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Preface 

The presented original results of this thesis were obtained from January 2012 until 

January 2015 during my Ph. D. study at the Institute of Physical Chemistry and 

Electrochemistry at the Gottfried Wilhelm Leibniz University Hannover under the 

supervision of Prof. Dr. Jürgen Caro. In this period, I worked as a member of scientific 

research staff for the European project CARENA (CAtalytic REactors based on New 

mAterials). 

Five research articles, in which I have participated as the first author or the 

co-author, are presented in this thesis. The following statement will point out my 

contribution to the articles collected in this thesis. For all these articles, I would like to 

appreciate valuable comments and helpful discussion from the co-authors, referees, and 

cooperation partners in CARENA project, particularly from Prof. Dr. Jürgen Caro, Prof. 

Dr. Aisheng Huang (Institute of New Energy Technology, Ningbo Institute of Material 

Technology and Engineering) and Dr. Yi Liu (Humboldt Research Fellow). 

The two articles about zeolites, Supported SOD membrane with steam selectivity 

by a two-step repeated hydrothermal synthesis and Hydrophilic SOD and LTA 

membranes for membrane-supported methanol, dimethylether and dimethylcarbonate 

synthesis, which are collected in Chapter 2, were written by me with the help of Prof. Dr. 

Jürgen Caro. I prepared the samples of zeolite SOD and LTA membranes and powders, 

did the ion-exchange experiments, performed the corresponding characterizations like 

scanning electron microscopy (SEM), the energy-dispersive X-Ray spectroscopy 

(EDXS) and the X-Ray diffraction (XRD) analysis and carried out the measurement of 

gas separation performances. However, I kindly thank Frank Steinbach for his helpful 

suggestions and technical support for EDXS. I appreciate Dr. Yi Liu for his discussion 

and support during the experiments and writing. Prof. Dr. Aisheng Huang helped me to 

revise and improve the manuscript.  

The first article about MOF membrane in Chapter 3.2, Amine-modified 

Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation, was written by 

me. I prepared the Mg-MOF-74 membranes and powders, performed the corresponding 

characterizations of SEM and XRD analysis and did the measurement of gas separation 

performances. Alexander Mundstock shared his experiences with me during the 
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experiments and characterization. The idea of this paper was born during the discussion 

with Prof. Dr. Aisheng Huang. Prof. Dr. Jürgen Caro and Dr. Yi Liu have made a 

significant contribution to improve the manuscript. 

Another article about MOF membrane in Chapter 3.3, Polydopamine-based 

synthesis of zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 

selectivity, was written by me. I also prepared the ZIF-100 membranes and powders, 

performed the corresponding characterizations and did the gas separation measurements. 

I would like to thank Zhiwei Qiao and Jian Zhou (Guangdong Provincial Key Lab for 

Green Chemical Product Technology, South China University of Technology) for the 

simulation study of gas adsorption isotherm of ZIF-100. Lisa Diestel helped me to build 

the structure model of ZIF-100. Prof. Dr. Jürgen Caro, Prof. Dr. A. Huang and Dr. Yi 

Liu have helped me to improve the manuscript. 

The last article in Chapter 3.4, Organosilica-functionalized zeolitic imidazolate 

framework ZIF-90 membrane with high gas-separation performance, was written by 

Prof. Dr. Aisheng Huang. My contribution was to modify the proposed way of 

membrane preparation, to provide experimental assistance characterizations and to carry 

out the gas separation performances. 
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Abstract 

The present thesis is dedicated to investigation of microporous zeolite and 

metal-organic framework (MOF) membranes for pervaporation and gas separation on a 

laboratory scale. Different experimental synthesis methods and modification methods 

were used to improve the membrane quality, reproducibility, and separation 

performance. 

Two strong hydrophilic zeolite membranes, SOD and LTA membranes, were 

synthesized on alumina supports for vapor permeation or water pervaporation. A 

repeated synthesis method was used to prepare zeolite SOD membranes. As the first 

candidate to separate water vapor at high temperatures, zeolite SOD membrane shows 

high thermal and chemical stability and has a small pore size. The removal of steam 

from other components allows the possibility to support the chemical reaction like 

methanol, dimethylether (DME) and dimethylcarbonate (DMC) formation. Another 

candidate to separate water is zeolite LTA membrane, which we used at room 

temperature for water/methanol and water/DMC pervaporation. Na-LTA membrane was 

ion-exchanged with K
+
 to further improve the pervaporation selectivity. 

Supported Mg-MOF-74, ZIF-90 and ZIF-100 membranes were prepared for gas 

separation. For synthesis of these MOF membranes, different pre- or post-modification 

methods were used. Mg-MOF-74 membrane was prepared on MgO-seeded alumina 

support, and the H2/CO2 selectivity could be improved by the post-modification of the 

open Mg sites with ethylenediamine. The dense ZIF-100 membrane was prepared on a 

polydopamine (PDA)-modified support. After the pre-modification, the ZIF-100 

crystals could grow better on the support surface through the formation of covalent 

chemical bonds. Attributing to its high CO2 uptake behavior, ZIF-100 membrane has a 

high H2/CO2 selectivity. A post-functionalization method was developed for ZIF-90 

membrane by using 3-aminopropyltriethoxysilane (APTES). Via the covalent linkages 

between the free aldehyde groups of the ZIF-90 and the amino group of APTES, the 

pore was narrowed and the defects were sealed, thus the gas separation selectivity of 

ZIF-90 was enhanced. 

 

Keywords: Zeolite membrane, MOF membrane, gas separation, pervaporation, 

ion-exchange, pre- and post-modification method. 
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Zusammenfassung 

Die Arbeit behandelt Synthese, Charakterisierung und Ausprüfung mikroporöser 

Zeolith- und Metal-Organic Framework (MOF)-Membranen durch Pervaporation und 

Gasseparation. Verschiedenste Synthesestrategien und Modifikationen wurden 

entwickelt, um Qualität, Reproduzierbarkeit und Trennleistung der Membranen zu 

verbessern. 

Zur permeativen Dampftrennung und Pervaporation wässriger Gemische wurden 

zwei hydrophile Zeolithmembranen, SOD und LTA, auf Al2O3-Trägern synthetisiert. 

Die SOD-Membran kann für Wasser-Trennungen bis zu Temperaturen von mind. 200°C 

verwendet werden. Grund hierfür ist die hohe thermische und chemische Stabilität der 

SOD-Gerüststruktur und der kleine Porendurchmesser von SOD, der molekulares 

Sieben ermöglicht. Die Entfernung von Wasser unter gleichgewichtskontrollierten 

Reaktionsbedingungen könnte z.B. zu einer höheren Ausbeute bei der Synthese von 

Dimethylcarbonat (DMC) oder Dimethylether (DME) in Membranreaktoren führen. Ein 

weiterer Kandidat für die Wasserabtrennung ist die LTA-Membran. Diese wurde für die 

Pervaporation von Wasser/Methanol- und Wasser/DMC-Gemischen bei 

Raumtemperatur verwendet. Die Natriumionen der Na-LTA-Membran wurden durch 

Kaliumionen ausgetauscht, um die Selektivität der Pervaporation weiter zu verbessern. 

Trägergestützte Mg-MOF-74-, ZIF-90- und ZIF-100-Membranen wurden für die 

Gastrennung hergestellt. Zur Synthese dieser MOF-Membranen wurden verschiedene 

Pre- oder Post-Modifikationsverfahren entwickelt. Die Mg-MOF-74-Membran wurde 

auf einem mit MgO-Keimkristallen beschichtetem Al2O3-Träger hergestellt. Nach der 

Post-Modifikation der Mg-Positionen durch Ethylendiamin konnte die 

H2/CO2-Selektivität verbessert werden. Eine ZIF-100-Membran wurde auf einem 

Polydopamin (PDA)-modifizierten Träger hergestellt. Nach der PDA-Modifikation 

konnten die ZIF-100-Kristalle besser auf der Oberfläche des Trägers wachsen. Wegen 

der guten adsorptiven CO2-Bindung besaß die ZIF-100-Membran eine hohe 

H2/CO2-Selektivität. Die ZIF-90-Membran wurde mit 3-Aminopropyltriethoxysilan 

(APTES) post-funktionalisiert. Über die kovalenten Bindungen zwischen den 

Aldehydgruppen des ZIF-90 und den Aminogruppen von APTES wurden Poren der 

ZIF-90-Membran verengt und Defekte versiegelt, und so die Selektivität der 

ZIF-90-Membran verbessert. 

