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Abstract

The gravitational waves are one of the most important predictions

in general relativity. Besides of the directly proof of the existence of

GWs, there are already several ground based detectors (such as LIGO,

GEO, etc) and the planed future space mission (such as: LISA) which

are aim to detect the GWs directly. GW contain a large amount of

information of its source, extracting these information can help us

dig out the physical property of the source, even open a new window

for understanding the Universe. Hence, GW data analysis will be a

challenging task in seeking the GWs. In this thesis, I present two

works about the data analysis for LISA.

In the first work, we introduce an extended multimodal genetic al-

gorithm which utilizes the properties of the signal and the detector

response function to analyze the data from the third round of mock

LISA data challenge. We have found all five sources present in the

data and recovered the coalescence time, chirp mass, mass ratio and

sky location with reasonable accuracy. As for the orbital angular mo-

mentum and two spins of the Black Holes, we have found a large

number of widely separated modes in the parameter space with sim-

ilar maximum likelihood values. The performance of this method is

comparable, if not better, to already existing algorithms.

In the second work, we introduce an new phenomenological waveform

model for the extreme mass ratio inspiral system. This waveform

consists of a set of harmonics with constant amplitude and slowly

evolving phase which we decompose in a Taylor series. We use these

phenomenological templates to detect the signal in the simulated data,

and then, assuming a particular EMRI model, estimate the physical



parameters of the binary with high precision. The results show that

our phenomenological waveform is very feasible in the data analysis

of EMRI signal.



Abstract

Gravitationswellen sind eine der wichtigsten Vorhersagen in der All-

gemeinen Relativitätstheorie. Der direkte Nachweis von GWs steht

noch aus. Es existieren bereits erdgebundene Gravitationswellende-

tektoren wie LIGO und GEO. Außerdem sind Raummissionen wie

LISA geplant, um Gravitationswellen nachzuweisen. GWs enthalten

eine große Menge an Informationen über ihre Quelle. Diese Informa-

tionen können uns helfen, die physikalischen Eigenschaften der Quelle

zu verstehen und sogar ein neues Fenster ins Universum zu öffnen.

Die Daten-Analyse von GWs ist dabei die große Herausforderung.

In dieser Thesis präsentiere ich zwei Arbeiten über Daten-Analyse

für LISA. In der ersten Arbeit führen wir einen ausgedehnten multi-

modalen genetischen Algorithmus ein, der die Eigenschaften des Sig-

nals und der Detektor- Response- Funktion verwendet, um die Daten

der MOCK-LISA-Data- Challenge zu analysieren. Wir haben alle fnf

Quellen, die in den Daten vorhanden waren, gefunden und die Zeit der

Verschmelzung, die Chirp-Masse, das Massenverhältnis und die Him-

melsrichtung mit vernünftiger Genauigkeit detektiert. Genauso wie

für den gemeinsamen Drehimpuls und die beiden Spins der Schwarzen

Löcher haben wir eine große Zahl von weit separierten Moden im Pa-

rameterraum mit ähnlichen maximalen Likelihood-Werten gefunden.

Die Effizienz der Methode ist vergleichbar, wenn nicht besser, als bere-

its existierende Methoden. In der zweiten Arbeit führen wir ein neues

phänomenologische Wellenformmodell ein für EMRI Systeme (zwei

Schwarze Löcher mit extremem Massenverhältnis). Diese Wellenform

besteht aus einer Menge von Harmonischen mit konstanter Ampli-

tude und sich langsam ändernder Phase, die wir in eine Taylor-Reihe

zerlegen. Wir benutzen diese phänomenologische Vorlage, um das



Signal in den simulierten Daten zu detektieren und dann unter der

Annahme eines speziellen EMRI-Modells die physikalischen Parame-

ter des Binärsystems mit hoher Genauigkeit abzuschätzen. Die Resul-

tate zeigen, dass unsere phänomenologische Wellenform sehr praktisch

ist für die Daten-Analyse von EMRI Signalen.
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Chapter 1

Introduction

1.1 Basis of gravitational radiation

In general relativity (GR), gravity is equivalent to the curvature of the space

time. The changes of the gravitational field can be treated as the ripples in

the curvature, in other words: gravitational waves (GW). The principle within

GR of nothing travels faster than light means that these changes can not be felt

everywhere instantaneously, the GWs should propagate at exactly the same speed

as vacuum electromagnetic waves: the speed of light.

GR is a nonlinear theory and there is, in general, no sharp distinction between

the part of the metric that represents the waves and the rest of the metric. Only in

certain approximation such as: linearized theory, small perturbation of a smooth,

time-independent background metric, we can clearly define gravitational radiation

Maggiore [2007].

We follow the description of linearized theory as in Maggiore [2007]; Misner

et al. [1974], and the Newton constant G and speed of light C are set to be 1.

The linearized theory is a weak field approximation to GR. The filed equations

are written and solved in a flat space time background. The weak filed can be

treated as a small perturbation on the flat space time, and its metric tensor can

be written as

gαβ = ηαβ + hαβ, |hαβ � 1|, α, β = 0, · · · , 3 (1.1)

1



where ηαβ is the Minkowski metric, and hαβ is perturbation. Linearized theory is

an approximation to GR, and is correct to first order in the case of this pertur-

bation. There is considerable coordinate freedom in the components hαβ, and it

is called ”gauge freedom”.

We use this freedom to enforce the harmonic gauge

hαβ ,β = 0. (1.2)

In this gauge, the Einstein field equations can be written as

[∇2 − ∂2

∂t2
]hαβ = (source), (1.3)

where ”(source)” represents the various energy densities and stresses that can

create the field. Tensor hαβ is symmetric, so it has ten independent components,

and the harmonic gauge applies four independent condition for these, reducing

the freedom to six Maggiore [2007].

In the region far away from the source, the GWs can be treated as propagating

in the vacuum spacetime, the field equations in that region are source free. For

linearized Einstein equation in vacuum, the Lorentz gauge does not fully fix the

coordinate. In fact if we perform another infinitesimal coordinate transformation

(xµ → xµ) + ξµ with ξµ ,ν = O(h), and impose �ξµ = 0, the Lorentz gauge is

remained. We can use this freedom to demand :

hα0 = 0 there are no time components,

h k
k = 0 spatial components are trace free. (1.4)

These conditions are called the transverse-traceless (TT) gauge. The compo-

nents of the metric perturbation in TT-gauge are found by using the projection

P:

hTTjk = PjlhlmPmk −
1

2
Pjk(Pmlhml), (1.5)

2



Figure 1.1: Two polarization of GWs. The left picture show the effect on proper
separations of particles in a circular ring due to a plus-polarized wave traveling in
the perpendicular direction. The right picture show the case in a cross-polarized
wave. The ring continuously gets deformed into one of the ellipses and back during
the first half of a gravitational wave period and the same effect of deformation in
the other orthogonal ellipse and back during the next half period.

or in matrix notation

hTT = PhP− 1

2
PTr(Ph), (1.6)

where the projection operator P is determined by the wave vector ~k of GW

according to Pij = δij − kikj/k2, and δij are the Kronecker symbol.

Under the TT gauge there are only two independent polarizations out of the

original ten. This means that the spatial components of the metric perturbation

are determined by two functions h+ = hTTxx = −hTTyy , h× = hTTxy = hTTyx . These two

(physical) degrees of freedom are the two polarizations of gravitational waves.

Let us consider the effect of GW on the test mass in the transverse plane,

if a wave increases the proper distance between two free masses that lie along

a given direction, it will simultaneously decrease the distance between two free

masses lying along the perpendicular direction in the transverse plane. This is

illustrated in the Figure 1.1.

3



1.2 GW detection

Since the prediction of the existence of GW, the detection of GW has been a

big challenge. In 1974, the first indirect proof came from a systematic survey

of the pulsar PSR 1913+16, (or Hulse-Taylor binary system) at the Arecibo

observatory in Puerto Rico Hulse & Taylor [1975]. The shirking of the binary

orbit and decreasing of the orbital period imply the loss of the energy. In late

1970s and early 1980s, Damour demonstrated that this should be corresponding

to the emission of gravitational radiation. That is to say, the GWs is really exist,

they carry away the system’s energy and orbital angular momentum. Although,

it is not the direct detection of the GW, this brilliant work was awarded the

Nobel prize in 1993, ”for the discovery of the new type of pulsar, a discovery that

has open up new possibilities for the study of gravitation ” Hulse [1994]; Taylor

[1994].

GWs manifest themselves as time varying tidal force as we discussed at the

end of section 1.1. The strength h of the GW is measured by the relative change

of the distance between test masses Misner et al. [1974].

δL

L
=
h

2
, (1.7)

where L is the distance between the test mass before GW is coming, δL is the

change of this distance when the GW arrived. The problem is, nearby the Earth,

even for the most intense evolution of the celestial bodies, the strength of GW can

be extremely small which is around 10−21 or much smaller. Equation (1.7) implies

that for measurements need the large L, also need to reduce all the environmental

influence. There are ground based that are already in operation and space borne

detectors are planed in the near future.

1.2.1 Ground base detectors

There are two kind of ground based detector: resonant-mass detectors and laser

interferometers.

The resonance bar detector was firstly designed by Joseph Weber in late 1960s

Weber [1967]. These detectors are constituted by a large aluminium bar, which is

4



put in the vacuum environment to shield from the earthquake and other acoustics

noise, and it is cooled to low temperature to reduce the thermal noise. The

detectors are equipped with transducers that monitor the complex amplitudes

of one or several of the bar’s vibrational modes. A passing gravitational wave

changes these amplitudes due to its frequency content near the normal mode

frequencies. The frequency band of bar detectors are very narrow, its bandwidth

is only a few Hz around center-frequencies in the kHz range and the sensitivity

is around h = 10−19 Sathyaprakash & Schutz [2009].

The laser interferometer detector was suggested in the middle of 1970s G.E. Moss

[1971]; M.E. Gertsenshtein [1963]; Pirani [1956]. It is Michelson interferometer

with two orthogonal Fabry-Perot laser cavities. When there are no GWs, the laser

frequency is exactly the resonance frequency of the cavity. The outputs from the

two cavities can cancel each other. When the GW comes through the detector,

the changing length of the cavity change the original resonance frequency, this

cause a phase difference between two arms. They can not cancel each other, lead

to a signal which appears at the output photodiod. The longer the armlength

of the cavity, the more sensitive the detector is. Currently used arm length is

several kilometers which leads to the best sensitivity around h = 10−22. The

noise of the ground based interferometer detector compose mainly from the seis-

mic noise, thermal noise of the mirrors, shot noise from the laser. The existing

detectors are, two LIGO in USA Abramovici et al. [1992], Virgo (joined French

and Italian project) Bradaschia et al. [1990], GEO600 (joined German and UK

project) Danzmann et al. [1994] and TAMA in Japan. These detectors are op-

erating within frequencies 30Hz − 2kHz. Currently, most of these detectors are

under upgrade.

1.2.2 Space detector

Laser Interferometer Space Antenna (LISA) was design jointly by NASA and

ESA in 1990s as GW detector in space Danzman et al. [1998]. Due to financial

problem on both side of Atlantic this project was not realized and the partnership

was broken in 2011. There is a fundamental difference between LISA and the

ground-based interferometers: LISA will search for the distinctively low-frequency
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Figure 1.2: The constellation of LISA. The center of this LISA constellation
moves around the Sun in an earth-like orbit (R = 1AU), 20◦ behind the Earth.
The constellation plane is inclined by 60◦ to the ecliptic. The triangular constel-
lation revolves around its center as it completes one orbit in the course of one
year.

(milli-hertz) gravitational waves which will never be detectable by any ground

based detectors. LISA is a space-borne implementation of a Michelson laser

interferometer with the purpose of measuring the fluctuations in the distance

between widely separated test masses. They are arranged to be floating almost

freely in the center of the spacecraft by using the ”Drag-free control” technique.

This technique protects the test masses from the external disturbances such as

solar wind, only gravitational waves would perturb their relative motion. The

Figure 1.2 show the orbit of LISA constellation LISATeam [2000].

The constellation of LISA is comprised of three spacecrafts which are free

flying and arranged in an approximately equilateral triangle. Each spacecraft

exchange laser signals with two adjacent spacecrafts. The separation between

any two spacecrafts is L = 5 × 109m. As a single entity, the guiding center of

the three spacecrafts lies on the Earth orbit, trailing 20◦ behind the Earth. The

plane of the triangle is inclined to the ecliptic plane. As viewed from the Sun, the
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constellation appears to rotate clockwise around the guiding center, in a so-called

”reverse cartwheel” motion Danzman et al. [1998]; LISATeam [2000].

Each spacecraft moves on elliptical Keplerian orbits with semi-major axis

approximately the same as the Earth’s orbital radius R, eccentricity of e =

L/(2
√

3R) and inclinations of ι = e
√

3. The shape of the constellation is not

perfectly stable, and the arm lengths will slowly change in time. The maximum

change in arm lengths is only a few percent, but this will have important conse-

quences in the performance of the interferometry.

Inside each craft, there are two optical systems responsible for sending and

receiving laser signals with adjacent spacecraft. Each optical bench contain a 30

cm Cassegraine telescope which is used for exchanging of laser signal between

spacecrafts. The proof mass is cubic in shape, and made of an alloy of gold and

platinum, chosen to reduce the magnetic susceptibility. The noise of LISA can

be mainly divided into two types: acceleration noise and position noise. The

acceleration noise is due to forces (or accelerations) acting on the proof masses,

such as thermal deformation, remanent gas impacts on proof mass etc. The

position noise contain the shot noise, laser frequency noise, and the instability of

the laser beam orientation. The three crafts constitute three separated, but not

independent interferometers. Every two interferometer share one arm , so, the

noise in them are not independent.

Compared to the ground base detector, the space mission operates in the

low frequency band 10−4Hz ∼ 10−1Hz. The Figure 1.3 is the LISA threshold

sensitivity curve which shows the typical strength and various GW sources Larson

[2005].

eLISA project was recently suggested to replace LISA, as a potential low-cost

alternator Amaro-Seoane et al. [2012a]. All the methods presented in this thesis

are applicable to any space borne detectors. The only difference is on the event

rate and on the expected strength of the signals.
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Figure 1.3: LISA sensitivity curve. The red line is the instrumental threshold
corresponding to sources with SNR = 1. The yellow region which is below the
instrumental threshold embody the strength of the noise. Above the red line,
it is the LISA discovery space. The broad areas marked indicate what types of
sources are expected to populate each region of the discovery space.
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1.3 The GW sources

1.3.1 The Source for The Ground Base Detector

The main sources for the ground base detector are: the burst signal from the

supernova collapse; the coalescence of the binary black holes; slightly deformed

spinning neutron star; the inspiral of neutron star-neutron star binaries; and

neutron star black hole binaries; stochastic background of GWs from the early

Universe evolution. Since our work is related to the space detector, we will not

discuss further these sources, the details can be found in Cutler & Thorne [2002].

1.3.2 The Source for LISA

The main GW sources for LISA are Galactic white dwarf binary systems, super

massive black hole binaries, extreme or intermediate mass ratio inspiraling sys-

tems, stochastic GW background LISATeam [2000]. The following subsections

will explain them in details respectively.

1.3.2.1 Galactic binaries

Galactic binaries will populate the whole frequency band of the LISA detector

Amaro-Seoane et al. [2012a]; LISATeam [2009]. The most common sources are

white-dwarf / white-dwarf (WD/WD) binaries emitting gravitational wave sig-

nals of nearly constant frequency and amplitude. There are detectable known

sources from electromagnetic observation, for example the shortest-period inter-

acting binaries HM Cnc (RX J0806.3+1527), V407 Vul, ES Cet and the recently

discovered 12 minutes period detached system SDSS J0651+28 Amaro-Seoane

et al. [2012a]; Brown et al. [2011], There are also some interacting systems, such

as AM CVn stars, a white dwarf (WD) that accretes from a low-mass helium-star

companion; the known detectable example is RXJ1914+245: a 0.07M� helium

star is orbiting a 0.6M� WD at 100pc from Earth. For interacting systems, the

radiation reaction competes with tides and mass transfer, and the orbital period

can either increase or decrease. The case of increase in frequency, which is ex-

pected for high-frequency sources, is a consequence of the inevitable inspiral of

binaries due to loss of the orbital energy and angular momentum Marsh [2011];
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Racine et al. [2006]; Stroeer & Nelemans [2009]. In some systems the second

derivative of the frequency will be measurable, and this extra information can be

used to disentangle the various mechanisms that drive the frequency evolution.

It has been estimated that interacting systems will contribute 13% of the total

galactic binary signal at around 1mHz, with the contribution rising to 26% at

10mHz LISATeam [2009]. The total number of detectable binary sources can be

around 20000 Blaut et al. [2010]; Crowder & Cornish [2007].

From data analysis perspective, galactic binary systems fall into three cate-

gories: Resolved Systems, Verification Binaries, and the Confusion-limited Fore-

ground.

The majority of the resolvable systems will be found above 3mHz. This is

because LISA’s resolving power increases with frequency, and the number density

of sources decreases with frequency Bender & Hils [1997]; Hils & Bender [2000];

Hils et al. [1990]. It has been estimated that LISA will resolve 103 to 104 individual

with one year of observations Arnaud et al. [2007a]; Babak et al. [2008a,b, 2010];

Bender & Hils [1997]; Nelemans [2009]; Nelemans et al. [2001, 2009].

Verification binaries are already mentioned above, those are the systems which

are known from previous astronomical observations. We know sky positions and

approximate periods, distances, and masses for many of these sources. Observa-

tion of these known binaries will provide a check of the operation of the instrument

Stroeer & Nelemans [2009].

The resolvable binaries are just the tip of the iceberg. There are about 108−109

galactic binaries with GW frequencies f > 0.1mHz Ruiter et al. [2010]. Majority

of them can not be resolved individually, so they constitute a source of ”confusion

noise” that will dominate over the instrumental noise at 10−1Hz− 10−3Hz. The

confusion background is characterized as a source of noise which must be taken

into account when we are considering observations of other sources of gravitational

waves.

The signals from galactic binary are the simplest and best understood of all

the LISA sources. The orbital velocity is much less than the speed of light, and the

emitted signals are expected to be very accurately modelled by low-order Post-

Newtonian waveforms Arnaud et al. [2006b]. The waveform depends on a number

of parameters, some of which are intrinsic to the source, like the frequency f at
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which the signal is emitted, and rate of change of this frequency ḟ , the constant

amplitude, and the inclination of the orbital plane of the binary to the line of

sight.

1.3.2.2 Spinning super massive black hole binaries

The existence of super massive black holes (SMBH) with masses ranging from

105M� to 109M� in majority of galactic centers is confirmed by several observa-

tions (see Ferrarese & Ford [2005] and reference therein) with the SMBH in our

Galaxy, SgrA* Schodel et al. [2002] being the best example. Mergers of galaxies

are common events in the Universe, it is believed that each galaxy has had at least

one merger event during its life. During these mergers, the SMBH of each galaxy

is driven to the center of the remnant full of stars and gas via dynamical friction

Callegari et al. [2009]. The pairs of SMBH separated by about kiloparsec are

observed in some active galactic nuclei such as NGC6240 Komossa et al. [2003],

Arp299 Ballo et al. [2004], ESO509-IG066 Guainazzi et al. [2005], Mrk463 Bianchi

et al. [2008] and J100043.15+020637.2 Comerford et al. [2009]. The interaction

with the gas disc can bring the binary on a tighter orbit down to a few parsecs in

a reasonable amount of time (few Myr) Dotti et al. [2009a]. There are few can-

didates of SMBH binaries on the sub-parsec scale: the quasars OJ287 Valtonen

et al. [2008] (∼ 0.05 pc) and SDSSJ092712.65+294344.0 Bogdanovic et al. [2007];

Dotti et al. [2008](∼ 0.1-0.3 pc). To overcome the last parsec separating the

SMBHs and bring them to the efficient gravitational wave (GW) driven inspiral

several scenario have been proposed. Here are few possibilities: rotation of the

merging galaxies and triaxial potential Berentzen et al. [2008], processes involving

gas Cuadra et al. [2008], resonant relaxation Hopman & Alexander [2006], mas-

sive perturber Perets & Alexander [2007], young compact stars cluster McMillan

& Portegies Zwart [2003], effect from IMBH Portegies Zwart et al. [2005], etc.

When the separation is less than 10−3 pc, the binary evolution is efficiently driven

by the gravitational radiation and can reach the coalescence in less than 109 years.

Due to a very high signal-to-noise ratio (SNR) (The definition of SNR will

given in the section of data analysis), the GWs emitted by the SMBH binary at

the end of the inspiral phase will be the strongest source and detected by the
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future space born mission LISA. The merger of two super massive black holes

(SMBHs; 104 ∼ 107M�) at z = 1 could be seen with SNR of thousands. It is at

least 10 times greater than we can expect with the ground based detectors.

The rate estimate for LISA’s SMBH mergers in the range 10−1−102 per year.

Even if the coalescence rate is only 0.1/yr, then LISA should still see ∼ 3 BH/BH

binaries with 3000M� . M . 105M� that are ∼ 30 years away from their final

merger. Because of the high SNR of the SMBH-merger, LISA could detect such

mergers beyond z = 20.

It is believed that almost all the SMBHs are spinning, so spin-spin and spin

orbital interaction adds complexity to the signal. However the predictions for

the magnitudes and directions of the spins of SMBHs in the binary systems

differ largely depending on the models, the environment of the binary and the

physical processes involved (coherent accretion, alignment of spins with the gas

disc Bogdanovic et al. [2007]; Dotti et al. [2009b]; Perego et al. [2009], sequence

of randomly oriented accretion events King et al. [2008], etc).

The SMBH could have significant spin as a result of two physical processes.

One is the coherent accretion, the gas falls onto black hole from a massive ac-

cretion disk, and transfer the angular momentum to black hole causing spin up.

This process could last a long time. The other case is a result from the merger of

two spinning MBHs with aligned spins. During the evolution, the spins alignment

could happen when the binary system have circum-nuclear disk which causes this

alignment of spins with angular momentum of a disk.

Several techniques to measure the spins using electromagnetic radiation Bren-

neman & Reynolds [2006]; Murphy et al. [2009] have been proposed, but uncer-

tainties are still very large. The gravitational wave observations of SMBH binaries

with LISA should enable us to measure masses and spins of SMBHs in the binary

with unprecedented accuracy Lang & Hughes [2006]. The knowledge of spins

could give us a lot of information about the kick velocity of remnant SMBH,

the engines of active galactic nuclei, the mechanisms involved in galactic centers,

etc. Finally, the spin measurements combined with a precise estimation of masses

and sky position made with LISA will increase our understanding of the origin

of SMBHs, the galactic evolution, the galactic center, cosmology, etc.

The gravitational wave signal from the SMBH binaries can be conventionally
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split into three parts: inspiral, merger and the ringdown. The inspiral part

of the waveform is also referred to as a chirp. Due to the loss in energy and

angular momentum, its amplitude and frequency increase when the two body

spiral toward to each other. The signal depends on masses, source’s location on

the sky and inclination of the orbital plane to the line of sight. The duration of

the inspiral in the LISA’s band decreases with increasing of the total mass. For a

fixed total mass, the duration is longer for unequal mass binaries: t ∼M−5/3η−1.

Here, M = m1 + m2 is the total mass, and η = m1m2

M2 is the symmetric mass

ratio. If SMBHs are spinning, then spin-spin and spin-orbital interactions will

cause both amplitude and phase modulation of the signal. The merger (i. e., the

last few cycles of the orbital evolution) of two compact objects and the associated

final burst of gravitational radiation is a broadband signal of a very short duration

Kesden et al. [2010]; Schnittman [2007]; Schnittman & Buonanno [2007]. This

part of the signal is very strong and could be detected alone Babak et al. [2010];

Baker et al. [2007].

The merger is followed by a ”ringdown” of the final black hole, through which

it loses its initial distortions to become a stationary Kerr black hole. If the

final mass of the black hole is greater than ∼ 106M�, the SNR from this phase

(103 − 104) will outshine the inspiral and merger of the system.

In the case of low total mass (less than 105 solar masses), the ringdown signal

falls outside the LISA band or has a low SNR. In the case of large total mass

of binary system ( more than few million solar masses), the ringdown signal lies

in the LISA band, and give significant SNR (comparable or larger than the SNR

from the inspiral signal), therefore they could be detectable by LISA (Berti et al.

[2006]).

The ringdown signal consists of a superposition of quasi-normal modes where

each mode has a complex frequency, whose real part is the oscillation frequency

and whose imaginary part is the inverse of the damping time. The damping time

is uniquely determined by the mass and angular momentum of the newly born

black hole. Because of the nature and the strength of the sources, there will be

almost no confusion between multiple MBHB signals in the same data stream,

making them the cleanest sources that we have to deal with Amaro-Seoane et al.

[2012a]; Cornish & Porter [2007].
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1.3.2.3 Capture of the compact stellar mass by the super massive

black hole

SMBHs in the centers of galaxies regularly capture objects from the clouds of

stars surrounding them. Many of these capture happened when the compact

body have, by chance, been deflected onto orbits close enough to the SMBH,

due to the loss of the energy by the gravitational radiation, the compact body is

placed into a bound orbit Gurkan & Hopman [2007]; Hopman & Alexander [2006];

Ivanov [2002]. The other mechanics of capture is the tidal effects: compact-

object binaries that have come too close to the hole and been disrupted by tidal

forces Miller [2004]. The resulting compact objects (neutron stars, black holes,

white dwarfs) would then survive as point-like objects orbiting the central hole

until their losses to gravitational radiation send them across the horizon. They

would radiate waves in the LISA band for a long time, many of them emitting

approximately 106 cycles or more of radiation before falling into the hole. These

objects are interesting because they tell us about the astrophysics of the stellar

populations near central galactic black holes and describe the geometry of space

time around massive black holes with unprecedented precision. A review of the

sources, the astrophysics, and detection of EMRIs using LISA can be found in

Amaro-Seoane et al. [2007, 2010].

There are two principal kinds of systems: EMRIs and IMRIs. EMRIs are

Extreme Mass Ratio Inspiral sources, where the mass ratio is 10−4 or smaller,

the typical expected system is a stellar black hole with a mass of 10M� falling

into a 106M� supermassive black hole. IMRIs are Intermediate Mass Ratio In-

spiral sources, where the ratio is somewhat larger, between 10−4 and 10−2. The

inspiraling object here is expected to be an intermediate mass black hole, such as

remnant of the first generation of star formation (Population III) Miller [2004].

The canonical expected source in the LISA band is an intermediate-mass black

hole with a mass of 103M� falling into a 106M� supermassive black hole.

The event rates for EMRIs are not well known. It is shown (relying in part on

simulations of star-cluster evolution around a SMBH by Freitag [2001] ) that the

detection rate is likely to be dominated by ∼ 10M� BH’s spiraling into ∼ 106M�

SMBH’s Cutler & Thorne [2002]; Gair et al. [2004, 2010]. SMBH’s ∼ 106M�
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are likely to have larger relaxed stellar cusps around them than either smaller

or bigger BH’s; coincidentally 106M� being the optimum SMBH mass for LISA.

And while inspirals of ∼ 10M� BH’s probably have a smaller space density than

inspirals of ∼ 1.4M� NS’s, because of their larger SNR, they can be detected

throughout a volume that is (
√

10/1.4)3 ∼ 20 times larger. The estimated inspiral

rate for ∼ 10M� BH’s is ∼ 1−10/yr out to 1Gpc Sigurdsson & Rees [1996], where

the S/N’s would be ∼ 60 to ∼ 200 if optimal signal processing is applied

The frequency of EMRI and IMRI signals is determined by the mass of the

central black hole, but the amplitude is determined by the mass of the infalling

object. This is because the square of the SNR for signals will be proportional

to the total energy radiated, which is expected to be around 6% of the mass of

the infalling object. The SNR of a ”standard” EMRI consisting of a 10M� black

hole falling into a 106M� black hole, observed during its whole transit through

the LISA band, will be of order 30 if the source is at red shift z = 1.

An IMRI event generated by an infalling 103M� black hole will be correspond-

ingly stronger, visible with similar SNR out to z = 20. Rate estimates are very

uncertain. LISA has unique opportunity for a first discovery of an IMBH.

The waveforms are quite complex. If the source object falls toward a spinning

Kerr black hole from a direction not in the equatorial plane, it will move along a

complex three-dimensional orbit Barack [2009]. To lowest order the orbit will be

a geodesic, but we must take into account the first-order effects of the object’s

mass and spin, which cause the orbit to evolve and eventually to force the object

inside the horizon Poisson et al. [2011]. The phase evolution of the radiation from

such an orbit contains detailed information about the trajectory of the radiating

object, and hence about the geometry of the space time. The amplitude of the

signal coupled with its phase evolution contains enough information to estimate

its luminosity distance. In order to understand the expected waveform as well

as possible, we need to solve equations of motion of a small object on a Kerr

background, with corrections at least to first order in the mass and spin of the

object.

The gravitational field of the compact body interacts with the background

which results in the so called self force. The orbit of the compact body is not the

geodesic motion in the background space time anymore, the compact body spirals
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toward the central black hole under the action of the self force. Inspiral proceeds

until the compact body plunges into the central black hole. In the chapter 4,

there is a detailed description of the self force.

For EMRIs the mass ratio is small enough that the first-order perturbation

analysis might be valid over the entire orbit. Even so, this is a challenging theoret-

ical problem in general relativity, it has attracted considerable attention during

the last ten years Barack [2000, 2001]; Barack & Burko [2000]; Barack & Ori

[2000, 2003]; Barack & Sago [2007, 2010, 2011]; Barack et al. [2002, 2007]; Drasco

& Hughes [2004]; Glampedakis & Kennefick [2002]; Hughes [2000, 2001]; Sago

et al. [2008]; Sundararajan et al. [2007, 2008]; Warburton et al. [2012]. It is

now known in principle how to solve the problem, and researchers are currently

developing implementations that will allow efficient computations of predicted

waveforms Babak et al. [2007]; Barack et al. [2010]; Barausse & Rezzolla [2008];

Carlos F. Sopuerta [2011, 2012]; Yu & Jeffery [2010]; Yunes et al. [2011]. For

IMRIs it may be necessary to supplement perturbation theory with numerical in-

tegrations or post-Newtonian approximations in order to get a complete predicted

orbit. A feature of EMRI and IMRI signals is the very large parameter space (17

dimensions, some of them very densely sampled) that characterizes them. The

emitted waveform depends on the masses and spins (three-dimensional) of the

central hole and the infalling object and on the orientation and eccentricity of

the orbit. The orientation of infalling object’s spin and eccentricity of the orbit

will change with time. In addition, the received signal is modulated in phase and

amplitude by LISAs motion around the Sun.

