples given by the
random variable Y . A priori, it is not clear whether solutions of Eq. (178) are
solutions of Eq. (177), or to what extent they exist. Still, C. Gardiner shows that
under the conditions that A,B are positive semi-definite and W is non-negative,
there exists a solution of the differential CK equation and that this solution indeed
is a solution to the standard CK equation. Additional conditions include the initial
configuration

p(z, t|y, τ) = δ(y − z) (179)

and appropriate boundary conditions. This is complicated to specify in general,
but will be possible in the case of the Fokker-Planck equation.

1.1. The Fokker-Planck Equation

If the jump terms W (x, t) of Eq. (178) are zero, we end up with the class of Deter-
ministic (partial) Differential equations called Fokker-Planck equations, that have
the form

∂tp(x, t|y, τ) =−
∑
i

∂

∂zi
[Ai(z, t)p(z, t|y, τ)] (180)

+
∑
i,j

1

2

∂2

∂zj∂zi
[Bijp(z, t, y, τ)] .

It models a diffusion process [87] without jumps. Ai(t) is the so-called drift vector
while Bij is called the diffusion matrix. It must be positive and symmetric because
all moments of order higher than 2 vanish. In quantum mechanics, symmetry of
the diffusion process means that, since the evolution is definitely continuous (in
expectation values, not state vectors) without any contribution from W , it is in
principle time-reversible, although for real dissipative systems this is not the case,
as we will see.

We will make use of the Fokker-Planck equation in Chapter 5 and continue to
introduce the stochastic integral through the use of the Wiener process we need to
derive. To this end, we may ask what a solution of this particular stochastic dif-
ferential equation would look like. As with most meaningful differential equations,
they are hard to solve. If however the drift term Ai vanishes and we set Bij = 1,
the corresponding Fokker-Planck equation reads

∂tp(x, t|y, τ) =
∂2

∂zj∂zi
p(z, t, y, τ). (181)

In this case, there is a both elegant as well as fundamentally interesting exact
solution available: Applying the initial condition to the condition probability, we
can state the conditional function

φ(σ, t) =

∫
dwp(w, t|w0, t0)eiσw, (182)
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satisfying

∂φ

∂t
= −1

2
σ2φ. (183)

Obviously, entering the initial condition from Eq. (179), we obtain

φ(σ0, t0) = eiσw0 (184)

such that

φ(σ, t) = e[iσw0− 1
2σ

2(t−t0)]. (185)

We check that the Fourier inversion (see e.g. [55]) is well-defined and feasible and
find that the sough-after solution

p(w, t|w0, t0) =
1√

2π(t− t0)
e
− (w−w0)2

2(t−t0) (186)

is obviously a diffusing Gaussian with mean w0 and variance (t− t0). The solution
of the univariate case indeed is the Brownian motion and has a few important
properties [148].

First of all, as already mentioned, sample paths are, though continuous in
the perspective we put it before, non-differentiable. Physically, this means that
particles under the effect of Brownian motion behave highly irregular. Secondly,
sample paths are irregular, i.e. although the mean value of W (t) is zero, the mean
square becomes infinite for t → ∞. Although it is true for any random process
that results are non-reproducible, this is even true for the scale of an individual
Wiener realization (i.e. a so-called sample path) – while on average it will stay
“close” to its mean value, there are instances, where it diverges – a most troubling
behavior when identified with classical particles. Where necessary, a more realistic
treatment can be obtained using the Ornstein-Uhlenbeck process [168, 64, 13], that
will neither be applied nor discussed in this thesis. Moreover, it is the next property
that is of most interest. Since the Wiener process is a Markov process, it inherits
statistical independence, i.e. events ∆Wi are independent of each other and of the
initial condition W (t0). This basically defines again that from the history of the
process we can in no way guess its future. Independence plays a pivotal role in the
definition of stochastic integration.

1.2. Itō’s Lemma

Of particular importance in stochastic calculus obviously is the ability to actually
perform calculus. Apart from evaluating integrals, which we will introduce in the
next section, the derivatives of stochastic processes are among the most basic op-
erations to perform.
As already mentioned, we can, in general, not certify variance finiteness and even
continuity of stochastic processes. Still, approximating the gradient of such a pro-
cess is very useful and thus its evaluation desirable. It is due to Itō Kiyosi [87] that
we can derive the differential from the following argument, known as Itō’s Lemma:

Assuming X(t) to be a drift-diffusion process with drift A(t) and diffusion
matrix B(t), then we can find a stochastic differential equation of the form

dX(t) = A(t)dt+B(t)dW (t), (187)

where Wt is a Wiener process. For any at least 2-times differentiable test function
f(x, t), we can write down its Taylor expansion up to second order:

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 +O(dx3) +O(dt3). (188)
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If we now perform the substitutions x → X(t) and dX(t) → A(t)dt + B(t)dW (t),
we obtain

df =
∂f

∂t
dt+

∂f

∂x
(A(t) dt+B(t) dW (t))

+
1

2

∂2f

∂x2

(
A(t)2 dt2 + 2A(t)B(t) dt dW (t) +B(t)2 dW (t)2

)
(189)

+O(dx3) +O(dt3) +O(dW (t)3),

which has a somewhat intricate asymptotic behavior: For dt→ 0, we find that dt2

and dtdW (t) go to zero faster than dW (t)2, which is O(dt). Ordering Eq. (189) by
these propositions, the differential now reads

df =

(
∂f

∂t
+A(t)

∂f

∂x
+
B(t)2

2

∂2f

∂x2

)
dt+B(t)

∂f

∂x
dW (t), (190)

which is obviously different from the chain rule of standard calculus. However,
it is often more convenient to follow adapted derivation rules than updating the
even more complicated rules for integration, as we will see now by introducing the
stochastic integral.

2. The Stochastic Integral

There are many ways to motivate the stochastic integral, but one very illuminating
is this: In principle, we do not know how to integrate a non-predictable, irregular
random process that is Markovian because a Riemann-like deconstruction into par-
tial sums must fail because of the infinite mean-square behavior. Still, suppose we
have an arbitrary time-dependent function f(t), we can give the formally correct
proposition, independent from the question of its existence, i.e.∫ t

t0

f(t)dW (t) = Sn =

n∑
i=1

f(τ1) [W (ti)−W (ti−1)] . (191)

Obviously, the value of Sn depends on the choice of intermediate points τi and
is not constant – on the contrary, its mean value is between 0 and (t − t0). To
formulate a meaningful resolution, an auxiliary tool will be necessary.

Regarding X(ω) as functions of ω, we check for any value Xn(ω) that

lim
n→∞

∫
dωp(ω) [Xn(ω)−X(ω)]

2 ≡ lim
n→∞

〈(Xn −X)2〉 = 0. (192)

In this case we call X(w) convergent in the mean square limit, written as ms-lim.
Going forth, we can define the stochastic integral in Itō form:∫ t

t0

f(t)dW (t′) = ms-limn→∞

{
n∑
i=1

f(ti−1) [W (ti)−W (ti−1)]

}
. (193)

3. The Glivenko-Cantelli theorem

The theorem we are about to present is so fundamental to statistical mathematics
that it is sometimes even called the fundamental theorem of statistics, but more
formally is known as Glivenko-Cantelli Theorem:

Theorem 11. Assume that X1, X2, . . . are independent and identically dis-
tributed (i.i.d.) random variables in R with common cumulative distribution func-
tion F (x). The so-called empirical distribution function for X1, . . . , Xn is defined
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by

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi), (194)

IC denoting the indicator function of some set C. Fn(x) is a sequence of random
variables which converge to F (x) almost surely for every (fixed) x by the strong law
of large numbers, that is, Fn converges to F pointwise.

Note that Glivenko and Cantelli later improved this result further by also prov-
ing uniform convergence of Fn to F . While we don’t need the rigor of the latter
generalization, it is of importance to us that we can use expectation values where
averages show up in the TDVP expressions, like in Section 3.2.

4. The Quantum Master Equation

The final building block for treating dissipative quantum systems is the Master
equation [114, 105]. Giving an equation of motion for the stochastic treatment of
the density matrix of open systems, it masters interaction with heat baths or, more
colloquially, the environment, and is the generalization of the quantum Liouville
equation

∂ρ

∂t
=

1

i~
[H, ρ], (195)

hence the name. It can (rather lengthily) be inferred from the Born-Markov equa-
tion [4, 136, 96] and has the form

ρ̇ = − i

~
[H, ρ] +

∑
α,β

hα,β

(
LαρL

†
β −

1

2

(
ρL†βLα + L†βLαρ

))
, (196)

where the reference to Markov approximation implies that the (external) heat bath
does not have memory and the Born approximation refers to the assumption that
the energy capacity of the heat bath be much larger than the energy threshold
of the internal system, such that we can safely assume that the bath does not
change with time. Equation (196) is the most general form of a time-homogenous
master equation governing the real-time evolution for any starting state ρ that is
trace-preserving and completely positive.

Since Eq. (196) is so central to this work, we will now derive it explicitly.
Beginning with an ansatz ρ(0) = ρS(0) ⊗ ρB(0), we assume that the system, rep-
resented by the density operator ρS ∈ HS of the system is in a product state with
the external heat bath ρB ∈ HB . Assuming no memory in the external heat bath
whatsoever, we can infer that the time evolution of the internal system ρS must
look like

ρS(t) = V (t)ρS(0) ≡ trB
{
U(t, 0) [ρS(0)⊗ ρB(0)]U†(t, 0)

}
, (197)

where V (t)ρS(0) : B(HS)→ B(HS) is a one-parameter dynamical map that can be
characterized by its action on HS alone. Recalling that

ρB =
∑
α

λα |Ψα〉 〈Ψα| ,
∑
α

λα = 1

we can express it as

V (t)ρS =
∑
α,β

Wαβ(t)ρSW
†
αβ(t),HS 3Wαβ =

√
λβ 〈Ψα|U(t, 0)|Ψβ〉 . (198)

Also note that we find for the Wαβ∑
α,β

W †αβ(t)Wαβ(t) = 1S ⇒ trS {V (t)ρS} = trS ρS = 1, (199)
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such that for the continuous time variable t we obtain a one-parameter family
of dynamical maps {V (t)|t ≥ 0}, where V (0) = 1S , that satisfies the semigroup
property

(V (s) ◦ V (t)) (ρ) = V (t+ s)(ρ), t, s ≥ 0. (200)

We can now make the superoperator ansatz to solve the equation of motion in the
following way:

V (t) = eLt ⇒ d

dt
ρS(t) = LρS (t), (201)

where we have to explain how to obtain L.
For an N -dimensional system, we have N2−1 degrees of freedom in the density

operator, hence we chose N2 orthogonal operators {L̃i|i = 1, 2, . . . , N2}, where we

set L̃N2 = 1√
N2
1S for convenience such that L̃1, . . . , L̃N2−1 are traceless and find

(L̃i, L̃j) ≡ trS

{
L̃†i , L̃j

}
= δij , (202)

which in turn gives us completeness of the basis with regard to the operators W :

Wαβ(t) =

N2∑
i=1

L̃i

(
L̃i, (Wαβ(t))

)
. (203)

Using Eq. (198), we can subsequently write

V (t)ρS =

N2∑
i,j=1

hij(t)L̃iρSL̃
†
j , (204)

where hij(t) =
∑
α,β

(
L̃i,Wαβ(t)

)(
L̃j ,Wαβ(t)

)∗
, which implies both hermiticity

and positivity for hij , as can be seen from

∑
ij

hijvi ∗ vj =
∑
αβ

∣∣∣∣∣
(∑

i

viL̃iWαβ(t)

)∣∣∣∣∣
2

≥ 0 ∀ N2-dim. complex vectors v (205)

Inserting Eq. (204) into Eq. (201), we obtain

LρS = lim
ε→0

1

ε
(V (ε)ρS − ρS) (206)

= lim
ε→0

 1

N

hN2N2(ε)−N
ε

ρS +
1√
N

N2−1∑
i=1

(
hiN2(ε)

ε
L̃iρS +

hN2i(ε)

ε
ρSL̃

†
i

)
+

N2−1∑
i,j=1

cij(ε)

ε
L̃iρSL̃

†
j


If we now define and substitute the quantities

aN2N2 = lim
ε→0

hN2N2(ε)−N
ε

,

aiN2 = lim
ε→0

hiN2(ε)

ε
,

aij = lim
ε→0

hij(ε)

ε
, i, j = 1, . . . , N2 − 1,

L̃ =
1√
N

N2−1∑
i=1

aiN2L̃i,

G =
1

2N
aN2N21S +

1

2
(L̃† − L̃),

H =
1

2i
(L̃† − L̃)
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into Eq. (206), it has the form

LρS = −i[H, ρS ] + {G, ρS}+

N2−1∑
i,j=1

aijL̃iρSL̃
†
j . (207)

Now using the trace-preservation property again, we find that

0 = trS(LρS ) = trS


2G+

N2−1∑
i,j=1

aijL̃
†
jL̃i

 ρS

⇒ G = −1

2

N2−1∑
i,j=1

aijL̃
†
jL̃i, (208)

which gives the first standard form of the generator:

LρS = −i[H, ρS ] +

N2−1∑
i,j=1

aij

(
L̃iρSL̃

†
j −

1

2

{
L̃†jL̃i, ρS

})
. (209)

Since the coefficient matrix (a)ij is positive, we can diagonalize it using some unitary
U :

UaU† =

 γ1
γ2

. . .
γN2−1

 , (210)

where the Eigenvalues γi are non-negative. We then set L̃i =
∑N2−1
k=1 UkiLk and

obtain the Lindblad Master Equation from Eq. (196) with the simplification that
α = β:

ρ̇ = − i

~
[H, ρ] +

N2−1∑
i=1

γi

(
LiρL

†
i −

1

2

(
ρL†iLi + L†iLiρ

))
. (211)

In order to model dynamics following a master equation, there are in general
two things we can do: Either solve the Master Equation for the generator, such
that the propagation is merely the application of a matrix multiplication, which is,
in general, impossible for all practical purposes because of the exponential growth
of the state space of composite systems and cannot be performed for systems with
more than eight qubits. On the other hand, it may be possible to find a suitable,
iterative computational scheme integrating Eq. (196) for small time steps (i.e.,
controlling the truncation error) as we will present in Chapter 5 about the Monte
Carlo Time-Dependent Variational Principle.
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Monte Carlo Dissipation Models





CHAPTER 5

A Monte Carlo Time-Dependent Variational
Principle

1. Motivation

We put it as bluntly as it is stated in the research paper [163] this chapter is based
on: Quantum many-body systems are hard to solve. In the preliminary chapters we
have seen that one of the most fundamental features quantum mechanics exhibits
is that – in stark contrast to classical systems – its state space grows exponentially
in degrees of freedom when particles are added.

