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Zusammenfassung

Kristallines Silizium ist ein wichtiges Halbleitermaterial für eine Vielzahl von Anwendungen,

die aus dem Bereich der Energieerzeugung mit Solarzellen über Sensoren für bildgebende Ver-

fahren bis hin zu physikalischer Grundlagenforschung reichen. Alle diese Anwendungen nutzen

die Absorption oder Transmission von Licht in Silizium aus, die beide durch den Absorptions-

koeffizienten beschrieben werden. Daher erstaunt es nicht, dass seit über 60 Jahren fortlaufend

wissenschaftliche Arbeiten publiziert werden, die sich mit der Bestimmung des Absorptionsko-

effizienten befassen. Dass die Bestimmung des Absorptionskoeffizienten von Silizium nach wie

vor ein aktuelles Forschungsthema ist, hat verschiedene Gründe. Fast alle Arbeiten untersuch-

ten den Absorptionskoeffizienten nur in einem Teil des Wellenlängenbereichs, der für praktische

Anwendungen wie z.B. die photovoltaische Energieerzeugung interessant ist. Dabei kamen ver-

schiedene Messverfahren zum Einsatz. Ein Blick auf die in der Literatur vorhandenen Daten-

sätze zeigt, dass die Messdaten um bis zu 20 % voneinander abweichen. Es ist unklar, ob diese

Abweichungen nur auf Eigenschaften der untersuchten Proben zurückzuführen sind oder auch

auf systematische Abweichungen und Unsicherheiten aufgrund der eingesetzten Messverfahren.

Die Genauigkeit der Literaturdaten lässt sich allerdings nicht bewerten, da Messunsicherhei-

ten nicht systematisch ermittelt oder - zum größten Teil - überhaupt nicht angegeben wurden.

Teilweise sind auch nur unvollständige Informationen über die Eigenschaften der untersuchten

Proben oder Messbedingungen wie bspw. die Probentemperatur vorhanden. Dazu kommt, dass

für viele der älteren Arbeiten die Datensätze nicht (mehr) in tabellarischer Form verfügbar sind.

Für die Verwendung dieser Datensätze müssen Abbildungen digitalisiert werden, was zusätzli-

che Unsicherheiten unbekannter Größe verursacht.

Diese Arbeit befasst sich daher mit der erneuten, präzisen und nachvollziehbaren Bestimmung

des Absorptionskoeffizienten von Silizium, genauer mit der Bestimmung des Koeffizienten der

Inter-Band-Absorption, die zur Generation elektrischer Ladungsträger führt. Es werden ver-

schiedene Messverfahren eingesetzt (spektroskopische Ellipsometrie, Reflexions- und Trans-

missionsmessungen, spektral aufgelöste Lumineszenzmessungen und Messungen der spektra-

len Bestrahlungsstärke-Empfindlichkeit), die den Wellenlängenbereich von 250 bis 1450 nm ab-

decken. In diesem Bereich variiert der Absorptionskoeffizient um mehr als 15 Größenordnungen.

Für alle Messverfahren wird eine systematische Messunsicherheitsanalyse durchgeführt, die auf

dem “Guide to the expression of uncertainty in measurement” (GUM) basiert. Damit ist es

erstmals möglich, begründete Unsicherheiten für den so erhaltenen Datensatz des Absorptions-

koeffizienten anzugeben. Darüber hinaus erfolgen Vergleichsmessungen mit der Physikalisch-

Technischen Bundesanstalt in Braunschweig, Deutschland (PTB), sowie der Australian Natio-

nal University in Canberra, Australien (ANU), die die in dieser Arbeit erhaltenen Messdaten

bestätigen. Die relative Unsicherheit des so bestimmten Absorptionskoeffizienten beträgt 0,3 %

bei 300 nm, 10 % bei 600 nm, 1 % bei 900 nm, 10 % bei 1200 nm und 180 % bei 1450 nm.

Da die Literaturdaten auf vergleichbaren Messungen beruhen, zeigt die in dieser Arbeit durch-

geführte Analyse auch, dass die Abweichungen zwischen den Literaturdatensätzen nur zum Teil

durch Messunsicherheiten erklärbar sind. Die Unsicherheit von Wirkungsgradsimulationen für

Solarzellen aufgrund der Unsicherheit des ermittelten Absorptionskoeffizienten liegt in der Grö-

ßenordnung von 0.1 % relativ und ist damit für die Genauigkeit solcher Simulationen nicht

limitierend.
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Abstract

Crystalline silicon is an important semiconductor material for a wide variety of applications,

ranging from generation of electricity with solar cells to sensors for imaging methods or funda-

mental physical research. All of these applications make use of the absorption or transmission of

light within silicon, which is described by the absorption coefficient. It is therefore no surprise

that over the last 60 years, the determination of the absorption coefficient has been the subject

of many scientific publications. Today, the determination of the absorption coefficient of crys-

talline silicon is still an ongoing research topic. There are several reasons for this. Almost all

of the published studies investigate the absorption coefficient only in a part of the wavelength

range that is of interest for a specific application, e.g., the photovoltaic generation of electricity.

Moreover, different measurement methods were used. A comparison of literature data shows

that there are deviations of up to 20 % between the different data. It is unclear whether the devi-

ations are only due to the specific properties of the investigated samples or whether they can be

explained by systematic deviations or uncertainties due to the measurement methods used. The

accuracy of the literature data cannot be assessed since measurement uncertainties have not been

determined systematically or, as for the major part of the studies, have not been indicated at all.

Moreover, only incomplete information about the properties of the samples and measurement

conditions as sample temperature is found in some of the studies. Another issue is that for most

of the older work, tabulated data is not available (anymore). In order to use these data, figures

must be digitized, which leads to additional uncertainties of unknown extent.

The subject of this work is thus the accurate and comprehensible redetermination of the absorp-

tion coefficient of crystalline silicon. More precisely, the work is concerned with the determina-

tion of the coefficient of inter-band absorption, which leads to the generation of electrical charge

carriers. For this purpose, different measurement methods are used: spectroscopic ellipsometry,

measurements of reflectance and transmittance, spectrally resolved luminescence measurements

and measurements of the spectral responsivity of solar cells. These measurements cover the

wavelength range from 250 to 1450 nm. In this region, the absorption coefficient varies by more

than 15 orders of magnitude. For all methods, a systematic measurement uncertainty analysis

is carried out based on the “Guide to the expression of uncertainty in measurement” (GUM).

This allows to specify substantiated uncertainties for the data for the first time. Furthermore, the

data is consolidated by comparison with data measured by the Physikalisch-Technische Bunde-

sanstalt in Braunschweig, Germany (PTB) and the Australian National University in Canberra,

Australia (ANU). The relative uncertainty of the absorption coefficient data determined in this

work is 0.3% at 300 nm, 10% at 600 nm, 1% at 900 nm, 10% at 1200 nm and 180% at 1450 nm.

Since the literature data result from comparable measurements, the analysis shows that the de-

viations between the data can only partly be explained by measurement uncertainties. The un-

certainty of energy conversion efficiency simulations for solar cells due to the uncertainty of the

absorption coefficient data determined in this work is of the order of 0.1% relative and does not

limit the accuracy of such simulations.

Keywords: crystalline silicon, absorption coefficient, measurement uncertainty analysis
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Einleitung

Kristallines Silizium ist ein wichtiges Ausgangsmaterial für eine Vielzahl von Anwendungen. Die

Mikroelektronikindustrie stellt daraus integrierte Schaltkreise her, die aus der modernen Telekommu-

nikations- und Informationstechnologie nicht mehr wegzudenken sind. Auf kristallinem Silizium ba-

sieren die meisten Sensoren, die zur digitalen Bildgebung eingesetzt werden, oder Solarzellen, die

Sonnenlicht direkt in elektrische Energie umwandeln. Seit einiger Zeit werden auf Silizium basieren-

de photonische Technologien untersucht, die beispielsweise der optischen Datenübertragung dienen.

Dadurch lässt sich der Datendurchsatz gegenüber einer elektronischen Übertragung und damit die

Leistungsfähigkeit informationsverarbeitender Systeme steigern. Auch im Bereich der physikalischen

Grundlagenforschung spielt Silizium eine wichtige Rolle. So wird beispielsweise daran gearbeitet, die

Empfindlichkeit von Gravitationswellendetektoren durch die Verwendung von Testmassen aus Silizi-

um weiter zu erhöhen, um damit die durch die allgemeine Relativitätstheorie vorhergesagten Gravita-

tionswellen nachweisen zu können [1]. Alle diese Anwendungen nutzen die Absorption von Licht in

Silizium oder die Transparenz für Licht großer Wellenlängen aus. Für ein Verständnis der physikali-

schen Vorgänge und darauf aufbauend die gezielte Optimierung der Bauteile ist eine genaue Kenntnis

des Absorptionskoeffizienten erforderlich, der als fundamentale Materialkonstante die Absorption bei

einer gegebenen Lichtwellenlänge quantifiziert. Der Absorptionskoeffizient von Silizium ist daher seit

über 60 Jahren Gegenstand der Forschung, bereits 1955 wurden erste Messungen veröffentlicht. In

der Folge haben sich eine Vielzahl wissenschaftlicher Arbeiten mit der Bestimmung des Absorptions-

koeffizienten befasst, seit 1955 wurden fortlaufend neue Ergebnisse veröffentlicht [2–36]. Dass die

Bestimmung des Absorptionskoeffizienten von Silizium nach wie vor ein aktuelles Forschungsthema

ist, hat verschiedene Gründe. Da der Absorptionskoeffizient in dem für praktische Anwendungen wie

z.B. die photovoltaische Energieerzeugung interessanten Wellenlängenbereich über mehr als 15 Grö-

ßenordnungen variiert, untersuchten fast alle Arbeiten nur einen Teil dieses Wellenlängenbereichs,

der mit dem jeweils verwendeten Messverfahren zugänglich ist. Aufbauend auf diesen Daten wurden

kombinierte Datensätze erstellt, die den gesamten Wellenlängenbereich abdecken [32, 37]. Ein Blick

auf die Literaturdaten (vgl. Abbildung 1) zeigt jedoch, dass die unterschiedlichen Datensätze teilweise

um bis zu 20 % voneinander abweichen. Es ist unklar, ob diese Abweichungen nur auf Eigenschaf-

ten der untersuchten Proben zurückzuführen sind oder auch auf systematische Abweichungen und

Unsicherheiten aufgrund der eingesetzten Messverfahren. Die Genauigkeit der Literaturdaten lässt

sich nicht bewerten, da Messunsicherheiten nicht systematisch ermittelt oder - zum größten Teil -

überhaupt nicht angegeben wurden. Teilweise sind auch nur unvollständige Informationen über die

Eigenschaften der untersuchten Proben oder Messbedingungen wie beispielsweise die Probentem-

peratur vorhanden. Dazu kommt, dass für viele der älteren Arbeiten die Datensätze nicht (mehr) in

tabellarischer Form verfügbar sind. Für die Verwendung dieser Datensätze müssen Abbildungen di-

gitalisiert werden, was zusätzliche Unsicherheiten verursacht.

Diese Arbeit befasst sich mit der erneuten, präzisen und nachvollziehbaren Bestimmung des Ab-

sorptionskoeffizienten von Silizium, genauer mit der Bestimmung des Koeffizienten der Inter-Band-
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Absorption, die zur Generation elektrischer Ladungsträger führt. Allerdings wird nicht nur ein Teil

des für die Silizium-Photovoltaik interessanten Wellenlängenbereichs mit einem Verfahren unter-

sucht, sondern es werden verschiedene Messverfahren eingesetzt (spektroskopische Ellipsometrie,

Reflexions- und Transmissionsmessungen, spektral aufgelöste Lumineszenzmessungen und Messun-

gen der spektralen Bestrahlungsstärkeempfindlichkeit), die insgesamt den Wellenlängenbereich von

250 bis 1450 nm abdecken. Für alle Messmethoden wird eine systematische Messunsicherheitsana-

lyse durchgeführt, die auf dem “Guide to the Expression of Uncertainty in Measurements” (GUM)

basiert. Darüber hinaus erfolgen Vergleichsmessungen mit der Physikalisch-Technischen Bundesan-

stalt in Braunschweig, Deutschland (PTB), sowie der Australian National University in Canberra,

Australien (ANU), die die in dieser Arbeit erhaltenen Messdaten bestätigen. Die Arbeit motiviert sich

aus verschiedenen Interessen, die im Folgenden kurz skizziert werden.

Metrologisches Interesse Aufgrund des Fehlens systematisch ermittelter Messunsicherheiten für den

Absorptionskoeffizienten ist es bislang nicht möglich, die Genauigkeit der Literaturdaten zu bewer-

ten und die Abweichungen zwischen den Literaturdaten aufzuklären. So ist beispielsweise unklar, ob

die Abweichungen auf systematische Unterschiede aufgrund der verschiedenen Messverfahren zu-

rückzuführen sind. Aus metrologischer Sicht ist es daher von Interesse, den Absorptionskoeffizienten

möglichst präzise zu messen und die damit verbundene Messunsicherheit systematisch zu ermitteln.

Dies ermöglicht auch einen Vergleich der Ergebnisse der verschiedenen Messverfahren im Hinblick

auf systematische Abweichungen, die im Messverfahren begründet sein könnten.

Finanzielles Interesse Allein in der Photovoltaik betrug das Marktvolumen im Jahr 2012 etwa 500

Milliarden Euro. Der Ertrag photovoltaischer Anlagen wird unter anderem durch den Wirkungsgrad

bestimmt, mit dem sie Sonnenlicht in elektrische Energie umwandeln. Simulationen des Wirkungs-

grads solcher Anlagen, anhand derer Investitionsentscheidungen getroffen werden, basieren unter

anderem auf Materialkonstanten wie dem Absorptionskoeffizient. Bereits eine Unsicherheit in der

Wirkungsgradvorhersage von 1 % führt bei dem erwähnten Marktvolumen zu einer finanziellen Un-

sicherheit von 500 Millionen Euro. Es ist wünschenswert, die tatsächliche finanzielle Unsicherheit

abschätzen zu können, was die Kenntnis der Unsicherheit von Eingangsgrößen wie dem Absorptions-

koeffizienten voraussetzt.

Ökologisches Interesse Die weltweite Energieversorgung beruht heute zum größten Teil auf fossilen

Energieträgern. Die bei ihrer Verbrennung erzeugten Emissionen gelangen in die Umwelt, wo sie Kli-

maveränderungen, Luftverschmutzungen und Krankheiten beim Menschen hervorrufen. Das heutige

Energiesystem schädigt also auf vielfältige Weise die natürliche Umwelt, beeinflusst massiv bio-

geochemische Kreisläufe und gefährdet die Gesundheit. Zudem sind die globalen Energieressourcen

ungleich verteilt und begrenzt. Hieraus ergeben sich große geopolitische Konfliktpotentiale. Dies al-

les macht eine Änderung der Energieversorgung und eine Ausrichtung an nachhaltigen ökologischen

und sozialen Kriterien dringend erforderlich. Dem erheblichen Auf- und Ausbau erneuerbarer Ener-

gien und insbesondere der Solarenergie kommt dabei eine Schlüsselrolle zu [38]. Um den Ausbau der

Solarenergie voranzutreiben, müssen im Bereich der Photovoltaik unter anderem die flächenpropor-

tionalen Kosten für die Installation von Solarmodulen gesenkt werden. Dies lässt sich vor allem durch

eine Steigerung des Wirkungsgrades der Solarzellen realisieren [39]. Eine wesentliche Voraussetzung

für die Steigerung von Wirkungsgraden sind Charakterisierungs- und Simulationsverfahren, die eine

genaue Analyse der Mechanismen ermöglichen, die in der Solarzelle zu Leistungsverlusten führen.

Diese Verfahren benötigen einen genauen Datensatz des Absorptionskoeffizienten als Eingangspara-

meter.

Technisches Interesse Kristallines Silizium wird als gut verfügbares Halbleitermaterial für eine Viel-

zahl von Anwendungen in Industrie und Forschung eingesetzt. Für fundamentale Materialkonstanten

wie den Absorptionskoeffizienten ist es wünschenswert, einen belastbaren Datensatz zur Verfügung

zu haben, der auf nachvollziehbare Weise ermittelt wurde. Bei einer Vielzahl der Arbeiten zum Ab-
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sorptionskoeffizienten wurden die Messdaten allerdings nur in grafischer Form publiziert und sind

daher nicht unmittelbar für eine Weiterverwendung verfügbar. Aufgrund der Abweichungen zwi-

schen den Datensätzen ist es darüber hinaus fraglich, welcher Datensatz verwendet werden soll. Im

Rahmen dieser Arbeit erfolgten daher Vergleichsmessungen, die die Belastbarkeit der Daten sicher-

stellen. Darüber hinaus enthält die Arbeit die Daten in tabellarischer Form, um eine gute Verfügbarkeit

zu gewährleisten.

Die Arbeit ist folgendermaßen aufgebaut: Kapitel 1 enthält eine kurze Zusammenfassung der we-

sentlichen physikalischen Grundlagen und Definitionen, auf denen die Arbeit aufbaut. Kapitel 2 be-

schreibt die verschiedenen Messverfahren, die zur Ermittlung des Absorptionskoeffizienten einge-

setzt wurden. Dies beinhaltet jeweils eine Beschreibung der physikalischen Zusammenhänge zwi-

schen dem Absorptionskoeffizienten und der Messgröße, eine Beschreibung des Messaufbaus und

der verwendeten Proben sowie eine systematische Messunsicherheitsanalyse. Jedes dieser Verfahren

deckt nur einen Teil des insgesamt untersuchten Wellenlängenbereichs ab. Im dritten Kapitel wird

die Berechnung eines kombinierten Datensatzes des Absorptionskoeffizienten aus den verschiedenen

Messdaten beschrieben. Da der Gegenstand dieser Arbeit die Bestimmung des Koeffizienten der Inter-

Band-Absorption ist, wird an dieser Stelle auch die Notwendigkeit von Korrekturen bezüglich anderer

Absorptionsmechanismen diskutiert. Kapitel 4 beschreibt Anwendungen des erhaltenen Datensatzes

für die Photovoltaik. Es enthält eine Analyse des Einflusses der ermittelten Messunsicherheiten auf

die Unsicherheit von simulationsgestützten Wirkungsgradvorhersagen und diskutiert den Einfluss der

Abweichung der Daten von den bislang verwendeten Literaturdaten. Darüber hinaus wird ein analyti-

sches Modell der spektralen Lumineszenzemission von Silizium-Solarzellen und -Wafern vorgestellt.

Dieses Modell erfordert einen Datensatz des Absorptionskoeffizienten als Eingangsparameter und

ermöglicht unter anderem die Bestimmung der Rückseitenreflexion von Solarzellen aus dem Lumi-

neszenzspektrum. In diesem Zusammenhang wird auch gezeigt, dass die bisher verwendeten Litera-

turdaten zu systematischen Abweichungen zwischen Modell und Messung von Lumineszenzspektren

führen.
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Introduction

Crystalline silicon is an important feedstock for a wide variety of applications. For instance, it is used

by the microelectronics industry for the fabrication of integrated circuits, which facilitate modern

telecommunication and information technologies. Most of the sensors used for imaging purposes are

based on crystalline silicon. For some time, there has been research on photonical technologies based

on silicon, which might be used for optical data transfer and could increase the data tranfer rate and

thereby the capabilities of computational systems. Crystalline silicon is also important in the field of

fundamental physical research. For instance, there are attempts to use silicon targets as test masses in

order to increase the accuracy of interferometers used for the detection of gravitational waves, which

are predicted by the theory of relativity [1]. All of these applications make use of the absorption

of light within silicon or of the transparency for long-wavelength light. Detailed knowledge about

the absorption coefficient, which is a fundamental material property and quantifies the absorption at a

given wavelength, facilitates the understanding of physical processes and the subsequent optimization

of the devices. It is for this reason that the absorption coefficient of silicon has been a subject of

scientific research for more than 60 years. Already in 1955, first measurements were published.

Thereafter, a variety of scientific studies on the determination of the absorption coefficient have been

carried out. New data was published [2–36]. The absorption coefficient of crystalline silicon is still an

ongoing subject of scientific research for several reasons. In the wavelength range that is interesting

for practical applications such as the photovoltaic generation of electricity, the absorption coefficient

varies by more than 15 orders of magnitude. Thus, almost all of the studies only investigated a part

of this wavelength range, which is accessible by the measurement method used. Based on these data,

combined data sets were created which cover the whole wavelength range [32, 37]. Figure 1 provides

an overview of the most widely used data from literature. As can be seen, deviations between the

different data of up to 20% are found. It is unclear whether the deviations are only due to the specific

properties of the investigated samples or whether they can be explained by systematic deviations

or uncertainties due to the measurement methods used. The accuracy of the literature data cannot be

assessed since measurement uncertainties have not been determined systematically or, as for the major

part of the studies, have not been indicated at all. Moreover, only incomplete information about the

properties of the samples and measurement conditions as sample temperature is found in some of the

studies. Another issue is that for most of the older work, tabulated data is not available (anymore). In

order to use these data, figures must be digitized, which leads to additional uncertainties of unknown

extend.

This work is concerned with the accurate and comprehensible redetermination of the absorption co-

efficient of crystalline silicon. More precisely, the work is concerned with the determination of the

coefficient of inter-band absorption, which leads to the generation of electrical charge carriers. How-

ever, the investigation is not restricted to a part of the wavelength range which is of interest for silicon

photovoltaics and to one measurement method. Different measurement methods are used (spectro-

scopic ellipsometry, measurements of reflectance and transmittance, spectrally resolved luminescence
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Figure 1: Overview of the most widely used literature data of the absorption coef-

ficient of crystalline silicon at room temperature.

measurements and measurements of the spectral responsivity of solar cells) and cover the wavelength

range from 250 to 1450 nm. For all methods, a systematic measurement uncertainty analysis is car-

ried out based on the “Guide to the expression of uncertainty in measurements” (GUM). Further-

more, the data is consolidated by comparison with data measured by the Physikalisch-Technische

Bundesanstalt in Braunschweig, Germany (PTB) and the Australian National University in Canberra,

Australia (ANU). The work is motivated by different interests that are outlined in the following:

Metrological interest Due to the lack of systematically determined measurement uncertainties, to

date it has not been possible to assess the accuracy of the literature data and to resolve the deviations

between the data. For instance, it is unclear whether there are systematic deviations between the re-

sults of different measurement methods. From a metrological point of view, an accurate measurement

of the absorption coefficient and a systematic determination of the measurement uncertainties is thus

desirable. Such an analysis also enables a comparison of the different measurement methods with

respect to systematical deviations between the results.

Financial interest The financial volume of the photovoltaic market was about 500 billion Euro in

2012. The yield of photovoltaic systems is determined, among others, by the efficiency of energy

conversion from sunlight into electricity. Invest decisions are made based on the results of energy

conversion efficiency simulations. Hence, an uncertainty of the simulation results of only 1% already

corresponds to a financial uncertainty of 500 million Euro. An estimation of this uncertainty is thus

desirable. For this purpose, the uncertainty of simulation input quantities such as the absorption

coefficient must be known.

Environmental interest Today, the world’s energy supply is mostly based on fossil fuels. The com-

bustion of these fuels leads to air pollution, climate changes and diseases. Hence, today’s energy
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supply system endangers the preservation of nature and the living environment of all human beings.

Moreover, the global energy resources are limited and unequally distributed. This urgently requires

a transformation of the energy supply and a focus on sustainable, ecological and social criteria. The

expansion of renewable energy supplies and especially the photovoltaics is a key part of this trans-

formation [38]. The decrease of costs proportional to the area of photovoltaic devices is a promising

way to further expedite the expansion of photovoltaics and can be achieved by increasing the energy

conversion efficiency of photovoltaic devices [39]. The optimization of the energy conversion effi-

ciency requires characterization and simulation methods that allow for a detailed analysis of power

loss mechanisms. These methods require accurate data of the absorption coefficient as input.

Technical interest As a readily available feedstock, crystalline silicon is used for a variety of industrial

or research applications. It is thus desirable to have accurate and reliable data for fundamental material

constants such as the absorption coefficient. However, many of the publications on the absorption

coefficient only contain the data in a graphical form. The data can thus not be used easily. Moreover,

due to the deviations between the data, the question arises which data set should be used. In this work,

the data is thus consolidated by comparison with measurement results obtained by other institutions.

Additionally, tabulated data is given in order to ensure the availability and usability of the data.

The structure of this work is as follows: Chapter 1 provides a short review of the fundamental physical

relations and definitions, on which the following work is based. Chapter 2 describes the different

methods used for the determination of the absorption coefficient. For each method, the physical

relation between the absorption coefficient and the measurand is outlined. The measurement setup

and the samples are described and a systematical measurement uncertainty analysis is carried out.

Each of the measurement methods only covers a part of the wavelength range which is investigated.

Chapter 3 therefore describes the calculation of a combined data set of the absorption coefficient

from the different data. As the purpose of this work is the determination of the coefficient of band-to-

band absorption, the requirement of corrections for other absorption mechanisms is also discussed.

Chapter 4 contains applications of the absorption coefficient data determined in this work for the field

of silicon photovoltaics. In this chapter, the impact of the uncertainty of the absorption coefficient

on the uncertainty of energy conversion efficiency predictions by means of device simulations is

analyzed, as well as the impact of deviations from the literature data. Moreover, an analytical model

of the spectral luminescence emission of silicon solar cells and wafers is presented. This model

requires data of the absorption coefficient as input and facilitates the determination of the rear surface

reflectance of solar cells from their luminescence spectrum. In this context, it is also shown that the

most widely used literature data of the absorption coefficient lead to deviations between measured

and modeled luminescence spectrum.
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CHAPTER 1

Theoretical background

This chapter presents a brief review of the electronic properties of crystalline silicon and the theory
of light absorption within silicon devices. It is not the aim of this chapter to outline the fundamentals
of semiconductor theory but to mention the important aspects that form the basis for this work. The
chapter closes with a summary of the basic concepts and terminology used for the measurement
uncertainty analysis presented in this work.

1.1 Electronic properties of crystalline silicon

The atomic arrangement found in crystalline silicon is referred to as the diamond lattice. The unit cell

of this lattice is cubic. It is visualized in Fig. 1.1. The regular arrangement of the atoms within the

crystal leads to the formation of bands of allowed energy states for the electrons, separated by bands

of forbidden states. The most simple model of the band structure within a semiconductor consists

of only two energy bands: The valence band and the conduction band, which are separated by the

characteristic band gap energy EG as shown in Fig. 1.2. Electrons which are excited from the valence

to the conduction band are able to move within the crystal, i.e., they can contribute to a current flowing

through the crystal. The excitation of an electron creates a vacant position in the valence band, which

is commonly denoted as a hole. Holes are usually treated as (virtual) charge carriers with positive

elementary charge instead of working with missing electrons in the valence band. Thus, the excitation

of an electron into the conduction band creates an electron-hole pair. The minimum energy for the

excitation of an electron is the band gap energy EG. The inverse process (the transition of an electron

from the conduction to the valence band) is denoted as recombination. Although this simple model is

quite instructive, it neglects some important aspects of the band structure of crystalline silicon such

as the separation of the band edges in momentum space or the fact that recombination requires both

an electron and a hole to be at the same position in space.

The relation between energy E and momentum p of electrons and holes located in energy states near

the band edges is given by the dispersion relations [40]

E − EC =
(p − p0,c)2

2m∗e
,

E − EV = − (p − p0,v)2

2m∗
h

(1.1)

where EC and EV denote the energy of the band edges according to Fig. 1.2 and m∗e and m∗
h

denote the
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1.1. Electronic properties of crystalline silicon

valence band

conduction band
electron

hole

EG

EC

EV

Figure 1.1: Unit cell of a diamond lat-

tice.

Figure 1.2: Simple representation of

valence and conduction band.

effective masses of electrons and holes, respectively. p0,c and p0,v indicate the position of the energy

band minima. If p0,c = p0,v, one speaks of a direct band gap. For silicon, p0,c � p0,v which means

that the minima of valence and conduction band are separated in momentum space. This is referred to

as indirect band gap. Hence, a transition between the band minima requires a change of momentum

of the electron. This change of momentum is achieved by an interaction with the crystal lattice, i.e.,

the absorption or emission of a phonon. Figure 1.3 shows the band structure of crystalline silicon

according to Refs. 41 and 42.

Electrons are fermions, which means that each allowed energy level within the crystal can only be

occupied by, at most, two electrons of opposite spin. In thermal equilibrium, the probability f (E) for

an energy state of energy E to be occupied by an electron is given by the Fermi-Dirac distribution
function

f (E) dE =
1

1 + exp
(
(E − EF)/(kT )

) dE (1.2)

where k is the Boltzmann constant, EF is the Fermi energy and T is the absolute temperature. Note

that f (E) is a differential quantity in terms of energy as indicated by adding dE on both sides of the

latter equation. Near the band edge, the density of allowed states for electrons in the conduction band

N is given by

NC(E) dE =
8
√

2π 3
√

m∗e
h3

√
E − EC dE (1.3)

where h is the Planck constant. A similar expression follows for the density of states in the valence

band:

NV(E) dE =
8
√

2π 3
√

m∗
h

h3

√
EV − E dE . (1.4)

The density of electrons and holes, respectively, per energy interval dE is the product of the probability

of occupance f (E) and the density of states N(E). Figure 1.4 shows a qualitative sketch of the Fermi-

Dirac distribution function, the density of states and the resulting charge carrier density D per energy

interval dE.

Doping of the semiconductor introduces energy levels in the band gap, located either close to the edge

of the valence band in case of acceptor dopants or close to the edge of the conduction band in case of

donor dopants. At room temperature, nearly all dopants are ionized [43], which leads to an increased

conductivity of the semiconductor crystal.
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Figure 1.3: Band structure of crystalline silicon according to Refs. 41 and 42.

Optical or electrical injection of charge carriers leads to a deviation from thermal equilibrium. Under

constant excitation, however, a static equilibrium between generation and recombination of charge

carriers establishes. The distribution of electrons and holes in the conduction and valence band,

respectively, can then be described by independent Quasi-Fermi energy levels for each band [44]. This

is possible since the (intra-band) thermalization of charge carriers is much faster than the (inter-band)

recombination or excitation. The rate of spontaneous radiative recombination, which is analyzed

by luminescence measurements, depends on the splitting of the Quasi-Fermi energy levels ΔEF (see

chapter 2.2).

1.2 Absorption of light within silicon

Absorption of light is basically the annihilation of photons whose energy is transferred to an electron

within the crystal, i.e., the electron is excited into a state of higher energy. Depending on the combi-

nation of initial and final states involved in the absorption process, different absorption mechanisms

are distinguished.

The fundamental process in the ultraviolet, visible and near-infrared spectral range (wavelengths be-

low 1100 nm) is the inter-band absorption where electrons from the valence band are excited into the

conduction band. For photon energies above 3.4 eV, direct transitions are possible [8]. For lower

photon energies, indirect transitions occur by the absorption or emission of phonons. Inter-band ab-

sorption creates free charge carriers that can contribute to a current flowing through the crystal. It is

thus fundamental for all types of photovoltaic devices. In the following, this process will be referred

to as band-to-band absorption. Photons may also be absorbed by either intra-band or band-impurity

absorption. Intra-band absorption is caused by the excitation of an electron within the conduction

band into a state of higher energy within the same band. This absorption process (also known as free
carrier absorption, FCA) is often termed parasitic absorption as it does not generate additional free

charge carriers but may hamper the functionality of photovoltaic devices. Band-impurity absorption

denotes the excitation of an electron within the valence band into a state within the band gap which

is induced by an impurity. Such transitions can also occur from an impurity state into the conduction
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1.2. Absorption of light within silicon

E

N(E)

Ev

Ec

E

f(E)

EF

E

D(E)

holes

electrons

Figure 1.4: Qualitative sketch of the density of states N(E), the Fermi-Dirac dis-

tribution function f (E) and the resulting charge carrier density D(E) per energy

interval dE.

band.

This work focusses on the determination of the coefficient of band-to-band absorption αbb, charac-

terizing the fundamental absorption process for photovoltaic devices. Free carrier absorption is also

briefly discussed since it may be the dominant absorption process at wavelengths around the band

gap, which may impose restrictions on the methods used to measure αbb. Band-impurity absorption

is located at wavelengths far beyond the band gap and has virtually no significance for practical de-

vices with low impurity concentrations. As it does not interfere with the measurements presented in

this work, it is not discussed further here. Beside these main contributions to photon absorption, there

are other processes such as lattice absorption, which contribute at very low photon energies only and

are therefore not considered in the context of this work.

1.2.1 General definition of the absorption coefficient

Within a homogeneous silicon crystal, the rate of photon absorption is constant within each volume

element. Mathematically, this is expressed as

−div �Φ(λ) = α(λ) |�Φ(λ)| (1.5)

where �Φ is the photon flux, λ is the photon wavelength and α is the absorption coefficient so defined.

In silicon, absorption is isotropic. Equation (1.5) can thus be rewritten in a one-dimensional form,

− d2

dz2
Φ(λ, z) = α(λ)Φ(λ, z) , (1.6)

where the z-axis points in the direction of the photon flux. The solution of Eq. (1.6) is the common

Lambert-Beer absorption law

Φ(λ, z) = Φ0(λ) exp
( − α(λ) z

)
. (1.7)

Here, Φ0 denotes the initial intensity of the photon flux. The absorption coefficient contains all of the

absorption processes mentioned above:

α = αbb + αfc + αimp . (1.8)

In the latter equation, αbb, αfc and αimp represent the coefficients of band-to-band absorption, free

carrier absorption and band-impurity absorption, respectively. The absorption coefficient α is related

to the complex index of refraction

n̂ = n + iκ (1.9)
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by [45]

α =
4πκ

λ
. (1.10)

Real and imaginary part of the complex index of refraction are related by the Kramers-Kronig rela-

tions [45, 46]

n(E) = 1 +
2

π
P
∫ ∞

0

dE′
E′ κ(E′)

(E′)2 − E2
, (1.11)

κ(E) = 1 − 2E
π

P
∫ ∞

0

dE′
n(E′)

(E′)2 − E2
. (1.12)

In the latter equations, P
∫ ∞

0
≡ limδ→0 (

∫ E′−δ
0

+
∫ ∞

E′+δ) denotes the Cauchy principal value of the inte-

gral.

1.2.2 Indirect band-to-band absorption

Photons carry a large energy of hν but only a small momentum of h/ν (ν being of the order of microns).

In contrast, phonons carry a small energy Eph of hd and a large momentum of h/d, the lattice constant

d being of the order of Angstroms. Indirect band-to-band absorption thus requires the absorption or

emission of a phonon due to conservation of momentum. The minimum photon energy required for

the excitation of an electron to the conduction band is hν = EG − Eph. The absorption coefficient is

proportional to the integral over all combinations of possible initial and final states and also to the

probability of phonon interaction, which is described by Bose-Einstein statistics. Using the parabolic

approximation of valence and conduction edges given in Eq. (1.1), it can be shown that the coefficient

of indirect band-to-band absorption is expected to obay the relation [45]

αa(hν) ∝ (hν − EG + Eph)2

exp(Eph/kT ) − 1
(1.13)

for transitions where phonons are absorbed and

αe(hν) ∝ (hν − EG − Eph)2

1 − exp(−Eph/kT )
(1.14)

when phonons are emitted. The overall coefficient of indirect band-to-band absorption αbb is the sum

of both processes:

αbb(hν) = αa(hν) + αe(hν) ∝ (hν − EG + Eph)2 + (hν − EG − Eph)2 . (1.15)

Equation (1.15) suggests a method for the determination of the band gap energy EG: Due to Eph 	
EG, a plot of

√
αbb vs. photon energy hν is expected to show a linear regime since

√
αbb ∝∼ (hν − EG) . (1.16)

Extrapolation of the linear regime to αbb = 0 then yields the band gap energy EG. This method, also

known as Tauc plot, was first introduced by J. Tauc for the determination of the band gap energy of

germanium [47].
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1.2. Absorption of light within silicon

1.2.3 Direct band-to-band absorption

Direct band-to-band absorption occurs when the photon energy exceeds the direct band gap energy

of approximately 3.4 eV which corresponds to wavelengths below approximately 340 nm. The co-

efficient of direct band-to-band absorption is proportional to the density of associated states in the

valence and conduction band as given by Eqs. (1.4) and (1.3). This leads to a square-root dependence

of the absorption coefficient on photon energy [45]:

α ∝ √
hν − EG (1.17)

According to the tabulated AM1.5G spectral distribution [48], about 1% of the photons in sunlight

have enough energy to excite direct transitions. However, the absence of direct band-to-band ab-

sorption would not affect the functionality of practical photovoltaic devices, since photons of such

energies would be absorbed by indirect processes anyway.

1.2.4 Free carrier absorption (FCA)

The coefficient of free carrier absorption αfc depends on the concentration of free charge carriers in

the conduction band and on the wavelength. Classical theory predicts a proportionality to the square

of the wavelength and the charge carrier concentration [43]. Green [37] states an empirical expression

for αfc “for photon energies above 0.5 eV and carrier densities around 1018 cm−3”:

αfc [cm−1 ] = n Kn λ
a + p Kp λ

b (1.18)

where n and p are the densities of electrons and holes in units of cm−3, λ is the wavelength in units

of nm, Kn = 2.6 × 10−27, Kp = 2.7 × 10−24, a = 3 and b = 2. Figure 1.5 visualizes αfc according

to the parametrization of Green for different doping concentrations of a p-type wafer in comparison

to αbb as determined by Daub et al. [23]. As can be seen, FCA is important for highly doped layers

and/or long wavelengths. Otherwise, the absorption is dominated by band-to-band absorption. Note

that different FCA parametrizations were recently reviewed and experimentally validated by Baker-

Finch et al. [36]. The parametrization of Green, which is used throughout this work, is shown to be

generally consistent with the data obtained in their work.

1.2.5 Temperature dependence of the band gap energy

The band gap energy EG decreases with increasing temperature, which implies an increasing ab-

sorption coefficient αbb. The major contribution to this effect is caused by a temperature-dependent

interaction of the electrons with the crystal lattice [49–54]. A second contribution results from a

temperature-dependent dilatation of the crystal lattice [55, 56]. Several publications are concerned

with the temperature dependence of EG [57–63]. In the photovoltaic community, the parametrization

of Palankovski [60], which is visualized in Fig. 1.6, is widely used:

EG(T ) = E0 − a T 2

T + b
(1.19)

with E0 = 1.1695 eV, a = 4.73 × 10−4 eV/K, b = 636 K and the temperature T in units of K.

1.2.6 Injection and doping dependence of the band gap energy

The band gap energy EG decreases with increasing charge carrier concentration. Reasons for the

decrease of EG are Coulomb screening and formation of band tails [64]. Schenk [65] developed

an analytical model which calculates the band gap narrowing depending on doping concentration
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Figure 1.5: Coefficient of free carrier absorption αfc

according to the parametrization of Green [37] for

different doping concentrations of a p-type silicon

wafer in comparison to the coefficient of band-to-

band absorption αbb as determined by Daub et al.

[23].

Figure 1.6: Temperature dependence of the band gap

energy EG as given in Ref. 60.

and charge carrier densities. The model is visualized in Fig. 1.7 for p-type silicon. The band gap

narrowing in thermal equilibrium increases from −0.01 meV at acceptor concentrations of 1010 cm−3

to −100 meV at acceptor concentrations of 1020 cm−3. Under low-level injection conditions, the band

gap narrowing is dominated by the doping concentration. Under high-level injection conditions, the

excess charge carrier concentration becomes dominant for the band gap narrowing.

1.3 Systematical Measurement Uncertainty Analysis

The objective of any measurement is to obtain an estimate of the true value of the measurand. In or-

der to assess the quality of a measurement, it is necessary to evaluate the uncertainty of the measured

value, which defines the interval around the measured value within which the true value is expected

to lie with a given probability. The measurement uncertainty analysis presented in this work is based

on the Guide to the Expression of Uncertainty in Measurement [66] (GUM). The GUM is the in-

ternational standard for the systematic evaluation of measurement uncertainties. This section briefly

summarizes the terminology and methodology used in the GUM and also in this work. For a defini-

tion of the metrological terms, the reader is referred to the International vocabulary of metrology -
Basic and general concepts and associated terms (VIM) [67].

1.3.1 Definition: Process equation

In many experiments, a measurand Y is not measured directly but calculated from other quantities

Xi whose values are determined in the experiment. The process equation describes the functional

relationship

Y = f (X1, ..., XN) . (1.20)
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Figure 1.7: Visualization of band gap narrowing for

p-type silicon as calculated with the model of Schenk

[65]. Top: Dependence on acceptor concentration

NA in thermal equilibrium. Bottom: Injection depen-

dence for different acceptor concentrations.

Figure 1.8: Visualization of the concepts of uncer-
tainty and error in a measurement and recurrent prob-

ability distribution functions.

between the input quantities Xi and the output quantity Y . The values of the quantities are denoted

by the corresponding lowercase letters, i.e., y and xi. A common example for such an experiment

is the determination of an electrical current (output quantity) by measuring the voltage drop over a

calibrated measurement shunt (input quantities), where the process equation is given by Ohm’s law.

1.3.2 Definition: Uncertainty, error and correction

In its basic sense, measurement uncertainty means “doubt about the validity of the result of a measure-

ment” [66]. This doubt originates from unavoidable experimental imperfections such as fluctuations

of output values due to measurement noise. The evaluation of the impact of such effects on the value

of the output quantity leads to an interval, within which the true value is expected to lie with a given

probability. In a practical sense, measurement uncertainty thus refers to this interval. From a statisti-

cal point of view, the uncertainty of a measured value is given by its probability distribution function,

as visualized in Fig. 1.8. Recurrent probability distribution functions are the normal (gaussian) distri-

bution, the rectangular distribution and the triangular distribution. These distributions are visualized

in Fig. 1.8. The normal distribution is characterized by its standard deviation σ. For the rectangular

distribution, the standard deviation σrect is given by [66]

σrect = a/
√

3 (1.21)

where a is the half width of the distribution (i.e., 2a is the difference between the bounds). For the

triangular distribution, the standard deviation σtri is [66]

σtri = a/
√

6 . (1.22)

According to the VIM, an error is defined as the difference between the measured value and a ref-

erence value. Regarding the probability distribution of the measured value, the error of a single

measurement (i.e., a single draw from the distribution) would thus be the difference between the mea-

sured value and the expectation value of the quantity. In practice, the term “error” is often also used
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to describe the impact of systematical effects that change the expectation value of the measurand, as

visualized in Fig. 1.8. In the context of the example of the current measurement mentioned above,

such a “systematic error” could be a temperature variation of the measurement shunt which is not

considered in the process equation. The example shows that this is actually not an error in the sense

of the VIM definition, but rather an incomplete definition of the process equation. Thus, the system-

atic effect can be compensated by applying a correction to the measured value, which is actually an

extension of the process equation to account for the effect.