A remarkable fact about EMRIs is the high number of harmonics contributing

to the GW emission. This reflects in detail the near-geodesic orbits they follow

around the central black hole; while the orbits in turn map the space-time Ryan

[1995]. The phase evolution of a signal from a compact object in a pure Kerr

geometry allows to look for deviations from the geometry predicted by general

relativity, thereby testing one of the most fundamental theorems of Einstein’s

theory, that black holes are uniquely determined by their mass and their angular

momentum. This means that EMRI provide information about the geometry

of the SMBH in strong field region, and allow to test certain aspects of general

relativity, astrophysics , cosmology to high precision Amaro-Seoane et al. [2007].
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1.3.2.4 Stochastic GW background

In addition to radiation from discrete sources, there should be a stochastic GW

backgrounds which potentially might be also detected by LISA. Several mecha-

nisms producing stochastic GW in early Universe are proposed, such as, inflation

after the Big Bang, first order phase transition of quantum field, excitation of our

universe as a membrane in higher dimension, the cosmic strings. The detail of

these sources can be find in Amaro-Seoane et al. [2012a]; Cutler & Thorne [2002];

LISATeam [2000, 2009].

1.4 Gravitational waves data analysis

The objective of the gravitational waves data analysis is to reconstruct as well

as possible the incoming gravitational wave. Due to the present of the noise, the

problem of extracting the signal from the data is a statistical one. The basic idea

behind signal detection is that the presence of the signal changes the statistical

characteristics of the data, in particular its probability distribution. Facing the

long time observational data, what we need to do is using the statistic inference

method to find whether the signal is present or not, and how does the signal looks

like.

1.4.0.5 Hypothesis Test

In this subsection, we following the results from Jaranowski & Krolak [2005].

The problem of detecting the signal in the noise can be posed as a statistical

hypothesis testing. A signal can be detected with only a certain probability

called the detection probability. In statistic realm, this belong to a statistical

hypothesis testing problem.

The null hypothesis H0 is that the signal is absent from the data and the

alternative hypothesis H1 is that the signal is present. A hypothesis test (or

decision rule) δ is a partition of the observation set into two subsets, R and the

rest is R′. If data are in R, we accept the null hypothesis, otherwise we reject

it. There are two kinds of errors that we can make. A type I error is choosing

hypothesis H1 when H0 is true and a type II error is choosing H0 when H1 is
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true. In signal detection theory the probability of a type I error is called the false

alarm probability, whereas the probability of a type II error is called the false

dismissal probability.

For given data, in order to determine which hypothesis we should choose, we

need to assign the costs to our decision. With the introduced positive number

Cij, i, j = 0, 1 where Cij are the cost incurred by choosing hypothesis Hi when

Hj is true, we define the conditional risk R for each hypothesis:

Rj(δ) = C0jPj(R) + C1jPj(R
′), j = 0, 1, (1.8)

where Pj is the probability distribution of the data when Hj is true. Next, with

the assign probabilities π0 and π1 = 1− π0 to the occurrences of H0 and H1, the

Bayes risk as the overall average cost incurred by the decision rule is:

r(δ) = π0R0(δ) + π1R1(δ). (1.9)

Then, we define the Bayes rule as the rule that minimizes the Bayes risk r(δ).

If we are not able to assign priors to various hypotheses, then we seek a

decision rule that minimizes, over all δ, the maximum of the conditional risks,

R0(δ) and R1(δ). A decision rule that fulfills that criterion is called a minimax

rule.

The imposition of a specific cost structure on the decisions is also not possible

or desirable. The Neyman-Pearson approach involves a trade-off between the

two types of errors that one can make in choosing a particular hypothesis. The

Neyman-Pearson design criterion is to maximize the power of the test (probability

of detection) subject to a chosen significance of the test (false alarm probability).

It is remarkable that all three very different approaches Bayesian, minimax,

and Neyman Pearson lead to the same test called the likelihood ratio test. The

likelihood ratio Λ is the ratio of p1 and p0:

Λ(x) =
p1(x)

p0(x)
. (1.10)

18



where p1 is the probability density functions when the signal is present, and p0

is the probability density functions when the signal is absent. We accept the

hypothesis H1 if Λ > k, where k is the threshold that is calculated from the costs

Cij, priors πi or the significance of the test depending on which approach is being

used.

1.4.1 Matched filter

Matched filtering is a data analysis technique that efficiently searches for a signal

of known shape buried in the noisy data Helstrom [1968]. This technique consists

of correlating the noisy output of each interferometer data with a set of theoretical

waveform templates. Following the description in Maggiore [2000], we use s(t)

to denote the detector output, which is assumed to consist of a stationary noise

n(t) and a gravitational wave signal h(t).

s(t) = h(t) + n(t). (1.11)

The Fourier transform of a function x(t) will be denoted x̃(f) and is defined

as

x̃(f) =

∫ ∞
−∞

x(t)e2πiftdt. (1.12)

The autocorrelation function of the noise n is defined as

Cn(t, t′) = E[n(t)n(t′)], (1.13)

where E denotes the expectation value. Let us further assume that the detector’s

noise n is a zero-mean and Gaussian random process.

For stationary noise, its autocorrelation function depends on times t and t′

only through the difference t−t′. It implies that there exists then an even function

κn of one variable such that

E[n(t)n(t′)] = κn(t− t′). (1.14)
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Spectral properties of stationary noise are described by its one-sided spectral

density, defined for non-negative frequencies f ≥ 0 through relation

Sn(f) = 2

∫ ∞
0

κn(t)e2πiftdt. (1.15)

The spectral density Sn can also be determined by correlations between the

Fourier components of the detector’s noise

E[ñ(f)ñ∗(f ′)] =
1

2
Sn(|f |)δ(f − f ′), −∞ < f, f ′ <∞. (1.16)

A natural inner product between any two waveforms x and y is defined as

(x|y) = 4R

∫ ∞
0

x̃(f)ỹ∗(f)

Sn(f)
df, (1.17)

for the case of stationary noise with one-sided spectral density Sn, where R

denotes the real part of a complex expression, and the asterisk is complex conju-

gation.

Let us show that the matched filtering define an optimal detection statistic.

Define :

ŝ =

∫ ∞
−∞

s(t)K(t)dt, (1.18)

where K(t) is called the filter function. The SNR is defined as S/N , where S is

the expected value of ŝ when the signal is present, and N is the rms value of ŝ

when the signal is absent. Since < n(t) >= 0,

S =

∫ ∞
−∞

< s(t) > K(t)dt =

∫ ∞
−∞

h(t)K(t)dt =

∫ ∞
−∞

ĥ(f)K̂∗(f)df, (1.19)

N2 = [< ŝ2(t) > − < ŝ(t) >2]h=0 =

∫ ∞
−∞

1

2
Sn(f)|K̃(f)|2dt, (1.20)
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and therefore

S

N
=

∫∞
−∞ ĥ(f)K̂∗(f)df

[
∫∞
−∞

1
2
Sn(f)|K̃(f)|2]1/2

. (1.21)

We want to find an ”optimal” filter function that would produce, on the

average, the largest SNR. The filter that maximizes equation (1.21) is given by:

K̃(f) = const
h̃(f)

Sn(f)
. (1.22)

The constant is arbitrary, since rescaling ŝ by an overall factor does not change

its signal-to noise ratios. The filter function K̃(f) defines the matched filter. So,

the optimal signal-to-noise ratio is:

S

N
=
√

(h|h), (1.23)

that is (
S

N

)2

= 4

∫ ∞
0

|h̃(f)|2
Sn(f)

df. (1.24)

Generally, the signal model h̃(f) also depends on multiple parameters char-

acterizing the emitting system. We do not know a prior of these parameters, we

need to apply matched filtering multiple times to determine them.

1.4.2 Overlap

In order to determine similarity of two signals in shape, we will define the overlap

between them. By using the inner product defined in equation (1.17), for two

template h1 and h2, we define the overlap as :

O =
(h1|h2)√

(h1|h1)(h2|h2)
. (1.25)
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The overlap is equal to 1 if the two waveforms are identical, and it equals zero

if the two waveforms are orthogonal. The overlap is widely used in finding out

the mismatch between the signal and the model, this will be seen more clearly in

Chapter 4.

1.4.3 Parameter estimation

When we introduced the matched filtering technique, we assumed that the form

of h(t) is know. In practice, h(t) will necessarily depends on a number of free

parameters. Thus, we must consider a family of possible waveforms, or templates,

that we denote generically as h(t, λ), where λ = {λ1, · · ·λN} is the collection

of parameters. How do we recover the most probable value characterizing the

parameters of the source?

The rest of this subsection is mainly based on Jaranowski & Krolak [2005];

Jaranowski et al. [1998]. From the property of the noise, we see that the variance

of the Fourier amplitude of the noise with frequency f is proportional to 1
2
Sn(f),

so the corresponding Gaussian probability distribution for the noise is

p(n0) = N exp

{
−1

2

∫ +∞

−∞

|ñ0(f)|2
(1/2)Sn(f)

df

}
, (1.26)

where N is a normalization constant. This is the probability that the noise n(t),

which is a random Gaussian with zero mean, has a given realization n0(t). In

terms of inner product, it is rewritten as:

p(n0) = N exp{−(n0|n0)/2}. (1.27)

Assume that, the signal is present in the data, i.e. it is of the form s(t) =

h(t;λt) + n0(t), where λt is the (unknown ) true value of the parameters λ. The

likelihood function Λ(s|λt) for the observed output s(t), given the hypothesis that

there is a GW signal corresponding to the parameters λt, is obtained by plugging

n0 = s− h(λt) into equation (1.27),
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Λ(s|λt) = N exp{−1

2
(s− h(λt)|s− h(λt))}

= N exp{(h(λt)|s)−
1

2
(h(λt)|h(λt))−

1

2
(s|s)}, (1.28)

since, we are working at fixed data s, then the term −1
2
(s|s) is constant which

does not depend on λ, and it can be absorbed in the normalization factor N. The

final form of the likelihood function is

Λ(s|λt) = N exp{(h(λt)|s)−
1

2
(h(λt)|h(λt))}. (1.29)

From this expression, we see immediately that the likelihood test is essentially

correlating the data s with the signal h that is present in the noise and comparing

the correlation to a threshold Jaranowski & Krolak [2005]. The λ− space will

in general be a multi-dimensional space of large dimension. For example, for

a binary coalescence the parameters λi that determine the waveform, are the

distance, the source’s location (two angle), the orientation of the normal to the

orbit (two more angle), the initial orbital phase, the two masses of the stars, their

spin, and the spin orientation. Parameters of the signal λ̃ which maximize the

likelihood are called maximum likelihood estimation or estimators.

A rule for assigning the most probable value is called an estimator. It is

a function that assigns to each data set the ”best” guess of the true value of

this parameter. Ideally we would like our estimator to be (i) unbiased, i.e., its

expectation value to be equal to the true value of the parameter, and (ii) of

minimum variance. Such estimators are rare and in general difficult to find. But,

usually, people are more concerned about the estimator being unbiased, that

is why the maximum likelihood estimator is widely used Jaranowski & Krolak

[2005].

The value of λ that maximize Λ(s|λ) defines the maximum likelihood estima-

tor, and we denote it by λ̂(s). It is usually simpler to maximize the log likelihood:

log Λ(s|λ) = (h(λ)|s)− 1

2
(h(λ)|h(λ)), (1.30)
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the value of λ̂ is found by solving the equation

∂(log Λ(s|λ))

∂λi
= 0, (1.31)

that is (
∂h(λ)

∂λi
|s
)
−
(
∂h(λ)

∂λi
|h(λ)

)
= 0. (1.32)

A natural question is what is the relation between λ̂ and the value of λ that

provide the highest SNR in the matched filtering Maggiore [2007]. In fact, they

are the same. To show it, write the template as h(t, λ) = AhA(t, ζ), where A

is a constant amplitude, and is a free parameter, while the normalization of hA

has been fixed. Separate parameters λ into A and the remaining parameters ζ.

The maximization with respect to A of log Λ can be performed analytically. The

maximum likelihood estimate for A

Â(s) =
(hA|s)

(hA|hA)
. (1.33)

Using Â in log λ, we obtain

log Λ(s|η) =
1

2

(hA|s)2

(hA|hA)
. (1.34)

The maximization of this quantity with respect to ζ, amounts to maximizing the

inner product of the s with the normalized template hA/(hA|hA)1/2.

For the strong signals, SNR� 1, the expected errors on parameters could be

estimated by using the Fisher information matrix Jaranowski & Krolak [2005];

Jaranowski et al. [1998]; Vallisneri [2008]. For large SNR, the parameter estima-

tion errors ∆λi have the Gaussian probability distribution

p(∆λi) = Ne−
1
2

Γij∆λ
i∆λj . (1.35)

24



here Γij is the so called Fisher information matrix (FIM) defined by:

Γij =

(
∂h

∂λi
| ∂h
∂λj

)
, (1.36)

and N =
√

det(Γ/2π) is the appropriate normalization factor, and Γ is the de-

termination of Γij. The variance covariance matrix is given by:

< ∆λi∆λj >= (Γ−1)ij. (1.37)

The diagonal elements give the lower bounds on the variances of the esti-

mators of the parameters of the signal and can be used to assess the quality of

astrophysical information that can be obtained from detections of gravitational-

wave signals. The off-diagonal elements tell us the correlation between these

parameters.

1.4.3.1 Algorithm for searching on the parameter space

We have introduced the matched filtering as the optimal technique that maximizes

the likelihood function. But, the complex structure of the signals leads to a large

number of local maxima in the likelihood function which are widely distributed

in the parameter space. Searching for the global maximum in this forest of local

maxima becomes a computationally expensive task. The computational efficiency

of the search for the global maximum is, thus, an important issue in LISA data

analysis. The various search strategies proposed in the GWs literature so far can

be broadly divided into those based on sampling the function on predetermined

grids of points in the parameter space, and those that use stochastic optimization

methods Porter [2009].

In the class of grid-based methods, significant savings in computational costs

have been demonstrated with a hierarchy of grids. A nice feature of grid-based

methods is that they are easy to characterize statistically. Stochastic methods

do not use pre-determined grids but employ some form of pseudo-random walk

through the parameter space. The probabilistic rules of the random walk are

tuned to maximize the chances of its terminating close to the global maximum.
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In general, no matter what kind of stochastic method is used, they should have a

common character: in the early stage, the area of exploration should be as large

as possible, this is to avoid missing the global maximum. With the progress of

the searching, the pseudo random work could have got some information about

distribution of maxima, and then the hunting strategy should be changed to the

local exploration around the best found maxima. Obviously, any kind of local

searching have the same problem: getting trapped into the secondary maxima.

This is especially often happens in the case of large amount of comparable local

maxima which are spread widely in the parameter space.

At present, there are already many algorithms that fall under the class of

stochastic methods: a hybrid of simulated annealing and Metropolis-Hastings

Markov Chain Monte Carlo (MCMC) Cornish & Crowder [2005]; Cornish &

Porter [2006, 2007], Genetic Algorithm Crowder et al. [2006] Petiteau et al. [2010],

Multi-nest Feroz et al. [2009], Particle swarm Optimization (PSO) Wang & Mo-

hanty [2010]. The simulated annealing is widely used in smoothing the likelihood

function surface to help the pseudo random walk to explore larger area in the

likelihood surface. MCMC is a very efficient stochastic process in finding the

local maxima and it also serves for the parameter estimation. Genetic algorithm

and PSO method have similar feature, they are all belong to the population op-

timization. Summary of efficiency of various algorithm for LISA data analysis

is given in Arnaud et al. [2007a]; Babak et al. [2008a,b, 2010], results show that

all of them can have the comparable efficacy which partially depends on the GW

source type.

1.4.4 LISA data analysis and MLDC

In the ground based detectors, the data stream is acquired at rate of several

megabytes per second, and the GW signals which are mainly the transient signals

are buried deeply in the noises. Due to the low SNR, the detection of the signal

is the most important problem Abramovici et al. [1992].

In the case of LISA, the data rate will be 103 times less than from a ground-

based detector, because of the lower frequencies band. The massive data-handling

problems faced by ground-based interferometers will not exist. LISA observes pri-
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marily long-lived sources, and the high SNR imply that making decision between

H1 and H0 is not a problem LISATeam [2000]. The main difficulty is that the GW

signals overlap in time and frequency in the LISA data, so we need to disentangle

them. For each individual signal, we want to recover its physical parameters like

sky location, mass, polarization angle, frequency evolution, etc. as precisely as

possible. All of these make the LISA data analysis a big challenge.

Because the space mission has not been launched, the data is not available

now. In order to develop the data analysis techniques to support the future

mission LISA (or similar), a project named Mock LISA Data Challenges (MLDC)

have been carried out for several years. Since 2006, there have been already 4

rounds of challenge with the increasing complexity which are described in Arnaud

et al. [2007a,b, 2006a,b].

In the first three rounds, each challenge consists of several kinds of 2 year

long data sets Arnaud et al. [2007a, 2006a]. Each simulated data contain one

or several signals from different kind of sources which are constructed by using

various simulators. The noise in the data is simulated as Gaussian colored noise.

Each round contains two separate data sets: the blind challenge data set where

the source parameters are unknown and the training data set with the publicly

available parameters. In the latest round, the data set consists of a single chal-

lenge that includes all the kinds of sources in the same data. The data contain

more than 60 million chirping Galactic binaries, few MBH binaries, several EM-

RIs, number of cosmic-string bursts, an isotropic stochastic background, and of

course instrument noise Babak et al. [2010].

The data was analysed by several groups around the world, the detail of their

work can be found in the series of publications Arnaud et al. [2007a]; Babak et al.

[2008a,b, 2010].

1.5 Structure of the thesis

In chapter 2, we review the basic techniques of GW dada analysis which are

used in LISA project, including: the LISA measurement, TDI technique, LISA

response function, F-statistic.

In chapter 3, I present my published work on searching for spinning black hole

27



binaries in mock LISA data using a Genetic Algorithm Petiteau et al. [2009b,

2010]. Several algorithms for detecting non-spinning MBH binaries in simulated

LISA data have already been demonstrated Brown et al. [2007]; Cornish & Porter

[2007]; Feroz et al. [2009]; Gair & Porter [2009]; Petiteau et al. [2009b]. In our

work, we considered inspiralling spinning MBH binaries and we presented a par-

ticular adaptation of the Genetic Algorithm (GA) to search for GW signals from

those systems. Genetic Algorithms belong to the family of optimization methods,

i.e. they look for extremum. The first application of GA in LISA data analy-

sis was proposed in Crowder et al. [2006] for Galactic binaries. In this method

the waveform template is associated with an organism, and parameters play the

role of the set of genes defining this organism. The logarithm of likelihood ob-

tained with a given template defines the quality of the organism. A set (colony)

of organisms is then evolved through breeding, mutation and custom designed

accelerators with the aim of finding the genotype with the highest quality. This

corresponds to the standard Darwin’s principle: weak perishes, strong survives,

or, translated into the conventional data analysis language: by evolving a set of

templates, we are searching for the parameter set that maximizes the likelihood.

We have applied the GA to the analysis of the third round of mock LISA data

challenge. The mock data set 3.2 consisted of the Gaussian instrumental noise,

galactic background and between four to six signals from the inspiralling spin-

ning SMBH binaries in a quasi-circular orbit Babak et al. [2008a]. We have found

several maxima which are almost equal in value of the likelihood and widely sep-

arated in the parameter space. We search for each such strong maximum, which

we call mode, and then explore it by a designated set of organisms. We refer

to this extension of the standard GA as a multimodal GA. The mutlimodal GA

applied to the blind search has shown an excellent performance: we have de-

tected all present signals with a very accurate estimation of the parameters (were

possible).

In chapter 4, I present my published work Wang et al. [2012] on modeling

of the phenomenological waveform (PW) of EMRI and its application in data

analysis. The signals emitted from EMRIs can be very complex due to the fact

that the inspiraling object explores the metric close to the central black hole

and experiences the full wealth of relativistic effects, which makes it difficult
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and numerically costly to create precise waveforms. In the waveform modeling

for EMRI system, the standard post-Newtonian approximation has the problem

of poor convergence, the numerical relativity has the problem in dealing with

the two extremely different timescale. So, it is more appropriate to employ the

perturbation theory to calculate at least approximate waveform. In the perturba-

tion theory, the inspiralling object can be regarded as a small perturbation to the

known background space-time of the central black hole. While the mathematical

theory of the self-force has been developed in the last decade, the computation of

a full generic inspiral trajectory and a waveform from a particle on that trajectory

is computationally expensive Barack & Sago [2010]; Poisson et al. [2011]; Pound

[2010a,b, 2012]; Pound & Poisson [2008a,b]; Pound et al. [2005].

In our work, we choose the numerical kludge approach as our physical model

of EMRI Babak et al. [2007]. In the adiabatic approximation, at each instant, the

orbit of the compact body can be treated as a geodesic in Kerr space time Drasco

& Hughes [2004]. It can be also labeled by the compact body’s energy, projec-

tion of orbital angular momentum on the spin of SMBH, and Carter constant.

During the inspiral, these three constants of motion change slowly due to the ra-

diation reaction, and the orbit evolves from one geodesic to another Cutler et al.

[1994]; Drasco & Hughes [2006]; Gair & Glampedakis [2006]; Gair et al. [2011].

Based on these, the orbital motion can be described by three fundamental orbital

frequencies fr, fθ, fφ which correspond to the radial, polar, azimuthal motion in-

dependently Schmidt [2002]. Then the phenomenological waveform (PW) can be

constructed by harmonics of these three evolving frequencies with slowly chang-

ing amplitudes. We use the Taylor expansion in time to express the orbital phase

of each harmonics in polynomial form, with the expansion coefficients: initial

phase, frequency, first and higher order derivatives of frequency at some fiducial

moment. The amplitudes and the expansion coefficients of each harmonics are

treated as our phenomenological parameters.

In order to test our waveform model, we first generated the three months

of noiseless data which is represented by the numerical kludge waveform, and

used the standard matched filtering approach to analyse these data. We used

the Markov Chain Monte Carlo (MCMC) method to search the maximum of the

log likelihood surface. Due to the complexity of the waveform, MCMC found a
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large number of local maxima. From these found maxima, we can extract the in-

formation of dominant harmonics by calculating the accumulative log likelihood.

With these found harmonics (in the noiseless case we can find about 13 strongest

harmonics), we can plot the frequency evolution for each of them, and we need to

determine the underlying physical parameters {e, p, ι, a, µ}. For each set of these

physical parameters, we calculated the frequency evolution, then used the stan-

dard χ2 test to assess the match with the found frequency tracks of the dominant

harmonics. In the searching on the physical parameters space, we used two differ-

ent optimization algorithms for searching, one is the particle swarm optimization

(PSO), the other is the genetic algorithm.

In the PSO method, waveform template is treated as a freely moving particle,

with the physical parameters denote its position in the parameter space Wang &

Mohanty [2010]. The essential idea behind PSO is to compute the fitness function

simultaneously at several locations and use these samples to influence the position

of the set of samples in the next iteration. Every particle has a velocity which

is related to the global optimal position and its own historic best position to

determine its direction of moving and the future position. Every particle can

influence other particles by sharing its search information. This process continues

iteratively until some stopping rule is satisfied. The process can be visualized by

treating the sample locations as a swarm of particles that moves in the parameter

space, hence the name of the algorithm.

In the genetic algorithm, as before the waveform template is associated with

an organism, and the physical parameters play the role of the set of genes defining

this organism. The χ2 statistic defines the quality of the organism. A set (colony)

of organisms is then evolved through breeding, mutation in the iterative manner.

Our results showed that, both of these two methods can recover the physical

parameters with errors about 2%−3%. For testing our waveform further, we also

did the same analysis in the noisy data with the Gaussian white noise. The total

SNR of the signal in the data was 50. Due to the influence of the noise, we clearly

found 5 dominant harmonics, and we could still recover the physical parameters

through these five harmonics with the same precision as in the noiseless case.

Finally, in the last chapter, a summary of my work is presented. This part

not only gives a conclusion of my present work, but also highlights the future
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Chapter 2

Basic Techniques of GW data

analysis

2.1 LISA Measurement

In LISA constellation, the six independent signals comprise the primary laser

signals in the three arms that will be used to create the main interferometric

data streams. The basic idea is that you measure the frequency of incoming

signal and compare to the local oscillator LISATeam [2000]. The treatment of

their response to an incident gravitational wave has been shown to be a Doppler

shift in the frequency of the received signal relative to the outgoing signal ∆ν
ν0

by Estabrook & Wahlquist [1975]. Here, νo is the fundamental frequency of the

electromagnetic tracking signal.

It is shown in Cornish & Rubbo [2003]; Sathyaprakash & Schutz [2009], the

detector response to a gravitational wave source located in the ~n direction can be

found using Barycentric coordinates (t, x, y, z) and the transverse-traceless gauge

to describe a plane gravitational wave propagating in the ~k = −~n direction . The

surfaces of constant phase are given by ξ = t+ ~n · ~r, where r is the radial vector.

A general gravitational wave can be decomposed into two polarization states:

h(ξ, ~n) = h+(ξ)e+ + h×(ξ)e×, (2.1)
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where e+ and e× are the polarization tensors associated with these basis vectors

e+ = ~u⊗ ~u− ~v ⊗ ~v,
e× = ~u⊗ ~v + ~v ⊗ ~u. (2.2)

In the SSB coordinate system, the basis vector ~u, ~v and the source location ~n

can be expressed in term of the sky location of the source (θ, φ) according to

~n = sin θ cosφ~x+ sin θ sinφ~y + cos θ~z,

~u =
∂~n

∂θ
= cos θ cosφ~x+ cos θ sinφ~y − sin θ~z,

~v =
∂~n

∂φ
= sinφ~x− cosφ~y. (2.3)

The path length variation for a photon propagating from spacecraft i to space-

craft j is given by

δlij(t) =
1

2

~rij(t)⊗ ~rij(t)
1− ~k · ~rij(t)

:

∫ ξj

ξi

h(ξ)dξ, (2.4)

where ξi,j are the surfaces of constant phase for the spacecraft i and j, and the

vectors ~rij(t) are:

~rij =
xj(tj)− xi(ti)

lij(ti)
, (2.5)

point from spacecraft i at the time of emission ti to spacecraft j at the time of

reception tj. lij(t) is the distance between spacecrafts i and j. The colon here

denote a double contraction ~a : ~b = aijbij.

We can use GW signal in the frequency domain,

h(ξ) =

∫ +∞

−∞
h̃(f)e2πifξdf, (2.6)
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such a decomposition leads equation (2.4) to be

δij(t) = lij(t)

∫ ∞
−∞

D(f, t,~k) : h̃(f)e2πifξdf, (2.7)

where the detector tensor is given by

D(f, t,~k) =
1

2
[~rij(t)⊗ ~rij(t)]T(f, t,~k), (2.8)

and the transfer function is given by

T(f, t,~k) = sinc

(
f

2f ∗ij
[1− ~k~rij(t)]

)
· exp

(
i
f

2f ∗ij
[1− ~k~rij(t)]

)
, (2.9)

here f ∗ij = 1/(2πlij) is the transfer frequency for the arm lij. The transfer func-

tions arise from the interaction of the gravitational wave with the detector.

2.2 TDI technique

LISA will not be a static instrument as compared to the duration of GWs signals.

Each individual spacecraft is on its own independent Keplerian orbit, and is

constantly in motion relative to the other spacecrafts in the constellation. In

Rubbo et al. [2004], the Cartesian coordinates of the spacecraft are given to first

order in the eccentricity by the following expressions

x(t) = R cos(α) +
1

2
eR [cos(2α− β)− 3 cos β] ,

y(t) = R sin(α) +
1

2
eR [sin(2α− β)− 3 sin β] ,

z(t) = −
√

3eR cos(α− β), (2.10)

where R = 1 AU is the radial distance to the guiding center, β = 2nπ/3+λ (n =

0, 1, 2) is the relative orbital phase of each spacecraft, and α = 2πfmt + κ is the

orbital phase of the guiding center. The parameters κ and λ give the initial ecliptic
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Figure 5: A simple naming scheme for construction of TDI observables. Each spacecraft is identified by an arabic numeral,

{1, 2, 3}, and the opposing armlength is identified by the same numeral, {L1, L2, L3}, as indicated. Because the armlengths are

changing in time and the shape is slowly varying, it is often useful to identify the geometric point o, which is equidistant from

each of the three spacecraft. The distance ℓ is usually called the guiding center distance. The inequality of the armlengths

and the distortion of the constellation shape has been greatly exaggerated for clarity.

Michelson TDI combination, which is conventionally given the name X(t) at a single vertex. If the one way light

travel time down arm i is denoted τi = Li/c, then the unequal arm Michelson TDI variable is written in a simple

guise as2

X(t) = s1(t)− s1(t− 2τ2)− s2(t) + s2(t− 2τ1) , (4)

which looks like the standard equal-arm Michelson signal with additional time-delayed bits subtracted off. As

an interferometric technique, TDI takes the measured phase information from each arm, and delays the linear

combinations in such a way as to make the optical path lengths in the two phase signals equal3 [29–31], thereby

creating a situation where particular types of noise cancel out when the beams are differenced.

TDI data streams come in related triples – for any given possible combination (like the example written in Eq.

4), there are two related variables which are obtained by exploiting a well known “permutation symmetry” whereby

the identifying indices are permuted 1 → 2 → 3 → 1. The two companion data streams to X(t) are called Y (t) and

Z(t). Utilizing the permutation symmetry, and starting from Eq. 4 they may be written as

Y (t) = s2(t)− s2(t− 2τ3)− s3(t) + s3(t− 2τ2) (5)

and

Z(t) = s3(t)− s3(t− 2τ1)− s1(t) + s1(t− 2τ3) (6)

Other important TDI triples which appear in the literature are {α, β, γ} (the so-called Sagnac combinations [28]),

and {A,E, T } (the so-called optimal combinations [32]).

2For a full expression of X(t) with geometric factors and time delays written out in full glory, see [28].
3In essence, the TDI combinations synthesize equal-arm interferometric signals, as shown geometrically in [29].

T023

Figure 2.1: Each spacecraft is identified by number, 1, 2, 3, and the opposing arm
length is identified by the same index, {L1, L2, L3}, it is often useful to identify
the geometric point o as guiding center, which is equidistant from each of the
three spacecraft. The distance l is usually called the guiding center distance.

longitude and orientation of the constellation. fm = 1
yr

is the orbital (modulation)

frequency. As a result, the arm lengths are continuously changing in time; the

arms ”breathe” in an oscillatory way as a function of time. The constellation

schematic is shown in Figure 2.1, where each of the three spacecrafts is identified

by a number {1, 2, 3}, and the arm opposite a given spacecraft bears the same

numeric index {L1, L2, L3}.
It is described in Tinto & Dhurandhar [2005] that, in a classic Michelson inter-

ferometer, the two arms have the equivalent armlength. The data is constructed

as the phase difference between the laser signals in two arms, each measured at

the same time t. If the phase of signal arriving along arm Li is denoted by si(t),

the traditional Michelson signal ∆3(t), which is measured at spacecraft 3, can be

written as: ∆3(t) = s1(t) − s2(t). Because the laser propagates along the two

arms and return back to the beam splitter at the same time, the interference of
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the two signals cancels out noise associated with fluctuation in the laser frequency

.

