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Summary

This dissertation deals with the development of econometric estimators and their ap-

plication to problems from the field of labor economics. It includes six essays, from

whom four are on the sample selection model and the remaining two are on different

topics in labor econometrics. Chapters 2 and 4 consider an extension of sample selection

models to the case of endogenous covariates. While the focus of Chapter 2 is on issues

of interpretation, Chapter 4 centers on consistent estimation of the model parameters

under weak assumptions. Both chapters include empirical applications where educa-

tional attainment is considered an endogenous variable in wage equations. Thus, both

chapters contain estimates of the so-called returns to education. Chapter 3 deals with

the estimation of a sample selection model using copulas. Copulas provide a very flexi-

ble modeling device and estimation carried out in this way has several advantages over

existing estimators proposed in the literature. Chapter 5 considers semiparametric es-

timation strategies for a sample selection model with a binary dependent variable. The

finite sample properties of the proposed estimators are illustrated by means of a Monte

Carlo study and an empirical example. Chapter 6 proposes a detailed decomposition

method for limited dependent variable models, which has important advantages over

approaches already presented in the literature. Chapter 7 considers identification and

estimation of endogenous regressor models when the endogenous regressor is discrete.

The identification strategy does not require an additional instrumental variable and

is, thus, especially valuable if such an instrumental variable is unavailable in empirical

applications.

Keywords: sample selection model, endogenous covariates, decomposition
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Zusammenfassung

Diese Dissertation befasst sich mit der Entwicklung ökonometrischer Schätzmethoden

und deren Anwendung auf Problemstellungen aus dem Bereich der Arbeitsökonomik.

Sie enthält sechs Essays, von denen sich vier mit dem Stichprobenselektionsmodell be-

schäftigen und die übrigen zwei sich mit verschiedenen Themen der Arbeitsökonometrie

befassen. Kapitel 2 und 4 betrachten eine Erweiterung des Stichprobenselektionsmod-

ells auf endogene Kovariate. Während sich Kapitel 2 mit Fragen der Interpretation

auseinandersetzt, fokussiert sich Kapitel 4 auf die konsistente Schätzung der Modell-

parameter unter wenig restriktiven Annahmen. Beide Kapitel enthalten empirische

Anwendungsbeispiele, in denen die Schulbildung als endogene Variable in Lohngle-

ichungen betrachtet wird. Beide Kapitel enthalten somit Schätzungen der sogenannten

Bildungsrendite. Kapitel 3 befasst sich mit der Schätzung eines Stichprobenselektions-

modells mit Hilfe von Copulas. Copulas bieten einen sehr flexiblen Modellierungsansatz,

der Vorteile gegenüber bereits bestehenden Ansätzen aufweist. Kapitel 5 betrachtet

die semiparametrische Schätzung eines Stichprobenselektionsmodells mit einer binären

abhängigen Variablen. Die Eigenschaften der vorgeschlagenen Schätzmethoden wird

mit Hilfe einer Monte Carlo Studie sowie eines empirischen Beispiels illustriert. In Kapi-

tel 6 wird eine detaillierte Dekompositionsmethode für Modelle mit begrenzt abhängiger

Variable vorgeschlagen, die signifikante Vorteile gegenüber bereits bestehenden Metho-

den aufweist. Kapitel 7 betrachtet die Identifikation und Schätzung eines Modells mit

einem diskreten endogenen Regressor. Die Identifikationsstrategie beansprucht keine

zusätzliche Instrumentvariable und ist daher insbesondere nützlich, wenn eine solche

Instrumentvariable in empirischen Anwendungen nicht verfügbar ist.

Schlagworte: Stichprobenselektionsmodell, endogene Kovariate, Dekomposition
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Chapter 1

Main Introduction

The field of labor economics is characterized by a considerable amount of empirical

studies. The research methods used to conduct such studies are taken from the related

field of econometrics. In fact, labor economics on the one hand and econometrics on

the other hand are highly interrelated and stimulating each other. Many important

researchers are experts in both labor economics and econometrics, most notably Nobel

prize laureate James J. Heckman. This dissertation deals with the development and ap-

plication of econometric methods in the field of labor economics. Thus, this dissertation

is concerned with what may be called “labor econometrics”.1

Heckman won the Nobel prize for his seminal contributions to the analysis of selective

samples. The well-known sample selection model is intrinsically tied to his name. The

sample selection model plays an important role in this dissertation.

The sample selection model is used when the observed sample is considered a non-

random sample from the overall population. The term “observed” should be understood

in the sense that all variables are observed. A popular example for an application of

the sample selection model is estimating a wage equation for women. A wage equa-

tion has the (natural logarithm) of the wage as the dependent variable and a set of

1This term has been used by Heckman and MaCurdy (1986), for example.
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explanatory variables on the right hand side, also known as covariates. However, the

wage is only observed for women who are working, while the remaining women have

“missing” wages. Heckman’s (1979) crucial point was that performing an ordinary least

squares regression on the observed sample of working women only introduces a bias into

the estimation results. To overcome this bias, he proposed the well known Heckman

correction. This involves augmenting the right hand side of the wage equation with a

control function, the inverse Mills ratio term, which controls for the probability of be-

longing to the observed sample. Heckman (1979) demonstrated that a simple two-step

procedure is suited (under certain assumptions) to obtain consistent estimates of the

parameters of interest. In the first step, the selection equation which determines the

probability of belonging to the observed sample is estimated. These estimates are used

to compute the inverse Mills ratio term, which is inserted as an additional covariate

into the wage equation (the main equation). The second step is then an ordinary least

squares regression of the wage on the explanatory variables and the inverse Mills ratio

term.

The sample selection model in its original formulation due to Heckman (1979) relies

on some critical assumptions. One assumption is that the covariates are exogenous,

i.e., independent of the error terms of the model. However, this assumption may be

doubtful in practice. For instance, in a wage equation a typical covariate is educational

attainment. However, unobservables such as the ability (e.g., intelligence or social back-

ground) of a woman are likely to affect the wage, the probability of belonging to the

workforce and educational attainment jointly. In that case, educational attainment

cannot be regarded as exogenous. In Chaper 2 of this dissertation, the sample selection

model due to Heckman (1979) is extended to the case of endogenous covariates. An

appropriate econometric model is developed and applied to a female wage equation ex-

ample due to Mulligan and Rubinstein (2008). It is shown that a correlation parameter

in the extended model has the same interpretation as its counterpart in the selection
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model without endogenous covariates, and can be used to study if the observed sample

has above-average skills.

Another critical assumption is the bivariate normality assumption in Heckman’s

(1979) original formulation. Heckman (1979) assumed that the error terms of main and

selection equation have a bivariate normal distribution. However, if this assumption

is not fulfilled, estimates are generally inconsistent. In Chapter 3, a semiparametric

estimation procedure is proposed which relaxes the strict bivariate normality assump-

tion. It is argued that this procedure has several advantages over a competing approach

proposed by Gallant and Nychka (1987).

Chapter 4 also studies endogenous covariates in a selection model. In contrast to the

model proposed in Chapter 2, the model in Chapter 4 does not rely on parametric dis-

tributional assumptions. Chapter 4 focuses on consistent estimation of the parameters

of main and selection equation under weak assumptions, while Chapter 2 centers on is-

sues of interpretation. The model is applied to estimating the (married) female returns

to education. It is demonstrated that it is important to account for the endogeneity of

education, and the empirical results indicate that the returns to education seem to be

smaller than those obtained by ordinary least squares or an ordinary Heckman selection

model which does not control for the endogeneity of education.

Chapter 5 considers a sample selection model with a binary dependent variable in the

main equation. In the ordinary sample selection model, the dependent variable of the

outcome equation is continuous. In Chapter 5, semiparametric estimators are proposed

which do not rely on strong distributional assumptions. In particular, two different two-

step approaches for estimation are presented and discussed, and the performance of the

estimators is evaluated by means of a Monte Carlo study and an empirical example.

Chapters 6 and 7 are methodological contributions to two different topics of labor

econometrics. In Chapter 6, a detailed decomposition for limited dependent variable

models is proposed. While in case of linear models the well-known Blinder-Oaxaca
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decomposition can be applied, this is not possible in nonlinear models such as limited

dependent variable models. A detailed decomposition is proposed which has significant

advantages over two methods already existing in the literature.

Chapter 7 deals with the identification and estimation of endogenous regressor mod-

els when the endogenous regressor is discrete. The virtue of this approach is that no

additional instrumental variable is needed for identification. It is shown that the dis-

creteness of the endogenous regressor implies a nonlinear relationship between the en-

dogenous regressor and the remaining explanatory variables, which can be exploited for

identification. The usefulness of the approach is illustrated by a Monte Carlo study and

an empirical application.



Chapter 2

Estimation and Interpretation of a

Heckman Selection Model with

Endogenous Covariates

This chapter is a revision of the discussion papers No. 483 and 502, Department of Eco-

nomics and Business Administration, Leibniz University Hannover (Schwiebert, 2011;

Schwiebert, 2012a). I thank Olaf Hübler, Patrick Puhani, Bernd Fitzenberger and three

anonymous referees for providing valuable comments.