It is important to note that the GUM assumes all systematic effects to have been identified and in-

cluded in the process equation to the maximum extent possible, because the reported (expectation)

value is usually assumed to coincide with the true value of the measurand. Only in case that the de-

viations caused by a systematic effect are negligible with respect to the uncertainty, a correction can

be omitted. In this sense, applying corrections for systematic effects does not reduce the uncertainty

of the measured value. The uncertainty of the correction itself is calculated by including the effect in

the process equation and applying the standard formalism.

It should be noted that sometimes, known systematic deviations are taken into account by enlarging

the uncertainty rather than including it in the process equation. In this case, applying a correction

would indeed “reduce the uncertainty”. However, this approach gives misleading results and is dep-

recated by the GUM.

1.3.3 Type A and B uncertainties

The GUM distinguishes between type A and type B uncertainty components. This distinction refers

to how the uncertainty component is determined. Type A uncertainties are determined by repeated

observations of the measurand. The measured value is then the average of the single results. A familar

case of type A uncertainty evaluation is uncertainty due to statistically distributed noise. The type A

uncertainty of the measured value is given by the standard deviation σ of the repeated observations,

σ =

√√√
1

1 − N

N∑
i=1

(x̄ − xi)2 , (1.23)

divided by the square root of the number of results:

uA(x̄) =
σ√
N
. (1.24)

In the latter equations, N is the number of observations, xi are the single measurement results and x̄
is the average of the single results. Every other uncertainty component, which is not determined from

repeated observations, is termed type B uncertainty. For instance, this includes uncertainties that are

obtained from a calibration report, a technical reference, a physical model, separate measurements or

scientific experience.

1.3.4 Combined standard uncertainty

The combined standard uncertainty uc(y) of the output quantity is the positive square root of the

combined variance of the output quantity, given by

u2
c(y) =

N∑
i=1

( ∂ f
∂xi

)2
u2(xi) + 2

N∑
i=1

N∑
j=i+1

∂ f
∂xi

∂ f
∂x j

u(xi) u(x j) r(xi, x j) . (1.25)

The second summand in the latter equation is zero if all input quantities are uncorrelated, which

means that the correlation coefficients r(xi, x j) are zero. The correlation coefficient varies between

1 (correlated) and −1 (anticorrelated). The factors (∂ f /∂xi)
2 and (∂ f /∂xi) (∂ f /∂x j) are denoted as

sensitivity coefficients c2
i and ci, j, respectively.
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1.3. SystematicalMeasurement Uncertainty Analysis

1.3.5 Expanded uncertainty

The level of confidence (also called coverage probability) for a given uncertainty indicates the proba-

bility that a measurement will yield a result which deviates from the expectation value of the measure-

ment by not more than the specified uncertainty. The expanded uncertainty U for a desired level of

confidence is obtained from the combined standard uncertainty uc by multiplication with a coverage
factor k:

U(y) = k uc(y) . (1.26)

The value of k for a given level of confidence is determined by the distribution function of the quantity.

For a normal distribution, the combined standard uncertainty corresponds to a coverage probability of

approximately 68%. The expanded uncertainty for k = 2, which is usually indicated by certified cal-

ibration laboratories, corresponds to a coverage probability of approximately 95%. The central limit
theorem states that the distribution function of an output quantity which follows from the convolution

of normal distribution functions of the input quantities is also a normal distribution. However, this

holds approximately even if the input quantities are not described by normal distribution functions.

In practice, the assumption of a normal distribution function for an output quantity which is calcu-

lated from several input quantities is usually justified as long as the uncertainty is not dominated by

a non-normally distributed input quantity. The expanded uncertainty of an output quantity for k = 2

thus usually corresponds to a coverage probability of approximately 95%.

A more precise calculation of the coverage factor is enabled by recognizing that the distribution

function of the output quantity can be approximated by a t-distribution with an effective degree of

freedom νeff . The effective degree of freedom can be estimated by the Welch-Satterthwaite formula

νeff =
u4

c(y)∑N
i=1

(
c(xi)u(xi)

)4

νi

(1.27)

where νi is the degrees of freedom for the input quantity xi. The expanded uncertainty

U(y) = tp(νeff) uc(y) (1.28)

then corresponds to a coverage probability p. The quantity tp(ν) defines the fraction p of the t-

distribution that is included in the interval [−tp(ν),+tp(ν)]. Values of tp(ν) can be retrieved from

tabulations.

If the quantity xi is obtained by repeated observations (type A uncertainty), then νi is given by the

number of observations minus the number of parameters that are determined from the set of data. For

type B uncertainty components, νi = ∞ can be assumed as the distribution function is assumed to be

known completely. If the relative “uncertainty of the uncertainty” uu can be estimated, it can be used

to estimate the degrees of freedom of the type B uncertainty component by

ν =
1

2
u−2

u . (1.29)

1.3.6 Conformity of measurement results

A measured value is assigned a certain probability distribution as outlined above. In this context, it

is not meaningful to say that “two values match (or do not match) within their specified uncertainty”.

Rather, a probability must be stated: How likely is it that the two measurements have the same result,

i.e., the results are compatible? In order to answer this question, different concepts can be pursued.

One option is to measure the similarity of the two normal distributions by using the coefficient of
overlap (OVL) [68] . The OVL measures the ratio of the area covered by both distributions and
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Theoretical background - Chapter 1

the total area covered by the two distributions. A OVL of 1 means that both distributions are equal,

a OVL of 0 means no overlapping at all. However, the interpretation of the OVL when applied to

probability distributions is difficult. Probability distributions f must satisfy the constraint
∫ ∞
−∞ f = 1,

i.e., they must be normalized such that the area covered by the distribution function is unity. Hence,

two distribution functions with equal mean but different standard deviations actually look different

and the OVL is smaller than 1. Therefore, the OVL is a useful measure only if the standard deviations

of the two distribution functions are similar. Another approach, which is also pursued in this work,

compares the difference of two measurement results d = x1 − x2 to the uncertainty of d in case of

uncorrelated measurements, given by U(d) = k
√

u2
c(x1) + u2

c(x2). This ratio, denoted as En-number

En =
1

k
|x1 − x2|√

u2
c(x1) + u2

c(x2)
, (1.30)

is also used in international key comparisons as a criterion for measurement compatibility [69]. In

Eq. (1.30), k is the coverage factor defined above which must be equal for both measurements. De-

pending on the type of comparison, compatibility of the measurements is accepted for En ≤ 1/2 or

En ≤ 1. In this work, compatibility is accepted if

En ≤ 1 (1.31)

holds, which means that the difference between the two measurement results, |x1− x2|, is smaller than

the expanded uncertainty of this difference for k = 2,
√

(2 uc(x1))2 + (2 uc(x2))2.

1.3.7 Combination of measurement results

If the same quantity is measured with different methods or by different institutions, the results yi can

be combined in order to obtain a best estimate ȳ for the true value of the quantity:

ȳ =
∑N

i=1 yi/u2(yi)∑N
i=1 1/u2(yi)

. (1.32)

This formula calculates a weighted average of all results. The weights of the results yi are given by

their reciprocal squared uncertainty. The combined standard uncertainty of the weighted average is

given by

uc(ȳ) =

√
1∑N

i=1 1/u2(yi)
(1.33)

if the quantities yi are uncorrelated. Equation (1.33) represents the lower limit of the uncertainty of the

weighted average. For the case that all quantities are fully correlated, i.e., all correlation coefficients

r(xi, x j) = 1, the uncertainty of the weighted average is [66]

uc(ȳ) =

∑N
i=1 1/u(yi)∑N

i=1 1/u2(yi)
. (1.34)

Equation (1.34) represents the upper limit of the uncertainty of the weighted average. In case that

correlations with 0 < |r(xi, x j)| < 1 are present, the uncertainty of the weighted average follows by

applying Eq. (1.25) to Eq. (1.32).

In practice, there are situations where a weighted average is to be calculated from data which are

suspected to be correlated, i.e., r(xi, x j) � 0 for at least some xi, x j, but the degree of correlation

is unknown. Such a situation (also referred to as hidden correlations) may occur, for instance, if

several data sets are measured using the same setup and one of the uncertainty contributions results
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1.3. SystematicalMeasurement Uncertainty Analysis

from a calibration of the setup with the same reference. In such a situation, using Eq. (1.33) risks

to underestimate the uncertainty of the combined data, whereas assuming full correlation and using

Eq. (1.34) would probably overestimate the uncertainty. Reference 70 proposes an effective approach

for calculating the uncertainty of a weighted average y in case of hidden correlations. The main idea

of this approach is to use χ2 =
∑N

i=1(yi − y)2/u2(yi) as an indicator for under- or overestimation of

u(y). The expectation value 〈χ2〉 is equal to N − 1 if all yi are uncorrelated. The case χ2 < 〈χ2〉
can occur if positive correlations between the yi are present, the case χ2 > 〈χ2〉 can occur if the

uncertainties u(yi) are underestimated. In both cases, the uncertainty of the weighted average u(y)

would be underestimated when using Eq. (1.33). Reference 70 proposes to calculate the uncertainty

of the weighted average by

u2(y) = u2
min(y) ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N − χ2 , χ2 ≤ N − 1

χ2/(N − 1) , χ2 > N − 1
(1.35)

where u2
min

(y) is the minimum uncertainty of the weighted average given by Eq. (1.33) and N is the

number of data. Application of Eq. (1.35) corresponds to assuming a common covariance for all yi, y j.
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CHAPTER 2

Measuring the absorption coefficient

This chapter describes the determination of the coefficient of band-to-band absorption of crystalline
silicon by the different approaches used in this work, namely: Measurements of reflectance and trans-
mittance, spectrally resolved luminescence measurements, spectral responsivity measurements and
spectroscopic ellipsometry. For each method, the underlying theory is briefly reviewed. Based on an
extensive characterization of the measurement setups, a systematic measurement uncertainty analysis
is outlined. The resulting absorption coefficient data are reported.

Between the ultraviolet and infrared wavelength region, the absorption coefficient of silicon varies by

more than fifteen orders of magnitude. No single measurement method is capable of covering this

wavelength range completely. Thus, different methods need to be combined. An obvious approach

for the determination of the absorption coefficient is the direct measurement of the absorptance of

a silicon sample. Usually, planar (polished) samples are used for this purpose. For such samples,

the relationship between the absorptance and the absorption coefficient is known, allowing to obtain

absolute values of the absorption coefficient. Another possibility consists of the determination of

reflectance and transmittance of the sample, from which the absorption coefficient can also be cal-

culated. These measurements can be caried out in the wavelength range where the absorptance is

not saturated. In the ultraviolet and visible spectral region, where the absorptance of silicon is large,

very thin samples would be required. Although this is no restriction in general, the use of very thin

samples may not only impose handling issues but also problems with optical interference effects and

temperature control. In the infrared spectral region, the absorptance of silicon tends towards zero

even for very thick samples, making the use of direct measurements of the absorptance impossible.

In this work, measurements of reflectance and transmittance are used in the near-infrared region only,

where reflectance and transmittance measurements can be carried out on samples with thicknesses of

the order of several hundred microns with sufficient signal-to-noise ratio. The ultraviolet and visi-

ble spectral range is analyzed by spectroscopic ellipsometry. This technique measures the change of

polarization of light that undergoes a reflection at a surface. An optical model of the sample allows

the absorption coefficient to be determined from these data using the Kramers-Kronig relations. In

the band gap and sub-band gap region, spectrally resolved measurements of luminescence emission

are used. This approach makes use of the reciprocity between the absorption and emission of light

[71]. The relation between the absorption coefficient and the luminescence spectrum is defined by the

generalized Planck law for luminescence emission [72]. If either the charge carrier density within the

sample is homogenous or the absorption coefficient is very low, the luminescence spectrum is pro-

portional to the absorptance of the sample or the absorption coefficient, respectively. In these cases,
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2.1. Measurements of reflectance and transmittance

the absorption coefficient can be obtained from the luminescence spectrum by scaling the data to a

previously determined absolute value of the absorptance or absorption coefficient, respectively. This

approach has been demonstrated, for instance, in Refs. 23 and 31. Due to the scaling procedure,

errors and uncertainties of the absolute values propagate into the data from luminescence. The avail-

ability of accurate absolute values is therefore crucial for the successful application of this method.

Another approach, which is also pursued in this work, is the measurement of the spectral responsivity

(SR) of silicon solar cells. An optical reciprocity theorem [73, 74] relates the spectral responsivity to

the luminescence spectrum and thus the same theory applies. This approach has been demonstrated,

for instance, in Ref. 25.

2.1 Measurements of reflectance and transmittance

Measuring the reflectance and transmittance of a sample allows for the determination of the absorption

coefficient in absolute units. In this work, reflectance/transmittance (RT) measurements are applied

in the wavelength range from 930 to 1160 nm.

2.1.1 Principle of measurement

For a planar sample, absorptance A and absorption coefficient α are related by

A = (1 − Rs)
1 − exp(−αW)

1 − Rs exp(−αW)
(2.1)

where Rs is the reflectance of the surface, α is the absorption coefficient and W is the thickness of

the sample. Equation (2.1) assumes normal incidence of light. It follows from the Lambert-Beer

absorption law and takes an infinite number of internal reflections into account. The calculation of α

using Eq. (2.1) requires knowledge about the reflectance of the surface Rs. This is circumvented by

measuring the reflectance

R = Rs

(
1 +

(1 − Rs)
2 exp(−2αW)

1 − R2
s exp(−2αW)

)
. (2.2)

and transmittance

T =
(1 − Rs)

2 exp(−αW)

1 − R2
s exp(−2αW)

. (2.3)

of the sample. The absorption coefficient then follows directly from R and T by

α = − 1

W
ln

(
C − R2 + 2R + T 2 − 1

2T

)
. (2.4)

Additionally, Rs can be calculated by using the relation

Rs =
C + R2 − 2R − T 2 − 1

2(R − 2)
. (2.5)

In the latter equations, the abbreviation

C =
√

(R2−2R−T 2−1)2 − 4(2−R)R (2.6)

is used.

The absorption coefficient α determined by RT measurements incorporates band-to-band absorption

as well as free carrier absorption. However, for doping concentrations below 1016 cm−3 (correspond-

ing to a resistivity ≥ 1 Ωcm) and room temperature, as used in this work, the coefficient of free carrier

absorption αfc is some orders of magnitude below that of the coefficient of band-to-band absorption

αbb at wavelengths below 1150 nm (see Fig. 1.5), where data from RT measurements is used. Hence,

α ≈ αbb holds.
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2.1.2 Setup for measurements

Reflectance/transmittance measurements in this work are carried out with a commercially avail-

able Varian Cary 5000 spectrophotometer equipped with an integrating sphere. Figure 2.1 shows

a schematic drawing of the system. A halogen lamp in combination with a grating monochromator

provides monochromatic light. Behind the exit port of the monochromator, a chopper wheel reflects

the light either into the sample channel or the monitor channel. The monitor channel is used to com-

pensate for variations of the irradiance over time and to adjust the detector pre-amplifier such that an

optimal signal level is provided at the input of the A/D converter. A third position on the chopper

wheel blocks the light. This position is used for the measurement of the internal dark signal of the

detector. The chopper positions change with a fixed frequency of 30 Hz, corresponding to subse-

quent measurements every 33 ms. Depending on the configuration (reflectance or transmittance), the

sample is mounted at the exit or entrance port of the integrating sphere, respectively. The reflected

or transmitted light is collected by the integrating sphere and measured either by a photomultiplier

(PM) or a lead sulfide (PbS) detector, depending on the wavelength. The calibration procedure de-

pends on the measurand (reflectance or transmittance). For transmittance measurements, it consists

of a measurement without sample (100% baseline) and a measurement with blocked sample beam

(0% baseline). The 0% baseline is not subtracted since an internal dark signal correction is already

performed, but used for correction purposes (see below). For reflectance measurements, measure-

ments of a reference (100% baseline) and with open sample port (0% baseline) are required. The

reference is a front-coated mirror which is primary calibrated by the german national metrology in-

stitute Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The illumination

intensity is low (≤ 50 mW/cm2) and sample heating due to illumination during the measurement is

not observed. Luminescence emission of the samples under illumination is not observed either. For

reflectance measurements, a depolarizer is inserted into the light beam at the entrance port of the

integrating sphere.

The reflectance R(λ) of the sample at wavelength λ is calculated by

R(λ) =
Ssample(λ) − S0(λ)

S100(λ) − S0(λ)
× Rref(λ) (2.7)

where Ssample is the detector signal while the sample channel is illuminated, S100 is the measured

100% baseline signal, S0 is the measured 0% baseline signal and Rref is the known reflectance of the

reference. The transmittance T (λ) is calculated by

T (λ) =
Ssample(λ)

S100(λ)
. (2.8)

Each of the quantities Ssample, S100 and S0 is internally determined from the ratio of the detector

signal during illumination of the sample channel Ysample and monitor channel Ymon, corrected with the

internal dark signal Y0:

Y =
Ysample − Y0

Ymon − Y0
, Y = {Ssample, S100, S0} . (2.9)

Ysample, Ymon and Y0 are not accessible to the operator.

For transmittance measurements, the acquisition of the 0% baseline is not required due to the internal

dark signal subtraction (see Eq. (2.9)). For reflectance measurements, however, the 0% baseline must

be acquired and subtracted due to light which is scattered at the exit port aperture of the integrating

sphere and cannot be taken into account by the internal dark signal subtraction.
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Figure 2.1: Schematic of the Varian Cary 5000 spectrophotometer used in this

work.

2.1.3 Samples for measurements

RT measurements are carried out on two double side chemo-mechanically polished monocrystalline

Czochralski grown p-type silicon wafers (supplied by Siltronic) with an area of 3 × 3 cm2 and a re-

sistivity of 4 to 6 Ωcm. After polishing, the samples are RCA cleaneda. The sample thickness is

(653.0 ± 1.9) μm for sample RT-A and (1284.0 ± 1.5) μm for sample RT-B. The thickness is mea-

sured at four positions on the sample using a dial gauge. The sample temperature for the RT mea-

surements is (295 ± 1) K.

2.1.4 Corrections of systematic effects

As outlined in section 1.3.2, it is important to identify effects which lead to a systematic deviation of

the measured value, and to include them in the process equation. Another possibility is the application

of corrections to the input quantities, from which the output quantity is then calculated using the

original (unchanged) process equations. Both approaches are equivalent. In this work, the second

option is chosen in order to keep the process equation simple.

A systematic deviation is identified for the PbS detector: The system alternately illuminates the mon-

itor channel and the sample channel in order to determine the signal levels Ymon and Ysample. Af-

terwards, the light beam is blocked in order to aquire the internal dark signal Y0. This leads to a

variation of the irradiance and the detector signal over time, as shown qualitatively in Fig. 2.2. The

measurements of Ymon, Ysample and Y0 are taken at the points tmon, tsample and t0, respectively. The

cycle is repeated with a fixed frequency of 1/3τ. If the detector or the measurement amplifier cannot

follow the irradiance variations immediately, as visualized by the dotted line, the signal levels Y ′mon,

Y ′
sample

and Y ′
0

would be determined instead. This corresponds to an underestimation of Ymon, whereas

Ysample and Y0 would be overestimated. Overall, this would lead to an overestimation of the measur-

and calculated according to the process equations (2.7) or (2.8). This also holds in case that the signal

is integrated over the decay period instead of being measured at a single point in time, as shown in

appendix C.1. The occurrence of this effect can be tested by setting up the system for transmittance

aThis wet chemical cleaning process was developed on behalf of the Radio Corperation of America (RCA) [75] and is

routinely used for the cleaning of silicon wafers.
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Figure 2.2: Qualitative sketch of the irradiance on

the detector and its output signal as a function of time.

Figure 2.3: Measurements of the 0% baseline S0 for

transmittance in normal and reverse mode and cor-

rected values.

measurements and blocking the sample beam with a beam trap. This corresponds to a measurement

of the 0% baseline (S0) for transmittance. In this configuration, Ysample and Y0 should be equal and

S0 = 0. Inertia of the detector signal would lead to Ysample > Y0 and S0 > 0. This should be inde-

pendent from the wavelength. The result S0 > 0 could also be due to stray light. Stray light effects

are excluded by operating the system in reverse mode, i.e., toggling sample and monitor channel. If

stray light is present, S0 is expected to change in amplitude as stray light is expected to affect both

channels in a different manner. In absence of stray light, channel toggling should change the sign

but not the amplitude of the measured 0% baseline signal. Under the described testing conditions,

the PbS detector shows a baseline signal S0 > 0 which changes in sign when toggling sample and

monitor channel, as shown in Fig. 2.3. Moreover, a dependence of S0 on the amplification level gamp

of the measurement amplifier is observed, as shown in Fig. 2.4. Both findings point towards inertia

of the measurement amplifier as described above. The effect results in a systematic deviation of the

measurand and requires a correction. Comprehensive modeling of the measurement procedure leads

to the correction formula

Y =
Y ′ − S0

1 + S0 (Y ′ − 1)
(2.10)

where Y is the corrected value of the measurand to be used in Eq. (2.7) or (2.8) and Y ′ is its value

actually measured. This correction makes use of the dependence of the measurable 0% baseline

signal S0 on the time constant of the signal decay. The 0% baseline S0 is not measured each time but

calculated from the amplification factor gamp, which is recorded during the measurement, using the

relation shown in Fig. 2.4. For the determination of the relation S0(gamp), long measurement times are

used in order to improve the signal-to-noise ratio. The calculation of the correction is outlined in detail

in appendix C.1. Figure 2.5 visualizes the effect of the correction for a transmittance measurement.

For comparison, the transmittance measured with the PM, which is not affected by the inertia effect,

is indicated as the solid line. For the measurements presented in this work, the PbS detector is used

for wavelengths above 960 nm. For the PM detector, inertia behaviour is not detected. Note that this

issue could in general be resolved if the chopper frequency could be reduced, which is not possible

for the Cary 5000 system.
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Figure 2.4: Dependence of the measured 0% base-

line signal S0 on the amplification factor.

Figure 2.5: Comparison of intertia-corrected and un-

corrected detector signal.

2.1.5 Uncertainty contributions

Various effects introduce uncertainties into the measurements of reflectance and transmittance. First

of all, the repeatability and reproducibility of measurements must be taken into account. Further

contributions of uncertainty arise from nonlinearities of the detectors and amplifiers, limited spectral

bandwidth and wavelength accuracy of the monochromator, stray light, sample alignment, polariza-

tion of light and the uncertainty of the reference (if applicable). In this section, the single uncertainty

contributions are described and quantified.

Repeatability (type A): The results of repeated measurements are statistically distributed due to

noise of the incident photons, thermal noise of the generated electrons within the detector and noise

of the amplifier electronics. This is verified by calculating the autocorrelation coefficient for 400 sub-

sequent measurements of the detector’s dark signal. The autocorrelation coefficient is ≈ 0, indicating

that subsequent measurements are not correlated. The type A uncertainty u2
stat of the average M̄ of the

single results is then given by Eq. (1.24):

u2
stat =

σ2

N
, (2.11)

where σ is the standard deviation of the N single results. Eqs. (1.23) and (1.24) may only be used

if the number of repetitions is large enough. In practice, this is usually accepted when N ≥ 25.

Figure 2.6a shows the evolution of the standard deviation of an exemplary 0% baseline measurement

(calculated using Eq. (1.23)) when increasing the number of repeated measurements. As can be seen,

the standard deviation of 25 repeated measurements already approaches the standard deviation of a

large number of measurements within ±10% rel. Figure 2.6b shows normalized histograms for 25 and

400 repetitions together with the corresponding normal distributions which are obtained by a fit of the

data. The histogram also shows that the standard deviations of both distributions are similar, which

is underlined by a large OVL of 0.87 (see section 1.3.6). In this work, the uncertainty contribution
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(a) (b)

Figure 2.6: Determination of the type A uncertainty component due to repeatability of the measure-

ment. Figure a shows the evolution of the standard deviation of N repeated measurements. Figure b

shows normalized histograms of 25 and 400 repeated measurements together with the corresponding

normal distributions.

u2
stat is thus calculated using the standard deviation of 25 repeated measurements in order to achieve

acceptable measurement times.

Nonlinearity of the detectors (type B): The calibration of the system consists of baseline mea-

surements with full signal (100% baseline) and zero signal (0% baseline). For a correct determination

of the sample reflectance or transmittance, a linear characteristic of the detector between these two

irradiance levels is essential. Nonlinearities can be determined most accurately by the superposition

method, e.g., using two stable light sources, as demonstrated in section 2.2.7. However, this method

cannot be applied for the Cary 5000 since the system is not prepared for such measurements. Alter-

natively, nonlinearities could be determined by a series of transmittance measurements on calibrated

neutral density filters with known attenuation. However, such measurements are subject to uncer-

tainties due to possible internal reflections within the filters. Thus, apertures with a large number of

small pinholes are fabricated from 50 μm thick aluminium foils. These apertures serve as neutral

density filters, which do not have the problem of possible internal reflections. The calibration of such

apertures with respect to transmittance is challenging, since the measured transmittance may depend

on the angle of acceptance of the detection system and may therefore be different for different se-

tups. However, in Ref. 76 it is shown that different nonlinearity characteristics are expected even

for different photodetectors of the same type. In order to examine the nonlinearity of the detectors,

it is therefore assumed that deviations between the values of the aperture transmittance measured by

both PM and PbS detector are due to nonlinearities. Figure 2.7 shows the ratio of the transmittance

measured by the PM and PbS detector at 850 and 1100 nm (TPM and TPbS, respectively) as a func-

tion of TPM. The values measured by the PbS detector are corrected as outlined in section 2.1.4.

The uncertainty of the ratio is dominated by noise of the PbS detector. The solid line visualizes a

weighted fit of a second order polynome to the data. At very low transmittances, the measurement

of the ratio is disturbed by noise of the PbS detector, which is reflected by the large error bars. For

0.1 ≤ T ≤ 1, however, the plot shows that the results of both detectors do not deviate by more than

0.25%. This estimation of nonlinearity cannot be used for correction purposes but yields an upper

limit for the expected uncertainty contribution due to nonlinearity. It is globally taken into account
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Figure 2.7: Examination of detector nonlinearity with respect to irradiance.

by a rectangularly distributed uncertainty contribution

u2
lin,i =

(0.0025 M)2

3
, (2.12)

where M is the measurand (R or T ).

Spectral bandwidth (type B): The finite bandwidth Δλ of light provided by the monochromator

may cause a deviation between the true value of reflectance or transmittance and the measured value,

especially in regions were the slope of the curve varies. The uncertainty of the measured value

introduced by this effect is estimated by assuming a rectangular light peak (which is a worst case

estimation) and using a second-order taylor approximation of the spectrum. Calculation (see appendix

C.2) leads to

u2
bw =

(
M(λ− Δλ

2
) − 2M(λ) + M(λ+Δλ

2
)
)2

108
(2.13)

where λ is the nominal wavelength, Δλ is the spectral bandwidth and M the measurand. M(λ±Δλ/2)

is obtained by interpolation of the measured curve.

Wavelength accuracy (type B): Inaccuracy of the wavelength calibration leads to a wrong assign-

ment of measurand and wavelength. This effect is especially important in regions where the measur-

and varies strongly over wavelength. The uncertainty of the measurand introduced by this effect is

estimated by

u2
wl =

1

3

[
max

{∣∣∣M(λ−δλ/2)−M(λ)
∣∣∣ , ∣∣∣M(λ+δλ/2)−M(λ)

∣∣∣}]2
(2.14)

where δλ is the distance between true and nominal wavelength and the other symbols have the same

meaning as introduced above.

Tilt of the sample / angular incidence of light (type B): When measuring transmittance, the sam-

ple is mounted perpendicular to the optical axis as shown in Fig. 2.1. However, deviations from

normal incidence arise from the divergence of the light beam. The angle of divergence is 3.7◦ at

most. Reflectance measurements are taken under an average angle of incidence of 8◦. This is neces-

sary in order to ensure that the incident light is not completely reflected back into the entrance port

of the integrating sphere in case of specular reflection. For reflectance measurements, the maximum

angle of incidence is thus 11.7◦. Under non-normal incidence, the optical path within the sample is

28



Measuring the absorption coefficient - Chapter 2

enlarged, which increases absorption. Moreover, the surface reflectance can be affected since polar-

ization of the incident light must now be taken into account by using the general form of the Fresnel

equations [77]. Both effects may cause a deviation between transmittance and reflectance actually

measured and the corresponding values under normal incidence.

Transmittance measurements are not affected by polarization effects because the transmitted light is

effectively unpolarized. This is visualized in Fig. 2.8. The optical axis coincides with the surface

normal. For light incident vertically above or under the optical axis, the p-polarized component is

parallel to the vertical plane of incidence. However, this direction is the direction of the s-polarized

component for light incident horizontally beside the optical axis. This means that s- and p-polarization

cancel out completely. Deviations of the measured transmittance thus result only from an increased

absorption within the sample. An upper limit for this deviation is found by the following considera-

tion: The transmittance T of a planar sample is given by Eq. (2.3). Under non-normal incidence, the

thickness W must be replaced by the effective thickness Weff = W/ cos θ. The angle θ of the optical

path within the sample is given by Snell’s law with the refractive index of silicon nSi and that of the

surrounding medium, which is air for all measurements in this work. In the wavelength range of

interest (950-1150 nm), nSi ≥ 3.5 (see section 2.4.6 and Ref. 32) and nair ≈ 1.002 [78] holds. Thus,

θ ≤ 1.057◦ and the factor cos θ follows to be

cos θ ≥ 0.9998 . (2.15)

A lower limit for the surface reflectance Rs is Rs = 0.3. Using these values, the absolute deviation to

the transmittance for θ = 0 can be calculated. This is shown in Fig. 2.9 as a function of the absorption

coefficient and for different sample thicknesses as used in this work. According to Fig. 2.9, the

transmittance is underestimated by a factor of 3.2×10−5 at most even under the worst-case assumption

that all light is incident under the maximum angle of 3.7◦. This deviation is so small that a correction

is not necessary. Because it is also small compared to other uncertainty contributions, it is globally

included into the uncertainty budget by assuming a rectangular distribution of width 3.2 × 10−5,

yielding

u2
angle,T =

(3.2 × 10−5)2

3
. (2.16)

When measuring reflectance, the light beam is incident under an average angle of 8◦, which adds to

the angle of divergence. An upper limit for the deviation of the measured reflectance due to angular

incidence is obtained by the following cosideration: The reflectance R of a planar sample is given

by Eq. (2.2). Again, the thickness W must be replaced by the effective thickness W/ cos θ. For

the reflection at the surfaces, the polarization of the incident light must be considered. The surface

reflectance Rs is given by

Rs = p |rs|2 + (1 − p) |rp|2 , (2.17)

where p is defined as the fraction of s-polarized light within the light beam, i.e., p = 1 for fully

s-polarized light, p = 0.5 for unpolarized light and p = 0 for fully p-polarized light. rs and rp denote

the reflection coefficients for perpendicular and parallel polarization, respectively. They are given by

the Fresnel equations

rp =
n̂2 cos θ1 − n̂1 cos θ2
n̂2 cos θ1 + n̂1 cos θ2

, (2.18)

rs =
n̂1 cos θ1 − n̂2 cos θ2
n̂1 cos θ1 + n̂2 cos θ2

. (2.19)

In the latter equation, n̂ denotes the complex index of refraction and θ1 the angle of incidence, from

which the angle inside the sample θ2 is obtained using Snell’s law. Figure 2.10 shows the measured
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Figure 2.8: Visualization of polarization for diver-

gent light incident around the surface normal.

Figure 2.9: Absolute deviation T (0◦) − T (1.057◦) as

a function of the absorption coefficient.

degree of polarization p as a function of wavelength in the wavelength range of interest. The degree

of polarization varies between 35 and 50%. The measurement with depolarizer (which is used for

reflectance measurements) varies around 46% and shows some interference effects. The setup actually

does not allow for precise mounting of depolarizer and analyzer at the same time. The curve with

depolarizer is therefore likely to vary around 50% instead of 46%, the systematic offset and the

interference effects being due to alignment issues. It is thus assumed that the degree of polarization

varies between 46 and 54%, i.e., 0.46 ≤ p ≤ 0.54. The complex index of refraction for air is n̂1 ≈ nair.

An upper limit for the angle of incidence is θ1 ≤ 11.7◦. With these values, the deviation between the

reflectance R measured under normal incidence and Rangle measured under an angle of incidence of

11.7◦ is calculated. Figure 2.11 shows the relative deviation to the reflectance under normal incidence

(Rangle−R)/R as a function of the absorption coefficient for different waver thicknesses. The deviation

does not exceed ±0.2% relative. Again, this deviation is so small that it is not corrected. It is taken

into account by a rectangularly distributed uncertainty component

u2
angle =

(2 × 10−3 R)2

3
. (2.20)

The reflectance of the reference is calibrated under an angle of 8◦. Moreover, the reference is a front-

coated mirror and internal reflections do not occur. Hence, non-normal incidence is taken into account

by the calibration and does not need to be considered for the uncertainty budget.

Scattering of light within the sample (type B): Angular incidence of the light beam or non-parallel

orientated surfaces may cause a lateral scattering of light inside the sample due to multiple internal

reflections, as exemplarily shown in Fig. 2.12 for a reflectance measurement. This may cause a

portion of light to be blocked at the port of the integrating sphere. During the baseline measurements,

this effect cannot occur since for transmittance measurements, no reference is used. For reflectance

measurements, the reference is a front-coated mirror which reflects all light at the front surface.

Scattering of light within the sample thus results in an underestimation of the measurand (R or T ).

The lateral displacement d of the internally reflected light can be estimated from Snell’s law and

30



Measuring the absorption coefficient - Chapter 2

Figure 2.10: Degree of polarization p of the

monochromatic light beam in the Cary 5000 system.

p is defined as the fraction of s-polarized light within

the light beam.

Figure 2.11: Relative deviation between reflectance

R measured under normal incidence and Rangle mea-

sured under an angle of incidence of 11.7◦ as a func-

tion of the absorption coefficient.

geometrical relations as

d = 2W tan

(
arcsin

(sin(θ)

nSi

))
(2.21)

where W is the thickness of the sample, θ is the angle of incidence and nSi is the refractive index

of silicon. For the purpose of simplicity, the refractive index of air is assumed to be unity, as using

the more precise value nair = 1.002 leads to the same conclusions. At each internal reflection at the

surfaces, only a fraction f of the light is reflected. Hence, after n internal reflections, the remaining

intensity is I0 × f n (n odd) if absorption within the sample can be neglected, otherwise even smaller.

I0 is the intensity of the incident light. For polished silicon surfaces and relevant angles θ, f ≤ 0.32

holds. The diameter of the aperture used for the measurements is 24 mm and the light beam is adjusted

such that it hits the sample in the center of the aperture. The lateral displacement must be at least 1 mm

until the internally reflected light is blocked at the port of the integrating sphere. From Eq. (2.21),

the number of required internal reflections n (n odd) for this case is found. Considering a sample

thickness of 1400 μm and zero absorption, the fraction of light blocked at the port due to internal

reflections follows to be smaller than 0.0004% for θ < 11.7◦, which follows from the divergence

of the light beam. For thinner samples, the effect is even less pronounced as more reflections at

the surfaces are required for the light ray in order to reach the edge of the aperture. Since this is

a small value, a correction is not required. The fraction of blocked light is taken into account as a

rectangularly distributed uncertainty contribution

u2
disp =

(M f n)2

3
(2.22)

where M is the measurand (R or T ), f = 0.32 and n follows from Eq. (2.21) with d ≥ 1 mm.

Uncertainty of the standard (type B, reflectance measurements only): The uncertainty of the

standard u2
std

is given by the uncertainty of the primary calibration at the PTB, which is specified in

the calibration certificate.
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Figure 2.12: Schematic of lateral scattering of light due to multiple reflections

inside the sample.

Uncertainty of the 0% baseline (type B, transmittance measurements only:) According to Eq.

(2.8), the transmittance is determined without measuring the 0% baseline (S0). This is possible since

the dark signal of the detectors is automatically measured and subtracted and has the advantage of

speeding up the measurement and not having to deal with a noisy 0% baseline measurement. How-

ever, the 0% baseline measurement can only be omitted if the absence of systematic offsets that are

not corrected by the internal dark signal measurement (e.g., stray light) is ensured. Figure 2.13 shows

measurements of S0 for transmittance (with the sample beam blocked by a beam trap) and histograms

of the data. The measurements are carried out separately for both detectors. For the PM detector,

small systematic deviations of S0 from 0 are visible. According to Fig. 2.13, an upper limit for the

deviation from 0 of over 95% of the data is 2 × 10−5. This maximum deviation is taken into account

as a rectangularly distributed uncertainty component u2
0
. For the PbS detector, the measurement is

dominated by measurement noise and systematic deviations of S0 from 0 are not observed. The av-

erage of the S0 data shown in Fig. 2.13 (867 values) is 6 × 10−7 ≈ 0. The distribution of the data

is approximately normal. The normal (statistical) distribution of the measurement results is already

included in the uncertainty budget by the type A uncertainty component u2
stat. Hence, the uncertainty

contribution due to deviations of S0 from 0 is estimated as

u2
0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2 × 10−5)2/3 for the PM detector,

0 for the PbS detector.
(2.23)

Inertia of the measurement amplifier (type B, PbS detector only): The correction of the inertia

effect may lead to a small residual uncertainty, as shown in appendix C.1. However, this uncertainty is

experimentally taken into account during the evaluation of detector nonlinearities, as corrected data is

used for the PbS detector (see above). Hence, it is not necessary to include an additional contribution

in the uncertainty budget.

Long-term reproducibility (type B): Other (unknown) effects than the ones listed so far may affect

the long-term reproducibility of measurements. In order to quantify this effect, measurements of

a test sample were carried out over the course of several months. From these measurements, the

reproducibility was found to be ±0.25% rel. independent from the wavelength. This is taken into

account as a rectangularly distributed uncertainty component

u2
rep =

(0.0025M)2

3
(2.24)

where M is the measurand.
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(a) (b)

Figure 2.13: Measurements of the 0% baseline for transmittance for both PM and PbS detector (a)

and histograms of the data (b).

2.1.6 Results

Reflectance and transmittance of the two samples investigated in this work are calculated from the

measured data (i.e., baselines and sample measurement) and reference data using Eqs. (2.7) and (2.8).

The uncertainty is determined by the uncertainty contributions listed in the preceding section. The

sensitivity coefficients follow from Eqs. (2.7) and (2.8). For transmittance measurements, the overall

uncertainty is

u2(T ) =
u2(Ssample)

(S100)2
+

S2
sample

u2(S100)

(S100)4
+ u2

lin,i + u2
wl + u2

angle,T + u2
disp + u2

rep + u2
0 (2.25)

with

u2(Ssample) = u2
stat + u2

bw (2.26)

and

u2(S100) = u2
stat + u2

bw . (2.27)

For reflectance measurements, the overall uncertainty is

u2(R) =
( Rref

S100 − S0

)2
u2(Ssample) +

( Ssample − S0

(S100 − S0)2
Rref

)2
u2(S100)

+
(Ssample − S100

(S100 − S0)2
Rref

)2
u2(S0) +

(Ssample − S0

S100 − S0

)2
u2(Rref)

+ u2
rep + u2

lin,i + u2
angle + u2

wl + u2
disp (2.28)

with

u2(Ssample) = u2
stat + u2

bw , (2.29)

u2(S100) = u2
stat + u2

bw (2.30)
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2.1. Measurements of reflectance and transmittance

Figure 2.14: Measured reflectance and transmittance of the two samples investi-

gated in this work (RT-A: W = (653 ± 1.9) μm, RT-B: W = (1284 ± 1.5) μm) and

relative uncertainty of the data (dashed lines with corresponding color). The top

graph shows the effective degrees of freedom for the t-distribution and the corre-

sponding coverage probability.

and

u2(S0) = u2
stat . (2.31)

Note that the 0% baseline (resulting from light reflected at the exit port of the integrating sphere) is

approximately constant for all wavelengths. Uncertainty due to spectral bandwidth thus needs not be

considered.

Figure 2.14 shows the resulting values for both samples (represented by the solid lines). The dashed

lines indicate the relative expanded uncertainty of the values for a coverage factor k = 2. The top

graph of the figure shows the corresponding coverage probability P for a t-distribution with an effec-

tive degrees of freedom νeff (see section 1.3.5) following from the uncertainty analysis. In the region

around 1000 nm, where the overall uncertainty is dominated by the type A component for measure-

ment noise, the coverage probability for k = 2 is about 1% abs. below the value of 95.44%, which

holds for a normal distribution. This is due to the limited number of repetitions (25) which is used.

In order to obtain a coverage probability of 95.44%, a coverage factor of about 2.1 must be chosen in

this region.

The uncertainty analysis allows to evaluate the impact of the different uncertainty contributions on

the resulting uncertainty of R and T . Figure 2.15 exemplarily shows the relative contributions to

the overall uncertainty at 1050 and 1250 nm. The evaluation shows that major uncertainty contribu-

tions for transmittance measurements are due to long term reproducibility and nonlinearity as well

as measurement noise. At 1050 nm, where the transmittance varies strongly with wavelength, major

contributions also result from spectral bandwidth and wavelength accuracy. A more precise investiga-

tion of detector nonlinearities would probably allow to decrease the overall uncertainty. Decreasing

the slit width of the monochromator would result in a smaller uncertainty contribution due to spectral
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(a) (b)

Figure 2.15: Uncertainty budget for transmittance (a) and reflectance (b) for sample RT-B at 1050

and 1200 nm.

bandwidth. However, doing so would also decrease the intensity of the monochromatic light and

thus increase the uncertainty contribution due to measurement noise. The uncertainty of reflectance

measurements is dominated by the uncertainty of the reference data.

From the RT data, the absorption coefficient α is calculated using Eq. (2.4). For the RT measurements,

the sample temperature cannot be controlled actively and may slightly deviate from 295 K (deviations

are of the order of ±0.5 K). The sample temperature during the measurements is therefore recorded

and a temperature correction (of the order of 0.5% to 1% rel.) is applied to the resulting absorption

coefficient data using the temperature coefficients given in section 3.2. The uncertainty of the resulting

absorption coefficient is given by the uncertainty of R and T as well as the uncertainty of the thickness

W. This uncertainty component takes lateral variations of the thickness of four measurements at

different positions and the uncertainty of the calibration of the dial gauge into account. It is estimated

by

u2
W = σ

2(W1,W2,W3,W4) + 1/3 μm2 (2.32)

where σ(W1,W2,W3,W4) is the standard deviation of the thickness measured at positions 1 to 4. The

factor 1/3 μm2 follows from assuming a rectangular distribution of width ±1 μm for the uncertainty

of the calibration of the dial gauge. The sensitivity coefficients are

c2
R =

[
2(R − 1)

W
√

(T 2 − R2 + 2R + 1)2 + 4(R − 2)R

]2

, (2.33)

c2
T =

[
2R − R2 − T 2 − 1

T W
√

(T 2 − R2 + 2R + 1)2 + 4(R − 2)R

]2

, (2.34)

c2
W =

[
α

W

]2

. (2.35)

The uncertainty contribution due to uncertainty of the sample temperature is considered in section

3.2.
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Figure 2.16: Absorption coefficient αbb of crystalline silicon at 295 K as deter-

mined from RT measurements (bottom) and En number for the data (top).