This might seem exaggerated at first, but in fact the interaction of the sheer
number of degrees of (quantum) freedom a many-body system possesses, together
with the observations of entanglement monogamy and the fact that quantum sys-
tems can be easily frustrated, gives rise to a very peculiar conclusion: Macroscopic
behavior emerges from the fact that quantum coherence of 1023 particles is, for all
practical purposes, impossible. Put into the perspective of quantum information
physicists who aim to work with open systems, this seems daunting at first: Even
relatively small systems of O(10) particles cannot be treated coherently in classical
computers. But it is precisely this domain of scale that still lies in the quantum
regime, although it seems that one would already expect classical, macroscopic
effects.

While research of entanglement behavior and area laws [79] has shown that most
highly entangled states are not of physical relevance [44, 131], for computational
physics they are a hindrance nevertheless: without understanding in excruciating
detail which precise degrees of freedom are relevant to the comprehension of a
system and its behavior, we have to crunch through an exponential number of
parameters.

However, physicists never enjoy brute force. The Time-Dependent Variational
Principle and the extension we are about to propose highlight this in striking el-
egance: they allow nothing less than to declare beforehand how many degrees of
freedom the experiment will include. Albeit, always with the underlying agenda
that the tradeoff between accuracy of the approximation and computational cost
should turn in our favor.

As such, this chapter derives and benchmarks an extension to the TDVP to
allow the treatment of dissipative dynamics. Though, dissipative systems, due to
the fact that they necessitate the use and simulation of mixed quantum states, are
even harder to treat numerically because of the same reasons stated above, albeit
exaggerated by nature itself: From previous research it is totally clear that dissi-
pation either lacks a clear way to define the information distance [107] if treated
with variational methods like the TDVP, or worse, cannot be treated in the neces-
sary detail for a large number of particles, e.g. when using Quantum state diffusion
[65] or Monte Carlo sampling [21] – whereby “large” refers to the fact that exact
numerical treatment cannot ever hope to examine more than O(10) particles, be-
cause the number of parameters of a density operator for only ten qubits is already
22×10 ≈ 106.

71
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The principal complication of mixed state treatment will be circumvented by
not aiming to store the entire density matrix of the many-body systems in ques-
tion, but rely on the already presented framework of Matrix Product States in the
following way: Adding dissipation to a system that is represented as an MPS seems
contradictory, because product states are of course given in a product basis, and
consequently, cannot be mixed. This means that, whenever something “interest-
ing” happens to the system, we are confronted with the choice to either restore the
canonical form (see Theorem 8 of Chapter 2) or inflate the variational parameter
space. We show that one can derive a numerical scheme that allows to trace the
behavior of the tangent vector on the variational manifold for dissipative actions
and that it furthermore can be projected in a way similar to the standard TDVP.

After the derivation, we discuss the performed implementation of the method
and explain the benchmarks to verify its working accuracy by treating XXZ-Hei-
senberg chains, quasi-homogenous models and a KX-Heisenberg chain with particle
numbers of order O(100) in Chapter 6. In order to highlight the significant improve-
ment that can keep up with the advancing approaches of experimentalists to scale
the number of directly accessible quantum degrees of freedom in controlled lab ex-
periments [40], we show how to adapt the method for the treatment of spinless
Fermi-Hubbard models in Chapter 7.

2. Derivation of the method

Before starting with the derivation of the dissipative Time-Dependent Variational
Principle, let us find an intuition first: What we are trying to do seems counterin-
tuitive at best, if not outright impossible. Matrix product States are, as the name
says, product states. But if the action we impose on the system is non-unitary,
there will inevitably be some product states that are mapped to mixed states via
the time evolution of the dissipation. Put the other way around: Product states in
general will not capture the dynamics governed by the Quantum Master Equation
(see Eq. (196)) and we shall quickly see why. Choosing a substitution of the form

Q = −iH − 1

2

∑
α

L†αLα, (212)

we can subsequently write the Master Eq. (196) as

∂tρ = Qρ+ ρQ† +
∑
α

LαρL
†
α. (213)

We hereby restrict ourselves to cases where α = β, i.e. the Lindblad operators do
not mix with each other. The solution of Eq. (213) can then, by invoking the time
evolution propagator etL certainly be stated as

ρ̇(t) = etLρ(t), (214)

if only we know the generator (or superoperator) L – a task that is the particular
challenge of dissipative dynamics, since it involves diagonalizing a matrix with
dim(H)2 elements – which is completely hopeless for systems of practical relevance,
even if the dissipative part would vanish. Nevertheless, exact diagonalization can
serve both as a benchmark and certificate of the correctness of the method we are
about to present.

By now we can already rule out the possibility to just use the Time-Dependent
Variational Principle as a tool to solve this equation, because the truncation error
we make by fixing a bond dimension, i.e. the number of Schmidt coefficients, will
grow exponentially fast, just like the degrees of freedom of the density matrix [107].

Now, while we realize that the standard solution to this equation of motion
cannot be computed right away, we can give at least the form of it. Given that
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p(ā, a) represents the probability distribution of some (holomorphic) variational
parameters ā, a of the hypothetical solution |Ψ(ā, a)〉, we write

ρ =

∫
M
pt(ā, a) |Ψ(ā, a)〉 〈Ψ(ā, a)| dā da (215)

and hence

∂tρ =

∫
M
∂tpt(ā, a) |Ψ(ā, a)〉 〈Ψ(ā, a)| dā da (216)

to get a full expression for the solution. Although one can formally demand that p
be a proper probability distribution,

∫
M pt(a, ā) da dā = 1, it cannot be computed

explicitly for the same reasons ρ̇ cannot be obtained as stated above. We can,
however, take samples from it using the TDVP as is explained in the following
paragraphs. In fact, if we substitute the Master Equation into the integrand, we
can see that we can solve terms of the form ρA† and Aρ with the ansatz

Qρ =

∫
ptQ |Ψ〉 〈Ψ| dā da, (217)

because that is precisely the integration performed in the standard TDVP. We
substitute Eq. (140) from Chapter 3 and find that

Qρ =̃

∫
pt
∑
j

Qj |∂jΨ〉 〈Ψ| dā da (218)

=

∫
∂

∂aj
(ptQj) |Ψ〉 〈Ψ| dā da, (219)

and accordingly for ρQ†:

ρQ† =̃

∫
∂

∂aj
(
ptQ̄j

)
|Ψ〉 〈Ψ| dā da, (220)

This is all fine, since the terms are linear in A and give the desired expressions for the
TDVP tangent vectors from Eq. (147). However, there is no sufficient integration
scheme according to the TDVP for the QρQ† part of the Master equation, because
we need to differentiate twice:

QρQ† =̃

∫
∂

∂aj
∂

∂āk
(
QjQ̄kpt

)
|Ψ〉 〈Ψ| dā da (221)

A priori, we can only make general observations about the integral. It is obvi-
ously well-defined if the variational manifold we are talking about is isomorphic to
the full Hilbert space, because that would make it identical to direct diagonaliza-
tion. If we however want to restrict the variational manifold M to a certain bond
dimension, this is no longer clear.

At this point it becomes a bit tricky to explain the inference step that had to
be taken to be able to solve the problem. Let us take the following perspective:
The ensemble consisting of |Ψ(ā, a)〉 〈Ψ(ā, a)| consists of pure states for all possible
values of a and ā, but can be understood as a mixed state representation if one
considers convex combinations of them. Sampled from the underlying probability
distribution pt that explicitly shows up in Eq. (216), this can be integrated im-
plicitly by assuming a well-defined measure over the probability distribution. If
the variational manifold is smaller than the Hilbert space dimension, this measure
is undefined, hence the integration cannot be performed. In fact, the situation
technically is even worse: Not only do we not know the measure of the probabil-
ity distribution pt for a given bond dimension d < dim(H), we do not even know
the distribution itself. If we knew it, there would be a straightforward solution:
Take samples from it and integrate using a Monte Carlo integrator. Actually, this
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technique has been applied by Overbeck et al. in [133] to some effect. The clear
downside of this ansatz stays however: One has to endure particularly hard ana-
lytics to get an estimate for pt, and even then it is still hard to bound the error.
Obviously, guessing the probability distribution in order to sample from it does not
work in general if we do not want to give up the primary aim of this endeavor,
reducing computational complexity by reducing the variational parameters.

What we did instead was to step back one step further. Treating unknown
probability distributions is daunting, but can lead to new insights, like the following.
Instead of guessing the distribution ourselves, in some sense we can have nature do
the hard work for us: If we consider the probability distribution to be a random
variable, we can answer what principal distribution it ought to have: Invoking
the Glivenko-Cantelli theorem from Chapter 4, we know that the distribution of
distributions is normal. As such, we do not have to concern ourselves with the
derivative distribution we sample from, but instead identify the random variable
pt ≈ |Ψ(ā, a)〉 〈Ψ(ā, a)| with the variational parameters a and ā.

Before giving the exact ansatz we will finally use, let us briefly review the
expectation value of a function of a random variable described by Itō’s Lemma:

d

dt
〈f [x(t)]〉 =

〈
df [x(t)]

dt

〉
=

〈
A[x(t), t]∂xf +

1

2
B[x(t), t)]2∂2

xf

〉
, (222)

where now x(t) is a random variable, while again A(x, t) models the drift and
finally B(x, t) represents the diffusion coefficient. If we evaluate x(t) according to
the conditional probability density p(x, t|x0, t0) with initial conditions (x0, t0), then

d

dt
〈f(x[t])〉 =

∫
dxf(x)∂tp(x, t|x0, t0)

=

∫
dx

[
A[x(t), t]∂xf +

1

2
B[x(t), t)]2∂2

xf

]
p(x, t|x0, t0). (223)

The expression from Eq. (221) now has to be evaluated as a stochastic integral. For
this purpose f(x) has to be differentiable twice and p(x, t) has to be differentiable
at least one time. We give practical justifications at the end of the argument. Now,
in order to evaluate Eq. (223), we use continuity of f to write down the principal
value integral

lim
x0→x

∫
|x−x0|>ε

dx f(x, x0) ≡ −
∫
dx f(x, x0). (224)

But then, Eq. (223) is well-defined so long as p(x, t|x0, t0) is a proper probability
distribution and once differentiable. This can safely be assumed because the quan-
tum state space is convex and continuously connected. But since that is the case,
we can use the reasoning we already mentioned in the derivation of eq. Eq. (178)
and integrate by parts over f :∫

dxf(x)∂tp(x, t|x0, t0) =

∫
dxf(x)

{
− ∂x[A(x0, t)p(x, t|x0, t0)]

+
1

2
∂2
x[B(x0, t)

2p(x, t|x0, t0)]

}
(225)

+ surface terms.

This is almost the desired solution, but we have to give an argument why one
can discard the surface terms that arise from partial integration. It is precisely
the fact that p(x, t) is a probability distribution that helps us again: For any
non-singular, finite range R of

∫
dxf(x)∂tp(x, t|x0, t0), it is thus clear that the
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conditional expression p(x, t|x0, t0) vanishes unless both x ∈ R and x0 ∈ R. But
we can choose f such that this is the case.

Heuristically, this models the fact that the conditional probability p(x, t|x0, t0)
could change discontinuously if x0 crossed the boundary of the sampling region R.
But since we will in general choose R to be the quantum state space itself (or a sub-
set thereof), any states outside are either unphysical or not part of the variational
class, such that we can indeed safely ignore them. As such, no transitions will occur
over the boundary of R and the surface terms can be discarded as proposed.

Comparing this to Eq. (180) we can immediately see that they are equal:

∂tp = −∂x[A(x, t)p] +
1

2
∂2
x[B(x, t)2p], (226)

which is precisely the Fokker-Planck equation from Chapter 4 and can be treated
accordingly: The evolution of p is governed by drift A and diffusion B. The intuition
of this is that, compared to the standard solution of the Fokker-Planck equation
Eq. (181), the hermitian part H−iL†αLα is constituting the drift coefficient, whereas
the action of the Lindblad operators Lα governs the coefficients of diffusion and
Wiener process.