Schlagwörter: Zeolith-Membranen, MOF-Membranen, Gastrennung, 

Pervaporation, Ionenaustausch, Pre- und Post-Funktionalisierung. 
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1 Introduction 

1.1 Motivation 

In the past five decades, membrane separation technology has attracted intense 

attention and membrane separation processes have already had a direct impact on large 

scale industrial applications due to the lower energy consumption and investment cost in 

comparison with conventional distillation and adsorption.
[1-2]

 A membrane can be 

simply defined as a semipermeable two-dimensional material which allows preferential 

passage of selected components of a mixture or solution. Depending on different driving 

forces and sizes of the selected components, membrane processes can be applied in 

microfiltration (potable water treatment), ultrafiltration (waste water treatment), 

nanofiltration (water softening), reverse osmosis (seawater desalination), dialysis 

(medical applications) and electrodialysis (aqueous solution deionization).
[3]

  

Gas separation and pervaporation are relative new membrane separation processes 

in industry during the past decades. Among the gas separations, hydrogen purification is 

one of the most important tasks due to the growing demand for energy and 

environmental issues. Currently, hydrogen is mainly produced by steam-methane 

reforming (SMR) followed by the water-gas shift (WGS). Before H2 can be used in fuel 

cell, it has to be purified from the SMR/WGS products which mainly contain CO2, but 

also CH4 and CO.
[4]

 Membrane gas separation can be more economical compared with 

traditional separation methods like pressure swing adsorption (PSA) and cryogenic 

distillation.
[5]

 In pervaporation, liquid mixture can be separated. Pervaporation process 

can be applied for dehydration of organic solvents, removal of organic compounds from 

aqueous solution and separation of anhydrous organic mixtures.
[ 6 ]

 Moreover, 

pervaporation can realize some separations which are difficult by distillation, extraction 

and sorption.
[7]

 Therefore, as potential membrane separation progresses, gas separation 

and pervaporation have been attracted significant attention recently. 

Membranes can be roughly classified into organic and inorganic membranes. 

Unfortunately, a lot of organic membranes like polymers suffer from instability 

problems at high temperatures, swelling in contact with solvents or decomposition in 

sterilization progress. In contrast, inorganic membranes display a much higher thermal 

and solvent stability. Therefore, inorganic membranes have been studied increasingly in 
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new applications fields like fuel cells and catalytic membrane reactors.
[8]

 

Inorganic membranes can be classified into dense membranes like Pd-based 

membranes
[9-10]

 and perovskite membranes
[11]

, as well as porous membranes, such as 

amorphous microporous silica
[12]

 and carbon membranes
[13]

. The distinction of dense or 

porous membranes is not much a matter to the absolute pore size, but rather relative to 

the different transport mechanisms. The dense membranes permeate atomic or ionic 

forms of hydrogen or oxygen by a solution-diffusion mechanism, while the porous 

membranes separate the components through other mechanisms, such as 

adsorption-diffusion effect, molecular sieving effect, Knudsen diffusion, viscous flow, 

surface diffusion and capillary condensation.
[14]

 Compared to the dense inorganic 

membranes, porous membranes have received increasing attention in the recent years, 

since they can be applied to separate a broad range of chemical components. 

Among the porous inorganic membranes, molecular sieve zeolite membranes have 

attached great interest in the past two decades. Attributed to their uniform pore structure 

and high thermal stability, zeolite membranes have wide potential applications such as 

catalysts in reactors, sensors and as devices for gas and/or liquid separations.
[15-16]

 

Zeolite LTA membranes were already commercialized for dehydration in steam 

permeation. Due to their molecular sieving effect, high thermal stability and low-cost 

for synthesis, zeolites are good candidates for pervaporation and gas separation. 

Synthesis of most zeolites requires the use of organic structure directing agent 

(SDA), in order to control the process of the crystallization of zeolites. After the 

synthesis, the organic SDA can be removed by calcination, which always requires high 

temperatures of 450 to 500 °C. Attributing to its high thermal stability, zeolite itself is 

still stable at high temperature, and zeolite crystals will not be destroyed. However, the 

membrane layers will form cracks easily due to the lack of mechanical stability and the 

expansion/shrimking effect during the calcination.
[17]

 In this thesis, therefore, we focus 

on the zeolite SOD and LTA membranes, which can be synthesized free of SDA.  

In the past two decades, a new class of porous materials, metal-organic frameworks 

(MOFs) has been developed. As a recently-identified class of porous materials, MOFs 

have porous structure based on metal ions and organic ligands. Due to the wide choice 

of metals and ligands, different kinds of MOFs can be designed with rich possibilities 
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for structures and properties, such as adsorption, magnetic, electrical, optical and 

catalytic properties.
[ 18 ]

 Based on the adjustable pore structure and controllable 

properties, MOFs are another promising candidates for gas storage and gas separation 

besides zeolites.  

Compared to zeolites, MOFs have not only higher porosity and specific surface 

area
[19]

, but also rich possibilities to be pre- and post-modified with functional groups
[20]

. 

The pre-modification can promote the nucleation of MOF membranes on the support 

surface, while the post-modification allows the possibilities to modulate the physical 

can chemical properties of MOFs, change the pore size of the framework structure, or 

make the MOFs interacting with guest species as well.  

The aims of this thesis are to optimize the synthesis method of supported zeolite 

and MOF membranes, develop dense zeolite and MOF membranes for pervaporation 

and gas separation, and use different methods like ion-exchange and post-modification 

to improve the selectivity. 

 

1.2 Zeolite 

1.2.1 Structure and properties of zeolites 

The name of “zeolite” is derived from two Greek words “zeo” and “lithos” which 

mean “to boil” and “a stone”.
[21]

 Zeolites are three-dimensional crystalline microporous 

or mesoporous aluminosilicates with well-defined structures, which mainly contain 

silicon, aluminum and oxygen atoms in their framework structures. The silicon and 

aluminum atoms are tetrahedrally connected to each other by using the oxygen atoms as 

bridge. The building unit of every zeolite framework is mostly tetrahedral TO4 blocks 

Figure 1: TO4 blocks: units of zeolite framework. 
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(some new architectures involve other polyhedral like octahedral TO6, pentacoordinated 

TO5 or pyramidal TO4 or TO3 blocks)
[22]

, where T is the tetrahedrally coordinated atom 

like Al or Si, as shown in Figure 1. Since each oxygen atom is shared by two units, the 

net formal charge of the tetrahedral SiO4 unit is 0, but not like the isolated unit with a 

charge of -4. In contrast, AlO4 unit carries a formal charge of -1. Consisting of SiO4 and 

AlO4 units, therefore, the entire zeolite framework is negatively charged. The negative 

charges can be compensated either by cations or proton in the acidic form in pores and 

channels or by pentavalent T-atoms instead of Si like P
5+

 (such as ALPO’s).
[23] 

Therefore, the aluminosilicate zeolite has a general formula of Ax/n[Si1-xAlxO2]·mH2O, 

where A is the cation with a valence n.
[22]

 The typical cations in natural zeolites are 

alkali metal, like Na
+
, K

+
 and alkaline earth metals such as Ca

2+
 und Mg

2+
.
[24]

 The Si/Al 

ratio can range from 1 as a minimum to infinity. By varying the Si/Al ratio in zeolites, 

the ionicity and hydrophilicity of the material is also changed, which can impact the 

crystal size, morphology, surface area, thermal and chemical stability and acidity of the 

zeolites.
[25] 

Depending on their framework symmetry, zeolites can be classified with an 

identification code consisting of three capital letters by the International Zeolite 

Association (IZA).
[23]

 The structure types of zeolite can be described by the composite 

building units (CBUs), which are built by several TO4 tetrahedral blocks.
[21]

 Some 

Figure 2: Examples of CBUs in zeolites with their pore symbols.
[21]
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commonly found CBUs are shown in Figure 2 as examples with their corresponding 

pore symbols (e.g. 4
6
6

2
 means six 4-membered rings with two 6-membered rings) and 

common names. According to the different window apertures of pore structures, zeolites 

can be classified into small (with 6-, 8- and 9-membered rings), medium (with 

10-membered rings), large (with 12-membered rings) and ultralarge (with 14-, 18- or 

20-membered rings) pore materials.
[23]

 The molecular sieving effect of a zeolite is 

determined by the largest channel in the framework structure. 