Figure 2.16 shows the resulting absorption coefficient data and its uncertainty for both samples in-

vestigated in this work. Additionally, absorption coefficient data measured by the PTB on samples

from the same wafers at (295.45 ± 0.1) K is included for comparison. In these investigations, the

reflectance is determined by a combination of the results obtained using a commercial Varian Cary

spectrophotometer as well as using a special setup with increased angle of acceptance in the primary

national reference system for spectral reflectance. As for the data obtained in this work, a tempera-

ture correction is applied to these data as well due to the deviation from the nominal temperature of

295 K. Tabulated data for Fig. 2.16 is given in appendix D. The top graph of Fig. 2.16 shows the

En number (see section 1.3.6) for the data. As can be seen, the data measured by the PTB are in

agreement with the data obtained in this work. The finding En < 1 shows that the small deviations

between the data are explained by their measurement uncertainty. Above 1150 nm, the uncertainty

of the data increases strongly, indicating that scaling of relative absorption coefficient data (e.g., from

luminescence measurements) to data from RT measurements should be done at wavelengths below

1150 nm.
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2.2 Spectrally resolved luminescence measurements

Inter-band luminescence emission originates from the radiative recombination of electrons in the

conduction band and holes in the valence band. This is the inverse process of absorption of photons

with excitation of an electron from the valence to the conduction band. Both processes are related

by Kirchhoff’s law [71]. The luminescence spectrum thus contains information about the absorption

coefficient.

Inter-band luminescence emission of silicon is emitted in the near-infrared wavelength range near

the band gap (approximately between 950 and 1300 nm). As opposed to absorptance measurements,

luminescence measurements feature a good signal-to noise ratio at wavelengths beyond the band gap.

On the other hand, luminescence measurements determine the absorption coefficient in relative units.

Accurate data of the absorption coefficient in absolute units (e.g., from RT measurements) is therefore

required for scaling. Luminescence measurements are usually referred to as photoluminescence (PL)

measurement when using optical excitation or electroluminescence (EL) measurements when using

electrical excitation. In this work, EL and PL measurements are carried out in the wavelength range

between 1100 and 1450 nm.

2.2.1 Principle of measurement

For a laterally homogeneous sample, the contribution to the luminescence emission at wavelength λ

is given by the product of the spectral photon generation rate rph and the photon escape probability

fesc for each position z within the sample. By summing up all contributions over the thickness W of

the sample, the emitted luminescence photon flux per wavelength interval and surface area Φ(λ) is

obtained [79–81]:

Φ(λ) =

∫ W

0

dz rph(λ, z) fesc(λ, z) . (2.36)

The spectral photon generation rate rph per wavelength interval is defined by the generalized Planck

radiation law for luminescence [72]:

rph(λ, z) = α(λ) 8π c n2
Si(λ) λ

−4

⎡⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎝ hc
λ − μph(z)

kT

⎞⎟⎟⎟⎟⎟⎠ − 1

⎤⎥⎥⎥⎥⎥⎦
−1

, (2.37)

where c is the speed of light in vacuum, α is the absorption coefficient, nSi is the refractive index of

silicon, h is the Planck constant and μph is the chemical potential of the photons given by the splitting

ΔEF of the quasi-Fermi levels. Under typical luminescence measurement conditions, where charge

carriers are generated optically or injected electrically, the exponential term in Eq. (2.37) is some

orders of magnitude larger than 1, allowing to approximate Eq. (2.37) by

rph(λ, z) ≈ α(λ) 8π c n2
Si(λ) λ

−4 exp

(
− hc
λkT

)
exp

(
μph(z)

kT

)
. (2.38)

The main absorption processes at room temperature are band-to-band (inter-band) absorption and free

carrier (intra-band) absorption (FCA). The absorption coefficient α is thus the sum of the coefficient

of band-to-band absorption αbb and the coefficient of free carrier absorption αfc, α = αbb + αfc.

Importantly, the exponential term exp(μph(z)/kT ) in Eq. (2.38) refers to the splitting of the quasi-

Fermi levels and thus to inter-band transitions. Hence, this term only refers to the coefficient of

band-to-band absorption αbb and Eq. (2.38) can be written as [31, 82]

rph(λ, z) ≈ 8π c n2
Si(λ) λ

−4 exp

(
− hc
λkT

) [
αfc + αbb exp

(
μph(z)

kT

) ]
. (2.39)

37



2.2. Spectrally resolved luminescence measurements

Under typical charge carrier injection conditions, exp(μph(z)/kT ) is of the order of 107 or larger. Con-

sequently, the generation of luminescence photons is completely dominated by inter-band transitions,

which means that generation of luminescence photons by intra-band recombination is negligible and

α ≈ αbb. Taking this approximation into account and combining the latter equations shows that the

emitted luminescence photon flux is proportional to the coefficient of band-to-band absorption αbb,

Φ(λ) ≈ αbb(λ)
8π c n2

Si
(λ)

λ4
exp

(
− hc
λkT

) ∫ W

0

dz fesc(λ, z) exp

(
μph(z)

kT

)
. (2.40)

In two special cases, the relation between the absorption coefficient and the luminescence spectrum

simplifies [23]:

1. If the charge carrier concentration within the sample is homogeneous, μph is independent from z
and the exponential term can be pulled out of the integral. The remaining integral over fesc equals

the absorptance of the sample, as can be seen by carrying out the integration and comparing the

result to the expression for the absorptance of the sample. Thus, in case of a homogenous charge

carrier concentration, the luminescence spectrum is proportional to the absorptance of the sample.

2. If the absorption coefficient is small, fesc becomes independent from z and can be pulled out of the

integral. The remaining integral is then a constant with respect to wavelength. Thus, in case of a

small absorption coefficient, the luminescence spectrum is directly proportional to the absorption

coefficient itself. For wafer samples as used in this work, the approximation holds for wavelengths

above 1200 nm.

In both cases, the absorption coefficient can be determined from relative measurements of the lumi-

nescence intensity. However, the determination of the scaling factor requires previously determined

absolute values of the absorptance or absorption coefficient, respectively.

2.2.2 Samples for measurements

Spectrally resolved PL measurements are carried out on double side textured silicon samples with

an area of 3 × 3 cm2 from the same wafers as for the absorptance measurements described in sec-

tion 2.1.3. The samples for PL are electrically passivated on both sides by 15 nm thick layers of

atomic-layer-deposited Al2O3. The surface passivation increases the ratio of radiative recombination

and non-radiative recombination. However, the presence of the passivation layers might affect the

luminescence spectrum. Thus, for the correct determination of the absorption coefficient, the impact

of the Al2O3 layer on the resulting luminescence spectrum must be examined. Figure 2.17 shows the

absorption coefficient of Al2O3, measured using spectroscopic ellipsometry on a 50 nm thick layer

which was deposited onto a glass substrate. Above 850 nm, the absorption coefficient is too small to

be measured accurately. However, the measurement shows that it is smaller than 3 × 10−8 nm−1. The

dashed line represents the absorption length Lα = 1/αwithin the coating. Considering the layer thick-

ness of only 15 nm, it is obvious that absorption within the passivation layer is completely negligible.

However, the reflectance of the surfaces is altered by the passivation layers. The effective surface

reflectance of the passivated wafers is thus determined experimentally and used for the calculation of

the absorption coefficient.

Moreover, spectrally resolved EL measurements are carried out on specially designed lab-type solar

cells with an area of 2 × 2 cm2. These solar cells, made of p-type Czochralski grown silicon with a

thickness of 711 μm and a resistivity of 2.5 Ωcm, feature a chemo-mechanically polished front and

rear surface. The surface metallization is achieved by evaporating a 10 μm thick layer of aluminium

on the rear side and a grid structure (also 10 μm thick aluminium) on the front side. The solar cells do

not have a back surface field nor an antireflection coating in order to preserve the polished surfaces.

Additionally, a reference sample without front surface metallization is available, as well as a reference

sample which is not metallized and where the emitter diffusion is applied to both sides of the sample.
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Figure 2.17: Absorption coefficient of Al2O3 and

corresponding absorption length Lα obtained from el-

lipsometric measurements. Above 850 nm, the ab-

sorption coefficient is too low to be measured accu-

rately.

Figure 2.18: Sketch of the setup used for spectrally

resolved photoluminescence measurements.

2.2.3 Setup for measurements

Although luminescence measurements provide a rather simple approach for the determination of the

absorption coefficient beyond the bandgap in principle, the correct measurement of the luminescence

spectrum itself requires an elaborate measurement procedure and comprehensive knowledge about the

components and devices involved. The setup for the spectrally resolved luminescence measurements

carried out in this work is sketched in Fig. 2.18. The core component of the setup is a commercially

available spectrometer system. Two different systems are evaluated: A diode-array spectrometer

system (tec5 CompactSpec 1.7 CT) capable of recording data at all wavelengths simultaneously, and

a scanning spectrometer system featuring a single monochromator (Instrument Systems Spectro 320
R5). Both systems are in-house calibrated with respect to wavelength and irradiance as described in

the next section. The luminescence emission is collected perpendicular from above and transmitted

into the spectrometer by a multi-core fiber cable. Figure 2.19 shows photographies of the spectrometer

systems. The sample stage is temperature controlled and the sample temperature is continuously

monitored by a Pt1000 temperature sensor attached to the front surface of the sample. PL emission is

excited by laser illumination from above. The laser (Jenoptik unique-mode, JUM30k/400/20) emits

light at a center wavelength of 809 nm. Undergrund illumination at other wavelengths is filtered

by an optical bandpass filter. The laser spot is widened by an array of micro lenses (custom-made

product, Bayerisches Laserzentrum GmbH) and homogeneously illuminates an area of 5 × 5 cm2

with an intensity of about 70 mW/cm2. The lateral irradiance variation is below 10% rel. During

PL measurements, the sample stage is a black anodized brass plate with a reflectance of below 10%

within the wavelength range of interest. Ray tracing simulations (see appendix B) show that the

presence of the brass plate does not affect the shape of the luminescence spectrum compared to the

case that the sample is surrounded by air. EL emission is excited by attaching a power supply and

contacting the front busbar of the solar cell with Kelvin probes. The rear contact is made by the brass

plate (not anodized in case of EL) on which the sample is placed. Since the solar cells feature a

rear surface metalization, the reflectance of the brass plate is irrelevant. The brass plate contains an

additional Pt1000 temperature sensor which is attached to the rear surface of the solar cell.
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(a) (b)

Figure 2.19: Photographies of the spectrometers evaluated in this work. (a) Diode array spec-

trometer system tec5 CompactSpec 1.7 CT. (b) Scanning spectrometer system Instrument Systems
Spectro320 R5.

2.2.4 In-house calibration of spectrometers

The detection system consists of serveral optical components such as mirrors, diffusers, fibre cables,

gratings and detectors, each of which having its own wavelength characteristic. The whole system

therefore needs to be calibrated with respect to wavelength and irradiance in order to measure the

luminescence spectrum correctly. Basically, the irradiance calibration of a spectrometer consists of

comparing the measured spectrum of the sample to the measured spectrum of a calibration light

source, whose true spectrum is known. In this work, a 250 W halogen lamp (Gigahertz LN-250-

BC) is used as calibration standard. The lamp is primarily calibrated at the Physikalisch-Technische
Bundesanstalt (PTB). Moreover, a mercury vapor lamp is used for the calibration of the spectrometer

with respect to wavelength prior to the intensity calibration. For an appropriate irradiance calibration

of the spectrometer, it is necessary to ensure that

1. the calibration lamp is operated at exactly the same current as during the primary calibration,

2. that the same polarity as during the primary calibration is retained,

3. that the spectrum of the calibration lamp has not changed since the primary calibration,

4. that only direct light from the calibration lamp is measured, which means that sufficient stray light

blocking is ensured,

5. that calibration lamp and entrance optics of the spectrometer are precisely aligned on the optical

axis without tilt,

6. that the spectrometer is accurately calibrated with respect to wavelength and

7. that the distance between calibration lamp and entrance optics of the spectrometer is adjusted to

exactly the same distance as during the primary calibration (300 mm).

The last requirement does not hold if only a relative intensity calibration is performed, i.e., the mea-

sured data is in relative units as for the luminescence measurements carried out in this work.

In order to meet the given requirements, a new setup for the irradiance calibration of spectrometers

was built up during this work. Figure 2.20 shows a schematic drawing of the setup. The setup consists

of an optical table on which the calibration lamp and the spectrometer can be mounted and adjusted

precisely. A three-axis stage is used for mounting the lamp. The entrance optic of the spectrometer
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Figure 2.20: Schematic of the setup for radiometric calibrations of spectrometer

systems built up during this work.

is mounted on a two-axis stage. An additional linear stage allows the distance between lamp and

entrance optic to be adjusted. A housing made of black molton fabric reduces stray light from the

ambience. A high-precision power supply provides stable current for the operation of the calibration

lamp. The lamp current is monitored by a high-precision multimeter measuring the voltage drop over

a calibrated measurement shunt, which is equipped with a Pt11000 temperature sensor attached to its

heat sink in order to compensate for the temperature-induced change of resistivity. The calibration

lamp is operated in current-regulated mode at a set point of 9.7 A. A connected computer is used to

log the lamp current and also to regulate the power supply upon detection of a deviation from the set

point. The setup is capable of regulating the lamp current to the set point of 9.7 A with a maximum

deviation of not more than 400 μA (0.004% rel.). The calibration lamp is operated with a power

of approximately 185 W, which is about 75% of the nominal power (250 W). Turn-on and turn-off

procedures are realized by linear current ramps with a duration of 50 s. The reduced operation power

and the ramping improve the stability of the lamp and enhance its lifetime to typically more than

1000 h of operation. A second multimeter is used to log the voltage between the terminals of the

calibration lamp, which serves as an indicator of spectral stability. Deviations of more than 50 mV

from the calibration voltage indicate that the spectrum of the lamp has changed and that a recalibration

of the lamp is necessary. A pre-aging procedure is carried out by operating the lamp at its operation

current for 60 h before the lamp is used as a calibration lamp. During this procedure, the lamp voltage

is required to stabilize at a saturation value. If it does not, i.e., the lamp voltage fluctuates by more

than 50 mV after the pre-aging procedure, the lamp is discarded. An aperture positioned between

calibration lamp and spectrometer reduces stray light and also acts as a heat shield. The remaining

stray light is measured and subtracted during the calibration measurement by placing a shadow dump

between lamp and spectrometer which only blocks the direct light from the lamp. Calibration lamp

and entrance optic of the spectrometer are aligned on the optical axis using a bidirectional adjustment

laser. For this purpose, the calibration lamp is equipped with an adjustment aid. The distance between

lamp and spectrometer is then precisely measured by a calibrated digital two-point inside micrometer

with an accuracy of ±1 μm. Figure 2.21 shows photographies taken during the alignment procedure

and the calibration measurement.

2.2.5 Procedure for measuring luminescence spectra

Prior to the measurement of luminescence spectra, an irradiance calibration of the spectrometer is

performed. For this purpose, the spectrum of the calibration lamp is measured. The detector signal
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(a) (b)

Figure 2.21: Setup for radiometric calibrations of spectrometer built up during this work. Figure

(a) shows the alignment of calibration lamp and entrance optic of the spectrometer using a bidirec-

tional adjustment laser. Figure (b) shows the adjusted setup during the irradiance calibration of the

spectrometer.

Nill(λ) consists of the component due to direct illumination by the lamp Nlmp(λ), the component due

to background illumination from the ambience and dark signal of the detector Nd(λ) and eventually

an artificial signal offset No(λ) (which is sometimes added to the signal in order to prevent negative

values due to noise):

Nill(λ) = Nlmp(λ) + Nd(λ) + No(λ) . (2.41)

Next, the shadow bump is mounted such that direct light from the calibration lamp is blocked. The

resulting spectrum is measured. The detector signal Ndrk(λ) now consists of the component due to

background illumination from the ambience and dark signal of the detector Nd(λ) and the artificial

signal offset No(λ):

Ndrk(λ) = Nd(λ) + No(λ) . (2.42)

If dark signal Nd and signal offset No are constant over measurement time scales, the detector signal

due to direct illumination by the lamp Nlmp follows from Eqs. (2.41) and (2.42) as

Nlmp(λ) = Nill(λ) − Ndrk(λ) . (2.43)

In practice, several subsequent measurements of Nill and Ndrk are averaged in order to reduce the

impact of measurement noise on the result. Since Eq. (2.44) is linear, it remains valid for the averaged

values of the quantities N̄ill and N̄drk. Hence,

N̄lmp(λ) = N̄ill(λ) − N̄drk(λ) . (2.44)

After measuring the spectrum of the calibration lamp, the luminescence spectrum of the sample

Nlum(λ) is measured using the same procedure. The background signal Ndrk is measured by turn-

ing off the excitation source. The detected luminescence intensity Ilum(λ) in relative units finally

follows from the comparison of the measured spectra of calibration lamp and luminescence:

Ilum(λ) ∝ Nlum(λ)/tint,lum

Nlmp(λ)/tint,lmp
Ilmp(λ) (2.45)

where tint,lum and tint,lmp are the integration times used for the corresponding measurements and Ilmp

is the known spectral irradiance of the calibration lamp. The Spectro 320 system outputs data which
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has already been normalized to scan speed. Hence, tint,lum = tint,lmp is used in the latter equation when

evaluating data measured by this system. Note that the factor tint,lmp/tint,lum can also be included in the

proportionality constant for relative measurements. Also, note that the proportionality in Eq. (2.45)

can be replaced by equality if the spectrum of the calibration lamp is measured exactly at the same

distance r0 as used during the primary calibration of the lamp. If a small deviation Δr 	 r0 occurs, a

correction can be made. From the inverse-square law, I(r) = I0/r2, the relation

I(r) ≈ I0

[
1

r2
0

− 2Δr
r3

0

]
(2.46)

is obtained by Taylor series expansion. In the latter equations, I0 is the emitted intensity and r the

distance from the source. Hence, a small distance deviation can be taken into account by a distance

correction factor

fr =
I(r)

I(r0)
= 1 − 2Δr

r0
(2.47)

in Eq. (2.45). However, for the determination of the absorption coefficient using the procedure

described in section 2.2.1, no benefit can be drawn from a precise adjustment of the distances.

2.2.6 Correction of systematic effects

Several effects can lead to systematic deviations with respect to spectrally resolved irradiance mea-

surements. Often, a major issue is the occurrence of stray light, i.e., signal contributions due to light

which should actually not be measured. Two types of stray light effects are usually distinguished:

• Spectrally resolved irradiance measurements as carried out in this work aim at the detection of

light that is emitted by the measurement object directly towards the detector. Light from the am-

bience of the measurement object might also be detected by mistake, e.g., due to reflections at

other objects. This would lead to an overestimation of the direct irradiance. Stray light from the

ambience is commonly denoted as external stray light and can often be corrected by using a suit-

able measurement procedure that determines the amount of external stray light. The procedure for

measuring the irradiance of calibration lamps described above is of this kind. For measurements

of luminescence emission, reflections from the ambience (except the sample stage) are negligible

due to the low intensity of the luminescence emission, the weak reflectance of the surrounding, the

narrow detection angle of the entrance optic and the geometry of the measurement setup. Optical

ray tracing simulations (see appendix B) show that reflections at the sample stage do not affect

the spectral shape of the measured luminescence spectrum and the subsequent determination of

the absorption coefficient either.

• Light scattering can also occur inside the spectrometer system. Such reflections may lead to a

signal contribution at wavelengths different from that of the incident light. For this reason, this

type of stray light is commonly denoted as spectral (or internal) stray light. Spectral stray light can

lead to large deviations in the measured spectrum [83]. The significance of this effect is a property

of the specific spectrometer system. Unlike external stray light, spectral stray light effects cannot

be compensated by the measurement procedure. The contribution Nstray to the detector signal at

wavelength λi due to spectral stray light from other wavelengths λj can be expressed as

Nstray(λi) =
∑
λj�λi

Nx(λj) fstray(λj, λi) (2.48)

where Nx(λj) is the signal due to incident light at wavelength λj and fstray(λj, λi) is the stray light

rejection factor. fstray(λj, λi) is typically of the order of 10−2 to 10−8, depending on the specific
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device. Note that stray light from the ambience is not considered here as it is compensated by the

measurement procedure as outlined above. The impact of spectral stray light can be quantified and

corrected rigorously if the stray light matrix fstray(λj, λi) is known [83, 84]. The stray light matrix,

which is a unique property of the spectrometer system, is determined by subsequently illuminating

the spectrometer with monochromatic light of several wavelengths and measuring the signal at all

other wavelengths. Such measurements require equipment like tunable laser sources, which is not

available at ISFH and could not be used during this work. However, the manufacturers indicate

the typical level of stray light rejection achieved by their systems. These values are verified by

measuring the apparent transmittance of a longpass filter with a cut-off wavelength of 1450 nm,

which is inserted between the spectrometer and a calibration lamp. The transmittance of the filter

is also determined using the Varian Cary 5000 described in section 2.1.2 and the expected signal

is thereby calculated. The Varian Cary 5000 features a double monochromator and very good

stray light rejection (of the order of 10−7 or better) can be assumed. The results of these measure-

ments are shown in Fig. 2.22. All data is normalized to the maximum signal for each instrument.

The expected signal (black line) is given by the detector signal obtained without longpass filter,

multiplied with the measured transmittance of the filter. Below 10−4, the filter transmittance is

too small to be measured accurately. The line is therefore grayed out. The measured dark signal

noise (standard deviation of dark signal) of the spectrometer systems is visualized by the dashed

lines. Signals below these limits cannot be resolved by the systems. As can be seen in Fig. 2.22,

the CompactSpec system achieves a maximum stray light rejection of the order of 2 × 10−3 for

wavelengths below 1050 nm. The scanning system Spectro 320 achieves a maximum stray light

rejection of the order of 2 × 10−4. The stray light rejection increases with increasing distance

from the cut-off wavelength. This is probably a consequence of the broad spectral distribution of

the incident radiation shown in Fig. 2.23, which extends into the infrared. Hence, there are stray

light contributions from a large wavelength region above 1450 nm. It is reasonable to assume that

the impact of spectral stray light from a given wavelength λj decreases with increasing distance

from λj. Thus, the overall stray light rejection should increase with increasing spectral distance

from the cut-off wavelength, as observed in Fig. 2.22. The observed maximum stray light rejec-

tion levels are in agreement with the levels of stray light rejection indicated by the manufacturers

(visualized by the dotted lines). Instrument Systems determined the stray light rejection level to

be 10−4 by illuminating the spectrometer system with monochromatic laser light at 1152 nm and

measuring the signal at a wavelength distance which is eight times the spectral bandwidth [85].

For the luminescence measurements with the Spectro 320 system, a spectral bandwidth of 10 nm

is used. The stray light rejection thus refers to a spectral distance of 80 nm. Moreover, the stray

light rejection was determined to be 2×10−4 at 950 nm using a black body radiator with a temper-

ature of 2856 K and a longpass filter with a cut-off wavelength of 1200 nm. For the CompactSpec

system, details about the measurement of the stray light rejection level by the manufacturer are

not available, but a similar approach can be assumed.

As can be seen from Fig. 2.23, the intensity of the calibration lamp radiation is high and compara-

ble for all wavelengths between 1100 and 1450 nm, where data from luminescence measurements

is used. According to the observed levels of stray light rejection, the intensity of spectral stray

light is lower by at least two orders of magnitude. The impact of spectral stray light for the cali-

bration is thus negligible. The luminescence spectrum consists of a rather narrow peak compared

to the spectrum of the calibration lamp (FWHM ≈ 50 nm). For luminescence measurements, the

maximum amount of spectral stray light at wavelength λ can be estimated as a first approximation

by

Nstray(λ) ≈ Nmax × fstray (2.49)

where Nmax is the peak signal and
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Figure 2.22: Estimation of the order of magnitude of

spectral stray light within the two spectrometer sys-

tems used in this work.

Figure 2.23: Spectral irradiance of the calibration

lamp (solid line) and a typical luminescence spectrum

of a silicon wafer sample (dashed line).

fstray =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 × 10−3 for the CompactSpec system,

2 × 10−4 for the Spectro 320 system

is the stray light rejection factor which is assumed to be constant for all wavelengths. The latter

assumption is also supported by the measurement results indicated by the manufacturers. Intu-

itively, it is clear from Fig. 2.23 that the impact of spectral stray light may only be significant at

the edges of the luminescence spectrum, where the detector signal is small. At these wavelengths,

a large uncertainty is caused by the low signal-to-noise ratio (see section 2.2.8). Compared to the

uncertainty, the deviations caused by spectral stray light are small. According to the GUM, cor-

rections are thus not necessary and are therefore omitted. Neglecting corrections for spectral stray

light is also supported by the finding that, although the stray light rejection of both systems differs

by two orders of magnitude, no differences are visible in the measured luminescence spectra as

shown in Fig. 2.26.

Other effects such as an angle-dependent sensitivity of the entrance optic can also lead to systematic

deviations with respect to spectrally resolved irradiance measurements in principle. However, unlike

spectral stray light, these effects do not alter the shape of the measured spectrum and thus do not

affect the determination of the absorption coefficient. In the context of this work, corrections are thus

not necessary.

2.2.7 Uncertainty contributions

Contributions to u2(Ilum) result from the uncertainty of Nlum, the uncertainty of Nlmp and the uncer-

tainty of Ilmp, according to Eq. (2.45). This section describes the uncertainty contributions and their

determination.

Uncertainty contributions by Nlum and Nlmp The uncertainties of Nlum and Nlmp are determined

in the same way. Therefore, in the following, Nx is used where “x” stands for “lum” and “lmp”.

According to Eqs. (2.41) to (2.44), Nx is given by the measurands Nill and Ndrk:

Nx = Nill − Ndrk . (2.50)
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Hence,

u2(Nx) = u2(Nill) + u2(Ndrk) . (2.51)

The uncertainty contributions u2(Nill) and u2(Ndrk) contain photon noise, thermal noise and noise of

the amplifier electronics and are thus statistically distributed (type A uncertainties). They are given

by the variance σ2 = 1/(n − 1)
∑n

i=1(xi − x)2 of subsequent measurements. Hence,

u2(Nx) = σ2(Nill) + σ
2(Ndrk) . (2.52)

Beside these type A uncertainty contributions, there are other effects which contribute to the uncer-

tainty of Nx:

Spectral bandwidth: The spectral bandwidth of a monochromator characterizes the wavelength

interval around the nominal wavelength within which the transmittance is not zero. It is determined,

e.g., by the slit width and the geometry of the grating. Spectral bandwidth generates an additional

detector signal due to light incident at adjacent wavelengths. In principle, this effect is taken into

account by the irradiance calibration. However, if the shape of the sample spectrum (e.g., a lumi-

nescence spectrum) differs from that of the calibration lamp, the spectral bandwidth may cause an

additional signal Nbw. Several approaches for a correction of this effect can be found in the literature,

e.g., Refs. 86–89.

An upper limit for the signal contribution Nbw due to spectral bandwidth is obtained by using a

second-order taylor series expansion of the spectral irradiance around the bandpass central wavelength

λ and assuming a rectangular bandpass function of width Δλ. According to the derivation given in

appendix C.2, Nbw is given by

Nbw =
Nx(λ − Δλ/2) − 2Nx(λ) + Nx(λ + Δλ/2)

6
. (2.53)

As shown in section 2.2.8, this contribution is small compared to other uncertainty components. Since

assuming a rectangular bandpass function is a worst case estimation and typical bandpass functions

are rather triangularly, Nbw can be assumed to be even smaller in reality. For this reason, a correc-

tion is not performed. Spectral bandwidth is instead taken into account by assuming a rectangularly

distributed uncertainty contribution u2
bw

of width Nbw. This leads to the estimation formula

u2
bw =

1

3

[
Nx(λ − Δλ/2) − 2Nx(λ) + Nx(λ + Δλ/2)

6

]2

. (2.54)

For practical calculations, Nx(λ ± Δλ/2) is obtained from interpolation. The spectral bandwidth is

taken from the technical data sheet for both systems. It is Δλ = 3 nm for the CompactSpec system

and Δλ = 10 nm for the Spectro 320 system.

Accuracy of the wavelength calibration: Wavelength deviations can affect the signal attributed to

the nominal wavelength. This may result in an additional signal contribution Nwl. Both spectrometers

are calibrated with respect to wavelength using a mercury vapor lamp with known peak positions

[90, 91]. After calibration of the wavelength scale, the deviation of nominal and measured peak

wavelength is smaller than ±0.15 nm for both systems and a systematic deviation is not observed.

The possible signal contribution due to wavelength deviations is estimated by

Nwl ≈ max
(∣∣∣∣Nx(λ + Δλ) − Nx(λ)

∣∣∣∣, ∣∣∣∣Nx(λ − Δλ) − Nx(λ)
∣∣∣∣) . (2.55)

This possible signal contribution is taken into account by assuming a rectangularly distributed uncer-

tainty contribution of width Nwl for Nx:

u2
wl =

N2
wl

3
. (2.56)

For practical calculations, Nx(λ ± Δλ) is obtained from interpolation.
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Drift of the dark signal over time: The calculation of the dark signal corrected spectrum given

by Eq. (2.44) assumes that the dark signal of the detector is constant during the measurements of

sample signal and background signal. This assumption holds for the CompactSpec system, for which

drifting of the dark signal is not measurable compared to its uncertainty (noise) on time scales of

typical measurements (of the order of minutes). Hence,

u2
drift,drk = 0 for the CompactSpec system. (2.57)

The situation is different for the Spectro 320 system. Here, measurable deviations of the dark signal

before and after the sample measurement can occur. This is a consequence of the lower dark signal

noise limit (see Fig. 2.22) of this system. The observed signal change due to the drift is about five

orders of magnitude smaller than the signal during the calibration of the spectrometer. For calibration

measurements, drifting of the dark signal is thus neglected, i.e.,

u2
drift,drk = 0 for calibration measurements with the Spectro 320 system. (2.58)

However, the signal change due to drift of the dark signal and the signal due to luminescence radi-

ation are of the same order of magnitude. For luminescence measurements, the drift can thus have

a significant impact on the measurement results. For this reason, the dark signal is measured before

and after the luminescence measurement (Ndrk(t1) and Ndrk(t2)). From these values, the average dark

signal

N̄drk =
Ndrk(t1) + Ndrk(t2)

2
(2.59)

is obtained and used for the calculation of the luminescence spectrum by Eq. (2.44). Since drifting of

the dark signal originates from temperature variations of the detector and the amplifier electronics, the

dark signal is assumed to vary rather slowly between the limits Ndrk(t1) and Ndrk(t2). The uncertainty

due to drifting of the dark signal is therefore estimated by

u2
drift,drk =

1

3

∣∣∣∣Ndrk(t1) − Ndrk(t2)

2

∣∣∣∣2 for luminescence measurements with the Spectro 320 system.

(2.60)

In summary, the uncertainty of the dark signal is estimated by

u2
drk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
σ2(Ndrk) CompactSpec system (all measurements),

σ2(Ndrk) Spectro 320 system (calibration measurements),[
σ2(Ndrk(t1)

)
+ σ2(Ndrk(t2)

)]
/4 + u2

drift,drk
Spectro 320 system (luminescence measurements).

Nonlinearities of the detector regarding the irradiance: The irradiance levels during the mea-

surements of the calibration lamp spectrum and the luminescence spectrum differ significantly. Thus,

the responsivity of the detector with respect to the irradiance levels must be evaluated, since any de-

viations from a linear characteristic cause a signal deviation which must be taken into account. There

are several possibilities for the determination of nonlinearities, e.g., using the inverse square law and

varying the distance between light source and detector or using filters with different attenuation fac-

tors. The most accurate determination of nonlinearities is facilitated by using a superposition method

[92]. Figure 2.24 shows a sketch and a photography of the setup used in this work. It consists of two

stable light sources which illuminate the detector one after the other. Afterwards, both light sources

illuminate the detector simultaneously. The procedure is carried out at different distances from the

light sources in order to obtain variations of the irradiance.
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Figure 2.24: Sketch (a) and photography (b) of the setup for the determination of detector nonlin-

earities by the superposition method.

The irradiance level on the detector is I1 for the first lamp, I2 for the second lamp and I3 = I1 + I2

for both lamps together. The corresponding detector signals are S 1, S 2 and S 3. Ideally, S 3 should be

equal to S 1+S 2. Deviations from this characteristic can be interpreted as nonlinearities of the detector

with respect to irradiance. Figure 2.25 (a) shows the measured deviations for the InGaAs detectors of

both CompactSpec and Spectro 320 as a function of the detector signal S 3. The measured deviations

do not show a clear trend, which would allow them to be parametrized and used as a correction.

Moreover, the deviations are generally small (±0.87% for the CompactSpec system and ±0.066%

for the Spectro 320 system). For this reason, the maximum measured deviation is included into the

uncertainty budget instead of applying a nonlinearity correction. Assuming a rectangular distribution

for the uncertainty contribution u2
lin,i

due to nonlinearity regarding the irradiance, the contribution is

u2
lin,i =

(Nlin,i)
2

3
(2.61)

with

Nlin,i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.0087 × Nx for the CompactSpec system,

0.00066 × Nx for the Spectro 320 system.

Note that in the literature, a parametrization method is found which makes use of a polynomial ap-

proximation of the nonlinearity [92, 93]. The application of this method requires the inversion of

matrices and can be subject to numerical instabilities, as these matrices may be ill-conditioned. The

calculated correction may then introduce a significant error. This is the case for the measurements

carried out in this work. Appendix A contains a more detailed discussion of this issue.

Nonlinearities regarding the integration time: The CompactSpec system is operated with differ-

ent integration times during the calibration and the luminescence measurement (700 ms and 6500 ms,

respectively) in order to prevent the saturation of the detector and to achieve the maximum possible

signal-to-noise ratio. Therefore, a linear characteristic of the system with respect to integration time

must be ensured. The Spectro 320 system is operated with a scan speed of 350 ms/nm during both

calibration and luminescence measurements since the signal-to-noise ratio cannot be improved by

further reducing the scan speed. Figure 2.25 (b) shows the relative deviation of various measurements

of a calibration lamp spectrum, carried out with the CompactSpec system using different integration
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(a) (b)

Figure 2.25: Nonlinearity of the spectrometer detectors with respect to intensity (a) and integration

time or scan speed, respectively (b).

times. The data is normalized to integration time and divided by a reference measurement (6500 ms).

The observed deviations are of the order of up to 2% rel. However, the luminescence measurements

are carried out in relative units and scaled, so that absolute changes of the measured intensity cancel

out. Hence, only the difference of the deviations with respect to wavelength, which is visualized by

the vertical arrow in Fig. 2.25, must be taken into account. As for the Spectro 320, the measured devi-

ations seem to be affected by measurement noise. The observed deviations are therefore not corrected

but taken into account as an uncertainty contribution u2
lin,t
= (Nx × 0.015)2/3.

For the sake of completeness, nonlinearities of the Spectro 320 system with respect to scan speed

are also investigated and shown in Fig. 2.25 (b). The reference measurement uses a scan speed of

300 ms/nm. The deviations do not exceed ±0.04% and a systematic effect is not observed. Using

the observed deviations as an estimate of the uncertainty contribution u2
lin,t

due to nonlinearity with

respect to scan speed yields u2
lin,t
= (Nx × 0.0004)2/3. For the measurements presented in this work,

however, this uncertainty contribution does not need to be considered as the same scan speed is used

for calibration and luminescence measurements. Hence,

u2
lin,t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0.015 × Nx)2/3 for the CompactSpec system,

0 for the Spectro 320 system.
(2.62)

Spectral stray light: As discussed in section 2.2.6, the impact of spectral stray light for lumines-

cence measurements is small and corrections are not applied. The amount of spectral stray light

obtained from the first order approximation is taken into account as a rectangularly distributed uncer-

tainty component

u2
stray =

(Nmax × fstray)2

3
(2.63)

for both the measurement of the calibration lamp and the measurement of the luminescence spectrum.

Long term reproducibility: All other uncertainty contributions that have not been taken into ac-

count so far and lead to deviations in the reproducibility over time are summed into this contribution.
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The relative deviation q between measurements using an identical setup is taken into account as a rect-

angularly distributed uncertainty component u2
rep. From experience, q ≤ 0.005 holds. The uncertainty

contribution is then

u2
rep =

(Nx × 0.005)2

3
. (2.64)

Overall uncertainty of Nx : Taking into account the uncertainty contributions listed above, the

overall uncertainty of Nx is given by

u2(Nx) = σ2(Nill) + u2
drk + u2

stray + u2
bw + u2

wl + u2
lin,i + u2

lin,t + u2
rep . (2.65)

Uncertainty contribution by Ilmp : The uncertainty u2(Ilmp) is given by the uncertainty of the

primary calibration carried out at PTB. The uncertainty of the data is of the order of 2% rel. (k = 2).

Overall uncertainty of Ilum : The overall uncertainty of Ilum is calculated from Eq. (2.45). It is

given by

u2(Ilum) =

(
Ilmp tint,lmp

Nlmp tint,lum

)2

u2(Nlum) +

(
− Nlum Ilmp tint,lmp

(Nlmp)2 tint,lum

)2

u2(Nlmp)

+

(
Nlum tint,lmp

Nlmp tint,lum

)2

u2(Ilmp) . (2.66)

Note that for the Spectro 320 system, tint,lmp = tint,lum holds (see notes to Eq. (2.45)).

2.2.8 Performance of scanning vs. diode array spectrometer system

Based on the uncertainty analysis described above, the performance of both the scanning Spectro 320

system and the diode array CompactSpec system for luminescence measurements is evaluated. For

this purpose, an electroluminescence spectrum of a polished solar cell is exemplarily measured with

both systems and the uncertainty of the data is determined. Figure 2.26 shows the resulting data.

The data is normalized to maximum for comparison. The relative uncertainty (k = 2) of the data

is indicated by the lines. The uncertainty of the spectrum data is about 5-10% rel. (k = 2) at the

peak wavelength (1140 nm) and increases to 100% or above at wavelengths above 1250 nm. The

increase of the relative uncertainty is mainly due to a constant noise level of the detector and the

decrease of the luminescence emission intensity by two orders of magnitude. For the sample under

investigation, measurements with uncertainties below 10% are possible in the wavelength range from

1060 to 1170 nm.

The relative measurement uncertainty that is achieved is of the same order of magnitude for both

systems. The major part of the uncertainty originates from the measurement of the luminescence

spectrum. The measurement of the calibration lamp spectrum is subject to uncertainties of the order of

1% relative. Figure 2.27 visualizes the uncertainty budgets for the measurements of the luminescence

spectrum at 1140 and 1200 nm. The figure shows the summands of Eq. (2.65) normalized to their sum

u2(Nx). The uncertainty of the measured spectra is in all cases limited by the type A contributions

due to photon noise, dark signal (thermal) noise and measurement amplifier noise, represented by

σ2(Nill) and u2
drk

. This is a reasonable result as the intensity of the luminescence emission is very

small (� 10−5 W/(m2nm)), which implies a low signal-to-noise ratio. Beside this finding, it can be

seen that nonlinearities of the detector are much more significant for the CompactSpec system than

for the Spectro 320 system. However, the impact of nonlinearities, spectral bandwidth, wavelength

deviations and spectral stray light is small in general. Note that the ordinate is scaled logarithmically.

It is thereby verified that these systematic effects are small compared to the overall uncertainty and

that corrections of these effects can be omitted. Interestingly, the relative significance of wavelength
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Figure 2.26: Comparison of electroluminescence spectra measured with both

Spectro 320 and CompactSpec. The spectra are normalized to maximum for com-

parison. The lines indicate the relative uncertainty of the data. The absolute uncer-

tainty is visualized by the shaded areas.

accuracy and long term reproducibility is larger for the Spectro 320 system than for the CompactSpec

system. This finding is surprising at first sight, but it is a simple consequence of the fact that the type

A uncertainty contributions due to noise are smaller for the Spectro 320 than for the CompactSpec

system. In turn, this means that the relative significance of all other uncertainty contributions is

increased. It is important to note that in the configuration used in this work, the Spectro 320 is

equipped with a diffuser head as entrance optic (see Fig. 2.19). The diffuser decreases the intensity

on the detector by a factor of about 10. The CompactSpec system is equipped with a bare fiber as

entrance optic and does not suffer from this loss of intensity. Bare fibers are not suitable for irradiance

measurements due to their strong angle dependence, but can be used unproblematically for relative

measurements as done in this work. When using the Spectro 320 with a bare fiber or a mirror as

entrance optic, a decreased relative uncertainty due to the increased signal-to-noise ratio is expected.

A bare fiber for the Spectro 320 was not available during this work. Despite of the decreased intensity

due to the diffuser optic, the Spectro 320 already achieves uncertainties that are smaller by a factor

of about 2. An advantage of the CompactSpec system is the reduced data aquisition time compared

to the Spectro 320 (about 5 min for 25 averages, compared to about 10 min for 5 scans). A second

advantage is the stability of the wavelength calibration under exposure to vibrations (e.g., during

transport), as the system does not contain any moving components.

As a conclusion, it can be stated that the scanning Spectro 320 system allows for luminescence mea-

surements with reduced uncertainty compared to the diode array CompactSpec system. It is therefore

used for all measurements concerning the determination of the absorption coefficient. The uncer-

tainty could be further reduced by increasing the signal-to-noise ratio, e.g., by using a bare fiber as

entrance optic. However, in the present configuration of the systems, the uncertainties achieved by

both systems are of the same order of magnitude.

2.2.9 Electroluminescence vs. photoluminescence measurements

In general, the absorption coefficient can be determined by both electroluminescence (EL) and pho-

toluminescence (PL) measurements. In practice, however, both methods have their advantages and
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(a) (b)

Figure 2.27: Uncertainty budget of the data shown in Fig. 2.26 at 1140 nm and 1200 nm.

disadvantages. A careful choice of the method is therefore necessary.