We now know that the problem has a solution, but we still need to derive the
new form of the TDVP flow equations. First of all, we need to adapt the language of
a multivariate process: we treat complex variables xj ∈ C, such that the respective
solution takes the form

dxj = rj(x, x, t)dt+ U jα(x, x, t)dwα, (227)

with dwα = 1√
2
(duα + idvα) being complex Wiener processes constructed by com-

plex linear combination from two real Wiener processes duα, dvα such that

〈dwαdwβ〉 = δαβdt and 〈dwαdwβ〉 = 0. (228)

Now we can put in the variational ansatz for pt into Eq. (225), to see whether the
TDVP can produce the correct drift and diffusion quantities. In fact, the vectors
Q |Ψ(a)〉 and Lα |Ψ(a)〉 are expressed as bQ

j∂aj |Ψ(a)〉 and bα
j∂aj |Ψ(a)〉 by use of

Eq. (140) and give the desired result:

∂tρt =

∫
M

[
− ∂aj (ptbQj)− c.c. + ∂ak∂āl(bα

kbα
lpt)
]
× |Ψ〉 〈Ψ| dā da. (229)

We check that the RHS of Eq. (229) has the same form as Eq. (225). We can thus
read off the corresponding Fokker-Plank equation for pt:

∂tpt = −∂aj (ptbQj)− c.c. + ∂ak∂āl
(
bα
kbα

lpt

)
. (230)

and obtain for the variational parameters a

daj(t) =
(
bjQ + 〈L̄α〉bjα

)
dt+ bjαdwα(t), (231)

where, again, we are interpreting a as a random, stochastic variable.
It is also of particular noteworthiness how one could have näıvely chosen an

ansatz of the form a = bQdt + bαdωα, where dwα(t) is a complex Wiener process
(white noise), corresponding to the linear expression d(|ψ〉) = Q |ψ〉 dt+Lα |ψ〉 dωα,
but it would fail to produce correct results, because it treats the variation on the
level of pure states (i.e. wave functions) only. Instead, we need to evaluate the
differential for the density operator d(|Ψ(ā〉 〈Ψ(a)|), essentially a product of two
random variables, and therefore again subject to Itō’s Lemma:

d(|ψ〉 〈ψ|) = |dψ〉 〈ψ|+ |ψ〉 〈dψ|+ Lα |ψ〉 〈ψ| L̄αdt. (232)

The derivation of the “magic” term 〈L̄α〉bjα can also be found in the Quantum State
Diffusion [65] method by Gisin and Percival that aims to use the same stochastic
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differential equation, albeit in full Hilbert space instead of a variational manifold.
This has the benefit of maximal accuracy, but of course scales unfavorably with the
number of particles.

By numerically integrating Eq. (231) we can evolve a pure state component
|Ψ(a)〉 of some initial ρ such that it samples the evolution of the full mixed state.
Using M such samples, properties of ρt can be approximated with an error (vari-

ance) that scales as 1/
√
M , multiplied by the truncation error of the MPS ansatz,

both of which can be controlled: While the stochastic error in practice can be made
arbitrary small by using enough (parallel) processes, the MPS error can be bounded
like in [72, 73].

In Fig. 10 we show the adapted TDVP scheme: instead of only propagating
the unitary time evolution step H |Ψ(a)〉, additional tangent components are cal-
culated from the evaluation of the Lindblad tangent vectors Lα |Ψ(a)〉, weighted by
a random process of Wiener form. This gives rise to a different perspective alto-
gether: One can understand the random process underlying the Lindblad actions
as a resource that drives the system into equilibrium. We also can be sure that this
does not suffer from local minima, because the total tangent vector is the sum of
unitary and Lindblad part. I.e. even if one of the constituents of the tangent vector
vanishes, it only slows down the convergence of the evolution.

This approach has two main benefits: First of all, sampling the trajectories of
successive tangent vectors (with intermediate projections to the variational mani-
fold, of course) can be done in parallel. In contrast to other dissipative methods,
the Monte Carlo Time-Dependent Variational Principle (MCTDVP) does
not require longer computation times due to the fact that we can evaluate sampled
evolution paths independently. The price we pay for this is quadratic expense
in total computational cost due to the stochastic standard deviation scaling with
1/
√
N . Computation power, if not needed as single-core application, has become

increasingly cheap, however. In the following section we present a scheme to effi-
ciently compute dissipative dynamics using a parallel and distributed computation
approach in Python.

3. Algorithm and implementation

We proceed by sketching the algorithm and then take a detailed look at each step.

3.1. Preparations

Before giving the formulation of the iterative scheme that lets us evolve dissipative
systems, we need to choose a suitable variational class. As we have seen, the choice
of variational parameters need not be straightforward. While we can always decide
on a bond dimension for a specific problem, this does not address computational
considerations: While we can be sure that a bond-dimension of 16/24/32 and above
will yield accurate results in most of the cases, values of even four or six may prove
sufficient to capture the relevant dynamics. Obviously, the algorithm cannot make
this choice for the operator. On the other hand, even for a well-educated physicist
any decision must be based on experience and intuition rather than area laws alone.
Finding the best tradeoff between computation time and accuracy is an art not to
be underestimated and depends highly on the system itself, on its symmetries and
interactions. The usual way of dealing with this challenge is to use both a very
small system and hoping for limited finite-size effects as well as taking educated
guesses about the entanglement behavior of the system. The aim is therefore to
increase the number of parameters in a way that we can check the general behavior
in small systems before starting the week-long calculations, that better be with the
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|Ψ(a(t))〉

TM(a)

PT |Ψ′(a)〉

H |Ψ(a)〉 ∑
α Lα |Ψ(a)〉

|Ψ(a)〉

M

Figure 10. Pictorial illustration of the variational man-
ifold M and its tangent plane T under consideration of
the Monte Carlo Time-Dependent Variational Principle.
Additional tangent vectors are calculated for the (randomly sim-
ulated) action of the dissipative Lindblad terms Lα on the state
|Ψ(a)〉 and subsequently added to the Hamiltonian tangent vector
H |Ψ(a)〉, resulting in a different position for the resulting approx-
imation of the total time evolution |Ψ′(a)〉.

correct parameter choices. This includes the drudgery of checking all observables
and basis choices.

3.2. Iteration step

After a suitable initial Matrix Product State has been constructed (or, as we will
see, randomly sampled), we make sure the vector aj of variational parameters has
the canonical form, correct normalization etc. We then apply the following steps
in order:

(1) Evaluate Eq. (231) and set aj(t+ dt) = aj(t) + daj(t).
(2) Normalize |Ψ(a)〉 and restore the canonical form for aj .
(3) Calculate expectations of interest and go back to step 1.

Let us look at the steps in detail. First of all, we cannot compute aj(t +
dt) = aj(t) + daj(t) directly, because it would be inefficient computationally, i.e. of
order O(D6). Instead, we need to calculate the two auxiliary quantities K and C,
similarly to the way they are given in Eq. (153) and Eq. (155). However, since we
are dealing with a Master equation, we have to adapt the instances of the TDVP
where in coherent systems only the Hamiltonian factors in.
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More concretely, this means that H is replaced by the expression Q: expression
Q:

K ′ −
d∑
s=1

as†K ′as + tr[K ′r]l = [(l|Haa
aa ]− hl, (233)

with [(l|Haa
aa ] =

∑
stuv

〈st|h|uv〉
(
āsāt

)†
l (auav) , (234)

where K ′ is now defined as (K ′| = (l|Qaaaa(1− E)−1.
Consequently, the auxiliary quantity C has also to be adapted:

C ′st =
∑
uv

〈st|q|uv〉 auav, (235)

where h→ q substitutes the nearest-neighbor parts of the Hamiltonian with those
from Q.

It should be noted that this simple substitution is only valid for nearest-
neighbor interactions, and as such also the Lαs have to act on nearest neighbors
only. This restriction can be lifted by applying Matrix Product Operators instead,
but has the tradeoff of slightly higher complexity [185]. We considered changing
the Gram matrices to accommodate for the more complicated impact of long-range-
interacting Lindblad operators, but decided that the gain was not worth the effort
because with MPOs one can study both long-range-interacting Hamiltonians and
dissipations of Lindblad-type.

As a final modification, the tangent vectors bjα have to be multiplied by samples
from a complex Wiener process dWα. Since SciPy has built-in support for the
normal distribution, all we need to do is make a call of the random.normal()

subroutine and feed it with the correct mean µ = 0 and variance σ =
√
dt.

Going forth, we see that the actual application of the TDVP does not change
by adding dissipation. However, we did not yet discuss the fact that through adding
the Monte Carlo part, the final result is much less accurate than for coherent real-
time evolution in the TDVP, and we have to consider the variational parameters
themselves as random variables. As such, the answer of the question we probe can
only ever be the ensemble average of many instances of it.

There are two important points to clarify. First of all, we need to express what
changes we make to the method in the Monte Carlo setting. While easy to state, the
scope of the consequences is massive. We will have to evolve many sampling paths
such that we can take the average, just like with every other Monte Carlo method.
Luckily, we can perform all of these samples in parallel, given enough computational
resources. It is worth noting though that compared to direct diagonalization the
complexity is relatively tractable. Of course the tradeoff is skewed by the fact
that we compare complexity of a deterministic process with a stochastic process.
This means in particular that although the MCTDVP can provide accuracy at an
acceptable level on average, there may be instances where this is not the case, but
they are exponentially suppressed by the fact that for each time step we do not only
sample one random number but rather a number of order of the bond dimension.
Effectively this means that convergence of non-critical systems actually improves
with more Lindblad operators due to the fact that more entanglement is produced
which can act as accelerating the driving toward a steady state if one exists.

By the way, the last remark is not connected to criticality as it can be shown
that solving critical systems itself is complicated for a multitude of theoretical
reasons based on the spectral theorem – it is a simple observation that just like
nature itself is not able to unravel critical systems, neither diagonalization nor the
MCTDVP would do particularly well.
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The question of the starting distribution, however, depends solely on the ap-
plication at hand. If, like most of the times, we are looking for the steady state of
a driven system, we expect that the initial configuration does not play a role with
regards to the results, but it does influence the convergence time. Just like any
other variational method, starting from a very entangled state far from equilibrium
means that convergence will be slow. Still, even if convergence is slow, we can be
certain to reach a global minimum. Thus, we can take the approach to just ran-
domly generate states, if we don’t have a precisely defined starting state, e.g. if we
explicitly want to model dissipation from maximally mixed states.

As an aside mention, why do we evolve each path along the variational man-
ifold separately instead of taking averages after each step? If we remember the
ansatz for the mixed state distribution in Eq. (216), we can see that the underlying
probability distribution is unknown. It is certainly true that an average of mixed
states will with measure one be a mixed state again. Although the Time-Dependent
Variational Principle is a scheme of evolving tangent vectors along the variational
manifold, the average of tangent vectors need not necessarily be a tangent vector if
the variational class does not span the full Hilbert space, i.e. the bond dimension
is finite. If we are, on the other hand, to take the average of all projections of the
tangent vectors, we find that the quantity

ρ̄(t) =
1

M

M∑
k=1

ρk(t) =
1

M

M∑
k=1

|Ψ(ak(t))〉 〈Ψ(āk(t))| (236)

is well-defined. But taking averages after each time step means that we have to sam-
ple the Monte Carlo paths of the evolution not only in parallel, but synchronously.
Instead we find that by the law of large numbers Eq. (194), the average of many
trials will be close to the expectation value and we can conclude that

〈ρ(t)〉 = lim
k→∞

ρk(t), (237)

which allows us to compare expectations. This applies to all operators A measured
by tracing over the state as tr (ρA), which allows us to apply measurements by
measuring one sample and then averaging over all sample paths.

It is fortunate that all relevant results from this methods will always be averages
of expectations, because it allows us to evolve sampling paths independently, as we
see in the next section.

3.3. Distributed computation and sampling

By now we have explained in detail how one evolution, or sampling path can be
obtained by splitting the master equation into drift part proportional to Q and a
diffusion governed by Lαdωα and how the TDVP iteration step basically stays the
same since we can come up with an adapted way of calculating the tangent vector
to the variational manifold. However, this evolution is not very accurate from the
perspective of a single sample path. Instead, we have to take the average over many
instances due to the stochastic nature of the Wiener process: The sampled time
evolutions will converge in mean-square only. While all of this process can be done
sequentially by calculating one sampling path after the other, it is much more time
efficient to evolve paths in parallel.

As mentioned in [16], the possibility, given enough computers, to evolve all
sample paths at once, opens up to treat problems of this form in an “embarrassingly
parallel” manner – basically, we can solve problems susceptible to this possibility
much faster than sequential methods, if we can only control the computation time
of the single instance. And indeed, this is the case: For dissipative dynamics as
proposed, we can have calculation times of a single evolution path comparable to
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coherent Hamiltonian real time evolutions up to a factor of the number of Lindblad
operators, which will in general, i.e. for practical systems of interest, be of order
O(10), if at all.

To exploit this feature of massive parallelizability we not only implemented
the approach to simulate dissipative dynamics given in Section 3.2, but also used
the Python programming language to build a framework allowing us to compute
sample paths in a scalable manner.

Before giving the details, we take a look at the general framework:

(1) Start the computation server and give a first number M of the sample
paths to calculate.

(2) Start the job queue subroutine and wait for computation clients to con-
nect.

(3) Once a client is connected, ask for the number of cores available at the
machine and send an appropriate number of jobs.

(4) Whenever a job is marked as finished, collect the results at the computa-
tion server and send out more jobs until M jobs have been started.

(5) Wait for all jobs to terminate.
(6) Wait for the operator to either start more jobs or execute the post-

processing subroutine.

It is worth noting how this framework [121] gives maximal freedom to the operator,
i.e. the physicist performing the simulation: At any stage of the process he has full
access to the set of results, i.e. finished time evolutions and can decide to add more
samples or export a result set to perform post-processing analyses, i.e. averaging
and plotting of results. The only downside is that a time evolution, once finished,
cannot easily be resumed.

The way the abstraction layer of the scheduler works is that of a standard
“client-server” model: At the host computer we start the corresponding python
program that will open a TCP/IP port at the network level and listen for connec-
tions. This is a fully transparent implementation using python’s multiprocessing
package. The evoMPS dissipative multiprocessing extension includes the server
executable as well as the corresponding client program.

Whenever we speak of “sufficient computational resources”, in the context of
the evoMPS dissipation extension this means we need access to O(10) standard
desktop computer systems with no special features apart from network access. For
the purpose of this thesis the maximal arsenal of computers was about three older
MacPro machines, two high-power computation servers with up-to-date (i.e. E5-
2687W as of the year 2015) Intel Xeon processors and various notebook computers.
One of the beauties of distributed, load-balanced computational grids is that there is
no need for comparable hardware. Much like the distributed computation network
BOINC (see [169]), any machine that can run Python with its SciPy and NumPy
packages can contribute to the calculation of hundreds of sample paths of a single
“experiment” – although of course faster hardware, as usual, is always better. (Note
that even though the LAPACK [27] and openBLAS [26] libraries can substantially
speed up the computations, they are not strictly necessary. Every line of code
is written in such manner that the number-crunching back-end does not rely on
optimizations available.)