2.1 Introduction

Researchers using the Heckman (1979) selection model often implicitly assume exoge-

nous covariates. In this chapter, we challenge this sometimes questionable assumption

and develop a Heckman selection model with endogenous covariates. While the issue of

endogeneity in sample selection models is not novel, our approach has two important

advantages. First, estimation can be carried out fairly easily; any econometrics software

which supports maximum likelihood estimation of the Heckman selection model can be
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used to implement our estimator. Second, our approach provides a measure to analyze

the composition of the observed sample1 with respect to unobservables. That is, a mea-

sure which indicates whether individuals in the observed sample have higher outcomes

on average than people from the unobserved sample (given the covariates). Having a

measure to analyze the composition of the observed sample with respect to unobserv-

ables is important. For example, our model can be applied to study the composition of

the female workforce, as has been done by Mulligan and Rubinstein (2008).

In their 2008 QJE paper, Mulligan and Rubinstein (2008) studied the development

of the gender wage gap in the U.S. over time. They sought to obtain an explanation

why the wage gap between genders has narrowed over time, while it has increased within

gender. Mulligan and Rubistein (2008) hypothesized that these developments can be

explained by an increase in the quality of the female workforce. They provided some

evidence supporting this hypothesis.

One of the methods used by Mulligan and Rubinstein (2008) to study the quality

of the female workforce was the Heckman selection model (other methods involved

identification at infinity and some evidence on the IQ of women). The Heckman model

consists of two equations, the main equation of interest and the selection equation,

where the latter determines whether an observation belongs to the observed sample.

In the Mulligan and Rubinstein (2008) study, the main equation of interest is a log

wage equation for women, and the selection equation is equivalent to a labor force

participation equation. Using this model, Mulligan and Rubinstein (2008) analyzed the

selection of women into the full time full year workforce (defined as women who worked

at least 35 hours per week and 50 weeks during the year) and found that the selection

has become “more positive” over time, indicating a shift in the quality of the female

workforce.

The Heckman selection model can be used to analyze such issues because, as it is

1By “observed sample” we mean those observations who have nonmissing values in all variables.
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well known, the main equation of interest can be augmented by a control function, the

inverse Mills ratio term, for the observed sample. The parameter associated with the

inverse Mills ratio is the product of a standard deviation parameter (which is necessarily

positive) and the correlation coefficient between the error terms of main and selection

equation. Since the inverse Mills ratio is always nonnegative, a positive correlation

coefficient implies that the individuals in the observed sample have a higher (potential)

log wage (if the log wage is the outcome variable) on average than women who are not

observed, conditional on the covariates. That is, individuals with identical covariates

differ in their (potential) wages depending on whether they belong to the observed

sample or not. If the correlation coefficient is positive and thus the individuals in the

observed sample get a higher wage than individuals from the non-observed sample, this

can be interpreted such that the individuals from the observed sample have a higher

quality (or skills) on average. Indeed, the inverse Mills ratio term can be interpreted

as a variable which captures differences in unobservables between the observed and the

unobserved sample, e.g. the quality or skills of individuals.

In their application of the Heckman selection model, Mulligan and Rubinstein (2008)

implicitly assumed that the covariates entering this model were exogenous. This as-

sumption is, however, questionable for a variable like education. It is likely that com-

mon unobservable factors like ability drive the (potential) wage, the probability of labor

force participation and education jointly. In that case, education cannot be regarded

as exogenous.

In this chapter, we develop a Heckman selection model which allows for endogenous

covariates. Endogenous covariates are allowed to enter the main equation only, the

selection equation only, or both. Thus, our model is sufficiently general to accommodate

all cases of endogeneity. It is important to note that we develop an extension of the

Heckman selection model with the same basis assumptions. In particular, we extend

Heckman’s (1979) bivariate normality assumption and assume that the error terms of
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main equation, selection equation and the reduced form equations for the endogenous

covariates have a multivariate normal distribution.

Our estimators are conceptually similar to estimators for the Tobit model with

endogenous covariates as provided by Smith and Blundell (1986) and the probit model

with endogenous covariates as provided by Rivers and Vuong (1988); see also Newey

(1987). These estimators are implemented in standard econometrics software (such as

STATA) and are frequently used by practitioners.

One might argue that our parametric assumptions (i.e., multivariate normality) are

too strong. Indeed, following Heckman’s (1979) original setup of the model using the

bivariate normality assumption, several authors have challenged this assumption and

provided semi-nonparametric estimators which are consistent under weaker assump-

tions; e.g., Gallant and Nychka (1987), Powell (1987), Ahn and Powell (1993), Das et

al. (2003) and Newey (2009). However, what these estimators do not provide is an

easy-to-interpret measure characterizing the observed sample with respect to unobserv-

ables. In the Mulligan and Rubinstein (2008) example, the correlation coefficient is

the easy-to-interpret measure which shows if individuals in the observed sample have a

higher quality on average than individuals from the non-observed sample.

To analyze issues like the composition of the female workforce, it is thus desirable to

have such a measure which describes the quality of the (observed) workforce. We will

show that our extension of the Heckman selection model also includes such a parameter

with the same interpretation (and which is also a correlation parameter). Hence, our

model can be used to study compositional issues such as the composition of the female

workforce.

We apply our framework to 1980 U.S. Census data. We specify our model similar

to Mulligan and Rubinstein (2008), but we allow the covariate education to be en-

dogenous. In this data set we have information on the quarter of birth of individuals.

This information can be used to form instrumental variables for education (Angrist
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and Krueger, 1991). Details are given below. We examine if the ordinary Heckman

model (without controlling for endogenous covariates) and our extended model (which

controls for the endogeneity of education) lead to different results regarding the quality

of the female workforce. We thus seek to answer the question whether the conclusions

made by Mulligan and Rubinstein (2008) are valid, even if their model might have been

misspecified (as they did not control for the endogeneity of education).

Besides providing a measure characterizing the observed sample with respect to un-

observables, our parametric modeling approach has some significant advantages. First,

as already mentioned, we allow for endogenous covariates in the selection equation.

Wooldridge (2010) and Semykina and Wooldridge (2010) have also provided estimators

for the Heckman selection model with endogenous covariates, but in their specifica-

tion covariates are only allowed to be endogenous in the main equation.2 Second, our

approach does not require the existence of a variable (directly) affecting the selection

equation but not the main equation. Such an exclusion restriction is generally needed

in semi-nonparametric models to identify the parameters of the main equation (also

in semi-nonparametric models which allow for endogenous covariates, e.g. Das et al.,

2003). In our model, as in the ordinary Heckman selection model, identification is

achieved by our functional form assumptions, hence no additional “instrumental” vari-

able is needed to enter the selection equation. Even if one questions our parametric

assumptions, our estimation framework may serve as a starting point for an exploratory

data analysis, which may be followed by a more appropriate, e.g. semi-nonparametric,

estimation strategy afterwards. Our model setup is similar to Chib et al. (2009), but

their estimation strategy is Bayesian, whereas ours is not. A great advantage of our

estimator is that it is easy to apply. As will be shown below, any econometrics software

2In a related approach, Blundell et al. (1998) estimated labor supply elasticities, controlling for
endogeneity of the wage and other income, and for selection into the labor force. They augmented the
main equation with a control function for the endogeneity of the wage and other income and an inverse
Mills ratio term for sample selectivity. However, this approach only works if there is no endogeneity
in the selection equation.
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which is capable of maximum likelihood estimation of the ordinary Heckman selection

model can be used to implement our estimator.

Mroz (1987) suggested to get rid of the endogenous covariate by replacing it with a

reduced form equation which depends on exogenous covariates only. Then, the ordinary

Heckman model could be applied. Such a strategy is appropriate if one is interested

in the parameters of the main equation. However, it is not clear what the correlation

coefficient from this model measures, i.e. if it can be used to study compositional

issues. Heckman (1978) also considered endogenous covariates in a more general model,

but also focused mainly on the coefficients of the explanatory variables (and not on

correlation parameters and alike).

The remainder of the chapter is organized as follows. In Section 2.2, we set up the

econometric model which allows for the simultaneous presence of sample selectivity and

endogeneity. Section 2.3 presents the estimation strategies and shows how the latter

can be implemented in standard econometrics software. We also derive the analogue of

the correlation coefficient from the ordinary Heckman selection model and show that

both have the same interpretation. Moreover, we provide tests which indicate whether

endogeneity of covariates and/or sample seletivity are indeed present. In Section 2.4,

we apply our model to 1980 U.S. Census data and compare its results with the results

obtained from the ordinary Heckman selection model. Section 2.5 concludes the chapter.

2.2 Econometric Model

In this section, we present a rather general framework for incorporating endogenous

covariates into the Heckman selection model. The reason is that endogenous covariates

may occur in three respects. First, endogenous covariates may only appear in the main

but not in the selection equation; second, endogenous covariates may appear only in the

selection but not in the main equation; and third, endogenous covariates may appear
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in both equations. Thus, we set up a relatively general model to cover all these cases.

The model is given by

y∗i = X1iβ1 +X2iβ2 + Ciβ3 + ui ≡ Xiβ + ui (2.1)

z∗i = W1iγ1 +W2iγ2 + Ciγ3 +Qiγ4 + vi ≡ Wiγ + vi (2.2)

X2i = [X1i,W1i]∆1 + Z1i∆2 + ε1i ≡ Z̃1i∆ + ε1i (2.3)

W2i = [X1i,W1i]Λ1 + Z2iΛ2 + ε2i ≡ Z̃2iΛ + ε2i (2.4)

Ci = [X1i,W1i]Υ1 + Z3iΥ2 + ε3i ≡ Z̃3iΥ + ε3i (2.5)

zi = 1(z∗i > 0) (2.6)

yi = y∗i zi, (2.7)

where i = 1, . . . , n indexes individuals. The first equation is the main equation, where

the latent dependent variable y∗ is related to a (1×K1)-vector of exogenous explanatory

variables, X1, to a (1 ×K2)-vector of endogenous explanatory variables only included

in the main equation but not in the selection equation, X2, and to a (1× P )-vector of

endogenous explanatory variables included in the main and the selection equation, C.