PL measurements can be carried out on wafer samples without the need of making an electrical

contact to the sample. Thereby, also weakly doped or intrinsic samples can be used. As intense laser

light sources for excitation have become available, very high injection levels can be achieved within

the sample, which results in strong luminescence emission and high signal-to-noise ratios during the

measurement. However, PL measurements have to deal with some issues of major impact. First of

all, optical excitation causes significant heating of the sample. When local excitation is used (e.g., in

order to achieve very high injection levels), large temperature gradients are induced. Considering the

temperature dependence of the luminescence spectrum, it is obvious that it is important to measure

and control the sample temperature precisely during illumination. Moreover, sufficient time must be

allowed for the sample temperature to stabilize after powering up the laser. This increases the required

delay between measurements of the sample spectrum and the dark signal of the detector and may lead

to increased uncertainties. A second issue PL measurements have to deal with is spectral stray light

within the detection system caused by the laser radiation. The exciting laser radiation is usually many

orders of magnitude more intense than the luminescence radiation that is to be detected. Laser light

that is accidentally coupled into the detection system can easily cause stray light artifacts. Also,

many lasers (especially laser diodes, which are often used) feature a narrow peak but also a broad

underground, which extends to wavelengths where the luminescence emission is located. Hence, ad-

equate optical filters must be used in order to ensure that only luminescence radiation is detected. A

third issue with PL measurements is an apparent dependence of the luminescence spectrum on the

detection angle and the distance between sample and entrance optic of the spectrometer which has

been observed for polished silicon wafer samples. Figure 2.28 shows PL spectra measured with vari-

ous distances between sample and detector. The excitation conditions and the sample temperature are

constant for all measurements. For comparison, the data is normalized. Variation of the distance leads

to an apparent relative increase of luminescence intensity in the region around 1200 nm. However,

the shape of the luminescence spectrum is not expected to show such variations, only the overall in-

tensity should depend on the detection distance. The effect is not observed for textured wafer samples
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as also shown in Fig. 2.28, and its origin is not yet understood. The effect might eventually originate

from luminescence emission from the edges of the sample. Another possibility is stray light from

the excitation laser. This assumption is supported by the finding that the effect is neither observed

for PL measurements on textured samples nor for EL measurements in general. Nevertheless, these

measurements show that PL measurements on polished samples may introduce potential uncertainties

for the determination of the absorption coefficient at wavelengths around 1200 nm, which is evaluated

from the shape of the luminescence spectrum. Critically, it is exactly this wavelength range, where

luminescence data from textured samples is scaled.

EL measurements require an electrical contact to the sample and a pn-junction for the injection

of charge carries. This implies that the sample contains metallized surfaces as well as highly doped

layers, in which free carrier absorption may be the dominant absorption mechanism. Free carrier

absorption does not affect the generation but the escape probability of luminescence photons and may

therefore affect the shape of the luminescence spectrum. The conductivity of the electrical contacting

imposes restrictions on the injection levels that can be achieved. These are generally lower that for PL

measurements and lead to lower signal-to-noise ratios during the measurement. For the calculation

of the absorption coefficient from a luminescence spectrum, required optical properties of the sam-

ple such as surface reflectance are not as easily determined as for bare wafer samples. However, EL

measurements solve the three major issues of PL measurements addressed above. The sample temper-

ature under current injection is very stable. During the measurements carried out in this work, sample

heating of only 0.5 K was observed under injection of 150 mA/cm2 (corresponding to an illumina-

tion intensity of approximately 400 mW/cm2 regarding the injection level, which would increase the

sample temperature by about 40 K). Short time delays between acquisition of sample spectrum and

dark spectrum can thus be realized. As no exciting laser illumination is involved, stray light effects

are excluded. Furthermore, a dependence of the luminescence spectrum on the angle and distance of

detection is not observed for EL measurements.

On the basis of these findings, the following procedure is applied in this work: In the wavelength

range from 1100 to 1250 nm, EL measurements are carried out on the polished solar cells described

in section 2.2.2. The data obtained by these measurements is scaled to measured values of the absorp-

tance of the solar cell. Above 1250 nm, PL measurements are carried out on textured wafer samples.

These samples feature an enhanced luminescence photon escape probability compared to polished

samples, which leads to an increased signal-to-noise ratio. Also, the optical excitation allows for an

enhanced luminescence emission intensity compared to electrical excitation. The PL data is scaled to

the data from EL. The procedure is described in detail in the following.

2.2.10 Results

Figure 2.29 shows the measured electroluminescence spectrum of a polished solar cell and the photo-

luminescence spectrum of a textured wafer. The spectra are calculated using Eq. (2.45). The dashed

lines show the relative expanded uncertainty of the data for k = 2 given by Eq. (2.66). The top graph

shows the corresponding coverage probability for a t-distribution with an effective degrees of freedom

(see section 1.3.5) following from the uncertainty analysis. Between 1100 and 1300 nm, the coverage

probability for k = 2 is larger than 95.2%. Beyond 1300 nm, the coverage probability decreases to

about 92%. This is a consequence of the dominant type A uncertainty of the luminescence measure-

ment in this wavelength range and the small number of repeated measurements (N = 3). Obtaining a

coverage probability of 95.45% would require to increase the coverage factor k to about 2.5.

The absorption coefficient is obtained from the luminescence data by scaling. The scaling procedures

for EL and PL data are different.
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(a) (b)

Figure 2.28: PL measurements on Czochralski grown silicon wafers under identical excitation con-

ditions but different distances between sample and detector. The sample temperature is constant for

all measurements. (a) Double side polished sample. (b) Double side textured sample.

Scaling of EL data As described in section 2.2.1, the luminescence data is proportional to the

absorptance of the sample if the minority charge carrier distribution within the sample is homoge-

neous. A homogeneous minority charge carrier distribution can be assumed for wafer samples with

passivated surfaces. The polished solar cells feature a fully metallized rear surface without surface

passivation, which causes a high charge carrier recombination velocity S r of the order of 104 cm/s.

The assumption of a homogeneous minority charge carrier distribution within the solar cell is thus not

fulfilled. On the contrary, the charge carrier concentration decreases linearly from z = 0 (where the

minority charge carriers are injected) to z = W (the rear surface) [94]. Inserting a linearly decreasing

minority charge carrier concentration n(z) = n0 (W − z)/W into Eq. (2.40) yields

Φ(λ) ∝ F(α,W) × A(λ) , (2.67)

where A is the absorptance of the sample and F is a factor which depends on α and W. For α→ 0, F
becomes constant, which means that the shape of the luminescence spectrum does not depend on the

charge carrier distribution within the sample. This is a consequence of the negligible reabsorption of

luminescence photons at long wavelengths. Figure 2.30 shows the ratio of F(α,W) and F(α→0,W)

for Rb = 0.8 and Rb = 1, which approaches unity for α → 0 independent from the thickness of the

sample. The ratio increases with decreasing rear surface reflectance and increasing sample thickness.

For the sample thickness of 711 μm and α ≤ 4 cm−1, which corresponds to λ ≥ 1100 nm, the

deviation from the saturation value F(α→0,W) is 1.2% for a rear surface reflectance Rb of 0.8. As

shown below, Rb > 0.8 holds within the wavelength range of interest. Hence, this value represents

an upper limit for the deviation at λ > 1100 nm. For comparison, the dashed line visualizes the

ratio for a sample thickness of 782 μm (+10% rel.), which increases slightly to 1.4% at α = 4 cm−1.

The variation of F of 1.2% is small compared to the variation of αbb of several orders of magnitude.

Despite the inhomogeneous minority charge carrier concentration, the proportionality of absorptance

and luminescence spectrum is thus approximately given for wavelengths above 1100 nm and can be

used for scaling of the EL data.

The luminescence spectrum is proportional to the absorptance of the silicon slab ASi. In contrast to

wafer samples, the directly measurable absorptance of the solar cell Asample is not equal to ASi due to
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Figure 2.29: EL spectrum of the polished solar cell

and PL spectrum of the textured wafer. Both spectra

are normalized.

Figure 2.30: Dependence of F on the absorption co-

efficient α, the sample thickness W and the rear sur-

face reflectance Rb.

the metallization of the rear surface. In order to scale the EL data, the absorptance of the silicon slab

must first be determined. It is given by

ASi = (1 − Rf)
1 + (Rb − 1) exp(−αW) − Rb exp(−2αW)

1 − RbRf exp(−2αW)
. (2.68)

The reflectance of the front surface Rf is altered by the highly doped emitter layer compared to lowly

doped silicon. It is thus obtained from reflectance and transmittance measurements on a reference

sample, where the emitter diffusion and surface passivation has been applied to both surfaces, and

Eq. (2.5). Further details are given in appendix C.3.

The measurable reflectance of the solar cell Rsample can be interpreted as the reflectance of the silicon

slab with front surface reflectance Rf and an effective rear surface reflectance Rb which describes the

reflection of light at the silicon-aluminium interface. Hence,

Rsample
!
= RSi = Rf +

(1 − Rf)
2Rb exp(−2αW)

1 − RfRb exp(−2αW)
. (2.69)

From the latter equation, Rb follows as

Rb =
Rsample − Rf

(Rsample Rf − 2Rf + 1) exp(−2αW)
. (2.70)

In the wavelength range from 1100 to 1140 nm, α is known from the measurements described in

section 2.1. For wavelengths above 1200 nm, the exponential term in Eq. (2.70) is approximately

unity. Hence, Rb can be calculated between 1100 and 1140 nm and above 1200 nm and interpolated

in the intermediate region. In order to avoid errors due to the metallization grid on the front surface,

the sample reflectance Rb is measured on a reference sample without front surface metallization.

Figure 2.31 shows the resulting surface reflectances Rf and Rb and their relative uncertainties (k = 2)

using the combined absorption coefficient data described in section 3.1.2. Equation (2.68) is then

used to calculate the absorptance of the silicon slab at wavelengths between 1100 and 1140 nm, to
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Figure 2.31: Front surface reflectance Rf and rear

surface reflectance Rb of the polished solar cell.

Figure 2.32: Calculated absorptance of the silicon

slab and scaled EL data.

which the EL data is scaled. The resulting data is visualized in Fig. 2.32, showing the absorptance

of the silicon slab ASi as obtained from reflectance and transmittance measurements together with the

scaled EL data AEL. The scaling factor Cscale is obtained as a weighted average over the data in the

wavelength range from 1100 to 1140 nm (see Eq. (1.32)):

Cscale =

∑N
i=1 Ci/u2(Ci)∑N
i=1 1/u2(Ci)

(2.71)

with

Ci =
ASi(λi)

Φ(λi)
, (2.72)

u2(Ci) =
u2(ASi(λi)

)
(
Φ(λi)

)2
+

(
ASi(λi)(
Φ(λi)

)2

)2

u2(Φ(λi)
)

(2.73)

and 1100 nm ≤ λi ≤ 1140 nm. The relative uncertainty of the Ci is of the order of 5%. Due to the

small wavelength range used for scaling, the Ci are assumed to be fully correlated. Correspondingly,

the uncertainty of Cscale is

u2(Cscale) =

( ∑N
i=1 1/u(Ci)∑N

i=1 1/u2(Ci)

)2

(2.74)

according to Eq. (1.34). The relative uncertainty u(Cscale) of the scaling factor is 2.8%. Assuming

uncorrelated data would yield a relative uncertainty of 0.9%. From the scaled EL data, the absorption

coefficient α is calculated using the solution of Eq. (2.68) for α.

Scaling of PL data PL measurements are applied at wavelengths above 1200 nm. In this wave-

length region, the PL spectrum is proportional to the absorption coefficient αbb, as described in sec-

tion 2.2.1. Neither the particular optical properties of the sample nor the particular charge carrier

concentration within the sample need to be taken into account. The PL data is scaled to the absorp-

tion coefficient data αEL from EL at wavelengths between 1200 and 1250 nm. The scaling factor is

obtained analogously to Eqs. (2.71) through (2.74) with ASi replaced by αEL. The relative uncertainty

of the Ci ranges from 20 to 70%. The resulting relative uncertainty u(Cscale) of the scaling factor is

12.5%. Again, fully correlated Ci are assumed. By assuming uncorrelated Ci, the relative uncertainty
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Figure 2.33: Absorption coefficient of crystalline silicon at 295 K as determined

from spectrally resolved luminescence measurements.

of the scaling factor would be 4.1%. The uncertainty of the PL data would then be smaller than that

of the EL data, to which it is scaled, which would be an unreasonable result and substantiates the

assumption of fully correlated Ci for the calculation of the uncertainty of the scaling factor.

Resulting absorption coefficient data Figure 2.33 shows the absorption coefficient data and its

uncertainty following from the EL and PL measurements described above. The data is scaled to the

absorption coefficient data obtained from reflectance/transmittance measurements (see section 2.1).

Tabulated values of the data shown in Fig. 2.33 are given in appendix D. The absorption coefficient

decreases about eight orders of magnitude in the wavelength range from 1100 to 1450 nm. The

relative uncertainty of the data (k = 2) is around 10% between 1100 and 1300 nm and increases

approximately exponentially to about 200% at 1450 nm.
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2.3 Spectral responsivity measurements

The spectral responsivity SR of a detector or solar cell, which is defined as the ratio of output short

circuit current and incident intensity, depends on the collection probability for generated charge car-

riers and on the absorptance of the device. Hence, the spectral response of a silicon detector contains

information about the absorption coefficient. Spectral responsivity measurements are applicable in

the region around the band gap wavelength where the absorptance is not saturated. The SR measure-

ments presented in this work are carried out by the Physikalisch-Technische Bundesanstalt (PTB) in

Braunschweig, Germany.

2.3.1 Principle of measurements

The spectral responsivity SR(λ) at wavelength λ is defined as short circuit current per incident intensity

of light. From the spectral responsivity, the external quantum efficiency EQE is calculated via

EQE(λ) = SR(λ)
hc
qλ

(2.75)

where h is the Planck constant, c is the speed of light, q is the elementary charge and λ is the wave-

length. By an optical reciprocity theorem [73], the EQE and consequently the SR are connected to the

electroluminescence photon flux ΦEL of the solar cell by

ΦEL(λ,Ω)dλdΩ = Φbb(λ,Ω)dλdΩ EQE(λ,Ω) exp

(
V
VT

)
, (2.76)

where Ω is the solid angle into which the photons are emitted, V is the junction voltage, VT = kT/q
is the thermal voltage at temperature T , k is the Boltzmann constant and

Φbb(λ,Ω) dλdΩ =
2c
λ4

exp

(
− hc
λkT

)
dλdΩ . (2.77)

Electroluminescence spectrum and SR can thus be transformed vice versa and the same theory as for

the determination of the absorption coefficient from luminescence spectra (see section 2.2) applies to

SR data. Note that an extended reciprocity relation also holds for EQE and PL spectrum [74]. Also

note that in Ref. 73, the quantities EQE, ΦEL and Φbb are given as functions of energy. The quantities

are differential with respect to energy or wavelength. The transformations to functions of wavelength

thus require the application of the chain rule. The derivation is outlined in appendix E.

2.3.2 Setup for measurements

Figure 2.34 shows a schematic drawing and a photography of the spectral responsivity measurement

setup at the PTB. The measurement setup basically consists of light sources and a double monochro-

mator, which provide light of the desired wavelength. The monochromatic light is modulated by a

chopper wheel. A lock-in amplifier keeps the device under test at short circuit conditions and mea-

sures the short circuit current caused by the monochromatic illumination. Additionally, the device can

be illuminated with white light (bias light) in order to operate the device at a specific working point.

Additional components such as spectrometers and monitor photodiodes ensure a stable operation of

the monochromator and the light source. The setup at the PTB is described in more details in Refs.

95 and 96.
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Figure 2.34: Schematic drawing and photography of the spectral responsivity mea-

surement setup at the PTB which is used for the measurements in this work.

2.3.3 Samples for measurements

Different samples are used for SR measurements in this work. Industrial p-type silicon solar cells, cut

down to an area of 2 × 2 cm2, are used for SR measurements in the wavelength range from 1200 to

1350 nm. The polished solar cells described in section 2.2.2 are also used for SR measurements in

the wavelength range from 1100 to 1250 nm.

2.3.4 Results and measurement uncertainty

Figure 2.35 shows the measured SR of the polished solar cell and the industrial solar cell at 295 K.

The data is normalized. The relative uncertainty of the data is indicated by the dashed lines. The

uncertainty analysis for the SR measurements presented in this work is described in Ref. 96. From the

SR data, the absorption coefficient is calculated analogously to the EL/PL data. The uncertainty of the

scaling factor Cscale is calculated assuming full correlation of the data, as discussed for the evaluation

of the EL/PL data. Figure 2.36 shows the resulting absorption coefficient data. Tabulated data for

Fig. 2.36 is given in appendix D. The absorption coefficient obtained from SR measurements covers

six orders of magnitude. The relative uncertainty of the data is of the order of 10 % at 1200 nm and

increases to over 200 % at 1320 nm. Above 1200 nm, the confidence limits for k = 2 are visualized by

the dashed lines, showing that the deviation between the data from the polished and textured sample

at 1220 − 1250 nm is smaller than the uncertainty of the deviation, i.e., En < 1. Hence, compatibility

of the two measurements is accepted. The relative uncertainty of the scaling factor for the data from

the polished sample is 2.2 % and 6.5 % for the data from the textured sample.
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Figure 2.35: EQE data of the polished solar cell and an industrial solar cell (tex-

tured sample).

Figure 2.36: Absorption coefficient of crystalline silicon at 295 K as determined

from spectral responsivity measurements carried out by the PTB.
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2.4 Spectroscopic ellipsometry

Ellipsometric measurements determine the change of polarization of light that undergoes a reflection

at a surface. Such measurements have been widely used as a method for the characterization of

surfaces and thin layers. Although not called “ellipsometry”, this technique was already practiced

in 1891 [97]. The complex index of refraction is obtained from the measured polarization data by

fitting with a suitable model. Ellipsometry thus determines the extinction coefficient κ, which is

related to the absorption coefficient by Eq. (1.10). The method is applicable in the wavelength range

where the extinction coefficient is large enough to be measured. For silicon, this corresponds to

wavelengths below approximately 950 nm. In this work, ellipsometric measurements are used for the

determination of the absorption coefficient in the wavelength range from 250 to 930 nm.

2.4.1 Principle of measurements

A plain wave incident onto a surface can be divided into a component Ep,i parallel to the plane of

incidence and a component Es,i perpendicular to the plane of incidence, as visualized in Fig. 2.37.

The phase difference between the components of the incoming wave Ep,i and Es,i is δi, the phase

difference between the components of the outgoing wave Ep,o and Es,o is δo. A parameter

Δ = δi − δo . (2.78)

can be defined as the change in phase difference due to the reflection at the surface.

The reflection coefficient for the parallel component of the wave is rp = Ep,o/Ep,i. For the perpendic-

ular component, the reflection coefficient rs is defined analogously. A quantity Ψ can be defined such

that

tanΨ =
|rp|
|rs| . (2.79)

Using the quantities Δ and Ψ as defined above, the fundamental equation of ellipsometry is given by

[98]

rp

rs
= tanΨ exp(iΔ) (2.80)

where i is the imaginary number. The spectroscopic ellipsometer used in this work measures Ψ and Δ

as a function of wavelength λ and the angle of incidence γ. The coefficients rp and rs are related to the

complex index of refraction by the specific optical model of the sample (layer stack) that is assumed.

The model parameters are determined by fitting the model to the measured data of Ψ(γ) and Δ(γ) for

each wavelength λi, which yields the complex index of refraction n̂(λi). The absorption coefficient

then follows from Eq. (1.10). In order to obtain smooth, Kramers-Kronig consistent data curves, a

dispersion relation parameterizing the dielectric function of the sample can be fitted to these values.

The fit can be extended to longer wavelengths by also taking transmittance data into account. Further

details on ellipsometric measurements are found in the standard literature, e.g., Ref. 99.

The model of the layer stack which is used in this work is visualized in Fig. 2.37. It assumes a planar

silicon slab of thickness W which is covered by a thin layer of silicon oxide of thickness WSiO2
(which

is of the order of 2 nm [100]). The oxide layer is assumed since the samples are handled in air and the

formation of an oxide layer cannot be prevented. The model further assumes that no light is reflected

at the rear surface of the sample (which is equal to the assumption that only light which is reflected

at the front surface of the sample is collected by the detector). This assumption is justified within

the wavelength range analyzed by ellipsometric measurements, since all light entering the sample

is absorbed. The thickness W is measured using a dial gauge and assuming WSiO2
≈ 0. The oxide

61



2.4. Spectroscopic ellipsometry
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Figure 2.37: Schematic of the reflection of a planar

wave at a surface.

Figure 2.38: Optical model of the samples which is

used in this work (not to scale).

thickness is determined from a fit of the data at wavelengths between 1200 and 1400 nm, where the

absorptance of the silicon bulk is approximatly zero. Measurements are taken at angles of incidence

of 60◦, 65◦, 70◦, 75◦ and 80◦. The dispersion relation which is used to obtain a smooth Kramers-

Kronig consistent data curve consists of a superposition of 5 Tauc-Lorentz oscillators and 2 gaussian

shaped osciallators [101, 102].

2.4.2 Setup and samples for measurements

The measurements presented in this work are carried out with a commercially available M-2000 UI

ellipsometer manufactured by J. A. Woolam Co., Inc. This instrument is capable of measuring Ψ

and Δ under various angles of incidence. It is equipped with two detectors (silicon and InGaAs) and

allows for measurements within the wavelength range from 240 to 1700 nm. The sample is placed on

a temperature controlled sample stage. It is illuminated with white light from a halogen lamp which

is spectrally decomposed after interaction with the sample by a diffraction grating. The instrument

is calibrated with respect to wavelength and polarization using the standard procedure recommended

by the manufacturer. The acquisition and evaluation of the measured data is performed using the

software VWASE [102]. The evaluation procedure consists of fitting the measured angle dependent

data (Ψ(γ j) and Δ(γ j)) with a model of the dielectric function separately for each wavelength. This fit

is referred to as wavelength-by-wavelength fit. In a second step, the values of the dielectric function

at each wavelength so obtained can be fitted with a dispersion relation (referred to as function fit).
The measurements are carried out on the samples which are used for reflectance/transmittance mea-

surements (see section 2.1.3). For the measurements, the samples are placed on a temperature con-

trolled chuck. The sample temperature for the ellipsometric measurements is (295 ± 1) K.

2.4.3 Evaluation procedure

The measurements yield the parameters Ψ and Δ as a function of wavelength and for various angles

of incidence. From this data, the dielectric function is obtained by nonlinear parameter estimation for

each wavelength λi. Specifically, the fit procedure used in VWASE consists of minimizing

χ2(λi) =
1

2N − m

N∑
j=1

[ (
Ψexp(λi, γ j) − Ψmod(λi, γ j, �p)

)2

u2
(
Ψexp(λi, γ j)

) +

(
Δexp(λi, γ j) − Δmod(λi, γ j, �p)

)2

u2
(
Δexp(λi, γ j)

) ]
(2.81)

using the Levenberg-Marquard algorithm [103]. In the latter equation, N is the number of angles γ,

m is the number of parameters obtained from the fit, Ψexp and Δexp are the experimental data points

and Ψmod and Δmod are the corresponding calculated data points which depend on the angle γ j and

the model parameters indicated by the vector �p. For the measurements in this work, N = 5 and m = 2

holds. By default, WVASE uses type A uncertainties determined from repeated measurements of Ψ

and Δ for u2(Ψexp) and u2(Δexp). For the data presented in this work, other (type B) contributions
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(a) (b)

Figure 2.39: Measured and modeled data of Ψ (a) and Δ (b) as a function of wavelength and for

different angles of incidence. The solid lines represent the calculated values. The top graphs show

χ2 calculated according to Eq. (2.81) using N = 5 and m = 2.

are also taken into account by the analysis outlined in the following sections. The quantities Ψmod

and Δmod are calculated from the model of the dielectric function ε(λi, �p). Figure 2.39 shows the

measured data of Ψ and Δ together with the corresponding model curves as a function of wavelength.

From ε(λi, �p), the extinction coefficient κ is calculated using Eq. (??). The extinction coefficient is

related to the absorption coefficient by Eq. (1.10).

2.4.4 Monte-Carlo simulation for the analysis of measurement uncertainty

The evaluation of the absorption coefficient from measured data of Ψ and Δ involves a fitting proce-

dure. Therefore, uncertainties of Ψ and Δ cannot be propagated into the uncertainty of the absorption

coefficient by using the analytical approach described in section 1.3. A Monte-Carlo simulation as

described in the GUM [66, supplement 1] is a numerical approach for solving this task. Basically,

it consists of many recalculations of the output quantity. On each iteration, all input quantities are

randomly varied according to their probability distribution and a specific value of the output quantity

is obtained. By calculation of the average and standard deviation of the output quantity, its value

and uncertainty are determined. The Monte-Carlo approach has the advantage that it does not re-

quire an analytical process equation, which is not possible in case of fitting algorithms. Moreover,

it easily allows to take correlations between input quantities into account and directly yields the

probability distribution of the output quantity. On the other hand, Monte-Carlo simulations can be

time-consuming and the significance of the single uncertainty contributions is not as easily evaluated

as with the analytical approach. For the purpose of propagating the uncertainties of Ψ and Δ into the

uncertainty of the absorption coefficient, however, only the Monte-Carlo approach is feasible.

The software VWASE is not capable of conducting such an analysis. The Monte-Carlo simulation

is thus realized by generating the simulated (randomly varied) input data Ψexp and Δexp in Excel,

loading the data into WVASE, executing the fit procedure in WVASE and exporting the resulting

n and κ data to Excel again, where the standard deviations for n and κ are finally calculated. This

procedure is quite slow, one iteration takes about 30 s. For this reason, the simulation is terminated

after 10000 iterations, which corresponds to about five days of calculation time. On each iteration,

WVASE returns 1162 values (n and κ at 581 wavelengths). In order to handle this large amount of
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data, only the sums
∑

xi and
∑

x2
i , x = {n, κ}, are stored for each wavelength. From these values, the

standard deviation is obtained by using the relation

N∑
i=1

(xi − x)2 =

( N∑
i=1

x2
i

)
− 1

N

( N∑
i=1

xi

)2

, (2.82)

which does not require the average x to be known in advance.

2.4.5 Uncertainty contributions

Uncertainties of the absorption coefficient data resulting from spectroscopic ellipsometry arise from

the type A uncertainties of the measurands Ψ and Δ, which are routinely calculated by WVASE, but

also from other contributions which are not taken into account by the standard procedure in WVASE.

In the following, other uncertainty contributions are discussed and quantitative estimates are given.

Afterwards, the inclusion of these contributions in the uncertainty analysis is described.

Inappropriate model of the sample: A key component for the evaluation of an ellipsometric mea-

surement is the optical model of the sample that is assumed. This model must reflect the real physical

properties of the sample under investigation. An inappropriate model leads to systematic deviations

of the parameters obtained from the fit. If only statistically distributed deviations occur during the

measurement, χ2 as defined in Eq. (2.81) will tend to unity or below. Hence, a value of χ2 � 1

indicates that systematic effects like an inappropriate model disturb the evaluation. In this case, the

values obtained from the evaluation should be discarded.

The structure of the samples investigated for the determination of the absorption coefficient is simple.

It consists of the bulk material (silicon) and a thin cover layer (SiO2). This structure is reflected by the

optical model. The thickness of the cover layer is obtained from the fit. Due to the simplicity of the

optical model, it is assumed that the model is correct and that there are no uncertainty contributions

due to the model. This assumption is supported by the finding χ ≈ 1, whereas χ would be expected

to be much larger if the model was an inappropriate description of the sample.

Optical properties of SiO2 : Handling of silicon samples in air leads to the formation of a SiO2

layer on the surfaces of the silicon sample. This layer changes the optical properties of the sample

and must therefore be included in the optical model which is used for the evaluation of the data. For

this purpose, optical constants of SiO2 are retrieved from the literature [30, 104, 105]. This data is

visualized in Fig. 2.40 and shows deviations of the order of 0.4 % relative. The uncertainty of the

extinction coefficient κ due to the choice of literature data of SiO2 is estimated by performing the

evaluation procedure with each of the data sets for SiO2 mentioned above. The standard deviation

of the resulting extinction coefficient data, which is shown in Fig. 2.41, is taken as the uncertainty

contribution due to the choice of literature data of SiO2.

Wavelength accuracy: Deviations δλ between nominal and actual wavelength affect the resulting

Ψ and Δ data. For the ellipsometer used in this work, the wavelength accuracy cannot be measured

easily, but from experience, δλ ≤ 0.5 nm after calibration of the instrument. The uncertainty due to

wavelength accuracy is estimated by Eq. (2.14).

Spectral bandwidth: Limited spectral bandwidth affects the measured data of Ψ and Δ. As for the

wavelength accuracy, the spectral bandwidth cannot be measured precisely. From experience with

other, similar detectors, it is therefore estimated to be 5 nm for the silicon detector and 10 nm for

the InGaAs detector. The uncertainty contribution is estimated using Eq. (2.13) and included into

the Monte-Carlo simulation (see below) in order to obtain the resulting uncertainty of the absorption

coefficient.
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Figure 2.40: Optical constants of SiO2 given by

Refs. 30, 104, 105.

Figure 2.41: Resulting extinction coefficient κ of sil-

icon using the different SiO2 data from Fig. 2.40.

Angle of incidence: Ψ and Δ are measured for different angles of incidence γi. Deviations between

the nominal value of γi and the real value during the measurement affect the evaluation of the data

according to Eq. (2.81). The angle of incidence is controlled using a micrometer gauge. The different

angles γi may be correlated, since an offset of the micrometer gauge would cause all angles to deviate

in the same direction. In contrast, limited accuracy of the micrometer gauge may cause random

deviations for each angle γi. Both effects are taken into account by including the uncertainty of the

angle of incidence into the Monte-Carlo simulation. For this purpose, γi is varied according to

γi = γi,0 + O + δ(γi,0) (2.83)

where γi,0 is the nominal value of γi,

−0.02◦ ≤ O ≤ 0.02◦ (2.84)

is an offset equal for all angles γi and

−0.01◦ ≤ δ(γi,0) ≤ 0.01◦ (2.85)

is a random deviation for each angle γi that represents the limited accuracy of the micrometer gauge.

Both O and δ(γi,0) are assumed to be rectangularly distributed. The choice of the boundaries for O
and δ(γi,0) follows from Ref. 106, stating that the angle of incidence can usually not be controlled

to better than 0.02◦. Moreover, fits of the data are carried out where the angle of incidence is used

as a fit parameter. The angles returned by the fit deviate from the nominal angle by about 0.01◦ on

average.

Other setup or sample dependent effects: Additional uncertainty can be introduced by specific

properties of the sample and the measurement instrumentation, e.g., due to the alignment of optical

components, nonlinearities of the detector or depolarization of light by the sample. These effects

cannot be measured or quantified rigorously for the instrument used in this work. Depolarization

effects are unlikely to occur since the sample’s surfaces are polished. The proper alignment of the

optical components is ensured by the mechanical construction and the calibration procedure of the

instrument. As for typical detectors, nonlinearities of the instrument’s detectors are expected to be

of the order of 0.25 % rel. of the measurand [76, 106]. In order to take these systematic, setup and
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(a) (b)

Figure 2.42: Comparison of type A and combined type A and B uncertainties for Ψ and Δ. To

improve readability, figure (b) does not show the curves for 65◦ and 70◦, which coincide with the

curves for 60◦.

sample dependent effects into account, they are subsumed into a rectangularly distributed uncertainty

contribution

u2
rep =

(M × 0.003)

3
(2.86)

which is globally applied and describes the reproducibility of measurements. In the latter equation, M
is the measurand (Ψ or Δ). This uncertainty contribution is included into the Monte-Carlo simulation

in order to obtain the resulting uncertainty of the absorption coefficient.

The mentioned type B uncertainty contributions are combined with the type A uncertainties returned

from WVASE according to Eq. (1.25), except for the contribution due to the angle of incidence.

These combined uncertainties uc(Ψ) and uc(Δ) are used as input for the Monte-Carlo simulation. The

uncertainty of the angle of incidence is directly taken into account by the Monte-Carlo simulation as

described above. Figure 2.42 compares the type A uncertainties of Ψ and Δ as returned from VWASE

to the combined uncertainties uc(Ψ) and uc(Δ) for both quantities. For Ψ, the combined uncertainties

are not significantly increased, independent from the angle of incidence. For this reason, only the

curves for 60◦ are shown, which coincides with the curves for the other angles. For Δ, the combined

uncertainty is notably larger for angles of 60◦, 65◦ and 70◦. As these curves coincide, Fig. 2.42 (b)

only shows the curves for 60◦.

2.4.6 Results

Figure 2.43 shows the extinction coefficient κ (represented by the black dots) which is the average

of the data generated by the Monte-Carlo simulation. The blue dots visualize the contribution to the

uncertainty of κ resulting from the Monte-Carlo simulation. This data includes contribution from

measurement noise (type A), wavelength accuracy (type B), spectral bandwidth (type B), angle of

incidence (type B) and reproducibility (type B). The brown dots visualize the contribution due to

the uncertainty of the SiO2 literature data. As can be seen, the uncertainty contribution due to SiO2

input data is about a factor 4 smaller than the uncertainty contribution resulting from the Monte-Carlo
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simulation and thus does not dominate the overall uncertainty. Together with Fig. 2.42, it can be

concluded that the uncertainty of κ is dominated by the type A uncertainty due to measurement noise,

as adding the other type B contributions does not lead to a large increase of the uncertainties of Ψ and

Δ for most of the data.

Figure 2.44 shows the resulting absorption coefficient and its uncertainty. The blue dots represent the

data obtained from the Monte-Carlo simulation, the brown triangles represent the data returned by

WVASE (wavelength-by-wavelength fit). For comparison, reflectance/transmittance data is visualized

by the black squares. The yellow line visualizes the function fit of the brown triangles returned

by WVASE. The uncertainty of the data for k = 2 obtained from the Monte-Carlo simulation is

represented by the dotted line and also visualized by the colored area. It increases from 0.2 % at

300 nm to 12 % at 600 nm and 100 % at 900 nm.

The analysis shows that the ellipsometric determination of the absorption coefficient between 800

and 1000 nm is subject to uncertainties notably above 10 % relative. This is directly visible by the

scattering of the data (blue dots/brown triangles), indicating a low signal-to-noise ratio. Fitting the

data with a dispersion relation (yellow line) leads to a smooth data curve, which, however, does not

agree with the data resulting from reflectance/transmittance measurements. The latter data is very ac-

curate at wavelengths around 930 nm. The result of the function fit is thus questionable in this region.

Moreover, the Monte-Carlo data differs slightly from that returned by the wavelength-by-wavelength

fit, showing that the standard procedure tends to overestimate the absorption coefficient. Note that

this issue is correctly reflected by the large uncertainty of the data in this region. In order to resolve

the mismatch between the function fit and the reflectance/transmittance data, another parametrization

is applied by fitting both ellipsometer and reflectance/transmittance data with Eq. (1.16) in the wave-

length range from 650 to 1050 nm. This parametrization is represented by the red line in Fig. 2.44

and shows good agreement with the function fit at 650 nm and the reflectance/transmittance data

at 930 nm. Therefore, it seems reasonable to use this parametrization as the best estimate of the

absorption coefficient between 650 and 930 nm. The uncertainty of this parametrization cannot be

determined rigorously. The fit procedure returns confidence limits for the fit parameters, but these

cannot be interpreted in terms of realistic uncertainty estimates of the absorption coefficient obtained

from the parametrization, as they only refer to deviations between model and data. The calculation of

confidence limits for fit parameters and their interpretation is described in more details in the standard

literature [99, 103]. It is reasonable to assume that the uncertainty of the parametrization is equal to

the uncertainty of the data at 650 and 930 nm. In the intermediate region, the uncertainty should be

a continuous function of the wavelength. Since no further information is available, a linear inter-

polation between the uncertainties at 650 and 930 nm is performed and used as an estimate for the

uncertainty of the absorption coefficient. This curve is represented by the red dotted line in Fig. 2.44.

At wavelengths below 930 nm, free carrier absorption can be neglected (see Fig. 1.5). The absorption

coefficient determined by spectroscopic ellipsometry is therefore equal to the coefficient of band-to-

band absorption αbb and corrections for FCA are not necessary (see chapter 3). Figure 2.45 shows

the resulting data for the coefficient of band-to-band absorption of crystalline silicon at 295 K and its

uncertainty. Tabulated data is given in appendix D.
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Figure 2.43: Extinction coefficient κ as obtained

from the Monte-Carlo simulation and contributions

to its uncertainty resulting from the Monte-Carlo sim-

ulation and from the uncertainty of the SiO2 input

data.

Figure 2.44: Absorption coefficient αbb and un-

certainty resulting from the data of Fig. 2.43.

For comparison, the data resulting from re-

flectance/transmittance measurements is also shown.

Figure 2.45: Coefficient of band-to-band absorption αbb of crystalline silicon at

295 K as determined from spectroscopic ellipsometry.
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CHAPTER 3

Analysis of measured data

This chapter describes the calculation of a combined data set for the coefficient of band-to-band
absorption and its uncertainty from the results of the preceeding chapter. Corrections for free carrier
absorption are discussed for the different samples and measurement approaches. Experimental evi-
dence is given that luminescence and spectral responsivity measurements yield the same results. The
final data of the coefficient of band-to-band absorption of crystalline silicon at 295 K is presented.
Deviations to the most recent data from literature which is available for this temperature are of the
order of 10 to 30% rel. The deviations are only partly explainable by the uncertainty of the data
determined in this work, pointing towards systematic effects as the origin of the deviations.

The data of the absorption coefficient presented in the preceding chapter is obtained not only from

different methods, but also from measurements on different samples and using different measure-

ment setups at different institutions. It is desirable to combine these data into one set of data. The

standard approach for combining different measurements of the same quantity is the calculation of

a weighted average, the weights being given by the inverse squared uncertainty of the single mea-

surement results. The uncertainty of the weighted average is usually calculated as the inverse sum

of these weights, based on the assumption that the single results are uncorrelated. This assumption

is questionable, for instance, if different data sets which are to be averaged are obtained using the

same measurement setup, as is the case for some of the measurements carried out in this work. The

first part of this chapter therefore discusses the calculation of a weighted average from the results of

the different measurements with respect to the possibility of correlations between the measurements.

Moreover, in order to determine the coefficient of band-to-band absorption, the correction of the data

for free carrier absorption is discussed. The second part of this chapter is concerned with the tempera-

ture dependence of the absorption coefficient. Due to temperature dependent band gap narrowing, the

temperature dependence is pronounced especially in the near-band gap region around 1150 nm and

beyond. Uncertainties of the sample temperature during the measurements increase the uncertainty

of the absorption coefficient. Temperature coefficients for the data resulting from ellipsometic mea-

surements at different sample temperatures carried out in this work as well as data from literature are

given and discussed. The uncertainty of the absorption coefficient due to sample temperature is eval-

uated. On the basis of the derived combined data and the uncertainty due to variations of temperature,

the last part of this chapter presents the final data set of the coefficient of band-to-band absorption

and its uncertainty at 295 K and summarizes the formulas and temperature coefficients required for

the transformation of the data to other temperatures. It compares the results of this work to data from

literature and discusses deviations.
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Figure 3.1: Overview of the different methods for measuring the absorption coef-

ficient that are applied in this work.

3.1 Combined data of the coefficient of band-to-band absorption

The absorption coefficient varies by about 15 orders of magnitude between 250 and 1450 nm. Since

no method is capable of covering this wavelength range completely, different methods must be used

for measuring the absorption coefficient. Figure 3.1 shows an overview of the methods used in this

work and the wavelength range where they are applied. The data between 250 and 930 nm result from

ellipsometric measurements. In the wavelength range from 930 to 1160 nm, data from reflectance

and transmittance measurements at ISFH as well as at the PTB is available. The wavelength range

above 1100 nm is covered by spectrally resolved luminescence measurements at ISFH as well as

spectral responsivity measurements at the PTB. From the different data, one combined data set of the

absorption coefficient is determined by calculating a weighted average of the measured data, taking

the possibility of correlations between the data into account. Moreover, corrections for free carrier

absorption are applied.

3.1.1 Ellipsometry data

Ellipsometry data is available from measurements carried out at ISFH in the wavelength range from

250 to 930 nm. For the samples used in this work, the coefficient of free carrier absorption αfc follow-

ing from the FCA parametrization introduced in section 1.2.4 is below 10−2 cm−1 in this wavelength

range, whereas the absorption coefficient is of the order of 102 to 106 cm−1. Hence, α ≈ αbb and

corrections for FCA are not applied, since they are of the order of 0.01% rel. at most.

3.1.2 Reflectance/Transmittance data

Reflectance/transmittance measurements at ISFH are carried out on two different samples of different

thickness. Additionally, measurements on two samples from the same wafers are carried out and

combined into one data set by the PTB. Hence, a weighted average of three data sets (see Fig. 2.16)

needs to be calculated. The two data sets measured at ISFH might contain hidden correlations, since

the same setup is used for the measurements. The procedure for obtaining a weighted average thus

consists of first calculating a weighted average of the two data sets measured at ISFH, which takes the

hidden correlations into account. In a second step, the averaged data is combined with that measured

at the PTB.

The approach for incorporating hidden correlations into the uncertainty of the weighted average is

described in section 1.3.7. Figure 3.2 shows the uncertainty of the weighted average obtained by

assuming uncorrelated data (lower limit), fully correlated data (upper limit) and hidden correlations.

The limits are visualized by the dotted lines, the uncertainty assuming hidden correlations is repre-

sented by the open circles. The crosses show the value of χ2. For wavelengths below 1110 nm, only
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Figure 3.2: Uncertainty of the weighted average as-

suming hidden correlations compared to the uncer-

tainties assuming no correlation and full correlation

of the data. Below 1110 nm, only data of the thinner

wafer is available (indicated by the dotted lines).

Figure 3.3: Final data of the coefficient of band-to-

band absorption of crystalline silicon at 295 K as re-

sulting from measurements of reflectance and trans-

mittance carried out by ISFH and PTB.

data of the thinner wafer is available (visualized by the dotted lines). For the majority of the data,

χ2 < N − 1 = 1 holds. This supports the assumption that the uncertainties of both data sets are

partly correlated. However, the analysis shows that the uncertainty assuming hidden correlations is

still close to the lower limit. Assuming full correlation of the data would thus lead to a significant

overestimation of the uncertainty. The scattering of the data is due to the scattering of χ2, which is

caused by the small number of data N = 2. The assumption that the uncertainty varies smoothly

as a function of wavelength suggests the calculation of a smoothed estimate, which is visualized by

the solid line in Fig. 3.2. Using this estimate and the data provided by PTB, the final data of the

absorption coefficient is obtained using Eqs. (1.32) and (1.33).