Due to their unique properties, like uniform pore structure, ion-exchange property, 

high thermal stability and high internal surface area, zeolites have found a lot of 

applications such as adsorbents, catalysts, sensors, ion-exchangers, and electrical 

insulators. Potential applications are growing up such as membranes. 

 

1.2.2 Introduction to zeolite membranes 

Recently, much effort has been devoted to fabrication of zeolite membranes. 

Zeolite membranes can be classified into self-supported (symmetric) or supported 

(asymmetric) membranes, and both of them have been reported. However, 

self-supported zeolite membranes always suffer from mechanical stability problems due 

to their heterogeneous thickness. Therefore, zeolite membranes were usually 

synthesized on substrates, and the substrate can either combine with the zeolite to form 

a composite membrane, or be removed after the synthesis.
[23]

  

In 1987, Suzuki prepared the first zeolite membrane on a porous support of 

metal.
[26]

 After that, Haag and Tsikoyiannis investigated the standalone, mechanically 

unstable ZSM-5 membrane in 1991.
[27-28]

 Then Geus et al. reported the first supported 

silicalite-1 membrane in 1992.
[29]

 Since then, significant progress has been made to 

develop different kinds of zeolite membranes, and there are several reviews on zeolite 

membranes.
[15, 23, 30] 

Today, various zeolite membranes, typically SOD
[31-32]

, SAPO-34 

(CHA-type)
[33-34]

, DDR
[35]

, LTA
[36-39]

, FER
[40]

, ZSM-5 or silicalite 1 (MFI-type)
[41-42]

, 

MOR
[43]

, AlPO4-5 (AFI-type)
[44]

 and FAU
[45-47]

 are developed on porous or non-porous 

supports. 

So far, various supported zeolite membranes have been successfully synthesized 

for the separation of gas and/or liquid mixtures. As summerized in Table 1, zeolite 
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membranes on different supports have been used for separations like n-/iso-butane 

separation, hydrogen purification, water pervaporation and organic mixture 

separation.
[48]

 In our work, we usually use asymmetric α-Al2O3 discs to support our 

membranes. 

Table 1: Summary of supported zeolite membranes developed for gas/vapor/liquid 

permeation and separation 

n-Butane and iso-butane separation 

 Silicalite γ-alumia tube, stainless steel disk 

 ZSM-5 α-alumia disk or tube, stainless steel tube 

 MFI α-alumia disk 

Hydrogen purification 

 LTA α-alumia disk or tube 

 FAU α-alumia disk or tube 

 Silicalite γ-alumia tube, stainless steel disk, 

 ZSM-5 α-alumia disk or tube, γ-alumia tube 

Carbon dioxide and methane separation 

 FAU α-alumia tube 

 SAPO-34 α-alumia tube 

 ZSM-5 γ-alumia tube 

Carbon dioxide and nitrogen separation 

 ZSM-5 α-alumia disk 

 NaY α-alumia tube 

 SAPO-34 α-alumia tube 

Water pervaporation 

 NaA α-alumia tube, Ceramesh sheet, carbon tube 

 FAU α-alumia disk or tube 

Organic solvents pervaporation 

 Silicate stainless steel disk or tube 

 ZSM-5 α-alumia disk 

Organic mixture separation 

 NaA α-alumia disk or tube 

 FAU α-alumia disk or tube 

 Silicate stainless steel disk or tube 

 FER α-alumia disk or tube 

 

1.2.3 Structure, properties and applications of zeolite SOD and zeolite LTA 

Zeolite A (Linde Type A, LTA), with a chemical composition of [Na12(H2O)27]8 

[Al12Si12O48]8, has a cubic symmetry. The LTA framework type consists of β-cages 

linked by double 4-rings (both of the CBUs are shown in Figure 2), which results in a 
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α-cage with a pore diameter of about 4.1 Å.
[49]

 The framework structure is shown in 

Figure 3 (left).  

Among numerous zeolites, the zeolite LTA membranes have been extensively 

studied due to the strong hydrophilicity and suitable pore size. 
[38-39, 50-51]

 Moreover, 

zeolite LTA membranes were the first commercialized zeolite membrane, which are 

applied for dehydration of water/alcohol mixtures by membrane-based steam 

permeation.
[52-56]

  

As hydrated low-silica zeolite (1< Si/Al <2), zeolite LTA is also used widely for 

ion-exchange applications, since the high cation content results in a high exchange 

ability.
[22]

 As shown in Figure 3 (right), site I (centered on the 6-ring), II (near the center 

of 8-ring) and III (centered on the 4-ring) in every α-cage of LTA can accommodate 8, 3 

and 12 cations, respectively. The cations tend to prefer sites following the order I > II > 

III, and the cations which occupy site II are rather mobile and can diffuse since site II is 

near to the center of the 8-membered ring. With a Si/Al ratio of 1, each α-cage in LTA 

consists of 12 cations, which occupy fully sites I and II. Normally, the cations in 

synthesized LTA are Na
+
. By ion-exchange, the Na

+
 which occupy site II can diffuse 

into the cavity and be exchanged by other cations. By replacing the Na
+ 

with Ca
2+

, the 

number of cations will be reduced thus the Ca-LTA has a pore size of 5 Å. When the 

sodium cations
 
were replaced by larger K

+
 ions, the pore size of K-LTA will be 

narrowed to 3 Å.
[21]

 This ion-exchange behavior allows the applications such as 

water-softening, gas adsorption and gas separation. 

Zeolite sodalite (SOD) is an aluminosilicate with 3-dimentional channel 

network.
[57]

 It was first discovered by Thomson in 1811
[58]

 and its structure was 

Figure 3: Framework structures of zeolite LTA (left) and α-cage in LTA (right)
[21]

. 
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described by Pauling in 1930
[59]

.The chemical composition of mineral sodalite is 

[Na8Cl2][Al6Si6O24].
[60] 

As shown in Figure 4, SOD consists of only sodalite cages (also 

called β-cages shown in Figure 2) and has, therefore, only 4- and 6-membered rings. 

Hydroxy sodalite (H-SOD) has the same structure as sodalite. In the framework of 

H-SOD, the 4-membered rings are too small to allow the passage of any molecules, but 

the window aperture of the 6-membered ring of Si-O-Si bonds with a diameter of 2.7 Å 

can allow the passage of small molecules like helium, ammonia and water, with kinetic 

diameters of 2.60, 2.55 and 2.65 Å, respectively.
[61]

 Compared with LTA, zeolite SOD 

has the same Si/Al ratio of 1, but shows a higher framework density (number of T-atoms 

per Å
3
: for SOD 16.7 T/1000 Å

3
). Therefore, zeolite SOD has a higher structural 

stability. 

Due to its small pore size and strong hydrophilicity, hydroxy sodalite membrane 

has an important potential for esterification
[62]

, sea water desalination
[63]

, separation of 

small molecules from gas mixtures and the removal of water from industrial streams, 

such as in the synthesis of dimethyl ether (DME) and dimethyl carbonate (DMC) (see 

Eq. 1 and 2). 