The second equation is the selection equation, where the latent variable z∗ is related

to a (1 × L1)-vector of exogenous explanatory variables, W1, to a (1 × L2)-vector of

endogenous explanatory variables, W2 only included in the selection equation but not

in the primary equation, to C and to Q. Q is an exogenous variable (it could also be

a vector) which appears only in the selection equation. This is a well-known exclusion

restriction serving to identify the parameters of the main equation. In equations (2.3)

to (2.5) it is assumed that the endogenous explanatory variables can be explained by a

(1×M1)-vector, a (1×M2)-vector and a (1×M3)-vector of instrumental variables, Z1,

Z2 and Z3, respectively. Equation (2.6) expresses that only the sign of z∗ is observable.

Finally, equation (2.7) comprises the selection mechanism, i.e. the latent variable y∗ is

only observed if the selection indicator z is equal to one. Equations (2.1), (2.2), (2.6),
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and (2.7) build up the framework of the sample selection model without endogeneity as

presented in many textbooks (e.g., Davidson and MacKinnon, 1993, pp. 542-543). The

additional feature in equations (2.3) to (2.5) is that some of the covariates (X2, W2 and

C) in the primary and the selection equation are endogenous, i.e. correlated with the

error terms u and v. We assume that for each of these endogenous variables there exist

instrumental variables Z1, Z2 and Z3 which are not correlated with any error term in

the model.

Note that the exclusive presence of Q in the selection equation, i.e. the validity of

an exclusion restriction, is not needed to identify the parameters of the main equation,

as our functional form assumptions are sufficient for identification. Nevertheless, we

include this variable since some researchers may not want to identify parameters by

functional form assumptions alone. By contrast, the instrumental variables appearing

in the reduced form equations for the endogenous explanatory variables do have to fulfill

an exclusion restriction. These variables may not appear in X or W .

To complete the model, it is assumed that the vector of error terms (ui, vi, ε1i, ε2i, ε3i)
′

is distributed according to



ui

vi

ε′1i

ε′2i

ε′3i


∼ NID

0,


 σ2

u ρσuσv

ρσuσv σ2
v

 Ω′

Ω(J×2) Σ(J×J)


 , (2.8)

where NID denotes “normally and independently distributed”, J ≡ K2 + L2 + P , and

the distribution should be interpreted as conditional on all exogenous variables (the

conditioning has been omitted for the ease of notation). The covariance matrix of

the error terms consists of four parts. The upper left part is the covariance matrix

attributed to the error terms of the main and selection equation, respectively, where
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σ2
u and σ2

v denote the variances of u and v, and ρ denotes the correlation coefficient.

If there was no concern about endogeneity, inference would be based solely on this

part of the covariance matrix, as it is common in the standard sample selection model.

However, the (potential) presence of endogeneity is indicated by the (J × 2)-matrix Ω,

which captures the influence of unobserved factors which jointly affect the dependent

variables in equation (2.1) and (2.2) and the endogenous explanatory variables. Note

that endogeneity is absent if and only if Ω is equal to the null matrix. Finally, the

error terms attributed to the endogenous explanatory variables have covariance matrix

Σ whose dimension is (J × J).

Note that it is assumed that the distribution of the endogenous covariates can be

reasonably approximated by a normal distribution, which favors continuous regressors

and excludes binary regressors. However, even in case of binary regressors our model

can be applied for exploratory data analysis.

2.3 Estimation, Interpretation and Testing for Ex-

ogeneity

2.3.1 Estimation

First, we lay out a full information maximum likelihood procedure in which all param-

eters of the model (2.1)-(2.7) are estimated simultaneously. Note that the conditional

distribution of (ui, vi)
′ given (ε1i, ε2i, ε3i) is given by

ui
vi


∣∣∣∣∣∣∣ ε1i, ε2i, ε3i ∼ NID

(
Ω′Σ−1

[
ε1i, ε2i, ε3i

]′
, B

)
(2.9)
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where

B ≡

 σ2
u ρσuσv

ρσuσv σ2
v

− Ω′Σ−1Ω. (2.10)

Define

Ψ ≡

 ψ11
(1×K2)

ψ12
(1×L2)

ψ13
(1×P )

ψ21
(1×K2)

ψ22
(1×L2)

ψ23
(1×P )


(2×J)

≡ Ω′Σ−1 (2.11)

Γ ≡

σ̃2 ρ̃σ̃

ρ̃σ̃ 1

 ≡
 σ2

u ρσuσv

ρσuσv σ2
v

− Ω′Σ−1Ω, (2.12)

where the lower right element of Γ has been set equal to unity due to normalization.

Therefore, equation (2.9) can be recast as

ui
vi


∣∣∣∣∣∣∣ ε1i, ε2i, ε3i ∼ NID


ψ11ε

′
1i + ψ12ε

′
2i + ψ13ε

′
3i

ψ21ε
′
1i + ψ22ε

′
2i + ψ23ε

′
3i

 ,
σ̃2 ρ̃σ̃

ρ̃σ̃ 1


 , (2.13)

which resembles the (unconditional) joint error distribution of the sample selection

model without endogeneity (except for the non-zero means).3

Then, the likelihood function can be written as the product of a conditional distri-

bution which resembles the (unconditional) likelihood function of the sample selection

model without endogeneity and the joint distribution of the error terms (ε1, ε2, ε3).

Thus, the log-likelihood function is given by

l(θ) =
∑
zi=0

log{Φ(−Wiγ − ψ21ε
′
1i − ψ22ε

′
2i − ψ23ε

′
3i)}

3The approach undertaken here to accommodate the endogeneity problem is known as a “control
function approach” in the literature (see, e.g., Wooldridge, 2010, pp. 126-29).
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+
∑
zi=1

log{σ̃−1φ(σ̃−1(yi −Xiβ − ψ11ε
′
1i − ψ12ε

′
2i − ψ13ε

′
3i))}

+
∑
zi=1

log{Φ((1− ρ̃2)−1/2[Wiγ + ψ21ε
′
1i + ψ22ε

′
2i + ψ23ε

′
3i

+ ρ̃σ̃−1(yi −Xiβ − ψ11ε
′
1i − ψ12ε

′
2i − ψ13ε

′
3i)])}

− n

2
log |Σ| − 1

2

n∑
i=1

[
ε1i ε2i ε3i

]
Σ−1

[
ε1i ε2i ε3i

]′
, (2.14)

where θ ≡ (β′, γ′, ρ̃, σ̃, vec(Ψ)′, vech(Σ)′, vec(∆)′, vec(Λ)′, vec(Υ)′)′,

ε1i = X2i − Z̃1i∆ (2.15)

ε2i = W2i − Z̃2iΛ (2.16)

ε3i = Ci − Z̃3iΥ, (2.17)

Φ(·) denotes the standard normal cumulative distribution function and φ(·) the standard

normal probability density function.

The FIML estimator of the sample selection model with endogenous covariates is

thus given by

θ̂ = arg max
θ

l(θ). (2.18)

The FIML estimator actually does not provide estimates of the “structural” variance-

covariance parameters, i.e., those parameters in the unconditional distribution of the

error terms. Such parameters might be interesting; for example, the variance of the

main equation’s error term may be used as a measure of inequality of the skill distribu-

tion. These structural parameters can be deduced from the FIML estimates by noting

that

Π̂ = Γ̂ + Ψ̂Σ̂Ψ̂′ (2.19)
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Ω̂ = Σ̂Ψ̂′ (2.20)

ρ̂ =
ĝ

σ̂uσ̂v
, (2.21)

where Π ≡

σ2
u g

g σ2
v

 and g ≡ ρσuσv. In the Appendix it is shown how standard errors

for these structural estimates can be derived by means of the delta method.4

The FIML estimator is fully efficient. However, if the number of observations is large

and/or the number of covariates is large, estimation may be quite time consuming. As an

alternative, one may consider choosing a limited maximum likelihood (LIML) approach.

We propose the following procedure:

1) Estimate the reduced form equations (2.3)-(2.5) by OLS and obtain the residuals

ε̂1, ε̂2 and ε̂3.

2) Insert these estimated values into the following log-likelihood function

l(θ̃) =
∑
zi=0

log{Φ(−Wiγ − ψ21ε̂
′
1i − ψ22ε̂

′
2i − ψ23ε̂

′
3i)}

+
∑
zi=1

log{σ̃−1φ(σ̃−1(yi −Xiβ − ψ11ε̂
′
1i − ψ12ε̂

′
2i − ψ13ε̂

′
3i))}

+
∑
zi=1

log{Φ((1− ρ̃2)−1/2[Wiγ + ψ21ε̂
′
1i + ψ22ε̂

′
2i + ψ23ε̂

′
3i

+ ρ̃σ̃−1(yi −Xiβ − ψ11ε̂
′
1i − ψ12ε̂

′
2i − ψ13ε̂

′
3i)])}, (2.22)

which is then maximized over θ̃ ≡ (β′, γ′, ρ̃, σ̃, vec(Ψ)′).