If the armslength are unequal and changing in time, the fluctuations will arrive

back at different time and do not cancel out. Comparing to the magnitude of

the other instrumental noise , the expected noise associated with fluctuation is

several order larger than them. Fortunately, there is way to solve this serious

problem, called time delay interferometry (TDI) J.W. Armstrong & Tinto [1999].

Consider the unequal-arm Michelson TDI combination, which is convention-

ally called X(t). The one way light travel time along the arm i is denoted as

τi = Li/c, then the unequal arm Michelson TDI variable is written as

X(t) = s1(t)− s1(t− 2τ2)− s2(t) + s2(t− 2τ1), (2.11)

which looks like the standard equal-arm Michelson signal with additional time-

delayed bits subtracted off. TDI takes the measured phase information from each

arm, and delays the linear combinations in such a way to make the optical path

lengths in the two phase signals equal. By using this linear combination of the

delayed signals, the particular types of fluctuation noise in the laser frequency

cancel out.

TDI data streams come in related triples for any given possible combination,

there are two related variables which are obtained by exploiting a ”permutation

symmetry”. It is realized by permuting the indices in the manner of 1 → 2 →
3→ 1. These two companion data streams are called Y (t) and Z(t), they can be

written as

Y (t) = s2(t)− s2(t− 2τ3)− s3(t) + s3(t− 2τ2),

Z(t) = s3(t)− s3(t− 2τ1)− s1(t) + s1(t− 2τ3). (2.12)

It is shown in Cornish & Rubbo [2003]; Rubbo et al. [2004], in the LISA

constellation, the signal along the arm Li have the contribution from both of

spacecrafts at the two ends of this arm, the signal transmitted from spacecraft

i that is received at spacecraft j at time tj has its phase difference to give the

output Φij(t). The phase difference has contributions from the laser phase noise,
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C(t), optical path length variations, shot noise ns(t) and acceleration noise na(t)

Φij(tj) = Ci(ti)− Cj(tj) + 2πν0[δlij(ti) + ∆lij(ti)] + nsij(tj)

− ~rij(ti) · (~naij(tj)− ~naji(ti)). (2.13)

Here ti is given implicitly by ti = tj − lij(ti) and ν0 is the laser frequency. We

have included the variations in the optical path length caused by gravitational

waves, δlij(ti), and those caused by orbital effects, ∆lij(ti). The subscripts on

the noise sources identify the particular component that is responsible: Ci is the

phase noise introduced by the laser on spacecraft i, nsij denotes the shot noise

in the photo detector on spacecraft j used to measure the phase of the signal

from spacecraft i, and ~naij denotes the acceleration noise on spacecraft j that are

mounted on the optical assembly that points toward spacecraft i.

The traditional Michelson signal extracted from vertex 1 has the form

∆1(t) = Φ12(t2) + Φ21(t)− Φ13(t3)− Φ31(t), (2.14)

where t2, t3 are given by

t2 = t− l21(t2),

t3 = t− l31(t3). (2.15)

The unequal arm Michelson TDI combination signal X1(t) which cancels laser

frequency noise in the case of LISA is given as

X1(t) = Φ12(t2)− Φ12(t1 + t2 − t) + Φ21(t)− Φ21(t1)

−Φ13(t3) + Φ13(t1 + t3 − t)− Φ31(t) + Φ31(t1). (2.16)

The time t2, t3 are defined above implicitly and t1 is

t1 = t− l12(t1)− l21(t2)
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= t− l13(t1)− l31(t3).

The cancelation of frequency noise can be deduced algebraically by direct substi-

tute equation 2.13 into equation 2.16.

Other important TDI triplets which appear in the literature Tinto & Dhu-

randhar [2005] are {A,E, T} (the so-called optimal combinations), {α, β, γ, } (six

pulse Combinations) and ζ(the so-called Fully Symmetric Sagnac combinations).

The combinations {A,E, T} are constructed with uncorrelated noise Tinto &

Dhurandhar [2005], they are related to Michelson TDIs as

A =
Z −X√

2
,

E =
X − 2Y + Z√

6
,

T =
X + Y + Z√

3
.

The Sagnac combinations ζ and the six pulse combination {α, β, γ, ζ} have the

relationship with Michelson TDIs as follows J.W. Armstrong & Tinto [1999]:

X(t− L1) = α(t− L2 − L3)− β(t− L2)− γ(t− L3) + ζ,

Y (t− L2) = β(t− L1 − L3)− γ(t− L3)− α(t− L1) + ζ,

Z(t− L3) = γ(t− L2 − L1)− α(t− L1)− β(t− L2) + ζ.

What we should notice is that the sensitivity curves for different TDI variables

have different shapes across the LISA frequency band. Overall, the sensitivities

are all very similar, but it raises the intriguing possibility that if a compelling

astrophysical argument could be made to reshape the sensitivity curve to provide

observational access to a particularly interesting source, the choice of appropriate

TDI variables can provide some flexibility.
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2.3 LISA response in low frequency limit

The full response of LISA is complicated due to the arm-length fluctuations,

pointing ahead, and the transfer functions. Following the approximation which

is originally given by Cutler [1998], we work to linear order in the eccentricity for

the motion of the constellation, evaluate all spacecraft locations at common time.

The transfer function T(f, t,~k) can be set equal to unity when f � f∗ . A LISA

mission with L = 5 × 109 m arms has a transfer frequency of f∗ = 0.00954 ≈
10−2Hz. The gravitational wave is taken to be propagating in the ~k direction.

From the point of view of observer, we need to express the signal in the detector

frame or in the the SSB frame. The theoretical waveform of the GW signal is

given in the source or in the radiative frame. The radiative frame is constructed

by taking ~n = −~k as one axis, the other two axes which are called the principle

polarization axes ~p and ~q, can be chosen as in the paper Finn & Chernoff [1993].

There, ~p and ~q are defined by using the orbital angular momentum ~L as:

~p =
~n× ~L
|~n× ~L|

, ~q = ~p× ~n. (2.17)

Instead of ~L, we could use some other physical vectors, such as: total angular

momentum ~J of the system, or the spin ~S of the MBH . Actually, ~p and ~q are

rotated by an angle ψ with respect to the basis ~u and ~v. The polarization tensors

ε+, ε× in radiation frame which are given in the following expressions

ε+ = ~p⊗ ~p− ~q ⊗ ~q,
ε× = ~p⊗ ~q + ~q ⊗ ~p. (2.18)

have the following relationship with the polarization tensor in SSB frame

ε+ = e+ cos 2ψ + e× sin 2ψ,

ε× = −e+ sin 2ψ + e× cos 2ψ, (2.19)
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and the GW signal

h = h+(t)ε+ + h×ε×. (2.20)

If the radiative frame is defined as in equation 2.17, then the polarization

angle ψ is a function of time if there is an orbital precession (due to spin-orbital

coupling). In the case of EMRI, the principle polarization axes can be defined

with respect to the spin vector ~S of the central black hole (Babak et al. [2007])

~p =
~n× ~S

|~n× ~S|
, ~q = ~p× ~n. (2.21)

The advantage of using ~S instead of ~L is that the polarization angle ψ is a constant

which could be convenient in the data analysis. In the section 4.3, we use the

definition given in equation 2.21.

The Michelson signal considered by Cutler [1998] takes the form

h1(t) =
δl12(t− 2L) + δl21(t− L)

2L
− δl13(t− 2L) + δl31(t− L)

2L
. (2.22)

This expression ignores the time variation of the arm lengths due to higher

order terms in the orbital eccentricity or perturbations from other Solar System

bodies. Using the formula of variation of optical path in Cornish & Rubbo [2003],

h1 can be written as:

h1 = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (2.23)

where the antenna pattern functions are :

F+(θ, φ, ψ) =
1

2
(~r12 ⊗ ~r12 − ~r13 ⊗ ~r13) : ε+

F×(θ, φ, ψ) =
1

2
(~r12 ⊗ ~r12 − ~r13 ⊗ ~r13) : ε×, (2.24)
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or, explicitly:

F+(t) =
1

2
(cos(2ψ)D+(t)− sin(2ψ)D×(t)),

F+(t) =
1

2
(sin(2ψ)D+(t) + cos(2ψ)D×(t)). (2.25)

The explicit form of D+.× is derived in Cornish & Rubbo [2003]

D+(t) =

√
3

64

[
−36 sin2 θ sin(2α(t)− 2λ)

+(3 + cos 3θ)(cos 2φ(9 sin 2λ− sin(4α(t)− 2λ)))

+ sin 2φ(cos(4α(t)− 2λ)− 9 cos 2λ)

−4
√

3 sin 2θ(sin(3α(t)− 2λ− φ)− 3 sin(α(t)− 2λ+ φ))
]
,

D×(t) =
1

16

[√
3 cos θ(9 cos(2λ− 2φ)− cos(4α(t)− 2λ− 2φ))

−6 sin θ(cos(3α(t)− 2λ− φ) + 3 cos(α(t)− 2λ+ φ))] . (2.26)

2.4 F-statistic

In this section, we review the F-statistic based on Jaranowski & Krolak [2005]. In

the detector frame, the response function of the detector to a plane GW can be

written as a linear combination of n waveforms hk(t, ζ) with constant amplitudes

a = {ak, k = 1, · · ·n} and the remaining time dependent parameters called as ζ,

h(t, λ) =
n∑
k=1

akhk(t, ζ). (2.27)

The parameters ak are called extrinsic (or amplitude) parameters whereas the

ζ are called intrinsic parameters. This form of GW template is very useful in

analysing maximum log likelihood function.

The log likelihood equation (1.30) can be written as:
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log Λ(s; a, ζ) =
n∑
k=1

(ak(s|hk(t, ζ)))− 1

2

n∑
i=1

n∑
j=1

ai(hi(t, ζ)|hj(t, ζ))aj. (2.28)

Maximization of log Λ(s; a, ζ) over a

∂ log Λ(s; a, ζ)

∂a
= 0, (2.29)

can be solved explicitly and as a results we obtain the ML estimator â of the

parameters a:

â(s, ζ) = M(ζ)−1N(s, ζ), , (2.30)

where the column n× 1 matrix N and n× n matrix M are defined as:

Nk(s, ζ) = (s|hk(t, ζ)), Mij = (hi(t, ζ)|hj(t, ζ)). (2.31)

Replacing the extrinsic parameters a in equation (2.28) by their ML estimators

â, we obtain the log likelihood function maximized over extrinsic parameters

F(s, ζ) = log Λ(s, â, ζ) =
1

2
NM−1N, (2.32)

that is called the F-statistic. The F-statistic depends nonlinearly on the intrinsic

parameters ζ.

Let us take the white dwarf binaries as an example to show this procedure.

In the source frame, the GW template is given as:

h+ =
1

2
h0(1 + cos2 ι) cos(ϕ0 + ϕt) ≡ A+ cos(ϕ0 + ϕt),

h× = h0 cos ι sin(ϕ0 + ϕt) ≡ A× sin(ϕ0 + ϕt). (2.33)

42



where h0 is the constant amplitude, ι is the inclination of the orbital plane of

the binaries to the line of sight, and ϕ0 is the initial phase. With the response

function, the output in the detector frame should be written as:

h = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h×

=
1

2

4∑
µ=1

aµhµ(t), (2.34)

where aµ are described by the extrinsic parameters h0, ι, ψ, ϕ0:

a1 = A+ cos 2ψ cosϕ0 + A× sin 2ψ sinϕ0,

a2 = −A+ sin 2ψ cosϕ0 + A× cos 2ψ sinϕ0,

a3 = −A+ cos 2ψ sinϕ0 + A× sin 2ψ cosϕ0,

a4 = A+ sin 2ψ sinϕ0 + A× cos 2ψ cosϕ0, (2.35)

and hµ(t) are given by:

h1(t) = D+(t) cosϕt, h2(t) = D×(t) cosϕt,

h3(t) = D+(t) sinϕt, h4(t) = D×(t) sinϕt. (2.36)

For each set of intrinsic parameters, we maximize log Λ over ai to get the

F-statistic. After finding the maxima of F in the intrinsic parameters space, we

can use the analytic formula equation (2.30) to compute aµ.

From the expression 2.35, we can see that the value of aµ are connected to

the physical parameters, therefore they have some physical prior distribution.

Equation 2.30 does not guaranty that, the parameters deduced from aµ always

correspond to the physical values. In our analysis, we did not check whether each

set of aµ is within the physical range or not. However, when the search converge

to a solution, we get the physical parameters by inverting expression 2.35, and

we check that they are all within the physical ranges.
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Utilizing the expression of equation (2.35), we can derive explicitly the extrin-

sic parameters of binaries Prix & Whelan [2007].

a2
s =

4∑
µ=1

(aµ)2 = A2
+ + A2

×, Da = a1a4 − a2a3 = A+A×. (2.37)

Defining the following notations

B = A×/A+, b1 = a4 −Ba1, b2 = a3 +Ba2, b3 = Ba4 − a1. (2.38)

we have

ψ =
1

2
tan−1

(
b1

b2

)
, ϕ0 = tan−1

(
b2

b3

)
, h0 = A+ +

√
A2

+ − A2
×, cos ι =

A×
h0

.(2.39)

For spinning SMBH binaries, we can apply this procedure to maximize over

only two extrinsic parameters, because inclination angle is not a constant due to

the orbital precession (see Chapter 3). For phenomenological waveform of EMRIs

(Chapter 4) we apply this maximization to each harmonics of the signal.

2.5 Doppler modulation

The motion of the detector relative to the source leads to the phase modulation

of the measured GW signal. In Maggiore [2007], it is shown that this modulation

can be calculated by the coordinate transformation between time of arrival at the

solar system barycenter and the time at the detector. Let Sd and Sb be signals

in the detector and the barycenter frame respectively, they are related as

Sd(td) = Sb(tb[td, θ, φ]), (2.40)

where (θ, φ) is the angular position of the source in SSB frame LISATeam [2000].

We need to measure the td which is related to tb as:

td = tb[td, θ, φ]− ~n(θ, φ) · ~r(td)
c

, (2.41)
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with ~n being a unit vector pointing towards the source , and ~r is a vector con-

necting the guiding center of LISA and the sun.

~n = (cosφ sin θ, sinφ sin θ, cos θ), ~r = R

(
cos

2πt

T
, sin

2πt

T
, 0

)
. (2.42)

where R is the distance from the guiding center to the sun.

Explicitly, the relation between the two signals Sd and Sb as function of time

is

Sd(td) = Sb

(
td +R sin θ cos(

2πt

T
− φ)

)
. (2.43)

This implies that, the phase of signal as observed by the detector is modulated

due to the detector motion. Take the white dwarf binaries as an example, the

signal with the doppler shift in the detector frame is assuming constant frequency:

h+(t) = A+ cos

[
φ0 + 2πfGW tb + 2πfGWR sin θ cos

(
2πt

T
− φ
)]

. (2.44)

The detector motion also cause the amplitude modulation as explicitly given

as time dependented terms D+, D× equations (2.26).
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Chapter 3

The search for spinning black

hole binaries in mock LISA data

using a genetic algorithm

This chapter is based on the my published work Petiteau et al. [2009b, 2010].

In section 1.3.2.2, we have mentioned that coalescing massive Black Hole

binaries are the strongest and probably the most important gravitatinal wave

sources in the LISA band. The spin and orbital precessions bring complexity in

the waveform and make the likelihood surface richer in structure as compared to

the non-spinning case. We introduced an extended multimodal Genetic Algorithm

which utilizes the properties of the signal and the detector response functions to

analyze the data from the third round of mock LISA data challenge. The third

round of MLDC consisted of five challenges but in this work we focused our

attention on the data set 3.2 which contained GW signals from 4-6 binaries of

spinning SMBHs (exact number was not revealed to the participants), on top

of the confusion galactic binaries background and the instrumental noise. These

data was an improvement upon the MLDC challenges 1.2 and 2.2 by adding spins

to SMBHs. The spin-spin and spin-orbital coupling causes the orbital and spins

precession which results in the modulation of the amplitude and phase of the GW

signal. The prior range on the parameters and the detailed set up of the challenge

can be found in Babak et al. [2008a]. We have found all the five sources present
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in MLDC 3.2 and recovered the coalescence time, chirp mass, mass ratio and sky

location with reasonable accuracy. As for the orbital angular momentum and

two spins of the Black Holes, we have found a large number of widely separated

modes in the parameter space with similar maximum likelihood values.

3.1 My contribution

During this work, I wrote the Matlab code based on the Genetic Algorithm to test

its performance and efficiency in searching the signal from non-spinning SMBH.

Due to the poor efficiency of Matlab itself, the search was implemented in C++

code by Dr. Antoine Petiteau with my participation. I have participated in the

discussion on the materials given in the section 3.2, namely, the detection statis-

tic, termination of the waveform, and A-statistic. Some standard accelerators

which are used in the Genetic Algorithm implementations could be found in the

literature, but they do not give sufficient performance in our problem. There-

fore, I suggested and implemented some new accelerators in our search: brother

system, alternation of Gray code and Binary code, change of environment, (the

detailed descriptions are given in section 3.4.2). I have participated in the dis-

cussion with my colleagues on the design of the multi step Multimodal Genetic

Algorithm which is explained in section 3.5. I have run the multi-steps MGA

code, tuning the parameter which are used to control the search, and analyzed

the results which are shown in the section 3.7. I have concentrated on searching

the weakest signal with time of coalescence outside the observation period, and

found it successfully. We are the only one group who found all five signals, no

other groups recover the fifth one which was found by me during the runs.

3.2 Formulation of the problem

3.2.1 Model of the template

The signal used in MLDC is modeled as the amplitude-restricted waveform (i.e.

only dominant harmonic at the leading order is used) with the phase taken up

to the second Post-Newtonian (PN) order which includes the leading order con-
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tributions from the spin-orbital and spin-spin coupling. The binary evolution

is described as a quasi-circular adiabatic inspiral following by the merger and

ringdown process.

The waveform is described by fifteen parameters which are: the two masses

m1 and m2, the time at coalescence tc, the sky location of the source in ecliptic

coordinates, latitude θ and longitude φ, the dimensionless spin parameters, χ1

and χ2, the initial direction of the spins, polar angles θS1 and θS2 and azimuthal

angles φS1 and φS2 , the initial direction of the orbital angular momentum, polar

angle θL and azimuthal angle φL, the phase at coalescence Φc, and the luminosity

distance DL.

We denote the unit vector in the direction of the orbital angular momentum

as L̂ and two spins are ~S1 = χ1m
2
1Ŝ1, ~S2 = χ2m

2
2Ŝ2, where Ŝ1,2 are unit vectors

and 0 < χ1,2 < 1. The precession equations are given in Apostolatos et al. [1994]

~̇S1 =
(Mω)2

2M

{
η(Mω)−1/3

(
4 +

3m2

m1

)
L̂+

1

M2

[
~S2 − 3( ~S2 · L̂)L̂

]}
× ~S1, (3.1)

~̇S2 =
(Mω)2

2M

{
η(Mω)−1/3

(
4 +

3m1

m2

)
L̂+

1

M2

[
~S1 − 3( ~S1 · L̂)L̂

]}
× ~S2, (3.2)

˙̂
L = −(Mω)1/3

ηM2

(
~̇S1 + ~̇S2

)
=

ω2

2M

{[(
4 +

3m2

m1

)
~S1 +

(
4 +

3m1

m2

)
~S2

]
× L̂

− 3ω1/3

ηM5/3

[(
~S2 · L̂

)
~S1 +

(
~S1 · L̂

)
~S2

]
× L̂

}
.(3.3)

The modulation of the waveform due to the presence of spins is taken at the

leading order.

The orbital angular frequency with spin effect up to 2 PN order is given by

Mω =
1

8
τ−3/8

[
1 +

(
743

2688
+

11

32
η

)
τ−1/4 − 3

10

(
π − β

4

)
τ−3/8

+

(
1855099

14450688
+

56975

258048
η +

371

2048
η2 − 3

64
σ

)
τ−1/2

]
, (3.4)
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where M = m1 +m2 is total mass, η = m1m2

M2 is the symmetric mass ratio and

τ =
η

5M
(tc − t), (3.5)

β =
1

12

∑
i=1,2

[
χi

(
L̂ · Ŝi

)(
113

m2
i

M2
+ 75η

)]
, (3.6)

σ = − 1

48
ηχ1χ2

[
247

(
Ŝ1 · Ŝ2

)
− 721

(
L̂ · Ŝ1

)(
L̂ · Ŝ2

)]
. (3.7)

In our following analysis, we used η and the chirp mass Mc = (m1m2)3/5

(m1+m2)1/5
as

independent parameters instead of m1 and m2.

The intrinsic phase is

Φorb = ΦC −
τ 5/8

η

[
1 +

(
3715

8064
+

55

96
η

)
τ−1/4 − 3

16
(4π − β) τ−3/8

+

(
9275495

14450688
+

284875

258048
η +

1855

2048
η2 − 15

64
σ

)
τ−1/2

]
. (3.8)

The phase is defined with respect to the ascending node, however the spin-

orbital coupling causes precession of the orbit, therefore we need to introduce

precessional correction to the phase, δΦ(t). It depends on the unit vector n̂

pointing from the solar system barycenter to the source:

Φ(t) = Φorb(t) + δΦ(t), (3.9)

Φ̇(t) = ω + δΦ̇ = ω +
(L̂ · n̂)(L̂× n̂) · ˙̂

L

1− (L̂ · n̂)2
, (3.10)

δΦ(t) = −
∫ tc

t

(
L̂ · n̂

1− (L̂ · n̂)

)
(L̂× n̂) · ˙̂

Ldt. (3.11)

The gravitational wave polarization components in the source frame are given

by

h+ = h0
+ cos 2Φ = −2Mη

DL

(1 + cos2 ι)(Mω)2/3 cos 2Φ,
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h× = h0
× sin 2Φ =

4Mη

DL

cos ι(Mω)2/3 sin 2Φ, (3.12)

where cos ι = L̂ · n̂.

Based on the discussion in the section 2.3, the strain h(t) that the GW exerts

on the LISA detector is the following linear combination of h+ and h×

h(t) = F+(θ, φ)hS+(t) + F×(θ, φ)hS×(t). (3.13)

The polarization components in the radiation frame, hS+ and hS×, are expressed as

hS+ = −h+ cos 2ψ − h× sin 2ψ,

hS× = h+ sin 2ψ − h× cos 2ψ, (3.14)

where the polarization angle ψ is defined by

tanψ =
sin θ cos(λ− φL) sin θL − cos θL cos θ

sin θL sin(φ− φL)
. (3.15)

Note, due to the precession of the orbital plane, this polarization angle varies

during the evolution of the binary.

The data sets in MLDC are the TDI variables which are already explained in

section 2.2. In our search, we adopted the two orthogonal (i.e. with uncorrelated

noise) TDI channels, A and E, in the phase domain (i.e. strain). In our tem-

plate, we considered a long wavelength approximation to these signals Cornish &

Rubbo [2003]; Petiteau [2008]. This approximation (Lω � 1, where L is LISA’

armlength and ω is an instantaneous frequency of GW) works pretty well below

approximately 5 mHz Cutler [1998]. Assuming rigid LISA with equal arms, the

waveform sampled at discrete times takes the following form Cornish & Rubbo

[2003]; Petiteau [2008]

hI(tk) ' 2L sin ∆φ2L(tk)×
{−h+0(tk) [cos (2ψ(tk))F+I(t)− sin (2ψ(tk))F×I(t)] sinφ′(tk)

+h×0(tk) [sin (2ψ(tk))F+I(t) + cos (2ψ(tk))F×I(t)] cosφ′(tk)} ,(3.16)
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where I = {A,E}, ∆φ2L(t) = (φ(tk)−φ(tk−2L))/2, φ′(t) = (φ(tk)+φ(tk−2L))/2

with φ(t) being the phase of GW and tk = t + n̂ · ~r is the time in LISA frame

with ~r the vector from the Sun to LISA barycenter. Based on the formula in the

section 2.3, the antenna pattern functions F+I and F×I corresponding to the TDI

channel, have the following expressions

F+(θd, λd; t,Ω) =
1

32
[6 sin(2θd) (3 sin (ΦT (t) + λd + Ω)− sin (3ΦT (t)− λd + Ω))

−18
√

3 sin2 θd sin (2ΦT (t) + Ω) −
√

3
(
1 + cos2 θd

)
×

(sin (4ΦT (t)− 2λd + Ω) + 9 sin (2λd + Ω))] , (3.17)

F×(θd, λd; t,Ω) =
1

16

[√
3 cos θd(cos(4ΦT (t)− 2λd + Ω)−

9 cos(2λd + Ω)) + 6 sin θd(cos(3ΦT (t)− λd + Ω)+

3 cos(ΦT (t) + λd + Ω))] , (3.18)

with θd = β + π/2, λd = λ+ π, ΦT (t) = 2πt/Y ear and Ω = 0,−π/2 for channels

A and E respectively. Note that this is the long wavelength approximation to

the signal injected in the simulate data, we found it to be a reasonably accurate

representation until the last 1− 2 cycles before the merger. The end of the signal

is discussed in more detail later.

3.2.1.1 Maximization of the likelihood

As we mentioned in the section 1.4, the signal from one detector is

si(t) = hi(t, λ̂) + ni(t), (3.19)

where hi(t, λ̂) is a signal described by a set of parameters λ̂ and ni(t) is the

stationary Gaussian noise characterized by the power spectral density (PSD)

Sn(f).

The noise is the sum of instrumental noise S inst.
n (f) and the GW confusion noise

from Galactic binaries SGal. Bin.
n (f). In strain data (i.e. phase measurements), the
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instrumental noise for TDI variables A and E is described by the following PSD

S inst.

n (f) = 16 sin2(φL) (SOPN

n (f) + (cos(2φL))Sacc.

n (f))

−4 sin(2φL) sin(φL) (4SOPN

n (f) + Sacc.

n (f)) , (3.20)

where the acceleration noise is Sacc.
n (f) = 5.75× 10−53(f−4 + 10−8f−6) Hz−1 and

the optical path noise and the shot noise are SOPN
n (f) = 3.675× 10−42 Hz−1.

In section 1.3.2.1, we have explained the Galactic GW confusion noise is a

combination of the unresolved signals from ∼ 30 millions of white dwarf binaries.

This noise is modeled by the following function, in units of Hz−1, Nelemans et al.

[2004]; Timpano et al. [2006]

SGal. Bin.

n (f) =


10−44.62f−2.3 10−4 ≤ f ≤ 10−3

10−50.92f−4.4 10−3 ≤ f ≤ 10−2.7

10−62.8f−8.8 10−2.7 ≤ f ≤ 10−2.4

10−89.68f−20 10−2.4 ≤ f ≤ 10−2

(3.21)

The goal of the method presented in this chapter is to find the maximum of the

likelihood in the 15-dimensional parameter space, and, thus, obtain the maximum

likelihood estimation of the parameters. The value of the likelihood tells us also

about the statistical significance of the detected event. In the case of LISA data,

the signals usually have high SNR, so the probability of the false detection is

rather low. However, the data is signal dominated and several GW signals of one

type (say, Galactic binaries) could conspire and produce significantly high SNR

at the output of the matched filtering during the search for another type of signal

(say, SMBH binary) Racine & Cutler [2007].

By using the maximum likelihood method we have discussed in the chapter

2, we maximized the log likelihood over two parameters: the luminosity distance

DL and the phase at coalescence Φc. We call the resulting function Maximized

Likelihood (or quality).

Following the formalism described in section 2.4, the GW template equation

(3.16) can be express as

hI(t) = a1 h1I(t) + a2 h2I(t), (3.22)
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with {
a1 = cos(2φc)/DL

a2 = sin(2φc)/DL

,

{
h1I = hI(DL = 1Gpc; φc = 0)

h2I = hI(DL = 1Gpc; φc = π/4).
(3.23)

Here, I = {A,E} stand for the two pipeline.

Using the above expressions and the orthogonality h̃2I ' i h̃1I we obtained

the maximized log likelihood.

F ' (
∑

I < sI |h1I >)2 + (
∑

I < sI |h2I >)2

(
∑

I < h1I |h1I >)2 . (3.24)

This is not the full F-statistic which is derived in the case of white dwarf

binaries in Chapter 2. Here, we just maximize the log-likelihood with respect to

only two extrinsic parameters: DL and Φc.

3.2.1.2 Maximization over the time of coalescence

In order to efficiently find the time of coalescence, we use correlation in place of

the inner products. Given a template h which is constructed with the initial value

(usually taken at the lower edge of the prior) tc,0 and using the inverse Fourier

transform, we find the value of τmax which maximizes equation (3.24) or which is

almost equivalent to maximizing

c(τ) = 2

∫ ∞
0

df
h̃(f) s̃∗(f) + h̃∗(f) s̃(f)

Sn(f)
e−2iπfτ . (3.25)

The equation (3.25) help us to evaluate matched filtering of the time-shifted

template with the data for multiple lags in the very efficient way by using the fast

Fourier transformation. If the intrinsic parameters are similar to the true value,

the maximum of c(τ) will be near the true time of coalescence. This is because

the frequency of the shift waveform matches very well with the signal when the

shift time is close to the true tc.

Note that the amplitude of the signal depends on the choice of tc via an-

nual modulation caused by LISA’s orbital motion, therefore the new value tc,1 =

tc,0 + τmax is not necessarily the final answer. The time of coalescence which max-
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imizes the quality equation (3.24) for given other parameters should correspond

to maximum of equation (3.25) at zero (or almost zero) lag. Using the new value

of tc we repeat the maximization, and we stop iterations when the difference

|tc,i − tc,i−1| is sufficiently small. Usually few iterations are sufficient to find tc

which maximizes the quality ,it is much faster than the random jump when we

just take tc as a waveform parameter. We have performed tests on these two

methods, the results show that the use of equation (3.25) is much more efficient

to significantly reduce the search range of tc, and converge to the true value. In

practice, we start the search using the Fourier transform trick, but once the value

of tc does not change significantly from the generation to generation, we treated

it as a search parameter within GA and refine it.

3.2.1.3 The waveform termination

The signal from SMBH binaries is band limited, the lower frequency limit is

defined approximately by twice the orbital frequency at t = 0. The upper fre-

quency is introduced somewhat arbitrarily. To terminate both the signal and the

template smoothly, an exponential taper is applied. The taper affects the data

when two black holes are separated by a distance R = 7M and kills the signal

completely around R = 6M (which is the last stable orbit for the test mass in

Schwarzschild space-time). Therefore, in computing the overlaps, we used the

maximum frequency in the integration corresponding to the orbital separation

6M :

fmax =
1

πM(R/M)3/2
=

η3/5

π(R/M)3/2Mc

. (3.26)

The exponential taper causes problems for the long-wavelength approxima-

tion, and our template deviates from the signal during the last cycle. Unfortu-

nately these small deviations fall in the most sensitive part of the LISA band and

are further enhanced by high SNR. This causes a significant problem: the bias

caused by this deviation is unacceptably large because there is a large region of

the parameter space that produces templates which fit the end part of the signal

perfectly (using incorrect parameters) but fail to reproduce the low frequency

part of the signal.