2 CO2 + 6 H2  DME + 3 H2O (Eq. 1) 

CO2 + 2 MeOH  DMC + H2O (Eq. 2) 

 

1.2.4 Synthesis of zeolite membranes 

As explained in section 1.2.2, most of the zeolite membranes are prepared on 

supports, therefore, only synthesis of supported zeolite membranes are discussed in this 

Figure 4: Framework structure of zeolite SOD. 
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part. The commonly used synthesis methods to prepare a supported zeolite membrane 

consist of in-situ hydrothermal synthesis, secondary growth method and microwave 

synthesis. 

In-situ hydrothermal synthesis is the mostly used preparation method for zeolite 

membranes. In this simple synthesis method, the support is contacted directly with a 

synthesis solution or an aqueous gel, and the membrane will grow on the support 

surface under hydrothermal conditions, which should be carefully controlled so that the 

zeolite crystals can nucleate and intergrow into a membrane. This method requires 

heterogeneous nucleation on the support surface and crystal growth to form a 

continuous layer which can cover the support.
 [48]

 The flow diagram for the in-situ 

hydrothermal synthesis is shown in Figure 5.  

This method is commonly used and easy to operate. However, it usually takes long 

crystallization time, which can result in the formation of impurity. In addition, the size 

of the zeolite crystals, which are formed on the surface of the support, are not uniform 

due to the low heating rate and inhomogeneous heating in hydrothermal synthesis.
[64]

 

Therefore, it is usually difficult to prepare a dense membrane on the support by using 

this method. 

In the secondary growth method, supports are firstly coated with a layer of 

zeolite seeds, after that, the membrane is formed through the further growth of the seeds 

during the following hydrothermal synthesis.
[64]

 The seeding can be attached on the 

surface of the membrane by mechanical scrubbing the support surface with zeolite 

Figure 5: Schematic diagram of in-situ hydrothermal synthesis. 
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crystals or by dip-coating in seed-solution.
[48]

 In this method, the microstructure of the 

membrane such as thickness and orientation can be controlled, thus the quality and 

reproducibility of the membrane can be improved.
[64]

 Since the problem of 

heterogeneous nucleation in normal in-situ hydrothermal synthesis is solved, the 

membranes prepared by secondary growth method are dense and have uniform crystal 

size. However, as a multi-step synthesis, this method is relatively complicated. It is also 

necessary to simplify the seeding process, in order to attach the seeds effectively.
[65]

  

Recently, microwave synthesis method was started to be used for the synthesis of 

zeolite membrane. In microwave synthesis, the heating process was carried out in a 

microwave instead of an air oven. The electromagnetic filed supplies the energy directly 

to the materials, which leads to an effective heating process. Compared to the 

conventional hydrothermal synthesis, therefore, microwave synthesis method has lot of 

advantages like reduced synthesis time, small crystal size, high purity as well as narrow 

particle size distribution.
 [64]

 However, microwave synthesis was still not widely used, 

since the synthesis conditions for only a few kinds of zeolites were optimized and the 

mechanism of crystal nucleation and growth by microwave heating is not clear yet. 

 

1.3 Metal-organic framework 

1.3.1 Naming and history of MOFs 

In the past two decades, metal-organic frameworks (MOFs), a new class of 

synthetic porous materials, have been developed into one of the most fruitful research 

areas.
[ 66 - 67 ]

 Due to the lack of a general definition during the explosion of the 

development of MOFs, various appellations have been appeared, such as porous 

coordination polymer (PCP)
 [68]

 and porous coordination network (PCN)
[69]

 or other 

names. Following the tradition of naming for zeolites, acronym of the laboratory was 

also used to name the MOFs, like the series of MILs (matériauxs de l’Institut 

Lavoisier)
[70]

 and HKUST (Hong-Kong University of Science and Technology)
[71]

.  

The interest in porous coordination polymer started around 1990 by Hoskins and 

Robson
[72-73]

. Then the development of MOFs was promoted by Yaghi et al.
[74-75]

  and 

Kitagawa et al.
[76]

 in 1995 and 1997. In 1999, the structures of MOF-5
[77]

 and 
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HKUST-1
[71]

 were published, which are still among the most studied MOFs up to now. 

In 2002, the series of MILs were reported by Férey et al.
[78-79]

 and in the same year, 

imidazolate-based MOF with zeolite-related topology was published
[80]

, which are later 

organized in sub-group of MOFs: zeolitic imidazole frameworks (ZIFs). Up to now, a 

large number of different MOFs has been investigated and successively developed for 

gas separation and other potential applications. 

 

1.3.2 Structure and properties of MOFs 

MOFs are inorganic-organic hybrid materials, which are built of inorganic single 

metal ions or metal-containing clusters and organic ligands called linkers. The inorganic 

part and organic part link with each other through coordination bonds and build a 

well-defined framework structure.
[81]

 As shown in Figure 6, the framework structure of 

MOF-5
[82-83]

 was taken as an example to describe the basic construction of MOFs, 

which consists of inorganic metal clusters (Zn4O)
6+

 and organic linkers 

1,4-benzenedicarboxylate (BDC).  

Although the structure description and classification of MOF is still debatable, two 

approaches are proposed to explain the structure principles of MOFs. The first approach 

by Yaghi et al.
[84]

 used nets and vertex symbols, namely (N, M)-connected nets, to 

describe the topologies of MOFs. N and M are the numbers of connections from two 

Figure 6: Framework structure of MOF-5 (Zn4(O)O12C6), which is built of inorganic 

metal cluster (Zn4O
6+

) and organic linker 1,4-benzenedicarboxylate (BDC). The metal 

clusters are shown on the left as a ball and stick model and on the right with the ZnO4 

tetrahedra. The yellow sphere shows the cavity of MOF-5.
[82-83]
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nodes, and the edges are links between vertices. An (N, M)-connected net was defined 

to have some vertices connected to N neighbors and some to M neighbors. Here nodes 

can be metal ions, clusters or polyhedrons, while edges can be linker molecules or 

multiple bonds.
[84-85]

 To describe the structure of MOF-5, for instance, the nodes 

(Zn4O
6+

 clusters) are linked by 6 edges (BDC) to form an octahedral geometry. The 

second concept was proposed by Férey et al.
[86]

, which describe the MOF framework by 

building units (BUs). The BU is defined as a building block of the framework, which 

acts as a “brick” to form coherent structures.
[86]

 Following this concept, the cubic 

MOF-5 framework can by described as eight BUs, and each BU consists of a Zn4O
6+

 

cluster coordinated by 6 BDCs. 

As a light material with highest porosities, MOFs have high inner surface areas.
[87]

 

A typical example is MOF-177
[88]

, which was reported with an inner surface of 4500 

m
2
·g

-1
. With this property, therefore, MOFs can be used for gas adsorption and 

separation. Based on the construction principle of MOFs, the structure and properties of 

MOFs can be designed by judicious combination of metal clusters and organic 

linkers.
[81]

 Besides adsorption-based properties, MOFs can also display other unique 

properties like optic, magnetic and electronic properties, when special metals or organic 

linkers were chosen.
[89]

 Based on the various properties, MOFs have a lot of potential 

applications like gas storage, gas separation, catalysis, sensing, ion-exchange and drug 

delivery.
[81]

 However, so far MOFs have not found industrial application. 

 

1.3.3 Structure and properties of Mg-MOF-74, ZIF-90 and ZIF-100 

Magnesium dioxybenzenedicarboxylate (Mg-MOF-74)
[90]

, which is also termed 

Mg/dobdc or CPO-27-Mg
[ 91 - 92 ]

, is one of the iso-structural compounds of 

M2(dhtp)(H2O)2·8H2O (M-MOF-74, M can be Ni, Co, Zn, Mg, Mn, dhtp is 

dihydroxyterephthalic acid).
[93-94]

 Due to its significantly high adsorption capacities, 

Mg-MOF-74 is under intense investigation.
[95-96]

 As shown in Figure 7, Mg-MOF-74 is 

constructed by the linkage of the Mg
2+

 ions (yellow) with 2,5-dioxido-1,4- 

benzenedicarboxylate (DOBDC). The metal cations Mg
2+

 build a distorted octahedron 

and the carboxylate groups act as ligands of Mg
2+

, then a well-defined hexagonal, 

one-dimensional (1D) pore structure (Figure 7 left) is formed with a pore diameter of 
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about 11 Å.
[97-98]

 

In the framework structure of Mg-MOF-74, the metal cations Mg
2+

 are bonded 

with five oxygen atoms to form square-pyramid coordination, and the open and 

accessible unsaturated metal sites, which locate in the center of the square plane, are 

free to interact with CO2 molecules. Attributing to this unique feature of the structure, 

Mg-MOF-74 has a high CO2 adsorption capacity (380 mg CO2/g at room temperature 

under dry conditions
[99]

). 
 