Observe that the log-likelihood function is the same as for the Heckman selection model

without endogenous covariates, with the difference that we have the additional covari-

4We also provide in the Appendix a small Monte Carlo simulation study which analyzes the finite
sample performance of the FIML estimator and compares its estimates to the (biased) estimates based
on the ordinary Heckman selection model which does not control for endogeneity. Moreover, we provide
an application of our estimator to the well-known Mroz (1987) labor supply data set in order to compare
our results with those of Wooldridge (2010), who did the same using his estimator.
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ates ε̂1, ε̂2 and ε̂3. Thus, our model can be estimated using any econometrics software

which supports maximum likelihood estimation of the Heckman selection model. One

must simply add to the set of covariates the estimated residuals ε̂1, ε̂2 and ε̂3.

Of course, using estimated residuals as covariates instead of the true error terms

requires an adjustment of the (asymptotic) standard errors. To get appropriate standard

errors, one can either

a) use a correction formula which gives that
√
n(ˆ̃θ− θ̃) d−→ N (0, C), where C is the

corrected asymptotic covariance matrix which accounts for the estimation error

in ε̂1, ε̂2 and ε̂3. The exact expression for C is provided in the appendix;

b) combine the first order conditions from maximizing the limited information log-

likelihood function with the normal equations for estimating the reduced form

equations for the endogenous explanatory variables and estimate the parameters

jointly in a generalized method of moments (GMM) framework;

c) use the bootstrap.

2.3.2 The Interpretation of ρ̃

In this subsection we show that ρ̃ has the same interpretation as the correlation coeffi-

cient in the ordinary Heckman selection model. To keep the notation easy, we consider

the following simple model with one endogenous explanatory variable:

y∗i = X1iβ1 + Ciβ3 + ui ≡ Xiβ + ui (2.23)

z∗i = W1iγ1 + Ciγ3 + vi ≡ Wiγ + vi (2.24)

Ci = Z̃3iΓ + ε3i (2.25)

zi = 1(z∗i > 0) (2.26)

yi = y∗i zi. (2.27)
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The notation is the same as in Section 2.2. Moreover, let


ui

vi

ε3i

 ∼ NID




0

0

0

 ,

σ2
u σuv ωu

σuv σ2
v ωv

ωu ωv σ2
ε


 (2.28)

For the observable part of the main equation we have that (with a slight abuse of

notation5)

E[y∗|z = 1, X,W, Z̃3] = Xβ + E[u|z = 1, ε3] (2.29)

= Xiβ + E[u|v > −Wγ, ε3], (2.30)

where we have suppressed some explanatory variables from the conditional expectations

on the RHS because these are not crucial. The term E[u|v > −Wγ, ε3] is a general-

ization of the inverse Mills ratio term from the ordinary Heckman selection model.

In contrast to the ordinary selection model, this terms controls not only for sample

selectivity but for the endogeneity of C as well. The term can be written as

E[u|v > −Wγ, ε3] =

∫
u
Pr(v > −Wγ|u, ε3)fu(u|ε3)fε(ε3)

Pr(v > −Wγ|ε3)fε(ε3)
du, (2.31)

where fi(·) denotes the probability density function of variable i.

By using laws for conditional normal distributions, we have that v conditional on u

and ε3 has a normal distribution with mean

E[v|u, ε3] =

(
σuv ωv

)σ2
u ωu

ωu σ2
ε


−1u

ε3

 (2.32)

= (σ2
uσ

2
ε − ω2

u)
−1{(σuvσ2

ε − ωuωv)u+ (ωvσ
2
u − σuvωu)ε3} (2.33)

5We should e.g. write E[y∗|z = 1, X = x,W = w, Z̃3 = z̃3] instead of E[y∗|z = 1, X,W, Z̃3], but we
keep the notation simple to avoid long formulas.
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and variance

V ar[v|u, ε3] = σ2
v −

(
σuv ωv

)σ2
u ωu

ωu σ2
ε


−1(

σuv ωv

)′
≡ λ2. (2.34)

Furthermore, u conditional on ε3 has a N(ωu/σ
2
εε3, σ

2
u − ω2

u/σ
2
ε) distribution.

By making a change of variables u = (σ2
u − ω2

u/σ
2
ε)

1/2η + (ωu/σ
2
ε)ε3, we obtain that

(after some tedious algebra)

E[u|v > −Wγ, ε3] =

∫
u
Pr(v > −Wγ|u, ε3)fu(u|ε3)fε(ε3)

Pr(v > −Wγ|ε3)fε(ε3)
du (2.35)

=

∫
((σ2

u − ω2
u/σ

2
ε)

1/2η +
ωu
σ2
ε

ε3)
Φ(Wγ+aηη+aεε3

λ
)φ(η)

Pr(v > −Wγ|ε3)
dη (2.36)

=

∫
((σ2

u − ω2
u/σ

2
ε)

1/2η + ωu
σ2
ε
ε3)Φ(a+ bη)φ(η)dη

Pr(v > −Wγ|ε3)
(2.37)

=
(σ2

u − ω2
u/σ

2
ε)

1/2 b√
1+b2

φ
(

a√
1+b2

)
+ ωu

σ2
ε
ε3Φ

(
a√

1+b2

)
Pr(v > −Wγ|ε3)

(2.38)

=
(σ2

u − ω2
u/σ

2
ε)

1/2 b√
1+b2

φ
(

a√
1+b2

)
Pr(v > −Wγ|ε3)︸ ︷︷ ︸

Selection effect

+

ωu
σ2
ε
ε3Φ

(
a√

1+b2

)
Pr(v > −Wγ|ε3)︸ ︷︷ ︸

Endogeneity effect

, (2.39)

where

aη ≡ (σ2
uσ

2
ε − ω2

u)
−1(σuvσ

2
ε − ωuωv)(σ2

u − ω2
u/σ

2
ε)

1/2 (2.40)

aε ≡ (σ2
uσ

2
ε − ω2

u)
−1{(σuvσ2

ε − ωuωv)
ωu
σ2
ε

+ (ωvσ
2
u − σuvωu)} (2.41)

a ≡ Wγ + aεε

λ
(2.42)

b ≡ aη
λ
, (2.43)

and φ(·) denotes the standard normal probability density function and Φ(·) the standard

normal cumulative distribution function.

As mentioned, equation (2.39) is a generalization of the inverse Mills ratio term
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known from the ordinary Heckman selection model. It consists of two parts, a selection

effect and an effect due to the endogeneity of covariates. If endogeneity is absent (i.e.,

ωu = ωv = 0), it can be shown that the endogeneity effect is zero and the selection effect

reduces to the inverse Mills ratio term from the ordinary Heckman selection model with

exogenous covariates.

The selection effect measures the expected excess outcome of the selected sample

holding all explanatory variables constant (including the endogenous covariate). For

example, if the outcome is the log wage, then we would talk about positive selection

if an individual from the observed sample has a higher log wage on average than an

individual from the unobserved sample, if both individuals have the same values of

covariates. Note that the sign of the selection effect depends entirely on b. b, in turn,

depends on ρ̃. We can show this algebraically for the case of one endogenous covariate,

but we conjecture that this relationship also holds for the general case. To see the

relationship between b and ρ̃, note that

σ̃2 ρ̃σ̃

ρ̃σ̃ 1

 =

 σ2
u σuv

σuv σ2
v

−
ωu
ωv

 1

σ2
ε

(
ωu ωv

)
, (2.44)

hence ρ̃σ̃ = σuv − ωuωv
σ2
ε

and σ̃2 = σ2
u −

ω2
u

σ2
ε
. Now observe that the sign of b depends on

aη, which can be rewritten as

aη = (σ2
u − ω2

u/σ
2
ε)

1/2σ̃−2ρ̃σ̃ = (σ2
u − ω2

u/σ
2
ε)

1/2 ρ̃

σ̃
. (2.45)

Therefore, the sign of the selection effect in a Heckman selection model with endogenous

covariates is determined by the correlation coefficient ρ̃. Note that ρ̃ is a conditional

correlation coefficient because it has been derived from a conditional distribution (see

Section 2.3.1). This distinguishes this correlation coefficient from its counterpart in the

ordinary selection model, which is an unconditional correlation coefficient. However, as
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we have shown in this subsection, both parameters have the same interpretation as a

measure to analyze the composition of the observed sample with respect to unobserv-

ables.

2.3.3 Testing for Exogeneity and the Absence of Sample Se-

lection Bias

We now present a simple test which indicates whether endogeneity is indeed a problem

in a particular application. The absence of endogeneity means that the matrix Ω is

equal to the null matrix. But this implies that Ψ is equal to the null matrix as well.

Hence, we can test for the absence of endogeneity by performing a simple test of joint

significance of the parameters associated with the additional “covariates” ε1, ε2 and

ε3. If we cannot reject the joint hypothesis that these parameters are equal to zero,

then this indicates that endogeneity is indeed absent and estimates from an ordinary

Heckman selection model would be consistent.

A test of the null hypothesis that Ψ equals the null matrix is a standard task in

maximum likelihood estimation. For instance, one can apply a Wald test. Of course, a

likelihood ratio test or a Lagrange Multiplier test are also possible. A Wald test based

on the FIML estimates can be done using the test statistic

WΨ = vec(Ψ̂)′(Asy.Cov[vec(Ψ̂)])−1vec(Ψ̂) ∼ χ2(2J), (2.46)

where Asy.Cov[vec(Ψ̂)] denotes the asymptotic covariance matrix of vec(Ψ̂). Provided

that suitable regularity conditions hold (for instance, cf. Amemiya, 1985, pp. 120-127),

this asymptotic covariance can be obtained by using the fact that

√
n(θ̂ − θ) d−→ N (0,−H−1), (2.47)
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where H = n−1E
(
∂2l(θ)
∂θ∂θ′

)
. In practice, H would be replaced by a consistent estimator.