In detail this means that the server has three kinds of queue modules running:
First, the job queue where every sample path subroutine is stored along with the
observables and the return format until a client connecting to the server picks some
of them up. Second, the result queue, where clients can put the results of the
sample path routines they ran. Third and finally, there is a meta queue that can be
used to communicate with individual processes, e.g. for improving load balancing
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Computing Server

Job Queue

jobs j1, . . . , jM

Workflow (Control) Queue

- notifications from clients

- orders for clients

Result Queue

result arrays R1, . . . , RM

Post-processing

- averaging

- analysis

Client 1

job 1
...

job i

Client 2

job i+ 1
...

job i+ k

...

Client m

job M − n
...

job M

Figure 11. Working of the distributed computing sched-
uling process. The clients {1, 2, . . . ,m} obtain their jobs
{1, . . . , i}, {i+ 1, . . . , i+ k}, . . . , {M − n, . . . ,M} from the specific
queue, deposit the results in the result queue, while the logistics like
load balancing are handled by the workflow queue. After enough
results are calculated, post-processing is performed on the server.

or handling crashes. If there is a fixed number of samples we want to calculate, this
should be done in the most efficient manner. That is, if the queue is empty, but
we did not get enough results because there went something wrong with regards to
network connectivity the operator should not need to manually add new jobs, but
within these narrow bounds of scheduling the calculation server can handle some
exceptions on its own.

3.4. Post-processing and analysis

After all results have been put into the results queue of the server, they can be
processed and analyzed, i.e. in general we are going to calculate averages of mea-
surements performed at certain time steps. If, for example, we are observing the
convergence behavior of an Ising model, one way of doing this is to measure the
system energy at every time step ti of the evolution and store it in an array of
memory positions, such that after the calculation is finished at N steps, we have



82 5. A MONTE CARLO TIME-DEPENDENT VARIATIONAL PRINCIPLE

M vectors of tuples ({t1, E1}, {t2, E2}, . . . , {tN , EN}), one per sample path. From
elementary statistics we know how we can calculate the average energy of all the
samples: Remember that for a time evolution of ρ(t), we have that

ρ̇(t) = etLρ(0), (238)

and thus any observable Ô we might want to measure can be calculated as

〈O(t)〉 = tr
[
OetLρ(0)

]
, (239)

such that the average expectation value over M samples simply resolves to

〈O(t)〉 =
1

M

M∑
l=1

〈O(t)〉l =
1

M

M∑
l=1

tr [Oρl(t)] =
1

M

M∑
l=1

tr
[
OetLρl(0)

]
, (240)

where ρl(t) denotes the state of the l-th sample path at time t. Note however,
that we do not have access to the full density matrix at each step, but only the
variational parameters ai. Restoring the density matrix would require to unravel
the whole chain of matrix product coefficients – an operation much less efficient
than taking expectations as shown in Eq. (98). This should once more illustrate
that the standard error of the mean X of some random variable X becomes smaller,
the more samples we can calculate – leading to the somewhat infamous statement

SEX =
sX√
N
. (241)

The quantity SEX can be easily misinterpreted as the true standard deviation of
the sample mean – which itself is defined as SDX = σ√

N
, where σ is the standard

deviation of the distribution, not the standard error of the sample ensemble, which
is defined as

sX =

√√√√ 1

M

M∑
k=1

(
Xk −X

)2
. (242)

More concretely this means that we have to distinguish between the expected values
according to the distribution we are sampling from (i.e. Wiener process based on
the normal distribution) versus the average values we get from actually sampling
the ansatz, that only approximate the “true” mean value.

To put the trade-off between sampling a quadratically growing number of samples
and the exponentially growing complexity of direct diagonalization into perspective,
we now proceed to present the systems that were actually solved with the method:

Given a two-qubit system with H = C2 ⊗ C2, we define HXZ =
∑N−1
i=1 σxi σ

x
i+1 +

λσzi σ
z
i+1 together with dissipative dynamics of the form Lα = σ+

α ∀ α. Choosing
a highly entangled MPS (within the constraints of the bond dimension), we can
cross-check the simulation results with exact diagonalization. Indeed we find good
agreement for sample number values beginning in O(100) and above. In Fig. 12,
we show the expectation value of the average spin value in z-direction. Another
instructive insight might be given by Fig. 13, where we illustrate how an average spin
expectation actually looks like: We can see that although each individual sample
is subject to random and (heuristically) misleading measurements, the average is
much closer to the ensemble expectation and the behavior we expect from the
experiment.

Usually we dedicate the computation server to fulfill the post-processing as
well, because it is not as memory-consuming as the time evolution with high bond
dimensions. Thus, it can very well be the case that post-processing a week worth
of measurements takes no longer than 30 minutes.
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Figure 12. Accuracy scaling of Monte Carlo simulation.
Expectation value of the spin value in a 2-qubit system with
average taken over both sites and N samples, where N ∈
480, 4800, 48000 with yellow, blue and red color, respectively for a
time evolution after 80 time steps of discretization size dt = 0.001.
One clearly observes that the experiments with less samples show
considerably more volatility.
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Figure 13. Sample averaging. Four sample configurations of
σz-observables of a six-site lattice depicted together with its aver-
age value, taken from a system with N = 6, HXZ =

∑5
i=1 σ

x
i σ

x
i+1+

λσzi σ
z
i+1, λ = 1 after 50 time steps of size dt = 0.001 with edge

driving L1 = σ+
1 , L2 = σ−6 . Although individual measurements

may not even qualitatively give the correct behavior, the averages
does.

4. Possible extensions

Apart from parametric changes and the aim to treat ever-increasing system size
it seems worthwhile to take a different approach. We have shown how a complex
problem like diagonalizing the generator of a Master Equation can be segmented
into evolving stochastic processes. Still, 1-to-1-mapping of computational prob-
lems is a peculiar discipline. The question whether the method can be applied to
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other problems than dissipative dynamics arises naturally. While the sampling of
unknown probability distributions is undecidable, the idea of mapping the small
problem to a larger one, like e.g. entanglement distillation, seems promising in the
sense that for the larger problem there may be a different set of tools available.

One such direction could be the research of dynamics treated with Projected
Entangled Pair States (PEPS). As an extension to Matrix Product States, PEPS
systems aim to model higher-dimensional spin systems with large success [171].
However, much like the TDVP using MPS, also the PEPS formalism cannot defy
complexity theory and has to cope with the fact that, as a rule of thumb, every
dimension will square the calculation time. Nevertheless we can observe that in two
dimensions of (unitary) time evolution one necessarily finds expressions like that
of Eq. (221) where the tensor has to be contracted over two indices, leading to a
double derivative. Although our approach does not straightaway solve that misery,
it is a solid guesswork that sampling over the state distribution could help doing
this precise operation more efficiently or at least make it parallelizable, which in
practice means a speedup for a program that would be calculated sequentially, i.e.
monolithic, otherwise.

One more perspective on using noise as a resource is to ask to what extend the
presented method can be understood as a pseudo-diagonalization of the system’s
Lindblad generator. While this sentiment is certainly false for every single time
step, this is not necessarily the case for averages of tangent vectors. Although
such methods do exist [190, 36, 144], of course, we already know that the tangent
projection of the TDVP is optimal. It could thus be worthwhile to investigate
whether the existing methods can be improved by this knowledge.

This on the other hand opens up the possibility of turning away from time
evolution dynamics toward the study of mixed states and the thermodynamic prop-
erties thereof, i.e. phase properties and ground states. By adding support for time-
dependent Hamiltonians, the algorithm can already handle adiabatic ground state
discrimination by changing the Wiener distribution to a less peaked representation.
One would have to check whether the Fokker-Planck equation is a solution of the
Master Equation in each individual instance, but that seems like an acceptable
trade-off given the fact that the treatment of mixed states is implicit.

Another approach worth mentioning is the split-step integrator proposed in [71]
that is based on the Dirac-Frenkel Time-Dependent Variational Principle, which
was proposed for Matrix Product States in [73] and would allow for long-range
interactions. A priori, there does not seem to be a general reason why this would
not be possible with long-range Lindblad operators. Still, we have to keep in mind
that in comparison to unitary dynamics a dissipative approach needs to account
for the overlap of the jump operators. This could lead to non-optimal projection
properties and thus unfavorable convergence behavior even for non-critical systems.



CHAPTER 6

Applications to the Heisenberg model

The first system we investigate both acts as a benchmark and verification example:
The spin-1/2 XXZ-Heisenberg model with edge driving has been solved analytically
[143] by T. Prosen and is the perfect candidate to replicate and improve established
results.

As already mentioned, Heisenberg chains are used to explore magnetic cou-
pling behavior and phase transitions in quasi-local system where we have particles
interacting with the next neighbor only.

Here, we explicitly restrict ourselves to cases with no external fields, because
in dissipative settings it is often not so easy to distinguish between interactions
that can be attributed to a heat bath and those that still change the energy of the
system without physical energy transfer, i.e. if we turn off the magnetic field, the
total energy of the system will be the same as it was before turning it on, but only
if no dissipation irreversibly changed the energy.

Although the matter resorts in some way or the other to preference, adding
external fields in this work will be treated by adding Lindblad operators of the
respective form. Also, even if more complex systems can be investigated in the
lab [128], the limits of homogenous models of Heisenberg or Hubbard form still
leave much room for improvement, such that the thorough numerical treatment of
systems with particles of mixed and varied characteristics is, unfortunately, still
out of reach for extensive settings. For small number of particles, however, direct
diagonalization is still the better approach.

1. Introduction

The Hamilton operator for this kind of system with N sites and closed boundary
conditions can be given as

H =

N−1∑
i

ε
[
2σ+

i σ
−
i+1 + 2σ−i σ

+
i+1 + λσzi σ

z
i+1

]
, (243)

where ε models the total interaction strength and λ models the specific exchange
term in z-direction. Note that in general there can be a constant magnetic field
of the form hσzi that acts locally, but for the matter of this investigation we set
h = 0. Because all terms represent next-neighbor interaction, we only have N − 1
terms, i.e., the 2-local terms model the couplings between two sites of the form∑
iOi⊗Oi+1, not the 1-local on-site dynamics, which can be included in the next-

neighbor formulation as operators of the form Oi⊗1i+1, like the Lindblad operators
L1 and L2 that act on the outermost sites only:

L1 = σ+
i , L2 = σ−N . (244)

Note that we omit all trivial tensor factors of the form
⊗N−1

k=2 1k that are necessary
to illustrate what the full form of the Lindblad operators on the full Hilbert space
looks like.
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Figure 14. Edge driven Heisenberg XXZ model. Average
magnetization in z-direction for a 16-site XXZ-Heisenberg model
with edge driving L1 = σ+, L2 = σ−, interaction parameters ε =
1, λ = 1, D = 24 and 300 samples. The straight line is the analytic
solution for the steady state from [143], while the dots are the
simulation results.

2. Results for edge-driven models

As can be seen from Fig. 14, the numerical solution for a small number of sites
matches the analytics from [143] so well that sampling error bars are below the
optical resolution of the plot. In fact, the deviation from the analytic solution is
below 10−3 at the center, being even more accurate at the edges due to the strong
driving regime. Since there are analytics available, the statement that calculation
of the results for 16 sites takes less than a day is of little noteworthiness. Still, the
evoMPS implementation already outperforms exact diagonalization.

It should be noted though that this specific Hamiltonian is a prime example
of a critical [173] spin system, i.e. the expected convergence to the steady state is
very slow. Even though the TDVP is not stopped by local minima, we observe that
the random noise from the Lindblad evolution somewhat amplifies the convergence
behavior: While it is true that on average the TDVP tangent vectors will point
toward an energetically correct direction, in the case of criticality some sample paths
will converge very fast, while others will take longer than average. This is due to
the fact that, although unlikely, but much like in Bernoulli statistics, there are
instances of the time evolution where the White noise from the Wiener process will
produce a few non-optimal tangent vectors in a row that can potentially throw back
the convergence by many time steps. The observation of Bernoulli-like behavior is
not limited to critical system of course, but very much overemphasized in this case.
Although possible, the treatment of edge-driven XXZ-models for example is still a
challenge: The information of the edges being driven has to be communicated to
the bulk and in a critical system this is happening exponentially slow. That means
that if we were to simulate a 100-site chain, we would not need an overly large bond
dimension, but instead wait very long for its convergence: As mentioned earlier,
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the monogamy of entanglement gives rise to an area law. Thus, moderate bond
dimensions of 16 or more are sufficient to capture the behavior of those systems –
at the expense of the speed the correlations travel at. However, even here we can
find a good detail within. Since we are interested in a steady state, there is no need
to be worried about loss of coherence due to long simulation time. The driving will
take care of it eventually because when searching for a steady state, we can be sure
that the equilibrium that eventually forms in the system under time evolution is
actually accurate up to the computational precision, and can readily be checked,
as we explain in the next section.

Still, critical systems are computationally hard to investigate anyways, that it
seems worthwhile to stress that this is not a limitation of the presented method,
but observable in any numerical treatment.

3. Probing the steady state

In numerical computations, it is often not easy to decide when a task has been
accomplished. While the search for ground states often gives an upper bound on
the ground state energy one can certify against, this is not so easy when probing for
steady states of dissipative systems. While in general the steady state with regard
to a system observable Ô is defined by

∂O

∂t
= 0, (245)

this can be hard to verify because of the white noise that accompanies each indi-
vidual time step, i.e. a steady state in Monte Carlo-TDVP time evolution will only
ever fulfill

∂O

∂t
≤
√
dt var(O). (246)

Under real conditions this means that we have to adopt a somewhat heuristic
attitude: On the one hand we know that the presented method only allows us
gain knowledge about ensemble averages in the mean, but on the other hand we
would like to be able to stop computation of a sampling path when it is reasonably
close to the steady state, which is an individual condition and thus in principle not
accessible. Although computing resources are cheap, they are not free. That means
that whenever we can stop a process and start another, one we save resources that
will – with regards to constant number of operations (although parallel) – allow to
improve the accuracy of the overall results.