Measurements of reflectance and transmittance yield the absorption coefficient α, which contains

contributions of both band-to-band absorption and free carrier absorption (FCA), as described in

section 1.2.1. The coefficient of band-to-band absorption is thus given by αbb = α − αfc. In order

to determine the coefficient of band-to-band absorption αbb, the FCA parametrization introduced in

section 1.2.4 is used for a doping concentration of 3 × 1015 cm−3, which follows from the resistivity of

the samples. The resulting data for αbb is shown in Fig. 3.3. The top graph visualizes the ratio αbb/α,

showing that the relative correction below 1150 nm, where data from RT measurements is used, is

below 2% and hardly visible on the logarithmic scale. As the accuracy of the FCA parametrization is

unknown, the uncertainty of the correction is assumed to equal the correction itself and a rectangular

distribution is assumed. The relative uncertainty of αbb is thereby increased by about 0.2% absolute at

1140 nm. Hence, for the samples investigated by reflectance/transmittance measurements, the impact

of FCA is not significant.
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Figure 3.4: ECV profile of the emitter diffusion applied to the planar solar cells.

3.1.3 Luminescence/Spectral responsivity data

Luminescence and spectral responsivity measurements are carried out on various planar and textured

samples. In general, both methods determine the coefficient of band-to-band absorption αbb (see sec-

tion 2.2.1). However, the measurands (photon flux or short circuit current) are affected by additional

absorption due to free charge carriers. The incorporation of FCA into the evaluation of the data de-

pends on the structure and doping concentration of the samples and is therefore discussed separately

for the different samples investigated in this work.

FCA corrections

EL/SR measurements on planar solar cells: As luminescence and spectral responsivity data can

be transformed vice versa by applying the reciprocity theorem (see section 2.3.1), the following dis-

cussion focuses on luminescence data but is also applicable for spectral responsivity data. The solar

cells contain a highly doped emitter layer at the front surface, within which FCA is significantly in-

creased compared to the bulk. This leads to an enhanced reabsorption of luminescence photons in

the emitter and thereby to a reduction of the emitted photon flux. (In case of spectral responsivity

measurements, this leads to a reduction of the generated short circuit current.) Figure 3.4 shows

the doping concentration in the emitter as determined by electrochemical capacitance-voltage (ECV)

measurements [107–110].

According to section 2.2.10, the absorption coefficient is evaluated by determining the absorptance of

the silicon slab ASi and scaling the luminescence data. In a second step, the absorption coefficient is

then calculated from the scaled luminescence data. The determination of ASi requires the determina-

tion of the rear surface reflectance Rb, which is obtained from the measured reflectance of the sample

according to Eqs. (2.69) and (2.70). These equations do not account for additional reabsorption in the

emitter due to FCA. However, as shown in appendix C.3, FCA in the emitter can be incorporated into

the equations by adding multiplicative FCA terms Afc. It is also shown that these extended equations

are formally equal to the original equations (2.69) and (2.70) when replacing Rb by an effective rear

surface reflectance Rb,eff that contains the FCA terms Afc. The meaning of this formal equality is that

measurements of reflectance cannot distinguish between additional absorption in the emitter (due to

FCA) and a decreased rear surface reflectance. On the other hand, evaluating the measured reflectance

using Eqs. (2.69) and (2.70) means that as soon as additional absorption in the emitter is present, an

effective rear surface reflectance is determined which accounts for the additional absorption in the

emitter. FCA in the emitter is thus already taken into account by the evaluation procedure described

in section 2.2.10 and further corrections are not necessary.

In order to evaluate the necessity of a correction of FCA in the bulk of the solar cell, the principle
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of the determination of the absorption coefficient outlined in section 2.2.1 needs to be reviewed in

more detail. The determination of the absorption coefficient from luminescence data is based on the

luminescence integral Eq. (2.40),

Φ(λ) ≈ αbb(λ)
8π c n2

Si
(λ)

λ4
exp

(
− hc
λkT

) ∫ W

0

dz fesc(λ, z) exp

(
μph(z)

kT

)
.

The photon escape probability fesc for a planar sample of thickness W is (see appendix E.1)

fesc(λ, z) =
Ω

4πn2
Si

(1 − Rf)
Rb exp

( − α(2W − z)
)
+ exp(−αz)

1 − Rb Rf exp(−2αW)
. (3.1)

Ω denotes the solid angle into which the luminescence photons are emitted. In order to improve read-

ability, the wavelength dependence of nSi, Rf , Rb and α is not explicitly written. The reabsorption

terms exp(−αz) in the latter equation refer to both band-to-band and free carrier absorption and thus

contain α = αbb + αfc. Note that, as discussed above, FCA in the emitter is contained in the values of

the rear surface reflectance Rb. In case of a homogeneous charge carrier distribution within the sam-

ple, the factor exp
(
μph(z)/kT

)
is independent from z and can be pulled out of the integral. As shown

in section 2.2.10, this also holds for the solar cells. The remaining integral equals the absorptance A
of the sample (Eq. (2.68)) devided by the absorption coefficient, giving

Φ(λ) ∝ Φbb(λ)αbb(λ)
A(α, λ)

α(λ)
. (3.2)

where

Φbb(λ,Ω) =
2c
λ4

exp

(
− hc
λkT

)

is the black body photon flux defined in Eq. (4.22). The proportionality factor is determined by

dividing Φ by Φbb and scaling this data to the absorptance data in the wavelength range of overlap of

reflectance/transmittance and luminescence data (1100 to 1140 nm). The scaled luminescence data Φ

divided by Φbb is referred to as Alum in the following. Using this definition, Eq. (3.2) reads

Alum(λ) = αbb(λ)
A(α, λ)

α(λ)
. (3.3)

The absorption coefficient is determined from Alum by the solution of the latter equation for the ab-

sorption coefficient. For this solution, three regimes can be distinguished:

1. Below 1140 nm, where the luminescence data is scaled to the reflectance/transmittance data, the

coefficient of free carrier absorption in the bulk is about two orders of magnitude smaller than the

coefficient of band-to-band absorption (see Fig. 3.3). Hence, the approximation

αbb

α
≈ const (3.4)

holds, as the variation of αfc with respect to λ is negligible compared to the variation of αbb. With

this, Eq. (3.3) becomes

Alum(λ) ∝∼ A(α, λ) . (3.5)

The proportionality factor is contained in the experimentally determined scaling factor. Conse-

quently, Alum depends on both band-to-band and free carrier absorption. From the luminescence

data Alum, the absorption coefficient α then follows from the solution of Eq. (2.68),

α =
1

W
ln

(−√
4Rb(RfA2

lum
+ R2

f
Alum − Alum) + (Rf − 1)2(Rb + 1)2 − RbRf + Rf + Rb − 1

2(Alum + Rf − 1)

)
, (3.6)
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3.1. Combined data of the coefficient of band-to-band absorption

and the coefficient of band-to-band absorption is given by αbb = α − αfc. This is an intuitive

result: In the wavelength range where the scaled luminescence and reflectance/transmittance data

are equal, the same correction must be applied. Note that, as already discussed in the preceding

section, this is a small correction due to αfc 	 αbb. Also, note that directly inserting the approx-

imation αfc 	 αbb ⇒ αbb/α ≈ 1 (which is rougher than the approximation αbb/α ≈ const) into

Eq. (3.3) yields Alum ≈ A(αbb). This reflects the fact that the FCA correction is small.

2. Above 1165 nm, the absorptance A(α) becomes proportional to α. This can be seen by a first

order Taylor series expansion of Eq. (2.68) at α = 0, giving

A
α→0≈ αW

(Rb + 1)Rf − Rb − 1

RbRf − 1
. (3.7)

Figure 3.5 compares the approximation to the correct expression for the absorptance Eq. (2.68)

and shows that above 1165 nm, the deviation of the approximation becomes invisible on the log-

arithmic scale. For the calculation, the experimentally determined values of Rb and Rf shown in

Fig. 2.31 are used. Combining Eq. (3.7) and Eq. (3.2) leads to

Alum
α→0≈ αbbW

(Rb + 1)Rf − Rb − 1

RbRf − 1
. (3.8)

Hence, above 1165 nm, Alum depends on αbb instead of α and Eq. (3.6) directly yields the coeffi-

cient of band-to-band absorption αbb. Corrections for FCA are not required.

3. In the transition region between 1140 and 1165 nm, α as determined varies smoothly between the

two regimes. In this region, the increasing correction factor of the first regime is compensated

by the decreasing dependence of Alum on α. Hence, a correction is necessary, but an analytic

expression for the calculation of the correction cannot be obtained.

The three regimes described above are visualized in Fig. 3.6. In summary, the discussion shows that

a correction for FCA in the emitter is not necessary as FCA in the emitter is taken into account by the

experimentally determined rear surface reflectance. FCA in the bulk is corrected for wavelengths be-

low 1140 nm by determining αfc from the parametrization introduced in section 1.2.4 and subtracting

αfc from α as determined. Above 1165 nm, the data is not corrected. Between 1140 and 1165 nm, the

correction cannot be calculated rigorously. For this reason, it is linearly interpolated between the cor-

rection at 1140 nm and zero at 1165 nm. Since the accuracy of the FCA parametrization is unknown,

the correction itself is taken into account as a rectangularly distributed uncertainty component. The

relative uncertainty of the corrected data is thereby increased by not more than 2% absolute compared

to the uncorrected data for both EL and SR.

PL measurements on textured wafer: The evaluation of the PL data is based on Eq. (2.40), using

that fesc ≈ const with respect to the position of photon generation within the sample. This approx-

imation holds if the absorption coefficient becomes small enough such that photon reabsorption is

negligible. For the samples investigated in this work, this condition is fulfilled if α ≤ 5 × 10−2 cm−1

which corresponds to λ ≥ 1200 nm. The remaining integral is then a constant with respect to wave-

length, yielding Φ(λ)/Φbb(λ) ∝ αbb(λ). The proportionality factor is determined by scaling the PL

data to αbb as obtained from EL/SR measurements on planar solar cells between 1200 and 1250 nm

and is thus not affected by FCA. Photon reabsorption within the sample is not affected by FCA either,

since the coefficient of free carrier absorption αfc is below 3 × 10−2 cm−1 for all wavelengths that

are covered by PL and the condition mentioned above is always fulfilled. The PL measurements on

textured wafers therefore yield αbb directly and do not require any corrections for FCA.

SR measurements on textured solar cells: As for the PL measurements on textured wafers, the

evaluation of SR measurements on textured solar cells is based on the approximation SR(λ) ∝ αbb(λ).

However, the solar cells contain a highly doped emitter, within which FCA is strongly enhanced

74



Analysis of measured data - Chapter 3

Figure 3.5: Comparison of the absorptance of the

planar solar cell calculated from Eq. (2.68) and the

approximation for α→ 0 according to Eq. (3.7).

Figure 3.6: Comparison of the two correction

regimes applicable for the absorption coefficient as

determined from EL measurements.

compared to the bulk. Moreover, the solar cells feature a back surface field (BSF), which is a layer

at the rear surface where the doping concentration is increased compared to the bulk. The purpose of

a BSF is the shielding of minority charge carriers, which reduces recombination at the rear surface

and thereby increases the energy conversion efficiency of the solar cell. FCA within the emitter and

BSF decreases the short circuit current of the solar cell, which is the quantity actually measured, and

thereby affects the absorption coefficient calculated from the SR data. This implies that unlike for the

PL measurements on wafers, the scaling factor is not constant but must be increased towards longer

wavelengths in order to compensate the increasing free carrier absorption, as outlined in appendix C.3.

The required change of the scaling factor is estimated by using an analytical model for charge carrier

generation from Ref. 111 (also see appendix C.3) and assuming an emitter with an average doping

concentration of 5 × 1019 cm−3 and a thickness of 0.5 μm, which are typical values for industrial

solar cells. For the BSF, an average doping concentration of 4.5 × 1018 cm−3 and a thickness of 8 μm

is assumed, which also represent typical values for industrial solar cells [112–114]. Figure 3.7 shows

the result of this calculation (solid line). As only the change of the scaling factor is relevant, the

data is normalized to the value at 1200 nm. The ratio of Cscale(λ) and Cscale(1200 nm) stays below

1.025 in the scaling region and increases to 1.07 at 1350 nm. Hence, assuming a constant scaling

factor with respect to wavelength would imply an underestimation of αbb by about 7% at 1350 nm.

The wavelength dependence is approximately linear, which is shown by the dashed line, visualizing

a linear fit of the data.

A correction of FCA in the emitter and BSF can be performed by multiplying the EQE with a wave-

length dependent correction factor

ffca(λ) =
Cscale(λ)

Cscale(1200 nm)
. (3.9)

before calculating the scaling factor. This scaling factor will be denoted as C′
scale

in the following in

order to distinguish from the scaling factor Cscale which is obtained if the correction is not applied.

The value of the correction factor ffca is approximately

ffca(λ) ≈ 1 + (λ/nm −1200) × 0.00041035 . (3.10)
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3.1. Combined data of the coefficient of band-to-band absorption

Figure 3.7: Increase of the scaling factor Cscale due

to FCA in the emitter and BSF.

Figure 3.8: Impact of FCA correction for the SR data

of the textured solar cell.

The corrected coefficient of band-to-band absorption α′
bb

is then obtained by

α′bb(λ) = C′scale EQE(λ) ffca(λ) ≈ αbb(λ) ffca(λ) . (3.11)

The approximation C′
scale

EQE(λ) ≈ αbb(λ) holds because C′
scale
≈ Cscale and Cscale EQE = αbb. The

uncertainty of the correction is conservatively estimated by a rectangularly distributed contribution

u2( ffca) =

(
αbb( ffca − 1)

)2

3
. (3.12)

The contribution to the uncertainty of α′
bb

due to u( ffca) is about three orders of magnitude smaller than

the contribution due to the uncertainty of the absorption coefficient u(αbb). The former is therefore

neglected. The uncertainty of the corrected coefficient of band-to-band absorption is then

u(α′bb) ≈ ffca u(αbb) . (3.13)

Since ffca ≈ 1, the uncertainties of the corrected and uncorrected absorption coefficient are approxi-

mately equal. Figure 3.8 shows the impact of the FCA correction on the resulting absorption coeffi-

cient data. As can be seen, the correction is hardly visible on a logarithmic scale.

Verification of equality of luminescence/spectral response data

As described in section 2.3.1, luminescence and spectral response data are related to each other via

a reciprocity theorem [73]. Therefore, both methods are expected to yield the same results for the

absorption coefficient. The uncertainty analysis for the data presented in the preceding chapter allows

this assumption to be verified quantitatively by considering the En criterion. Figure 3.9 shows the

different data for the absorption coefficient obtained from EL and SR measurements on planar solar

cells as well as PL measurements on a textured wafer and SR measurements on a textured solar cell.

FCA corrections are applied to the data as described above. The top graph visualizes the En criterion
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Figure 3.9: Comparison of absorption coefficient

data obtained from EL/PL/SR measurements on pla-

nar and textured samples.

Figure 3.10: Combined data of the coefficient of

band-to-band absorption obtained from luminescence

and spectral responsivity measurements.

(see section 1.3.6), which is below unity for all wavelengths. Hence, the deviation between the data

which is visible in Fig. 3.9 is explained by the uncertainty of the measurements. This provides ex-

perimental evidence that both methods yield the same results, although samples with different optical

and electrical properties are used.

Combined luminescence/spectral response data

Having verified the equality of the data resulting from luminescence and spectral response measure-

ments, the calculation of a weighted average is feasible. Both luminescence and spectral response

data are scaled to the same data obtained from reflectance/transmittance measurements. The uncer-

tainty of the weighted average is therefore calculated using Eq. (1.34), which assumes full correlation

of the data. Figure 3.10 shows the averaged data. The relative uncertainty of the data is visualized in

the top graph. It is of the order of 10% at 1200 nm, 20% at 1300 nm and 60% at 1400 nm.

3.2 Temperature dependence of the absorption coefficient

The sample temperature has an impact on the coefficient of band-to-band absorption, especially in

the band gap region, due to the temperature dependence of the band gap energy as described in

section 1.2.5. The uncertainty of the sample temperature during the measurement therefore causes

an additional uncertainty contribution. In the vicinity of the nominal measurement temperature T0 of

295 K, the absorption coefficient approximately obeys a linear relationship [32]

αbb(λ, T ) ≈ αbb(λ, T0)
[
1 + cT(λ) (T − T0)

]
, (3.14)

where cT is the temperature coefficient defined as

cT(λ) =
1

αbb(λ, 295 K)

dαbb(λ, T )

dT

∣∣∣∣
295 K

. (3.15)
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3.3. Final data of the coefficient of band-to-band absorption and its uncertainty at 295 K

Several data of the temperature dependence have been published in the literature, e.g., Refs. 6, 13, 14

and 16. Based on these data, Green [32] calculated the temperature coefficient for the wavelength

range from 250 to 1450 nm. Recently, new data of the temperature dependence in the near-band gap

region (990-1300 nm) obtained by PL was published by the ANU [35]. In this work, the temperature

coefficient is measured in the wavelength range from 250 to 990 nm using spectroscopic ellipsome-

try at different sample temperatures ranging from 295 K to 570 K. During these measurements, the

sample is placed on a temperature controlled sample stage and the usual measurement and evalu-

ation procedure as outlined in section 2.4 is carried out. For the determination of the temperature

coefficient, absorption coefficient data from the wavelength-by-wavelength fit is used. Data from the

function fit cannot be used since it incorporates transmittance measurements, which are, however,

only carried out at room temperature in this work. The resulting temperature coefficient is shown in

Fig. 3.11 together with the data from Refs. 32 and 35. Around 1200 nm, the shifting of the phonon

structure is visible in the data from Ref. 35. The solid line represents the average of the measured

data, which is used for further calculations in this work. The shaded area represents the standard

deviation of the data. Tabulated data of the temperature coefficient is given in appendix D.

The estimation of the uncertainty contribution due to the temperature dependence of the absorption

coefficient is based on Eq. (3.14). The nominal measurement temperature is T0 = 295 K. The uncer-

tainty of the sample temperature during the measurements is ±0.5 K for luminescence and spectral

responsivity measurements and ±1 K for ellipsometry and reflectance/transmittance measurements.

A rectangular distribution is assumed for the sample temperature. The resulting uncertainty contribu-

tion u2
T

due to uncertainty of the temperature is

u2
T = (αbbcT)2u2(T0) (3.16)

with

u2(T0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 K)2

3
for ellipsometry/reflectance/transmittance,

(0.5 K)2

3
for luminescence/spectral responsivity.

(3.17)

3.3 Final data of the coefficient of band-to-band absorption and its un-
certainty at 295 K

The final data of the coefficient of band-to-band absorption of crystalline silicon at 295 K and its

uncertainty as determined in this work is shown in Fig. 3.12. Tabulated data is given in Tab. 3.1.

This data contains corrections for FCA where necessary, as well as the uncertainty contribution due

to uncertainty of the sample temperature during measurements. Over a wide wavelength range, the

uncertainty of the data is of the order of 1% rel. Near the band gap (≈ 1150 nm), it increases to about

10% at 1200 nm. From 1200 to 1450 nm, the absorption coefficient decreases by about six orders of

magnitude, leading to a decreasing signal-to-noise ratio during the measurements and an uncertainty

of about 60% at 1400 nm and about 180% at 1450 nm.

For comparison, the figure includes the most recent data from literature which is available for the tem-

perature of 295 K [23, 32, 35]. For the data of Ref. 32 (Green, 2008), “error limits” are specified for

three wavelengths (250, 460, 1200 nm). In order to take these data into account, it appears reasonable

to interpret the error limits as an estimation of measurement uncertainty for k = 2. Note that the exact

meaning of “error limit” is not specified in Ref. 32. Between the three given values, the uncertainty is

linearly interpolated due to the lack of information about its behavior at other wavelengths. Beyond

1200 nm, the uncertainty is linearly extrapolated (which probably corresponds to an underestimation

of the uncertainty, as shown by the uncertainty determined in this work). The top graphs shows the
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Figure 3.11: Temperature dependence of the coefficient of band-to-band absorption

of crystalline silicon at 295 K. The shaded area represents the standard deviation

of the data.

ratio of the data and the En number for the data determined in this work and Green’s data. For the

other data, the “pseudo En number”

E′n =
|αbb − αbb,lit|

U(αbb)
(3.18)

is shown, which is defined in analogy to the En number introduced in section 1.3.6 but neglects the

unknown uncertainty of the literature data. In the latter equation, αbb is the absorption coefficient

determined in this work, U(αbb) is its uncertainty (k = 2) and αbb,lit is the absorption coefficient from

literature. If E′n < 1, the difference between the data is explainable by the uncertainty of the data

determined in this work. E′n >
√

2 indicates that the difference of the data is larger than twice the

uncertainty of the data determined in this work. Hence, E′n >
√

2 would also occur if the uncertainty

of the literature data would be equal to the uncertainty of the data determined in this work. In this

case, the deviations are likely due to systematic effects. Additionally, the ratio of the data from this

work and the data from literature is visualized.

Figure 3.12 shows deviations of the data of Green [32] around 500 and 1200 nm which are of the

order of 10 to 30% rel. Compared to the data of Daub [23], deviations of the order of 10% rel. are

found. Above 1250 nm, the deviation increases. As can be seen, the deviations are hardly visible on

the logarithmic scale of Fig. 3.12 (except for the deviations around 1300 nm). The data by Nguyen

[35], which is the most recent data published in the literature, is in good agreement with the data

determined in this work, as can be seen by E′n < 1 for almost all wavelengths.

For practical devices, the deviations in the short wavelength region are irrelevant as the absorption

coefficient is so large that all light entering the device is absorbed anyway. However, in the region

around 1200 nm, problems with the data from literature have been reported concerning the modeling

and analysis of luminescence spectra of silicon wafers and solar cells [81, 115]. Using the data of

Green [32] was found to lead to an overestimation of the luminescence intensity of the order of 20%,

while the data of Daub [23] led to better agreement between model and experiment. This issue is

discussed in more detail in chapter 4.
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Figure 3.12: Final data of the coefficient of band-to-band absorption of crystalline

silicon at 295 K and its uncertainty as determined in this work. For comparison,

literature data which is also available for 295 K is shown [23, 32, 35]. For the

data of Ref. 32 (Green, 2008), “error limits” are specified for three wavelengths

(250, 460, 1200 nm) and visualized by the crosses. Between these given values, the

uncertainty is linearly interpolated due to the lack of information about its behavior

at other wavelengths (see discussion in the text). Beyond 1200 nm, the uncertainty

is extrapolated.
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Table 3.1: Final data of the coefficient of band-to-band absorption of crystalline

silicon at 295 K and its relative uncertainty as determined in this work. The un-

certainty is specified for a coverage factor k = 2 and rounded to two significant

digits.

λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%]

250 1.804 × 106 0.26 455 2.374 × 104 6.4 660 2.591 × 103 13

255 1.859 × 106 0.26 460 2.161 × 104 6.8 665 2.495 × 103 13

260 1.930 × 106 0.28 465 1.925 × 104 7.2 670 2.402 × 103 13

265 2.023 × 106 0.34 470 1.878 × 104 7.5 675 2.313 × 103 12

270 2.139 × 106 0.27 475 1.704 × 104 7.7 680 2.226 × 103 12

275 2.253 × 106 0.26 480 1.566 × 104 7.8 685 2.142 × 103 12

280 2.332 × 106 0.28 485 1.475 × 104 8.0 690 2.061 × 103 12

285 2.362 × 106 0.24 490 1.380 × 104 8.0 695 1.983 × 103 11

290 2.302 × 106 0.18 495 1.325 × 104 8.1 700 1.907 × 103 11

295 2.064 × 106 0.22 500 1.220 × 104 8.3 705 1.834 × 103 11

300 1.797 × 106 0.19 505 1.125 × 104 8.7 710 1.763 × 103 11

305 1.608 × 106 0.15 510 1.080 × 104 8.9 715 1.695 × 103 11

310 1.469 × 106 0.20 515 9.684 × 103 9.1 720 1.629 × 103 10

315 1.367 × 106 0.27 520 9.553 × 103 9.3 725 1.565 × 103 10

320 1.289 × 106 0.25 525 8.625 × 103 11 730 1.503 × 103 9.8

325 1.229 × 106 0.31 530 8.252 × 103 11 735 1.443 × 103 9.6

330 1.178 × 106 0.32 535 7.849 × 103 12 740 1.386 × 103 9.3

335 1.129 × 106 0.30 540 6.957 × 103 12 745 1.330 × 103 9.1

340 1.093 × 106 0.30 545 6.894 × 103 12 750 1.276 × 103 8.9

345 1.063 × 106 0.37 550 6.406 × 103 11 755 1.224 × 103 8.6

350 1.044 × 106 0.43 555 6.093 × 103 10 760 1.173 × 103 8.4

355 1.032 × 106 0.51 560 5.958 × 103 11 765 1.125 × 103 8.1

360 1.017 × 106 0.66 565 5.906 × 103 11 770 1.078 × 103 7.9

365 9.275 × 105 0.83 570 5.235 × 103 10 775 1.032 × 103 7.7

370 7.269 × 105 1.1 575 5.087 × 103 10 780 9.882 × 102 7.4

375 4.941 × 105 1.3 580 4.744 × 103 10 785 9.458 × 102 7.2

380 3.254 × 105 1.7 585 4.580 × 103 10 790 9.049 × 102 7.0

385 2.231 × 105 2.0 590 4.276 × 103 11 795 8.653 × 102 6.7

390 1.621 × 105 2.4 595 4.343 × 103 11 800 8.271 × 102 6.5

395 1.257 × 105 2.7 600 3.879 × 103 11 805 7.902 × 102 6.3

400 1.025 × 105 3.0 605 3.937 × 103 11 810 7.546 × 102 6.0

405 8.455 × 104 3.3 610 3.555 × 103 12 815 7.203 × 102 5.8

410 7.395 × 104 3.7 615 3.440 × 103 12 820 6.871 × 102 5.5

415 6.220 × 104 4.0 620 3.407 × 103 12 825 6.552 × 102 5.3

420 5.294 × 104 4.3 625 3.237 × 103 12 830 6.243 × 102 5.1

425 4.651 × 104 4.6 630 3.245 × 103 13 835 5.946 × 102 4.8

430 4.023 × 104 5.0 635 3.020 × 103 13 840 5.659 × 102 4.6

435 3.564 × 104 5.2 640 2.885 × 103 13 845 5.383 × 102 4.4

440 3.199 × 104 5.5 645 2.815 × 103 13 850 5.116 × 102 4.1

445 2.942 × 104 5.9 650 2.793 × 103 13 855 4.859 × 102 3.9

450 2.663 × 104 6.1 655 2.691 × 103 13 860 4.612 × 102 3.7

Table continues on next page.
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Continued from previous page.

λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%]

865 4.374 × 102 3.4 1065 9.216 × 100 2.1 1265 1.674 × 10−4 18

870 4.145 × 102 3.2 1070 7.965 × 100 2.2 1270 1.258 × 10−4 18

875 3.925 × 102 3.0 1075 6.946 × 100 2.2 1275 9.627 × 10−5 17

880 3.713 × 102 2.8 1080 6.070 × 100 2.2 1280 7.391 × 10−5 17

885 3.509 × 102 2.5 1085 5.285 × 100 2.3 1285 5.686 × 10−5 18

890 3.313 × 102 2.3 1090 4.585 × 100 2.3 1290 4.364 × 10−5 18

895 3.125 × 102 2.1 1095 3.985 × 100 2.4 1295 3.395 × 10−5 18

900 2.945 × 102 1.9 1100 3.452 × 100 2.5 1300 2.632 × 10−5 18

905 2.771 × 102 1.7 1105 3.011 × 100 2.6 1305 2.006 × 10−5 19

910 2.605 × 102 1.5 1110 2.594 × 100 2.8 1310 1.521 × 10−5 20

915 2.446 × 102 1.3 1115 2.237 × 100 3.0 1315 1.144 × 10−5 21

920 2.293 × 102 1.2 1120 1.915 × 100 3.2 1320 8.301 × 10−6 24

925 2.147 × 102 1.1 1125 1.627 × 100 3.5 1325 5.949 × 10−6 26

930 1.994 × 102 1.0 1130 1.377 × 100 4.1 1330 3.972 × 10−6 28

935 1.871 × 102 0.98 1135 1.136 × 100 4.9 1335 2.620 × 10−6 31

940 1.746 × 102 0.98 1140 9.503 × 10−1 5.8 1340 1.700 × 10−6 33

945 1.623 × 102 1.0 1145 7.755 × 10−1 6.9 1345 1.247 × 10−6 34

950 1.507 × 102 1.0 1150 6.215 × 10−1 7.8 1350 9.707 × 10−7 36

955 1.393 × 102 1.1 1155 4.812 × 10−1 8.3 1355 6.927 × 10−7 37

960 1.286 × 102 1.1 1160 3.713 × 10−1 8.8 1360 5.813 × 10−7 38

965 1.184 × 102 1.1 1165 2.779 × 10−1 9.3 1365 4.590 × 10−7 39

970 1.089 × 102 1.2 1170 1.896 × 10−1 10 1370 3.580 × 10−7 42

975 9.995 × 101 1.2 1175 1.109 × 10−1 11 1375 2.897 × 10−7 47

980 9.147 × 101 1.3 1180 5.917 × 10−2 11 1380 2.401 × 10−7 50

985 8.327 × 101 1.3 1185 3.473 × 10−2 12 1385 1.843 × 10−7 53

990 7.570 × 101 1.4 1190 2.445 × 10−2 12 1390 1.571 × 10−7 58

995 6.856 × 101 1.4 1195 1.868 × 10−2 11 1395 1.146 × 10−7 63

1000 6.160 × 101 1.4 1200 1.456 × 10−2 11 1400 9.360 × 10−8 75

1005 5.540 × 101 1.4 1205 1.114 × 10−2 11 1405 7.799 × 10−8 81

1010 4.929 × 101 1.4 1210 8.398 × 10−3 12 1410 5.385 × 10−8 88

1015 4.385 × 101 1.5 1215 6.437 × 10−3 12 1415 5.468 × 10−8 95

1020 3.873 × 101 1.5 1220 4.938 × 10−3 13 1420 3.796 × 10−8 120

1025 3.390 × 101 1.6 1225 3.739 × 10−3 15 1425 2.514 × 10−8 120

1030 2.934 × 101 1.6 1230 2.772 × 10−3 17 1430 1.791 × 10−8 140

1035 2.532 × 101 1.7 1235 2.068 × 10−3 20 1435 2.133 × 10−8 150

1040 2.170 × 101 1.8 1240 1.451 × 10−3 22 1440 1.203 × 10−8 170

1045 1.847 × 101 1.8 1245 9.596 × 10−4 23 1445 1.089 × 10−8 170

1050 1.561 × 101 1.9 1250 5.911 × 10−4 22 1450 9.447 × 10−9 180

1055 1.315 × 101 2.0 1255 3.610 × 10−4 21

1060 1.096 × 101 2.0 1260 2.329 × 10−4 20
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CHAPTER 4

Application of derived data for photovoltaics

This chapter presents an analysis of the uncertainty of silicon solar cell energy conversion efficiency
predictions by means of device simulations due to the uncertainty of the absorption coefficient. More-
over, the impact of deviations between the data determined in this work and data from literature is
discussed. It is shown that the uncertainty of energy conversion efficiency predictions caused by the
uncertainty of the absorption coefficient data is of the order of 0.1% relative, as well as the deviations
when using absorption coefficient data from literature. The uncertainty of the absorption coefficient
data is thus not expected to limit the accuracy of device simulations. The second part of this chapter
presents a comprehensive analytical model for the spectral luminescence emission of silicon solar
cells and wafers, which facilitates a detailed understanding of optical and electrical device proper-
ties on the luminescence spectrum. It is shown that models of spectral luminescence emission require
accurate absorption coefficient data as input. Based on the model, a simple method for the deter-
mination of the rear surface reflectance of solar cells from the luminescence spectrum is outlined.

The optimization of solar cells and the evaluation of new concepts for further increasing the energy

conversion efficiency or reducing production costs are supported by numerical device simulations,

aiming at the prediction of the energy conversion efficiency. Such simulations require several device

and material properties as input. One of these input quantities is the absorption coefficient, which

describes the fundamental ability of the material to absorb light under generation of electrical charge

carriers. The accuracy of energy conversion efficiency predictions by means of simulations depends

on the accuracy of the available input data. The first part of this chapter discusses the uncertainty of

energy conversion efficiency predictions with respect to the uncertainty of the absorption coefficient

as determined in this work. Moreover, the impact of deviations between the data determined in this

work and the data from literature is analyzed. The second part of this chapter describes the appli-

cation of the derived absorption coefficient data for the modeling and analysis of spectrally resolved

luminescence measurements. A detailed understanding of the spectral distribution of the lumines-

cence emission forms the basis for a quantitative interpretation of luminescence images, which have

become a versatile and routinely used tool for the characterization of silicon solar cells [116]. The

applications range from qualitative characterization such as detection of cracks or broken contact fin-

gers to quantitative methods such as the determination of series resistances or the determination of

the charge carrier lifetime [79, 117–125]. For this purpose, a comprehensive analytical model for

the spectral luminescence emission of silicon solar cells and wafers is presented. In the wavelength

region around 1200 nm, deviations between measurements and models have been reported [81, 115]
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4.1. Uncertainty of silicon solar cell energy conversion efficiency predictions

when using the absorption coefficient data of Green [32], which is currently most widely used in

the photovoltaic community. These deviations are shown to be resolved by the data determined in

this work. Based on the model of spectral luminescence emission, the chapter closes by presenting

an approach for the determination of the rear surface reflectance of silicon solar cells by means of

spectrally resolved luminescence measurements.

4.1 Uncertainty of silicon solar cell energy conversion efficiency predic-
tions

The accuracy of energy conversion efficiency predictions by means of device simulations depends on

the accuracy of the input parameters. One of the required input parameters is the absorption coeffi-

cient. It is therefore reasonable to analyze the impact of the uncertainty of the absorption coefficient

data on the accuracy of conversion efficiency simulations. The discussion starts with the considera-

tion of ideal solar cells. This analysis can be carried out analytically, thus providing insights into the

general relations. In a second step, specific devices and solar cell concepts are considered by means

of numerical device simulations with the solar cell simulator PC1D [126].

4.1.1 Ideal solar cells

The energy conversion efficiency η is defined as the ratio of generated electrical power Pout and

incident optical power Pin, both normalized to the area Acell of the solar cell:

η =
Pout

Pin
=

Vmpp Impp

Pin Acell
, (4.1)

where Vmpp and Impp denote the output voltage and current at the maximum power point (MPP). For

an ideal solar cell, current I and voltage V are related by Shockley’s diode equation [40, 127], which

leads to

Impp = Isc − I0

[
exp(Vmpp/VT) − 1

]
. (4.2)

In the latter equation, Isc is the short circuit current, I0 is the junction saturation current and VT =

kT/q is the thermal voltage, which is about 25.6 mV at room temperature. The saturation current

density of an ideal silicon solar cell is 0.27 fA/cm2 [128]. Figure 4.1 visualizes an examplary ideal

current-voltage and power-voltage characteristic for a solar cell with an area of 15.6 × 15.6 cm2,

which implies a saturation current of 65.7 fA. The short circuit current Isc of a laterally homogeneous

solar cell is

Isc = Acell q
∫ ∞

0

dλ
∫ W

0

dz G(λ, z) fc(z) . (4.3)

In the latter equation, q is the elementary charge, G is the charge carrier generation rate per area at

position z due to the absorption of photons of wavelength λ and fc is the probability that generated

charge carriers are collected by the junction and contribute to the terminal current. In the absence of

parasitic absorption processes, each absorbed photon generates an electron-hole pair. The generation

rate G is then given by the change of the photon flux per area Φ multiplied with −1:

G(λ, z) = −dΦ(λ, z)

dz
. (4.4)

The photon flux within the solar cell is given by the Lambert-Beer law Eq. (1.7). The charge carrier

generation rate can thus be expressed as

G(λ, z) = Φ(λ, 0) g(λ, z) (4.5)
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where g is a normalized generation rate and Φ(λ, 0) is the photon flux per area entering the solar cell.

For simplicity, an infinitesimally thin emitter is assumed here. In an ideal solar cell, fc(z) = 1, i.e., all

generated charge carriers contribute to the terminal current. With this, Eq. (4.3) becomes

Isc = Acell q
∫ ∞

0

dλΦ(λ, 0)

∫ W

0

dz g(λ, z) . (4.6)

The integral of the normalized generation rate g over z equals the absorptance A(λ) (see appendix

C.4). With this, the short circuit current is finally expressed as

Isc = Acell q
∫ ∞

0

dλΦ(λ)A(λ) . (4.7)

This result is also expected intuitively: In the absence of parasitic absorption, all absorbed photons

of wavelength λ generate charge carriers that contribute to the short circuit current. The short circuit

current is then the sum of the contributions from all wavelengths.

Equations (4.1) through (4.7) describe the dependence of the conversion efficiency on the absorptance.

The absorptance is, among others, determined by the absorption coefficient. In order to calculate the

uncertainty of the conversion efficiency, in a first step the uncertainty of the absorptance must be de-

termined from the uncertainty of the absorption coefficient. This requires a model for the absorptance

as a function of the absorption coefficient. In a second step, the resulting uncertainty of the short

circuit current is obtained by applying the GUM formalism to Eq. (4.7). In a last step, the uncertainty

of the conversion efficiency is obtained by combining Eqs. (4.1) and (4.2), giving

u(η)

η
=

u(Impp)

Impp
=

u(Isc)

Impp
= f

u(Isc)

Isc
(4.8)

where

f =
Isc

Impp
≈ 1.03 (4.9)

for ideal solar cells with the mentioned saturation current density of 0.27 fA/cm2. Hence, the relative

uncertainty of the energy conversion efficiency is approximately equal to the relative uncertainty of

the short circuit current. For real solar cells, Isc/Impp is typically of the order of 1.1. In order to obtain

conservative uncertainty estimates, f = 1.1 is thus used in the following.

Model of the absorptance

The absorptance of a solar cell depends not only on the absorption coefficient and the thickness of the

sample, but also on the optical properties of the surfaces. Usually, solar cells feature a textured front

surface which randomizes the direction of transmitted or reflected light. This leads to a trapping of

light raysa within the sample, i.e., the optical path length is enhanced and absorptance thus increases.

The rear surface of solar cells is usually “optically rough”, i.e., the direction of reflected light is at

least partly randomized. The maximum optical path enhancement is achieved by lambertian light

trapping schemes [130, 131] where both surfaces exhibit a lambertian reflection characteristic for

light that is internally reflected at the surfaces. A comprehensive optical model for silicon solar cells

was published by Basore [129] in 1993 and later extended by Brendel et al. [111] for application

to thin-film solar cells. This extended model can be used for samples with planar or textured front

surfaces and contains samples with two specular reflecting or two lambertian reflecting surfaces as

aLight trapping denotes the enhancement of absorption by randomizing the direction of light undergoing an internal

reflection at the surfaces, which leads to subsequent total internal reflections.
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Figure 4.1: Sample current-voltage characteristic of

an ideal silicon solar cell.

Figure 4.2: Optical model for solar cells, adapted

from Refs. 129 and 111.

special cases. It can thus be used for the examination of the lambertian limit, but it can also be adapted

in order to describe typical silicon solar cells. The model assumes that light is fully randomized after

three internal reflections at rough surfaces. The reflection of a rough rear surface is modeled as an

intermediate case of specular and lambertian reflection, thereby taking all kinds of arbitrary rough

surfaces into account. The degree of lambertian reflection is described by a “lambertian factor” Λ

which is unity for lambertian reflection and zero for specular reflection. The reflectance of a textured

front surface is obtained by numerical ray tracing. The extended model is designed for thin-film solar

cells and therefore explicitly considers charge carrier generation in the emitter and substrate region.

This is not necessary when considering ideal silicon solar cells with an infinitesimally thin emitter.

Therefore, the model is simplified as described in section 4.3. According to this simplified model, the

absorptance can be expressed by

A(λ) = (1 − Rf)

[
1 − T1 + T1Rb(1 − T2) + T1RbT2Rf1(1 − Tn)

1 + TnRb

1 − T 2
n RbRfn

]
(4.10)

where the parameters are defined according to Fig. 4.2 and Ref. 111. The transmittances T1, T2 and

Tn depend on the angle of light propagation within the sample and the absorption coefficient. They

are given by

Ti = exp

(−αW
cos θi

)
, i = {1, 2, n} . (4.11)

The angles θ2 and θn depend on the wavelength. Further details on the calculation of the model pa-

rameters are given in section 4.3. Figure 4.3 shows the absorptance calculated according to Eq. (4.10)

for different thicknesses of the solar cell. For the calculation, a textured front surface with a facet

angle θ1 = 41.8◦ is assumed according to Ref. 129. Furthermore, the calculation assumes a perfect

anti-reflection coating, for which Rf1 = Rfn = 0.921 [111]. The rear surface is assumed to have a

lambertian reflection characteristic. As for an ideal solar cell, the rear surface is a perfect reflector,

i.e., Rb1 = Rbn = 1.

Equation (4.10) provides the link between absorptance and absorption coefficient. If only the un-

certainty of the absorption coefficient u(α) is considered, the uncertainty u(A) of the absorptance is

obtained from this equation by

u(A) =
dA
dα

u(α) . (4.12)
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Figure 4.3: Absorptance of ideal silicon solar cells

with different thicknesses according to Eq. (4.10).

The dotted lines show the uncertainty of the absorp-

tance (k = 1) following from the uncertainty of the

absorption coefficient as determined in this work.

Figure 4.4: Spectral distribution AM1.5G according

to standard testing conditions for solar cells as de-

fined in IEC 60904.

It is visualized in Fig. 4.3 by the dotted lines. The calculation incorporates u(α) as determined in this

work. An obvious finding from Fig. 4.3 is that the uncertainty of the absorptance is only significant

in the wavelength region where the absorptance varies between its two saturation values. This can

be understood by recognizing that at short wavelengths, the absorption coefficient is large and the

absorption length Lα = 1/α is short compared to the thickness of the sample. In this region, all light

is absorbed anyway and small variations of the absorption coefficient do not affect the absorptance.

Formally this is reflected in the uncertainty calculation by dA/dα = 0, i.e., the sensitivity coefficient

is zero. In the long wavelength region, the sensitivity coefficient is larger than zero, but due to the

small absorption coefficient, u(α) ≈ 0 and consequently u(A) ≈ 0.

Uncertainty calculation for the short circuit current

The short circuit current depends not only on the absorptance A(λ), but also on the spectral distribution

of the incident photons. For solar cells, measurements and simulations usually refer to standard

testing conditions (STC) as defined in the standard IEC 60904. This standard also defines a spectral

distribution of light which is referred to as AM1.5G [48]. The following considerations refer to this

spectrum as shown in Fig. 4.4 in units of photons per time, area and wavelength interval.