In a similar manner, it is possible to test for the absence of sample selection bias.

In that case, the null hypothesis would be ρ̃ = 0.

2.4 Empirical Analysis

In this section, we apply our LIML estimator to the Mulligan and Rubinstein (2008)

example. As described in the introduction, Mulligan and Rubinstein (2008) used the

Heckman selection model to study the composition (or quality) of the female full time

full year (FTFY) workforce. However, Mulligan and Rubinstein (2008) assumed exo-

geneity of their covariates, which is questionable for a variable like education. Based

on their estimation results, they concluded that the female workforce was negatively

selected in the late 1970s (1975-1979) and positively selected in the late 1990s (1995-

1999). That means, women in the late 1970s who belonged to the FTFY workforce

had a lower (potential) expected wage than women (with the same covariates) who did

not belong to the FTFY workforce, whereas in the 1990s women who belonged to the

FTFY workforce had a higher expected wage than women who did not belong to the

FTFY workforce.

We set up a similar model as Mulligan and Rubinstein (2008) did. Our goal is to

study if the conclusions regarding the composition of the female FTFY workforce persist

if one applies a Heckman selection model which controls for the (potential) endogeneity

of education. We use 1980 U.S. Census data6 , which can be seen as a substitute for the

late 1970s in the Mulligan and Rubinstein study. We expect that applying an ordinary

Heckman selection model leads to the same conclusions as in Mulligan and Rubinstein

(2008), i.e., that the female FTFY workforce was negatively selected. Our goal is thus

to check whether this conclusion persists if we apply our proposed Heckman selection

6We obtained our data files from the IPUMS-USA database (Ruggles et al., 2010).
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model controlling for the (potential) endogeneity of education.

The reason for the choice of the data set (which is different from the data set used

by Mulligan and Rubinstein, 2008) is that we need plausible instrumental variables

for education. These should be randomly assigned, affect the wage only through the

effect on education (“exclusion”) and should have a statistically significant relation to

education (“first stage”). Instrumental variables satisfying these conditions are hard to

find. To resolve this issue, we exploit the idea underlying the Angrist and Krueger (1991)

paper. Angrist and Krueger (1991) used the quarter of birth (and various interactions)

as an instrumental variable for education. The idea is that children in the United States

attend school in the year they turn six, where December the 31st is the cutoff date.

Thus, a child who turns six late in the year attends school at the age of five, whereas

a child who turns six early in the year attends school at the age of six. Since the legal

high school drop out age in the United States is 16 years of age, Angrist and Krueger

(1991) argue that children born late in the year attend school at an earlier age and,

thus, stay longer in school.

We made sample restrictions that are close to Mulligan and Rubinstein (2008). Our

sample consists of white women between 25 and 54 years of age not living in group quar-

ters. We consider selection into the full time full year (FTFY) workforce, i.e., workers

who worked at least 35 hours per week and 50 weeks in the last year. Only for these

women we calculated an hourly wage given by their annual income divided by (52 times

the usual hours of work). The remaining women add to the population who were not

selected into the FTFY workforce, which thus comprises women who did not work at

all and women who did work but not full time full year. We excluded observations with

wages below the 2.5th percentile and above the 97.5th percentile of the wage distribu-

tion. Choosing different percentiles did not change the results much. Observations for

which incomes have been imputed by a “hot deck” procedure were eliminated as well.

We excluded unemployed people as we cannot say whether these (potentially) belong
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to the FTFY workforce or to the remaining population. Furthermore, we eliminated

self-employed workers.

We consider a simplified version of the Mulligan and Rubinstein (2008) model spec-

ification. The most important difference is that Mulligan and Rubinstein (2008) used

dummies for different levels of educational attainment, whereas we use only one con-

tinuous education variable. The main equation of our model has the natural logarithm

of the hourly wage as its dependent variable, so that the estimated coefficients of the

explanatory variables can be interpreted as the percentage change in the wage rate due

to a one-unit increase in an explanatory variable (in case of continuous variables). Co-

variates in the main equation include years of education (educ), age (age), age squared

(age2 ), dummies for the census region (northeast, midwest, south; west is the baseline)

and dummies for the marital status (widowed, divorced, separated, never married ; mar-

ried is the baseline). The selection equation includes the same variables as the main

equation and the number of children younger than five years of age (nchlt5 ). The latter

variable is technically not needed for identification, but we used it because Mulligan

and Rubinstein (2008) did the same.7

Since education is potentially endogenous8, we followed the LIML approach outlined

in Section 2.3.1 and estimated in the first stage a reduced form equation for education.

Explanatory variables are the exogenous variables from the main equation and our quar-

ter of birth dummies (where the first quarter is the baseline) as instrumental variables.

We did not use the various interactions of quarter of birth with state of residence and

time periods as Angrist and Krueger (1991) did, since this might lead us towards a

weak instruments problem (Bound et al., 1995).

Table 2.1 provides descriptive statistics of the variables. Wages are measured in 1999

7Mulligan and Rubinstein (2008) argued that they did not want to identify the main equation
parameters by functional form assumptions alone, hence they selected an instrumental variable for the
selection equation.

8It might be argued that marital status is endogenous as well. We thus replicated our analysis
without dummies for the marital status. However, our results did not change much qualitatively.
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U.S. dollars. We have 1,590,646 observations in total, from whom 465,897 (=29.3%)

belong to the FTFY workforce.

We begin our empirical analysis with the (maximum likelihood) estimation of an

ordinary Heckman selection model, which assumes exogeneity of covariates. This is the

approach (implicitly) taken by Mulligan and Rubinstein (2008). Table 2.2 contains the

results, which are qualitatively similar to Mulligan and Rubinstein (2008). In particular,

the correlation coefficient has an estimated value of -.0265, which points in the same

direction as the Mulligan and Rubinstein (2008) estimate of -0.077. Therefore, if we

assumed exogenous covariates, we would make the same conclusion as in Mulligan and

Rubinstein (2008), i.e., that the female FTFY workforce was negatively selected in the

late 1970s/1980.

Now we turn to the estimation of the Heckman selection model controlling for the

potential endogeneity of education. First, we estimated the reduced form equation

for education, whose results can be found in Table 2.3. From Table 2.3 we can see

that the quarter of birth dummies have a significant impact on the education variable,

thus fulfilling one basic requirement to be valid instrumental variables. The F statistic

testing the joint hypothesis that the coefficients of the instrumental variables are all zero

takes a value of 54.44, which is larger than the often-cited value of 10 recommended

by Staiger and Stock (1997). This indicates that we are not facing a weak instruments

problem. The coefficients on the quarter of birth dummies possess the expected signs,

since the coefficient values imply that the educational attainment of people born late

in the year is higher.

From these first stage estimates, we obtained the estimated residuals (eps) and in-

serted them as additional covariates into a maximum likelihood estimation procedure

of the Heckman selection model (i.e., the LIML approach described in Section 2.3.1).

Then we used these estimates as starting values for FIML estimation, which immedi-

ately gives the correct standard errors. The FIML estimates are shown in Table 2.4.
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The first result to highlight is that the returns to education increase substantially when

endogeneity is taken into account (from 6% to 17%). Moreover, the coefficient of edu-

cation in the selection equation also increases substantially, while the other coefficients

remain relatively stable. Hence, when endogeneity of education is taken into account,

the impact of education on the (log) wage as well as on the probability of belonging to

the FTFY workforce is much larger than suggested by the ordinary Heckman selection

model.

An application of a Wald and a likelihood ratio test, as outlined in Section 2.3.3,

revealed that the hypothesis of no endogeneity (i.e., the coefficients of eps in main and

selection equation are jointly equal to zero) was clearly rejected (the p-values of both

tests were almost zero).

It is difficult to explain the huge increase in the returns to education when accounting

for the endogeneity of education. To exclude the conjecture that this finding is due to a

potentially misspecified model (in the sense that the parametric multivariate normality

assumption is not valid), we re-estimated the main equation by ordinary least squares

(OLS) and two stage least squares (2SLS), using the same instrumental variables as

before. We thus ignore the issue of sample selectivity and use well-known estimators

which do not rely on strong parametric assumptions. Results are given in Table 2.5.

We see that the OLS estimates of the main equation are close to those of the ordinary

Heckman selection model. However, the 2SLS estimates also confirm a tremendous

increase in the female returns to education. Therefore, we conjecture that the high

returns to education found in the Heckman model with endogenous education are not

due to the model specification. In his survey article, Card (1999) found that studies

using instrumental variable techniques to estimate the returns to education (mostly

for men) typically came to the result that instrumental variable estimates were larger

than the OLS estimates, sometimes substantially larger. In light of this, our results are

not implausible. Card (1999) provided some general economic explanations why the
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instrumental variable estimates may be larger than the OLS estimates. In this chapter,

however, we do not attempt to provide economic explanations for our results.

What is more important in our analysis is the value of the correlation coefficient ρ̃.