This seems like a good rule-of-thumb, but fails miserably when dealing with
critical systems, because the condition of Eq. (246) is fulfilled regularly, when the
evolution temporarily sits in a local minimum. In this case all we can do is to look
at many observables and verify that all of them are in a collective steady state –
if we expect them to be, of course. However, if we think about prior examples of
criticality, i.e. many configurations with comparable amounts of energy, it is clear
that there is no way to probe them efficiently: The root cause of the criticality
is also the reason for our inability to decide the steadiness of the state: a definite
answer would require to explicitly calculate the energy variance of an exponentially
growing number of configurations – and here lies the reason for our failure: In
general, the variational class will not even allow for differentiation between those
comparable configurations.

Summarized, what we can do in such cases is to evolve the system for a long
time and many samples, obtain an ensemble average state and verify that it is
suitably close to a true steady state by evolving this result for a comparably long
time: if it stays within a noise threshold proportional to

√
dt, we can confidently

assume it to be steady. This is of course interesting for cases where the numerical
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simulation is the only reasonable prediction, i.e. a large number of sites, where we
cannot compare the results to analytics or actual lab experiments.

4. Quasi-homogenous models

4.1. Introduction

Homogeneously driven dissipative spin models pose an interesting subset of dissi-
pative Heisenberg chains. Although the prototype system that has the same local
Lindblad operator acting on every site is prone to translation-invariant treatment,
like mean field ansatzes, this class is in general non-integrable. Note the contrast
of L =

∑
α Lα, where Lα is local, to a system with one large, highly nonlocal Lind-

blad operator L̃ acting on all sites. Indeed, we find that the former has much more
symmetry that is only revealed in the stochastic mean. We call the probed system
with dissipation L quasi-homogenous, because in fact the stochastic nature of the
Lindblad action means that the dissipation is essentially the same for all sites, but
not steady with regard to single time steps.

The primary use of homogeneously driven Heisenberg models is to check for
condensed matter systems that are, for any practical use, translation invariant.
And indeed one finds that as long as translation invariance is not violated, there
are very successful methods. However, physicists know that in real systems, finite
size effects do play a role. As such, results form translation-invariant treatments
can serve as a starting point for the thorough exploration of these effects, that
can lead to much better understanding of, e.g. the behavior of a spin chain at its
boundary. We use two different Hamiltonians in the following sections: First of all
we will check an XZ-type with homogenous driving and then we will return to the
already introduced XXZ-type with bihomogenous driving, i.e. to Lindblad operators
driving one half of a chain respectively, simulating a system that is exposed to a
steep magnetic field for example.

4.2. Homogenous dissipation

At the core of the class of homogeneously driven systems lies a very simple pre-
sumption: In a lab it is mildly difficult to catch, prepare and control single quantum
particles. An easily implementable part of the experiments is thus, to enable low-
end scalability by driving every particle in the exactly same way without the need
to have multiple control mechanisms for individual particles. Granted, the amount
of knowledge one can gain from directly, individually accessible quantum particles
is much larger, but scalability is never as far advanced as the theoreticians would
like [74].

The model we look at is this:

HKX =

N−1∑
n=1

σxnσ
x
n+1 + λσznσ

z
n+1, Ln = σ+

n , n ∈ {1, . . . , N}, (247)

where compared to the XXZ-type from Eq. (243) we drop one σyσy interaction.
The main result is that we expect an anti-ferromagnetic order to form, but there is
a caveat, as we will see.

4.2.1. Results. Plotting 〈σzi 〉, we can check what form the magnetization of the
steady state of the XZ-type Heisenberg chain takes (see Fig. 15). The structure
of the Hamiltonian in Eq. (247) effectively forbids any negative z-alignment, but
nevertheless has anti-ferromagnetic order, thus we observe that every even qubit’s
z-expectation is close to zero, while the Lindblads Li = µσ+

i perform a driving that
results in increase of magnetization. Unless noted otherwise, we set µ = 1.

Another way to access the principal behavior of a spin system is to look at the
correlation function of certain observables. For random variables X and Y with
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Figure 15. Expectation value in z-direction for a KX type
Heisenberg model. Expectation value of the spin value in a 16-
qubit system with average taken over 320 samples, dt = 0.001, D =
16.

Figure 16. Correlation behavior of the XZ Heisenberg
model. 2-point correlation function for the XZ Heisenberg model
as given in Eq. (247).
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standard error (sX , sY ) it is defined as

rXY =

N∑
i=1

(Xi − X̄)(Yi − Ȳ )

(N − 1)sXsY
=

N∑
i=1

(Xi − X̄)(Yi − Ȳ )√
N∑
i=1

(Xi − X̄)2
N∑
i=1

(Yi − Ȳ )2

, (248)

we can express correlations between different observables and check for their in-
dependence. In the present application, we calculate the correlation coefficients
for different sites over the average of all sample paths, thus calculating a spatial
correlation for fixed time:

rσzi σzj (t) =

N∑
k=1

([
(σzi (t))k − σzi (t)

] [
(σzj (t))k − σzj (t)

])
√

N∑
k=1

[
(σzi (t))k − σzi (t)

]2 N∑
k=1

[
(σzj (t))k − σzj (t)

]2 , (249)

where rσzi σzj (t) is to be read as the correlation coefficient of the observables σz at site

i with σz at site j, all taken at time t. We consequently visualize the results of this
calculation in Fig. 16. One can see that the z-component of the spin-1/2 particles
are perfectly correlated: Even though we have the white noise from the Wiener-type
driving, bearing infinite variance, the average correlation over all samples replicates
the magnetization distribution depicted in Fig. 15. This is a clear indicator that
the chosen bond dimension fully captures the system dynamics, because otherwise,
while not necessarily qualitatively different, the quantitative correlation coefficients
could not be close or equal to one.

4.3. Bihomogenous case

The research of domain and phase transitions is one of the most prominent in
physics, because phase changes often drive the dynamics of systems with thermo-
dynamic properties. It is thus only logical to probe systems with contradictory
dissipation properties, like bihomogenous driving. Here, we use the same Hamil-
tonian as before, i.e., from Eq. (247), but chose different Lindblad operators

Ln = µσ+
n , if n ≤ N

2
, Ln = µσ−n else, (250)

such that there are two magnetic domains: In the left half chain we predict positive
sign for measurements of 〈σz〉, while the situation should reverse in the right half
chain.

4.4. Results for bihomogenous case

Indeed, we find that for large interaction strength ε = 1, λ = 1, µ = 1, and one
subsequently obtains two clearly distinguished domains. (See Fig. 17.) If we,
however, reduce the driving µ to values smaller than 0.75, we can observe that
the next-neighbor interaction starts to mediate the magnetization alignment in a
zone around the prior domain wall. (Compare Fig. 18).

This provides necessary insights to confidently study more dissipative systems
with domain change without the need to model the whole state space. Since these
calculations were carried out with bond dimensions D ≤ 32, we are confident that
the requirements of larger systems stay within reasonably achievable computational
efforts for at least one additional order of magnitude in chain length. This is
illustrated again by use of the 2-point correlation functions in Fig. 19. We start
with completely random mixed states, such that all correlations are identical to zero
throughout the lattice, but then are driven into the two corresponding domains,
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Figure 17. Strong bihomogenous driving regime. z-
direction of average spin values per site for strong driving (µ = 1)
with bihomogenous Lindblads according to Eq. (250), 500 sam-
ples over 1000 time steps with discretization dt = 0.001 with bond
dimension D = 16. The spins form two clearly distinguishable do-
mains of opposite alignment with a minimal overlap zone in the
center.
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Figure 18. Medium bihomogenous driving regime. z-
direction of average spin values per site for medium driving (µ =
0.75) of bihomogenous Lindblads according to Eq. (250), 500 sam-
ples, 1000 time steps, dt = 0.001 with bond dimension D = 16.
The domain interaction zone is considerably larger than in Fig. 17.
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Figure 19. Correlation function of strong bihomogenous
driving regime. 2-point correlation function for the bihomoge-
nous XZ-Heisenberg model given in Eq. (243) with the same pa-
rameters as in Fig. 18. We observe that the correlation corresponds
1-to-1 with the magnetization itself, which means that the chosen
bond dimension suffices to capture the relevant dynamics.

which can effectively be seen after 100 time steps, after which the correlations
increase in amplitude only, but do not change qualitatively.

5. Outlook

Although they have been widely studied for the last eighty years, models of Heisen-
berg type can still provide new insights into the inner working of extensive many-
body systems, especially regarding the research of larger and larger systems – an
endeavor that obviously cannot be solved by faster computers alone. Apart from
further optimizing the implementation of the dissipative extension to the evoMPS
framework, high-performance computing can potentially exploit the parallelizabil-
ity of our approach to gain insights into system with particle numbers of order
O(103) and above, most notable examples being molecule folding ansatzes of such
a form. We will discuss other models after our treatment of the Fermi-Hubbard
model in the next chapter, but it is already clear that, so long as the inner structure
of an individual site does not exceed that of its couplings, the main caveat of the
method, just like any numerical approximation, will always be the scaling behavior.



CHAPTER 7

Applications to the Fermi-Hubbard model

1. Introduction

As a second application of the method, we investigate a particular example of a
Fermi-Hubbard model. We insert a Hamiltonian of the form

HFH =

N−1∑
i,j,∆

tijc
†
i∆cj∆ + U

N∑
i

ni↑ni↓ (251)

into the Quantum master equation, where c†, c represent the creation and annihila-
tion operators more comprehensively introduced in Eq. (256) ff. on page 95, using

the number operators ni∆ = c†i∆ci∆, where i and j number the sites and ∆ counts
over the spin orientation {↑ / ↓} and apply the Lindblad operators

j
(1)
i,j,∆ =

√
γ1c
†
i,∆̄
cj,∆Pi,∆Pj,∆, (252)

j
(2)
i,j,∆ =

(
j

(1)
i,j,∆

)†
, (253)

j
(3)
i,j =

√
γ2c
†
i,↓cj,↓nj,↑, (254)

where Piσ = niσ(1 − niσ̄). Note that ∆̄ denotes a flip, such that ↑̄ = ↓ and vice
versa. These propositions are not purely theoretical, but in fact represent part of
the 40K atomic level structure as depicted in Fig. 20.

It is possible to address and control a large number of 40K atoms [149, 150]
in optical cavities and experiment with them on a quantum level, where they
show essential Fermi-statistical behavior. In detail[95], we refer to the levels |↑〉 =
| 72 ; 7

2 〉 , |↓〉 = | 92 ;− 7
2 〉, |X〉 = | 92 ,

9
2 〉.

In experimental realizations, the Lindblad operators j(1) and j(2) are imple-
mented by Raman-assisted hopping [97], while sideband-cooling [123] is used to
realize j(3). The aim of this section is to simulate the time evolution of the Master
equation in order to find steady states of this particular setup, which can be used
as starting configurations for experimental realizations of these Lindblad operators.
Note that since this is a fermionic system, ↑ / ↓ denote the spin direction of an
individual subsystem. That effectively means that instead of writing | 92 ⊗

7
2 〉 we

can use |↑↓〉 instead and be sure that it really is the state |11〉 of a two-qubit sys-
tem with labeled qubits, where we agree that the labels are (↑) and (↓). This may

|g1〉 = |↑↓, 0〉

|e1〉 = |↑ X, 0〉 |e2〉 = |↑, X〉

|g2〉 = |↑, ↓〉

t

Ωµ

γeff γeff

Figure 20. Term scheme of 40K. Experimentally coupled
m = 7/2, m = 9/2 and m = 11/2 electron levels in 40K[95].
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a)

b)

b′)

Figure 21. One-dimensional Fermi Hubbard lattice.
a) Fermi-Hubbard model on a lattice. The Hilbert space is that of
two coupled spins, their subspaces denoted (↑) and (↓). This leads
to H(↑)+(↓) = C2 ⊗ C2 = C4. For computational convenience, this
can be mapped to either b) A snake lattice with subspace order
. . . ↑↓↓↑↑↓↓↑ . . . that is 2-site-translation invariant or b’) a double
snake lattice with 1-site-translation-invariance and configuration
. . . ↑↓↑↓↑ . . .

seem overly complicated at first, but with the introduction of the Jordan-Wigner-
transformed system it will become apparent why this distinction has to be made.

2. Model-specific adaptions to the Monte Carlo TDVP

One of the questions to this system is, what value the decay γeff frequency takes. We
start by assuming that t = U = γ1 = γ2 = 1 and adapt the values both according
to experimental results [149] and numerical findings [133]. Before, though, we have
to derive the exact form of spin operators the current formulation is equivalent to,
such that we are able to feed it into the evoMPS implementation of the Monte
Carlo TDVP.

2.1. Jordan-Wigner transform

To be able to treat the system with the evoMPS implementation of the Monte Carlo
Time-Dependent Variational Principle, we first need to transform the Fermionic
Hubbard model into a spin chain. As mentioned before in Chapter 2, this can be
achieved by applying a Jordan-Wigner transformation to the creation and annihila-
tion operators c† and c. Instead of utilizing the standard form, it seems worthwhile
to make use of an equivalent, but, in this case, more elegant formulation by M.
Nielsen [126]. In place of the phase factor (see Eq. (126) for reference) at each site,
we find that multiplication with Pauli z-matrices has the same effect:

cj ≡ −

(
j−1⊗
k=1

σz

)
⊗ σj . (255)

We furthermore decide to use the ordering b’) from Fig. 25, such that we obtain
the following relations, which we show for the first two qubits of an open boundary
chain and then prove that they are translation invariant. The subscripts (1), resp.