54



In order to solve this problem we terminate the template waveform few cycles

earlier by fixing cutoff frequency which corresponds to the orbital separation

R > 7M . Our approximation becomes better as we go to lower frequencies,

however we start losing power of the signal (SNR) which is highly undesirable.

We automatically readjust the frequency cut-off if the SNR of truncated template

drops below a certain threshold (SNR = 20). It is accomplished by starting

with a template terminated initially at the orbital separation R = 60M , if its

SNR is smaller than the threshold, we terminate it at smaller orbital separation,

decreasing it step by step until the template gives sufficient SNR.

We want to emphasize a very important feature which accompanies the earlier

termination of the waveform. The map of the maximized log likelihood changes:

in the Figure 3.1 we show the map of the quality in the ”chirp mass” - ”eta” plane

keeping other parameters fixed to their true values. On the left panel we show

Ffull (we use no frequency cut off other that introduced by the taper), and, on the

right panel, we plot Fcut with template cut at fmax = fcut = 0.26 mHz. One can

see multiple maxima in both plots, but(!) the position of the secondary maxima

are different whereas the location of the true (global) maximum (indicated by an

arrow) is the same. It can also be seen that the size of the secondary maxima on

the right panel is smaller. We will use these features later in our search.
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Figure 3.1: Distribution over Mc and η, of the Maximized Likelihood (quality)
computed with the full waveform on left panel and with the waveform cut at
fmax = 0.26 on the right panel. This example corresponds to a signal with the fol-
lowing parameters: θ = −0.38896 rad, φ = 3.28992 rad, tc = 19706568.3273 sec,
Mc = 1589213.34 M�, η = 0.23647, θL = 2.78243 rad, φL = 1.53286 rad, χ1 =
0.24115, χ2 = 0.16145, θS1 = 1.20839 rad, φS1 = 5.61808 rad, θS2 = 0.39487 rad,
φS2 = 5.82937 rad, DL = 6856164697.8 parsec, φc = 4.96746 rad . The arrow
points to the true parameters.
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3.2.1.4 A-statistic

Chopping the template at lower frequency solves the problems mentioned above

but is not completely satisfactory. We lose some SNR and consequently some

accuracy in the parameter estimation, we also lose information stored at the end

of the signal which is especially important to recover spin-related parameters. In

order to reduce the impact of the coalescence part, without killing it completely,

we introduce a new function, called A-statistic which is simply a geometrical mean

of the Maximized Likelihood of the cut waveform and the Maximized Likelihood

of the full waveform:

A =
√

Fcut × Ffull. (3.27)

A-statistic is not log likelihood anymore, but one of its advantages is that it keeps

the information from the full waveform including the coalescence but at the same

time it enhances the information coming from the low-frequency part. A-statistic

also reduces the number of local maxima as can be seen in the Figure 3.2. In this

example we have reduced the size and number of maxima from five to three.

3.3 Genetic Algorithm

3.3.1 The basic principle

In order to find all the parameters of the signal, we need an effective algorithm

to search over the 13 dimensional parameter space. Building the grid in the

multi-dimensional parameter space is a highly non-trivial problem. The use of

the stochastic/random bank Babak [2008]; Harry et al. [2008]; Manca & Vallisneri

[2010]; Messenger et al. [2009] is a feasible method for the template placement,

however a full grid scan over the whole parameter space would be prohibitively

computationally expensive.

Alternative would be to use variations of the Markov chain Monte-Carlo Cor-

nish & Porter [2007] or nested sampling Feroz et al. [2009] methods. Here we

have chosen to use Genetic Algorithm (adjusted to our needs) to search for the

global maximum of the likelihood in multi-dimensional parameter space.
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Figure 3.2: Distribution of A-statistic over Mc and η. This example corresponds
to the same signal as in Figure 3.1. The arrow points to the true location of
parameters of the signal.

The GA is derived from the computer simulations of the biological system,

which were originally introduced by Professor Holland and his students in Michi-

gan University. It is a method for the global search (optimization method) based

on the natural selection principle - the basis for the evolution theory established

by C. Darwin. In the nature, organisms adapt themselves to their environment:

the smartest/strongest/healthiest organisms are more likely to survive and par-

ticipate in the breeding to produce the offsprings. These two processes, selection

and breeding, are used in Genetic Algorithms to produce a new generation of

organisms. Since the best organisms are more likely to participate in breeding,

the new generation should be better than the previous one (at least no worse).

So this procedure induces the evolution of the organism, just like in the nature,

the good qualities of the parents can be transferred to their offsprings.

In the biological world, besides these two basic operations, among every gener-

ation, there are always few individuals which have better characteristics to adopt

to the environment, produced as a result of a positive mutation. By introducing

the new genotype into the population, mutation can potentially improves the
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forthcoming generations and consequently accelerates the evolution towards the

global maximum.

Some measure of ”goodness” needs to be associated with each organism.

In the case of gravitational wave search, it is natural to associate the logarithm

of the likelihood (or any other equivalent detection statistic e.g. Maximized

Likelihood or A-statistic discussed in the previous section) with the “goodness”

which needs to be ”improved” through the evolution of the organisms. We will

call the chosen measure of ”goodnees”, the quality of an organism Q.

Following is a brief description of how a typical GA works. We start with

a randomly chosen group of organisms (templates), we evaluate the quality of

each organism (log likelihood). We select set of pairs (parents) based on their

qualities, the organisms with better quality (templates with higher likelihood) are

chosen more often than weak organisms. We combine genotype of two parents to

produce a child (we combine parameters of two chosen templates to produce a new

one). Number of produced children is equal to the number of parents (we keep

number of evolving organisms (generation) fixed). Next we allow with a certain

probability of a random mutation in the children’s genes (with some probability

we randomly change the parameters of the new templates, exploring a larger area

of the parameter space). The parents are discarded and the resulting children

form a new generation. We repeat the procedure until we reach steady state

(maximum in the quality). In this simple example we keep only one generation

active (one group of templates).

A list of (biological) GA terms with the equivalent terms in GW data analysis

is given in the Table 3.1.

Genetic Algorithm GW search
organism ⇐⇒ template

gene (of an organism) ⇐⇒ parameter (of a template)
allele (of a gene) ⇐⇒ bits (of the value of the parameter)

quality Q ⇐⇒ Maximized Likelihood or A-statistic
colony of organisms ⇐⇒ evolving group of templates
n-th generation ⇐⇒ the state of colony at n-th step of evolution

(selection + breeding) + mutation ⇐⇒ way of exploring the parameter space

Table 3.1: Relation between GA and GW notions.
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In the following subsections we give a detailed description of each element of

the basic GA and then we introduce the specific modifications to speed up the

search.

3.3.2 Code of the gene

As we have discussed above, every organism is associated with a template and the

parameters of the template play the role of genes. So each organism is described

by 15 genes, two of them are chosen optimally (maximization of the log likelihood,

see Section 3.2.1.1) and the gene corresponding to the time of coalescence is

efficiently found using correlation (see Section 3.2.1.2). We imitate the DNA

structure by describing the gene (parameter value) by a set of alleles. In our

implementation we adopt a binary representation of the gene (parameter) which

means that each allele (bit) has two possible values: 0 or 1. In practice we first

fix the precision of each parameter (by fixing the number of significant digits in

the decimal format) and then we translate it to standard binary and/or in Gray

form. In our method we use both representations, the reason will be explained

later when we discuss quantization issue.

Let us show how this is done in practice. Consider a parameter λk with

the uniform prior range [xk,min, xk,max]. First we convert a value xk of λk into an

integer ck = (xk−xk,min)/∆xk where ∆xk = (xk,max−xk,min)/2Nk is the resolution

of θk and Nk is the number of bits. Then, we convert ck into the set of bits bk[i]

using the coding rule of the chosen representation. As we see, the resolution for

each parameter depends on the number of bits Nk used for describing it and is

the same for both representations. The importance of the bit is determined by

its position. A change of a bit in a higher position (significant bit) corresponds

to a big change in the parameter value. In our convention, the first bit, bk[0], is

the lowest significant bit and the last bit, bk[N − 1], is the highest significant bit.

There is a close relationship between two gene representations. We can trans-

form the binary representation to Gray representation by the following proce-

dure: given a string of binary code with N bits {B[0], B[1], · · · , B[N −1]}, we set
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B[N ] = 0 then the Gray code with the same N bits is

G[i] = B[i+ 1] ∧B[i], (3.28)

where the operator “∧” corresponds to the XOR operator in programming lan-

guages. Other way round, by setting again B[N ] = 0, we can get the binary

representation with N bits from the Gray representation as

B[i] = B[i+ 1] ∧G[i]. (3.29)

3.3.3 Selection

The selection process chooses the parents for breeding. The probability of select-

ing an organism is defined by its quality. Organisms with higher quality have a

better chance of being chosen to participate in the breeding.

First the quality Qi, i.e. the Maximized Likelihood or A-statistic, for all

organisms is computed (index i refers to the i-th organism).

Then each organism is assigned the probability of being chosen for breeding

as pi = Qi/
∑N

j Qj. The selection is made by the roulette selection method: we

choose a random number uniformly from [0,1]; if it is bigger than pi and smaller

than pi+1, then the ith organism is selected.

This selection ensures that the ”good” organisms are chosen more often than

the “bad” ones and guarantees that the genotype responsible for a high quality

propagates in generations approaching the optimal value.

In our selection rule we do not take into account the geographical proximity

between parents (in other words possible correlation between templates in the

same generation). By forbidding the breeding between the correlated parents, it

might be more efficient to explore a larger region of parameter space, but the

overall resolution of the method will be reduced. We therefore do the selection

based only on the quality.

60



3.3.4 Breeding

After selecting the parents, we need to produce a new generation, this can be

achieved through ”breeding”. Breeding is the rule according to which a child is

produced from the selected parents. The genes of the child are constructed by

mixing the corresponding genes of each parent. We take one part from the first

parent and the other part from the second one. Depending on which parts are

chosen, there are several types of breeding. We usually use three different types:

cross-over one random point, cross-over two fixed points, and random. For the

cross-over one point, we choose one bit (denoted by i) randomly as the cross-over

point and the child’s genes are created by combining the first i bits of the genes

from the first parent with the last N − i bits of the genes of the second parent

(see the left panel of the Figure 3.3). For the cross-over two fixed points, the

genes of the child are built from three equal parental parts (see the middle panel

of the Figure 3.3). In the random breeding, each child’s bit is chosen randomly

from the corresponding bits of the parents (see the right panel of the Figure 3.3).

100101001110

010011100001

010011001110

parent 1
parent 2

child

100101001110

010011100001

100111101110

parent 1
parent 2

child

100101001110

010011100001

000111000010

parent 1
parent 2

child

Figure 3.3: Examples of used breeding: cross-over one random point on the left,
cross-over two fixed points in the middle and random on the right panels.

3.3.5 Mutation

The first generation is chosen randomly by drawing parameters uniformly within

the priors specified in Babak et al. [2008a]. The chosen selection implies that the

best quality of our organisms is likely to be increased with each generation. But, if

we use only these two processes, the range of resulting genes is quite restricted: it

totally depends on the initial random state and is just a combination of the parts

from the first generation. The combination of genes and therefore the exploration

of the parameter space is very limited and completely dependent on the initial

choice. This undesirable feature can be cured by introducing mutation.
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Mutation in GA works in a way similar to how it operates in the nature.

Mutation is a random change of few alleles in a gene of an organism; in our

algorithm it corresponds to changing few bits in a representation of a parameter

value of a template. The probability of mutation is called the probability mutation

rate (PMR). We mutate each gene of each child independently and there are

several types of mutation. First we need to decide whether we mutate a gene or

not, and, if yes, we need to decide on the mutation rule (how we do it). The first

possibility is that we always mutate the gene and mutation is applied to each

bit of gene independently. Each bit is flipped with probability PMR. The second

possibility is to mutate a gene with probability PMR. In this case we have used

two different rules to mutate the gene: (i) we flip N randomly chosen bits (ii) we

flip N adjacent bits. In the case of (ii), the start point is chosen randomly. The

value of N and PMR depends on the parameters, we usually choose N around 6

or 7, PMR decreases from 0.7 to 0.01.

Different types of mutations together with the value of PMR define the explo-

ration area of the parameter space. An example is shown in Figure 3.4, in which

we start with PMR = 0.5 at the beginning of the search (left panel, one can see

that the templates are scattered all over the space) and then slowly reduce it to

PMR = 0.01 (the right panel). The true solution is located in the center of the

blue circle. We will come back to PMR again in the Section 3.4.1.3.
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Figure 3.4: Example of distribution of 100 organisms in two dimensions space
which is the sky position (θ,φ). The left panel shows the case of large PMR value
(0.5) which corresponds to the beginning of the search. The right-panel shows
the case of small PMR value (0.01) which corresponds to the end of the search.
The best organism as well as the true solution is at the center of the blue circle.
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3.3.6 Tuning the algorithm using code, breeding and mu-

tation

In order to get comprehensive understanding of all kinds of representation, breed-

ing and mutation to tune our search, we did the systematic experiments to test

one degree of freedom at the time. We fixed GA configuration and allow only one

parameter to vary and analyzed the results of the search. We have tested PMR,

number of organisms in the generation, gene representation (binary, Gray, alter-

nating) type of breeding and mutation. Here, we will just give a small example

below.

We found that alternating the binary and Gray representation is more effective

than using only one of them. We characterized different types of breeding and

mutation according to the resulting exploration area of the parameter space. The

result of three such combinations is summarized in the Table 3.2. Based on this

result we decided to start the evolution with exploration of the large part of the

parameter space (BCO1R-MNR8), then continued with BCO1R-MA, and finally,

as our algorithm converged to the solution we explored small area around the

best point intensively (refinement with BR-MNA8).

Combination Width of Exploration
Name

Breeding Mutation large area local area
BCO1R-MNR8Cross-over one random point N bits randomly Greatly No

BCO1R-MA Cross-over one random pointEach bits independently Yes Yes
BR-MNA8 Random N adjacent bits No Greatly

Table 3.2: Impact of different types of breeding and mutation on exploration of
parameter space.

3.4 Acceleration of Genetic Algorithm

We have introduced above three fundamental concepts used in any GA (selection,

breeding and mutation), which might be sufficient for a simple search. However,

in our case (multi-dimensional parameter space with many local maxima) it might
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require a large number of iterations with the possibility that the end results might

correspond to a local maximum. To reduce the required number of iterations and

to increase the stability and efficiency of the algorithm, we introduce several

accelerators which are used in our search.

3.4.1 Standard accelerators

In this part, we describe the standard accelerators used in GA.

3.4.1.1 Elitism

Selection and breeding do not guarantee that the next generation will be better

than previous one. If we completely replace the old generation with the new one,

it is possible that we might lose the organisms with best qualities. The overall

tendency (trend of the evolution) is to increase the quality, but it can go down

over some short period of time.

The elitism (or cloning) is a simple way to maintain the quality across gen-

erations. If the best quality of the new generation is lower than the best quality

of the current one, the best organism is propagated to the new generation. It

is possible to clone one or several best organisms into the new generation. We

take the best organism to be the only one which we clone in the next generation

during the evolution. In the next generation the cloned organism breeds with

others, improving overall qualities. The elitism stabilizes the GA and guarantees

the convergence of the algorithm.

3.4.1.2 Simulated annealing

The simulated annealing method has been already employed in LISA data anal-

ysis Cornish & Porter [2007] and proven to be very useful. In this method the

smoothness of the quality surface is controlled by the introduced temperature

parameter. If the temperature is high, the quality surface is very smooth and

nearly all the organisms (good and bad) can be selected for breeding with a sim-

ilar probability. If the temperature is low, the quality surface is highly peaked

around the maxima and only the best organisms can be selected. Usually, a high

temperature is selected at the beginning of the search to have a large area of
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exploration and to avoid non-significant maxima. The temperature is decreased

as we progress the search converging to a maximum of high likelihood.

Temperature is introduced in the selection process through the probability

of selecting an organism. We set this probability according to pi = qi/
∑N

j qj

where we have the quality of each organism redefined by the introduction the

temperature parameter T as follows:

qi = exp
(Qi −Qbest)

T
, (3.30)

where T is the temperature, Qi is the quality of i-th organism and Qbest is the

quality of the best organism. One can see that all qi are similar if temperature is

high.

When T = 1, equation 3.30 reduce to qi = exp (Qi)
exp (Qbest)

which is the likeli-

hood ratio between the current organism and the best organism. The introduced

temperature is exactly the same as the temperature in the standard simulated an-

nealing, and it plays here a similar role. If the temperature is high, both ”good”

and ”bad” organisms have similar qi which is close to 1 (analogue of smoothening

of the likelihood surface in the simulated annealing), and all organisms can be

selected for breeding with the similar probabilities. If the temperature is low, the

probability of choosing the ”good” organism is much higher than the probability

of selecting the ”bad” one.

We devised several kinds of annealing. A standard type is the cooling: the

temperature evolves from the initial temperature Ti to the final temperature Tf

as follows:

T (g) =

{
Ti(

Tf
Ti

)
n
nc , n < nc

Tf , n ≥ nc
(3.31)

where n is a generation number and nc is the duration of the cooling (in number

of generations). The values of Ti and Tf are not known a priori. An alternative

approach to control the temperature evolution is to relate it with the quality of

the current generation. The temperature is then evolved according to

T =

(
ρ

ρth

)g
with ρth = ρ if ρ < ρth, (3.32)
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where ρ =
√

2Qbest (which is approximately the SNR of the best organism if we use

log likelihood as a qualityQ) and g and ρth are two additional parameters. Usually

we used g = 2 which corresponds to the thermostated annealing introduced in

Cornish & Porter [2007]. In the beginning we kept the temperature equal to

unity, and a high PMR was used to explore the parameter space and build up

the SNR. On reaching ρth, heating is switched on to increase the exploration

area by smoothing the likelihood surface and to force the colony to search for

a higher maximum. Periods of high temperature are alternated with periods of

low temperature (in a periodic manner), this way the regions around the local

maximum and the global parameter space are explored in turn.

3.4.1.3 Evolution of PMR

As mentioned above, another way to control the volume of exploration is by

varying the PMR (see Section 3.3.5).

Usually we start with a large value for the PMR (about 0.2), which is then

gradually decreased to give more importance to the breeding. In the end, the

search becomes stationary and approaches the true solution, so the PMR needs

to be quite low (usually we decrease it down to 0.01). The typical spread of the

organisms in the beginning of the search is depicted in the left panel of the Figure

3.4 and we slowly evolve it towards the right panel by decreasing PMR.

The three most frequently used types of PMR evolution in our analysis are

(i) cooling, (ii) fixing and cooling and (iii) genetic Genetic Algorithm with PMR.

In the first case of cooling, the PMR evolves from the initial value PMRi at

generation n = 0 to the final value PMRf at generation n = nc according to

PMR =

 PMRf

(
PMRi

PMRf

)nc−n
nc

, n ≤ nc

PMRf , otherwise
(3.33)

In the second case of fixing and cooling, at the beginning, the PMR is fixed

as PMR = PMRi for ni generations, then it is cooled to PMRf in the next nc

66



generations as follows:

PMR =

 PMRi, if n < ni

PMRf

(
PMRi

PMRf

)nc+ni−n
nc

, if n ≥ ni.
(3.34)

In the last case of genetic Genetic Algorithm, the PMR is treated as an addi-

tional parameter of each organism. The PMR parameter evolves (we search for an

optimal value) by the genetic operations in the specified range [PMRmin,PMRmax].

We used all the above types of PMR, for each gene we specified its own

evolution path. Some parameters converge to the true solution faster than other,

and some spin related parameters have multiple solutions. We used the PMR

evolution scheme which reflects the convergence of the parameter and uniqueness

of the solution.

Note that we controled the exploration area by using both simulated annealing

and PMR. Each of these performs somewhat differently. Simulated annealing acts

on the quality of the organism and affects the selection procedure for breeding,

thus it uses the combination of the initial genes without adding new. On the

other hand the PMR changes the structure of each gene and therefore brings in

“new blood” into the generation (creates new combinations). The best result is

usually achieved by combining together PMR with simulated annealing.

3.4.2 Accelerators specific for SMBH search

In this part, we describe the non-standard acceleration processes introduced by

us and which utilize the properties of the signal and/or of the antenna beam

pattern.

3.4.2.1 Brother

As explained in section 2.5, the source sky position is encoded in our model of the

signal in the phase and in the amplitude through the antenna pattern function.

For low frequencies the Doppler term is weak and majority of the information is

stored in the directional sensitivity of the detector. However the antenna pattern

functions given in expressions equation (3.17) and equation (3.18) are symmetric
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with respect to the transformation β → −β, λ → λ + π (mirrored/antipodal

sky position). This implies a possible degeneracy in the parameter space, and,

indeed we observed a high value of the quality at the antipodal sky position,

making it very difficult to distinguish between those two.

In order to overcome this problem, we introduced what we call the brother

of the clone. With each clone we associated one organism ”brother” created by

copying the parameters values from the clone and then changing a few of these

value by following particular rules. In our application of the GA for black hole

binaries, the brother explores the parameter space around the mirrored (antipo-

dal) sky position of each clone. In a particular search, the best organism usually

jumps between these two sky positions until it settles on the best solution in terms

of the quality. We have computed the ”brother” only for the best organism in

each generation. If the ”brother” have better quality, the original best organism

is not cloned anymore, and the ”brother” take its place.

3.4.2.2 Local mutation

What benefit one can have from using binary and Gray representations of the

same parameter? The reason lies in representation of two adjacent integers in

the binary representation. Two close decimal values of θk which differ only by ∆x

(i.e. corresponding integers differ by 1), may differ by several bits in their binary

code. For example, in the standard binary representation, the separation between

the gene value 011111 and 100000 is equal to the resolution ∆x (i.e. minimal

distance), but, as one can see, it is necessary to flip all the bits for making this

small change in the parameter value. This problem can be solved in two ways: (i)

by alternating the Gray representation (where two adjacent integers differ by one

bit) with binary, and (i) by introducing the ”local mutation”. Local mutation is

a small (of order few ∆x) random change in the parameter value which can push

it across the boundary. Note that the binary and Gray codes have different bit

boundaries, so the alternation between them helps in the global exploration of

the parameter space, whereas the local mutation helps the organisms to cross a

particular bit boundary and works locally.
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3.4.2.3 Fixing the significant bits

During the test runs of the GA, we noticed that some parameters are very well

estimated already after few hundred generations. For example, the time of co-

alescence tc can be found with high precision in less than 200 generations. By

restricting the search range of these well estimated parameters, the search effi-

ciency can be improved. We achieved this by fixing (freezing) the most significant

bits of such parameters which reduces the allowed dynamical range. This signifi-

cantly speeds up the search. Note that we might still keep the PMR for this gene

high in order to have an efficient exploration of the restricted parameter space.

Let us give an example how it works in practice. The Figure 3.5 shows a

typical example of the chirp mass, Mc, exploration in our search. This parameter

is encoded using 20 bits. First 200 generations have no restriction and a large

PMR is used so the colony explores the whole of the prior range. However the

higher concentration of the organisms around the best one (depicted by a green

line) can be noticed which reflects its high quality and, therefore proximity to the

true solution.

After the 200th generation we fixed the bits at a position higher than a ran-

domly chosen number between 14 and 16. It means that the bits bMc[16], bMc[17],

bMc[18], bMc[19] (and sometimes bMc[14], bMc[15]) of all the organisms are fixed

to the value of the best organism (1,1,1 and 0 here). It shrinks the search area

to [2138483.938, 2384509.746]M� which corresponds to

lower boundary = Mc,min + ∆Mc

(
0× 219 + 1× 218 + 1× 217 + 1× 216

)
,

upper boundary = Mc,min + ∆Mc

(
0× 219 + 1× 218 + 1× 217 + 1× 216 +

(
216 − 1

))
.

After the 600th generation we try to restrict the range further by fixing all

the bits starting at the position 8th or 9th (again randomly chosen), which cor-

responds to narrowing down the range ∆Mc × 29 = 1922.106 ∼ 2000M�.

Note that, we can still release the bits (or change the random range) during

the evolution to check the robustness of the found solution.

Each parameter have different rate of convergence to the true value. Therefore,

we restrict the exploration range of the these parameters at different instance

during the search by fixing the significant bits. The chirp mass, symmetric mass
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ratio, and time of coalescence can approach the true value much faster than the

other parameters. After several hundreds of generations, the search converges

to the true values, at this point we restrict the range of these parameters. The

number of the significant bits we have to fix is determined by the spread of these

parameters from different organisms. As for the other parameters, they may

spend much longer time to approach the true value, and we start fixing their bits

only after several thousands generations.

Figure 3.5: Example of the chirp mass exploration by the colony of organisms.
The green points correspond to the position of the best organism. The separations
shows the structure of the binary representation. The numbers on the right are
values at bit positions listed on top.

3.4.2.4 Specific breeding and mutation

As mentioned above in Sections 3.3.4 and 3.3.5, different types of breeding and

mutation have different properties (main difference is in the exploration area

around the best organism). The genes (i.e. parameters) do not have the same

rate of evolution during the search. For example, the time of coalescence and

the chirp mass converge to their true values quicker than other parameters. We

customized the evolution of each gene by fixing the significant bits in a similar

manner to the example discussed in the previous section. We also altered the

type of breeding and mutation of each gene, forcing the exploration range to be

large at the beginning of the search and changing to the types which are more

suitable for more intensive local exploration close to the end.
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3.4.2.5 Change of environment

While mapping the log-likelihood we have noticed that the binaries that coalesce

within the observational time have more local maxima than the binaries coalescing

outside the observational time (this also was mentioned in Babak [2008] for non-

spinning BHs). This can be explained by the accumulation of SNR. Due to the

shape of the LISA’s sensitivity and the evolution of the signal’s amplitude, the

largest part of SNR comes from the last month of inspiral. In the Figure 3.6 we

give accumulation of SNR (scaled by the total SNR) for one of the signals analyzed

in MLDC3.2. We plot the SNR as a function of frequency, we also show (numbers
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Figure 3.6: Example of accumulation of SNR (MBH-1) as a function of frequency.
The points with attached numbers show the time until the coalescence in seconds.

attached to the circles) the time left to coalescence. As one can see 60% of SNR

comes from the last day and a half of inspiral. The above implies that we need to

fit only the last day of the signal in order to get a large SNR (in case where we see

the coalescence). This is obviously can be done in many ways and this results in

multiple maxima of the likelihood. If the coalescence is not observed then we need

to fit a large number of cycles to accumulate the appreciable SNR, this is harder

to achieve unless we are close to the correct solution. In this sense it is easier

to find the weaker signal with the time of coalescence outside the observational

time. We have utilized this fact in introducing the A-statistic which enhances the

low-frequency part of the signal.

We have also implemented the accelerator which we call ”change of envi-
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ronment”. We put the colony in different environments and expect the fitter

organisms to survive in a variety of circumstances. In practice we terminate the

template earlier in frequency and evolve the colony for some time with chopped

templates. By changing the frequency range we change the likelihood surface,

the secondary maxima change the size and position, but the global maximum

remains at the same position (location of the true parameters, as shown in the

Figure 3.1). We use this property to alternate between different environments.

It helps to move the search away from the local maxima where it has a tendency

to get stuck, and guides the best organism to the true solution. It forces the

search to seek a better choice of parameters and can also be used to check for the

convergence of the algorithm to the global maximum.

A typical scheme used in our search is as follows: we start off with a full tem-

plate and use the Maximized Likelihood, Ffull, as the quality, then we alternate

the evolution between full and chopped templates (”change of environment”) still

using Q = F. We finish the evolution of colony using A-statistic.

We should mention that the frequency annealing introduced in Cornish &

Porter [2007] helps not only to speed up the search, but also assists in moving

between local maxima. The structure of the likelihood surface changes as the

duration of the signal increases.

3.5 Multimodal search

In this Section we explain how we modify the GA to explore multi-modality of the

likelihood surface. As discussed in the previous sections, the quality surface have

many local maxima. Several techniques (simulated annealing, PMR evolution,

change environment, etc.) introduced above, help in finding the global maximum,

but they all assume a single solution and, therefore, cannot help if there are several

maxima of almost equal heights/amplitudes.

Five spin-unrelated parameters (time of coalescence, chirp mass, mass ratio

and sky position) can be estimated using the GA implementation described in

previous sections with very high accuracy. The magnitudes of spins can be also

determined in some cases quite well. However other parameters corresponding

to the initial orientation of spins and of the orbital angular momentum are quite
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problematic. A typical situation is presented in the Figure 3.7. We color-code

the quality corresponding to each initial orientation of vectors, it varies within

12% of maximum while the points are scattered over the whole range. One can

see several solutions which are very close in quality to the true one (depicted by a

circle). The search for a single maximum will miss other peaks. Instead we want

to explore all of them and, based on the likelihood of each peak, we can make a

claim about possible multiple solutions.
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Figure 3.7: Example of the distribution of the best organisms from 196 runs of
GA applied to the search for source MBH-3 of MLDC 3.2 (the third signal). The
left upper panel shows the initial direction of spin 1, the initial direction of spin 2
is in the right upper panel and we plot the initial direction of the orbital angular
momentum in the bottom panel. The color scale corresponds to the value of
A-statisitc.

The reason for such a degeneracy lies in the nature of the waveform itself. First

of all these parameters are highly correlated, second, they enter the expression

for the GW phase at higher post-Newtonian orders, and affect the phase and

amplitude rather weakly. The later can also explain that we can determine the

spins better if we observe the end of inspiral, where the contribution from the

high order terms is appreciable.

Another, and most natural, reason for multi-modality of the likelihood is the

presence of multiple signals in the data. In the analyzed data set there were

between 4 and 6 signals, but exact number was not disclosed. The signals usually

have different SNR, the search converges to the signal with the largest SNR
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and explores the modes of this signal, other signals appear at the initial stage

of the search (up to the point at which accumulated SNR of different signals

is comparable). The main hint that we are looking at the multiple signals is

different values for tc and Mc: parameters which are determined most accurately.

The strongest signal can be removed from the data to recover weaker ones. It is

desirable at the end to refine all the parameters by using a super-template formed

by combining of several signals.

We want to define the mode associated with each local maximum and explore

the parameter space in its vicinity.

The basic idea of our Multimodal Genetic Algorithm (MGA) is to put a cluster

of organism in each mode, to do so we use several clones.

Each clone corresponds to a mode and all modes should have comparably high

qualities. We also increase the size of the colony so that we keep the number of

organisms per clone constant. The clones participate in the breeding often and

attract other organisms and consequently exploring the neighborhood of each

mode. We describe the implementation of the evolution later.

The crucial point of the MGA is the choice of the clones, two conditions are

necessary for an organism to become a clone. First, it should have a quality

higher than a certain level. This level can be fixed arbitrary or defined relative

to the best organism (for example Qclone ≥ Qlevel = 0.8 × Qbest). The second

condition is that there should not be another clone on the same mode. For

that, we define boundaries around a mode (i.e. the rule to separate the different

modes) using the variances σ2
k

(
θ̂clone

)
of each parameter θk at the clone position

θ̂clone. These variances correspond to the diagonal terms of the inverse Fisher

Information Matrix defined as equation (1.36) in section 1.4.3.