As has been shown above, in the case of endogenous covariates ρ̃ can be interpreted

analogously to the correlation coefficient ρ from the ordinary selection model, i.e., as

a measure of the “quality” of the observed sample. As we can see from Table 2.4, the

estimated value of ρ̃ is (almost) identical to the value of the correlation coefficient from

the ordinary selection model (see Table 2.2). Hence, despite the fact that the coefficients

of education in main and selection equation have so much changed when controlling for

the endogeneity of education, the parameter ρ̃ is not very different from its counterpart

ρ. Thus, we can confirm the conclusion made by Mulligan and Rubinstein (2008) that

the female FTFY workforce was negatively selected in the late 1970s/1980, even after

controlling for the endogeneity of education.

2.5 Conclusions

In this chapter, we have developed a Heckman selection model with endogenous co-

variates. We provided a rather general model which encompasses various scenarios of

endogeneity, including endogeneity only in the main equation, only in the selection

equation or in both. Although our estimator relies on distributional assumptions which

may not be satisfied in particular applications, the estimator nevertheless serves as a

starting point for a deeper (semiparametric) analysis. A virtue of our estimator is that

it is relatively simple to compute. In fact, any econometrics software which is capable

of performing maximum likelihood estimation of the Heckman sample selection model

can be used.

The most important advantage of our model is that it provides an easy-to-interpret

measure to analyze the composition of the observed sample with respect to unobserv-
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ables. As an example, we considered the composition of the female FTFY workforce,

as analyzed by Mulligan and Rubinstein (2008). We applied our model to this example

and found that the conclusion made by Mulligan and Rubinstein, i.e., that the female

FTFY workforce was negatively selected in the late 1970s, is robust to accounting for

the endogeneity of education in the Heckman selection model. It would be interesting

to see if this is also true for the second time period which was considered by Mulligan

and Rubinstein (2008), i.e., the late 1990s. We did not do this because we did not have

suitable data.

Our estimation results based on the 1980 U.S. Census data also indicate that ac-

counting for the endogeneity of education leads to a tremendous increase in the esti-

mated female returns to education. Future research may provide economic explanations

of this result. The lesson from this finding is that it is important to control for endogene-

ity of covariates in sample selection models. Although selection models are frequently

used in applied econometrics, most authors assume exogeneity of covariates. We hope

that this chapter makes the issue of endogenous covariates in selection models more

prominent and that it fosters the application of selection models which also control for

the endogeneity of covariates.
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2.6 Appendix A

In this appendix, we show how the asymptotic covariance matrix of the LIML estimator

must be corrected in order to account for the estimation of the regressors ε1, ε2 and

ε3. First, let α ≡ (vec(∆)′, vec(Λ)′, vec(Υ)′)′ and l̃(θ̃, α̂) =
∑n

i=1 li(θ̃, α̂) be the limited

information log-likelihood function. Provided there exists an interior solution, we can

write the first order condition from maximizing this likelihood function as

n∑
i=1

∂li(
ˆ̃θ, α̂)

∂θ̃
= 0. (2.48)

An asymptotic first order expansion about ˆ̃θ = θ̃ gives after rearranging and pre-

multiplication with
√
n

√
n(ˆ̃θ − θ̃) =

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1
1√
n

n∑
i=1

∂li(θ̃, α̂)

∂θ̃
+ op(1). (2.49)

Expanding the gradient about α̂ = α yields

√
n(ˆ̃θ − θ̃) =

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1
1√
n

n∑
i=1

∂li(θ̃, α)

∂θ̃

+

(
− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

)−1(
1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃∂α̂

)
√
n(α̂− α) + op(1). (2.50)

If

− 1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃2

p−→ H pos. def. (2.51)

1√
n

n∑
i=1

∂li(θ̃, α)

∂θ̃

d−→ N (0,M) (2.52)

1

n

n∑
i=1

∂2li(θ̃, α)

∂θ̃∂α̂

p−→ J (2.53)

√
n(α̂− α)

d−→ N (0, V ), (2.54)
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then

√
n(ˆ̃θ − θ̃) d−→ N (0, C), (2.55)

where C = H−1(M + JV J ′)H−1. This follows because the covariance between ∂li(θ̃,α)

∂θ̃

and (α̂− α) is zero, as shown by Smith and Blundell (1986).

Note that implementation of the LIML estimator using an econometrics software

yields an asymptotic covariance of H−1MH−1, as the software does not know that some

regressors have been estimated. Hence, one must add to this expression a correction

term of H−1(JV J ′)H−1 in order to obtain the correct asymptotic covariance.

2.7 Appendix B

In this appendix, we derive formulas for the (asymptotic) variances of the estimates

of the structural variance-covariance parameters (based on the FIML estimates). We

assume, however, that FIML estimation does not yield estimates of ρ̃, σ̃ and Σ, but

rather of atanh(ρ̃), ln(σ̃) and S such that Σ = SS ′. The reason for not directly esti-

mating these parameters is that we have to make sure that ˆ̃ρ ∈ (−1, 1), ˆ̃σ > 0 and Σ̂ be

positive definite. Our reparameterization guarantees that these conditions are fulfilled.

(i) The Asymptotic Distribution of Ω̂
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ML estimation yields estimates of9

s ≡


s11

s21

s22

 = vech(S) and vec(Ψ′) =



ψ′11

ψ′12

ψ′21

ψ′22


(2J×1)

. (2.56)

Let

q ≡ (s′, vec(Ψ′)′)′. (2.57)

Since Ω = ΣΨ′ is a function of q, the asymptotic distribution of vec(Ω̂) can be obtained

by means of the Delta method. If

√
n(q̂ − q) d−→ N(0,M), (2.58)

then

√
n(vec(Ω̂)− vec(Ω))

d−→ N (0, CMC ′) , (2.59)

where

C =
∂vec(Ω)

∂q′
(2.60)

=
∂vec(SS ′Ψ′)

∂q′
(2.61)

= (Ψ⊗ IJ)
∂vec(SS ′)

∂q′
+ (I2 ⊗ SS ′)

∂vec(Ψ′)

∂q′
(2.62)

= (Ψ⊗ IJ)

[
∂vec(SS′)

∂s′
0

]
+ (I2 ⊗ Σ)

[
0 ∂vec(Ψ′)

∂vec(Ψ′)′

]
(2.63)

9Note: The 2-by-2 case has been used here for the sake of illustration. The following analysis does
not hinge on this case.
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=

[
(Ψ⊗ IJ)∂vec(SS′)

∂s′
(I2 ⊗ Σ)

]
. (2.64)

Furthermore,

∂vec(SS ′)

∂s′
=

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)

∂vec(S ′)

∂s′

}
(2.65)

=

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)KJ

∂vec(S)

∂s′

}
(2.66)

= {(S ⊗ IJ)L′J + (IJ ⊗ S)KJL
′
J} (2.67)

= {(S ⊗ IJ) + (IJ ⊗ S)KJ}L′J (2.68)

= (IJ2 +KJ)(S ⊗ IJ)L′J , (2.69)

with

LJ =
∑
i≥j

uijvec(Eij)
′ (2.70)

KJ =
J∑
i=1

J∑
j=1

Eij ⊗ E ′ij, (2.71)

where uij denotes a unit vector of size 1
2
J(J + 1) whose [(j − 1)J + i − 1

2
j(j − 1)]-th

element is unity (1 ≤ j ≤ i ≤ J), and Eij is a (J × J) matrix with one at the (i, j)-th

position and zeros elsewhere. Note that LJ and KJ do only depend on J .

Therefore,

C =

[
(Ψ⊗ IJ)(IJ2 +KJ)(S ⊗ IJ)L′J (I2 ⊗ Σ)

]
. (2.72)

(ii) The Asymptotic Distribution of Π̂ =

 σ̂2
u ρσ̂uσ̂v

ρσ̂uσ̂v σ̂2
v
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ML estimation yields estimates of

s ≡ vech(S), vec(Ψ′) =



ψ′11

ψ′12

ψ′21

ψ′22


, [ln σ̃], [atanh(ρ̃)]. (2.73)

Let

q ≡ (s′, vec(Ψ′)′, [ln σ̃], [atanh(ρ̃)])′. (2.74)

Since

Π = Γ + ΨΣΨ′ (2.75)

=

 (exp{[ln σ̃]})2 tanh([atanh(ρ̃)]) exp{[ln σ̃]}

tanh([atanh(ρ̃)]) exp{[ln σ̃]} 1

+ ΨΣΨ′ (2.76)

is a function of q, the asymptotic distribution of vech(Π̂) can be obtained by means of

the delta method.

If

√
n(q̂ − q) d−→ N(0,M), (2.77)

then

√
n(vech(Π̂)− vech(Π))

d−→ N (0, CMC ′) , (2.78)
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where

C =
∂vech(Π)

∂q′
(2.79)

= L2J
∂vec(Π)

∂q′
(2.80)

= L2J

{
∂vec(Γ)

∂q′
+
∂vec(ΨΣΨ′)

∂q′

}
. (2.81)

Both components of the RHS have to be investigated in detail.