Figure 4.5 shows the number of absorbed photons, which is given by Φ(λ) × A(λ). As can be seen,

significant contributions to the number of totally absorbed photons arise only from the wavelength

interval 300 − 1200 nm. For the calculation of the short circuit current, Eq. (4.7) can therefore be

approximated by considering the wavelength range from 300 to 1450 nm, for which data of the ab-

sorption coefficient are determined in this work and tabulated data of the AM1.5G spectral distribution

are available:

Isc ≈ Acell q
∫ 1450 nm

300 nm

dλΦ(λ)A(λ) , (4.13)

Since Φ is a tabulated quantity at discrete values, the integral in the latter equation is actually calcu-
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lated numerically using the trapezium rule

F =
∫ b

a
dx f (x) ≈

N−1∑
i=1

(xi+1 − xi)
f (xi) + f (xi+1)

2
= Δx

(
f (x1)

2
+

N−1∑
i=2

f (xi) +
f (xN)

2

)
(4.14)

where f is an arbitrary function of x, a and b are the lower and upper bound of the integration interval,

N is the number of discrete (tabulated) values of f , a ≤ x ≤ b and Δx = xi+1 − xi. The uncertainty of

the integrated quantity follows by applying the standard formalism to the right hand side of the latter

equation.

In order to provide a conservative estimation of the uncertainty of the energy conversion efficiency, the

maximum uncertainty of Isc must be considered. According to Eq. (1.25), the combined uncertainty

of an output quantity is maximized if all input quantities are fully correlated, i.e., all correlation

coefficients r are equal to unity, and all sensitivity coefficients are positive. For the calculation of

u(Isc), this corresponds to the assumption of full correlation between the absorption coefficient data at

all wavelengths. (Practically spoken, this means that an overestimation of α in the short wavelength

region implies an overestimation also in the sub-band gap region.) The sensitivity coefficients are

given by Φ and thus positive. For fully correlated quantities, Eq. (1.25) simplifies to [66]

u2
c(y) =

[ N∑
i=1

∂ f
∂xi

u(xi)

]2

, (4.15)

i.e., the uncertainty of the output quantity is simply the sum of the uncertainties of the input quantities,

each multiplied with the corresponding sensitivity coefficient. Application of the latter equation to

the calculation of the uncertainty of Isc using the trapezium rule yields

u(Isc) = Acell qΔλ
(
Φ(λ1) u

(
A(λ1)

)
2

+

N−1∑
i=2

Φ(λi) u
(
A(λi)

)
+
Φ(λN) u

(
A(λN)

)
2

)

≈ Acell q
∫ 1450 nm

300 nm

dλΦ(λ) u
(
A(λ)

)
. (4.16)

Resulting uncertainty of the energy conversion efficiency

Figure 4.6 shows the relative uncertainty (k = 2) of the energy conversion efficiency of an ideal

silicon solar cell u(η)/η according to Eqs. (4.10) through (4.16) and (4.8) with f = 1.1 as a function

of the device thickness W. The solid line visualizes the uncertainty following from the uncertainty

of the absorption coefficient as determined in this work. The dashed line represents the uncertainty

following from Green’s absorption coefficient data [32], which is the data most widely used in the

photovoltaic community. Note that in Ref. 32, the uncertainty of the data is only specified for 250,

460 and 1200 nm. For the calculation, it is thus linearly interpolated or extrapolated as shown in

Fig. 3.12. For comparison, the theoretical efficiency limit ηlim for p-type crystalline silicon solar cells

with a resistivity of 1 Ωcm according to Ref. 132 is shown on the right axis. For the thickness of

typical industrial silicon solar cells, W ≈ 180 μm, the relative uncertainty of the conversion efficiency

is about 0.08%. For current silicon solar cells with an efficiency of about 20%, this corresponds to

an uncertainty of about 0.02% absolute. Compared to the uncertainty following from Green’s data,

u(η)/η is reduced by a factor of about 2. The uncertainty increases slightly with increasing device

thickness. This is due to an enhanced absorptance at sub-band gap wavelengths, which leads to an

enhanced uncertainty contribution from these wavelengths. It is interesting to note that the relative

uncertainty of the short circuit current also increases with decreasing device thickness. The reason for

this is a combination of the shape of the AM1.5G distribution, which shows a dip around 950 nm, and

the minimum of the uncertainty of the absorption coefficient at 930 nm. For thick solar cells (W ≥
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Figure 4.5: Number of absorbed photons per wave-

length interval for silicon samples with different

thicknesses.

Figure 4.6: Relative uncertainty (k = 2) of the en-

ergy conversion efficiency of an ideal crystalline sil-

icon solar cell as a function of the device thickness

W. For comparison, the theoretical efficiency limits

for intrinsic silicon and p-type silicon with a resistiv-

ity of 1 Ωcm according to Ref. 132 are shown on the

right axis.

180 μm), only the uncertainty of the absorption coefficient at wavelengths above 900 nm contributes

to the uncertainty of Isc and η, as shown in Fig. 4.3. For very thin solar cells, contributions also arise

from the data at wavelengths around 800 nm, where the uncertainty of the absorption coefficient data

is larger (see dotted black line in Fig. 4.3).

From the analysis outlined above, it can be concluded that the uncertainty of energy conversion ef-

ficiency predictions due to the uncertainty of the absorption coefficient data determined in this work

is of the order of 0.1% relative for ideal silicon solar cells with a typical device thickness of about

180 μm. For thin film solar cells, the relative uncertainty is comparable as long as the device thick-

ness exceeds 10 μm. Below, the uncertainty increases but stays below 1% relative for realistic de-

vices. Other simulation input parameters are expected to have larger uncertainties. The accuracy

of the absorption coefficient data determined in this work is thus sufficient for simulation purposes.

Moreover, the analysis shows that, for typical solar cells, it is essential to have very accurate absorp-

tion coefficient data in the wavelength range from about 950 to 1200 nm since the contributions to the

uncertainty of the energy conversion efficiency arise solely from this wavelength range (see Fig. 4.3).

The absorption coefficient data determined in this work obviously fulfills this requirement.

4.1.2 Realistic solar cells

The current-voltage characteristic of realistic solar cells is influenced by parallel and series resistances

and non-ideal diode characteristics. These effects have an impact on the maximum power point but are

usually negligible under short circuit conditions. Thus, the ratio of Impp and Isc (represented by f in

Eq. (4.8)) may be different for realistic solar cells. However, for industrial solar cells with conversion

efficiencies around 20%, f ≈ 1.1 still holds. Realistic solar cells do not have a perfect lambertian

reflector at the rear surface. In the analytical model of the absorptance, this can be described by

Rb < 1 and Λ < 1. However, the lambertian factor Λ shows to have a minor impact on the estimated

uncertainty of the energy conversion efficiency. Figure 4.7 therefore shows the relative uncertainty

of the energy conversion efficiency as a function of the rear surface reflectance Rb calculated with

the analytical model using Λ = 1 and f = 1.1. The solid line represents the uncertainty for silicon

89



4.2. Impact of deviations between absorption coefficient data

solar cells with a thickness of 170 μm, the dashed line shows the corresponding uncertainty for thin

solar cells with a thickness of 30 μm. For comparison, the conversion efficiency is simulated for

different types of solar cells using the simulation tool PC1D. In order to obtain the uncertainty of

the conversion efficiency calculated with PC1D, a Monte-Carlo simulation is performed. The circle

represents the calculated uncertainty for a PERC solar cell with a conversion efficiency of 20.5%. The

diamond represents the uncertainty for an industrial silicon solar cell featuring a back surface field

with a thickness of 250 μm and a conversion efficiency of 16%. The cross shows the uncertainty for

the same solar cell but thinned to 30 μm.

As for the ideal solar cell discussed above, the order of magnitude of uncertainty introduced by

the absorption coefficient is generally small. The results are in agreement concerning the order of

magnitude of uncertainty resulting from the calculations. It should be noted that PC1D contains an

analytical optical model for the calculation of the charge carrier generation profile which is different

from that introduced above, so that small deviations from the results of the analytical model presented

above are expected simply due to deviations between these optical models.

4.2 Impact of deviations between absorption coefficient data

To date, the absorption coefficient data set published by Green [32] is most widely used in the pho-

tovoltaic community. This data is specified for a sample temperature of 300 K and includes temper-

ature coefficients which allow to calculate the absorption coefficient also for different temperatures.

As shown in the top graph of Fig. 3.12, the data of Green at 295 K deviates from the data determined

in this work by up to ±20% depending on the wavelength. These deviations lead to slight differences

in the short circuit current predicted using the absorption coefficient data and thus also affect the pre-

dicted conversion efficiency. According to Eqs. (4.1) and (4.2), the conversion efficiency η of an ideal

solar cell changes approximately proportional to the change of the short circuit current ΔIsc for small

changes of Isc:

Δη ≈ Vmpp ΔImpp

Pin Acell
. (4.17)

The reason for this is that the change in Vmpp is small for small changes of Isc. The relative change of

the conversion efficiency is thus

Δη

η
≈ ΔImpp

Impp
=
ΔIsc

Isc
. (4.18)

It is calculated using the analytical model described in the preceding section. Again, the calculation

refers to the spectral distribution AM1.5G as shown in Fig. 4.4.

Figure 4.8 shows the resulting relative change Δη/η as a function of the rear surface reflectance Rb

and for different sample thicknesses. The relative change refers to the deviation of Green’s data from

the data determined in this work, i.e., Δη = ηGreen − ηthis work. In general, the relative change of

the conversion efficiency is of the order of 0.1%. This value is in agreement with the results of an

analysis conducted with PC1D [133]. For typical solar cells with Rb > 0.5, the data determined in

this work lead to a slightly higher conversion efficiency than the data of Green. This is mainly due

to the absorption coefficient data between 1000 and 1200 nm, where the data of Green is about 5 to

10% lower than the data determined in this work. For very thin solar cells, deviations of the data

between 800 and 1000 nm become noticeable in the calculation of the short circuit current, whereas

the impact of the data between 1000 and 1200 nm is reduced. The latter effect is enhanced for small

values of Rb, since internal reflections facilitate the absorption of light at long wavelengths, whereas

light at short wavelengths is already absorbed during the first pass through the sample. Between 800

and 1000 nm, Green’s data is slightly larger than that determined in this work, which explains the

sign change of Δη/η when going to thin solar cells and Rb < 0.5.
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Figure 4.7: Relative uncertainty (k = 2) of the

conversion efficiency η calculated with the analyti-

cal model (lines) and with the simulation tool PC1D

(markers).

Figure 4.8: Relative change of the conversion ef-

ficiency when using the absorption coefficient data

of Green [32] instead of the data determined in this

work.

4.3 Modeling luminescence spectra of silicon solar cells and wafers

The analysis of luminescence emission is a powerful tool for the characterization of crystalline silicon

solar cells [116]. Charge carriers, generated optically or injected electrically, recombine radiatively

and give rise to luminescence emission detectable outside the sample. Luminescence measurements

are usually refered to as photoluminescence (PL) when using optical excitation or electrolumines-

cence (EL) when using electrical excitation. For both cases, the emitted luminescence photon flux

depends on the rate of luminescence photon generation and on the photon escape probability, i.e. the

probability that a photon which is spontaneously emitted within the sample can escape and contribute

to the measurable luminescence emission. The first is determined by the rate of radiative recombi-

nation, which is in turn determined by the charge carrier distribution and the absorption coefficient.

The latter is defined by photon reabsorption, which is also determined by the absorption coefficient,

and the optical properties of the solar cell’s surfaces, namely reflectance and light scattering. A

comprehensive model of the luminescence emission should be able to describe electrical and optical

excitation, photon reabsorption, reflectance and light scattering at the surfaces appropriately.

Different approaches for modelling the spectral distribution of the detected luminescence emission

can be found in the literature [23, 31, 79, 120, 134–137]. However, each of them is valid only for a

certain excitation mode (EL or PL) and describes samples with either two planar (specular reflecting)

or two completely rough (lambertian reflecting) surfaces. This work outlines a generalized model

of the spectral luminescence emission of silicon solar cells and wafers. The model consists of an

electrical and an optical part and thus separates the electrical from the optical modelling. Starting with

an overview of models of luminescence emission found in the literature, it is shown that these models

can be generalized for use with both EL and PL independent from the excitation mode for which

they were designed. The spectra predicted by these models are compared to spectrally resolved PL

measurements carried out on specially prepared samples. Finally, an expression for the photon escape

probability of samples with any combination of planar or textured surfaces is derived. Combining

this optical model with expressions for the specific charge carrier distribution yields a model of the

spectral luminescence emission which is valid for both EL and PL and for samples with planar and

rough surfaces under both electrical and/or optical excitation.
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4.3.1 General model of spectral luminescence emission

In general, the emitted luminescence photon flux is given by the product of the spectral photon gen-

eration rate rph and the photon escape probability fesc, as described in section 2.2.1. To simplify

matters, the following considerations assume laterally homogenous device properties, allowing a one-

dimensional description of the spectral luminescence emission. The derivation focuses on low-level

injection and detection of the luminescence emission perpendicular to the sample’s surface. These

assumptions are usually fulfilled for typical measurement conditions. High injection conditions are

normally expected only in high efficiency devices and high lifetime wafers, in which the charge carrier

distribution can usually be expected to be uniform. In this case, only small changes in the shape of

the spectrum are observed between low and high injection conditions. However, a significant change

in the spectrum can occur if some parts of the sample are in low injection while other parts are in

medium or high injection. For instance, this may be the case in lowly doped samples or under local

excitation by a focussed laser beam.

As already mentioned in chapter 2.2, the emitted luminescence photon flux is given by (see Eq. (2.36))

Φ(λ) =

∫ W

0

dz rph(λ, z) fesc(λ, z) , (4.19)

where rph (given by Eq. (2.37)) is determined by the generalized Planck law for luminescence emis-

sion [72] . It can be shown that for typical luminescence measurement conditions, Eq. (2.37) can be

approximated by (see appendix E.4)

rph(λ, z) ≈ brad(λ) n(z) p(z) (4.20)

where brad is the coefficient of spectral radiative recombination given by [82, 134, 138, 139]

brad(λ) =
n2

Si
(λ)

n2
i

α(λ) 4πΦbb(λ,Ω) . (4.21)

In Eqs. (4.20) and (4.21), ni is the intrinsic charge carrier concentration, α is the absorption coefficient,

n and p are the concentrations of electrons and holes, respectively, and

Φbb(λ,Ω) =
2c
λ4

exp

(
− hc
λkT

)
(4.22)

is the black body photon flux per wavelength interval dλ and solid angle dΩ ([140], see appendix E.3).

The factor 4π in Eq. (4.21) results from the integration of Φbb over all solid angles. The integral of

brad over all solid angles and all wavelengths yields the familiar coefficient of radiative recombination

Brad =
∫ ∞

0
dλ brad(λ). Combining Eqs. (2.36) and (4.20) allows the emitted luminescence photon

flux Φ of wavelength λ per wavelength interval and surface area to be written as the integral of the

coefficient of spectral radiative recombination brad, the electron and hole concentrations n and p and

the photon escape probability fesc over the thickness W of the solar cell [79, 80, 141, 142]:

Φ(λ) =

∫ W

0

dz brad(λ)n(z)p(z) fesc(λ, z) . (4.23)

Note that Eq. (2.36) consists of an electrical and an optical part. The term brad(λ)n(z)p(z) accounts for

the rate of radiative recombination, which depends on the electrical properties, whereas the photon

escape probability fesc(λ, z) depends on photon reabsorption and surface reflectances.

The refractive index nSi is approximately constant in the wavelength range of luminescence emission

[37]. brad is in good approximation independent of z [143]. In a p-type sample, the hole concentration
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p at room temperature and under low-level injection conditions is in good approximation equal to the

doping concentration Ndop and thus independent of z for practical cases. The electron concentration n
is then obtained as a solution of the diffusion equation and depends on the excitation conditions [40].

Equation (4.23) can thus be written as

Φ(λ) =
n2

Si

n2
i

Ndop α 4πΦbb(λ,Ω)

∫ W

0

dz n(z) fesc(λ, z) . (4.24)

(The latter equation holds analogously for n-type samples.) Explicit solutions of the diffusion equa-

tion for all excitation modes are given in Refs. [80] and [142]. They depend on the bulk diffusion

length Lb, the rear surface recombination velocity S r, the effective front surface recombination ve-

locity S f,eff and on the absorption length Lα = α−1 of the incident light used for the excitation of the

luminescence emission.

The remaining unknown quantity is the luminescence photon escape probability fesc which depends

on both depth position and wavelength. The following section reviews analytical expressions for

fesc which can be found in the literature and hold for samples with two specular or two lambertian

reflecting surfaces.

4.3.2 Review of models for the photon escape probability

Several models describing the spectral luminescence emission of solar cells and wafers can be found

in the literature. The models are designed for the description of samples with either two specular

reflecting or two lambertian reflecting surfaces and consider detection of the emitted luminescence

perpendicular to the sample’s surface. A comparison of the model equations to Eq. (4.24) allows to

extract the underlying optical model which defines the photon escape probability fesc. This optical

model can then be combined with the appropriate charge carrier distribution for electrical and/or

optical excitation to calculate the spectral distribution of the emitted luminescence photon flux. The

resulting photon escape probabilities are listed in appendix E.1.

Overview of models from literature

• Schick et al. [134] (1992) derive an expression for the spectral luminescence emission of p-n
junctions in planar wafers. Multiple internal reflections of luminescence photons at the surfaces

are considered. The surfaces are assumed to reflect specular. Thus, photons emerging towards the

detector must travel perpendicular to the surfaces inside the sample. The photon escape proba-

bility follows from Lambert-Beer’s law and decays exponentially with the distance of the photon

from the front surface.

• Daub et al. [23] (1995) use the generalized Planck law for indirect transitions [72] to derive an

expression for the spectral luminescence emission of planar wafers. The optical model is equal to

the one used by Schick et al. Note that in the work of Daub et al., a different coordinate system is

used. The transformation to the coordinate system used in this work is carried out by replacing z
by (W − z).

• Trupke et al. [31] (1998) adress the modelling of luminescence spectra of planar wafers by appli-

cation of the generalized Planck law and also analyze the impact of surface texture on the emission

spectrum. Their model is equal to the one used by Daub et al. Thus, again a coordinate transfor-

mation z → (W − z) is necessary to compare the photon escape probability to the one derived in

this work.

• Würfel et al. [79] (2007) also use the generalized Planck law for indirect transitions [72] to derive

an expression for the spectral luminescence emission of planar solar cells. Their model is designed

to evaluate EL images taken with a Si-CCD camera at wavelengths below 1050 nm. The result
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is similar to the one obtained by Daub et al., but only one internal reflection at the rear surface is

taken into account since photon reabsorption is considerably strong in the considered wavelength

range.

• Rüdiger et al. [135] (2007) also apply the generalized Planck law to model the spectral lumi-

nescence emission of textured wafers. They consider multiple internal lambertian reflections at

the surfaces, i.e. the directions of reflected photons are completely randomized and each photon

travels under a specific angle θ to the surface afterwards. Since measurements of luminescence

spectra yield the average of many luminescence photons, for the modelling of luminescence spec-

tra it is sufficient to consider an averaged escape probability. Due to the isotropic distribution

of photon directions, the latter is not simply given by an exponential decay. It can, however, be

approximated by an exponential decay using an effective optical path which is not perpendicular

but under an angle θn to the surfaces and thus extended by a factor 1/ cos(θn). If reabsorption is

negligible, θn approaches 60◦ (see appendix E.2) which corresponds to a doubling of the optical

path length. This approximation is used throughout the model for all wavelengths.

• Kirchartz et al. [120] (2008) apply the reciprocity relation [73] between the spectral external

quantum efficiency and the spectral EL emission to model the spectral luminescence emission

of planar and textured solar cells. In both cases, an infinite number of internal reflections at the

surfaces is taken into account. For the description of the planar case, specular internal reflections

at the surfaces are assumed. The resulting photon escape probability is equal to the one calculated

by Daub et al. For the textured case, this model also assumes lambertian reflection at the surfaces.

However, the non-exponential decay of the escape probability which results from the lambertian

reflections is explicitely calculated instead of using the approximation of a doubled optical path

length for all wavelengths as in the model of Rüdiger et al.

• Brüggemann [136] (2009) uses the generalized Planck law for indirect transitions [72] to model

the spectral luminescence emission of planar wafers. The escape probability is equal to the escape

probability calculated by Schick et al.

• Green [137] (2011) derives analytical expressions for the photoluminescence of silicon bricks and

wafers. The photon escape probability is equal to the one used by Schick et al.

Comparison of models to experiment

In order to compare the models from literature with measurements, spectrally resolved PL measure-

ments are carried out on a 379 μm thick silicon wafer with both surfaces polished (sample A) and

a 362 μm thick silicon wafer with both surfaces textured with random pyramides (sample B). Both

samples are FZ-Si (n-type) with a resistivity of 2 Ωcm. The surfaces are passivated by a 15 nm thick

layer of Al2O3. The measurements are carried out using the setup described in section 2.2.3. Data

aquisition is performed using the tec5 CompactSpec spectrometer. A relative intensity calibration of

the spectrometer is performed as described in section 2.2.4. The luminescence emission is stimulated

by monochromatic laser light at a wavelength of 808 nm incident onto the front surface. The laser

spot is widened to homogenously illuminate an area of 15 × 15 cm2 (larger than the sample) with

an intensity of 10 mW/cm2. Calculations with PC1D [126] show that the concentration of minority

charge carriers in the sample is then one order of magnitude below that of the majority charge carriers

which means that low-level injection conditions are fulfilled. The emitted luminescence radiation is

collected by a fiber mounted perpendicular to the front surface at a distance of 3 cm.

Figure 4.9 shows the measured spectra together with the simulated spectra according to the mod-

els discussed above. For the simulations, the general description of luminescence spectra given by

Eq. (4.24) is used together with the specific photon escape probabilities (see appendix E.1) and the

charge carrier distribution under illumination according to Ref. 80. Simulations show that the charge

carrier distribution within the sample hardly affects the shape of the resulting normalized lumines-
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(a) (b)

Figure 4.9: Measured luminescence spectra of a polished (a) and a textured (b) float zone (FZ)

silicon wafer (markers) and spectral luminescence emission according to the models discussed in

the text (lines).

cence spectrum (see Fig. 4.16). Only in the case of Lb < W, small deviations become visible in the

short-wave part of the spectrum. For the samples described above, Lb > W holds. Thus, for the sim-

ulations shown here, Lb = 500 μm and S r = S f,eff = 10 cm/s is used. The absorption coefficient as

determined in this work is used for the simulations. Front and rear surface reflectance Rf and Rb (see

appendix E.1) are set to 0.31 for the planar models (according to the fresnel reflectance of a planar

silicon-air interface) and 0.928 (according to calculations in Ref. 111) for the lambertian model of

Kirchartz. For the refractive index of silicon, a value of nSi = 3.6 is used. Within the wavelength

range of interest, the relative deviation of nSi(λ) from this value stays below 3% and is therefore ne-

glected. The data shown is normalized at the short wavelength part of the spectrum (wavelengths

below 1050 nm). The model of Würfel et al. is designed for wavelengths below 1050 nm and is

therefore only plotted for these wavelengths.

In general, the models allow to reproduce the measured spectra. Both measurements and simulations

show a strong dependence of the luminescence spectrum on the topography of the surfaces. The spec-

trum of the textured sample peaks around 1160 nm, while the peak of the spectrum of the polished

sample is located around 1130 nm. The peak shift can be explained as follows: In the polished sam-

ple, the majority (about 92%) of the long-wavelength photons is trapped inside the sample due to total

internal reflection and cannot contribute to the measured luminescence signal. In the textured sample,

the direction of these photons is randomized which means that part of these photons is not trapped

anymore and escapes from the sample. This leads to an enhanced emission of long-wavelength pho-

tons and consequently to a peak shift of the spectrum towards longer wavelengths.

4.3.3 Spectral luminescence emission of samples with a textured front surface and an
arbitrary rough rear surface

The preceding section discussed the spectral luminescence emission of samples with either two planar

or two lambertian surfaces. However, solar cells usually feature a textured front surface and an

arbitrary rough rear surface and thus represent an intermediate case. Therefore, we turn to the question

if the existing models are also suitable for the description of luminescence spectra of samples with

only one textured (lambertian) surface.
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Experimental findings

Figure 4.10 shows the measured photoluminescence spectrum of the sample with two textured sur-

faces already shown in Fig. 4.9 (sample B, circles) together with the spectra of a sample with one

textured and one polished surface (sample C, triangles, same material, W = 362 μm). Both spectra

are again normalized at the short wavelength part of the spectrum. For sample C, there is no significant

difference between the normalized spectra with the textured or the polished surface facing the detec-

tor. Thus, for reasons of clarity only the latter spectrum is shown. For wavelengths above 1100 nm,

the luminescence emission of sample B (two textured surfaces) is enhanced compared to sample C

(one textured and one planar surface). This is a consequence of the different surface topographies:

As has already been stated, the randomisation of photon directions enhances the luminescence emis-

sion in the long-wave part of the spectrum. Randomization of photon directions and thus also photon

emission in the long-wave part of the spectrum are increased if two textured surfaces are present.

Derivation of an optical model for samples with arbitrary rough surfaces

So far, it was shown that the surface topography of the sample strongly affects the luminescence

photon escape probability and thus the luminescence spectrum. If both surfaces are polished, the

spectrum peaks around 1130 nm. If both surfaces are textured, the emission of long-wavelength

photons is enhanced. This causes a peak shift of about 30 nm towards longer wavelengths. If one

surface is textured and one is polished, the peak is also located around 1160 nm, but the enhancement

of long-wavelength photon emission is not as strong as for two textured surfaces. In the following, a

general optical model is introduced which accounts for all of the mentioned effects. It is derived by

applying the reciprocity relation between the electroluminescence spectrum and the spectral quantum

efficiency of a solar cell [73]. This allows to take advantage of an optical model originally introduced

to analyze quantum efficiency measurements on random pyramide textured solar cells with rough rear

surfaces.

The optical reciprocity theorem of Rau [73] which has already been mentioned in section 2.3 relates

the spectral electroluminescence (EL) emission ΦEL of a solar cell per photon energy interval dE
into a solid angle dΩ to its external quantum efficiency EQE per photon energy interval dE under

illumination from the solid angle dΩ. It reads

ΦEL(E,Ω)dEdΩ = Φbb(E,Ω) dEdΩ EQE(E,Ω)
[

exp

(
V
VT

)
− 1

]
(4.25)

where V denotes the junction voltage and VT the thermal voltage. Incidence and emission of the

photons are both assumed to be perpendicular to the sample’s surface. In terms of wavelengths and

for detection of ΦEL perpendicular above the front surface from a certain solid angle Ω, it can be

transformed (see appendix E.5) into

ΦEL,det(λ) dλ ≈ ΩΦbb(λ) dλ EQE(λ) exp

(
V
VT

)
(4.26)

where ΦEL,detis the detected luminescence photon flux. Following Kirchartz et al. [120], this theorem

is used to derive a model for the spectral distribution of the EL emission from a model for the external

quantum efficiency.

For the purpose of modelling EL spectra using the optical reciprocity theorem (Eq. (4.26)), it is

instructive to recall the definition of the EQE via the normalized generation rate under illumination g
and the collection probability fc [129], which can be written as

EQE(λ) =

∫ W

0

dz g(λ, z) fc(z) . (4.27)
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z denotes the distance of a volume element inside the solar cell from the front surface at a given

position (x0, y0) on the solar cell. A detailed model of the generation rate g under illumination for

solar cells with planar or textured front surfaces was introduced by Basore [129] and later extended

by Brendel et al. [111] for application to arbitrary wavelengths and use with thin-film solar cells.

By introduction of a lambertian factor Λ, the extended model accounts for the degree of lambertian

reflection at the rear surface. The idealized cases of a planar (specular reflecting) and a completely

rough (lambertian reflecting) rear surface are described by Λ = 0 and Λ = 1, respectively. The

model is designed to describe thin-film solar cells and therefore considers optical generation of charge

carriers in the emitter, space charge region and substrate region. As shown in Ref. 124, over 95% of

the luminescence radiation emitted by common crystalline silicon solar cells is generated in the base.

For the purpose of modeling luminescence spectra, it is thus reasonable to restrict the analysis to the

base contributions, i.e. g(λ, z) = 0 outside the base region. For this case, the simplified model reads

g(λ, z) = (1 − Rf)

[
α

cos θ1
exp

( −α z
cos θ1

)
+
α

cos θ2
T1Rb1 exp

(−α (W − z)

cos θ2

)

+
α

cos θn

T1Rb1T2Rf1

1 − T 2
n RfnRbn

×
(

exp

( −α z
cos θn

)
+ TnRbn exp

(−α(W − z)

cos θn

) )]
. (4.28)

The parameters are defined according to Fig. 4.2 and Ref. 111. The model assumes that the direction

of light is completely randomized after three internal reflections at the surfaces. T1, T2 and Tn denote

the transmittance of the solar cell for light propagating under an angle θ1, θ2 and θn, respectively, and

follow from Lambert-Beer’s law. Rf is the reflectance of the front surface for light incident onto the

sample from above. Rf1 and Rfn account for the first and subsequent internal reflections of light at the

front surface. Correspondingly, Rb1 and Rbn account for internal reflections at the rear surface. Rb1

and Rbn are assumed to equal a rear surface reflectance Rb in order to reduce the number of model

parameters. The roughness of the rear surface, described by the lambertian factor Λ, is included in

the parameters θ2, T2 and Rf1. The determination of these parameters is explained in detail in Ref.

111 and is also briefly summarized in appendix E.1. Additionally, the calculation of the effective path

angle θn of randomized light is outlined in appendix E.2.

In order to model the EQE according to Eq. (4.27), an expression for the collection probability fc
must be derived as a last step. Again, the analysis can be restricted to the base region. The validity of

the optical reciprocity theorem implies the applicability of Donolato’s theorem [144], stating that the

collection efficiency fc(z) under illumination equals the normalized minority charge carrier density

ñd(z) in the dark:

fc(z) = ñd(z) . (4.29)

ñd(z) is obtained as a solution of the diffusion equation [40] and reads

ñd(z) =
nd(z)

nd(0)
= cosh

(
z

Lb

)
− Lb

Leff
sinh

(
z

Lb

)
. (4.30)

It depends on the bulk diffusion length Lb of the minority charge carriers and the effective diffusion

length Leff , which is a function of Lb and the rear surface recombination velocity S r. Note that

nd(0) =
n2

i

Ndop

[
exp

(
V
VT

)
− 1

]
≈ n2

i

Ndop
exp

(
V
VT

)
. (4.31)

Inserting Eqs. (4.27) to (4.31) into Eq. (4.26) yields an expression for the spectral distribution of the

EL emission which is valid for pyramide textured solar cells with partly rough rear surfaces and holds

for the whole wavelength range of luminescence emission originating from radiative band-to-band
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Figure 4.10: Measured photoluminescence spectra

of samples with two textured surfaces (sample B, cir-

cles) and one textured and one polished surface (sam-

ple C, triangles). The model introduced in this work

(Eq. (4.34), see next paragraph) is visualized by the

solid lines.

Figure 4.11: Absorption coefficient αbb as deter-

mined in this work and αfc from Ref. 37 as a function

of wavelength for a p-type sample with different dop-

ing concentrations.

recombination. This model of the spectral electroluminescence emission,

ΦEL,det(λ) = ΩΦbb(λ) exp

(
V
VT

)
×

∫ W

0

dz g(λ, z) ñd(z) , (4.32)

can now be compared to Eq. (4.24), yielding the general relation

fesc(λ, z) =
Ω

4π n2
Si

g(λ, z)

α(λ)
(4.33)

and, in particular, for the photon escape probability,

fesc(λ, z) =
Ω

4π

1 − Rf

n2
Si

[
1

cos θ1
exp

( −α z
cos θ1

)
+

1

cos θ2
T1Rb1 exp

(−α (W − z)

cos θ2

)

+
1

cos θn

T1Rb1T2Rf1

1 − T 2
n RfnRbn

×
(

exp

( −α z
cos θn

)
+ TnRbn exp

(−α(W − z)

cos θn

) )]
. (4.34)

This expression is valid for samples with any configuration of textured and arbitrary rough surfaces.

For example, θ1 = θ2 = θn = 0 holds for a sample with two planar surfaces since both surfaces reflect

specular and the light is not randomized. For this case, Eq. (4.34) simplifies to the expression given by

Schick, Daub, Trupke, Kirchartz, Brüggemann and Green (Eq. (E.1)) and thus contains these models

as a special case. For two textured surfaces, Λ = 1 holds and θ1 is determined by the geometry of the

front surface. For one textured and one planar surface, θ1 is again determined by the geometry of the

front surface and Λ = 0.

Extension of the model to account for free carrier absorption

Free carrier absorption (FCA) occurs due to inter-band or intra-band transitions of free charge carriers.

Unlike band-to-band absorption, where a charge carrier is excited from the valence band into the
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conduction band, FCA does not generate additional free charge carriers. In general, FCA depends on

the wavelength of the photon and on the charge carrier density within the sample. Green [37] states an

empirical parametrization of the absorption coefficient for FCA αfc which holds for carrier densities

around 1018 cm−3 (see section 1.2.4):

αfc [cm−1 ] = n Kn λ
a + p Kp λ

b (4.35)

where n and p are the densities of electrons and holes in units of cm−3 , λ is the wavelength in units

of nm , Kn = 2.6 × 10−27, Kp = 2.7 × 10−24, a = 3 and b = 2. In Fig. 4.11, a comparison of αfc and

the band-to-band absorption coefficient αbb is exemplarily shown for a p-type sample with different

doping densities. For doping densities below 1016 cm−3, as used in the bulk of typical solar cells

and wafers, the total absorption coefficient α = αbb + αfc is dominated by αbb for wavelengths below

approximately 1200 nm, where the majority of luminescence emission is located. Consequently,

the spectral luminescence photon generation rate rph in the bulk (Eq. (2.37)) is determined by the

coefficient of band-to-band absorption αbb which means α ≈ αbb. Note that literature data of the

absorption coefficient as widely used in the photovoltaic community (e.g. [23, 37]) usually refers to

the coefficient of band-to-band absorption. Using this data for the simulation of luminescence spectra,

for instance, means using the approximation α ≈ αbb in Eq. (4.24). In highly doped front and rear

regions (e.g. emitter and BSF), where typical doping densities are of the order of 1018 to 1020 cm−3,

FCA cannot be neglected as shown in Fig. 4.11. In fact, FCA may substantially increase reabsorption,

which decreases the photon escape probability and thereby affects the luminescence spectrum. In

order to account for FCA in the front and rear region, the expression for the luminescence photon

escape probability Eq. (4.34) can be extended with "FCA damping factors"

gf,i = exp
(
− αfcWf

cos θi

)
, i = {1, 2, n} (4.36)

and

gr,i = exp
(
− αfcWr

cos θi

)
, i = {1, 2, n} (4.37)

which are multiplied with the reabsorption (exponential) terms. Wf and Wr are the thickness of the

front and rear region, respectively. αfc refers to the averaged doping density in the corresponding

region. Note that for textured samples, where the emitter layer is orientated parallel to the front

surface, θ1 in Eq. (4.36) should be replaced by γ − θ1, where γ is the facet angle of the front texture

(see Fig. 4.2), to account for the orientation of the emitter layer. The change in θ2 and θn due to FCA

is usually negligible. With this extension, Eq. (4.34) takes the form

fesc(λ, z) =
Ω

4π

1 − Rf

n2
Si

[
gf,1

cos θ1
exp

( −α z
cos θ1

)
+

gr,2

cos θ2
T̃1Rb1 exp

(−α (W − z)

cos θ2

)

+
1

cos θn

T̃1Rb1T̃2Rf1

1 − T̃n
2RfnRbn

×
(
gf,n exp

( −α z
cos θn

)
+ T̃nRbngr,n × exp

(−α(W − z)

cos θn

) )]
(4.38)

where

T̃i = gf,i gr,i Ti , i = {1, 2, n} . (4.39)

Note that the approximation α ≈ αbb may still be used in Eq. (4.38) for typical silicon solar cells

and wafers. In order to take FCA in the bulk into account additionally (which might be necessary,

for instance, for highly doped samples), α = αbb + αfc has to be used in Eqs. (4.38) and (E.10)
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Figure 4.12: Simulation of EL spectra of a p-type

silicon sample visualizing the impact of FCA in the

emitter and BSF on the luminescence spectrum.

Figure 4.13: Measured and modeled EL spectrum

of an industrial monocrystalline cz-Si solar cell at an

applied voltage of 600 mV.

through (E.12). Figure 4.12 exemplarily visualizes the impact of FCA on the resulting luminescence

spectrum. For the simulation, the same parameters as for the simulation of a typical electrolumines-

cence spectrum in Fig. 4.13 are used (see next paragraph). As can be seen, FCA has a noticeable

impact on the luminescence spectrum: Depending on the wavelength, relative deviations above 20%

occur. Thus, FCA in the emitter and BSF region should be taken into account for practical cases.

This holds especially when analyzing reflectance data of samples in order to quantify the rear surface

reflectance Rb: Neglecting FCA may result in an underestimation of Rb of the order of 10% or even

more, depending on the thickness and dopant concentration of the emitter and BSF layers.

Comparison to experiment and literature

The spectrum predicted by the model derived in this work for samples with two textured or two

polished surfaces is visualized in Fig. 4.9 together with the measurements and models from literature.

For the planar sample, θ1, θ2 and θn are set to zero. As already mentioned, the model is equivalent

to the planar models of Schick, Daub, Trupke, Kirchartz, Brüggemann and Green for the planar case.

For the textured sample, θ1 = 41.4◦ and Λ = 1. The resulting spectrum equals the spectrum predicted

by the model of Rüdiger. For the sample with one textured and one polished surface (shown in

Fig. 4.10), the slightly decreased luminescence intensity in the long wavelength part of the spectrum

compared to the sample with two textured surfaces is reproduced by the model (using Λ = 0). Figure

4.13 shows the normalized measured EL spectrum of a 250 μm thick industrial monocrystalline cz-Si

solar cell (sample D, manufactured in 2008), which represents a sample with a textured front surface,

anti-reflection coating and rough rear surface. The applied voltage is 600 mV. Calculations with

PC1D show that the concentration of minority charge carriers in the sample is then one order of

magnitude below that of the majority charge carriers which means that low-level injection conditions

are fulfilled. The measurement (represented by the open circles) is shown together with a plot of the

models for textured surfaces discussed in this paper (solid lines). All data is again normalized at the
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short wavelength part of the spectrum since only relative luminescence intensities were measured.

The model parameters are determined as follows: Assuming a thickness of the rear metallization

of 30 μm, a bulk thickness W of 220 μm is obtained. Following the approach of Ref. [111], the

parameters Rb and Λ are determined from a reflectance measurement (see appendix E.1) which is

corrected for the metallization of the front surface. Resulting parameters are Rb = 0.74 and Λ = 0.87

. Rf is assumed to be equal to the measured reflectance in the wavelength range of strong absorption

(absorption length Lα 	 W) and extrapolated for the wavelength range of weak absorption (Lα > W).

θ1 follows from the geometry of the front surface and the law of defraction and is θ1 = 41.4. The

values used for the calculation of the charge carrier distribution are determined from a fit to the

measured EQE. A bulk diffusion length Lb = 140 μm and a rear surface recombination velocity

S r > 500 cm/s is obtained. Note that the charge carrier distribution mainly affects the intensity of

luminescence emission. The shape of the (normalized) spectrum is hardly affected when choosing

other values for Lb and S r. FCA in the emitter and in the BSF is taken into account using Eqs. (4.36)

to (4.39) with Wf = 0.19 μm, Ndop,f = 9.96 × 1019 cm−3, Wr = 10 μm and Ndop,r = 5 × 1018 cm−3.

These values also result from the evaluation of the EQE measurement. Good agreement between

measured electroluminescence spectrum and model is found. Note that Rf is not independent of

the wavelength (as for the wafer samples discussed in this work) due to the presence of the anti-

reflection coating (ARC). Also note that the deviations of Rüdiger’s model from the measured data

in Fig. 4.13 are due to the wavelength-independent surface reflectances assumed in the model (Rf =

Rb = 1 − 1/n2
Si
≈ 0.92, see Eq. (E.3); this is a valid approximation for wafer samples without ARC,

for which the model was designed, but not for solar cells).

For comparison, Fig. 4.14 shows the EQE and total reflectance of the solar cell. Measurements and

models are represented by the open circles and solid lines, respectively. The dashed line visualizes the

base contribution to the EQE on which the model of the luminescence spectrum is based. The model

uses the same parameters as for the model of the luminescence spectrum in Fig. 4.13. All curves refer

to the intermediate which means that they are corrected for the front grid metallization. As expected,

the EQE is also well described by the model. Above 950 nm, good agreement between measured

EQE and modelled base EQE contribution is visible, which verifies the approximation of only using

the base contribution in the model of the luminescence spectrum.

4.3.4 Impact of absorption coefficient data set on modeled luminescence spectra

As already mentioned in chapter 2.2, the luminescence spectrum is proportional to the absorption

coefficient for long wavelengths, where photon reabsorption is negligible. The accuracy of modeled

luminescence spectra therefore depends on the absorption coefficient data used as input, especially

in the long wavelength region. The data set of the absorption coefficient which is probably most

widely used in the photovoltaic community is the one published by Green [32, 40] (1995, updated

2008). Above 1200 nm, the data originates from spectral respone measurements on high-efficiency

solar cells. In Fig. 3.12, a comparison of Green’s data and the data determined in this work is shown.

Between 1200 and 1250 nm, the data of Green is larger by about 20%. The impact of the absorp-

tion coefficient data set used for the simulation is shown in Fig. 4.15. As can be seen, the data of

Green leads to an overestimation of the luminescence intensity between 1200 and 1250 nm. This

overestimation has been confirmed by other authors as well [115].
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4.3. Modeling luminescence spectra of silicon solar cells and wafers

Figure 4.14: Measured (circles) and modeled (lines)

EQE and total reflectance spectrum of the solar cell

modeled in Fig. 4.13. The dashed line shows the base

contribution to the EQE which is used in the model

of the luminescence spectrum. All curves refer to the

intermediate area which means that they are corrected

for the front grid metallization.