 Zeolite imidazolate frameworks (ZIFs) are a sub-group of MOFs, which are 

constructed from metal ions bridged by imidazolate linkers with zeolite-type tetrahedral 

topologies.
[100]

 In 2008, Yaghi et al.
[101]

 have reported a new crystalline ZIF structure 

Figure 8: Left: Framework structure of ZIF-90 as viewed along the [100] direction. 

Violet tetrahedron represents ZnN4; gray and red spheres represent C and O atoms, re-

spectively; Right: SOD topology of ZIF-90. 

Figure 7: Framework structure of Mg-MOF-74 as viewed along the [100] direction. 

Yellow, red, blue and gray spheres represent Mg, O, C and H atoms, respectively. 
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which termed ZIF-90. It is synthesized through a solvothermal reaction of 

Zn(NO3)2·4H2O with imidazolate-2-carboxyaldehyde (ICA). The structure of ZIF-90 is 

shown in Figure 8 left, which is related to the SOD topology (Figure 8 right) by 

replacing the Si/Al and O with Zn(II) and ICA linkers. ZIF-90 has an inner sphere with 

a diameter of 11.2 Å (yellow sphere in Figure 8) and a narrow aperture of the 

six-membered ring pores of about 3.5 Å.
[101-102]

 ZIF-90 has not only high chemical and 

thermal stability
[101]

, but also various possibility to be functionalized due to the 

aldehyde group in the framework structure
[103]

. 

 The structure of zeolite imidazolate framework ZIF-100 was first published by 

Yaghi et al.
[104]

 in 2008. ZIF-100 has a composition of Zn20(cbIM)39(OH), which is 

obtained through the reaction of Zn(O3SCF3)2 with 5-chlorobenzimidazole (cbIM). As 

shown in Figure 9, ZIF-100 has a rather complex structure, whose unit cell has a MOZ 

topology, which is constructed from 7524 atoms (Figure 9 left). This MOZ cage has a 

large inner sphere with a diameter of 35.6 Å (the yellow sphere in Figure 9 right) and a 

constricted window aperture of only 3.35 Å.  

As reported by Yaghi et al.
[104]

, mainly CO2 can be retained in the pore structure of 

ZIF-100, since ZIF-100 shows a strong adsorption of CO2 due to the strong quadrupolar 

interactions of carbon with nitrogen atoms in the linkers of ZIF-100 framework, which 

Figure 9: Framework structure of the MOZ cage in ZIF-100 as viewed along the [100] 

direction. Left: Violet tetrahedron represents ZnN4; gray and pink spheres represent C 

and Cl atoms, respectively; O and H are not shown here. Right: ball and stick diagram 

of MOZ cage in ZIF-100. The yellow sphere shows the cavity of ZIF-100. 
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results in an outstanding CO2 adsorption affinity. The CO2 uptake of ZIF-100 for CO2 

outperforms ZIF-95 and BPL carbon
[105]

, which is already widely used in industry for 

gas separation. Besides the CO2 adsorption capacity, ZIF-100 has also a high thermal 

stability up to 500 °C.
[104]

 

 

1.3.4 Synthesis of MOF membranes: Pre- and post-modification method 

The first MOF membranes were IRMOF-1 membrane which reported by Lai and 

Jeong et al.
[106-107]

 in 2009. After that, different MOF membranes were prepared like 

HKUST-1
[108-109]

, MMOF
[95]

, ZIF-7
[110]

, ZIF-8
[111]

, ZIF-22
[112]

, ZIF-69
[113]

, ZIF-90
[114]

 

and MIL-53
[ 115 ]

. Resembling the synthesis methods of zeolite membranes, MOF 

membranes were usually fabricated by hydrothermal synthesis method (in-situ 

growth)
[109,112-114]

 or secondary growth method
[95,108,115]

, and based on these two 

synthesis methods, microwave synthesis
[110-111]

 was also developed to control the crystal 

size of the membrane. Since MOF is a novel material, despite a lot of progress in MOF 

membranes synthesis, the robust synthetic strategies are still not developed to obtain 

dense membranes with high gas selectivities. 

Despite much progress in MOF membranes synthesis, there is still a long road 

ahead before robust synthetic strategies can be developed that allow the facile synthesis 

of highly selective MOF membranes, as highlighted recently.
[116]

 One major reason that 

the MOF films cannot grow on supports, is the bad interaction between the organic 

linkers in MOF materials and support surface. Due to the poor heterogeneous nucleation 

of MOF crystals on support surfaces, it is rather difficult to grow continuous and dense 

MOF membranes by direct hydrothermal synthesis.
 [117-118]

 Therefore, pre-modifications 

of the supports
[112,118]

 and secondary growth method by seeding
 
are usually used to 

promote the growth of continuous MOF layers. The pre-modification methods can 

provide additional linkage groups which can form bonds with groups on the support 

surface (e.g. OH group on alumina support), while the secondary growth method can 

avoid heterogeneous nucleation and promote the nucleation of MOF crystals on the 

support. 

Compared to the secondary growth method, pre-modification of the support is a 

relatively simple and effective strategy to improve the membrane growth, when a 
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suitable modification agent was chosen. For instance, the free aldehyde groups in the 

framework of ZIF-90 allow the possibility of imine condensation reaction with amine 

groups.
[101]

 Based on this coupling, we report a covalent functionalization strategy to 

modify the support surface with amine groups by using 3-aminopropyltriethoxysilane 

(APTES).
[114,119]

 The APTES functions as covalent linkers between the ZIF-90 layer and 

Al2O3 support, so that the MOF layer can grow better on the APTES-modified support 

due to the imine condensation reaction, as shown in Eq. 3. Another pre-modification 

method we reported is using polydopamine (PDA). By adding dopamine in the 

modification solution, dopamine can easily polymerize to PDA (Eq. 4) and stick on the 

support surface during the pre-modification process, since PDA has various functional 

groups which can have interactions with different kinds of organic and inorganic 

surfaces.
[120]

 The PDA-pre-modified support can be used as a platform for further 

reactions.
[121-123]

 This pre-modification method was already used for synthesis of ZIF-8 

and zeolite LTA membranes to improve their gas separation performance and 

reproducibility.
[124-126]

  

MOF-CHO + H2N-Support → MOF-CH=N-Support + H2O (Eq. 3) 

 

(Eq. 4) 

After the MOF membranes are prepared, it is found that the synthesized MOF 

layers have a polycrystalline structure which usually contains intercrystalline defects. 

Therefore, post-modification method for the as-prepared MOF membranes were 

investigated to minimize the intercrystalline gaps and improve the membrane 

selectivity.
[127-128]

 There are already at least three strategies for the post-modification
[129]

: 

covalent modification by using functionalized ligands to modify 1) the organic building 

blocks
[119,130-131]

 or 2) metal ions
[132-133]

, as well as 3) non-covalent modification to 

demonstrate the framework with cartridge molecules.
[134]

  

The covalent modification of organic linkers can be explained by ZIF-90 as an 

example. The free aldehyde groups in ZIF-90 framework allow the possibility to be 

modified.
[101]

 The covalent post-functionalization of ZIF-90 with amine groups through 

an imine condensation reaction was reported,
[135-138]

 and we used this post-modification 
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method to improve the hydrogen selectivity of as-prepared ZIF-90 membrane by 

ethanolamine
[128]

 and APTES
[119]

. The post-synthesis modification of Mg-MOF-74 

membrane is a representative for the modification of metal sites. In the unique 

framework structure of Mg-MOF-74, the metal cations Mg
2+

 have unsaturated metal 

sites, which can be modified with amine groups.
[139]

 H2/CO2 selectivity can be improved 

by post-modification of Mg-MOF-74 membranes with ethylenediamine, whose one side 

can bind to the open coordination sites of the Mg by direct ligation, the other side 

remains free in space for CO2 adsorption.
[132]

  

 

1.4 Mass transport in microporous membranes 

1.4.1 Important parameters 

To evaluate the quality of a membrane, two aspects should be considered: how 

permeable and how selective the membrane is. 