(2) hereby denote the lattice site while the individual index without parenthesis
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represents the qubit position:

c(1),↑ = σ− ⊗ 1⊗2N−1
C2 , (256)

c†(1),↑ = σ+ ⊗ 1⊗2N−1
C2 , (257)

c(1),↓ = σz ⊗ σ− ⊗ 1⊗2N−2
C2 , (258)

c†(1),↓ = σz ⊗ σ+ ⊗ 1⊗2N−2
C2 , (259)

c(2),↑ = σz ⊗ σz ⊗ σ− ⊗ 1⊗2N−3
C2 , (260)

c†(2),↑ = σz ⊗ σz ⊗ σ+ ⊗ 1⊗2N−3
C2 , (261)

c(2),↓ = σz ⊗ σz ⊗ σz ⊗ σ− ⊗ 1⊗2N−4
C2 , (262)

c†(2),↓ = σz ⊗ σz ⊗ σz ⊗ σ+ ⊗ 1⊗2N−4
C2 , (263)

where we use the abbreviation 1⊗N =
⊗N

i=1 1 to denote the identity on untouched
subsystems. With this we can show that for the relation from Eq. (251) we get for
N = 2

HFH12 = t12c
†
1↑c2↑ + t12c

†
2↑c1↑ + t12c

†
1↓c2↓ + t12c

†
2↓c1↓

+ U
(
c†1↑c1↑c

†
1↓c1↓ + c†2↑c2↑c

†
2↓c2↓

)
(264)

= t12Ŝ12,↑ + t21Ŝ21,↑ + t12Ŝ12,↓ + t21Ŝ21,↓ + U
(
Û1 + Û2

)
,

where

Ŝ12,↑ = σ+ ⊗ σz ⊗ σ− ⊗ 1, (265)

Ŝ21,↑ = σ− ⊗ σz ⊗ σ+ ⊗ 1, (266)

Ŝ12,↓ = 1⊗−σ+ ⊗ σz ⊗ σ−, (267)

Ŝ21,↓ = 1⊗ σ− ⊗ σz ⊗ σ+, (268)

Û1 = σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1, (269)

Û2 = 1⊗ 1⊗ σ+σ− ⊗ σ+σ−, (270)

for the Hamiltonian. We furthermore observe that

σ+ = ( 0 1
0 0 ) , (271)

σ− = ( 0 0
1 0 ) , (272)

σ+σ− = ( 0 0
0 1 ) , (273)

σ−σ+ = ( 1 0
0 0 ) , (274)

and can subsequently reexpress the Lindblad operators as

j
(1)
1,2,↑ =

√
γ1

(
1⊗ σ+σz ⊗ σ− ⊗ 1

)
P1↑P2↑, (275)

j
(1)
1,2,↓ =

√
γ1

(
σ+ ⊗ σz ⊗ σz ⊗ σ−

)
P1↓P2↓, (276)

j
(1)
2,1,↑ =

√
γ1

(
σ+ ⊗ σz ⊗ σz ⊗ σ−

)
P2↑P1↑, (277)

j
(1)
2,1,↓ =

√
γ1

(
1⊗ σ+σz ⊗ σ− ⊗ 1

)
P2↓P1↓, (278)

j
(3)
1,2 =

√
γ2

(
1⊗ σ+σz ⊗ σzσ+σ− ⊗ σ−

)
, (279)

j
(3)
2,1 =

√
γ2

(
σ+σ− ⊗ σzσ− ⊗ σz ⊗ σ+

)
, (280)

(281)
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with

Pi∆ = ni∆(1− ni∆̄) = c†i∆ci∆ − c
†
i∆ci∆c

†
i∆̄
ci∆̄, (282)

P1↑ =
[(
σ+σ− ⊗ 1⊗ 1⊗ 1

)
−
(
σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1

)]
, (283)

P1↓ =
[(
1⊗ σ+σ− ⊗ 1⊗ 1

)
−
(
σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1

)]
, (284)

P2↑ =
[(
1⊗ 1⊗ σ+σ− ⊗ 1

)
−
(
1⊗ 1⊗ σ+σ− ⊗ σ+σ−

)]
, (285)

P2↓ =
[(
1⊗ 1⊗ 1⊗ σ+σ−

)
−
(
1⊗ 1⊗ σ+σ− ⊗ σ+σ−

)]
. (286)

With the relation σz · σz = 1 we can then inductively show that for larger lattice
sites we get back the canonical anti-commutation relations such that for site (3),
we obtain the relations

c(3),↑ = σz⊗4 ⊗ σ− ⊗ 1⊗2N−5
C2 , (287)

c†(3),↑ = σz⊗4 ⊗ σ+ ⊗ 1⊗2N−5
C2 , (288)

c(3),↓ = σz⊗5 ⊗ σ− ⊗ 1⊗2N−6
C2 , (289)

c†(3),↓ = σz⊗5 ⊗ σ+ ⊗ 1⊗2N−6
C2 . (290)

Calculating the respective operators of the system, we see that indeed all actions on
the first site’s subspace are even products of σz and the identity operator: First we
observe that the part of the Hamiltonian acting on sites 2 and 3, HFH23 is composed
of the following operators:

Ŝ23,↑ = σzσz ⊗ σzσz ⊗ σ+ ⊗ σz ⊗ σ− ⊗ 1, (291)

Ŝ23,↑ = σzσz ⊗ σzσz ⊗ σ− ⊗ σz ⊗ σ+ ⊗ 1, (292)

Ŝ32,↓ = σzσz ⊗ σzσz ⊗ 1⊗−σ+ ⊗ σz ⊗ σ−, (293)

Ŝ32,↓ = σzσz ⊗ σzσz ⊗ 1⊗ σ− ⊗ σz ⊗ σ+, (294)

Û2 = σzσz ⊗ σzσz ⊗ σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1, (295)

Û3 = σzσz ⊗ σzσz ⊗ 1⊗ 1⊗ σ+σ− ⊗ σ+σ−. (296)

Note that these equations deviate in notation from Eq. (265) by including the two
tensor factors of the first lattice site – given by σzσz ⊗ σzσz = 1⊗ 1 to emphasize
that all products of the form c(2),∆c(3),∆ are exactly the identity on non-relevant
tensor factors – to highlight the fact that all interactions are local with respect
to the interaction between lattice sites 2 and 3. By direct induction, this can be
shown for any N <∞ and open boundary conditions. In fact, for periodic boundary
conditions it is true as well. The only caveat in this case is that the translation
operators ON1 acting on sites N and 1 will add a phase proportional to σz for non-

quadratic terms of the form c†N,∆c1,∆. With that in mind, locality only remains to
be shown for the Lindblad operators. But since they are constructed from the same
operators, plus the projections on the on-site subspaces Pj∆, we readily check

Pi↑ =
[(
⊗(2N−2i)σzσz ⊗ σ+σ− ⊗ 1⊗ 1⊗ 1⊗ · · ·

)
−
(
⊗(2N−2i)σzσz ⊗ σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1⊗ · · ·

)]
, (297)

Pi↓ =
[(
⊗(2N−2i)σzσz ⊗ 1⊗ σ+σ− ⊗ 1⊗ 1⊗ · · ·

)
−
(
⊗(2N−2i)σzσz ⊗ σ+σ− ⊗ σ+σ− ⊗ 1⊗ 1⊗ · · ·

)]
, (298)

i.e. the projections cancel on non-relevant subspaces. However, we need to remem-
ber that the tensor product does not commute with the sums in the projectors, such
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that we need to take the sum of the tensor products, which is, for large systems,
marginally more complex.

Nevertheless this is a desirable result, because it means we can, within this
set of interactions, deconstruct any N -site valance-bond lattice we might want to
simulate into into 2N spin-1/2 qubits of the presented form.

2.2. Algorithm

evoMPS can treat at most 3-site-interactions, but, in fact, the jump operators j
(3)
ji

are 4-local. Thus, we need to employ a trick to be able to simulate the dynamics: We
realize that the deconstruction of the valence-bond picture was useful in undertaking
the Jordan-Wigner transform, but now have to recompose the (↑), (↓) subspaces into
one tensor factor as input for the evoMPS algorithm. The resulting scheme is thus

mapped to an N -site lattice again, with local dimension
(
C2
)2

= C4. This is an
admissible tradeoff because we have at most 2-local interaction terms to treat.
In essence this means that with the preparations of the previous section we can
apply the algorithm given in Chapter 5 right away, with the only change being the
values of the jump operators and the Hamiltonian and the fact that there are more
than one jump operator per site, but this poses, as already explained, no general
problem.
Still, we need to briefly address the impact on computational complexity, given

that we do have five jump operators per pair of interacting sites, j
(1)
↑ , j

(1)
↓ , j

(2)
↑ , j

(2)
↓

and j(3). Unfortunately, it is necessary to recalculate the whole set of prerequisite
matrices K and C given in Eqs. (153) and (155), respectively. That means that
we have to account for an increase in computation time by a factor O(|α|), |α|
being the number of jump operators to be evaluated. Considering that increased
accuracy calls for O(M2) parallel samples, this seems like an acceptable tradeoff,
because it has considerably more impact on the algorithm. That being said, we were
comfortably able to perform investigations on a system of 8-10 sites, the results of
which are presented in the next section.

2.3. Results for the one-dimensional case

The first step in any new model is to verify your results against an established
results base. In cases were no analytic results are available, i.e. when numeric results
are actually scientifically meaningful, the gold standard has always been to check
against direct diagonalization with as large systems as possible, before increasing
the lattice size of the approximate numeric method beyond the reach of the exact
methods. An additional benefit of the MPS approach is that we can always run
exact TDVP calculations as well – one calculates the maximal Schmidt rank of the
interactions present and chooses the bond dimension accordingly. Obviously, this
is limited to the same size as the diagonalization approach but provides a good
benchmark nevertheless.

Thus, before explaining results of extensive lattice sizes, we give a direct com-
parison of diagonalization with an exact TDVP treatment of a 2-site system. Before,
we highlight the stochastic nature of the observed process by plotting the sample
path of a single time evolution instance in Fig. 22.

We can already see some very interesting observations about the behavior of
the system: Starting from the pure state |↑, 0〉, the total occupation number will
stay close to one, i.e. per site there is at all times only about one particle, although
up to two would be allowed. We will later see that this behavior can also be found
in the larger system because it is the (energetically) preferred configuration of the

interaction terms c†i cj in the Hamiltonian. Though not the only useful measure of
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Figure 22. Example of driven Fermi-Hubbard time evolu-
tion. Occupation number for 2-site simulation (per site). 1 sam-
ple only. The system parameters are t = 1, U = 100,

√
γ1 = 1,

√
γ2 =

√
2, D = 16, dt = 0.001, 3 · 104 time steps.

Figure 23. Time evolution plot of diagonal elements. Di-
agonal elements of the density matrix for lattice length 8. The
system parameters are as in Fig. 22, but for 103 samples.

the Fermi-Hubbard dynamics, the occupation number often highlights the macro-
scopic behavior best insofar as the perspective of a magnet is concerned: We show
that indeed the defined dissipation has a realization of anti-ferromagnetic alignment
of spins as its steady state, and this can be deduced from occupation number and
double occupation probability. In Fig. 27 we show the diagonal elements of the
reduced one-site density matrix for a lattice of N = 8 sites, followed by the relevant
system properties in Fig. 24.



3. TREATMENT OF HIGHER SPATIAL DIMENSIONS 99

Figure 24. Relevant observables of a lattice with 8 sites.
Occupation number, both for total particle count N (per site) as
well as the subsystems N↑and N↓. Furthermore the plot contains
1-site entropy, magnetization and double occupation probability.
The system parameters are as in Fig. 22, but for 103 samples.

The starting configuration has been chosen as before, but composed through
the lattice, i.e.

N⊗
i=1

|↑, 0〉 . (299)

As expected, the occupation numbers are qualitatively similar, although we have an
increase of particle count before the magnetization evens out. We see that the steady
state has an equal number of ↑- and ↓-components, which already points toward
an anti-ferromagnetic alignment, but unlike the 2-site case, from these observables
alone we could be missing the fact that there are configurations like ↑↑↓↓ in between.
To this end we calculate the reduced density matrix of all neighboring sites and
measure the 2-site operator 1√

2
(|↑ 0, 0 ↓〉 〈↑ 0, 0 ↓|) + 1√

2
(|0 ↓, ↑ 0〉 〈0 ↓, ↑ 0|).

3. Treatment of higher spatial dimensions

Since the one-dimensional treatment of the given system has shown that there were
some reserves on the computational side, it was a somewhat straightforward idea to
see whether the scheme can be extended further. Using the same convolution trick
we explained in Section 2.2 we now not only compose two qubits of one physical
side together, but all sites of a horizontal slice through an extended square lattice.
Although this is obviously expensive, it is still much less expensive than direct
diagonalization. Considering 4 by 4 sites, i.e., N = 16, the full Hilbert space
dimension would be 4N ≈ 4 · 109, a size for which direct diagonalization is only
possible on a computation cluster. Given, we make use of a grid as well, but
would not have to: A single consumer-range machine could solve the task within
its memory capacity, although it would mean to calculate successive number of
sample for a long time, given that the local dimension is 44 = 256, so we actually
have only four sites and can choose a suitable bond dimension. Thus, the magnitude
of the computation utilizing evoMPS-MCTDVP is manageable.
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Figure 25. Two-dimensional Fermi Hubbard lattice.
Since evoMPS can only handle one-dimensional lattices in prin-
ciple, we need to adapt the lattice representation in order to treat
higher-dimensional systems: Note how we draw a snake through
the lattice to map it to one-dimension (red arrows): First, we com-
pose the two local subspaces like before (black ellipses) and then
go all the way through one supersite (blue dashed area). We then
move to the very top of the next supersite and repeat the pattern.

In fact, one could even argue that in higher dimensions, the type of problem, namely
solving the evolution of a supersite MPS changes considerable, i.e. we observe that
for supersites the computation time is no longer the dominant limitation: For e.g.
a 2x2 lattice we have 4 local sites of dimension 4. While the state space of the
supersite alone is 4× 4 = 16, the interaction space of the next-neighbor-operator is
already of dimension 256.