For each generation we choose all organisms with Qi ≥ Qlevel as candidates

to be cloned. Among these we select only the ones which form the independent

modes:

∣∣θk,i − θk,clonej ∣∣ > Fθk

√
σ2
k(θ̂clonej), (3.35)

where index i refers to the candidates to be cloned, j to the selected clone and
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Fθk is a factor to control how large should be the distance between the two modes

along the parameter θk. We choose Fθk individually for each parameter and it

varies between 15 and 50. This way we define the volume of each mode.

There are two ways to evolve a colony with multiple clones. The first one is

mentioned above, where we increase the number of organisms proportional to the

number of selected clones (modes) and evolve the system using the GA described

in previous sections. If qualities of modes are comparable we expect to have

a fraction of organisms in the close vicinity of each clone, while the remaining

organisms explore the space in between the modes. Once we have started the

evolution, we keep the number of clones fixed. If another independent mode is

found and its quality is higher than the lowest quality among the clones, than

the weakest clone (lowest quality) is moved to the new found location. Note that

we always attach a brother to each clone.

The MGA described above requires a large number of organisms (we need to

use at least 10 organisms per clone). This requires a specific implementation if

we want to use a computer cluster. We use this algorithm but with a small (less

than 10) number of clones.

The second approach, which we used the most, disallows continuous commu-

nication between the modes. We perform several independents runs (evolutions)

with a single clone. Then we analyze the end results of all runs and identify

independent modes among them. We use these modes as clones for the next set

of independent runs (evolutions). We iterate this procedure until no new modes

are found. In this approach the modes exchange information discretely, after each

single run. This multi-run MGA is described in detail below in section 3.6.2.

3.6 Pipeline

In this section we describe the chain of algorithms used to arrive at the final

result presented in the following section.
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3.6.1 Pre-analysis by a time frequency method

The GW signals from the MBH binaries are usually very strong and do not need

very sophisticated methods to detect them, especially if we observe the end part

of the binary evolution. However, it is more complicated if we observe only early

part of the inspiral. Before analyzing the data with GA we looked at the time-

frequency map of the data constructed using the Morlet wavelet transform (see

Figure 3.8).

From this map, we can clearly identify three strong signals with the time

of coalescence within the observational time and one weak signal with time of

coalescence about 3 months after the end of observations (signals are pointed by

arrows).

As we have mentioned earlier and will discuss in detail later, there is one more

weak signal which coalesces even later. This signal is low frequency and too weak

to be seen by eye in the data.

In producing submitted MLDC results, we split the data in three parts, based

on the time-frequency analysis discussed in the previous paragraph. The first

part contains the strongest signal completely and low frequency parts (few first

months) of all other signals. The second part contains two other coalescing bina-

ries and parts of remaining weak signals. Finally the third part contains only the

signals coalescing outside the observational time. An iterative approach could also

have been employed where the strongest signal is found and then removed from

the data which is then analysed to detect other signals. This process is repeated

until no more signals can be found. Estimating the residuals after subtracting

the detected signals presents a particular problem in this incremental approach.

A disadvantage of our chosen approach is the lose of some SNR, but we can be

sure of avoiding the corruption of the weak signals by residuals of strong ones.

However, it turns out that in order to find the fifth (the weakest) signal we had

to remove the fourth signal (the right most one in Figure 3.8) due to the strong

interference with the secondary maxima.
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Figure 3.8: Time-frequency representation of channel TDI A of MLDC 3.2. We
plot the norm of the Morlet wavelets transformation.

3.6.2 Multiple steps MGA search

We should not forget that GA is a stochastic search method. We can be sure

about the convergence to the true solution if the likelihood surface is smooth

and uni-modal. Unfortunately it is not the case, we have implemented many

tricks to get through the forest of the local maxima to find the highest peaks.

As mentioned earlier, our algorithm found several solutions with similar values of

the likelihood. The evolution can still end up on one or another of these maxima,

depending on the initial state and the seed of the sequence of random numbers.

This is the reason behind implementing MGA.

We have briefly introduced the multi-runs MGA in Section 3.5, here we give

a bit more detailed description.

In this implementation of MGA, the modes exchange information discretely.

We start with N std
run runs of a “single clone + brother + 20 organism” evolution.

We use all accelerators introduced in Section 3.4. We call each of these runs “stan-

dard” (as opposed to the global MGA run/search). In the first step we explore

the parameter space trying to find as many maxima as possible. We evolve each

colony for 2500 generations, then we collect the results of all these evolutions and

identify the modes associated with the best organisms as described in the Section

3.5. In our search we followed 50 best modes. We attach a colony and start

another standard run for each mode, in other words we start Nmode
run = 50 inde-
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pendent evolutions for a single clone plus colony. In this step each mode is either

refined or migrates to a new location outside its boundary, with a higher quality.

In addition we restart N std
run standard evolutions searching for more modes. At

the end of this step, the results from the Nmode
run + N std

run runs are collected and a

new set of modes is identified. We iterate the process until the 50 best modes do

not change anymore.

We found that number of strong modes depends on the parameters of the

signal and therefore keeping the number of modes to be explored fixed is unrea-

sonable. In the post-MLDC exploration we used a variable number of modes:

keeping all the modes with the quality > 98% of the best one.

Both standard and mode exploration runs have similar evolution and differ

mainly by an initial state of the evolution. We always use simulated annealing

and the temperature alternates between hot and cold phases, the threshold ρth

(see part 3.4.1.2), which regulates the temperature, decreases with the number of

generation for both phases. The number of organisms in each run is kept fixed

at 20.

For the standard run, the evolution of the PMR and of the type of breeding

and mutation are chosen such that the exploration volume is high at the beginning

of the search and low towards the end (i.e. the volume near the vicinity of the

best organism is search more intensively).

As evolution progresses we gradually fix the range of parameters in the fol-

lowing order: tc, Mc, η, sky position, amplitude of spins, and finally, the initial

direction of the orbital angular momentum and spins.

As mentioned above there is a significant difference in likelihood maps for the

signals coalescing within and outside the observational time. This is reflected

in the search strategy for those two types: due to fewer number of secondary

maxima for signals with coalescence outside observational time, we used only

moderate simulated annealing and change of environment and fixed the ranges of

Mc, tc much later in the evolution.

After some iterations the modes reach the stable state: we do not see any new

modes and the existing modes are settled at stationary positions (maxima). At

this point we stop the run, and all the modes found constitute our solution.

One can use a Bayesian approach to assign a probability to each mode by
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calculating the Bayesian evidence.

3.7 Results

We have previously shown Petiteau et al. [2009a] that GA works very well in the

case of the non-spinning SMBH even without using the multimodal search. In

this section we discuss the results of the search for spinning SMBH binaries. We

present here the outcome of the analysis of MLDC3.2. By the deadline we did

not implemented the MGA in full and therefore we have below two subsections:

In the subsection 3.7.1 we give the results submitted by the deadline, and in the

subsection 3.7.2 we present the results of the full scale MGA analysis (obtained

after the deadline). The main difference is in the number of recovered modes and

switching to the full LISA response at the end of the search to reduce the bias

due to mismatch between response function used in the signal generation and the

one used in our analysis.

3.7.1 MLDC results

The signals present in the data can be split in two types: the binaries with the

time of coalescence inside the observational time and others whose coalescence

happened outside the observations. The difference between these two types is

in the number of local maxima, SNR and consequently in the accuracy of the

recovered parameters.

3.7.1.1 Coalescence within the observational time

We have found three signals of this kind in MLDC3.2.

In the MGA we restricted the search to only 50 best modes selected at each

step. Among 50 explored modes for each signal, we have identified a small number

of distinctly strong and comparable modes for the submission. After 14th, 8th

and 7th iterations respectively of the multi-runs MGA search, we obtained five

modes for the strongest signal with the shortest tc (srcMC1 which is SMBH-1 in

MLDC notation), four modes for the second one (srcMC2 or SMBH-3 in MLDC)

and six modes for the weakest signal (srcMC3 or SMBH-4 in MLDC).
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The results are presented in the first half (first three rows) of the Table 3.3

which lists the relative/absolute errors, global overlaps and quality for modes

submitted in MLDC 3.2 for each signal (without the direction of the spins and

of the orbital angular momentum). These errors should be compared to the

corresponding predictions from FIM which are also given in the Table 3.3 in the

row labelled as “True”. For the chirp mass, the errors for all the modes are

similar to the ones estimated from the FIM. For others parameters, the errors

are generally few times higher than predicted by the FIM. At least part of this

discrepancy comes from the bias caused by the signal approximation – we have

used the long wavelength limit which is valid for the low frequency part and

breaks down near the coalescence. The mode with the error for the sky position

higher than 175 degrees corresponds to the antipodal location on the sky. Taking

this as a genuine degeneracy, we see that the source location is found with the

precision better than 10 degrees for srcMC1, 5 degrees for srcMC2 and one degree

for srcMC3.

We found a strong degeneracy in the initial directions of the orbital angular

momentum and spins, so we decided to submit several well separated modes.

Only for srcMC2, one of these modes corresponds to the true parameter set. For

srcMC1 and srcMC3, the true mode was missed, however we found it in the full

scale MGA analysis conducted after the deadline (see subsection 3.7.2).

The last two columns of the Table 3.3 show the value of A-statistic (quality

column) for each mode and the multi-stream overlap defined as

O(θ̂e) =
〈hA(θ̂e) | hA(θ̂t)〉+ 〈hE(θ̂e) | hE(θ̂t)〉

N[h(θ̂t)] N[h(θ̂e)]
, (3.36)

where θ̂t corresponds to the true parameters, θ̂e are our estimated parameters

and N[h(θ̂)] is the norm of the template h(θ̂) defined as

N[h(θ̂)] =

√
〈hA(θ̂) | hA(θ̂)〉+ 〈hE(θ̂) | hE(θ̂)〉. (3.37)

This is an extension of the overlap introduced in Chapter 1. The overlap O

varies between -1 and 1 (from perfect anti-correlation to perfect correlation) and

it tells us the loss in the SNR = N[h(θ̂t)]. In the Table 3.3, the overlaps are
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Sourcemode∆Mc/Mc ∆η/η ∆tc∆ Sky ∆a1 ∆a2 ∆D/D O quality
×10−5×10−4 (sec) (deg)×10−3×10−3 ×10−3

True 1.3 4.4 6.1 1.18 2.7 6.2 6.2 1.0 392171
1 4.3 39.8 7.2 4.15 8.6 83.0 8.7 0.99189 392628

srcMC1 2 7.8 58.6 631.4177.54 4.7 64.0 0.6 0.99236 392595
MBH-1 3 2.7 15.1 0.7 5.39 5.2 84.9 3.8 0.99198 392589

4 0.2 62.5 33.7 1.43 1.9 87.1 14.2 0.99174 392533
5 2.4 6.1 62.9 11.67 7.6 47.5 80.4 0.99235 392385

True 4.3 7.2 9.1 0.82 2.9 5.3 7.2 1.0 164559
srcMC2 1 8.9 5.1 100.8175.94 6.2 18.7 27.2 0.98965 164626
MBH-3 2 6.4 106.6 164.4178.49 46.2 31.8 9.4 0.99800 164608

3 1.4 106.6 39.0 3.65 42.4 39.9 27.9 0.99592 164589
4 0.5 113.9 179.9176.53 45.1 11.1 20.5 0.99754 164583

True 10.1 55.3 26.7 0.47 29.2 151.4 138.7 1.05823.92
1 22.0 126.2 362.2179.82 57.4 93.1 337.9 0.994035845.22

srcMC3 2 16.8 153.9 337.7179.84 51.6 373.4 252.2 0.997525832.83
MBH-4 3 1.1 166.8 30.7 0.19 51.9 385.2 252.2 0.994635832.07

4 29.2 303.4 349.5179.79 28.8 401.7 220.8 0.996865832.01
5 4.5 75.2 31.4 0.12 47.1 173.7 90.8 0.999355832.01
6 29.2 138.5 258.9179.27 226.4 184.0 125.3 0.997105830.61

True 167.3 702.814641.2 10.37 725.6 902.6 167.9 1.0 184.99
srcMC4 1 251.3 778.718562.2 45.07 38.3 150.6 93.30.936389 197.77
MBH-2 2 270.2 118.3 8405.7 10.47 218.5 251.4 178.40.965423 197.31

3 1114.1 952.238160.8171.10 331.7 409.0 153.00.943096 197.08
4 714.4 1104 7942.4141.59 11.7 665.2 169.30.935997 196.00

srcMC5 True 315.1 670.373890.8 6.40 453.7 699.0 321.4 1.0 38.75
MBH-6 1 1042.31235.682343.2 2.11 258.2 191.6 260.50.929130 47.41

2 293.7 618.843456.8173.94 89.6 122.9 430.50.729048 41.78

Table 3.3: Relative/absolute errors, global overlap, O, and quality for the modes
submitted in MLDC 3.2. All parameters are defined in section 3.2.1. ∆Sky is
the angular distance in the sky between the true and the estimated positions.
The second column gives the mode number. The errors for true parameters
are obtained using the FIM. For the tree first sources (srcMC1, srcMC2 and
srcMC3) which coalesce during the observational time the quality corresponds to
A-statistic and the two others (srcMC4 and srcMC5) which coalesce after the end
of observation the quality is the Maximized Likelihood F.
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computed by using the low-frequency approximation.

Due to the noise, we could expect the recovered SNR to deviate from the

true SNR within ±1. The SNRs of the injected signals srcMC1, srcMC2 and

srcMC3 are 1670.58, 847.61 and 160.51 respectively. The best recovered mode

for the source srcMC1 has the SNR equal to 1657.71, it is far away from the true

one. The best modes of srcMC2 and srcMC3 have the SNRs equal to 846.96 and

160.05 respectively, they are clearly close to the true value. However, the FIM

errors rows in the table 3.3 indicate that the found solutions are quite distinct

from the true values.

All of these modes have an overlap with the true solution higher than 99%.

The value of A-statistic as well that of Maximized Likelihood for the recovered

modes is higher than the corresponding values for the true parameter set. This

is a manifestation of the mismatch between the signal and the template and

indicates the importance of using the full response towards the end of the search.

We were aware of this but did not have time to implement it completely before

the MLDC submission deadline. Nevertheless, given this bias in the search, our

results are still quite accurate.

3.7.1.2 Coalescence beyond the observational time

During the search we found two signals of this kind. The results are presented in

the second half (last two rows) of the Table 3.3. Those are low frequency signals,

so our long wavelength approximation works very well resulting in very small or

no bias in the parameter estimation due to the mismatch between the response

functions as discussed in the previous section.

First we identified the source with SNR 18.63 (which is srcMC4 or SMBH-2

in MLDC notations). For this signal we found several modes after 8 steps of

MGA search, out of which we selected four modes with highest quality for the

submission. From the Table 3.3 it can bee seen that the errors in the spin inde-

pendent parameters are similar to the errors predicted by the FIM. Spin-orbital

and spin-spin couplings enter the phase at 1.5 and 2 PN orders respectively, and

since we do not observe the end of the inspiral, these terms contribute very little

to the phase as well as to the amplitude modulation (see the orbital frequency
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dependent term in equations (3.1-3.3)). Therefore the spin related parameters are

intrinsically poorly identified for these sources which is reflected in our results.

The fifth and the last source is the weakest. In fact it was completely con-

taminated by the secondaries of the srcMC4. In order to identify this source we

had to remove the fourth signal. We identified the srcMC4 with the best (highest

quality) recovered mode, generated the signal and subtracted it from the time

series. After that we repeated the search and already the first standard run found

the mode with SNR > 7 which was a positive detection. Before the deadline we

could perform only 3 steps of the MGA, however this turned out to be sufficient,

as is indicated by the overlap column in the Table 3.3. We have clearly identified

two modes with the opposite sky positions. The SNR for this signal was 12.82

and consequently the parameters have large uncertainties. The initial directions

of the spins and the orbital angular momentum could not be identified at all.

Other uncertainties are consistent with the FIM. This, fifth signal, was correctly

identified only by us among all the participants of MLDC3.2 (at least with the

precision which gave an overlap of 0.92).

The SNRs of the injected signals srcMC4 and srcMC5 are 18.95 and 12.82

respectively. The SNRs of the best modes of srcMC4 and srcMC5 are equal

to 20.54 and 13.69 respectively. The recovered parameters are within few FIM

sigmas away from the true.

3.7.2 Post-MLDC results

After the MLDC submission deadline, we finalized the implementation of the

MGA (this time we have kept all the modes within some fraction of the maximum)

and have performed the search to completion. We have also incorporated the full

LISA response in our template using LISACode LISACode [2000]; Petiteau et al.

[2008] to refine the final solutions. We discuss the details below.

For the few first steps we kept all the modes with quality higher than 50% of

the best one, then we increased the mode selection threshold to 90% (or higher,

depending on the number of modes detected for a given signal). We also improved

the mode separation criteria by adjusting Fθk based on the detailed study of the

quality distribution. Finally, we have also added two final search steps using the
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templates with the full TDI response.

Here we used a lite version of LISACode simulatorLISACode [2000]; Petiteau

et al. [2008]. The lite version contains some fine-tuned trick which allowed us to

compute the two-years long template in less than 15 seconds.

The final steps with the full TDI response are required only for the signals

which coalesce within the observational time. Only those signals propagate to

high frequency where the long wavelength approximation is not accurate any

more, and the SNR is high enough for this to matter. Including the full response

also helped for srcMC1 to promote the mode (increase its quality) closest to the

true solution and slightly suppress the others.

For the last, full response search, we selected the modes within 98% of the

best one. This results in the selection of 26 modes for source srcMC1 after 13

steps of MGA, and 175 and 17 modes for the sources srcMC2 and srcMC3 respec-

tively after 9 steps of MGA. Figure 3.9 shows the distribution of the Maximized

Likelihood with the full LISA response relative to the true one, FFull,i/FFull,true,

for the modes of the source srcMC2. For this source, 36 modes have SNR within

one sigma deviation form the SNRtrue: |SNRi−SNRtrue| < 1, and 4 of them have

FFull,i higher than for the true waveform. Deviation in SNR by unity can be easily

produced by noise, note that besides the stationary gaussian instrumental noise

we also had cyclo-stationary Galactic confusion noise. There are similar results

for other sources. For srcMC1 we have identified 21 modes with ∆SNRi < 1 and

6 of them have FFull,i > FFull,T rue; for srcMC3, 21 modes have ∆SNRi < 1 and

6 of them with FFull,i > FFull,T rue. We have confirmed those results also with the

signals generated using syntheticLISA Vallisneri [2005], another simulator used

to produce the data set. This is to avoid possible error coming from the use of

two different simulators.

The difference between identified modes is within the fluctuation that can be

caused by the noise, therefore there can not be a unique solution. However, all

the modes are single valued in the non-spinning parameters and they split for the

initial directions of the spins and the orbital angular momentum (sometimes also

antipodal sky location).

Our post-MLDC results are presented in Table 3.4 in which we list the param-

eter estimates for three modes found for each source. These modes are described
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Figure 3.9: Ratio between Maximized likelihood of modes and true Maximized
Likelihood for source srcMC2. The blue dotted line corresponds to a ratio equal
to one. The green dashed lines correspond to ∆SNRi < 1

as follows:

1. ‘B’-mode (‘B’-est) is the the mode with the highest Maximized Likelihood

value using the template with the full response.

2. ‘C’-mode (‘C’-losest) is the mode closest to the injected signal in all param-

eters.

3. ‘A’-mode (‘A’-strophysically relevant) is the mode with the smallest error

in the most relevant parameters from the astrophysical point of view (sky

position, distance, masses, spin amplitude and time of coalescence).

We estimate the ”closeness” to the true parameters as

d ≡ maxk

{
σθk

σθkFIM

}
,
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where σθk is an error in the estimation of parameter θk, which is determined by

computing the absolute difference between the value of the modes and the true

value of the signal: σθk = |θkMode − θktrue|. In the table 3.4, the values which

are corresponding to rows of ’A,B,C’ are the σθk for each parameter. σθkFIM is a

corresponding prediction from the FIM. Both of σθk and σθkFIM have the same unit

as the parameter θk, hence, the distance d is dimensionless, and gives measure of

a distance in unites of FIM.

We have eliminated the systematic error by using the full LISA response

function. All the modes presented in the table 3.4 have likelihood higher than

the true signal, but the difference in the SNR is still less than 1. The FIM errors

in the table tell us how much deviation from the true parameters we expect due

to the influence of noise. The differences in some parameters have the values

comparable to the FIM errors, other parameters are quite off. This indicates the

strong degeneracy in these parameters, and the found solutions do not correspond

to the true one.

As for the computational expense, it mainly depends on the duration time

of the signal. When we searched the strongest signal ”srcMC1”, the waveform

duration is several month. A single PC can run 2000 generations for one individual

genetic algorithm in less than 8 hours. When it come to the weaker signal, or

the longer waveform, the cost of the computation increase correspondingly. In

the full multi step MGA search, the number of steps is also related to the signal

itself. Taking ”srcMC1” as an example, we performed 8 steps by using 10 CPU

and the full run takes 5 days. For the weakest signal, we need around 20 steps

and more than 10 days.

3.8 Summary

To conclude this chapter, we have described the application of the Genetic Algo-

rithm to the the problem of detecting gravitational wave signals from inspiralling

spinning SMBH binaries and estimating their parameters. We described how

GA can be translated to the problem of GW data analysis, and introduced some

custom-designed accelerators of the evolution which allow us to efficiently explore

the 13-dimentional parameter space. In addition to the standard F-statistic which
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is popular in the GW data analysis, we introduced a new detection statistic called

A-statistic, which enhances the low frequency part of the signal. Use of A-statistic

allows us to partially compensate for the mismatch between the template and the

true signal and to change the structure of the quality surface eliminating some of

the secondary maxima.

We have found that the likelihood surface is highly multimodal with several

modes having very high amplitudes. In order to incorporate this in our search

we have extended the standard GA to the multimodal Genetic Algorithm. We

cluster strong local likelihood maxima in the parameter space within the volume

defined by the slightly enlarged error boxes predicted by inverse of the Fisher

information matrix.

To each cluster or ”mode” identified in such a manner, we attach a colony of

the organisms. The colonies explore their local regions intensively and exchange

the information after every 2500 generations.

We apply this method for the analysis of MLDC3.2 data set. In the blind

search, we have successfully found all 5 signals and the recovered solutions have

overlap higher than 99.2% for the strong (high SNR) signals and higher than 93%

for the weak signals. The results submitted by the deadline did not fully reflect

the capability of our search method, as the implementation was not complete.

We have completed the search after the deadline by allowing MGA to reach the

stable solution. We have also used the full TDI response during the last two

steps of our post-MLDC analysis. This has allowed us to recover all modes and

reduce the bias in the parameter estimation due to use of the long wavelength

approximation in our search template. We have achieved a remarkable accuracy

in estimating non-spinning parameters, as well as reasonably accurate estimation

of the spin magnitudes if binary coalesces within the observational window. Our

method is at least comparable, if not better, to other very successful algorithms

such as MCMC with parallel tempering and MultiNest Feroz et al. [2009]. The

success of the MGA in case of the inspiralling spinning SMBH binaries gives

us the confidence that it should also prove to be highly efficient in many other

data analysis problem. In the next chapter, we use GA (simplified version) for

analysing GW signals from EMRIs.
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Chapter 4

EMRI Data Analysis With A

Phenomenological Waveform

This chapter is based on the my published paper Wang et al. [2012].

In gravitational wave astronomy, EMRIs are among the most interesting

sources. Due to the large amount of local maxima on the likelihood surface,

it is very challenging to detect those sources with the accurate recovered pa-

rameters of binaries. Because the matched filtering requires computation of the

gravitational waveform hundreds thousand of times, the most accurate (faithful)

model of EMRIs is not feasible. In this chapter, we introduce a phenomenological

template family which covers a large range of EMRIs parameter space, and used

them to detect the signal in the simulated data. Then, assuming a particular

EMRI model, we estimate the physical parameters of the binaries.

4.1 My Contribution

In the section 4.3, I have used the results from Babak et al. [2007] to code up

the numerical kludge model both in time and frequency domain using matlab.

Following the methods which are introduced by Drasco [2009]; Drasco & Hughes

[2004, 2006], I have done the harmonic analysis of the numerical kludge waveform,

and the results (which are the basis of our phenomenological template family) are

shown in the section 4.4. I have participated in the discussion with my colleagues
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on the MCMC results which are obtained by Yan Wang in section 4.6.1. Then,

I have used the multi-step genetic algorithm to recover the physical parameters

of the GW signal, and the results are given in the section 4.6.2.2. My colleague

Wang Yan used another algorithm: particle swarm optimization to do the same

search in parallel. The results of these two methods are comparable and presented

in the table 4.1.

4.2 Motivation

As mentioned in the section 1.3.2.3, due to the N-body interaction, the stellar

compact object like a black hole, neutron star or white dwarf located in the cusp

surrounding SMBH in the galactic nuclei could be thrown on a very eccentric

orbit. The compact body could either plunge (directly or after few orbits) into

SMBH or form an EMRI. In the case of EMRI, it will spends ∼ 106 orbits, and

the information of this orbital evolution will be encoded in the phase of emitted

gravitational waves. LISA will observes those sources few years before the plunge

and we can extract extremely accurate parameters of a binary system Barack

& Cutler [2004] (like mass and spin of SMBH M,a, mass of a small object m,

inclination of the orbital plane (to the spin of SMBH), orbital eccentricity and

semi-latus rectum (ι0, e0, p0) at some fiducial moment of time t0, location of the

source on the sky (Θ,Φ) and more) by fitting precisely the GW phase.

We can also test the nature of the central massive object through this precise

tracking of GW phase. Generally, it is believed that it should be a SMBH with

surrounding spacetime described by a Kerr metric. The orbital evolution of the

compact object is affected by the nature of the spacetime which could be extracted

from the GW phase. As stated by the “no-hair” theorem, Kerr spacetime is

described by only two parameters: black hole’s massM and spin a. The spacetime

have the multipole moments structure of the central massive object, and, for Kerr

BH, all the moments depend only onM,a: Ml+iSl = (ia)lM , where where S1 = J

is the spin and a = J/M is usual Kerr spin parameter. By measuring the first

three moments (mass, spin and quadrupole moment) Barack & Cutler [2007], we

can check the “Kerrness” of a spacetime. In general, the deviations from Kerr

could be caused by several reasons: (i) it is Kerr BH but with an additional
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perturber (gas disk, another SMBH) (ii) it is not Kerr BH but some other object

satisfying GR (boson star, gravastar), (iii) there are deviations from GR. For

discussion on the this topic we refer reader to Amaro-Seoane et al. [2010, 2012b];

Babak et al. [2011] and references therein.

So far, even in GR, the full modeling of orbital evolution has not yet been

completed. The large mass ratio allows us to treat the small compact object

as a perturbation of the Kerr background spacetime, and the problem can be

described perturbatively in orders of the mass ratio. In the zero order approx-

imation, the compact object moves in a pure geodesic orbit. However, once we

take into account its mass, it creates its own gravitational field interacting with

the background which results in the so called self force, and system emits gravi-

tational radiation. This leads to the motion of the compact object which could

be treated as the forced geodesic motion. Alternative interpretation is that the

motion is governed by a geodesic motion but in the perturbed spacetime. Calcu-

lation of the self force is a complicated task which is only accomplished for the

orbits around Schwarzschild BH Barack & Sago [2010]; Warburton et al. [2012],

the Kerr spacetime is underway. To compute the motion under the self force

one can use the osculating elements approach Gair et al. [2011], or self-consistent

approach of direct integration of the regularized equations Diener et al. [2012].

For more details on this subject we refer to Poisson et al. [2011].

All in all, the modeling of the orbital evolution and the GW signal is a complex

task which requires significant theoretical and computational developments. The

later prevents us currently from using the state-of-art GW models of EMRIs in

our data analysis explorations. The most used model is called ”analytic kludge”

(AK) which is a phenomenological model suggested in Barack & Cutler [2004]. It

is based on Post-Newtonian expressions and puts all relevant physics of EMRIs

together. However the defects of this model are the restrictions in the number

of harmonics and in their strength. The recovered parameters could be very

different from the actual ones. Any search algorithm which relies on its specific

harmonic content will not work for a more realistic model of GW signal. The

main motivation of our work is to create the phenomenological search template

family which would fit a very large range of EMRI-like signals. The typical EMRI

signal consist of set of harmonics of three (slowly evolving) orbital frequencies,
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and we will use it as a basis of our template.

The present work is an extension of the previously published work by Gair

et al. [2008] and Babak et al. [2009]. The authors in Gair et al. [2008] produced

the spectrogram from the data, and applied the threshold based on the false alarm

with the assumption of Gaussian noise to identify the pixels with excess of power.

As a result, they obtained the time frequency tracks of the signal. Then they run

matched filtering based on MCMC search on the time frequency plane to extract

the physical parameters using the analytical kludge model for EMRI signal. The

authors in Babak et al. [2009] have conducted search on the parameters space to

find the local maxima of the likelihood using the analytical kludge model. They

computed the accumulative likelihood of each found local maxima to identify the

time and frequencies when templates match some harmonics of the signal. We use

this technique and described it in details in section 4.6.1. Form the found time

frequency tracks, they fixed approximately the three fundamental frequencies at

some reference time. Then they fix found frequencies of harmonics and use it as a

constrain in the next step of MCMC search (requiring that each template passes

at the reference time through the fixed frequencies). Finally they release this

constrain, and evolve the frequency to refine the parameter estimation. In this

work, we follow Babak et al. [2009] to find time frequency tracks by using the

phenomenological waveform which is constructed in a model independent way.

Then using the numerical kludge model, we search the physical parameter in a

similar way to Gair et al. [2008]. We choose the Genetic Algorithm and particle

swarm optimization to do this search.

The phenomenological template is constructed by Nh harmonics with constant

amplitude and slowly evolving phase which is expanded in a Taylor series. Trun-

cation of the Taylor series and the assumption about constant amplitude lead to

the restrictions on the duration over which the phenomenological template can fit

an EMRI signal. There are several factors that lead to change in the amplitude

of EMRI’s harmonics: (1) shrinking of the orbit lead to the overall amplitude

increases, (2) circularization of the orbit results in the shifting power to the lower

harmonics, (3) slight change in the inclination of the orbit to the spin of MBH.

Because the phase modulation is more important than the accurate description

of the amplitude, we should use more terms in the Taylor series which can track
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phase of the EMRI signal as accurate as possible. Finally, we decide on the

number harmonics to use in the template (and their indices) depending on the

analysis of the harmonic structure of the Numerical Kludge (NK) model Babak

et al. [2007] of EMRI in different parts of the parameters space. The restriction

that the phenomenological waveform (PW) is valid only for a limited period of

time is very weak since we can fit the signal piecewise, as long as accumulated

signal-to-noise ratio (SNR) over that time is significant to claim presence of the

signal. In this work we consider only those parts of the EMRI signal where the

orbital frequencies are not decreasing which is true over almost all time of the

inspiral and breaks quite close to the plunge. However this is not really necessary

since we did not restrict the values of frequency derivatives to positive values

during the search.