Figure 4.15: Measured c-Si wafer PL spectrum (cir-

cles) and model calculated with the absorption coeffi-

cient data as determined in this work and as published

by Green [32] (solid/dotted line).
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Application of derived data for photovoltaics - Chapter 4

4.4 Determination of the rear surface reflectance of silicon solar cells
from their luminescence spectrum

The rear surface reflectance of solar cells affects the light trapping capabilities of solar cells, which

enhance the absorption of light at near-infrared wavelengths. This leads to an increased short circuit

current and consequently an increased energy conversion efficiency. The experimental determination

of the rear surface reflectance is thus an important characterization technique for the optimization

of solar cells. It is routinely done by measuring the hemispherical reflectance of the sample with a

spectrophotometer like the one used in this work (see chapter 2.1). The reflectance spectrum is then

fitted with a model of the reflectance which contains the rear surface reflectance as a parameter. The

model of the reflectance can be derived, for instance, from the optical model described in section

4.3.3. A disadvantage of this method for typical, double side contacted solar cells is the necessity

of a correction of the reflectance spectrum for the front surface metallization of the solar cell unless

the measurement spot is so small that it fits between to fingers. Moreover, the measurement of the

reflectance spectrum with a typical scanning spectrophotometer involves the acquisition of several

calibration baselines and is time consuming.

Based on the model of the spectral luminescence emission presented in the preceding section, it is

possible to determine the rear surface reflectance also from a luminescence spectrum. The method

only requires a luminescence spectrum measured in relative units, which can be done quickly. The

experimental setup is simple as it consists only of a power supply or a laser for the excitation of

luminescence emission and a spectrometer for the detection of the latter. The method is outlined in

the following.

The analytical model of the spectral luminescence emission provides a simple option to analyze the

impact of the various electrical and optical properties of a solar cell on the resulting luminescence

spectrum. Figure 4.16 shows the dependence of the spectrum on the roughness of the rear surface (Λ),

the bulk diffusion length of the minority charge carriers (Lb), the rear surface recombination velocity

(S r) and the front surface reflectance (Rf). The values of the parameters given in the top right corner

of Fig. 4.16 are used for the simulation. For each curve, some parameters are varied according to the

legend of the figure. It is obvious that all of these parameters affect the intensity of the luminescence

emission (changes are of the order of 70% rel.). However, the shape of the spectrum is hardly affected.

Relative measurements of the spectral luminescence emission thus cannot distinguish between these

parameters.

The situation is different for the rear surface reflectance, as shown in Fig. 4.17. When varying Rb

from 0 to 1, the intensity in the long-wave part of the spectrum increases about two orders of mag-

nitude. This implies a change of the shape as well as a shift of the peak wavelength of about 30 nm

as indicated. Hence, unlike the other parameters (Λ, Lb, S r, Rf), the rear surface reflectance Rb af-

fects the luminescence spectrum in a way that is accessible by relative measurements of the spectral

luminescence emission. The effect is explained as follows: Due to negligible reabsorption at long

wavelengths, long-wave luminescence photons can be subject to multiple internal reflections before

they escape. For these photons, the escape probability is enhanced when Rb increases. In the short-

wave part of the spectrum, however, photon reabsorption is significant. Hence, luminescence photons

that are eventually emitted towards the rear surface and reflected there are reabsorbed before they can

escape. The luminescence intensity in the short-wave part of the spectrum is thus hardly affected by

Rb.

In summary, the analysis of the impact of the various model parameters on the luminescence spectrum

shows that only the rear surface reflectance Rb causes a shift of the peak wavelength, whereas the

other parameters slightly affect the emitted intensity but not the shape of the spectrum. However,

only the latter is detectable by measuring relative luminescence intensity. Hence, the unambiguous

relation between the peak wavelength λpeak and the rear surface reflectance Rb can be used for the
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4.4. Determination of the rear surface reflectance of silicon solar cells from their luminescence spectrum

Figure 4.16: Dependence of the luminescence spec-

trum of a c-Si solar cell on the roughness of the rear

surface (Λ), the bulk diffusion length of the minority

charge carriers (Lb), the rear surface recombination

velocity (S r) and the front surface reflectance (Rf ).

Figure 4.17: Dependence of the luminescence spec-

trum of a c-Si solar cell on the rear surface reflectance

Rb.

determination of the latter. For this purpose, the following procedure is applied:

1. A look-up table for Rb as a function of the peak wavelength λpeak is generated using the model.

The thickness of the bulk is an input parameter for this calculation. Note that this also holds for

the “classical” way of determining Rb from a fit of reflectance data [111]. For the generation of the

look-up table, typical values for the roughness of the rear surface (Λ), the front surface reflectance

(Rf) and for the charge carrier distribution can be used, as these parameters do not affect the peak

wavelength (see Fig. 4.16).

2. The luminescence spectrum is measured in relative units. Since the peak wavelength of the spec-

trum is not affected by the charge carrier distribution within the sample, electrical or optical

excitation can be used (EL or PL).

3. The peak wavelength of the spectrum is determined. This is done by fitting the data with a second

order polynomial in the wavelength range from 1110 nm to 1170 nm.

4. As a last step, Rb is obtained from the look-up table using the measured peak wavelength.

The applicability of the method is experimentally confirmed by comparison of the rear surface re-

flectance Rb,lum determined from luminescence measurements to the rear surface reflectance Rb,sp as

determined using the spectrophotometer described in section 2.1. For this purpose, different wafers

and solar cells are selected, which exhibit different rear surface reflectances, e.g., due to variations of

the dielectric rear surface passivation. For each sample, a reflectance spectrum R(λ) is measured and

the rear surface reflectance Rb,sp is obtained by fitting the data with the model

R = 1 − (1 − R f )

[
1 − T1 Rb,sp T2 (1 − Rf1) − T1 Rb,sp T2 Rf1 Rb,sp (1 − Rfn)T 2

n

1 − Rb,sp Rfn T 2
n

]
, (4.40)

which follows from the optical model introduced in section 4.3.3. Moreover, the luminescence spec-

trum (EL for solar cells, PL for wafers) is measured and the peak wavelength λpeak is determined

following the procedure described above. The rear surface reflectance Rb,lum is then calculated from a

look-up table which is generated using the model. The measured reflectance curves and correspond-

ing luminescence spectra are shown in Fig. 4.18. Figure 4.19 compares the values of Rb,lum and Rb,sp

104



Application of derived data for photovoltaics - Chapter 4

Figure 4.18: Measured reflectance curves and cor-

responding luminescence spectra of c-Si samples.

Same symbols refer to the same sample in both plots.

Figure 4.19: Comparison of the rear surface re-

flectances Rb,sp and Rb,lum of silicon samples deter-

mined using a spectrophotometer or using lumines-

cence measurements, respectively.

for the different samples obtained from the measured data. The dashed line visualizes the situation

Rb,sp = Rb,lum. The error bars do not represent a rigorously determined uncertainty, but rather a “guide

to the eye” showing the order of magnitude of uncertainty which is expected from experience. Good

agreement between Rb,sp and Rb,lum is obtained, verifying the applicability of the method.

For planar samples, the peak shift is generally small (about 4 nm only when going from Rb = 0 to

Rb = 1). This is a consequence of the fact that in a planar sample, about 92% of the luminescence

photons are trapped by total internal reflections at the surfaces. Only photons inside the escape cone

can be emitted towards the detector. For a silicon/air interface, the critical angle of total reflection is

≈ 16.1◦. For typical setups where the luminescence emission is detected perpendicular from above,

as used in this work, this angle is even reduced by the solid angle of detection. Hence, the length

of the optical path of all detectable luminescence photons within the sample is comparable and the

effect of an enhanced emission of long wavelength photons is much less pronounced then for textured

samples. The steep slope of the Rb(λpeak) curve makes the determination of Rb very sensitive to

small variations of the peak wavelength. A variation of λpeak of 0.5 nm changes the value of Rb by

about 10% absolute. For planar samples, the method can thus only be used for a rough estimation

of Rb, but not for an accurate determination. This expectation is reflected by the large error bars for

the planar wafer. However, in practice, planar samples are irrelevant due to their small absorptance.

Practical solar cells feature a front surface texture in order to improve the absorptance at near-infrared

wavelengths. For textured samples, the slope of the Rb(λpeak) curve is smaller, enabling an accurate

determination of Rb.
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CHAPTER 5

Summary and outlook

This work presents an extensive study of the coefficient of band-to-band absorption of crystalline

silicon. It is motivated by the finding that, although the determination of the absorption coefficient of

crystalline silicon is an ongoing subject of research since 1955, the published studies investigate the

absorption coefficient only in a part of the wavelength range being of interest for specific applications.

Moreover, different measurement methods are used. A comparison of literature data shows deviations

of up to 20% between these data sets. It is unclear whether these deviations are only due to the

specific properties of the investigated samples or whether they originate from systematic deviations

or uncertainties due to the different measurement approaches. The accuracy of the literature data

cannot be assessed since measurement uncertainties have not been determined systematically or, as

for the major part of the studies, have not been indicated at all. This lack of information casts doubt

on the correctness of combined data sets which have been calculated from different sources and cover

a larger wavelength range.

In order to resolve the discrepancies, the coefficient of band-to-band absorption of crystalline silicon

is determined under well-defined laboratory conditions using spectroscopic ellipsometry, measure-

ments of reflectance and transmittance, spectrally resolved measurements of luminescence emission

and measurements of the spectral responsivity of silicon solar cells. For the first time, different mea-

surement approaches are thus combined in one study and allow the absorption coefficient to be mea-

sured over more than fifteen orders of magnitude. The new data cover the wavelength range from 250

to 1450 nm. Moreover, a systematic measurement uncertainty analysis is carried out for each mea-

surement method. The analysis is based on an extensive characterization of the measurement setups

and follows the Guide to the expression of uncertainty in measurement (GUM), which is the interna-

tional standard for the evaluation of measurement uncertainties. Thereby, substantiated estimates of

the uncertainty of the coefficient of band-to-band absorption of crystalline silicon are given for the first

time. The data obtained during this work at the Institute for Solar Energy Research Hamelin (ISFH)

are consolidated by comparison with measurement results obtained at the Physikalisch-Technische
Bundesanstalt (PTB, the German National Metrology Institute) in Braunschweig, Germany, as well

as at The Australian National University (ANU) in Canberra, Australia. It is shown that the data

obtained in this work reduces the uncertainty of silicon solar cell energy conversion efficiency predic-

tions by means of device simulations by a factor of 2 compared to literature data.

Spectroscopic ellipsometry determines the change of polarization of light that undergoes a reflection

at a surface. The absorption coefficient is obtained by fitting the polarization data with a model for the

dielectric function of the sample. In the literature, the uncertainty of absorption coefficient data re-
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sulting from spectroscopic ellipsometry is either not considered at all or determined by varying single

fit parameters according to their variance calculated by the fit algorithm. This approach may yield an

estimation for the maximum error of the data so determined, but it neglects correlations between the

fit parameters and is based on the covariance matrix determined by the fit algorithm, which can usu-

ally not be interpreted as an estimate of uncertainty in a rigorous sense. In this work, a Monte-Carlo
simulation is used for the evaluation of the polarization data in order to perform a quantitative analysis

of the measurement uncertainty in accordance with the GUM. This novel approach for the evaluation

of ellipsometry data allows all relevant uncertainty contributions and correlations to be taken into

account adequately. Moreover, the Monte-Carlo analysis shows that the standard evaluation approach

tends to overestimate the absorption coefficient in the near-infrared region.

Measurements of reflectance and transmittance are a straight-forward method for the determination of

the absorption coefficient near the band edge. The method can be used in the wavelength range where

the transmittance varies between its saturation values. This implies that the measurement signal varies

over several orders of magnitude. Especially for small signals, the measurement results can be subject

to systematic deviations caused by the measurement setup. The measurements presented in this work

are carried out with a commercially available Varian Cary two-channel spectrophotometer, which is

widely used throughout the scientific community. However, measurement uncertainties caused by the

instrument are not considered systematically in the literature. By the extensive characterization of

the instrument, a systematic deviation due to inertia of the measurement amplifier is identified, which

leads to deviations of the order of 50 to 100% relative for small measurement signals. A mathematical

model of this effect is presented, allowing the deviations to be corrected and thereby to extend the use-

able dynamic range of the instrument by more than one order of magnitude. Moreover, measurement

uncertainties caused by the instrument are quantified systematically for the first time. The resulting

absorption coefficient data are compared to data determined at the PTB on samples from the same

wafers. In these investigations, the reflectance is determined by a combination of the results obtained

using a commercial Varian Cary spectrophotometer as well as using a special setup with increased

angle of acceptance in the primary national reference system for spectral reflectance. The agreement

of both absorption coefficient data sets with respect to their measurement uncertainty is shown by

calculating the En criterion, which is used for the examination of conformity of measurement data in

international key comparisons. It is shown that absorption coefficient data obtained from measure-

ments of reflectance and transmittance are subject to large uncertainties (of the order of 100% rel.

or above) at wavelengths beyond 1180 nm. Using these data for scaling of luminescence or spectral

responsivity data, as demonstrated in the literature, thus leads to large uncertainties of the scaled data.

Spectrally resolved luminescence measurements are used for the determination of the coefficient of

band-to-band absorption beyond the band edge. For the accurate determination of the absorption

coefficient, the spectrometer must be calibrated with respect to wavelength and irradiance. For this

purpose, a new calibration facility was built up at ISFH during this work. Based on an extensive

measurement uncertainty analysis, the performance of a scanning spectrometer system and a diode-

array spectrometer system for measurements of luminescence spectra of crystalline silicon samples is

evaluated. It is shown that the use of the scanning spectrometer system allows the uncertainty to be

reduced by a factor of 2 to 3 compared to the use of the diode-array spectrometer system. Moreover,

it is shown that photoluminescence measurements on planar (polished) wafer samples introduce po-

tential uncertainties for the determination of the absorption coefficient due to an apparent dependence

of the spectrum on the angle and distance of detection. The effect might originate from stray light of

the excitation laser. This assumption is supported by the finding that the effect is neither observed for

photoluminescence measurements on textured wafers nor for electroluminescence measurements in

general. In order to circumvent possible problems with photoluminescence data, electroluminescence

measurements are carried out on specially designed lab-type solar cells with polished surfaces and

a novel procedure for the determination of the absorption coefficient from these data is developed.
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The resulting absorption coefficient data are compared to absorption coefficient data originating from

measurements of the spectral responsivity of silicon solar cells carried out at the PTB. By calculating

the En criterion for both data sets, the agreement of the results of both methods is quantitatively ver-

ified for the first time. Moreover, this analysis provides the first rigorous experimental evidence for

the correctness of an underlying optical reciprocity theorem, on which the expected equality of both

measurement approaches is based.

In order to obtain a combined data set for the coefficient of band-to-band absorption from the different

measurement results, the calculation of a weighted average with respect to hidden correlations in the

data is discussed in detail. Moreover, an extensive discussion of the requirement of corrections for free

carrier absorption within the samples is performed. It is shown that small corrections are necessary,

which are, however, hardly visible on a logarithmic scale.

Based on the results of this work, the uncertainty of silicon solar cell energy conversion efficiency pre-

dictions by means of device simulations, which require the absorption coefficient as input, is analyzed

rigorously for the first time. For this purpose, a new analytical model for the uncertainty is presented

and verified by Monte-Carlo simulations using the solar cell simulator PC1D. It is shown that the

uncertainty of energy conversion efficiency predictions by means of device simulations due to the

uncertainty of the absorption coefficient data determined in this work is of the order of 0.1% relative.

For current silicon solar cells with an energy conversion efficiency of about 20%, this corresponds to

an uncertainty of about 0.02%. Compared to using literature data of the absorption coefficient, the

uncertainty is thus reduced by a factor of 2.

As an application of the absorption coefficient data, a new analytical model of the spectral lumines-

cence emission of silicon solar cells and wafers is presented. This model consists of an electrical

and an optical part and thus separates the electrical from the optical modeling. It is valid for samples

with any configurations of planar and arbitrary rough surfaces and can be used for both electrical

and optical excitation. The methodology outlined in this work allows other models of the spectral

luminescence emission from literature, which are valid only for the description of either electrolumi-

nescence or photoluminescence measurements, to be generalized for use with both types of excitation.

Comparison of the models shows that the new model presented in this work is the first which correctly

describes the luminescence spectrum of samples with one planar and one rough surface. Based on

the analysis of the impact of the various sample properties on the luminescence spectrum, which is

facilitated by the new model, a novel approach for the determination of the rear surface reflectance

of industrial silicon solar cells from the peak wavelength of their luminescence spectrum is presented

and experimentally validated. This approach can thus be implemented with a simple measurement

setup and the measurement can be performed contactless.

Further work on the absorption coefficient of crystalline silicon could aim at the extension of the

wavelength range into the infrared by using, for instance, photoluminescence measurements on tex-

tured wafer samples with increased excitation intensity. The wavelength range beyond 1450 nm is

of interest, for instance, for optical communication technologies or fundamental physical research,

both of which require the transparency of silicon. In this context, an important issue might be the

investigation of the dependence of the luminescence spectrum on the angle and distance of detection,

which is mentioned above. Moreover, the uncertainty of the temperature coefficient of the absorp-

tion coefficient could be analyzed. Device simulations, which require the absorption coefficient as

input, are often performed for different device temperatures. However, the uncertainty along with the

transformation of the absorption coefficient data to other temperatures is still unknown.
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APPENDIX A

Instability of nonlinearity corrections obtained by the superposition
method

In the literature, an approach for the correction of nonlinearities using the superposition method is

found [92, 93]. This approach is based on the following considerations: For each wavelength, the

detector signal Nx is proportional to the irradiance I:

Nx = k I η(Nx) (A.1)

where k is the proportionality constant and η is the sensitivity of the detector, which may depend on

Nx in general. This dependence causes a nonlinear behavior of the detector. The sensitivity can be

expressed as the sum of a linear part η0 and a nonlinear part Δη(Nx) which depends on the detector

signal:

η(Nx) ≈ η0 − Δη(Nx) . (A.2)

Equations (A.1) and (A.2) lead to

Nx

(
1 +

k I Δη(Nx)

Nx

)
= k I η0 , (A.3)

where the term kIΔη(Nx)/Nx represents the signal contribution due to the nonlinearity. In order to

obtain a correction for this effect, the fraction is approximated by a polynomial,

k I Δη(Nx)

Nx
= a Nx + b N2

x + c N3
x + d N4

x + ... , (A.4)

yielding

Nx(1 + a Nx + b N2
x + c N3

x + d N4
x + ...) = k I η0 . (A.5)

The coefficients of the polynomial can be determined experimentally by using a superposition method,

where the detector is consecutively illuminated by Lamp 1, Lamp 2 and both lamps together. The

irradiance levels on the detector during these measurements are I1, I2 and

I3 = I1 + I2 . (A.6)

For this situation, Eq. (A.5) can be rewritten as

Nx1

(
1 + aNx1 + b N2

x1 + c N3
x1 + d N4

x1 + ...
)
= k I1 η0 , (A.7)

Nx2

(
1 + a Nx2 + b N2

x2 + c N3
x2 + d N4

x2 + ...
)
= k I2 η0 , (A.8)

Nx3

(
1 + a Nx3 + b N2

x3 + c N3
x3 + d N4

x3 + ...
)
= k I3 η0 . (A.9)
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Summation of Eqs. (A.8) and (A.9) and subtraction of Eq. (A.9) yields

Nx1(...) + Nx2(...) − Nx3(...) = 0 (A.10)

because of Eq. (A.6). From this equation, the coefficients of the polynome can be factored out. For

instance, for a fourth-order-polynome,

a(N2
x1+N2

x2−N2
x3)+b(N3

x1+N3
x2−N3

x3)+c(N4
x1+N4

x2−N4
x3)+d(N5

x1+N5
x2−N5

x3) = Nx3−Nx2−Nx1 (A.11)

is obtained. Note that the procedure can easily be extended to polynomials of higher orders.

Using the definitions

x1 = N2
x1 + N2

x2 − N2
x3

x2 = N3
x1 + N3

x2 − N3
x3

...

and

y = Nx3 − Nx2 − Nx1 , (A.12)

Eq. (A.11) can be compactly rewritten as

ax1 + bx2 + cx3 + dx4 = y . (A.13)

For the determination of the four unknown coefficients a-d, four measurements of the irradiance

triples at different irradiance levels are carried out. In matrix notation, this reads

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

y3

y4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.14)

Solving of the latter equation for y yields the unknown coefficients and the signal contribution due to

nonlinearity

ΔNx(Nx) = a Nx + bN2
x + c N3

x + dN4
x . (A.15)

The calculation of the correction using the method described above always requires the solution of a

system of equations that can be represented by

A�s = �y

where A is the matrix containing the xi, j, �s is the solution vector containing the coefficients a, b, c, d, ...
of the polynomial and �y is the vector containing the yi. The calculation of the solution �s requires the

inversion of the matrix A. From numerical mathematics, it is known that such a solution may be

unstable, i.e., a small relative change in A or �y may lead to a large relative change in �s [145]. In

this case, using the solution �s for correction purposes can introduce significant errors. The relative

changes of �s and �y are related by

‖ �Δs‖
‖�s‖ ≤ Cond(A) × ‖

�Δy‖
‖�y‖ , (A.16)
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Instability of nonlinearity corrections obtained by the superposition method - Apx. A

Figure A.1: Impact of random errors in Nx3 of ±0.1% relative at most on the cal-

culated correction.

where

Cond(A) = ‖A‖ ‖A−1‖ (A.17)

is the condition number of the matrix A and ‖ · ‖ denotes the matrix norm. A condition number close

to 1 indicates that the accuracy of �y and �s is of the same order of magnitude. In this case, the matrix

is said to be well-conditioned. If the condition number is much larger than 1, a small relative change

in �s can cause a much larger relative change in �y. The matrix is then said to be ill-conditioned. For

the measurements carried out in this work, the condition number is of the order of 108 or larger. This

means that small errors in the measured signals can already have a significant impact on the calculated

solution. Figure A.1 exemplary shows the impact of a small relative error in Nx3 on the calculated

correction ΔNx. The correction is calculated five times and a random error of ±0.1% rel. at most

is added to Nx3 for each calculation. The small variations in Nx3 lead to very different results for

the correction. Note that for experimentally determined quantities such as Nx3, errors of the order of

0.1% relative are likely to occur.
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APPENDIX B

Impact of chuck reflectance on luminescence spectra

In order to ensure a laterally homogeneous distribution of the sample temperature during PL mea-

surements and to facilitate a precise temperature control, the sample is placed on a black anodized

brass plate. However, the models used for the evaluation of the PL data assume that the sample is

surrounded by air. It is thus necessary to verify that the presence of the brass plate does not affect the

resulting data. For this purpose, ray tracing simulations are carried out using the program Daidalos
[146–148]. These simulations either assume a double side polished or a double side textured silicon

sample with an antireflection coating (ARC) consisting of a 15 nm thick layer of Al2O3 on both sides.

The simulation domains are shown in Fig. B.1. At the edges of the sample, reflecting boundaries are

placed. On top of the sample, a photon counter is positioned which counts all emitted photons. A

second counter at the same position only counts the photons which are emitted into an angle of 12◦.
This angle approximately corresponds to the detection angle of the spectrometer’s entrance optic. The

photons are generated by an area light source which is placed in the middle of the sample. The pho-

tons are distributed laterally homogeneous and emitted isotropically. The simulation is carried out for

temperatures of 10 ◦C and 60 ◦C, which represent a lower and upper limit of the sample temperature

during the measurements in this work. In order to take the roughness of the brass plate into account,

a gap of 1 μm is assumed between the surfaces of the sample and the brass plate. This reflects the

fact that the sample is in touch with the plate only at distinct positions. The measured hemispherical

reflectance of the brass plate as shown in Fig. B.2 is used as input for the simulation. The brass plate

is assumed to have a specular reflection characteristic. This leads to a conservative estimation of its

impact on the spectrum, as can be seen from the following considerations: The generation of lumi-

nescence photons inside the sample is isotropic. The probability for a photon to escape from or enter

through the sample’s surface is maximum in the direction perpendicular to the surface (corresponding

to an emission angle of 0◦ in the usual definition) and decreases towards the direction parallel to the

surface (corresponding to an emission angle of 90◦). This is a consequence of increasing photon re-

absorption and surface reflectance for larger emission angles. For a planar sample, specular reflection

at the brass plate retains the angle of each photon and thereby the probability to re-enter the sample.

In contrast, light scattering at the brass plate would lead to a randomization of angles and thereby to

a reduced re-entry probability. Consequently, a smaller part of the photons which are reflected at the

brass plate are able to emerge from the sample’s surface and contribute to the detectable luminescence

emission than in the case of a specular reflection. In a textured sample, the light is randomized by

reflections at the (rough) surfaces. In this case, the photon directions are random anyway and it is

irrelevant whether the reflection at the brass plate randomizes the photon directions or not.

Figure B.3 exemplary shows the results of the simulation for a sample temperature of 10 ◦C. At
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Sample (with ARC)

170 μm

1 μm

1 μm
brass plate

Photon counter

reflecting boundaries

light source 170 μm

5 μm

5 μm

1 μm

1 μm

Figure B.1: Sketch of the domains for the ray tracing

simulations (not to scale). Left: Planar sample, right:

Textured sample.

Figure B.2: Hemispherical reflectance of the black

anodized brass plate.

60 ◦C, the conclusions drawn from the results are the same. The plots show the total number of

emitted photons at the front surface as a function of wavelength. The uncertainty of the data is given

by the Poisson distribution, which describes the detection probability for photons [149]. As can be

seen, the number of photons is increased by the additional reflection at the brass plate. Between 800

and 1100 nm, the number of photons increases with respect to wavelength. This is a consequence of

the decreasing photon reabsorption, which is negligible above 1200 nm. It is important to note that

for the determination of the absorption coefficient, absolute changes of the number of emitted photons

are irrelevant as only relative luminescence intensities are measured. The top graphs show the ratio

of the numbers of emitted photons. The dashed lines visualize a linear fit of the data, serving as a

guide to the eye. The ratio is approximately constant with respect to wavelength, which implies that

the shape of the luminescence spectrum is not affected by the additional reflection at the brass plate.

Note that PL measurements on planar samples are not used for the determination of the absorption

coefficient due to the problems described in section 2.2.9. The results are only shown for the sake of

completeness. For textured samples, the ratio varies by only 0.0021 %/nm (abs.) on average, which

is negligible for the evaluation of the absorption coefficient.
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(a) (b)

Figure B.3: Results of the ray tracing simulations for the investigation of the impact of the additional

reflection at the brass plate on the luminescence spectrum.

117





APPENDIX C

Derivations

C.1 Varian Cary 5000: Signal correction for reflectance/transmittance
measurements with the PbS detector

In order to obtain a correction that determines

Y =
Ysample − Y0

Ymon − Y0
, Y = {Ssample, S100, S0} (C.1)

as defined in Eq. (2.9) from the signal levels Y ′mon, Y ′
sample

and Y ′
0

which are actually measured due to

the inertia of the detector and/or measurement amplifier and give

Y ′ =
Y ′

sample
− Y ′

0

Y ′mon − Y ′
0

, (C.2)

a model of the detector signal as a function of time is required. Depending on the physical origin

of the inertia effect, different functions can be assumed. At this point, it should be noted that the

exact procedure for the determination of the detector signal is unknown. However, as shown below,

the different corrections obtained by assuming different functions lead to the same results within

±0.01 % absolute.

• A decay of the charge carrier concentration within the detector is a possible reason for the occur-

rence of the inertia effect. In this case, the signal decay would be expected to be exponentially.

According to Fig. C.1, the time-dependent detector output signal Y ′(t) is then described by

Y ′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ymon +

(
Y ′(0) − Ymon

)
e−kt , 0 ≤ t ≤ τ

Ysample +
(
Y ′(τ) − Ysample

)
e−k(t−τ) , τ ≤ t ≤ 2τ

Y0 +
(
Y ′(2τ) − Y0

)
e−k(t−2τ) , 2τ ≤ t ≤ 3τ

(C.3)

and

Y ′(t) = Y ′(t + n × 3τ) , n = 1, 2, 3, ... . (C.4)

In the latter equations, k is the (unknown) time constant of the signal decay and τ the length of

the decay time. Ymon, Ysample and Y0 denote the saturation levels of the signal as defined in Figs.
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C.1. Varian Cary 5000: Signal correction for reflectance/transmittance measurements with the PbS detector

Figure C.1: Detector signal as a function of time as-

suming an exponential decay.

Figure C.2: Detector signal as a function of time as-

suming a linear decay with constant slope.

2.2 and C.1. The general solution to Eqs. (C.3) and (C.4) is

Y ′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ymon + Ysample ekτ + Y0 e2kτ

)
c e−kt + Ymon

(
1 − e−kt

)
, 0 ≤ t ≤ τ(

Ysample + Y0 ekτ + Ymon e2kτ
)

c e−k(t−τ) + Ysample

(
1 − e−k(t−τ)) , τ ≤ t ≤ 2τ(

Y0 + Ymon ekτ + Ysample e2kτ
)

c e−k(t−2τ) + Y0

(
1 − e−k(t−2τ)

)
, 2τ ≤ t ≤ 3τ

(C.5)

with

c =
1

1 + ekτ + e2kτ . (C.6)

A reasonable assumption would be that there are points tmon, tsample and t0, which are equidistant

in time, at which the signal levels

Y ′mon = Y ′(tmon) , (C.7)

Y ′sample = Y ′(tsample) , (C.8)

Y ′0 = Y ′(tsample) (C.9)

are measured. We define a quantity x such that

tmon = x τ , (C.10)

tsample = (1 + x) τ , (C.11)

t0 = (2 + x) τ , (C.12)

i.e., x denotes the relative position during the decay time where the signal level is measured.

Combining Eqs. (C.3) through (C.12) leads to

Y ′mon =
(
Ymon + Ysample ekτ + Y0 e2kτ

)
c e−kτx + Ymon

(
1 − e−kτx

)
, (C.13)

Y ′sample =
(
Ysample + Y0 ekτ + Ymon e2kτ

)
c e−kτx + Ysample

(
1 − e−kτx

)
, (C.14)

Y ′0 =
(
Y0 + Ymon ekτ + Ysample e2kτ

)
c e−kτx + Y0

(
1 − e−kτx

)
. (C.15)

By defining the abbreviation

κ = e−kτx (C.16)
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and assuming that the signal levels are measured in the middle of the decay period, i.e.,

x = 1/2 , (C.17)

the latter equations simplify to

Y ′mon =
κY0 + κ

3Ysample + (κ4 − κ3 + κ2 − κ + 1)Ymon

κ4 + κ2 + 1
, (C.18)

Y ′sample =
κ3Y0 + (κ4 − κ3 + κ2 − κ + 1)Ysample + κYmon

κ4 + κ2 + 1
, (C.19)

Y ′0 =
(κ4 − κ3 + κ2 − κ + 1)Y0 + κYsample + κ

3Ymon

κ4 + κ2 + 1
. (C.20)

The assumption x = 1/2 is reasonable because it corresponds to a measurement in the middle

of the interval defined by the rotation of the chopper wheel. Moreover, it allows a closed an-

alytical solution to be calculated. The equations can further be simplified by recognizing that

Y0 ≤ Ysample ≤ Ymon holds. Moreover, these signal levels are constant on relevant time scales.

Therefore,

Y0 = 0 , (C.21)

Ymon = 1 (C.22)

and

0 ≤ Ysample ≤ 1 (C.23)

can be assumed without loss of generality, giving

Y ′mon =
κ3Ysample + κ

4 − κ3 + κ2 − κ + 1

κ4 + κ2 + 1
, (C.24)

Y ′sample =
(κ4 − κ3 + κ2 − κ + 1)Ysample + κ

κ4 + κ2 + 1
, (C.25)

Y ′0 =
κYsample + κ

3

κ4 + κ2 + 1
. (C.26)

Inserting Eqs. (C.24) through (C.26) into Eq. (C.2) leads to

Y ′ =
(κ3 + κ − 1)Ysample − κ2 − κ
(κ2 + κ)Ysample + κ3 − κ2 − 1

. (C.27)

Note that for an instant change of the signal level, i.e., κ → 0 according to Eq. (C.16), the latter

equation yields Y ′ = Ysample, which is the correct result for this case where a correction is not

required.

Equation (C.27) contains two unknowns, namely κ, which describes the time constant of the signal

decay, and Ysample, which is to be determined. The quantity Y ′ is known from the measurement.

In order to obtain Ysample, a second measurement is required, namely a measurement of the 0 %

baseline S0. For this situation, Ysample = Y0 holds and Eq. (C.27) becomes

Y ′ = S0 =
−κ2 − κ
κ3 − κ2 − 1

. (C.28)

Combining Eqs. (C.27) and (C.28) yields

Ysample =
Y ′ − S0

1 + S0 (Y ′ − 1)
. (C.29)
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Since we assumed Y0 = 0 and Ymon = 1,

Y = Ysample (C.30)

holds according to Eq. (2.9), which finally leads to

Y =
Y ′ − S0

1 + S0 (Y ′ − 1)
, (C.31)

which is the correction formula Eq. (2.10).

• Another reasonable possibility would be that the decay is also exponentially, but the detector

signal is integrated over the decay period instead of being measured at single distinct points.

This case, which is visualized in Fig. C.1 by the shaded areas, can be investigated by integrating

Eq. (C.5) over time. This corresponds to an integration of Eqs. (C.13) through (C.15) over x
(0 ≤ x ≤ 1). Carrying out the integration, setting Ymon = 1 and Y0 = 0 as described above and

inserting the results into Eq. (C.2) leads to

Y ′ =
(β2 + β + 1) ln(β) Ysample + (β + 1 − 2β2) Ysample + β

2 − 2β + 1

(β2 + β + 1) ln(β) + (2β − β2 − 1) Ysample − β2 − β + 2
(C.32)

with

β = ekτ . (C.33)

For the 0 % baseline measurement, this yields

Y ′ = S0 =
β2 − 2β + 1

(β2 + β + 1) ln(β) − β2 − β + 2
. (C.34)

Combining the latter equations and solving for Ysample leads to

Y =
Y ′ − S0

1 + S0 (Y ′ − 1)
, (C.35)

which is the same correction formula as already derived above. This shows that for an exponential

decay, the correction formula does not depend on the method of data acquisition. However, it is

reasonable to assume that the detector signal is integrated because this corresponds to a calculation

of an average and thereby reduces measurement noise.

• Inertia of the measurement amplifier is another possible reason for the occurrence of the inertia

effect. In this case, a linear signal decay with constant slope would be expected, as shown in

Fig. C.2. The dependence of the measured 0 % baseline signal on the amplification factor points

towards the measurement amplifier as the origin of the effect. Assuming that the detector signal

is given by the integral over the period τ, as shown in Fig. C.2, the signal levels Y ′mon, Y ′
sample

and

Y ′
0

follow as

Y ′mon = Ymon τ + (Y0 − Ymon)
Δt1
2
, (C.36)

Y ′sample = Ysample τ + (Ymon − Ysample)
Δt2
2
, (C.37)

Y ′0 = Y0 τ + (Ysample − Y0)
Δt3
2
. (C.38)

Since the signal decay is linearly with constant slope a,

Δy = aΔt (C.39)
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(a) (b)

Figure C.3: Comparison of the correction formulas for exponential and linear decay. (a): Absolute

deviation between both corrections. (b): Significance of the corrections with respect to the level of

the uncorrected detector signal Y ′.

holds where Δy denotes the amplitude of the signal change. Combining the latter equations yields

Y ′mon = Ymon τ − (Y0 − Ymon)2

2a
, (C.40)

Y ′sample = Ysample τ +
(Ymon − Ysample)2

2a
, (C.41)

Y ′0 = Y0 τ +
(Ysample − Y0)2

2a
. (C.42)

Inserting this result into Eq. (C.2) and following the derivation outlined above, the correction

formula

Y =

√
(1 − 4Y ′)S2

0
+ (4Y ′2 − 2)S0 + 1 + S0 − 1

2 Y ′ S0
(C.43)

is obtained.

A comparison of the correction formulas Eq. (C.31) and Eq. (C.43) for exponential or linear decay,

respectively, is shown in Fig. C.3. Figure C.3(a) shows the absolute deviation between the corrected

values using the correction for exponential or linear decay, respectively, as a function of the measured

(uncorrected) signal Y ′. Figure C.3(b) visualizes the impact of the correction as a function of the

measured (uncorrected) signal Y ′ by showing the ratio Y ′/Y (Y is the corrected signal). As can be

seen, the correction is only significant for small signals below approximately 10 %, depending on the

0 % baseline signal S0 or the amplification factor gamp, respectively. This confirms the experimental

finding shown in Fig. 2.5. Signal levels above 0.5 % for S0 do not occur during the measurements

in this work. Moreover, it can be seen that the absolute deviation between both corrections is below

0.01 % for signal levels below 10 %, where the correction has a significant impact. Compared to the

uncertainty of the measured data, this deviation can be neglected, i.e., both corrections yield the same

results. For the purpose of simplicity, the correction formula for exponential decay is thus used in this

work.
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C.2 Uncertainty contribution due to spectral bandwidth

The detector signal Nx at the nominal wavelength λi is given by the spectral irradiance I(λ) and the

spectral sensitivity S (λ) of the monochromator/detector system:

Nx(λi) = C

∞∫
0

dλ I(λ) S (λ) . (C.44)

C is a scaling factor which depends on the detector and the read-out electronics. Ideally, S (λ) would

be given by a Dirac distribution, i.e., S (λ) = δ(λi). In this case, Eq. (C.44) would give Nx(λi) =

C I(λi). In reality, S will have a broader distribution. For a worst case estimation, a rectangular

distribution for S can be assumed:

S (λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
Δλ , λi − Δλ/2 ≤ λ ≤ λi + Δλ/2

0 elsewhere
(C.45)

Combining Eqs. (C.44) and (C.45) yields

Nx(λi) =
C
Δλ

λi+Δλ/2∫
λi−Δλ/2

dλ I(λ) . (C.46)

If I(λ) is constant on the interval [λi−Δλ/2, λi+Δλ/2], it is easily seen that Nx(λi) = C I(λi) still holds.

However, if I(λ) is not constant, Nx(λi) will be affected. The change in Nx(λi) can be calculated by the

following consideration: Since Δλ is small, I(λ) can be approximated by a Taylor series expansion

around λi:

I(λ) ≈ I(λi) +
dI(λ)

dλ

∣∣∣∣
λi

(λ − λi) +
d2I(λ)

dλ2

∣∣∣∣
λi

(λ − λi)
2

2
. (C.47)

Inserting Eq. (C.47) into Eq. (C.44) evaluates to

Nx(λi) = C
[
I(λi) +

(Δλ)2

24

d2I(λ)

dλ2

∣∣∣∣
λi

]
(C.48)

as the derivatives evaluated at λi are no function of λ and the integral over (λ − λi) disappears. The

first summand in the latter equation is the signal due to incident light at the nominal wavelength λi.

The second summand is the additional signal Nbw due to light incident at neighbouring wavelengths.

For a specific measurement, it can be calculated approximately by

d2I(λ)

dλ2

∣∣∣∣
λi

≈ I(λi − Δλ/2) − 2I(λi) + I(λi + Δλ/2)

(Δλ/2)2
(C.49)

which represents the approximation of the second derivative for discrete data. From Eqs. (C.48) and

(C.49),

Nbw(λi) ≈ Nx(λi − Δλ/2) − 2Nx(λi) + Nx(λi + Δλ/2)

6
(C.50)

follows. Taking Nbw into account as a rectangularly distributed uncertainty component yields

u2
bw =

N2
bw

3
=

(
Nx(λi − Δλ/2) − 2Nx(λi) + Nx(λi + Δλ/2)

)2

108
. (C.51)
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C.3 Evaluation of luminescence and spectral responsivity measurements

C.3.1 Incorporation of FCA in the emitter of solar cells into the optical model

The transmittance Tem of the emitter layer for a single light pass is given by the Lambert-Beer law

Eq. (1.7),

Tem = e−αWem , (C.52)

where Wem is the thickness of the emitter layer. The absorption coefficient α contains contributions

due to band-to-band absorption and free carrier absorption and is thus given by

α = αbb + αfc . (C.53)

Due to the high doping concentration in the emitter, αfc � αbb. Combining the latter equations and

using the relation ex+y = ex ey yields

Tem = e−αbbWem e−αfcWem . (C.54)

In the bulk, αfc 	 αbb holds due to the lower doping concentration compared to the emitter. FCA in

the bulk can thus be neglected. The transmittance T ′ of the whole silicon slab for a single light pass

is thus

T ′ = Tem e−αbb(W−Wem) = e−αfcWem e−αbbW , (C.55)

where W is the thickness of the silicon slab. In the absence of a highly doped emitter layer, the

transmittance would be

T = e−αbbW . (C.56)

Comparing this to Eq. (C.55) and defining

Afc = e−αfcWem (C.57)

leads to

T ′ = T Afc . (C.58)

Hence, additional absorption due to FCA in the emitter can be incorporated into the optical model by

adding multiplicative terms Afc for each light pass.

C.3.2 Effective rear surface reflectance of solar cells

In the presence of a highly doped emitter layer at the front surface, the experimentally determined rear

surface reflectance is actually an effective value which takes additional reabsorption in the emitter due

to FCA into account. This is seen from the following considerations: The reflectance R of a silicon

slab (without highly doped layer) is given by

R = Rf

+ (1 − Rf) e−2αW Rb (1 − Rf)

+ (1 − Rf) e−2αW Rb Rf e−2αW Rb (1 − Rf)

+ (1 − Rf) e−2αW Rb Rf e−2αW Rb Rf e−2αW Rb (1 − Rf)

+ ...

= Rf + (1 − Rf)
2 e−2αW Rb

∞∑
i=0

(
Rf Rb e−2αW

)i

= Rf +
(1 − Rf)

2 Rb e−2αW

1 − Rf Rb e−2αW .

(C.59)
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The latter equation takes an infinite number of internal reflections into account and makes use of the

relation

∞∑
i=0

qi =
1

1 − q
, |q| ≤ 1 (C.60)

for the infinite geometric series [150]. For a solar cell, it can be extended in order to take FCA in the

emitter into account by using the results of section C.3.1:

Rcell = Rf

+ (1 − Rf) A2
fc e−2αW Rb (1 − Rf)

+ (1 − Rf) A2
fc e−2αW Rb A2

fc Rf e−2αW Rb (1 − Rf)

+ ...

= Rf + (1 − Rf)
2 A2

fc e−2αW Rb

∞∑
i=0

(
Rf Rb A2

fc e−2αW
)i

= Rf +
(1 − Rf)

2 A2
fc

Rb e−2αW

1 − Rf Rb A2
fc

e−2αW
.