In gas separation measurement, the most commonly used parameters to describe 

the permeability of a membrane are flux F, permeance P and permeability PE, while the 

ideal or mixture separation factor α was used to describe the selectivity. The flux (Eq. 5) 

is the amount of gas n which has passed through the membrane pre time t and 

membrane area A. The permeance P is obtained by division of the flux by the 

transmembrane pressure difference p, as shown in Eq. 6, and the permeability (Eq. 7) 

is the permeance multiplied by the membrane thickness d. The separation factor αi,j of a 

binary mixture permeation is defined as the quotient of the molar ratios of the 

components (i, j) in the permeate, divided by the quotient of those in the retentate, as 

shown in Eq. 8. Since in our case less than 1 % of the feed gas pass the membrane, the 

retentate composition is de facto identical with the feed composition. 

n
J

A t


  
(Eq. 5) 

n
P

A t p


   
(Eq. 6) 

n d
PE

A t p




   
(Eq. 7) 
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(Eq. 8) 

In pervaporation, the total flux J and the separation factor  are always used, 

which are defined following Eqs. 9 and 10, where W is total weight of the permeate (kg), 

t is collecting time (h), A is separation area of the membrane (m
2
), xi,p and xi,f are the 

weight fractions of species i in the permeate and in the feed, respectively. 

W
J

t A

   

(Eq. 9) 
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(Eq. 10) 

With the equations given above, the quality of a membrane can be characterized 

easily by the experimental measurement. However, to investigate the permeation 

behaviour of our membranes, the mechanism of mass transport should be focused on. 

Mass transfer through a membrane can only take place, when a driving force exists. The 

driving force in our measurements is always the pressure difference between the feed 

and permeate sides of a membrane, which can be also described as a concentration 

gradient▽c across the membrane layer. In the following discussion, the permeation 

behaviour of a microporous membrane will be explained in details. 

 

1.4.2  General aspects 

 Our crystalline microporous membranes were always prepared on asymmetric 

alumina substrates, as descried in section 1.2.2. From comparing the permeation 

behaviour of the neat alumina supports and the supported zeolite/MOF membranes, it 

can be concluded that the support does not remarkably (< 5%) impact the flux and 

selectivity. Therefore, the influence from the macroporous substrate can be usually 

neglected (Figure 10).  

As shown in Figure 10, the process of gas or liquid molecule transport through a 

microporous membrane can be descried as follows: 1) adsorption of a molecule from 

the bulk phase to membrane surface; 2) diffusion from the surface to the inside of the 
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pore, through the pore and from the pore to external surface; 3) desorption from the 

surface to the permeate side.
[2]

 Therefore, there are two major factors which affect the 

mass transport: adsorption and diffusion. The interplay of adsorption and diffusion 

determines the permeation behavior of a microporous membrane, and the selectivity of 

the membrane can be expressed by the adsorption selectivity Sads multiplied by diffusion 

selectivity Sdiff.
[140-141]

 However, the effect of adsorption and diffusion is only considered, 

when more than one component in a mixture can go through the membrane layer.
[141]

 If    

real molecular sieving occurs, namely only one component of a binary mixture can go 

through the pores, the interplay of adsorption and diffusion is not important any more. 

 

Adsorption takes place physically (physisorption) or chemically (chemisorption) at 

the interface of gas and membrane surface, while diffusion deals with the rate of the gas 

passage through the bulk membrane depending on the interaction between the diffusing 

gas molecules and pore channels (van der Waals force or chemical bond) under a 

driving force of a partial pressure difference. 

Figure 10: Scheme of mass transfer though a membrane. The gases on the feed and 

permeate side have pressures p1 and p2, concentrations c1 and c2, respectively. By a 

driving force of Δp, the molecule on the feed side was adsorbed on the membrane sur-

face, diffused through the membrane, and desorbed from the membrane to the perme-

ate side. 
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1.4.3 Adsorption in microporous membranes 

As shown in Eq. 11, adsorption is an equilibrium process between the gas or liquid 

adsorbate molecules and adsorbent (membrane) either by physical and chemical 

adsorption.  

Adsorption

Desorption
Adsorbate Adsorbent Adsorbate Adsorbent 

 
(Eq. 11) 

For a certain membrane and gas system, the adsorption amount is related to the 

experimental conditions like temperature and pressure. Then the adsorption 

phenomenon can be described through adsorption isotherms (temperature is constant) or 

adsorption isobar (pressure is constant). Here we only discuss the physisorption through 

isotherms, which express the amount of adsorbate on the adsorbent as a function of 

pressure (for gas) or concentration (for liquid). The physisorption isotherms can be 

classified into six types depending on the pore size of the adsorbent and the different 

interaction of adsorbate with the adsorbent.
[142]

 Among these six types, type I isotherm 

can be usually applied for microporous materials, where the adsorption takes place in 

micropore volume rather than at internal surface area.
[142]

  

The earliest known adsorption isotherm equation was developed by Freundlich
[143]

 

in 1906, which can be applied to multilayer adsorption as well as nonideal adsorption on 

heterogeneous surfaces, but this empirical model does not reduce to Henry’s law at low 

concentrations. 

In 1916, Langmuir
[144]

 presented theoretical equilibrium isotherm, which describes 

an ideal monolayer adsorption on a homogeneous surface with distinct adsorption sites. 

The Langmuir adsorption model is the most commonly used model for physisorption 

and a single-site Langmuir adsorption can be expressed by Eq.12:
 [145]
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(Eq. 12) 

where θi is the fraction of the surface sites covered with i, kadv and kdes are the rate 

of adsorption and desorption, respectively, and pi is the partial pressure of i over the 

surface. The equilibrium constant Ki depends on temperature following the van’t Hoff 

equation. The Langmuir model is not limited by single-site adsorption for single 
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component. It can also be applied in the case that molecules show preferences for 

adsorption sites by a dual-site model (especially by larger molecules or molecules at 

high coverages), or for multicomponent adsorptions.
[7,146 ]

 For instance, when the 

Langmuir model is used for the adsorption in a binary mixture of species a and b, the 

adsorption fraction of species b should be described as follows:
[147]
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(Eq. 13) 

It can be seen, that the Langmuir model shows a linear relationship between θi and 

pi at low adsorbate concentrations, which follows Henry’s law, and a constant sorption 

capacity at high adsorbate concentrations.
[148] 

Although there are several equilibrium 

isotherm equations which can describe the experimental adsorption data, here we only 

use the Langmuir model to explain the mass transport behavior and the gas adsorption 

on our membranes. 

 

1.4.4 Diffusion in microporous membranes 

Diffusion is a mass transfer process, wherein the density of a component increases 

in a region while it decreases at its starting point due to random thermal motion.
[149]

 

Here the region is only considered as a gas or a liquid. In order to describe the diffusion 

through the membrane and calculate the permeation flux, we usually use Fick’s law and 

Maxwell-Stefan formulation. 