In fact, the PW family is quite generic and does not depend on particular

model for the orbital evolution, or, in other words, the orbital evolution of the

binary is encoded in the Taylor coefficients of phase of each harmonic. This allows

us to detect EMRI signal in a model independent way. Once the harmonics of the

signal are recovered we can analyze them using a specific EMRI model to recover

physical parameters of the system.

It is at this point we need the orbital evolution with high accuracy. Besides

the orbital precision, the computational cost is also important. In this sense,

the Nk model are quite suitable for our purpose. First, it is much faster to be

generated compare to the other high precision model, such as the Teukolsky-based

numerical waveforms Cutler et al. [1994]; Drasco & Hughes [2006]; Glampedakis

& Kennefick [2002]; Hughes [2001]; Poisson [2004]. Second the NK waveform has

more realistic orbital than the AK model. With these two benefits, we can do the

harmonics analysis very effectively. In the next section, we will review the NK

waveform construction and our results of harmonics analysis of NK waveform.

4.3 Numerical kludge model

We describe NK waveform closely following the paper Babak et al. [2007]. The

NK waveform is constructed by using weak field perturbation theory. We keep

trajectory as Kerr geodesic plus evolution under the radiation reaction, and use
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this trajectory to compute waveform by assuming the flat spacetime background.

By accurately modeling the inspiral trajectory we achieve a good phase match

between the true waveform and the approximate one. The present trajectory is

described in the Boyer-Lindquist coordinates in the Kerr space time, and we need

to map these coordinates onto the Cartesian coordinate in the flat space. The

most natural way is to treat the (r, θ, φ) in B-L coordinate as the spherical polar

coordinate in the flat space Babak et al. [2007]. The pseudo-Cartesian coordinate

can be constructed as

x = r sin θ cosφ, (4.1)

y = r sin θ sinφ, (4.2)

z = r cos θ. (4.3)

The trajectory is expressed as Z(t) = {x(t), y(t), z(t)}. For waveform generation,

we can consider the weak-field approximation and write down the space time

metric as

gµν = ηµν + hµν , (4.4)

where ηµν is the flat metric and hµν is small perturbations. In terms of the trace

reversed metric h̄µν and the Lorentz gauge condition h̄µα ,α = 0, the linearized

Einstein field equations can be written as

�h̄µν = −16πTµν , (4.5)

in which � denotes the usual flat-space wave operator and the effective energy-

momentum tensor T satisfies Tµν,ν = 0. At the field point (t, ~x), the solution h̄jk

(j, k = {x, y, z}) is the quadrupole-octupole formula which is under the point

particle limit,:
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h̄jk =
2

r
[Ïjk − 2niS̈

ijk + ni
d2M ijk

dt3
], (4.6)

where r = |~x|, ~n = ~x
r
, the over dot is the time derivative with respect to ob-

servation time t Bekenstein [1973]; Press [1977], and we have neglected higher

multi-moment. The mass quadrupole moment Ijk, mass octupole moments M ijk

and current quadrupole moments Sijk are defined as

Ijk = µxjxk, (4.7)

Sijk = viIjk, (4.8)

M ijk = xiIjk, (4.9)

here vi = dxi/dt is the three velocity of the particle.

In order to simplify our work, we start with only the mass quadrupole I ij to

construct the waveform.

hij = Ï ij, (4.10)

with the components of Ijk expressed in the pseudo-Cartesian coordinate

Ijk =

 r2 sin2 θ cos2 φ r2 sin2 θ sinφ cosφ r2 sin θ cos θ cosφ

r2 sin2 θ sinφ cosφ r2 sin2 θ cos2 φ r2 sin θ cos θ sinφ

r2 sin θ cos θ cosφ r2 sin θ cos θ sinφ r2 cos2 φ

 . (4.11)

Actually, the M ijk and Sijk will bring more harmonics, we will discuss them later

in subsection 4.4.5.

In order to get the waveform in the TT gauge. We define an orthogonal

spherical coordinate system via

er =
∂

∂r
, (4.12)

eΘ =
1

r

∂

∂Θ
, (4.13)

eΦ =
1

r sin Θ

∂

∂Φ
. (4.14)
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The angles {Θ,Φ} denote the observation point’s latitude and azimuth, respec-

tively. The waveform in transverse-traceless gauge is then given by

hjkTT =
1

2

 0 0 0

0 hΘΘ − hΦΦ 2hΘΦ

0 2hΘΦ −(hΘΘ − hΦΦ)

 , (4.15)

with

hΘΘ = cos2 Θ[hxx cos2 Φ + hxy sin 2Φ + hyy sin2 Φ] + hzz sin2 Θ

− sin 2Θ[hxz cos Φ + hyz sin Φ],

hΘΦ = cos Φ[−1

2
hxx sin 2Φ + hxy cos 2Φ +

1

2
hyy sin 2Φ] + sin Θ[hxz sin Φ− hyz cos Φ],

hΦΦ = hxx sin2 Φ− hxy sin 2Φ + hyy cos2 Φ.

The ”plus” and ”cross” waveform polarizations are given by hΘΘ−hΦΦ and 2hΘΦ

respectively Babak et al. [2007].

We must emphasize that the NK prescription is inconsistent Babak et al.

[2007]. Due to the gravitational potential of the background, the propagation of

GW can not be as freely as in the case of flat space background. Just like the

quantum mechanics, the barrier of the gravitational potential could reflect the

GW back and forth in the ”potential well”. We use the quotes, because there

is indeed no real well in the background, the gravitational potential is unbound.

Therefore, the field at a point (t, x) depends not only on the surface of the past

light cone, but also the interior of the past light cone, in other words, the whole

history of the particle from the retarded point of (t, x). This effect is called the

backscattering, which appears at 1.5PN order in Blanchet et al. [1995]. This

bring a tail term in the full waveform construction. Such ”tail” of waves are

particularly predominant in the strong field Glampedakis & Kennefick [2002].

The assumption of the flat background implies the kludge waveforms are unable

to capture any features related to backscattering. However, the backscattering

becomes important for the orbits very close to the central black hole , which we

do not consider in our work.

The spirit of this calculation is not a formal and consistent approximation to
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EMRI waveforms; it is rather a ”phenomenological” approach which takes into

account those pieces of physics that are the most crucial in particular, the exact

Kerr geodesic motion. By including the exact source trajectory, we ensure that

the spectral components of the kludge waveforms are at the correct frequencies,

although their relative amplitudes might not be exact, but good enough for our

purpose.

4.3.1 The Kerr geodesic in observation time

The first step in the NK waveform modeling is to describe the trajectory. In

this section we will review the geodesic in Kerr spacetime in the Boyer-Lindquist

coordinate Bardeen et al. [1972]; Chandrasekhar [1983]. The metric in these

coordinates is given by

ds2 = −
(

1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+

(
r2 + a2 +

2Ma2r

Σ
sin2 θ

)
sin2 θdφ2

−4Mar

Σ
sin2 θdtdθ, (4.16)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. (4.17)

The geodesic equations are the second order differential equations

d2xα

dτ 2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= 0, (4.18)

where τ is the proper time, and xα(τ) is the trajectory of the geodesic. A geodesic

is uniquely characterized by the initial value of particle’s position xα(0) and veloc-

ity dxα

dτ
|τ=0. Among this eight constants, dxα

dτ
|τ=0 correspond to the four constant

of the motion which describe the dynamics of the bound orbit. Three of these

constants are: the rest mass m; the conserved energy E per unit rest mass; the
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conserved z-component of the angular momentum Lz per unit rest mass . There

is a fourth constant Q which is also scaled by unit rest mass squared, called Carter

constant Chandrasekhar [1983]; Misner et al. [1974].

Using these four scaled constants, the geodesic equations can be written as a

system of first order differential equations

Σ
dr

dτ
= ±

√
Vr,

Σ
dθ

dτ
= ±

√
Vθ,

Σ
dφ

dτ
=

√
Vφ,

Σ
dt

dτ
=

√
Vt, (4.19)

the various potentials are defined by

Vr = [E(r2 + a2)− Lza]2 −∆[r2 + (Lz − aE)2 +Q],

Vθ = Q− cos2 θ

[
a2(1− E2) +

L2
z

sin2 θ

]
,

Vφ =
Lz

sin2 θ
− aE +

a

∆

[
E(r2 + a2)− Lza

]
,

Vt = a(Lz − aE sin2 θ) +
r2 + a2

∆

[
E(r2 + a2)− Lza

]
. (4.20)

For given E, Lz, Q, the roots of Vr determine the turning points of the ra-

dial motion: the periapsis rp, and apoapsis ra. From these, one can define an

orbital eccentricity e, and semilatus rectum p, using the conventional Keplerian

definitions:

rp =
p

1 + e
, ra =

p

1− e,

⇒ p =
2rarp
ra + rp

, e =
ra − rp
ra + rp

. (4.21)

For convenience, we replace the Carter constant by an ”inclination angle” which
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stands for the inclination of the spin to the orbital plane, defined by

tan2 ι =
Q

L2
z

. (4.22)

From these, we can realize that {E,Lz, Q} are equivalent to {e, p, ι}. Theoreti-

cally, given any one set, we can find another one analytically.

The Boyer-Lindquist time coordinate t reduces at large radius to time as

measured by a distant observer. From this point of view, it is more convenient

to use t rather than τ in the geodesic equations Drasco & Hughes [2006]. It can

be achieved by changing time variable in the above equation:

dr

dt
=
dr

dτ

(
dt

dτ

)−1

, (4.23)

and likewise for dθ/dt and dφ/dt. Thus, with the initial conditions of the particle’s

position and an allowed set of orbital constants (E,Lz, Q), we can integrate the

geodesic equation to find the trajectory z(t) = {r(t), θ(t), φ(t)}.
The author in Schmidt [2002] used the elegant Hamiltonian-Jacobi technique

to show that bound orbits are characterized by multy-periodic motions in r, θ

and φ with three fundamental frequencies Ωr, Ωθ, and Ωφ respectively. The

r and θ motions belong to the oscillatory or libration-type, but the φ orbital

motion corresponds to a rotation-type periodic motion, so, Ωφ is considered less

fundamental than Ωr and Ωθ Drasco & Hughes [2004]. Unfortunately, the term

Σ = r2 + a2 cos2 θ on the left hand side of the geodesic equation leads to the

coupling of the r and θ motions. To solve this problem, another time, λ, which

absorbs the coupling is introduced by Mino [2003].

The Mino time parameter λ which decouples the radial and polar motions is

related to the test mass’s proper time τ by

dτ

dλ
= Σ. (4.24)

The geodesic equations in λ - time are(
dr

dλ

)2

= Vr(r),
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(
dθ

dλ

)2

= Vθ(θ),(
dφ

dλ

)2

= Vφ(r, θ),(
dt

dλ

)2

= Vt(r, θ). (4.25)

Now, radial and polar motions are pure periodic in λ.

r(λ) = r(λ+ nΛr), (4.26)

θ(λ) = θ(λ+ nΛθ), (4.27)

where the periods are given by

Λr = 2

∫ ra

rp

dr

Vr(r)1/2
, (4.28)

Λθ = 4

∫ π/2

θmin

dθ

Vθ(θ)1/2
. (4.29)

(4.30)

The numerical factors in the front of the integrals come from the symmetry

of the r, θ motion. The r motion is taken to range between periaps, rp, and

apoapsis, ra; the θ motion ranges from a minimum θmin to a maximum π − θmin
Drasco & Hughes [2006]. During one period, the r motion undergo ra → rp → ra;

the θ motion undergo θmin → π
2
→ π − θmin → π

2
→ θmin. The φ motion will be

discussed later.

The frequencies in Mino time can be defined as

Υr,θ =
2π

Λr,θ

. (4.31)

Fourier series of r(λ) and θ(λ) in these new frequencies can be expressed as:

100



r(λ) =
∞∑

n=−∞

rne
−inΥrλ, (4.32)

θ(λ) = =
∞∑

k=−∞

θke
−ikΥθλ, (4.33)

where θk, rn are constants, k, n are harmonic indices.

In terms of the angle variables: wr = Υrλ, wθ = Υθλ, these series can be

simplified as

r(wr) =
∞∑

n=−∞

rne
−inwr , (4.34)

θ(wθ) = =
∞∑

k=−∞

θke
−ikwθ . (4.35)

As mentioned above, dt/dλ and dφ/dλ are biperiodic functions of r and θ.

This means that they can be expanded in a two-dimensional Fourier series Drasco

& Hughes [2004]:

dt

dλ
= T (r, θ) =

∑
kn

Tkne
−i(kΥθ+nΥr)λ, (4.36)

dφ

dλ
= Φ(r, θ) =

∑
kn

Φkne
−i(kΥθ+nΥr)λ, (4.37)

with the expansion coefficients are given by

Tkn =
1

(2π)2

∫ 2π

0

dwr
∫ 2π

0

dwθT [r(wr), θ(wθ)]ei(kw
θ+nwr), (4.38)

Φkn =
1

(2π)2

∫ 2π

0

dwr
∫ 2π

0

dwθΦ[r(wr), θ(wθ)]ei(kw
θ+nwr). (4.39)

Because Vt(r, θ) and Vφ(r, θ) are real, we have
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T−k,−n = T̄kn, (4.40)

Φ−k,−n = Φ̄kn. (4.41)

In addition to this, the matrix Tkn, Φkn have the following properties: Tk0 and

T0n are nonzero, but Tkn = 0, if k 6= 0 and n 6= 0 (and likewise for Φkn). This

lack of ”crosstalk” between the θ and r harmonics is because T (r, θ) and Φ(r, θ)

have the form f(r) + g(θ) Drasco & Hughes [2004]. To take advantage of this

property, we define

T θk = Tk0, T rn = T0n,

Φθ
k = Φk0, Φr

n = Φ0n, (4.42)

with this, we can rewrite above expressions as

dt

dλ
= Γ +

∞∑
k=1

(T θk e
−ikΥθλ + T̄ θk e

ikΥθλ)

+
∞∑
n=1

(T rne
−inΥrλ + T̄ rne

inΥrλ), (4.43)

dφ

dλ
= Υφ +

∞∑
k=1

(Φθ
ke
−ikΥθλ + Φ̄θ

ke
ikΥθλ)

+
∞∑
n=1

(Φr
ne
−inΥrλ + Φ̄r

ne
inΥrλ). (4.44)

Here,

Γ = T00, (4.45)

Υφ = Φ00. (4.46)

These two variables tell us about the secular average rate at which φ and t accu-

mulate with respect to λ, the frequency Υφ has the same meaning as equations
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(4.31). Therefore integrating these equations leads to

t(λ) = Γλ+ δt(λ), (4.47)

φ(λ) = Υφλ+ δφ(λ). (4.48)

we have chosen t(λ = 0) = 0 = φ(λ = 0), and defined oscillatory part as

δt(λ) =
∞∑
k=1

(δtθke
−ikΥθλ + c.c.) +

∞∑
n=1

(δtrne
−inΥrλ + c.c.), (4.49)

δφ(λ) =
∞∑
k=1

(δφθke
−ikΥθλ + c.c.) +

∞∑
n=1

(δφrne
−inΥrλ + c.c.), (4.50)

where

δtr,θj =
iT r,θj
jΥr,θ

, (4.51)

δφr,θj =
iΦr,θ

j

jΥr,θ

. (4.52)

With this definition, t(λ) and φ(λ) are decomposed into pieces which accu-

mulate secularly with λ plus pieces δt(λ) and δφ(λ) that oscillate at harmonics

of Υr and Υθ.

Since Ωφ is the average rate at which φ accumulates as a function of t and since

Γ and Υφ are the average rates at which t and φ accumulate as a functions of λ,

we have the following relations between frequencies in different time parameters

Drasco & Hughes [2004]

Ωφ =
Υφ

Γ
, (4.53)

Ωr =
Υr

Γ
, (4.54)

Ωθ =
Υθ

Γ
. (4.55)
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4.3.2 Changes of variables for radial and polar coordinates

From the point of vies of the numerical calculation, evaluating the integral con-

taining the function of r(wr) and θ(wθ) would require a direct integration of the

radial and polar geodesic equations. Unfortunately this is somewhat difficult be-

cause the potentials Vr and Vθ vanish at the orbital turning points Babak et al.

[2007]; Drasco & Hughes [2004]. This means, for example, the integral in the

direct expression for r(λ)

λ =

∫ r(λ)

rmin

dr′

±
√
Vr(r′)

, (4.56)

contains apparent singularities which complicate the numerical implementation.

In order to regularize the integral at the turning points we introduce new variable

ψ through the equation

r =
p

1 + e cosψ
, (4.57)

and define χ by the equation z = cos2 θ = z− cos2 χ for the θ motion, where z− is

given by

β(z+ − z)(z − z−) = βz2 − z[Q+ L2
z + a2(1− E2)] +Q, , (4.58)

with β = a2(1−E2). z± are the two roots of the quadratic equation (4.58) Babak

et al. [2007]; Drasco & Hughes [2004].

The radial potential Vr has four roots, two of them are rp and ra, the other

two roots are denoted as r3 and r4. By using these four roots, we can expand the

radial potential as

Vr = (1− E2)(ra − r)(r − rp)(r − r3)(r − r4). (4.59)

The radii r3 and r4 do not correspond to the turning point, but still represent
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zeros of Vr. It is useful to rewrite these radii by

r3 =
p3

1− e, (4.60)

r4 =
p4

1 + e
. (4.61)

In fact, r3 is used to find the innermost stable orbit, and r4 is always fall into

the event horizon, we return to this discussion later in the subsection 4.3.4 on

truncation of the orbital evolution.

In the Mino time, the geodesic equations for χ and ψ are

dχ

dλ
=

√
β(z+ − z) =

√
β(z+ − z− cos2 χ),

dψ

dλ
=

M
√

1− E2[(p− p3)− e(p+ p3 cosψ)]1/2[(p− p4)− e(p− p4 cosψ)]1/2

1− e2
.

In the coordinate time t, the evolution equations for ψ and χ have the form:

dψ

dt
=

M
√

1− E2[(p− r3(1− e))− e(p+ r3(1− e) cosψ)]1/2

[γ + a2Ez(χ)](1− e2)

·[(p− r4(1 + e))− e(p+ r4(1 + e) cosψ)]1/2,

dχ

dt
=

√
β[z+ − z(χ)]

γ + a2Ez(χ)
, (4.62)

where γ = e
[

(r2+a2)2

∆
− a2

]
− 2MraLz

∆
Babak et al. [2007].

In terms of the variables ψ, and χ, the geodesic equations are well behaved

at the turning points, which facilitates numerical integration. A geodesic can be

described by a set of six constants I = {E,Lz, Q, ψ0, φ0, χ0}, where ψ0, χ0, ϕ0 are

the initial position in terms of the introduced above phase angles.

4.3.3 Adiabatic approximation

Till now, we have considered particle moving in a pure geodesic. But in reality,

the particle also has its own gravitational field which will disturb the background,
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this disturbance cause the emission of GWs. Due to the loss of gravitational

energy and orbital angular momentum, there will be a ”back reaction” effect on

the particle’s motion. We can consider this effect as a self force, which causes

it to deviated from its geodesic path Barack & Sago [2010]; Gair et al. [2011];

Poisson et al. [2011]. Because of the difficulty in calculating the whole self force,

it is usually assumed that the evolution is adiabatic: the time scale τRR for the

orbital parameters to change is much larger than the orbital periods of the r, θ, φ

motion. In this limit, at each instance, the trajectory can be treated as nearly a

geodesic orbit. Suppose all the possible Kerr geodesic orbit constitute a space, and

each set of (E,Lz, Q) corresponds to a geodesic which can be treated as a point

in this space. When orbits evolve due to the radiation reaction, they correspond

to a trajectory [E(t), Lz(t), Q(t)] through this space. The orbital motion can

be treated as slowly passing from one geodesic configuration to another, the

effect of this force can be understand as a slow change in all the six constants

(E,Lz, Q, ψ0, φ0, χ0).

4.3.4 Evolution of the constants of motion

It is necessary to use the self force to deduce the rate of change for the constants of

motion Mino [2003]. The self force has two components: a dissipative force which

corresponds to carrying energy and angular momentum away from the binary, and

it can be used to derive the rate of change of E,Lz, Q; and, a conservative part

of the force which is related to the change of the initial position χ0, ψ0, φ0 Barack

[2009]; Barack & Sago [2010, 2011]; Hinderer & Flanagan [2008]; Warburton et al.

[2012]. There is no analytical expression of the self force, it is not trivial to obtain

χ̇0, ψ̇0, φ̇0 and to evolve the motion. We neglect the change of χ0, ψ0, φ0, the

instantaneous geodesic orbit is updated by evolving the three constants E,Lz, Q.

In the future, if we can get the accurate expressions of the χ̇0, ψ̇0, φ̇0, we can also

apply them in our method to obtain the accurate orbital motion. This implies

that we do not model the phase of GW signal well enough, but, we do not intend

to use NK waveform for detection purpose. We will use NK model to mimic the

signal for testing phenomenological waveform described in detail below.

The energy and the orbital angular momentum can be read out from the
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gravitational wave flux, but the Carter constant can not Hughes [2000]; Ken-

nefick & Ori [1996]. This is because the energy and angular momentum are

linearly constructed from the particle’s momentum pµ, while the Carter constant

is quadratically constructed from the momentum. Sago et al. [2005, 2006] shows

that all the change of these motion constants can be found from the self force.

Ganz et al. [2007] provide an adiabatic expressions of Ė, L̇z, Q̇ by solving the

Teukolsky equations Teukolsky [1973]. For generic orbit, it is necessary to con-

sider all these three rates, but there are two special cases which need evolution

of only two components. The first one is the equatorial orbit: Q for equatorial

orbit is zero, and since the test mass does not leave the equatorial plane during

the evolution, Q remains zero all the time. The system evolution is govern by

the two quantities Ė, L̇z. The other one is the circular, non-equatorial orbit:

such an orbit has non-zero Cartar constant, but it turn out that, in the adia-

batic approximation, its evolution is entirely determined by the radiated energy

and orbital angular momentum, this is because circular orbit remain circular as

they adiabatically evolve due to the radiation reaction and it is enough to use

the measurement of Ė, L̇z to entirely specify the evolution of the system Hughes

[2000].

Our analysis does not depend on precise description of the orbit. The aim

is to show how our method works in practice. No matter what kind of approxi-

mation formula for Ė, L̇z, Q̇ is used, the analysis described in this thesis remains

unchanged. Just instead of equations (4.63) one would use other (more precise

and more complicated expressions). In order to simplify our work, we mimic the

toy gravitational signal by choosing the 2PN approximation formula for Ė, L̇z, Q̇

derived in Gair & Glampedakis [2006] for the orbital evolution. Those are

dE

dt 2PN
= −32

5

m2

M2
(
M

p
)5(1− e2)

3
2 [g1(e)− a

M
(
M

p
)
3
2 g2(e) cos ι− (

M

p
)g3(e) + π(

M

p
)
3
2 g4(e)

−(
M

p
)2g5(e) + (

a

M
)2(
M

p
)2g6(e)− 527

96
(
a

M
)2(
M

p
)2 sin2 ι+ O(v5)],

dLz
dt 2PN

= −32

5

m2

M
(
M

p
)
7
2 (1− e2)

3
2 [g7(e) cos ι+

a

M
(
M

p
)
3
2{g8(e)− cos2 ιg9(e)}
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−(
M

p
)g10(e) cos ι+ π(

M

p
)
3
2 g11(e) cos ι− (

M

p
)2g12(e) cos ι

+(
a

M
)2(
M

p
)2 cos ι(g13(e)− 45

8
sin2 ι) + O(v5)],

dQ

dt 2PN
= −64

5

m2

M
(
M

p
)
7
2

√
Q sin ι(1− e2)

3
2 [g7(e)− a

M
(
M

p
)
3
2 cos ιg9(e)− (

M

p
)g10(e)

+π(
M

p
)
3
2 g11(e)− (

M

p
)2g12(e) + (

a

M
)(
M

p
)(g13(e)− 45

8
sin2 ι)]. (4.63)

Here :

g1(e) = 1 +
73

24
e2 +

37

96
e4,

g2(e) =
73

12
+

823

24
e2 +

949

32
e4 +

491

192
,

g3(e) =
1247

336
+

9181

672
e2,

g4(e) = 4 +
1375

48
e2,

g5(e) =
44711

9072
+

172157

2592
e2,

g6(e) =
33

16
+

359

32
e2,

g7(e) = 1 +
7

8
e2,

g8(e) =
61

24
+

63

8
e2 +

95

64
e4,

g9(e) =
61

8
+

91

4
e2 +

461

64
e4,

g10(e) =
1247

336
+

425

336
e2,

g11(e) = 4 +
97

8
e2,

g12(e) =
44711

9072
+

302893

6048
e2,

g10(e) =
33

16
+

95

16
e2. (4.64)

We must emphasize that these 2PN formula are not sufficiently accurate to

deduce the rate of change for E,Lz, Q. However, the comparison between the

NK waveform which constructed by using the 2PN formula to evolve the particle
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orbit and the Teukolsky-based numerical waveform Cutler et al. [1994]; Drasco

& Hughes [2006]; Glampedakis & Kennefick [2002]; Hughes [2001]; Poisson [2004]

show that, it is accurate enough in the mild relativistic region Babak et al. [2007].

When accurate description of the orbital evolution is available, it can be used to

improve the NK waveform. We can use orbital evolution under the numerically

computed self force, and use it instead of PN expression, then, we again can use

the weak field approximation to compute the gravitational waveform.

With these rate of change for the constants of motion, it is still not convenient

to understand the orbital evolution, we will rewrite the orbital evolution in terms

of e(t), p(t), ι(t) and the three fundamental frequencies.

The rate of change for e, p, ι can be deduced from their definitions,

dp

dt
=

1

2

[
(1 + e)2drp

dt
+ (1− e)2dra

dt

]
, (4.65)

de

dt
=

1

2p
(1 + e)(1− e)

[
(1− e)dra

dt
− (1 + e)

drp
dt

]
, (4.66)

dι

dt
=

sin ι cos ιdQ
dt

2Q
− sin2 ιdLz

dt√
Q

. (4.67)

Next, we use the fact that ra and rp are the turning points:

[E(r2
a + a2)− Lza]2 −∆(ra)[r

2
a + (Lz − aE)2 +Q] = 0, (4.68)

[E(r2
p + a2)− Lza]2 −∆(rp)[r

2
p + (Lz − aE)2 +Q] = 0. (4.69)

For convenience, we use the variable y instead of ra or rp. Using the above

expressions, Gair & Glampedakis [2006] derived the following formula:

dy

dE
= −N1

D
,

dy

dLz
= −N2

D
,

dy

dQ
= −N3

D
, (4.70)
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where

N1 = 2Ey4 + 2Ea2y2 − 4aMyLz + 4Mya2E, (4.71)

N2 = −2y2Lz + 4MyLz − 4MyaE, (4.72)

N3 = −y2 + 2My − a2, (4.73)

D = 2E2(y2 + a2)2y − 2ELza2y − 2y(y2 − 2My + a2)

−y2(2y − 2M)− (Lz − aE)2(2y − 2M)− (2y − 2M)Q. (4.74)

Then substitute ra and rp instead of y, we can get dra
dt

, drp
dt

. Instead of the rates
dE
dt

, dLz
dt

, and dQ
dt

, we can have de
dt

, dp
dt

, dι
dt

. With these rates of change and the

initial conditions, we can calculate the value of e, p, ι, E, Lz, Q at each moment of

time, and use these instant values to compute the three fundamental frequencies

Ωr,Ωθ,Ωφ. Next we need to formulate conditions for termination of the orbital

evolution.

4.3.5 The truncation of the waveform

The NK waveform becomes increasingly inaccurate as a small object moves deeper

into the central black hole’s potential well, and we need to define conditions for

termination of orbital evolution. The natural termination come from the last

stable orbit (LSO). In Kerr space time, it is fulfilled by analysing the four real

roots ra > rp > r3 > r4 of the radial potential Vr. During the early stage of the

inspiral, the orbit is in the weak field with large p. These four roots are different

from each other. The orbit is approximately a Keplerian eccentric orbit with

particle’s radial motion between ra and rp. As inspiral proceeds, both the size of

the orbit and eccentricity decrease . The turning points ra and rp are gradually

approach the values for circular orbit, ra = rp. Moreover, the roots rp approached

r3, when rp = r3, the orbit will be marginally stable, or reaches LSO (the triple

root ra = rp = r3 denote a marginally stable circular orbit), below this orbit, the

test particle will rapidly plunge into the black hole. Thus, rp = r3 condition is

called the separatrix which is used to distinguish stable and unstable orbit, and

the inspiral evolution should be terminated when this condition satisfied Cutler

et al. [1994]; Glampedakis & Kennefick [2002].
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The radial frequency Ωr is gradually increase during the early stage of the

inspiral. As the orbit approaches the separatrix, the particle spends a considerable

amount of its orbital life close to the periapsis, this leads to increase in the

orbit period of radial motion. The evolution of Ωr should have a turning point,

before attaining this turning point, Ωr increase slowly to the maximum, after

that, Ωr began to decrease. Near the separatirx, the particle will trace a quasi-

circular path before being reflected back to the apoapsis Cutler et al. [1994].

Such behavior will be particularly prominent for eccentric orbits: the particle

will ”zoom in” from its apoapsis position, and perform a certain number of quasi-

circular revolutions ”whirls” close to the periapsis which should have a value close

to the radius of LSO Glampedakis & Kennefick [2002]. Finally, the particle will

be reflected and ”zoom out” towards the apoapsis again. This directly leads to

the large increase in the orbital periods, and bring down the radial frequency Ωr.

Near the separatrix, besides the decreasing of the Ωr, the eccentricity will

slightly increase Barack & Sago [2010]; Drasco [2009]; Glampedakis & Kennefick

[2002]. So there must exist a critical condition ė = 0.

In our work, we do not consider the region which is close to the separatrix.

The NK waveform becomes increasingly inaccurate in this region, and we use

combination of conditions: separatrix, Ωr decrease, ė < 0 as truncation conditions

(whatever happens first) for the orbital evolution.

4.4 Harmonic Analysis of the Numerical Kludge

Waveform

As mentioned above, the orbital motion can be characterized by the three slowly

changing fundamental frequencies Ωr(t),Ωθ(t),Ωφ(t) or Υr(λ),Υθ(λ),Υφ(λ). From

the quadrupole formula, we can see that, the waveform hij is constructed directly

from the orbital motion. This implies that we can decompose h+, h× into sets of

harmonics Drasco [2009]; Drasco & Hughes [2004, 2006]. Due to the adiabatic ap-

proximation, the orbit can be treated as a geodesic in each instance. We analyze

the harmonics structure of NK in the next subsection
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4.4.1 Fourier expansion of arbitrary function f(r, θ, φ)

In this section, we review the results of Fourier expansion of arbitrary function

f(r, θ, φ) which is derived by Drasco [2009]; Drasco & Hughes [2004, 2006].