(C.61)

With the definition

Rb,eff = Rb A2
fc , (C.62)

this result can be rewritten as

Rcell = Rf +
(1 − Rf)

2 Rb,eff e−2αW

1 − Rf Rb,eff e−2αW . (C.63)

A comparison of Eq. (C.63) to Eq. (C.59) shows that the expression for the reflectance of the solar

cell is formally equal to the expression for the silicon slab without a highly doped layer. The meaning

of this formal equality is that measurements of reflectance cannot distinguish between additional

absorption in the emitter (due to FCA) and a decreased rear surface reflectance. Using Eq. (C.59) for

the evaluation of the rear surface reflectance of a solar cell thus determines an effective value which

contains additional absorption in the emitter due to FCA.

C.3.3 Determination of the surface reflectance of solar cells from reference samples
with highly doped layers on both sides

As shown in section C.3.1, FCA in highly doped layers can be incorporated into the optical model

by adding multiplicative terms Afc to the absorption (exponential) terms. For a symmetric reference

sample with highly doped layers on both sides, the expressions for the reflectance R and transmittance

T of the sample (Eqs. (2.2) and (2.3)) thus become

R = Rs

(
1 +

(1 − Rs)
2 A4

fc
exp(−2αW)

1 − R2
s A4

fc
exp(−2αW)

)
(C.64)

and

T =
(1 − Rs)

2 A4
fc

exp(−αW)

1 − R2
s A4

fc
exp(−2αW)

. (C.65)

Note that Eqs. (C.62) and (C.63) (containing a factor A2
fc

) refer to samples with only one highly

doped layer. From Eqs. (C.64) and (C.65), it is seen that the FCA terms Afc cannot be subsumed
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Figure C.4: Surface reflectance of the sample with

highly doped layers. For comparison, the surface re-

flectance of a sample without highly doped layers is

also shown.

Figure C.5: Determination of the absorption coeffi-

cient from the sample with highly doped layers. The

dashed line shows the result without FCA correction,

the solid line visualizes the corrected results.

into effective surface reflectance terms Rs,eff . Rather, it is possible to define effective absorption terms

which take both absorption in the bulk and additional free carrier absorption in the highly doped layers

into account. Solving Eqs. (C.64) and (C.65) for Rs and α yields the unchanged relation Eq. (2.5) for

the surface reflectance Rs, whereas for α, the modified relation

α = − 1

W
ln

(
C − R2 + 2R + T 2 − 1

2T A4
fc

)
(C.66)

is obtained. Hence, FCA affects the absorption coefficient which is determined from the RT mea-

surements, but not the surface reflectance. Changes of the surface reflectance compared to samples

without highly doped layers are thus due to a change of the refractive index, which also depends on

the doping concentration. Figure C.4 compares the surface reflectances of a sample with highly doped

layers and without highly doped layers.

The considerations outlined above can be verified experimentally by comparing the absorption coeffi-

cient determined from the sample with highly doped layers and from the sample without such layers.

This is shown in Fig. C.5. The open circles visualize the reference data determined from a sample

without highly doped layers. The dashed line visualizes the data determined using Eq. (2.4), which

do not contain the FCA correction. As can be seen, omitting the FCA correction for the absorption

coefficient (i.e., Afc = 1) leads to an overestimation of α, as expected from a comparison of Eqs. (2.4)

and (C.66). The solid line represents the data determined using Eq. (C.66), which contains a correc-

tion for FCA. The correction factor Afc is calculated using Green’s FCA parametrization (see section

1.2.4) with W = 0.5 μm, Ndop = 3.5 × 1019 cm−3 and λ = 1130 nm, which are realistic values for the

sample. Although the wavelength dependence of the FCA correction is neglected, the corrected data

are in qualitative agreement with the reference data. This experiment confirms that FCA in the highly

doped layers affects the determination of the absorption coefficient.

C.3.4 Impact of FCA on the scaling factor for EQE data of textured solar cells

The external quantum efficiency EQE that results from the SR is given by the integral of the product

of the normalized charge carrier generation rate g and the probability fc that the generated charge
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carriers are collected by the junction and contribute to the terminal current:

EQE(λ) =

∫ W

0

dz g(λ, z) fc(z) . (C.67)

Assuming that each absorbed photon generates an electron-hole pair, the normalized charge carrier

generation rate is given by the change of the normalized photon flux Φ/Φ0,

g(λ, z) = − 1

Φ0(λ)

dΦ(λ, z)

dz
. (C.68)

The change of the photon flux is determined by the Lambert-Beer law. For the simplest case of a

single pass of light through the sample without reflections at the surfaces, g(λ, z) is thus

g(λ, z) = αbb(λ) e−αbb(λ) z . (C.69)

SR measurements on textured solar cells are carried out at wavelengths above 1200 nm. At these

wavelengths, photon absorption is weak because of αbb ≈ 0. Hence, e−αbbz ≈ 1 and the charge carrier

generation rate is approximately constant over the thickness of the sample. This means

g(λ, z) ≈ αbb(λ) (C.70)

and

EQE(λ) ≈ αbb(λ)

∫ W

0

dz fc(z) . (C.71)

If multiple internal reflections are taken into account, the charge carrier generation rate can be written

as

g(λ, z) = αbb(λ) f0(λ) (C.72)

where the factor f0 accounts for the reflectances of the surfaces, which may depend on the wavelength,

and eventually for FCA in the emitter or back surface field. In this case,

EQE(λ) ≈ αbb(λ) f0(λ)

∫ W

0

dz fc(z) (C.73)

follows. The integral
∫ W

0
dz fc(z) is a constant with respect to wavelength. Hence, the EQE at wave-

lengths above 1200 nm can generally be expressed as

EQE(λ) ≈ αbb(λ) f0(λ) C (C.74)

where C is a proportionality factor. Note that for the case of a single pass of light through the sample

without reflections at the surfaces as described above, f0(λ) = 1. In case of a negligible wavelength

dependence of the charge carrier generation rate (i.e., f0 = const), f0 can be subsumed into the

proportionality factor, giving

αbb(λ) = Cscale EQE(λ) , Cscale =
1

f0 C
. (C.75)

Cscale is determined by scaling the EQE data to known values of the absorption coefficient between

1200 and 1250 nm, as described in section 2.3. In a second step, αbb is then obtained from the EQE
at longer wavelengths.
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FCA in the emitter or back surface field of a solar cell leads to an increasing absorption with respect to

wavelength. However, this does not lead to an increased charge carrier generation rate, as FCA does

not lead to the generation of electron-hole pairs. On the contrary, f0 is decreased, which means that

Cscale needs to be increased in order to compensate the impact of FCA. Assuming a constant scaling

factor Cscale thus corresponds to an underestimation of αbb.

The required change of the scaling factor Cscale is estimated using the analytical model for the charge

carrier generation rate given in Eq. (4.38). This model is adapted from Ref. 111. For wavelengths

above 1200 nm, the exponential terms describing the absorption are approximately unity. This yields

f0(λ) ≈ (1−Rf)

[
gf,1

cos θ1
+

gr,2 gf,1 gr,1 Rb

cos θ2
+

1

cos θn

gf,1 gr,1 gf,2 gr,2 Rb Rf1

1 − gf,n gr,n Rfn Rb

(
gf,n+gf,n g2

r,n Rbn

)]
. (C.76)

The terms gf,i and gr,i take FCA in the emitter and back surface field into account and depend on the

wavelength λ. The change of the scaling factor C′ in Eq. (3.11) is calculated according to Eqs. (C.76),

(4.36), (4.37) and (C.75) using θ1 = 41◦, θ2 = 55◦, θn = 60◦, Rb = 0.8, Rfn = 0.92, Rf1 = 0.62 and

Rf = 0.1. The FCA correction factor ffca then follows as

ffca(λ) =
Cscale(λ)

Cscale(1200 nm)
=

f0(1200 nm)

f0(λ)
. (C.77)

C.4 Relation between absorptance and charge carrier generation rate

In an ideal solar cell, each absorbed photon generates an electron-hole pair. The normalized charge

carrier generation rate g(z) is thus given by the change of the normalized photon fluxΦ (see Eq. (C.68)).

The change of the photon flux is determined by the Lambert-Beer law and thus described by an ex-

ponential decay. In case of multiple internal reflections, each pass of light through the sample is also

described by an exponential decay. For the purpose of simplicity, only a single pass is considered

in the following. Without loss of generality, the surface reflectance is assumed to be zero. The con-

sideration can easily be extended to the case of multiple internal reflections, which leads to the same

conclusions. For a single pass of light, the normalized charge carrier generation rate is

g(z) = − d
dz

exp(−αz) = α exp(−αz) . (C.78)

Integration of g(z) over the thickness W of the sample yields the cumulated generation

G =
∫ W

0

dz g(z) = 1 − exp(−αW) . (C.79)

The transmittance T of the sample is

T = exp(−αW) . (C.80)

Considering the relation

A = 1 − T (C.81)

for the absorptance A and comparison with Eqs. (C.79) and (C.80) leads to

A =
∫ W

0

dz g(z) , (C.82)

i.e., the cumulated charge carrier generation rate equals the absorptance of the sample.
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APPENDIX D

Tabulated data

D.1 Absorption coefficient

Table D.1: Absorption coefficient as determined from measurements of reflectance

and transmittance (Fig. 2.16). The uncertainty is specified for a coverage factor

k = 2 and rounded to two significant digits. Note that the data is not corrected for

FCA yet. For the corrections, see chapter 3.

sample RT-A sample RT-B PTB

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

930 1.994 × 102 0.29

935 1.871 × 102 0.30

940 1.746 × 102 0.30

945 1.623 × 102 0.30

950 1.507 × 102 0.30

955 1.393 × 102 0.32

960 1.297 × 102 5.8 1.286 × 102 0.32

965 1.198 × 102 3.5 1.184 × 102 0.32

970 1.101 × 102 2.1 1.088 × 102 0.34

975 1.005 × 102 1.4 9.979 × 101 0.36

980 9.264 × 101 1.1 9.118 × 101 0.38

985 8.118 × 101 10 8.331 × 101 0.42

990 7.524 × 101 5.4 7.571 × 101 0.46

995 6.842 × 101 4.3 6.856 × 101 0.50

1000 6.230 × 101 3.6 6.153 × 101 0.46

1005 5.495 × 101 2.2 5.549 × 101 0.50

1010 4.895 × 101 1.8 4.906 × 101 16 4.940 × 101 0.54

1015 4.393 × 101 1.3 4.186 × 101 6.4 4.384 × 101 0.63

1020 3.887 × 101 1.2 3.821 × 101 3.8 3.863 × 101 0.71

1025 3.390 × 101 0.91 3.420 × 101 3.6 3.381 × 101 0.78

1030 2.927 × 101 0.89 2.953 × 101 2.2 2.937 × 101 0.90

Table continues on next page.
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Continued from previous page.

sample RT-A sample RT-B PTB

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

1035 2.536 × 101 0.86 2.522 × 101 1.1 2.533 × 101 1.0

1040 2.162 × 101 0.83 2.180 × 101 1.0 2.167 × 101 1.2

1045 1.837 × 101 0.89 1.859 × 101 0.91 1.839 × 101 1.3

1050 1.550 × 101 0.99 1.567 × 101 0.72 1.555 × 101 1.5

1055 1.310 × 101 1.2 1.318 × 101 0.83 1.308 × 101 1.7

1060 1.093 × 101 1.2 1.100 × 101 0.79 1.074 × 101 1.9

1065 9.143 × 100 1.3 9.271 × 100 0.89 9.051 × 100 2.1

1070 7.851 × 100 1.5 8.022 × 100 0.91 7.887 × 100 2.3

1075 6.861 × 100 1.7 6.988 × 100 1.0 6.864 × 100 2.5

1080 6.003 × 100 1.9 6.106 × 100 1.1 5.969 × 100 2.7

1085 5.228 × 100 2.2 5.312 × 100 1.2 5.192 × 100 2.9

1090 4.524 × 100 2.3 4.614 × 100 1.3 4.510 × 100 3.1

1095 3.926 × 100 2.5 4.011 × 100 1.4 3.907 × 100 3.6

1100 3.409 × 100 3.0 3.471 × 100 1.6 3.380 × 100 3.9

1105 2.965 × 100 3.2 3.033 × 100 1.8 2.923 × 100 4.1

1110 2.548 × 100 3.6 2.615 × 100 2.0 2.529 × 100 4.7

1115 2.202 × 100 4.3 2.253 × 100 2.3 2.165 × 100 5.1

1120 1.880 × 100 5.0 1.931 × 100 2.6 1.833 × 100 6.0

1125 1.579 × 100 5.7 1.647 × 100 2.9 1.558 × 100 6.4

1130 1.340 × 100 6.6 1.392 × 100 3.4 1.339 × 100 6.0

1135 1.106 × 100 8.2 1.149 × 100 4.0 1.107 × 100 6.3

1140 9.280 × 10−1 9.4 9.563 × 10−1 4.7

1145 7.486 × 10−1 12 7.824 × 10−1 5.7

1150 5.889 × 10−1 14 6.304 × 10−1 7.0

1155 4.422 × 10−1 19 4.903 × 10−1 8.8

1160 3.182 × 10−1 26 3.695 × 10−1 11
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Table D.2: Absorption coefficient as determined from spectrally resolved lumines-

cence measurements (Fig. 2.33). The uncertainty is specified for a coverage factor

k = 2 and rounded to two significant digits. Note that the data is not corrected for

FCA yet. For the corrections, see chapter 3.

RT EL PL

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

1100 3.452 × 100 1.6 3.476 × 100 11

1105 3.011 × 100 1.7 2.960 × 100 10

1110 2.594 × 100 2.0 2.589 × 100 9.6

1115 2.237 × 100 2.1 2.208 × 100 9.2

1120 1.915 × 100 2.5 1.899 × 100 8.8

1125 1.627 × 100 2.9 1.625 × 100 8.5

1130 1.377 × 100 3.1 1.387 × 100 8.3

1135 1.136 × 100 3.6 1.156 × 100 8.0

1140 9.503 × 10−1 5.4 9.602 × 10−1 7.9

1145 7.860 × 10−1 7.7

1150 6.346 × 10−1 7.6

1155 5.003 × 10−1 7.5

1160 3.813 × 10−1 7.5

1165 2.789 × 10−1 7.6

1170 1.904 × 10−1 7.9

1175 1.111 × 10−1 8.8

1180 5.974 × 10−2 12

1185 3.585 × 10−2 14

1190 2.477 × 10−2 16

1195 1.923 × 10−2 17

1200 1.637 × 10−2 17 1.616 × 10−2 25

1205 1.211 × 10−2 20 1.251 × 10−2 25

1210 9.798 × 10−3 21 9.716 × 10−3 25

1215 7.617 × 10−3 22 7.557 × 10−3 25

1220 5.736 × 10−3 25 5.824 × 10−3 25

1225 4.300 × 10−3 29 4.412 × 10−3 25

1230 3.228 × 10−3 33 3.269 × 10−3 25

1235 2.433 × 10−3 37 2.357 × 10−3 25

1240 1.687 × 10−3 46 1.633 × 10−3 25

1245 1.092 × 10−3 61 1.054 × 10−3 25

1250 8.101 × 10−4 72 6.290 × 10−4 25

1255 3.682 × 10−4 26

1260 2.386 × 10−4 26

1265 1.736 × 10−4 25

1270 1.313 × 10−4 25

1275 1.003 × 10−4 25

1280 7.713 × 10−5 25

1285 5.937 × 10−5 25

1290 4.625 × 10−5 25

1295 3.573 × 10−5 25

Table continues on next page.
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Continued from previous page.

RT EL PL

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

1300 2.750 × 10−5 25

1305 2.100 × 10−5 25

1310 1.571 × 10−5 25

1315 1.163 × 10−5 26

1320 8.358 × 10−6 26

1325 5.822 × 10−6 26

1330 3.910 × 10−6 26

1335 2.518 × 10−6 27

1340 1.650 × 10−6 28

1345 1.186 × 10−6 32

1350 9.394 × 10−7 31

1355 6.927 × 10−7 34

1360 5.813 × 10−7 40

1365 4.590 × 10−7 38

1370 3.580 × 10−7 41

1375 2.897 × 10−7 42

1380 2.401 × 10−7 47

1385 1.843 × 10−7 64

1390 1.571 × 10−7 54

1395 1.146 × 10−7 58

1400 9.360 × 10−8 64

1405 7.799 × 10−8 74

1410 5.385 × 10−8 130

1415 5.468 × 10−8 83

1420 3.796 × 10−8 93

1425 2.514 × 10−8 100

1430 1.791 × 10−8 190

1435 2.133 × 10−8 120

1440 1.203 × 10−8 180

1445 1.089 × 10−8 160

1450 9.447 × 10−9 190
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Table D.3: Absorption coefficient as determined from measurements of the spectral

responsivity of solar cells (Fig. 2.36). The uncertainty is specified for a coverage

factor k = 2 and rounded to two significant digits. Note that the data is not corrected

for FCA yet. For the corrections, see chapter 3.

RT polished sample textured sample

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

1100 3.442 × 100 1.6 3.465 × 100 7.4

1105 2.997 × 100 1.7 3.001 × 100 7.1

1110 2.586 × 100 2.0 2.593 × 100 7.1

1115 2.227 × 100 2.2 2.231 × 100 6.9

1120 1.904 × 100 2.5 1.914 × 100 6.8

1125 1.617 × 100 2.9 1.626 × 100 7.0

1130 1.371 × 100 3.1 1.371 × 100 6.9

1135 1.132 × 100 3.7 1.145 × 100 7.0

1140 9.495 × 10−1 5.4 9.484 × 10−1 7.1

1145 7.745 × 10−1 6.7 7.799 × 10−1 7.1

1150 6.206 × 10−1 7.8 6.279 × 10−1 7.6

1155 4.791 × 10−1 10 4.940 × 10−1 8.0

1160 3.582 × 10−1 13 3.767 × 10−1 8.8

1165 2.763 × 10−1 9.9

1170 1.877 × 10−1 12

1175 1.103 × 10−1 16

1180 5.796 × 10−2 18

1185 3.393 × 10−2 12

1190 2.436 × 10−2 8.3

1195 1.856 × 10−2 8.0

1200 1.431 × 10−2 8.0 1.413 × 10−2 15

1205 1.103 × 10−2 8.2 1.078 × 10−2 15

1210 8.209 × 10−3 8.9 8.127 × 10−3 14

1215 6.300 × 10−3 8.2 6.278 × 10−3 14

1220 4.834 × 10−3 8.8 4.821 × 10−3 15

1225 3.651 × 10−3 9.7 3.664 × 10−3 15

1230 2.654 × 10−3 13 2.726 × 10−3 15

1235 1.848 × 10−3 34 1.986 × 10−3 15

1240 1.197 × 10−3 59 1.389 × 10−3 16

1245 6.839 × 10−4 84 9.286 × 10−4 17

1250 3.449 × 10−4 110 5.785 × 10−4 18

1255 3.522 × 10−4 18

1260 2.267 × 10−4 16

1265 1.622 × 10−4 15

1270 1.215 × 10−4 15

1275 9.281 × 10−5 15

1280 7.107 × 10−5 15

1285 5.456 × 10−5 15

1290 4.163 × 10−5 15

1295 3.233 × 10−5 15

Table continues on next page.
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RT polished sample textured sample

λ [nm] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%] α [cm−1 ] U(α)
α

[%]

1300 2.505 × 10−5 16

1305 1.902 × 10−5 16

1310 1.445 × 10−5 16

1315 1.089 × 10−5 18

1320 7.921 × 10−6 20

1325 5.806 × 10−6 24

1330 3.914 × 10−6 36

1335 2.864 × 10−6 44

1340 1.822 × 10−6 51

1345 1.644 × 10−6 62

1350 1.399 × 10−6 79
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Table D.4: Absorption coefficient as determined from spectroscopic ellipsometry

(Fig. 2.45). The uncertainty is specified for a coverage factor k = 2 and rounded to

two significant digits. Note that this data represents the coefficient of band-to-band

absorption αbb since corrections for FCA are not necessary (see chapter 3).

λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%]

250 1.804 × 106 0.063 430 4.023 × 104 4.9 610 3.555 × 103 12

255 1.859 × 106 0.41 435 3.564 × 104 5.4 615 3.440 × 103 12

260 1.930 × 106 0.31 440 3.199 × 104 5.7 620 3.407 × 103 12

265 2.023 × 106 0.26 445 2.942 × 104 5.7 625 3.237 × 103 12

270 2.139 × 106 0.33 450 2.663 × 104 6.0 630 3.245 × 103 12

275 2.253 × 106 0.36 455 2.374 × 104 6.5 635 3.020 × 103 13

280 2.332 × 106 0.086 460 2.161 × 104 6.7 640 2.885 × 103 13

285 2.362 × 106 0.29 465 1.925 × 104 7.2 645 2.815 × 103 13

290 2.302 × 106 0.34 470 1.878 × 104 7.3 650 2.793 × 103 14

295 2.064 × 106 0.11 475 1.704 × 104 8.1 655 2.691 × 103 13

300 1.797 × 106 0.096 480 1.566 × 104 8.4 660 2.591 × 103 13

305 1.608 × 106 0.25 485 1.475 × 104 7.7 665 2.495 × 103 13

310 1.469 × 106 0.16 490 1.380 × 104 7.5 670 2.402 × 103 13

315 1.367 × 106 0.11 495 1.325 × 104 8.2 675 2.313 × 103 12

320 1.289 × 106 0.35 500 1.220 × 104 8.4 680 2.226 × 103 12

325 1.229 × 106 0.46 505 1.125 × 104 8.7 685 2.142 × 103 12

330 1.178 × 106 0.18 510 1.080 × 104 8.7 690 2.061 × 103 12

335 1.129 × 106 0.44 515 9.684 × 103 9.4 695 1.983 × 103 11

340 1.093 × 106 0.16 520 9.553 × 103 9.1 700 1.907 × 103 11

345 1.063 × 106 0.28 525 8.625 × 103 9.7 705 1.834 × 103 11

350 1.044 × 106 0.47 530 8.252 × 103 9.8 710 1.763 × 103 11

355 1.032 × 106 0.53 535 7.849 × 103 16 715 1.695 × 103 11

360 1.017 × 106 0.71 540 6.957 × 103 12 720 1.629 × 103 10

365 9.275 × 105 0.59 545 6.894 × 103 10 725 1.565 × 103 10

370 7.269 × 105 1.0 550 6.406 × 103 11 730 1.503 × 103 9.8

375 4.941 × 105 1.3 555 6.093 × 103 11 735 1.443 × 103 9.6

380 3.254 × 105 1.7 560 5.958 × 103 11 740 1.386 × 103 9.3

385 2.231 × 105 2.0 565 5.906 × 103 10 745 1.330 × 103 9.1

390 1.621 × 105 2.3 570 5.235 × 103 11 750 1.276 × 103 8.8

395 1.257 × 105 2.7 575 5.087 × 103 10 755 1.224 × 103 8.6

400 1.025 × 105 3.0 580 4.744 × 103 10 760 1.173 × 103 8.4

405 8.455 × 104 3.4 585 4.580 × 103 10 765 1.125 × 103 8.1

410 7.395 × 104 3.6 590 4.276 × 103 11 770 1.078 × 103 7.9

415 6.220 × 104 3.8 595 4.343 × 103 10 775 1.032 × 103 7.7

420 5.294 × 104 4.4 600 3.879 × 103 11 780 9.882 × 102 7.4

425 4.651 × 104 4.5 605 3.937 × 103 11 785 9.458 × 102 7.2

Table continues on next page.
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λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%] λ [nm] αbb [cm−1 ] U(αbb)
αbb

[%]

790 9.049 × 102 6.9 840 5.659 × 102 4.6 890 3.313 × 102 2.2

795 8.653 × 102 6.7 845 5.383 × 102 4.3 895 3.125 × 102 1.9

800 8.271 × 102 6.5 850 5.116 × 102 4.1 900 2.945 × 102 1.7

805 7.902 × 102 6.2 855 4.859 × 102 3.9 905 2.771 × 102 1.5

810 7.546 × 102 6.0 860 4.612 × 102 3.6 910 2.605 × 102 1.2

815 7.203 × 102 5.8 865 4.374 × 102 3.4 915 2.446 × 102 1.0

820 6.871 × 102 5.5 870 4.145 × 102 3.1 920 2.293 × 102 0.76

825 6.552 × 102 5.3 875 3.925 × 102 2.9 925 2.147 × 102 0.52

830 6.243 × 102 5.0 880 3.713 × 102 2.7 930 2.007 × 102 0.29

835 5.946 × 102 4.8 885 3.509 × 102 2.4
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D.2 Temperature coefficient

Table D.5: Temperature coefficient cT of αbb at 295 K as used in this work

(Fig. 3.11).

λ [nm] cT [K−1 ] λ [nm] cT [K−1 ] λ [nm] cT [K−1 ] λ [nm] cT [K−1 ]

250 4.500 × 10−5 560 3.565 × 10−3 870 5.969 × 10−3 1180 4.111 × 10−2

260 7.500 × 10−5 570 3.555 × 10−3 880 6.246 × 10−3 1190 3.494 × 10−2

270 1.550 × 10−4 580 3.702 × 10−3 890 6.486 × 10−3 1200 3.382 × 10−2

280 1.650 × 10−4 590 3.674 × 10−3 900 6.789 × 10−3 1210 3.520 × 10−2

290 4.000 × 10−5 600 3.570 × 10−3 910 7.104 × 10−3 1220 3.614 × 10−2

300 2.352 × 10−4 610 3.719 × 10−3 920 7.382 × 10−3 1230 3.820 × 10−2

310 3.261 × 10−4 620 3.581 × 10−3 930 7.723 × 10−3 1240 4.077 × 10−2

320 1.818 × 10−4 630 3.617 × 10−3 940 8.126 × 10−3 1250 4.680 × 10−2

330 8.743 × 10−5 640 3.883 × 10−3 950 8.543 × 10−3 1260 4.682 × 10−2

340 2.794 × 10−5 650 3.711 × 10−3 960 9.022 × 10−3 1270 4.204 × 10−2

350 0.000 × 10+0 660 3.513 × 10−3 970 9.513 × 10−3 1280 4.411 × 10−2

360 7.000 × 10−5 670 3.830 × 10−3 980 1.007 × 10−2 1290 4.570 × 10−2

370 4.102 × 10−4 680 3.992 × 10−3 990 1.199 × 10−2 1300 4.883 × 10−2

380 2.054 × 10−3 690 3.902 × 10−3 1000 1.084 × 10−2 1310 5.500 × 10−2

390 3.894 × 10−3 700 3.945 × 10−3 1010 1.122 × 10−2 1320 5.800 × 10−2

400 4.208 × 10−3 710 4.062 × 10−3 1020 1.199 × 10−2 1330 6.100 × 10−2

410 3.843 × 10−3 720 4.035 × 10−3 1030 1.267 × 10−2 1340 6.500 × 10−2

420 3.612 × 10−3 730 4.032 × 10−3 1040 1.360 × 10−2 1350 6.700 × 10−2

430 3.494 × 10−3 740 4.198 × 10−3 1050 1.481 × 10−2 1360 6.750 × 10−2

440 3.450 × 10−3 750 4.238 × 10−3 1060 1.572 × 10−2 1370 6.800 × 10−2

450 3.405 × 10−3 760 4.262 × 10−3 1070 1.545 × 10−2 1380 6.850 × 10−2

460 3.402 × 10−3 770 4.299 × 10−3 1080 1.543 × 10−2 1390 6.900 × 10−2

470 3.411 × 10−3 780 4.349 × 10−3 1090 1.575 × 10−2 1400 7.000 × 10−2

480 3.336 × 10−3 790 4.461 × 10−3 1100 1.630 × 10−2 1410 7.100 × 10−2

490 3.371 × 10−3 800 4.636 × 10−3 1110 1.674 × 10−2 1420 7.200 × 10−2

500 3.438 × 10−3 810 4.774 × 10−3 1120 1.730 × 10−2 1430 7.300 × 10−2

510 3.514 × 10−3 820 4.925 × 10−3 1130 1.806 × 10−2 1440 7.400 × 10−2

520 3.523 × 10−3 830 5.138 × 10−3 1140 1.934 × 10−2 1450 7.500 × 10−2

530 3.487 × 10−3 840 5.314 × 10−3 1150 2.089 × 10−2

540 3.442 × 10−3 850 5.503 × 10−3 1160 2.377 × 10−2

550 3.561 × 10−3 860 5.705 × 10−3 1170 2.919 × 10−2
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APPENDIX E

Modeling of luminescence spectra

E.1 Photon escape probabilities

The following photon escape probabilities are extracted from the optical models from literature which

are discussed in this work:

• Schick et al. [134]:

fesc =
Ω

4πn2
Si

[
1 − Rf

] exp(−αz) + Rb exp
(
− α(2W − z)

)
1 − RfRb exp(−2αW)

. (E.1)

• Daub et al. [23]: The escape probability is equal to the one calculated by Schick et al. (see

Eq. (E.1)).

• Trupke et al. [31]: The escape probability is equal to the one calculated by Schick et al. (see

Eq. (E.1)).

• Würfel et al. [79]:

fesc =
Ω

4πn2
Si

[
1 − Rf

] [
exp(−αz) + Rb exp

(
− α(2W − z)

) ]
(E.2)

• Rüdiger et al. [135]:

fesc =
Ω

4πn2
Si

1

n2
Si

[
exp(−2αz)+

(
1− 1

n2
Si

)
exp

(−2α(2W−z)
) ]× ∞∑

i=0

[(
1− 1

n2
Si

)2
exp(−4αW)

]i
(E.3)

• Kirchartz et al. [120]: For the planar case the escape probability is equal to the one calculated

by Schick et al. (see Eq. (E.1)).

For the textured case the escape probability is taken from Ref. [151] and reads

fesc =
Ω

4πn2
Si

2
[
1 − Rf

]Ei2(αz) + RbEi2(α(2W − z))

1 − tcell(1 − tlamb)
(E.4)

with

tlamb =
1 − Rf

n2
Si

, (E.5)
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where nSi is the index of refraction of the sample,

tcell = Rb

[
exp(−2αW)(1 − 2αW) + (2αW)2 Ei(2αW)

]
, (E.6)

Ei(z) =

∫ ∞

z
dt

exp(−t)
t

(E.7)

and

Ei2(z) = z
∫ ∞

z
dt

exp(−t)
t2

= exp(−z) − zEi(z) . (E.8)

• Brüggemann [136]: The escape probability is equal to the one calculated by Schick et al. (see

Eq. (E.1)).

• Green [137]: The escape probability is equal to the one calculated by Schick et al. (see Eq. (E.1)).

• This work:

fesc(z) =
Ω

4π

1 − Rf

n2
Si

[
1

cos θ1
exp

( −α z
cos θ1

)
+

1

cos θ2
T1Rb1 exp

(−α (W − z)

cos θ2

)

+
1

cos θn

T1Rb1T2Rf1

1 − T 2
n RfnRbn

(
exp

( −α z
cos θn

)
+ TnRbn exp

(−α(W − z)

cos θn

) )]
. (E.9)

Details about the determination of the parameters of Eq. (E.9) can be found in Ref. 111. Only a

short summary is given here:

T1 is the transmission through the sample for photons propagating under an angle θ1, i.e.

T1 = exp
( − αW/ cos(θ1)

)
(E.10)

T2 and Tn are the transmissions through the sample for photons propagating under an angle θ2 or

θn, respectively:

T2 = exp
( − αW/ cos(θ2)

)
(E.11)

Tn = exp
( − αW/ cos(θn)

)
(E.12)

The front surface reflectance Rf is taken equal to the measured reflectance in the wavelength range

of strong absorption (absorption length of light Lα = α−1 	 W) and linearly extrapolated for the

wavelength range of weak absorption (Lα > W).

θ1 is calculated from the facet angle γ (see Fig. 4.2) using the law of defraction:

θ1 = γ − arcsin
(nair

nSi
sin

(
γ
))

(E.13)

where nair ≈ 1 holds.

θn is calculated using the equations given in appendix E.2.

θ2 follows as the solution of Eq. (E.11) with

T2 =
ΛRbd Tn + (1 − Λ) Rbs T1

ΛRbd + (1 − Λ) Rbs
. (E.14)

Here, T2 is expressed as a weighted average of T1 and Tn where the weighting factorΛ (0 ≤ Λ ≤ 1)

determines the fraction of light reflected with a lambertian characteristic, such that its direction
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is randomized by the reflection at the surface. Rbd is the rear surface reflectance for lambertian

reflected light, Rbs is the rear surface reflectance for specularly reflected light The denominator of

Eq. (E.14) is the rear surface reflectance

Rb = (1 − Λ) Rbs + ΛRbd (E.15)

which is a weighted average of the reflectance for specularly reflected light Rbs and the reflectance

for diffusely (lambertian) reflected light Rbd. In a first approximation, Rbs and Rbd are assumed

equal to Rb. Consequently, the rear surface reflectance Rb is independent of the lambertian factor

Λ. However, Λ affects the effective path angle θ2 as well as the front surface reflectance Rf1.

Rf1 is

R f 1 =
ΛRbd Tn Rfn + (1 − Λ) Rbs T1 Rfs

ΛRbd Tn + (1 − Λ) Rbs T1
, (E.16)

where Rfs = 0.62 is determined by numerical ray-tracing simulations for rays at a wavelength of

1000 nm which are isotropically incident onto the inner surface of regular inverted pyramids with

109 nm of SiO2 as anti-reflection coating.

Rfn is also determined by numerical ray-tracing simulations to be Rfn = 0.928±0.001 for rays at a

wavelength of 1000 nm which are isotropically incident onto the inner surface of regular inverted

pyramids with 109 nm of SiO2 as anti-reflection coating. It is stated that the value is similar for

other wavelengths and anti-reflection coatings.

The parameters Λ and Rb are determined by a fit of the model of the total reflectance R (corrected

for front grid metallization if present),

R = 1 − (1 − R f )

[
1 − T1Rb1T2 (1 − Rf1) − T1Rb1T2Rf1Rbn(1 − Rfn)T 2

n

1 − RbnRfn T 2
n

]
, (E.17)

to a measured reflectance curve. Eq. (E.17) follows from the model for the optical path.

E.2 Effective path angle θn for lambertian diffused light

A lambertian radiator is characterized by an angle-dependent photon escape probability

fem,lamb = C cos(θ) ,

where θ is the angle to the perpendicular of the radiator’s surface and C is the proportionality factor.

The probability for the emission of a photon into the half space is unity. Therefore,

C
∫ 2π

0

dϕ
∫ π/2

0

dθ sin θ cos θ = 1 (E.18)

which yields

C =
1

π
. (E.19)

The total transmission of light Tn emitted by a lambertian radiator through a slab of thickness W
follows as

Tn =

∫ 2π

0

dϕ
∫ π/2

0

dθ sin θ
cos θ

π
exp

(
− αW

cos θ

)
= 2

∫ π/2

0

dθ sin θ cos θ exp
(
− αW

cos θ

)
. (E.20)
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dS

radiator

Figure E.1: Effective path angle following from

Equations (E.20) and (E.21) for different thicknesses

W of the sample.

Figure E.2: Schematic of a surface element dS
which is seen from the radiator under the solid an-

gle Ω and orientated under an angle θ with respect to

the optical axis.

Inserting Tn from Eq. (E.20) into the relation

Tn = exp
(
− αW

cos θn

)
(E.21)

allows to calculate the effective path angle θn which is shown in Fig. E.1 as a function of wavelength

for different thicknesses W. For long wavelengths, it approaches 60◦ independent from the thickness

of the sample.

E.3 Derivation of Φbb(λ)

In 1901, Planck [152] showed that the energy of black body radiation u in the photon frequency

interval [ν, ν + dν] is

u(ν)dν =
8πhν3

c3

1

exp
(

hν
kT

)
− 1

dν . (E.22)

The latter equation can be written in terms of photon energy by applying the well known energy

relation of photons, E = hν. The radiation is emitted isotropically. The fraction dΩ/4π is emitted into

the solid angle dΩ. Hence, the emitted radiation per solid angle can be expressed as

u(ν,Ω)dνdΩ =
2hν3

c3

1

exp
(

hν
kT

)
− 1

dνdΩ . (E.23)

Note that u(ν) = 4πu(ν,Ω). From Eq. (E.23), the number N of photons per frequency interval is

obtained by division by the energy of a photon hν:

N(ν,Ω)dνdΩ =
2ν2

c3

1

exp
(

hν
kT

)
− 1

dνdΩ . (E.24)
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The photon flux Φbb(ν,Ω, θ) incident onto a surface element dS which is seen from the radiator under

the solid angleΩ and orientated under an angle θ with respect to the optical axis (see Fig. E.2) follows

from Eq. (E.24) by multiplication with the speed of photons c and a scaling factor cos(θ):

Φbb(ν,Ω, θ)dνdΩ =
2ν2

c2

cos(θ)

exp
(

hν
kT

)
− 1

dνdΩ . (E.25)

For perpendicular irradiation, which is typically used for quantum efficiency measurements, cos(θ) = 1

and

Φbb(ν,Ω)dνdΩ =
2ν2

c2

1

exp
(

hν
kT

)
− 1

dνdΩ (E.26)

follows. In order to write Eq. (E.26) as a function of wavelength, we note that Φbb(ν,Ω) is a differen-

tial quantity in terms of frequency, i.e. there is an antiderivative F for which

Φbb(ν,Ω) =
dF
dν

(E.27)

holds. Thus, the differential quantity in terms of wavelengths Φbb(λ,Ω) = dF/dλ is obtained either

by calculating F, replacing ν by λ in F using the frequency-wavelength relation of photons

ν =
c
λ

(E.28)

and differentiating F with respect to λ or, more easily, by replacing ν by λ in Φbb(ν,Ω) and using the

chain rule:

Φbb(λ,Ω) =
dF
dν

dν
dλ
. (E.29)

From Eq. (E.28), we get∣∣∣∣∣dνdλ
∣∣∣∣∣ = c
λ2
. (E.30)

Combining Eqs. (E.27) through (E.30) yields

Φbb(λ,Ω)dλdΩ =
2c
λ4

1

exp
(

hc
λkT

)
− 1

dλdΩ . (E.31)

For wavelengths below 1400 nm, where significant luminescence emission is located, the exponential

term in Eq. (E.31) is always larger than 1014. We can thus neglect the −1 in the denominator of

Eq. (E.31) and finally end up with

Φbb(λ,Ω) dλdΩ =
2c
λ4

exp

(
− hc
λkT

)
dλdΩ (E.32)

which is the result given in Eq. (4.22).

E.4 Approximation of the photon generation rate rph

The photon generation rate per wavelength interval and solid angle rph is determined by the general-

ized Planck radiation law for luminescence [72]:

rph(λ, z) dλ =
2 cα(λ) n2

Si
(λ)

λ4

[
exp

( hc
λ −μph(z)

kT

)
− 1

] dλ . (E.33)
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For typical luminescence measurement conditions, the exponential term in the denominator of Eq.

(E.33) is of the order of 106. The −1 can thus be neglected. The chemical potential μph of the photons

is given by the splitting of the quasi-Fermi levels ΔEF:

μph = ΔEF . (E.34)

Equation (E.33) can thus be reformulated as

rph(λ, z) dλ ≈ 2 cα(λ) n2
Si(λ) λ

−4 exp

⎛⎜⎜⎜⎜⎜⎝− hc
λ − ΔEF(z)

kT

⎞⎟⎟⎟⎟⎟⎠ dλ . (E.35)

Finally, considering the relation

n(z) p(z) = n2
i exp

(
ΔEF(z)

kT

)
(E.36)

and the definition of the coefficient of spectral radiative recombination in Eq. (4.21) yields the expres-

sion given in Eq. (4.20).

E.5 Derivation of the optical reciprocity theorem in terms of wave-
lengths and for a specific detection cone

The reciprocity theorem of Rau [73] as given in Eq. (4.25),

ΦEL(E,Ω)dEdΩ = Φbb(E,Ω) dEdΩ EQE(E,Ω)
[

exp

(
V
VT

)
− 1

]
, (E.37)

holds for photon flux densities ΦEL(E,Ω) and Φbb(E,Ω) per energy interval dE and solid angle dΩ.

Both photon incidence and emission are assumed to be perpendicular to the sample’s surface. The

term dEdΩ on both sides of the equation is added as an indication that we refer to an energy and solid

angle interval, respectively. Φbb and thus also ΦEL are differential quantities which means that the

chain rule must be used together with the energy-wavelength relation of photons E = hc/λ in order

to obtain these quantities in terms of wavelength:

ΦEL(λ) = ΦEL(E)
dE
dλ
, (E.38)

Φbb(λ) = Φbb(E)
dE
dλ
. (E.39)

Inserting Eqs. (E.38) and (E.39) as well as the approximation

exp

(
V
VT

)
− 1 ≈ exp

(
V
VT

)
(E.40)

into Eq. (E.37) leads to

ΦEL(λ,Ω)dλdΩ = Φbb(λ,Ω)dλdΩ EQE(E,Ω) exp

(
V
VT

)
. (E.41)

Note that at room temperature, Eq. (E.40) is justified as soon as V exceeds about 120 mV. This

assumption is always fulfilled under typical EL measurement conditions. For the quantum efficiency,

the relation

EQE(E) = EQE
(
λ(E)

)
(E.42)
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holds where

λ(E) =
hc
E

(E.43)

is the energy-wavelength relation of photons. Hence, with the abbreviation EQE
(
λ(E)

)
= EQE(λ) and

keeping in mind that Eq. (E.43) must be fulfilled, we can write Eq. (E.41) as

ΦEL(λ,Ω)dλdΩ = Φbb(λ,Ω)dλdΩ EQE(λ,Ω) exp

(
V
VT

)
. (E.44)

In an experiment, the detector collects luminescence photons from a certain solid angle Ω which is

defined by the numerical aperture of the detector and its distance from the sample. The measurable

photon flux is thus given by the integral of Eq. (E.44) over Ω. Since Ω is typically very small (Ω 	
4π), we can approximate that the integrand is constant on this interval and obtain

ΩΦEL(λ)dλ = ΩΦbb(λ)dλ EQE(λ) exp

(
V
VT

)
. (E.45)

Inserting the definition

ΦEL,det(λ) = ΩΦEL(λ) , (E.46)

into Eq. (E.46), we obtain

ΦEL,det(λ)dλ = ΩΦbb(λ) EQE(λ) dλ exp

(
V
VT

)
(E.47)

which is the result given in Eq. (4.26). Note that from Eq. (E.39) and (E.43),

Φbb(E) = Φbb(λ)
dλ
dE
= Φbb(λ)

λ2

hc
(E.48)

follows. Combining the latter equation with Eq. (4.22) and using the energy-wavelength relation of

photons (Eq. (E.43)) again, we obtain

Φbb(E)dE =
2E2

h3c2
dE exp

(
− E

kT

)
(E.49)

which is in agreement with the literature [73, 153].
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