Following the Fick’s law, the diffusion of the components through the membrane 

was based on the effect of the concentration gradient on the diffusion rate.
[149]

 The 

Fick’s law can be applied not only for single-component but also for multicomponent 

diffusion in microporous membranes. Generally the Fick’s first law is given by:
[150]

  

i i iJ D c    with i
i

c
c

z


 

  
(Eq. 14) 

where Ji, Di, 𝛻ci and ci are the material flux, the Fickian diffusion coefficient, the 

concentration gradient and the concentration of component i, respectively, and z is the 

thickness of the membranes. As given by Eq. 14, the flux is proportional to 

concentration gradients when the gradient is small.
[150]
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The Maxwell-Stefan formulation is especially useful for the mass transport in 

multicomponent or multi-phase systems.
[150]

 The driving force used in Maxwell-Stefan 

formulation is the chemical potential gradient 𝛻µ. By consideration both of the driving 

force of one component as well as the frictional force exerted by other components 

(related to the corresponding diffusive velocity), the Maxwell-Stefan approach is 

proposed. When the simplest case, a two-component system, was taken as an example, 

the Maxwell-Stefan diffusion coefficient Ð has a following relationship with chemical 

potential gradient and frictional force:
[150-151]
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(Eq. 15) 

where R is the ideal gas constant, T is the temperature, xj is the mole fraction of 

component j; νi, νj are the diffusive velocities of component 1 and 2, respectively. For a 

single-component Maxwell-Stefan diffusion by expressing the chemical potential 

gradient by concentration gradient and partial pressure, the diffusive flux of component 

i can be given as:
[150-151]
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(Eq. 16) 

where Di,s is the single-component Maxwell-Stefan diffusivity of component i. In 

gas phase, the partial pressure p is usually replaced by partial fugacity f, which is equal 

to the partial pressure by ideal gas at low pressures. When we compare Eq. 14 with Eq. 

16, the single-component Fickian diffusivity has the following relationship with the 

single-component Maxwell-Stefan diffusivity:
[150-151]
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(Eq. 17) 

where Г is defined as the “thermodynamic correction factor”. For an ideal gas or 

liquid phase, Di is identical to Ði,s. 

Krishna and van Baten
[152]

 have investigated the different diffusion behaviors of 

various kinds of porous materials, and they have found two categories. The first one is 

for cage-structure porous materials with narrow window, like ZIF-8, DDR, ITQ-29 

membranes. They primarily follow the rule, that Sads > 1 and Sdiff > 1. In this case, the 
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diffusivities are mainly influenced by molecular size and framework structure. Other 

materials are classified into the second case, where the binding energies determinate the 

diffusivities, like 1D channel materials (MOF-74, MIL53), intersecting channels 

materials (MIF) or materials with open structures with large cavities (NaY, CuBTC). In 

this category, the diffusion selectivity favors the poorly adsorbed molecules, and it is 

found that Sads > 1 with Sdiff «1.
[152]
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2 Zeolite membranes for water pervaporation and 

separation 

2.1 Summary 

As described in Section 1.2.2, zeolite membranes have attracted great attention due 

to their potential applications in the gas/liquid mixture separations. Zeolite LTA 

membranes with strong hydrophilicity and suitable pore size of about 4.0 Å shows the 

feasibility to separate water from large molecules, and LTA membranes were already 

first commercialized to separate water from alcohol by steam permeation. Compared to 

zeolite LTA, zeolite SOD has a higher framework density, thus showing higher chemical 

and thermal stability. With a relatively small pore size of 2.8 Å, zeolite SOD membranes 

can be applied for separation of water from other molecules. In this chapter, dense 

zeolite SOD and LTA membranes were developed for water vapor (steam) separation at 

high temperatures and for water pervaporation at room temperature. 

The publication in Section 2.2 describes a two-step repeated synthesis method for 

supported zeolite SOD membrane and reports its gas separation behavior for water 

vapor against other gas molecules and methanol in the temperature window between 

125 and 200 °C. By repeated synthesis, dense SOD membranes with water selectivity 

could be obtained on the alumina support. The synthesized SOD membranes show not 

only good selectivity, but also high reproducibility. The gas separation factors were 

found to decrease slightly as the temperature increases, since less water could be 

adsorbed in the SOD framework at higher temperatures. 

In the publication in Section 2.3, zeolite SOD and LTA membranes were proposed 

to support the production of DME and DMC, and they were used to separate water in 

different temperature range. SOD membranes can separate water from molecules like 

DME and DMC from 125 to 200 °C. Due to its small pore size, SOD membranes 

displayed good selectivities for H2O/DME and H2O/DMC. On the other side, LTA 

membranes were used for water pervaporation at room temperature. Since the kinetic 

diameter of MeOH (about 3.8 Å) is smaller than the pore size of LTA, selectivity of 

water against methanol through LTA membrane is not good. In Section 2.3, LTA 

membranes were ion-exchanged with K
+
 ions. After the ion-exchange, the H2O/MeOH 
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selectivity was improved since the pore size of LTA could be narrowed to about 3 Å by 

replacing the smaller Na
+
 by larger K

+
.  
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2.2 Supported SOD membrane with steam selectivity by a two-step 

repeated hydrothermal synthesis 

Nanyi Wang, Yi Liu, Aisheng Huang and Jürgen Caro  

 

Microporous and Mesoporous Materials 2014, 192, 8-13.  

 

Reprinted (adapted) with permission from Microporous and Mesoporous 

Materials. Copyright (2014) Elsevier. 
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2.3 Hydrophilic SOD and LTA membranes for membrane-supported 

methanol, dimethylether and dimethylcarbonate synthesis 

 

Nanyi Wang, Yi Liu, Aisheng Huang and Jürgen Caro 

 

Microporous and Mesoporous Materials 2015, 207, 33-38.  

 

Reprinted (adapted) with permission from Microporous and Mesoporous 

Materials. Copyright (2015) Elsevier. 
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3 Metal-organic framework membranes for H2 

purification 

3.1 Summary 

Due to the demand for clean energy, hydrogen purification becomes one of the 

most important tasks. Compared with traditional purification methods, membrane 

separation for hydrogen purification is more attractive because of its low cost. MOF 

membranes with various structures and adjustable properties attracted lots of attention 

in the past ten years. The three publications in this chapter introduce three novel MOF 

membranes, which can be applied for gas separations. Pre- or post-modification 

methods for synthesis are also reported for different MOF membranes. 

The publication in Section 3.2 reports an amine-modified Mg-MOF-74 membrane 

with improved H2/CO2 selectivity. Although Mg-MOF-74 with 1D structure has a 

relative large pore size of about 10 Å, it shows a high CO2 uptake ability which could 

have potential for H2/CO2 separation. For synthesis of a Mg-MOF-74 membrane, we 

used MgO as seeds, which can support nucleation points for Mg-MOF-74 crystals and 

promote the growth of the membrane. Another post-modification strategy was used for 

the as-prepared Mg-MOF-74 membrane. By post-modification of the open Mg sites 

with ethylenediamine, the selectivity of Mg-MOF-74 membrane enhanced obviously. 

A highly permselective ZIF-100 membrane is introduced in Section 3.3. We have 

prepared the ZIF-100 membrane on a PDA-modified support. By this pre-modification 

method, covalent bonds between PDA and ZIF-100 could be formed, and the growth of 

ZIF-100 membrane on alumina support surface was improved. Due to its excellent CO2 

adsorption behavior and unique framework structure for CO2 storage, ZIF-100 

membrane showed high H2/CO2 selectivity. 

The publication in Section 3.4 describes a ZIF-90 membrane for gas separation. 

APTES was used to post-modify the as-prepared ZIF-90 membrane. By the imine 

condensation between amino groups of APTES and aldehyde groups of the ZIF-90, the 

window aperture of the pore in ZIF-90 was narrowed, and intercrystalline defects could 

also be sealed. After the amine-modification, ZIF-100 membrane shows high separation 

factors of H2/CO2, H2/CH4, H2/C2H6 and H2/C3H8. The modification did not block the 

pores, since the H2 permeances of the membrane reduced only slightly. 
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3.2 Amine-modified Mg-MOF-74/CPO-27-Mg membrane with 

enhanced H2/CO2 separation 

Nanyi Wang, Alexander Mundstock, Yi Liu, Aisheng Huang and Jürgen Caro 

 

Chemical Engineering Science 2015, 124, 27-36. 

 

Reprinted (adapted) with permission from Chemical Engineering Science. 