For a bound geodesic, the r, θ motions are periodic. Any function f(r, θ) can

be decomposed as the Fourier expansion in both observational time t and Mino

time λ.

f [r(t), θ(t)] =
∑
kn

fkne
−iΩknt, (4.75)

f [r(λ), θ(λ)] =
∑
kn

f̃kne
−iΥknλ, (4.76)

here, we have defined:

Ωkn = kΩθ + nΩr, (4.77)

Υkn = kΥθ + nΥr. (4.78)

The coefficients fkn tell us about the harmonic structure of the function

f(r(t), θ(t)) as seen by distant observer. From computational point of view, it

is easier to obtain f̃kn, and because these two kind of expansions are essentially

equivalent, there is a relationship between these set of coefficients. The Fourier

coefficients are

fkn =
Fkn(Ωkn)

Γ
, (4.79)

here Γ if already defined in equation (4.46), and Fkn(ω) is the Fourier expansion

coefficients of F(ωθ, ωr, ω) which are defined as:

F(wθ, wr, ω) = T [r(wr), θ(wθ)]eiωδt(w
r,wθ)f [r(wr), θ(wθ)],

=
∑
kn

Fkn(ω)e−iΥknλ, (4.80)
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with coefficients given by

Fkn(ω) =
1

(2π)2

∫ 2π

0

dwr
∫ 2π

0

dwθF[wr, wθ, ω]eikw
θ

einw
r

. (4.81)

Later, we will also need to take into account the first and higher order deriva-

tive of f [r(t), θ(t)]. Set dmf
dtm

= g[r(t), θ(t)] =
∑

kn gkne
−iΩknt. The Fourier expan-

sion is

g[r(t), θ(t)] =
∑
kn

gkne
−iΩknt. (4.82)

Therefore the Fourier coefficients of derivative are

gkn = (−iΩkn)mfkn. (4.83)

4.4.2 Fourier expansion of h+,×

In this subsection, we still consider the orbit as the pure geodesic, where the three

fundamental frequencies are constants. In order to analyse influence of Ωφ in the

Fourier expansion of the function f [r(t), θ(t), φ(t)], we need to take into account

the following expansion:

f(r(t), θ(t), φ(t)) =
∑
knm

fknme
−iΩknmt, (4.84)

where Ωknm = kΩθ + nΩr +mΩφ.

In the quadrupole formula, each component of I ij are in the form of trigono-

metric functions of θ, φ. In order to find the harmonics decomposition of I ij,

it is necessary to understand the harmonic decomposition of the trigonometric

function of φ. First, let us have a look at φ(λ) and t(λ).

Take into account the decomposition of equation (4.48), we can decompose

φ(λ) into several parts:

φ(λ) = Υφλ+ δφ(λ)

=
ΥφT00λ

T00

+ δφ(wr, wθ)
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= ΩφT00λ+ δφr(w
r) + δφθ(w

θ)

= Ωφ[t(λ)− δtr(wr)− δtθ(wθ)] + δφr(w
r) + δφθ(w

θ)

= Ωφt(λ)− Ωφ[δtr(w
r) + δtθ(w

θ)] + δφr(w
r) + δφθ(w

θ)

≡ Ωφt(λ) + φr(w
r) + φθ(w

θ) (4.85)

Here, φr(w
r), φθ(w

θ) are defined as

φr(w
r) = −Ωφδtr(w

r) + δφr(w
r), (4.86)

φθ(w
θ) = −Ωφδtθ(w

θ) + δφθ(w
θ). (4.87)

The first part is directly related to Ωφt and it is an average accumulation of

the phase with the angular frequency Ωφ. The second, and third parts are the

oscillatory terms with frequencies Ωr Ωθ respectively.

Next, we consider the trigonometric function of φ. In the following example

of sin(φ(λ)), we can see that the decomposition of φ(λ) will paly an important

role in the harmonics analysis. Consider sin(φ(λ)) as an example:

sin(φ(λ)) = sin(Ωφt(λ)) cos(φr + φθ) + cos(Ωφt(λ)) sin(φr + φθ)

= sin(Ωφt) cosφr cosφθ − sin(Ωφt) sinφr sinφθ

+ cos(Ωφt) sinφr cosφθ + cos(Ωφt) cosφr sinφθ, (4.88)

and using :

sin(Ωφt) =
eiΩφt − e−iΩφt

2i
, cos(Ωφt) =

eiΩφt + e−iΩφt

2
. (4.89)

The term cosφr cosφθ can be treated as a function of r and θ, they can be

expressed as the harmonic decomposition as
∑

knAkne
−i(kΩθ+nΩr)t. Together with

the decomposition of sin(Ωφt) =
∑

m=±1
m
2i
eimΩφ , we have the harmonic expansion

of sin(φ(λ)) cosφr cosφθ as

∑
kn,m=±1

mAkn
2i

e−i(kΩθ+nΩr+mΩφ)t.

The other three terms in the equation (4.88) can also be handled similarly. Com-
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bine the decomposition of these four terms, we can have the final harmonic de-

composition of sin(φ(λ)).

This method can also be used for other combinations of trigonometric func-

tion. The idea is to decompose those combination into the terms which contain

Ωφt, φr, φθ,

cos(mΩφt) cos(nφr) cos(kφθ),

cos(mΩφt) sin(nφr) sin(kφθ),

sin(mΩφt) sin(nφr) cos(kφθ),

sin(mΩφt) cos(nφr) sin(kφθ), (4.90)

and the other terms which are just the function of r and θ. Let us take the

I11 = r2 sin2 θ sin2 φ as an example:

Ixx =
r2 sin2 θ

2
+
r2 sin2 θ cos(2φ)

2

= cos(2Ωφt)

[
cos(2φr) cos(2φθ)r

2 sin2 θ

2

]
+ cos(2Ωφt)

[− sin(2φr) sin(2φθ)r
2 sin2 θ

2

]
+ sin(2Ωφt)

[− sin(2φr) cos(2φθ)r
2 sin2 θ

2

]
+ sin(2Ωφt)

[− cos(2φr) sin(2φθ)r
2 sin2 θ

2

]
+

[
r2 sin2 θ

2

]
= cos(2Ωφt) · V 1 + cos(2Ωφt) · V 2 + sin(2Ωφt) · V 3 + sin(2Ωφt) · V 4 + V 5.

Here Vi stand for the corresponding terms in the bracket, they are the function of r

and θ. Just like what we have done in the case sin(φ), the cos(2Ωφt) and sin(2Ωφt)

give the contributions on e−imΩφt with m = ±2 in the harmonics decomposition.

The contribution of e−i(kΩθ+nΩr)t will come from the terms Vi. Combine them

together, we can obtain the final harmonics decomposition of I11.
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Having the harmonics decomposition of I ij, we can go further to the case

of hij which are the second derivative of I ij. The idea is the same, by using the

algebric calculation, decompose hij into a linear combination of terms in the form

of cos(2Ωφt) ·f(r, θ). We continue to use hxx as an example, the second derivative

is:

d2Ixx

dt2
= −(2Ωφ)2 cos(2Ωφt) · V 1 − 2(2Ωφ) sin(2Ωφt) · V̇ 1 + cos(2Ωφt) · V̈ 1

−(2Ωφ)2 cos(2Ωφt) · V 2 − 2(2Ωφ) sin(2Ωφt) · V̇ 2 + cos(2Ωφt) · V̈ 2

−(2Ωφ)2 sin(2Ωφt) · V 3 + 2(2Ωφ) cos(2Ωφt) · V̇ 3 + sin(2Ωφt) · V̈ 3

−(2Ωφ)2 sin(2Ωφt) · V 4 + 2(2Ωφ) cos(2Ωφt) · V̇ 4 + sin(2Ωφt) · V̈ 4

+V̈ 5. (4.91)

Again, V i V̇ i and V̈ i are just the function of r and θ which give the contribution

to e−i(kΩθ+nΩr)t. The harmonic decomposition of hxx can be expressed as

hxx =
∑
knm

hxxknme
−iΩknmt (4.92)

here

Ωknm = kΩθ + nΩr +mΩφ (4.93)

and m = 0,±2. The terms with m = 0 come form V̈ 5, and the m = ±2 arise

from sin(2Ωφt) and cos(2Ωφt). For the other components hjk we can use the same

method to express them into the Fourier expansion.

Using the above techniques, hΘΘ hΘΦ and hΦΦ have the following harmonics

decomposition:

hΘΘ =
∑
knm

hΘΘ
knme

−(ikΩθ+nΩr+mΩφ)t,

hΘΘ
kn,−2 = cos2 Θ cos2 Φhxxkn,−2 + cos2 Θ sin 2Φhxykn,−2 + cos2 Θ sin2 Φhyykn,−2,

hΘΘ
kn,−1 = − sin 2Θ cos Φhxzkn,−1 − sin 2Θ sin Φhyzkn,−1,

hΘΘ
kn,0 = cos2 Θ cos2 Φhxxkn,0 + cos2 Θ sin2 Φhyykn,0 + sin2 Θhzzkn,0,

hΘΘ
kn,1 = − sin 2Θ cos Φhxzkn,1 − sin 2Θ sin Φhyzkn,1,

116



hΘΘ
kn,2 = cos2 Θ cos2 Φhxxkn,2 + cos2 Θ sin 2Φhxykn,2 + cos2 Θ sin2 Φhyykn,2.

hΘΦ =
∑
knm

hΘΦ
knme

−(ikΩθ+nΩr+mΩφ)t,

hΘΘ
kn,−2 = −1

2
cos Θ sin 2Φhxxkn,−2 + cos Θ cos 2Φhxykn,−2 +

1

2
cos Θ sin 2Φhyykn,−2,

hΘΦ
kn,−1 = − sin Θ sin Φhxzkn,−1 − sin Θ cos Φhyzkn,−1,

hΘΦ
kn,0 = −1

2
cos Θ sin 2Φhxxkn,0 +

1

2
cos Θ sin 2Φhyykn,0,

hΘΦ
kn,1 = sin Θ sin Φhxzkn,1 − sin Θ cos Φhyzkn,1,

hΘΘ
kn,2 = −1

2
cos Θ sin 2Φhxxkn,2 + cos Θ cos 2Φhxykn,2 +

1

2
cos Θ sin 2Φhyykn,2.

hΦΦ =
∑
knm

hΦΦ
knme

−(ikΩθ+nΩr+mΩφ)t,

hΦΦ
kn,−2 = sin2 Φhxxkn,−2 − sin 2Φhxykn,−2 + cos2 Φhyykn,−2,

hΦΦ
kn,0 = sin2 Φhxxkn,0 + cos2 Φhyykn,0,

hΦΦ
kn,2 = sin2 Φhxxkn,2 − sin 2Φhxykn,2 + cos2 Φhyykn,2.

Then the harmonics decomposition of h+ and h× can be expressed as:

h+ =
1

2
(hΘΘ − hΦΦ) =

∑
knm

h+
knme

−(ikΩθ+nΩr+mΩφ)t,

(4.94)

with the expansion coefficients:

h+
kn,−2 =

1

2
hΘΘ
kn,−2 −

1

2
hΦΦ
kn,−2,

h+
kn,−1 =

1

2
hΘΘ
kn,−1,

h+
kn,0 =

1

2
hΘΘ
kn,0 −

1

2
hΦΦ
kn,0,
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h+
kn,1 =

1

2
hΘΘ
kn,1,

h+
kn,2 =

1

2
hΘΘ
kn,2 −

1

2
hΦΦ
kn,2.

(4.95)

h× = hΘΦ =
∑
knm

h×knme
−(ikΩθ+nΩr+mΩφ)t,

(4.96)

with the expansion coefficients:

h×kn,−2 = hΘΦ
kn,−2,

h×kn,−1 = hΘΦ
kn,−1,

h×kn,0 = hΘΦ
kn,0,

h×kn,1 = hΘΦ
kn,1,

h×kn,2 = hΘΦ
kn,2.

(4.97)

The next step is to analyse the properties of these expansion coefficients.

4.4.3 Truncation of the harmonic decomposition

Till now, the Fourier decomposition of the waveform is constructed from a pure

geodesic and represented as infinite sums, for practical purpose, we need to trun-

cate these expansions. First we generate the waveform in time domain, we inte-

grate the geodesic equation numerically, and substitute the obtained numerical

orbital motion into the quadrupole formula to construct the waveform s. Then we

analyse the s in frequency domain by using the harmonic analysis, and construct

h =
∑

knm hknm as the harmonic decomposition. By calculating the overlap Oknm

between each individual harmonic hknm and s, we can sort these harmonics in

order of their strength: the harmonics with higher overlap are dominant and give

larger contribution to the SNR. Starting form the strongest one, we add to the
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sum subdominant and compute overlap with s, we truncate the accumulation

when O exceed the threshold, 99%. We call the chosen harmonics the dominant

harmonics, and we can collect their indices together as an index table which will

be very convenient for understanding the harmonics structure of the signal.

Different sets of parameters have lead to the waveforms with different dom-

inant harmonics. We conducted extensive Monte carlo simulations for different

parts of the parameters space, and identified dominant harmonics (index table).

We find that e has the largest influence on the table as expected, orbits with high

e require more dominant harmonics for accurate description.

4.4.4 Exploring the harmonic content as function of the

parameters

In this subsection, we describe how does the harmonic index table (k, n,m)

of the dominant harmonics change according to the various sets of parameters

(e, p, ι, a,Θ,Φ), here indices k, n,m correspond to θ, r, φ respectively.

For the convenience of explanation, we start with the parameters {e = 0.1, p =

7, ι = 5◦, a = 0.9,Θ = π/3,Φ = π/4}. We find 4 dominant harmonics given as

the following indices table,

m : 2 2 2 1

k : 0 0 0 1

n : 0 1 −1 0

(4.98)

Each column represents a harmonics with corresponding indices.

In the simulations, I have investigated rather large range of each parameter:

eccentricity e = {0.01 ∼ 0.99} spin a = {0.01 ∼ 0.99}, semilatus rectum p = {5 ∼
20}, and the inclination angle ι = {5◦ ∼ 175◦}. I found that, the eccentricity

has the main effect on the dominant harmonics, the influence of the other three

parameters depends on the particular value of the eccentricity. In the following

subsections, I will chose few examples to illustrate these results.
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4.4.4.1 The influence of eccentricity

We fix the value of {p = 7, ι = 5◦, a = 0.9,Θ = π/3,Φ = π/4}, and vary the

value of eccentricity in the range {0.3, 0.5}. The dominant harmonics are given

as following tables:

m : 2 2 2 2 2 1 1 1

(e = 0.3) k : 0 0 0 0 0 1 1 1

n : 1 0 −1 2 3 0 1 −1

(4.99)

m : 2 2 2 2 2 2 2 2

(e = 0.5) k : 0 0 0 0 0 0 0 0

n : −1 2 3 1 4 5 6 −2

(4.100)

We find that the dominant harmonics, even the most dominant ones, can change

due to the different e. In order to confirm this, we have performed more tests,

where we keep {p, ι, a,Θ,Φ} to a new set of values, and vary e. The results show

the similar behavior.

4.4.4.2 The influence of a, p,ι

We keep e, p, a unchanged, and vary ι, the result shows that, in the case of lower

eccentricity e : 0− 0.4, the dominant harmonics do not change. But, in the case

of higher eccentricity (e ≥ 0.5), the situation is more complicate. Let us give few

examples:

m : 2 2 2 2 2 2 2 2

(e = 0.7, ι = 10◦) k : 0 0 0 0 0 0 0 0

n : 7 6 −1 8 0 5 9 10

(4.101)

m : 2 2 2 2 2 2 2 2

(e = 0.7, ι = 20◦) k : 0 0 0 0 0 0 0 0

n : 7 6 8 0 −1 5 9 10

(4.102)
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m : 2 2 2 2 2 2 2 2

(e = 0.7, ι = 30◦) k : 0 0 0 0 0 0 0 0

n : 7 8 6 0 9 5 −1 10

(4.103)

We can see that, these eight dominant harmonics are the same for three dif-

ferent values of ι. But, the harmonic (2, 0,−1) which is the third strongest in the

case of ι = 10◦ become the fifth in the case of ι = 20◦, and seventh in the case of

ι = 30◦. On the contrary, the harmonics (2, 0, 8) which is the fourth in the case

of ι = 10◦ become the third in the case of ι = 20◦, and the second in the case of

ι = 30◦.

That is to say, the variation of ι can change the strength of the dominant

harmonics: the weak harmonics can become strong and vice verse, but the table

itself does not change, just the order of harmonics. The similar situation is

observed for varying p and spin.

4.4.4.3 The influence of Θ, Φ

As for the parameters Θ and Φ (position of observer as seen from the source),

they have very week influence on the dominant harmonics. From our results,

the case of Θ = π/2 can bring additional one or two very weak harmonics in h×

compare to the other value of Θ. What is interesting is that, the parameter Φ

does not change the strength of the harmonics: |h+,×
knm|, and this can be explain

analytically.

From the expression of hijknm, we have the following properties:

hxxkn,−2 = −hyykn,−2,

hxxkn,−2 = −ihxykn,−2,

hxzkn,−1 = ihyzkn,−1,

hxxkn,0 = hyykn0.

(4.104)
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Using these expressions, we can rewrite the h+
knm as:

h+
kn,−2 =

1

2
(cos2 Θ cos2 Φhxxkn,−2 + cos2 Θ sin 2Φhxykn,−2 + cos2 Θ sin2 Φhyykn,−2)

−1

2
(sin2 Φhxxkn,−2 − sin 2Φhxykn,−2 + cos2 Φhyykn,−2)

=
1

2
[cos2 Θ(cos 2Φ− i sin 2φ)hxxkn,−2 − (− cos 2Φ + i sin 2Φ)hxxkn,−2]

=
1

2
(cos2 Θ + 1)(cos 2Φ− i sin 2Φ)hxxkn,−2, (4.105)

h+
kn,−1 =

1

2
hΘΘ
kn,−1

= −1

2
(sin 2Θ)(cos Φ− i sin Φ)hxxkn,−1 (4.106)

h+
kn,0 =

1

2
(cos2 Θ cos2 Φhxxkn0 + cos2 Θ sin2 Φhyykn0 + sin2 Θhzzkn0),

−1

2
(sin2 Φhxxkn0 + cos2 Φhyykn0)

=
1

2
((cos2 Θ− 1)hxxkn0 + sin2 Θhzzkn0), (4.107)

this means the amplitude of the harmonics |h+
knm| does not depend on Φ, and

similar for the other two terms h+
kn,1 and h+

kn2. This holds also for h×.

4.4.5 The class of the dominant harmonics

From the Monte Carlo simulation on the different parameter sets, we find that, the

frequency of the dominant harmonic can be described by the following combined

table:

nΩr + kΩθ +mΩφ =



I : 2Ωφ + n1Ωr

II : Ωφ + Ωθ + n2Ωr

III : 2Ωθ + n3Ωr

IV : −Ωφ + Ωθ + n4Ωr

V : −Ωφ + 3Ωθ + n5Ωr

V I : −2Ωφ + 4Ωθ + n6Ωr

, (4.108)
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where ni=1,2,···6 = {−4,−3, · · · , 10} are the integers. Among these six classes of

harmonics, I, II, III are the stronger ones comparing to IV, V, V I. Generally, we

can divide the eccentricity into two group, one is low eccentricity with e ≤ 0.4, the

other is the high eccentricity with e > 0.4. For the low eccentricity, the dominant

harmonics are belong to the classes {I, II, IV, V, V I}. For the high eccentricity,

the dominant harmonics belong to the classes {II, III, IV, V, V I}. Although,

the harmonics from classes {IV, V, V I} appear in both cases, their strength is

much weaker than the harmonics in classes {I, II, III}, and for weak signal, are

probably not detected.

4.4.6 The evolution of the dominant harmonics

So far, we have considered instantaneous dominant harmonics based on geodesic

motion. In order to analyse the whole waveform, we need to understand how these

dominant harmonics change during the evolution due to the radiation reaction.

Starting from a set of physical parameters {e, p, ι, a, µ}|t=0 as initial state, we

can calculate the dominant harmonics of NK waveform for the geodesic at initial

time: {hknm}. We collect the index combination (k, n,m) of all the dominant

harmonics together as a index table. We need to find out whether this index

table change during the evolution. We choose several instants of time spread in

the three month as our test points.

From the discussion about changing of harmonics index for the different set

of physical parameters, we know that, the change in harmonics index is mostly

related to the eccentricity e. As mentioned above, we do not consider the zoom-

whirl orbit near the separatrix where e can grow. If the initial eccentricity below

0.4, it can only decrease. Therefore , starting from e < 0.4, we can always keep

the same set of dominant harmonics throughout the whole evolution. Hence,

we can concluded that, in the case of low eccentricity, the harmonics index table

constructed by the initial value of the physical parameters nearly does not change.

In the subsection 4.4.5 with classification of the dominant harmonics, we have

found that, for the low eccentricity, the dominant harmonics indices are mostly

belong to the classes {I, II, V I, V, V I}.
If the initial eccentricity is higher than 0.4, the situation is a little more
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complicated. From the classification of the dominant harmonics, we know that,

the strongest harmonics for high eccentricity belong to the class of II, III, and

the weaker harmonics are class VI,V,VI. This mean that, the harmonics index

table which is constructed by the initial stage is only suitable when eccentricity

is still larger than 0.4. When the eccentricity decrease to less than 0.4, the new

dominant harmonics of class I should be also taken into account. However, if

we enlarge the index table to include all these dominant harmonics at the initial

stage, during the whole evolution, the index table can be kept the same. In the

beginning of the evolution, the harmonics of class I are unnecessary, they can

become stronger during the future evolution. Enlarging the index table in the

beginning makes it valid throughout the evolution.

To sum up, the harmonics index table which is given by the initial stage can

be enough to construct the dominant harmonics during the whole evolution. For

the chosen three month data, the amplitude of the dominant harmonics do not

change appreciably (less than 10% or 20%). So based on the that table, and

the slowly changing of the amplitude of |hknm| the NK waveform for the whole

evolution can be expressed as the harmonics decomposition which constructed

from the index table as an approximation

h =
∑

knm∈indextable

hknm(t)ei(kΩθ+nΩr+mΩφ). (4.109)

It is already mentioned that, the index table 4.108 is based on the quadrople

formula. If we also take into account the current quadrople and mass octupole, the

procedure is the same, the index table of the dominant harmonics will change.

Based on the paper Babak et al. [2007], we believe that, there must be more

weak dominant harmonics in the case of quadrupole-octupole formula (4.6) which

should be added if necessary, and enhance the strength of classes {V I, V, V I}.
The index table of dominant harmonics helps us to compute efficiently the

GW signal from EMRI without much loss in accuracy.
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4.5 Phenomenological waveform family

In this section we introduce the phenomenological waveform family of the EMRI

system. The first idea of using phenomenological waveform was suggested for

detecting GWs from inspiraling BHs in the LIGO band Buonanno et al. [2005].

The main goal was to construct phenomenological waveform which fits different

PN models of the signal. By using the stationary phase approximation on the

PN formalism, the phenomenological waveforms are expressed in Fourier domain

and given by a single analytical expression:

h(f) = Aeff (f)eiϕeff (f) (4.110)

The parameter including the amplitude parameters, and the phase parameters

which can be found in Buonanno et al. [2005].

Another example of phenomenological waveform is a templates family which

resembles inspiral, merge and ring down stage of the black hole coalescence. It

combines the PN waveforms with results from NR simulations, and its implemen-

tation in the search for signatures of gravitational waves in the data of ground-

based interferometers is given in Ajith et al. [2007].

As we have shown in previous section, the full waveform construction for

EMRI is very complicated. From the point of view of data analysis, even the

NK waveforms are not fast enough to be generated for employing in the matched

filtering. We want to construct a phenomenological waveform family for EMRIs

by using the following assumptions about GW signal:

1. The orbital motion can be described by six slowly changing quantities;

three time-dependent initial phases governed by the conservative part of

the self force; three fundamental time-dependent frequencies governed by

the radiative part of the self force.

2. The waveform is represented by harmonics of three slowly evolving phases

with slowly changing intrinsic amplitudes:

h(t) =
∑
k,n,m

hknm(t)
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= Re

(∑
k,n,m

Aknm(t)eiϕknm(t)

)

= Re

(∑
k,n,m

Aknm(t)ei(nϕr+kϕθ+mϕφ)

)
, (4.111)

where ϕr, ϕθ, ϕϕ are the phases corresponding to the three fundamental motions.

Here we omitted the tensorial spatial indices for simplicity.

The point 1 basically says that the motion is described by a slow drift from

one geodesic to another. The initial phases correspond to the initial position of

a compact object on a given geodesic and the orbital frequencies are functions of

the energy, azimuthal component of the orbital momentum and Carter constant.

The slow drift ensures that phases ϕknm are slowly changing functions of time.

Both amplitudes and the phases are slowly varying functions of time, thus we

can make the Taylor expansion:

ϕr(t) = ϕr(t0) + ωr(t0)(t− t0) +
1

2
ω̇r(t− t0)2 + ...

= ϕr(t0) + 2πfr(t0)(t− t0) + πḟr(t− t0)2 + ...,

(4.112)

ϕθ(t) = ϕθ(t0) + ωθ(t0)(t− t0) +
1

2
ω̇θ(t− t0)2 + ...

= ϕθ(t0) + 2πfθ(t0)(t− t0) + πḟθ(t− t0)2 + ...,

(4.113)

ϕϕ(t) = ϕφ(t0) + ωφ(t0)(t− t0) +
1

2
ω̇φ(t− t0)2 + ...

= ϕφ(t0) + 2πfφ(t0)(t− t0) + πḟφ(t− t0)2 + ...,

(4.114)

Aknm(t) = Aknm(t0) + Ȧknm(t0)(t− t0) + .... (4.115)

Since the amplitudes Almn are even smoother than the phase over extended

period of time, and because the detection techniques are more sensitive to mis-

match in the phase than in the amplitude, we can neglect the time evolution in the

amplitudes and treat all of them as constants. It is a very good assumption over

three months of the simulated data which we analyze in this paper. Although, it
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is quite short compare to the LISA observation, three month data is still sufficient

for testing our method. We can recover the parameters of a signal very well even

with these short data. As for the data which is longer than three months, we can

analyse the data piecewise following the same techniques. In the reality, the SNR

of the signal may be lower than in our simulated data, three month might not be

enough for definite detection, and we must use longer segment. In this case, we

need to modify phenomenological waveform by extending the Taylor expansion

of the phase in equations 4.115 to higher orders.

As for the phase expansion, in the numerical calculation, the Taylor expansion

of the phase should be truncated at some order. The termination is determined

by calculating the so-called fitting factor (FF) Apostolatos [1995]; Jaranowski &

Krolak [2005] for the different orders of polynomial approximations of the phase

to check the fidelity of the PW. Numerical results show that the Taylor expansion

for three months data, up to f̈ order, gives the FF around 0.9, and up to d3f
dt3

order the FF is larger than 0.999. So it is sufficient to expand the phase to
d3f
dt3

order. This is the phenomenological waveform family which we propose to

analyze EMRI signal.

To summarize, the phenomenological waveform is a summation of individual

harmonics with constant (or linear in time) amplitudes and polynomial (in time)

phases. In practice, we need to truncate this infinite expansion. The results

of harmonics analysis help us to determine how many dominant harmonics are

required, which harmonic index are needed to construct the templates.

4.5.1 F-statistic in the case of phenomenological wave-

form

As mentioned in the section 2.3, the GW waveform in the frame attached to LISA

(or LISA-like space based observatory) is given by

hI = F+
I (t)h+(t) + F×I (t)h×(t), hII = F+

II(t)h
+(t) + F×II(t)h

×(t), (4.116)
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where the response function F+
I,II and F×I,II are already given in equation (2.25),

with the harmonics decomposition of waveforms h+,×:

h+ =
∑
knm

A+
knm cosϕknm(t) =

∑
knm

A+
knm(t) cos(ϕ0

knm + ϕ̃knm(t)), (4.117)

h× =
∑
knm

A×knm sinϕknm(t) =
∑
knm

A×knm(t) sin(ϕ0
knm + ϕ̃knm(t)). (4.118)

(4.119)

The waveform in the detector I can be written as:

hI =
∑
knm

a
(1)
knmĥ

I(1)
knm(t) + a

(2)
knmĥ

I(2)
knm(t) + a

(3)
knmĥ

I(3)
knm(t) + a

(4)
knmĥ

I(4)
knm(t), (4.120)

where

a
(1)
knm = A+

knm cos(2ψ) cosϕ0
knm + A×knm sin(2ψ) sinϕ0

knm,

a
(2)
knm = −A+

knm sin(2ψ) cosϕ0
knm + A×knm cos(2ψ) sinϕ0

knm,

a
(3)
knm = −A+

knm cos(2ψ) sinϕ0
knm + A×knm sin(2ψ) cosϕ0

knm,

a
(4)
knm = A+

knm sin(2ψ) sinϕ0
knm + A×knm cos(2ψ) cosϕ0

knm,

(4.121)

ĥ
I(1)
knm(t) = D+

I (t) cos ϕ̃knm(t),

ĥ
I(2)
knm(t) = D×I (t) cos ϕ̃knm(t),

ĥ
I(3)
knm(t) = D+

I (t) sin ϕ̃knm(t),

ĥ
I(4)
knm(t) = D×I (t) sin ϕ̃knm(t).

(4.122)

Similar expression we have for detector II, there, we should use D+
II , D

×
II instead

of D+
I , D

×
I .

The amplitude parameters âµknm depend only on (A+, A×, ϕ
0
knm, ψ), which
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are usually called extrinsic parameters, while ĥµknm(t), ĥµknm(t) are functions of

(Θ,Φ, f ,df
dt

,d
2f
dt2

,d
3f
dt3

), which are usually called intrinsic parameters.

We have found that over three months we can consider all harmonics as being

completely independent with virtually zero overlap between them, < hknm|hk′n′m′ >=

δkk′δnn′δmm′ . Denote the measured data with noise corresponding to hI , hII by

sI , sII . The total likelihood for the two detectors I, II is:

[log Λ] = [log λI ] + [log λII ]

= (sI |hI)−
1

2
(hI |hI) + (sII |hII)−

1

2
(hII |hII). (4.123)

Following the method of F-statistic which we have introduced in the section 2.4,

we can maximized the total log likelihood over the extrinsic parameters ajknm to

obtain the total F-statistic as:

F =
∑
knm

4∑
i,j=1

1

2
(s
I(i)
knm + s

II(i)
knm)[(M I

knm +M II
knm)−1]ij(s

I(j)
knm + s

II(j)
knm ), (4.124)

where arrays s
I,II(i)
knm and the matrixes M I,II

knm are defined as:

s
I,II(i)
knm = (sI,II |ĥI,II(i)knm (t)),

(M I,II
knm)ij = (ĥ

I,II(i)
knm |ĥ

I,II(j)
knm ). (4.125)

4.6 Data analysis with phenomenological wave-

form

In this section, we use the PW described above as the template to analyse the

signal of EMRI in two 3 months simulated data sets: one is constructed without

noise and the other is a noisy data with the total SNR of the signal 50. We use

the same GW signal (based on NK model) in both cases. We have taken the

following parameters for the EMRI: the mass of the MBH M = 106M�, the mass

of the compact object (stellar mass BH) m = 10M�, the initial orbital eccentricity

e = 0.4, the semi-latus rectum p = 8M , the inclination angle ι = π/9, the spin
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of the MBH a = 0.9M , the sky position of the source (Θ,Φ) = (π/4, π/4), the

polarization angle ψ = 0. The noiseless case is used to avoid any possible bias in

the final result due to stochastic nature of the noise, and we want to asses only

possible restrictions of our search technique and PW family. Then, we apply the

same search method to the same GW signal buried in the noise, which would

justify its effectiveness in practice.