Further enhancement of the spatial dimensionality is possible, because the
method of obtaining a (d + 1)-dimensional snake from a d-dimensional snake is
straightforward: One copies the present supersites m times to get a lattice of size
d ×m and then proceeds to connect the sites as before, with one more turn than
before. In fact, the following statement is true for rectangular lattices with next-
neighbor-interactions: We can always find a snake with d − 1 turns. Although,
this does not necessarily minimize the crucial parameter of supersite state space,
which grows exponentially with the supersite size. Thus, it might be necessary to
chose more complicated snakes, e.g. by utilizing the famous shortest-path-algorithm
by E.W. Dijkstra [37]. Since this question would become more pressing for larger
graphs, we instead proceed to present the results for the 2-dimensional Fermi-
Hubbard systems we studied, because for all computationally tractable supersite
dimensions the quantumly exponential increase of complexity is much more appar-
ent than optimizations of the graph could trade off.

3.1. The memory scaling problem

After all, the snake construction is not the philosopher’s stone of many-body physics
for many of the reasons explained in the introduction of Chapter 5. Still, even in
the implementation the most pressing issue is the exponential scaling of the state
space size, and thus, the degrees of freedom the representation of the supersite is
composed of. While supersites composed of two and three single sites exhibit local
dimensions of 16× 16 and 256× 256 respectively, the size of the related interaction
terms demands the squared dimension:

NS = 4⇒dimInteraction(NS) = 65536 ≈ 64 GB. (300)
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Supersite size Memory requirement Sparse memory requirement

2 1 MB 77 KB
3 256 MB 3.2 MB
4 64 GB 1.5 GB

Table 1. Memory comparison for different lattice sizes.
One can clearly see the exponential growth of the memory require-
ments for increasing lattice dimensions. In particular in compari-
son to the sparse memory allocation, the amount of “unnecessary”
overhead, following from the fact that large parts of the respective
matrices are filled with zeros, is striking.

Figure 26. Counting of graph bonds. For the matter of
bounding the maximal amount of memory the interaction oper-
ators will occupy we have to count every edge twice: The term
Hji is quantitatively different from Hij and effectively doubles the
amount of memory we need per edge. The same is, of course, true
for the Lindblad operators j1, . . . , j3.

We can see that for the internal dimension of NS = 4, the memory required only
for storing a single interaction matrix is so huge that only specialized machines can
store them. However, for practical purposes we have more than one interaction
term, such that for a system of 4×4 sites (given that the smaller spatial dimension
always is turned into the supersite) we have 24 × 2 × 6 = 192 interaction terms
because we have to count each edge twice (since Hij 6= Hji) and multiply by the 6
different types of operators: The Hamiltonian part and the five Lindblad terms.

Luckily, the matrices we are talking about are generally sparse: To model a
single interaction we generally find that no more than

√
dimInteraction(NS) elements

of the matrix are non-zero, and they do not require the maximal 128 bit-accuracy
of the NumPy package, but are integers, such that we could reduce the memory
requirements immensely:

By using the sparse matrix implementation from the SciPy library
sp.sparse.coo matrix, we were able to reduce the memory needed by two orders
of magnitude on average. This finding is illustrated in Fig. 27. However, it turns out
that the data type we want to use is not fully implemented in Python 2.7.: Addition
and multiplication, which was all we need for the preprocessing of the interaction
operators, had to be implemented on our own. While this format can be converted
to the usual np.ndarray format, there is no transparent overloading available with-
out breaking compatibility with the evoMPS implementation: As a consequence,
whenever an interaction matrix is needed for a calculation, the respective ndarray
is initialized and the sparse matrix is converted such that the operation can be
performed by the optimized evoMPS operation. After the calculation is complete,
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Figure 27. Sparse array representation. Pictorial represen-

tation of j
(3)
12 in a system with super site dimension 2. The matrix

dimension of the operator is 256 × 256, but there are 8 non-zero
elements only (black dots), i.e. 97% of the allocated memory can
be cut.

the memory has to be unallocated, because there can not be many instances of
such big matrices within the RAM. While this tradeoff is worthwhile for large su-
per sites, future implementations should circumvent this problem by implementing
the TDVP in a way that fully supports sparse matrices as interaction terms.

The presented issue is the symptom of a much deeper lying systematic intri-
cacy: In contrast to compiled languages like Fortran or C, Python is an interpreted
language. This first and foremost means that heavy numeric calculations are slower
if the code is not optimized. This is no problem since in general one can use the
Python wrapper for the BLAS and LAPACK libraries. One of the characteristics of
interpreted languages, however, is that the memory allocation is usually done in a
way called lazy evaluation: Whenever an expression is assigned, only the part that
is needed is evaluated. For a large matrix, it depends on the data type whether
at time of evaluation the memory can actually be assigned, irrespective of the fact
that it was declared before. On windows machines this leads to two problems: First
of all, the maximal amount of memory that can be assigned is limited due to the
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fact that Python’s memory controller cannot be sure never to need more memory
for operations that take place before the big chunk of assigned memory is accessed,
which means that without very tricky memory allocation we can not certify that
the big matrix of 65536× 65536 entries (i.e. the size of the interaction matrix with
supersite size of 4) can be allocated.

As an additional treat one has to keep track of the memory and explicitly
delete even implicit allocations, because again the lazy evaluation means that the
memory controller (in this instance referred to as garbage collector) does not delete
unneeded memory just because the namespace ended. In a way, of course, this
criticism is unfair, because in a compiled language one would also have to deal with
memory management. In Python, however, it is worse because apart from explicitly
deleting large matrices and hoping that the memory gets unallocated, there is not
much one can do. In the end, we resorted to a rather lengthy probing game where
every conceivable memory error that could come up while initializing a matrix was
handled with the appropriate exception.

It seems opportune to ask whether further optimizations could lead to the treat-
ment of even larger systems, and that is the case: In its present form, evoMPS stores
the intermediate quantities K and C in array for performance reasons. However,
they are of size qn× qn×D×D, which is quite large for systems utilizing the super
site formalism. Luckily, the TDVP can sweep through the lattice, such that every
calculation of a tangent vector b only depends on the results for the preceding two
sites. For large lattices, serializing these calculations and only allocating memory
where necessary could save memory on the order of (N −2)×D×D at the expense
of calculation and memory allocation time. However, for systems so large that this
would make a difference, the sheer size of the interaction matrices will dominate all
of these complexity considerations by far.

3.2. Results for the two-dimensional case

We apply the same observables to the system and shall compare the results to the
one-dimensional case. It seems interesting to see whether the qualitative behavior
changes, especially with regards to the expected anti-ferromagnetic ordering be-
havior. While there are methods based on superpositions of matrix product states
[133] and of course based on projected entangles pair states (PEPS) [185, 34], this
is to our knowledge the first proposition of a treatment of higher spatial dimensions
with Matrix Product States alone.

First of all we notice that, although not surprising, the two-dimensional be-
havior of the Fermi-Hubbard system is similar. We expect to see mildly different
steady states for the simple fact that in a 2-d lattice the entanglement structure
has a different geometry, i.e. accounting for the fact that an individual site will
have 3 or 4 bonds depending on whether they sit at the edge of the lattice or in the
bulk. We proceed by giving the same measurements as in the one-dimensional case.
For the diagonal elements of the reduced density matrix (see Fig. 28) we find good
agreement with the one-dimensional case, but this is clear: Projecting the state to
its single-site subspace must reveal its classical properties, which are, due to the
same interactions, identical.

When we look at the more intricate observables of Fig. 29, however, we see that
although the occupation numbers are comparable in the mean, we get a slightly
different convergence behavior. There are two mechanism competing with each
other: On the one hand, the system is two-dimensional, which means that with a
higher density of bonds between sites we expect the dissipation to have even larger
impact, but on the other hand the convergence is largely driven by the entanglement
transport throughout the lattice, which is inhibited by frustrations stemming from
the fact that there are so many bonds per site in the bulk.
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Figure 28. Time evolution plot of diagonal elements. Di-
agonal elements of the density matrix for a square lattice with
2×2 sites. The system parameters are t = 1, U = 100,

√
γ1 = 1,

√
γ2 =

√
2, D = 16, dt = 0.001, 3 · 104 time steps, 250 samples.

Figure 29. Relevant observables of a 2 × 2 square lattice.
Occupation number, both for total particle count N (per site) as
well as the subsystems N↑and N↓. Furthermore the plot contains
1-site entropy, magnetization and double occupation probability.
The system parameters are as in Fig. 28.

Actually, this finding is expected to be an even larger problem in three dimen-
sions: Limited by the monogamy of entanglement, sites with up to six bonds will
either frustrate the lattice due to non-satisfiable conditions on the level of occupa-
tion or decohere into product states due to the fact that the amount of entanglement
per bond is very low.

Even more interesting thus is the question how the double occupation probabil-
ity behaves. Although the total number of occupations is moderated to be constant
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(lattice dimension)

DOmax

0

0.1

0.2

0.3

2×2 2×3 2×4 2×5 2×6

Figure 30. Comparison of double occupations for varying
spatial extension of a square lattice. We compare the maximal
value of the double occupation diagonal element |↑, ↓〉 〈↑, ↓| for one
increasing spatial dimension. The error becomes larger with higher
number of sites because we chose to decrease the number of samples
at the same time to accommodate for the increased runtime. The
system parameters are as in Fig. 28 except for the sample number.
Those are 2×2 : 250, 2×3 : 200, 2×4 : 150, 2×5 : 100, 2×6 : 100.

by magnetic part of the Hamiltonian, the dissipation drives it away from equilib-
rium and is counteracted by the correlation structure of the lattice. Indeed we find
(see Fig. 30) that for increasing one spatial dimension, i.e. going from 2×2 to 2×4,
the maximal double occupation probability decreases as the lattice is less squared
and behaves more like a double chain. Although we expect the double occupation
to vanish in the steady state, the comparison of the equilibration behavior of the
system for different sizes (e.g. 2× 2, 2× 3, 2× 4) gives extended intuition into its
correlation structure: It is a very uncommon event that at more than one site a
particle is created from the driving. Since the situation where two particles |↑, ↓〉
occupy the same site is energetically unfavorable, the lattice “absorbs” the particle
into a superposition. This process faster in more extensive lattices due to its larger
entanglement structure.

4. Outlook

There are two very interesting ideas to discuss in the Fermi-Hubbard setting. Apart
from introducing other forms of dissipation, it now seems clear that in a one-
dimensional chain we can use the snake-method to build super sites of two or pos-
sibly more logical sites to enable the evoMPS implementation to treat interactions
more complex than next-neighbor or next-nearest-neighbor.

4.1. One-dimensional super sites

In fact, a simple estimation can be made to evaluate the maximal size of the super
sites: Assuming consumer-level computation resources, we are limited by 16 GB of
RAM, which in turn would be the maximal size a single interaction term could take
up. Given that both the bond dimension be negligible (such that the total memory
size of the MPS is very small compared to the interaction terms) and all operators
build at runtime, such that only the MPS and the current interaction term need
be present in the memory, we can estimate the maximal super site size minimizing
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the expression

qnmax =
Cmem

256 ∗ q2N
n

, qnmax > 1, (301)

where Cmem is the amount of available memory. The number 256 comes from the
fact that one generally would use 128-bit floats, which takes up 256 bits given that
every degree of freedom is complex. For the aforementioned 16 GB and Fermi-
Hubbard-type logical sites of dimension qn = 4, we can see that this would be
equal to

1

137438953472
· 16N < 1 (302)

⇔ N < 9.25, (303)

which gives an upper bound of super sites that can consist of 4 logical sites given
the fact that the interaction operator will have squared super site dimension, thus
facilitating a maximum of 7-next-nearest-neighbor actions to every site of the chain.
This is obviously very similar to ’classical’ DMRG approaches in the sense that there
is a central super block that can be treated very accurately that is connected loosely
to its edges. However, it has to be noted that there are conceptual differences. Using
the MPS form of the total chain, the truncation error can also be estimated like
a normal MPS and controlled via the value of the bond dimension between the
super sites. Also, we still use the variational principle and not diagonalization,
thus enabling us to sweep through the lattice, which, in theory, should keep the
convergence on levels comparable to standard MPS approaches. Nevertheless, the
full scope of this approach could not be examined in this dissertation and should be
approached in future works, especially with regards to dissipative systems. While
we have shown that local and next-neighbor Lindblad operators can be treated,
using super sites to enable treatment of more complicated dissipation models seems
absolutely worthwhile.

4.2. Nested MPS

Even more radical however is the following approach: Given the fact that we can
decompose high-dimensional systems into super sites that contain the full Hilbert
space of its constituents, it is only consequential to ask whether we can treat these
super sites more efficiently to reduce its limiting impact on not only the memory
usage but also computation time. The usual way would be to either resort to
using next-neighbor Matrix Product Operators in order to incorporate the long-
range interactions following the snake approach or straightaway decomposing the
interaction into an MPO with true long-range interaction as has been done in, e.g.
[140]. Recalling that we had to develop this data structure to be able to map terms
of next-neighbor-interactions that would not be next-neighbor in higher dimensions,
it would be too easy to simply conjecture that super sites can be formulated as
Matrix Product States. However, this is what we do. And at least for the states
on the lattice, it is obvious that this approach works: Considering the super sites
as tensor products of single sites, we would get the standard MPS decomposition
of the form

|Ψsuper〉 =

1∑
i1=0

1∑
i2=0

· · ·
1∑

in=0

ci1···iN

N⊗
j=1

|ij〉 . (304)

But this is just a product state with D2 · d · N parameters. As such, we can use
its span, i.e. the variational class, as basis vectors for the high-level matrix product
state. Using the super index β as a means of counting the elements |iNj 〉, we can
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write the nested MPS for M super sites using |β〉 ∈ span(|iNj 〉)

|Ψtotal〉 =

1∑
β1=0

2∑
β2=0

· · ·
M∑

βn=0

cβ1···βM

M⊗
l=1

|βl〉 (305)

=

1∑
β1=0

1∑
β2=0

· · ·
1∑

βn=0

cβ1···βM

M⊗
l=1

 1∑
i1=0

1∑
i2=0

· · ·
1∑

in=0

ci1···iN

N⊗
j=1

|βlij 〉

 . (306)

Although this looks more like a tensor network, it still is a one-dimensional chain
of length M ·N . While one can see that in this way of writing the state it is just a
re-indexed MPS, there is no need to restrict to uniform basis states |βlk〉 = |βlk+1

〉.
Precisely this property might be the benefit of a logically rearranging: We are
able to couple clusters of matrix product states with local interactions and defer
any long-range interactions to the outer matrix product. Although it does not
solve the problem of long-range interactions straight away, one might be able to
engineer outer variational classes to be tractable with the same methods as the
inner variational classes, albeit different dynamics.