Copyright (2015) Elsevier. 
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3.3 Polydopamine-based synthesis of zeolite imidazolate framework 

ZIF-100 membrane with high H2/CO2 selectivity 

Nanyi Wang, Yi Liu, Zhiwei Qiao, Lisa Diestel, Jian Zhou, Aisheng Huang and 

Jürgen Caro 

 

Journal of Materials Chemistry A 2015, 3, 4722-4728 

 

Reprinted (adapted) with permission from Journal of Materials Chemistry A. 

Copyright (2015) Royal Society of Chemistry. 
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3.4 Organosilica-functionalized zeolitic imidazolate framework ZIF-90 

membrane with high gas-separation performance 

Aisheng Huang, Nanyi Wang, Chunlong Kong and Jürgen Caro 

 

Angewandte Chemie International Edition 2012, 51, 10551-10555.  

 

Reprinted (adapted) with permission from (Angewandte Chmie International 

Edition). Copyright (2012) Angewandte Chemie. 
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4 Conclusions 

This thesis is dedicated to the preparation and evaluation of two zeolite membranes 

(zeolite SOD and LTA membranes) and three MOF membranes (Mg-MOF-74, ZIF-90 

and ZIF-100 membranes). As clean environmental process, separation by molecular 

sieve zeolite and MOF membranes has already shown potential applications in industry, 

such as for gas separation, as well as in membrane reactors. 

The first part of this thesis was focused on the hydrophilic zeolite membrane for 

water separation, either for water vapor separation at high temperatures and for water 

pervaporation at room temperature, as described in Section 2. To synthesize a dense 

SOD membrane, we have developed a two-step repeated hydrothermal synthesis 

method. After the repeated synthesis method, well-intergrown SOD membrane with a 

thickness of around 8 µm could be obtained on the alumina support. The SOD 

membranes were evaluated from 125 to 200 °C in steam permeation of equimolar 

mixtures of H2O/H2, H2O/CH4, H2O/CO2, H2O/MeOH, H2O/DME and H2O/DMC. The 

stability of SOD membrane at high temperatures and the selectivity results reported in 

Sections 2.2 and 2.3 are promising for the application of SOD membranes in membrane 

reactors such as for esterification. Since less water could be adsorbed in the SOD 

framework as temperature increases, it was found that the mixed gas separation factors 

of H2O/H2, H2O/CH4, and H2O/CO2 decreased slightly with increasing temperature. It is 

worth to mention that by using SOD membranes water can be very effectively separated 

from other molecules like methanol (MeOH), dimethylether (DME) and 

dimethylcarbonate (DMC), with mixture separation factors near 200, >200 and >1000, 

respectively. Due to the thickness of the SOD membrane, however, the water permeance 

(0.43 kg/m
2
·h·bar) is relative low. 

Zeolite LTA membrane was developed for water separation from MeOH and DMC 

by pervaporation at room temperature. After the alumina support was pre-modified by 

3-aminopropyltriethoxysilane (APTES), a supported well-intergrown LTA membrane 

could be obtained. LTA membranes are usually synthesized in the Na
+
 form, with a pore 

size of about 4 Å.  However, it is not small enough to separate water form methanol, 

since both of H2O and MeOH are smaller than the pore size (with kinetic diameters of 

2.6 Å and 3.8 Å, respectively). We tried to solve the problem by using ion-exchange of 
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the Na
+
 with larger K

+
 ions, thus the pore size was narrowed to 3 Å. After the 

ion-exchange for 12 h, the selectivity of H2O/MeOH in mixture was improved from 2.8 

to 7.4 at room temperature by pervaporation. On the other hand, the LTA membrane also 

showed good selectivity for water/DMC separation. The separation factors of 

H2O/DMC by pervaporation at room temperature were around 800 and 1000 (before 

and after ion-exchange, respectively). 

In the second part we introduced three MOF membranes, namely Mg-MOF-74, 

ZIF-90 and ZIF-100 membranes, for hydrogen purification. We focused on the synthesis 

method of these MOF membranes, especially pre- and post-modification method to 

improve the membrane quality and gas separation performances. We used a secondary 

growth method to prepare Mg-MOF-74 membrane after optimization of the synthesis 

solution. By seeding MgO nanocrystals on the alumina support, a phase-pure and 

compact Mg-MOF-74 membrane can grow on the seeded support. Although 

Mg-MOF-74 has relatively larger pore size of about 10 Å, a mixture separation factor of 

H2/CO2 with 10.5 (obviously higher than those of H2/CH4 and H2/N2) could be obtained 

at room temperature. After a post-functionalization of the as-prepared Mg-MOF-74 

membrane by ethylenediamine, the H2/CO2 selectivity was remarkably increased to 28 

at room temperature. Attributed to the unsaturated Mg
2+

 site in the framework structure 

of Mg-MOF-74, CO2 can be stored in the pore structure Mg-MOF-74, thus resulting in 

a high H2/CO2 selectivity. By modification using a diamine, one amino group was 

interacted with the open Mg site to narrow the pore size, and the other amino group 

interacts with CO2 thus further reducing CO2 mobility. 

Dense and continuous ZIF-100 membrane was prepared on polydopamine 

(PDA)-modified alumina support. After the pre-modification by PDA, covalent and 

non-covalent bonds between PDA and ZIF-100 were formed and ZIF-100 nutrients 

could be attracted better on the support. Due to the outstanding CO2 uptake behavior 

and the small pore aperture of ZIF-100, the PDA-based ZIF-100 membrane showed a 

high H2/CO2 selectivity of about 72 at room temperature and 1 bar. In Section 3.3, we 

have also investigated the gas adsorption isotherm of ZIF-100 by a simulation study. In 

good accordance with the experimental data, it was found in simulation study that CO2 

is predominantly adsorbed over H2 in the whole pressure range attributing to the much 

stronger interaction between CO2 and ZIF-100. 
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As described in Section 3.4, a post-modification method was used to modify the 

as-prepared ZIF-90 membrane by using APTES. Through an imine condensation 

between the free aldehyde groups of the ZIF-90 and the amino group of APTES, the 

mixture separation factors of H2/CO2, H2/CH4, H2/C2H6 and H2/C3H8 could be improved 

to 20.1, 70.5, 250 and 458, respectively, while the high H2 permeances could be kept 

after the modification as well. The increase of the separation factors is ascribed to two 

effects: the pore mouth of ZIF-100 was narrowed, and defects of the polycrystalline 

ZIF-90 layer were also sealed during the APTES-modification. 

In summary, this work presented five molecular sieving membranes for gas/liquid 

separation. Various synthesis skills were investigated based on the properties of each 

membrane. Pre-modification methods (with APTES or PDA), secondary growth method 

as well as two-step synthesis method were introduced to improve the membrane quality 

and reproducibility, so that the membranes could grow better on the alumina support. 

Post-modifications (with APTES or ethylenediamine) and ion-exchange of the 

as-prepared membranes were applied to improve the gas/liquid separation performance 

of the obtained membranes. 

So far, zeolite and MOF molecular sieve membranes have not found any industrial 

applications in technical gas separation. An exception is the use of LTA and FAU 

membranes in the de-watering of different solvents by steam permeation or 

pervaporation. At present, the higher production costs of zeolite and MOF membranes 

are not justified by a higher separation performance (selectivity, flux) or by a longer live 

time. Special problems for MOFs are their instability against moisture and their 

non-constant pore size. As coordination polymer, MOFs show the phenomenon of 

framework flexibility which is linked to such termini like “breathing”, “gate opening”, 

“linker distortion” and results in no sharp pore size “cut off” in adsorption and 

permeation. 

Mixed Matrix Membranes (MMM) combine the excellent processing properties of 

polymers (spring of hollow fibers, casting of foils) with the adsorption and diffusion 

selectivities of zeolites and MOFs when the polymer is modified by 10…30 vol. % of 

zeolite or MOF (nano)powder. The analysis of the open literatures of the last few years 

leads to the assumption that in MOF-based MMM must be a synergistic interplay of 
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MOF particles and the continuous polymer phase. The dramatic improvements of flux 

and selectivity of MMM cannot by understood on the base of the classical Maxwell 

theory. One possible explanation of the improved selectivity of MMM is that the 

polymer matrix stops linker distortion which increases selectivity. 
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