First,

∂vec(Γ)

∂[ln σ̃], [atanh(ρ̃)]
=



2(exp{[ln σ̃]})2 0

tanh([atanh(ρ̃)]) exp{[ln σ̃]} (1− tanh2([atanh(ρ̃)])) exp{[ln σ̃]}

tanh([atanh(ρ̃)]) exp{[ln σ̃]} (1− tanh2([atanh(ρ̃)])) exp{[ln σ̃]}

0 0


(2.82)

≡ A (2.83)

⇒ ∂vec(Γ)

∂q′
=

[
0 A

]
. (2.84)

Next,

∂vec(ΨΣΨ′)

∂(s′, vec(Ψ′)′)
= (ΨΣ⊗ I2)

∂vec(Ψ)

∂(s′, vec(Ψ′)′)
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(2.85)

= (ΨΣ⊗ I2)K2J
∂vec(Ψ′)

∂(s′, vec(Ψ′)′)
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(2.86)

= (ΨΣ⊗ I2)K2J

[
0 I2J

]
+ (I2 ⊗Ψ)

∂vec(ΣΨ′)

∂(s′, vec(Ψ′)′)
(2.87)

⇒ ∂vec(ΨΣΨ′)

∂q′
=

[
∂vec(ΨΣΨ′)
∂(s′,vec(Ψ′)′)

0

]
(2.88)
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Hence,

C =
∂vec(ΨΣΨ′)

∂q′
=

[
∂vec(ΨΣΨ′)
∂(s′,vec(Ψ′)′)

A

]
. (2.89)

(iii) The Asymptotic Distribution of ρ̂

Given an estimate of

Π =

 σ2
u ρσuσv

ρσuσv σ2
v

 , (2.90)

let

g ≡ ρσuσv ⇒ ρ =
g

σuσv
=

g√
σ2
uσ

2
v

= g
(
σ2
uσ

2
v

)− 1
2 (2.91)

and

q ≡
(
σ2
u, g, σ

2
v

)′
= vech(Π). (2.92)

Since ρ is a function of q, the asymptotic distribution of ρ̂ can be obtained by means

of the delta method.

If

√
n(q̂ − q) d−→ N (0, G) (2.93)
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then

√
n(ρ̂− ρ)

d−→ N (0, FGF ′) (2.94)

with

F =
∂ρ

∂q′
=

[
−1

2
g
(
σ2
uσ

2
v

)− 3
2 σ2

v ,
(
σ2
uσ

2
v

)− 1
2 ,−1

2
g
(
σ2
uσ

2
v

)− 3
2 σ2

u

]
. (2.95)

(iv) The Asymptotic Distribution of Σ̂ = ŜŜ ′

ML estimation yields estimates of10

s ≡


s11

s21

s22

 = vech(S). (2.96)

The asymptotic distribution is given by

√
n(ŝ− s) d−→ N(0,M). (2.97)

Since vech(Σ) = vech(SS ′) = c(s) is a function of s, the asymptotic distribution of

vech(Σ) can be obtained by using the delta method, which gives

√
n(vech(Σ̂)− vech(Σ))

d−→ N(0, C(s)MC(s)′), (2.98)

10Note: The 2-by-2 case has been used here for the sake of illustration. The following analysis does
not hinge on this case.
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where

C(s) =
∂c(s)

∂s′
(2.99)

=
∂vech(SS ′)

∂s′
(2.100)

= LJ
∂vec(SS ′)

∂s′
(2.101)

= LJ

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)

∂vec(S ′)

∂s′

}
(2.102)

= LJ

{
(S ⊗ IJ)

∂vec(S)

∂s′
+ (IJ ⊗ S)KJ

∂vec(S)

∂s′

}
(2.103)

= LJ {(S ⊗ IJ)L′J + (IJ ⊗ S)KJL
′
J} (2.104)

= LJ {(S ⊗ IJ) + (IJ ⊗ S)KJ}L′J (2.105)

= LJ(IJ2 +KJ)(S ⊗ IJ)L′J (2.106)

and

LJ =
∑
i≥j

uijvec(Eij)
′ (2.107)

KJ =
J∑
i=1

J∑
j=1

Eij ⊗ E ′ij, (2.108)

where uij denotes a unit vector of size 1
2
J(J + 1) whose [(j − 1)J + i − 1

2
j(j − 1)]-th

element is unity (1 ≤ j ≤ i ≤ J), and Eij is a (J × J) matrix with one at the (i, j)-th

position and zeros elsewhere. Note that LJ and KJ do only depend on J .

2.8 Appendix C

In this appendix, we use Monte Carlo simulations in order to study the finite sample

properties of our FIML estimator and in order to gauge the bias which occurs if one

does not account for endogeneity. The results of these simulations are presented in
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Table 2.6.

The first column of Table 2.6 contains the specification. We distinguish between

four benchmark cases. In the first case, endogeneity is only present in the primary

equation. In particular, it is assumed that

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7W1i +vi

X2i = .5 +1.5X1i −.2W1i +.7Z1i +ε1i

and

Cov[(ui, vi, ε1i)
′] =


1

.9 1

.5 .4 2

 .

Note that we have assumed a relatively high correlation between the primary and the

selection equation. Hence, we focus our attention on situations where sample selection

bias is indeed a problem.

In the second case, endogeneity is only present in the selection equation:

y∗i = .2 +.4X1i +ui

z∗i = 1 +.7X1i +.3W2i +vi

W2i = .5 +1.5X1i +.7Z2i +ε2i

and

Cov[(ui, vi, ε2i)
′] =


1

.9 1

.5 .4 2

 .
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In the third case, there is one common variable in both equations which is endoge-

nous:

y∗i = .2 +.4X1i +.9Ci +ui

z∗i = 1 +.7W1i +.3Ci +vi

Ci = .5 +1.5X1i −.2W1i +.7Z3i +ε3i

and

Cov[(ui, vi, ε3i)
′] =


1

.9 1

.5 .4 2

 .

Finally, in the fourth case it is assumed that both equations include an endogenous

variable which is exclusive for each equation:

y∗i = .2 +.4X1i +.9X2i +ui

z∗i = 1 +.7X1i +.3W2i +vi

X2i = .5 +1.5X1i +.7Z1i +ε1i

W2i = −2 +1.8X1i +.6Z2i +ε2i

and

Cov[(ui, vi, ε1i, ε2i)
′] =



1

.9 1

.5 .4 2

.4 .5 1 2


.

Throughout, X1i, Z1i, Z2i and Z3i, i = 1, . . . , n, are scalars which have been sim-

ulated from a standard normal distribution. For each of the four cases, these random

numbers have been drawn once and kept fixed during simulation. In total, each simula-
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tion encompasses 1000 repetitions in which parameter estimates have been computed.

Table 2.6 presents the mean of these estimates over the repetitions, along with the

corresponding standard deviations.

In order to gauge the finite-sample performance of the estimator outlined in Sec-

tion 2.3.1, Table 2.6 contains simulation results for different sample sizes. For each

sample size, Table 2.6 displays the results for the FIML estimator presented in Section

2.3.1 (“IV”) and contrasts these results with those obtained when using the ordinary

estimator for the sample selection model which does not account for endogeneity (“non-

IV”). To save space, only the estimates for the parameters of the primary equation and

selection equation are presented.

In specification (i) where there is only one endogenous variable included in the

primary equation, the IV estimator performs well with respect to the estimates of the

primary equation, even for n = 100. However, the estimates for the selection equation

are upward biased in finite samples; this property is common in all specifications (i)-

(iv). In specification (ii) where there is only one endogenous variable in the selection

equation, the estimator for the primary equation does well for n ≥ 200. This is also true

for specification (iii) with a common endogenous variable in both equations. When each

equation contains an exclusive endogenous variable (specification (iv)), good results are

obtained for n ≥ 500.

Note that the estimates for the selection equation are subjected to a normalization

rule. This is the reason why the performance of the IV estimator seems to be not

“perfect”. However, as it is well known, in binary choice models only coefficient ratios

are identified. Put differently, one should not consider the raw coefficients given in

Table 2.6 but rather coefficient ratios. For example, in specification (iii) for n = 1000

we can calculate that the mean of the second coefficient divided by the first gives 0.7018,

whereas the mean of the third coefficient divided by the first gives 0.2991. Thus, we

see that also the parameters of the selection equation are well estimated by the FIML
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procedure.

On the contrary, in most cases the non-IV estimator yields severely biased estimates

of the parameters of the primary equation among all specifications. For instance, for

a sample size of n = 1000 the bias ranges from 13 to 248.1 percent. However, the

estimates of the selection equation are sometimes relatively close to their true values

(specifications (i) and (iii)). This notwithstanding, note especially that the estimates

of the parameters of the main equation are severely biased even if endogeneity is only

present in the selection equation (specification (ii)). This result, which is due to the

nonlinearity of the underlying model, has not gained much attention in the literature

yet.

Overall, the results show that the FIML-IV estimator from Section 2.3.1 outperforms

the ordinary estimator for the sample selection model, especially with respect to the

parameters in the primary equation and in case of large sample sizes. Moreover, the

results indicate that the bias in the parameter estimates may be substantial if one does

not account for endogeneity.

2.9 Appendix D

In this appendix, we present an application of our FIML estimator to the labor supply

data set introduced by Thomas Mroz (1987). Our goal is to compare our results with

those of Wooldridge (2010), who also applied his estimator to this data set.

The Mroz data set is quite popular and is often used to illustrate the performance

of estimators which account for sample selectivity. The data set consists of 753 married

women of whom 428 are working. We not only have information about relevant labor

market characteristics of women (such as the wage, educational attainment and experi-

ence) but also on private characteristics such as the number of children, the “non-wife

income” and the educational attainment of the parents and the husband. The former
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variables help identify the selection equation, while the latter variables may serve as in-

strumental variables for education. These variables are assumed to satisfy an exclusion

restriction in the sense that they directly affect only the probability of labor market

participation and educational attainment, respectively, but not the wage rate.