Whether operators can be mapped to obey the conditions from two (or more)
nested MPS constructions is completely unclear at the moment, as is the question
whether one can find suitable classes that are reasonably physical. Further research
in this direction nevertheless seems worthwhile, because even if this worked only
for next-neighbor interactions, it would potentially enable treatment of much larger
systems.





Conclusion

Dissipative systems are hard to solve – and, unsurprisingly, this dissertation could
not change that fact. However, we have shown that the treatment of problems
that can be represented as spin chains with respective interactions, indeed has seen
considerable advances.

The presented method of adding Monte Carlo-sampled dissipation to the well-
established Time-Dependent Variational principle enables future research of sys-
tems previously regarded too complicated for treatment. It has to be noted that
the Monte Carlo Time-Dependent Variational Principle is stochastic in nature, i.e.
it can only give results about averages of observables – although this is not to
be considered a general limitation since thermodynamic processes like dissipation
hardly ever are exactly solvable.

We have furthermore shown that the computation scheme can be scaled (al-
most) arbitrarily, such that much larger quantum systems are within reach of high-
performance applications because the MCTDVP trades complexity of the individual
task in terms of memory and computation time with the number of samples to be
calculated.

Summing up Chapters 6 and 7, we have seen how to study and examine
Heisenberg and Fermi-Hubbard models – the two most common and theoretically
rich examples of both well-established, yet not-fully-understood systems where the
present approach can push the boundaries of the understanding of Condensed Mat-
ter Physics, Quantum Information and Thermodynamics into the previously un-
known.

The problems encountered while applying the super site-snake algorithm to
higher-dimensional Fermi-Hubbard models also marks the entry into uncharted
territory as far as numeric libraries are concerned: Although there were neither se-
cret nor overly complicated methods involved, the maturing from the pre-compiled
packages at our disposal shows that some of the advances are truly unprecedented –
although their use deserves further benchmarking in regards to both computational
optimization as well as physical benefit.

We gave examples of both critical and well-converging models to see that the
limitations of limited convergence in frustrated systems – still, the MCTDVP does
here not perform worse than comparable methods. We then went on to propose
setups in high-performance computing that could make previously unreachable
amounts of particles treatable as well as pointed out that the specific way of un-
raveling the master equation we use could be suited to solving systems with higher
spatial dimensions, because the stochastic nature of the MCTDVP mimics quasi-
diagonalization of the semigroup generator, i.e. if the requirements of the PEPS
configurations in question can be properly bounded, nested versions of our ap-
proach can be used to simulate solving the multi-dimensional PEPS evolution.

Complementing the comments from the previous chapters about extensions and
applications of the Monte Carlo Time-Dependent Variational Principle, in Chap-
ter 7 we gave a solid proposition of one straightforward extension that would al-
low for the treatment of more complicated systems, most notably two-dimensional
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Hubbard models. It would certainly be interesting to see an implementation that
is based on the current state-of-the-art, but could not be ventured within the scope
of this dissertation. Nevertheless, the fact that the opportunities this work opens
up regarding dissipative dynamics on Quantum spin chains are not exhaustively
accounted for is actually a good thing from the scientific point of view: As dwarfs
on the shoulders of other dwarfs on the shoulders of giants, it may not always
be possible to know what to look for, but it is certainly good if we have better
binoculars.

As such, it is the utmost hope of the author that the present dissertation can
act as a refined tool for finding undiscovered physics – in other words, to continue
the journey to where no dwarf – and no giant, for that matter – has gone before.



Appendix. List of tables

1 Memory comparison for different lattice sizes. One can clearly see
the exponential growth of the memory requirements for increasing lattice
dimensions. In particular in comparison to the sparse memory allocation,
the amount of “unnecessary” overhead, following from the fact that large
parts of the respective matrices are filled with zeros, is striking. 101
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1 The Bloch sphere. The 2-dimensional state space of a qubit with basis
states |↑〉 = r and |↓〉 = −r along the central axis. The convex hull is
spanned by the polar decomposition (r, θ, φ) of the convex combinations
|ψ〉 = cos

(
θ
2

)
|↓〉+ eiφ sin

(
θ
2

)
|↑〉 = cos

(
θ
2

)
|↓〉+ (cosφ+ i sinφ) sin

(
θ
2

)
|↑〉. 16

2 Conditional entropy. Entropy overview for two non-separable random
variables: The blue and green circles stand for the entropies H(X) and
H(Y ) respectively, while the parts without the intersection give the
conditional entropies H(X|Y ) and H(Y |X). The central, overlapping part
is the mutual information I(X,Y ) and both sets together form the joint
entropy H(X,Y ). 20

3 Exemplary lattice configurations. a) One-dimensional lattice with
next-neighbor edges. b) (Two-dimensional) square lattice. c) Honeycomb
lattice: vertices are connected in a hexagonal pattern. d) Irregular lattice:
without translation invariance, this example is that of an arbitrary graph. 28

4 Boundary of a sublattice. ∂I is given by the blue nodes of the graph,
because they share edges with nodes from outside the sublattice. a)
One-dimensional lattice. b) Two-dimensional, non-regular example. Note
that only one of the sites in the set I does not belong to its boundary,
because of the geometry of the set. 30

5 Valence bond theory. One virtual lattice site consists of two atoms
with one unpaired electron each. Either one of the two spins in such a
bond then interacts with one of the spatial nearest neighbors, such that
the resulting lattice has alternating pairs of spins connected physically and
virtually. 32

6 DMRG iteration scheme. In the first step, the half-chain block [B] is
diagonalized to find its approximate ground state. Afterward, a smaller
block [a], comprised of one site (and possibly, but rarely more sites), is
added at the center of the total chain. The superblock [B a] then is treated
as the new block [Bnew]. The dual [B’] is used to either model a heat
bath coupling or for providing proper boundary conditions in case of finite
length. 37

7 Frustrated system. Given a system of three mutually connected sites of
qubit dimension representing spin orientation, it is easy to show how to
geometrically frustrate that system. With the proposition that neighboring
spins should, by action of the system Hamiltonian H, align anti-parallel,
this can obviously not lead to a self-consistent ground state for the depicted
graph. 42

8 Pictorial illustration of the variational manifold M and its
tangent plane T. The path of the variational flow, represented by the
Matrix Product State |Ψ(a(t))〉, on the variational manifold M(a), is
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shown together with its derivatives ∂i |Ψ(a)〉 and ∂j |Ψ(a)〉 with respect
to variational parameters ai, aj at time t. The shaded area below
depicts the tangent plane TM(a), to which the discretely with respect to
time propagated state H |Ψ(a)〉 is projected, resulting in the expression
PTH |Ψ(a)〉. 51

9 Example of Brownian motion. Simulated Markov process with drift
coefficient µ = 0.5, volatility σ = 0.3 and time discretization of 0.01 as
given in Eq. (186). 61

10 Pictorial illustration of the variational manifold M and its
tangent plane T under consideration of the Monte Carlo Time-
Dependent Variational Principle. Additional tangent vectors are
calculated for the (randomly simulated) action of the dissipative Lindblad
terms Lα on the state |Ψ(a)〉 and subsequently added to the Hamiltonian
tangent vector H |Ψ(a)〉, resulting in a different position for the resulting
approximation of the total time evolution |Ψ′(a)〉. 77

11 Working of the distributed computing scheduling process. The
clients {1, 2, . . . ,m} obtain their jobs {1, . . . , i}, {i+1, . . . , i+k}, . . . , {M −
n, . . . ,M} from the specific queue, deposit the results in the result queue,
while the logistics like load balancing are handled by the workflow queue.
After enough results are calculated, post-processing is performed on the
server. 81

12 Accuracy scaling of Monte Carlo simulation. Expectation value of
the spin value in a 2-qubit system with average taken over both sites and
N samples, where N ∈ 480, 4800, 48000 with yellow, blue and red color,
respectively for a time evolution after 80 time steps of discretization size
dt = 0.001. One clearly observes that the experiments with less samples
show considerably more volatility. 83

13 Sample averaging. Four sample configurations of σz-observables of a
six-site lattice depicted together with its average value, taken from a
system with N = 6, HXZ =

∑5
i=1 σ

x
i σ

x
i+1 + λσzi σ

z
i+1, λ = 1 after 50 time

steps of size dt = 0.001 with edge driving L1 = σ+
1 , L2 = σ−6 . Although

individual measurements may not even qualitatively give the correct
behavior, the averages does. 83

14 Edge driven Heisenberg XXZ model. Average magnetization
in z-direction for a 16-site XXZ-Heisenberg model with edge driving
L1 = σ+, L2 = σ−, interaction parameters ε = 1, λ = 1, D = 24 and 300
samples. The straight line is the analytic solution for the steady state from
[143], while the dots are the simulation results. 86

15 Expectation value in z-direction for a KX type Heisenberg
model. Expectation value of the spin value in a 16-qubit system with
average taken over 320 samples, dt = 0.001, D = 16. 89

16 Correlation behavior of the XZ Heisenberg model. 2-point
correlation function for the XZ Heisenberg model as given in Eq. (247). 89

17 Strong bihomogenous driving regime. z-direction of average spin
values per site for strong driving (µ = 1) with bihomogenous Lindblads
according to Eq. (250), 500 samples over 1000 time steps with discretization
dt = 0.001 with bond dimension D = 16. The spins form two clearly
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distinguishable domains of opposite alignment with a minimal overlap zone
in the center. 91

18 Medium bihomogenous driving regime. z-direction of average spin
values per site for medium driving (µ = 0.75) of bihomogenous Lindblads
according to Eq. (250), 500 samples, 1000 time steps, dt = 0.001 with bond
dimension D = 16. The domain interaction zone is considerably larger
than in Fig. 17. 91

19 Correlation function of strong bihomogenous driving regime.
2-point correlation function for the bihomogenous XZ-Heisenberg model
given in Eq. (243) with the same parameters as in Fig. 18. We observe
that the correlation corresponds 1-to-1 with the magnetization itself, which
means that the chosen bond dimension suffices to capture the relevant
dynamics. 92

20 Term scheme of 40K. Experimentally coupled m = 7/2, m = 9/2 and
m = 11/2 electron levels in 40K[95]. 93

21 One-dimensional Fermi Hubbard lattice. a)
Fermi-Hubbard model on a lattice. The Hilbert space is that of two
coupled spins, their subspaces denoted (↑) and (↓). This leads to
H(↑)+(↓) = C2 ⊗ C2 = C4. For computational convenience, this
can be mapped to either b) A snake lattice with subspace order
. . . ↑↓↓↑↑↓↓↑ . . . that is 2-site-translation invariant or b’) a double
snake lattice with 1-site-translation-invariance and configuration
. . . ↑↓↑↓↑ . . . 94

22 Example of driven Fermi-Hubbard time evolution. Occupation
number for 2-site simulation (per site). 1 sample only. The system

parameters are t = 1, U = 100,
√
γ1 = 1,

√
γ2 =

√
2, D = 16, dt = 0.001,

3 · 104 time steps. 98

23 Time evolution plot of diagonal elements. Diagonal elements of
the density matrix for lattice length 8. The system parameters are as in
Fig. 22, but for 103 samples. 98

24 Relevant observables of a lattice with 8 sites. Occupation number,
both for total particle count N (per site) as well as the subsystems N↑and
N↓. Furthermore the plot contains 1-site entropy, magnetization and
double occupation probability. The system parameters are as in Fig. 22,
but for 103 samples. 99

25 Two-dimensional Fermi Hubbard lattice. Since
evoMPS can only handle one-dimensional lattices in principle, we need
to adapt the lattice representation in order to treat higher-dimensional
systems: Note how we draw a snake through the lattice to map it to
one-dimension (red arrows): First, we compose the two local subspaces
like before (black ellipses) and then go all the way through one supersite
(blue dashed area). We then move to the very top of the next supersite
and repeat the pattern. 100

26 Counting of graph bonds. For the matter of bounding the maximal
amount of memory the interaction operators will occupy we have to count
every edge twice: The term Hji is quantitatively different from Hij and
effectively doubles the amount of memory we need per edge. The same is,
of course, true for the Lindblad operators j1, . . . , j3. 101
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27 Sparse array representation. Pictorial representation of j
(3)
12 in a

system with super site dimension 2. The matrix dimension of the operator
is 256× 256, but there are 8 non-zero elements only (black dots), i.e. 97%
of the allocated memory can be cut. 102

28 Time evolution plot of diagonal elements. Diagonal elements of the
density matrix for a square lattice with 2×2 sites. The system parameters
are t = 1, U = 100,

√
γ1 = 1,

√
γ2 =

√
2, D = 16, dt = 0.001, 3 · 104 time

steps, 250 samples. 104

29 Relevant observables of a 2× 2 square lattice. Occupation number,
both for total particle count N (per site) as well as the subsystems N↑and
N↓. Furthermore the plot contains 1-site entropy, magnetization and
double occupation probability. The system parameters are as in Fig. 28. 104

30 Comparison of double occupations for varying spatial extension of
a square lattice. We compare the maximal value of the double occupation
diagonal element |↑, ↓〉 〈↑, ↓| for one increasing spatial dimension. The
error becomes larger with higher number of sites because we chose to
decrease the number of samples at the same time to accommodate for the
increased runtime. The system parameters are as in Fig. 28 except for the
sample number. Those are 2×2 : 250, 2×3 : 200, 2×4 : 150, 2×5 : 100,
2×6 : 100. 105
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