In the practical implementation of NK, the harmonics decomposition should

be chosen from the most dominant ones, this is realized by using the index table

which is given in the subsection 4.4.5:

h+,× =
∑

knm∈[index table]

h+,×
knme

iϕknm(t). (4.126)

We need to search the intrinsic parameter space: sky location of the source,

and the phase parameters to find the set of parameters which maximizes the log

likelihood. To simplify our problem, we treat the sky location of the source as

known, and search only for the intrinsic parameters fknm, ḟknm, f̈knm, · · ·.

4.6.1 Search for Dominant harmonics

Generally, the best estimation of the intrinsic parameters corresponds to the

global maximum in the likelihood surface. In order to find the global maximum,

we use the standard MCMC to explore the intrinsic parameter space. However,

due to the complexity of the waveform, there is a large amount of local maxima.

Although these local maxima do not match all the intrinsic parameter, some of

them (with the high value of likelihood), must contain useful information about

the dominant harmonics. Harmonics of a template correspond to local maxima,

match parts of the signal for some period of time. By using the information stored

in the local maxima, we can reconstruct signal’s dominant harmonics during the

evolution. In the time-frequency plot, we can mark these parts of dominant

harmonics as a time frequency track within the matched span of time and fre-

quencies evolution. We are trying to reconstruct the signal in time-frequency

plane by these patches from local maxima.
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4.6.1.1 Review of MCMC and simulated annealing

In this subsection, we review the basic knowledge of MCMC and simulated an-

nealing which are used in our approach based on Cornish & Crowder [2005];

Gamerman [1997]. Given the data s which consists of the noise and signal pa-

rameterized by ~λ = {λ1, λ2, · · · , }, the parameter estimation can be obtained

trough the posterior distribution, p(λ|s) by using the Bayesian estimator:

λiB(s) =

∫
λip(λ|s)dλ. (4.127)

By Bayes theorem, the posterior distribution is related to the prior distribution

π(~λ) and the likelihood p(s|~λ) as

p(~λ|s) =
π(~λ)p(s|~λ)∫
π(~λ′)p(s|~λ′)d~λ′

. (4.128)

The numerical calculation of this integral can be achieved by using the Monte

carlo methods, MCMC is nothing but Monte Carlo integration with the Markov

Chain. MCMC can be used for sampling from probability distributions of p(λ|s)
based on constructing a Markov chain that has the desired distribution as its

equilibrium distribution. The state of the chain after a large number of steps is

then used as a sample of the distribution p(λ|s).
Denote the equilibrium distribution as p(~λ). A Markov Chain, ~λ0, ~λ1, · · · , ~λn,

can be thought of as a discrete stochastic process in which knowledge of the past,
~λ0, ~λ1, · · · , ~λn−1, is irrelevant to the future, ~λ(n+1), given knowledge of the present,
~λ(n). In other words, the conditional probability that chain transitions to state ~y

satisfies:

P (~λ(n+1) = ~y|~λ(0), ~λ(1), · · · , ~λ(n)) = P (~λn+1 = ~y|~λ(n)). (4.129)

This means there exist a transition probability P (~λ(k+1)|~λ(k)) depending only

on the current state ~λk. If the Markov chain satisfies the following balance equa-
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tion

p(~λ(k))P (~λ(k+1)|~λ(k)) = p(~λ(k+1))P (~λ(k)|~λ(k+1)), (4.130)

Then, it samples from the equilibrium distribution p(~λ) after some time (burn in

stage). The distribution of the parameters p(~λ) can be estimated by using the

Markov chain samples.

For constructing a Markov chain with desired properties, the Metropolis-

Hastings (MH) scheme would be the most general one. The MH algorithm replace

the unknown transition probability P (~λ(k+1)|~λ(k)) with three quantities that can

be calculated: the likelihood p(s|~λ); the prior π(~λ); and the proposal distribu-

tion q(·|~λ(k)). To do this, the chain starts with a randomly chosen point in the

parameters space ~λ0. The proposal distribution q(~λ(k+1)|~λ(k)) is picked to guide

transition from the current state ~λk to the a candidate state ~λk+1. This tran-

sition is either accepted or rejected by calculating the acceptance probability

(Metropolis-Hastings ratio) defined by the following formula:

α(~λ(k), ~λ(k+1)) = min(1,
π(~λ(k+1))p(s|~λ(k+1))q(~λ(k)|~λ(k+1))

π(~λ(k))p(s|~λ(k))q(~λ(k+1)|~λ(k))
), (4.131)

This acceptance rule corresponds to the transition probability

P (~λ(k+1)|~λ(k)) = q(~λ(k+1)|~λ(k))α(~λ(k), ~λ(k+1)) (4.132)

The above transition probability implies that the Markov chain satisfies the de-

tailed balance equation.

The best performance is achieved if the proposal probability resembles closely

the target distribution p(~λ). Without prior knowledge about the probability

distribution around the true parameter location, it is naturally to choose it as

a multivariate normal distribution centered at the present point ~λ(k). Due to

the multimodal structure of the likelihood surface, a single multivariate normal

distribution cannot describe the probability density over the entire parameters
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space but only a very small region around ~λ(k). Thus the Markov chain runs from

one local maximum to another.

In the early stage of the search, we want the chain to explore as large area

of the parameters space as possible. But, due to the multimodal structure of the

likelihood function surface, some local maxima are quite strong, and the Markov

chain could be trapped in one of these peaky local maxima. This means that the

chain fall into a local area very quickly, does not explore various maxima in a

reasonable time. Thus, we use the simulated annealing to soften the likelihood

function, and make it easier for the chain to move between the modes Cornish &

Porter [2007]. The basic idea of simulated annealing is introducing a parameter

β which stand for the inverse temperature to control the acceptance probability

at k step:

α = min(1, β
π(~λ(k+1))p(s|~λ(k+1))q(~λ(k)|~λ(k+1))

π(~λ(k))p(s|~λ(k))q(~λ(k+1)|~λ(k))
). (4.133)

In our approach, we choose a decreasing function β = exp(N−k
N

), where N

is the length of the chain and the priors are chosen as the uniform distribution.

In the beginning, β is small, the temperature is high. Even if the chain move

to a point with small likelihood, the acceptance probability can be still large.

This means that, it accepts this point at the new stage of the chain frequently. In

other words, the likelihood function surface becomes smother, the chain can move

much easier exploring a large area. As the chain process ends, the search falls into

some areas which contain the local maxima. When β is large, the temperature is

low, the chain remains around the local maxima it has found. At the end of the

search, the chain performs local exploration.

We use 5000 chains searching in the parameters space, to find a large number

of local maxima, one of them could be the global one. In the next subsection,

we will discuss how to use these local maxima to extract the useful information

about the GW signal.
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4.6.1.2 Analysis of MCMC results

In this subsection we extract information from the local maxima detected by

MCMC search. We first focus on the noiseless data to explain our methods, then

modify it a bit and apply it to the noisy data.

Although the best estimation of the intrinsic parameters generally corresponds

to global maximum of the log likelihood, the strong secondary local maxima can

also be used to dig out the useful information about the dominant harmonics

of the true signal. The dominant harmonics of PW might match parts of the

harmonics of the true signal and results in local maxima. If we can extract these

part of matched true harmonics, we can get information about the signal, multiple

secondary maxima might provide us enough clues to recover all the dominant

harmonics of the signal.

To attain this goal, we collect the local maxima: distinct points in the parame-

ters space with significant likelihood. We compute the accumulative (in frequency

or time ) likelihood for harmonics of PW which give largest contribution to the

likelihood. Let us define precisely the accumulative likelihood. During the whole

observation time [0, Tob], the frequency of each harmonics changes from fmin to

fmax, the full log likelihood is defined as before

log Λ = (h|s)− 1

2
(h|h), (4.134)

with the inner product (a|b)

(a|b) = 4R

∫ fmax

fmin

ã(f)b̃∗(f)

Sn(f)
df. (4.135)

If we focus on the part of the observation time [0, t], the change of frequency

during this time period is [fmin, f(t)]. The cumulative log likelihood is defined by

replacing fmax by f(t) in the inner product calculation

log Λ[acc](t) = (h|s)acc(t)−
1

2
(h|h)acc(t), (4.136)
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Figure 4.1: The cumulative F-statistic of 30 dominant harmonics with true pa-
rameters without noise. Since there is no noise, the F-statistic is not normalized.

where the inner product (a, b)acc

(a|b)acc(t) = 4R

∫ f(t)

fmin

ã(f)b̃∗(f)

Sn(f)
df. (4.137)

With the increase of t, the term log Λ[acc] goes from 0 to log Λ. The similar

implementation can be also used in the maximized likelihood (or F-statistic),

that will be the cumulative maximized likelihood or cumulative F-statistic. Take

the true signal as an example, in the noseless case, the picture 4.1 show the

cumulative F-statistic for 30 dominant harmonics.

We compute accumulative likelihood only for those harmonics which give sig-

nificant contribution to the total F-statistic. These PW harmonics detect a part

of signal with frequency and its derivatives close to the true parameters, but not
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Figure 4.2: Time-frequency plot of harmonics. The black and green tracks are
two strong harmonics of the EMRI signal (black being stronger). The blue track
corresponds to a harmonic of PW that accumulates a significant F-statistic. It
intersects the true harmonics at the pink segments, those correspond to times of
increase of F-statistic, see 4.3.

necessarily exact. Single PW harmonic can match different parts of the signal

at different instance, it is showed in Figure 4.2. where, black and green are two

strong true harmonics of the signal (black being stronger), and the blue line is

a harmonic of PW. The pink are regions where the PW matches frequency of

the true harmonics for a short period of time. The corresponding cumulative

F-statistic of the blue harmonics is shown in the Figure 4.3. From this figure, we

can see that there are two positive jumps in the accumulation of the F-statistic

which correspond to two instances of intersection. The positive slope in the cu-

mulative F-statistic (if it happens over a significant duration) corresponds to the

part of the frequency and time where the particular harmonic of PW matches
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Figure 4.3: Cumulative F-statistic corresponding to the situation depicted in
Fig. 4.2. The green and red squares mark the maxima and minima of the curve,
thus distinguishing between the increasing and the decreasing slopes.

parts of some true harmonics of a signal. In practice, we utilize two criteria

for selecting the significant F-statistic accumulation: (i) the slope must be larger

than a certain threshold; (ii) the accumulation time must be longer than a certain

period. In our search we have made the following choice for these two criteria.

In the case of noiseless data, we require the slope to be larger than one-tenth

of the largest slope of the cumulative F-statistic of that trial harmonic, and the

cumulative time (over which we observe steep positive slope) to be longer than

three days.

We collect all patches where the harmonics match parts of the signal together

and display them on the time-frequency plane in the Figure 4.4, we can identify by

eye 13 strong harmonics. Among these 13 time-frequency tracks, there are several
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Figure 4.4: Time-frequency plot of all patches corresponding to strong accu-
mulation of F-statistic. We can identify parts of frequency tracks of 13 EMRI
harmonics. Each track in this plot has a finite width coming from different solu-
tions of MCMC search which have different precision of matching the signal.

pairs of nearly overlapping tracks. The value of three fundamental frequencies

fr, fθ, fφ (∼ 10−3 Hz) are close to each other, if two harmonics have the same

value in the sum of their indices k + n + m, their frequencies will have small

difference and they appear as nearly overlapped in the time frequency plot. For

example, the pair of tracks in the bottom have the indices {m = 2, k = 0, n =

−1}, {m = 1, k = 0, n = 0} respectively, hence, the difference is fφ − fr which is

around 10−5 Hz.

Although the weaker harmonics are lost, the strong ones contain enough in-

formation about the system evolution which can be used to recover the physical

parameters. At each instance, there are many found patches from the different

solutions of MCMC which give us a spread in the frequency for a given har-
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Figure 4.5: Zoom at two harmonics at a specific instance of time. The red
stems denote the frequencies of the true harmonics of a signal, while the blue
histogram shows the detected frequencies at this instant. The green curves are
the Gaussian fit to the frequency data with re-scaled amplitudes. The vertical
axis of pink points indicates the relative time over which we have observed strong
accumulation of F-statistic for each solution.

monic. This is because various solutions from MCMC search matched a given

true harmonic of the signal with different precision, however we expect that the

distribution of found frequencies at each instant of time will be centered close to

the true frequency of signal’s harmonic. As an example we show the distribution

of found frequencies at a particular instance of time for two harmonics in the

Figure 4.5.

In this plot, the blue histogram stands for the number of found solutions

around that frequency at a given instance, the smooth green curve gives the

Gaussian fit, and the frequencies of two harmonics from the signal are presented
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in red. As mentioned above, different solutions of MCMC results vary in precision

of matching the signal, and we can use accumulation time as the measure of

goodness of match. The relative accumulation time of different solutions shown

as pink points in the Figure 4.5. First, one can see that Gaussian fit lies on

the top of the true frequency, and second, that the distribution of pink points is

similar to the blue histogram, so either can be taken to characterize the found

harmonics of a signal. Similarly we can do at each instance of time for all found

tracks in the time-frequency plane.

For the noiseless search, we have picked uniformly distributed instances {tj}j=1,2,...,K

and made a Gaussian fit around each harmonic. We identify the mean value ρi

of the Gaussian fit as the most likely frequency of a signal’s harmonics at that

instance, and we identify the variance σi as an error in our estimation of a fre-

quency.

In the case of noisy data, the techniques are roughly the same as in the noise-

less case with a minor alteration. First, we choose the local maxima with SNR

greater than 4.5. Then, we select the significantly steep slopes of the cumulative

F-statistic depending on three requirements: (i) the maximum F-statistic along

the cumulative F-statistic curve should be larger than 50, (ii) the slope is larger

than 4 × 10−6s−1, (iii). the monotonic increasing duration is longer than about

a week. These values should be fixed based on the desired false alarm probabil-

ity. Instead we have varied these parameters until the time-frequency tracks are

clearly visible ”by eye”. This implies that our search could be further optimized.

From this selection, we identified 5 strong harmonics in the noisy case. After that

the procedure is similar to the noiseless case.

The number of found time-frequency tracks is less than the number of har-

monics given in the index table. What if we had found more time-frequency than

the number of expected (dominant) harmonics? By using the harmonics from the

index table to truncate the harmonics expansion, the waveform template could

recover 99.99% SNR. If the number of found tracks is less than the number in

the index table, it means we have not find all the weak harmonics in the index

table, probably, they are too weak to be detected. There could be two cases when

the number of found tracks is larger than the number in the index table. One

possibility is that there is an unusually stronger signal, so that even the weak
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harmonics which are not included in the index table could be detected. Or, a

false detection, in other words, we have found some fake (noise generated) signal.

In both cases, we can tune the parameters which are used to control the selec-

tion of the dominant harmonics to decrease the number of found tracks, until the

number of found tracks does not exceed the number of harmonics from the index

table. For example, we could raise the slope of accumulative likelihood curves,

or increase the threshold of SNR.

Here I must acknowledge that the Figures 4.1, 4.2, 4.3, 4.4, 4.5 are made by

my colleague Yan Wang, and are used here with his permission.

4.6.2 Physical parameter searching

As explained in the section of the waveform modeling 4.3, given the initial value

of the physical parameter of {e, p, ι, a, µ,M}, the numerical kludge waveform is

determined by solving the differential equations for the orbital parameter evolu-

tion. Now, we have found some dominant harmonics of the signal as the tracks

in the time-frequency plane. Next we need to identify the physical parameters of

the signal whose harmonics fit found time-frequency tracks. The index table can

guide us to recover the physical parameters of the signal from the found frequency

tracks of the dominant harmonics. When searching on the physical parameter

space, we need to choose the indices to generate the tracks of the template, and

compare to the found tracks. The index table could tell us which dominant har-

monic might contribute to the found frequency tracks, and which track need to

be generated. What we need to do is to simulate the frequency tracks by using

the indices from the index table, then calculate their degree of matching with

the found frequency tracks to find the best fit. And our results show that it is

very efficient to recover the physical parameters by using this index table. This

procedure can be accomplished by utilizing the genetic algorithm on the physical

parameter space, which will be described clearly in section 4.6.2.2.

4.6.2.1 Define the quantity to assess the goodness of fit

We have found sets of tracks corresponding to the strong harmonics of the signal,

but we do not know the corresponding index of these harmonics. So far, we have
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just tracks in the time-frequency plane. For each e, p, ι, a, µ we can construct

the tracks of dominant harmonics of the signal. The idea is to find the set of

e, p, ι, a, µ which corresponding harmonics match the best to the found tracks.

This procedure is similar to described in Gair et al. [2008]. We need to define

some quantity which can measure goodness of fit .

When we use the physical parameters to construct the dominant harmonics,

all combinations of indices from the index table have the equivalent possibility of

matching the found tracks. With the initial physical parameters {e, p, ι, a, µ}, we

can calculate three fundamental frequencies fr, fθ, fφ at this moment of time. At

each instance tj, for each harmonic hknm from the index table, we compute the

frequency f
(j)
knm(t) = kf

(j)
θ (t) +nf

(j)
r (t) +mf jφ(t), then compare to the mean value

ρ
(j)
i which we have discussed in the previous subsection, and chose the closest one

(f
(j)
i ). Each harmonic can be chosen only once. We compute the χ2 (weighted)

goodness of fit test:

χ2 =
K∑
j=1

N∑
i=1

(f
(j)
i − ρ(j)

i )2

σ
(j)
i

, (4.138)

here, index j = 1, 2, · · · , K stand for the representative time instance tj, index

i = 1, 2, · · · , N stand for the harmonics index.

Besides the χ2 test defined above, we can also introduce another statistics:

W =
K∑
j=1

N∑
i=1

( max
{l=1,2,···,P}

{G(j)
i (f

(j)
l , ρ

(j)
i , σ

(j)
i )}). (4.139)

Here, again, the index i, j have the same meaning as in the χ2 test, index l =

1, 2, · · ·P stand for the harmonics from the index table which we have introduced

in the subsection 4.4. G
(j)
i (f, ρ

(j)
i , σ

(j)
i ) are the Gaussian fit functions at the time

instance tj for the harmonics characterized by ρ
(j)
i and σ

(j)
i as the mean value

and variance. After getting the frequency f
(j)
l for each harmonics from the index

table, we substitute it in to all the Gaussian fit function G
(j)
i (f

(j)
l , ρ

(j)
i , σ

(j)
i ), and

choose the maximum as the closest between ρ
(j)
i and f

(j)
l . If the f

(j)
l are not
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close to any ρ
(j)
i , its value of Gaussian function is very small. The best match

corresponds to maxima of W .

Both of these two quantities can be used to define the goodness of fit of each

set of physical parameters, and they are applied in our search. Next, we choose

search algorithm which maximizing W or minimizing χ2.

4.6.2.2 Searching algorithm in time frequency plane

Having the statistic χ2 or W , the searching on the physical parameters space is

just minimizing χ2 or maximizing W . To accomplish this, we use two stochastic

search algorithms. One is Genetic Algorithm and the other is the Particle Swarm

Optimization method.

In chapter 3, we have explained in details GA as a powerful stochastic search

method. Let us give a short summary of a specific implementation of GA utilized

in the current search. Each parameter set {e, p, ι, a, µ} is called an organism, in-

dividual parameters are called the genes of this organism and the set of organisms

at k-th search iteration step is called k-th generation. As before, we evolve gen-

erations according to the prescribed rules called “parents selection”, “breading”

and “mutation”.

We use χ2 value as a measure of fitness for each organism (smaller value

is better). In each generation we use the roulette method with the selection

probability proportional to the fitness of each organism. For breeding we have

used the one random point crossover rule. The probability mutation rate is

monotonically decreasing function of the generation number: we have started with

high probability of mutation to explore a large part of the parameter space and

decrease it gradually as organisms converge to a particular part of the parameter

space. We have used “children” and ”parents” sorted in the fitness to make a

new generation: we use 50% of the best organisms. We automatically achieve the

”elitism” in a way that the best χ2 value is never increasing from one generation

to the next.

We use the multi-step method to accelerate the search. In each step we

evolve the colony for 500 generations as described above, but each new step uses

the last generation of the previous step as the initial state. We have started
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evolution in the first step with completely random distribution of the organisms.

The evolution of the colony at each step finishes with a very small mutation

probability and with organisms confined to a quite small volume of the parameter

space. The consequent search steps ensure that the found solution is a robust

solution with respect to the increase of the mutation probability which disperses

organisms forcing them to explore the parameter space for presence of a solution

with a better fitness. This helps to avoid being trapped in the local minima. The

termination condition is the stability of the best solution over several steps of the

search.

In the case of noiseless data, we have found that the final results are sensitive

to the sampling of time-frequency tracks (tj). Using only first two month of

data provide with smoother surface on χ2 , and it is easier to find the global

minima than the case of three month. Some distinct local minima in the case of

three month long data are not local minima any more in the case of two month,

or not so prominent. The explanation is in the detector’s motion and antenna

beam function. From the Figure 4.4, we can see that, in the first two month,

the found dominant harmonics are much more prominent comparing the third

month (the last month). For first two month, the detector had better orientation

with respect to the source (large response) than in the last month, amplitudes are

suppressed in the last month, and it leads to less accurately determination. As for

how to choose the suitable representative time tj, we can use the information of

time of positive accumulation of the log likelihood in each found patch. At each

moment of time, besides the frequency of each found patch, both the accumulative

time and the strength of harmonics is stored and can be used. Both the longer

accumulative time and larger strength means high probability of good matching

to the true harmonics for the found patch, and it is more likely to contain accurate

information of the true signal in this patch. Take the accumulative time as an

example: at each moment of time, we add the accumulative time of all the found

patch together, and use the resulting sum as a measure of quality. Then we

choose sampling of time-frequency plane based on these sums. We should also

take care that the points do represent the whole time span.

Besides the genetic algorithm, we also use the Particle Swarm Optimization

(PSO) to do the search. PSO is a population based stochastic optimization
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technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by

social behavior of bird flocking or fish schooling Kennedy & Eberhart [1995].

PSO simulates how do the bird flock find their food. Suppose, there is only a

piece of bread in a searching area. All the birds have no idea where the bread

is, but, they know how far away from their present position to the food. So, the

most simple and efficient tactics is searing nearby the bird which is nearest to the

food.

As an evolutionary computation technique, PSO shares many similarities with

GA. However, unlike GA, PSO has no evolution operators such as crossover and

mutation. In PSO, the potential solution is called particles. PSO is initialized

with a group of random particle and then search for the optima by updating

generation. In every iteration, each particle is updated by following two ”best

value”. The first one is the individual best position that each single particle

has achieved so far during its search history, denoted as pI . Another ”best ”

value is the global best position that is obtained so far by all the particles in the

whole swarm, denoted as pg. After finding these two best positions, each particle

updates its velocity and position according to the following equations:

VelocityI(new) = ζVelocityI(Present) + c1η1[pI(Present)− PositionI(Present)]

+c2η2[pg(Present)− PositionI(Present)],

PositionI(new) = PositionI(Present) + VelocityI(New), (4.140)

where ζ is called the inertia weight, c1 and c2 are called acceleration constants,

and η1,η2 are random numbers drawn independently at each step from the uniform

distribution on [0,1]. The first term simply moves a particle along a straight line,

while the remaining two terms are sources of acceleration, one pulling it towards

its individual best position and another pulls it towards the global best position.

The last two effects are combined with random weights η1 and η2. The random

deflections and inertial motion allow a particle to explore the parameter space,

while the attractive pulls of pI and pg give preferred deflections. With a dynamic

inertia weight that decreases in time, the attractive pull eventually wins over.

Base on this basic principle, we use a specific implementation which is de-
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Table 4.1: Recovered parameters of EMRi against actual parameters used in
simulating data sets.

description e(t0) p(t0) ι(t0) a µ
True parameters 0.4 8.0 0.349 0.9 10−5

Recovered parameters (with noise)0.3958.0290.3420.891 9.79× 10−6

Recovered parameters (no noise) 0.4027.9910.3600.9011.002× 10−5

scribed in Wang & Mohanty [2010] to our work, the final results are comparable

to that in GA method .

The recovered parameters are given in the table 4.1. From this table, we

can see that, we have recovered the physical parameters with good precision

(fractional errors are less than 2− 3%).

4.7 Summary

In this chapter, we have introduced phenomenological family of waveforms (PW)

for detecting EMRI signals in the data from the LISA-like observatory. The

template is constructed out of independent (over the time interval we have applied

our analysis) harmonics of slowly evolving three orbital frequencies. We have

neglected the amplitude evolution and presented the phase as a Taylor series up

to the third derivative of frequency. We have restricted in our analysis to the

case of monotonically increasing frequencies, this condition will break only close

to the plunge. The number of harmonics and range of indices were taken from

the analysis of dominant harmonics of our model signal, though we have found

at the end that the search only weakly depends on the number of used harmonics

(only through the accumulated total SNR, which should be sufficient to claim

detection).

Constructed phenomenological templates allows us to search for EMRI signals

in a model independent way. This way we avoid complexity of accurate modeling

the orbital evolution and gravitational waveform during the search. In addition

PW covers also all possible small deviations of the background spacetime from

the Kerr solution which would influence the signal’s phase and could lead even

to loss of the signal if the template assumes pure Kerr background geometry.
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We have used MCMC based search to find a large number of local maxima

of the likelihood surface. We were not that lucky to find the global maximum.

We have analyzed the found solutions by means of cumulative over the time F-

statistic and identified the patches of the signal which were match by templates.

As a result we have constructed time-frequency map of (parts of) signal’s har-

monics. Each track could be characterized by the best guess and the error bar at

each instance of time (by fitting Gaussian profile into found at that time frequen-

cies around each track). The next step is to assume a model for the binary orbital

evolution, and map found time-frequency picture to the strongest harmonics of

a signal. In other words we want to find the physical parameters of the binary

system which strong GW harmonics could leave the found imprint. We do that

by conducting a search using particle swarm optimization techniques and, inde-

pendently, genetic algorithm. We have used weighted chi-square goodness of fit

test to choose the best matching harmonics of the signal. We have assumed the

same model as was used in the simulated data, and the recovered parameters are

within 2− 3% of the true values.

We want to make few final remarks. (i) The found time-frequency tracks of

the GW signal from EMRI did not assume any particular model. The mapping

these tracks to the physical parameters could be done in post processing using

several models. We have chosen on purpose rather short (3 month) duration of

the data. The search procedure could be repeated for each three months and

then one can check consistency of a given model or further improve accuracy

in the recovered parameters (if model gives consistent parameters of the system

across different data segments). This could be a powerful method to search de-

viations from “Kerness”. (ii) In the mapping of the time-frequency tracks to the

physical parameters of the binary, we have only weakly used information about

the strength of each track/harmonic. We have found that the information stored

in the frequency evolution is sufficient to recover parameters of EMRI, however,

the use, in addition, information about the strength of the recovered harmonics

and harmonics of the modeled GW signal could give us additional confidence

in the result and/or distinguish between several solution if ambiguity happens.

(iv) Mapping from the found time-frequency tracks onto the physical parame-

ters might turn out to be the most computationally intensive task, however one
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might use the information about the strength and a number of found harmonics

to restrict a volume of the searched parameter space. In addition, to perform

mapping we require mainly to compute the orbital evolution, not the full wave-

form, however, it is then important to know which harmonics are the strongest

for a given parameter set. (iv) In the future work we intend to include the sky

location and the MBH mass into the search and investigate the possibility to

differentiate between different models of EMRIs based on the results of MCMC

search with PW (as discussed in (i)).

The aim of this work is to introduce the phenomenological waveform family

and show in practice how to use it to detect the GW from EMRIs. Due to lack

of time, I have not considered the cases of weak signal and several simultaneous

signals . For the weak signal, it is more difficult to identify the dominant har-

monics. This might result in smaller number of found time-frequency tracks. We

will need to use longer data segments (6 months) or even the whole data set to

accumulate sufficient SNR. In the PW model, we will need to extend the Taylor

series to the higher orders both in the phase and amplitude evolution. This will

lead to a larger parameter space and potentially bring more complexities in the

search for time-frequency tracks. Once we have found the dominant harmonics

of the signal, the method described in this thesis can still be used to recover the

physical parameters. With larger parameter space and longer data segment, it is

more likely to identify the time-frequency track more accurately since we require

to match signal for longer time to accumulate sufficient SNR. Therefore, the found

time-frequency tracks should have smaller deviation from the true signal. At the

same time, the low SNR means larger influence of the noise on the parameter

estimation. We can also utilize the strength of the found dominant harmonics

which we did not use in our present work to refine the parameter estimation. The

SNR of the found tracks could tell us which tracks correspond to the strong har-

monics. Therefore, we can correlate only strongest harmonics (from index table)

with corresponding time-frequency tracks. As for the case of multiple signals,

we need to answer the question: how to identify time frequency track with each

signal. One possibility is to identify them when some frequency tracks cross each

other. Alternatively we can calculate the rate of frequency change, ḟ , for each

found track, and the different slop ( ḟ) could help us to classify these tracks and
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attribute them to different signals. All in all, this might be a big challenge for

the highly overlap signals, and should be addressed in the future.
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Chapter 5

Final Summary

The detailed summaries were given after each chapter, here, I give a brief con-

clusion of my thesis. In the work of searching the SMBH binaries in mock LISA

data, we apply an extended genetic algorithm based on the property of the signal

and the response function of the detector. The results show that our method is

very efficient in finding the signals and recovering the physical parameters with a

high precision. In the future, we can apply our method to the more sophisticated

simulated data which contains GW signals from multiple sources of different kind

all together, this includes SMBH, EMRIs, Galactic white dwarf binaries, bursts

from cosmic cusps.

In the second half of my thesis, we introduce a new family of the phenomeno-

logical template, and utilize theses templates to detect the signal in the simulated

data by using the MCMC technique. After that, by assuming a particular EMRIs

model, we apply two stochastic algorithm: PSO and GA, to estimate the physi-

cal parameters of the binary with high accuracy. In the future work, we need to

extend our method by including more search parameters, investigate the possi-

bility to distinguish between different models of EMRIs based on the results of

MCMC search with PW, and set a practical scheme for using PW in the mapping

spacetime analysis, and check ”no hair ” theorem.
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