For this data set, we estimated a wage equation for married women. However,

as a wage equation can only be fitted to the subsample of women who are actually

working, a simple regression with the women’s wage as the dependent variable may yield

inconsistent parameter estimates due to the possibility of sample selection. Hence, the

appropriate model to estimate the wage equation should be a sample selection model. A

variable which is commonly included as an explanatory variable is education. However,

there might be some background variables like ability which cannot be observed and,

thus, are captured within the error terms. These variables are likely to affect not

only wages and labor force participation, but education as well. Therefore, a priori

education should not be regarded as exogenous. The consequences of falsely treating an

endogenous variable like education as exogenous have been illustrated in the preceding

section; hence, estimates from the ordinary sample selection model may be severely

biased.

We estimated the following model: The main equation contains the natural loga-

rithm of the hourly wage as its dependent variable; explanatory variables are experience,

experience squared and education. The selection equation includes experience, experi-

ence squared, non-wife income, age, number of children aged until 6 years of age in the

household, number of children aged 6 years or older in the household and education.

Since education is treated as endogenous, instrumental variables are needed for esti-

mation. Following Wooldridge (2010), we chose mother’s education, father’s education

and husband’s education as instrumental variables for education.11 Means and standard

deviations of these variables are presented in Table 2.7.

11For the appropriateness of these instrumental variables, cf. the discussion in Card (1999), pp.
1822-26.



2.9 Appendix D 43

Estimation results are given in Table 2.8. In Table 2.8, estimation results for the

ordinary sample selection model (“non-IV”) and the sample selection model with en-

dogeneity (“IV”) are provided. The first part of this table contains the parameter

estimates for the variables of the main equation, as well as estimates of the “reduced

form” selection parameter ρ̃ and the endogeneity parameter ψ11. This last parameter

indicates whether endogeneity of education is relevant in the primary equation. The

second part presents the parameter estimates for the selection equation. Addition-

ally included is the endogeneity parameter ψ21, which indicates whether endogeneity

of education is relevant in the selection equation. Finally, the third part includes the

parameter estimates of the exogenous variables and instrumental variables with respect

to education. In analogy with the instrumental variables terminology, this part has

been labeled “first stage”.

The results show significance of education in the primary and the selection equation.

Moreover, the instrumental variables for education employed in the “first stage” are

highly significant. The remaining variables possess the expected signs. However, the

estimates of ρ̃, ψ11 and ψ21 are not significantly different from zero, indicating that

there is neither a selection bias nor an endogeneity bias present.12 These results are in

line with those reported by Wooldridge (2010) who draws similar conclusions. However,

given that there seems to be neither a sample selection bias nor an endogeneity bias

present, this result is not surprising.

12In addition, joint significance of ψ11 and ψ21 is rejected as well (p-value of 0.1907).
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2.10 Tables

Table 2.1: Summary statistics

Variable Mean Standard. Dev. Min Max

lwage 2.4436 0.3828 1.1978 3.2766
educ 12.4301 2.5496 0 17
age 37.8317 8.8395 25 54
northeast 0.2276 0.4193 0 1
midwest 0.2682 0.4430 0 1
west 0.1911 0.3932 0 1
south 0.3131 0.4637 0 1
married 0.7759 0.4170 0 1
widowed 0.0236 0.1516 0 1
divorced 0.0950 0.2932 0 1
separated 0.0238 0.1525 0 1
never married 0.0818 0.2740 0 1
nchlt5 0.2580 0.5597 0 6
qtr1 0.2487 0.4323 0 1
qtr2 0.2397 0.4269 0 1
qtr3 0.2624 0.4400 0 1
qtr4 0.2492 0.4325 0 1

No. obs. 1,590,646
No. obs. FTFY 465,897

Source: 1980 U.S. Census data; own calculations.
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Table 2.2: Estimates from Heckman model without endogenous covariates

Variable Coef. Std.err.

Main equation

educ 0.0594 0.0003
age 0.0227 0.0006
age2 -0.0002 0.0000
northeast -0.0161 0.0017
midwest -0.0358 0.0016
south -0.1014 0.0016
widowed -0.0082 0.0034
divorced 0.0278 0.0023
separated -0.0191 0.0033
never married 0.0577 0.0023
constant 1.2373 0.0127

Selection equation

educ 0.0336 0.0004
age -0.0658 0.0013
age2 0.0007 0.0000
northeast 0.0215 0.0034
midwest 0.0653 0.0033
south 0.1520 0.0032
widowed 0.2420 0.0070
divorced 0.6962 0.0035
separated 0.3040 0.0069
never married 0.5783 0.0040
nchlt5 -0.6033 0.0028
constant 0.3563 0.0258

correlation parameter (ρ) -0.0265 0.0100

Source: 1980 U.S. Census data; own calculations.
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Table 2.3: Reduced form estimates for education

Variable Coef. Std.err.

qtr2 -0.0022 0.0056
qtr3 0.0410 0.0055
qtr4 0.0555 0.0056
age -0.0006 0.0023
age2 -0.0006 0.0000
northeast -0.1118 0.0061
midwest -0.1630 0.0059
south -0.4336 0.0057
widowed -0.6586 0.0132
divorced -0.0509 0.0068
separated -0.8154 0.0130
never married 0.7369 0.0074
constant 13.5899 0.0440

F statistic 54.44

Source: 1980 U.S. Census data; own calculations.
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Table 2.4: Estimates from Heckman model with endogenous covariates

Variable Coef. Std.err.

Main equation

educ 0.1751 0.0240
age 0.0228 0.0007
age2 -0.0002 0.0000
northeast -0.0031 0.0032
midwest -0.0169 0.0043
south -0.0512 0.0106
widowed 0.0680 0.0163
divorced 0.0337 0.0028
separated 0.0753 0.0200
never married -0.0275 0.0178
constant -0.3388 0.3275
eps -0.1158 0.0240

Selection equation

educ 0.3753 0.0512
age -0.0655 0.0015
age2 0.0009 0.0000
northeast 0.0598 0.0070
midwest 0.1210 0.0092
south 0.3001 0.0225
widowed 0.4670 0.0347
divorced 0.7135 0.0049
separated 0.5827 0.0426
never married 0.3266 0.0380
nchlt5 -0.6032 0.0028
constant -4.2969 0.6982
eps -0.3418 0.0512

Reduced form equation for educ
qtr2 0.0038 0.0047
qtr3 0.0448 0.0049
qtr4 0.0576 0.0051
age -0.0006 0.0023
age2 -0.0006 0.0000
northeast -0.1118 0.0061
midwest -0.1630 0.0059
south -0.4336 0.0057
widowed -0.6586 0.0132
divorced -0.0509 0.0068
separated -0.8154 0.0130
never married 0.7370 0.0074
constant 13.5866 0.0440

correlation parameter (ρ̃) -0.0265 0.0100

Source: 1980 U.S. Census data; own calculations.
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Table 2.5: OLS and 2SLS estimates of the main equation

OLS 2SLS
Variable Coef. Std.err. Coef. Std.err.

educ 0.0596 0.0002 0.2292 0.0508
age 0.0224 0.0006 0.0428 0.0062
age2 -0.0002 0.0000 -0.0004 0.0000
northeast -0.0158 0.0016 0.0176 0.0103
midwest -0.0353 0.0016 0.0149 0.0152
south -0.1004 0.0015 -0.0370 0.0191
widowed -0.0064 0.0033 0.0373 0.0140
divorced 0.0326 0.0014 0.0284 0.0024
separated -0.0168 0.0032 0.0396 0.0175
never married 0.0622 0.0016 -0.0813 0.0431
constant 1.2271 0.0121 -1.5016 0.8180

Source: 1980 U.S. Census data; own calculations.
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Table 2.6: Monte Carlo results

Spec. Param. n = 100 n = 200 n = 500 n = 1000
IV non-IV IV non-IV IV non-IV IV non-IV

β1 = .2 .2397
(.1500)

.1409
(.1498)

.2031
(.0968)

.0934
(.0887)

.2028
(.0556)

.1168
(.0529)

.2014
(.0416)

.0988
(.0381)

β2 = .4 .4019
(.2439)

−.0191
(.1535)

.3947
(.1532)

.0396
(.0983)

.4023
(.0945)

.0338
(.0664)

.3988
(.0621)

.0379
(.0413)

(i) β3 = .9 .8991
(.1396)

1.1570
(.0781)

.9020
(.0933)

1.1412
(.0525)

.8978
(.0567)

1.1415
(.0347)

.9007
(.0381)

1.1404
(.0220)

γ1 = 1 1.1316
(.2492)

1.0201
(.1993)

1.1043
(.1467)

1.0101
(.1270)

1.1016
(.0867)

1.0086
(.0758)

1.0995
(.0625)

1.0087
(.0553)

γ2 = .7 .8567
(.2445)

.7483
(.2169)

.7895
(.1337)

.7067
(.1264)

.7724
(.0815)

.6744
(.0795)

.7688
(.0574)

.6707
(.0564)

β1 = .2 .3068
(.2070)

.6661
(.2250)

.2234
(.1203)

.6784
(.1531)

.2000
(.0597)

.6719
(.1178)

.2001
(.0395)

.6962
(.0642)

β2 = .4 .3082
(.1726)

.0520
(.1892)

.3818
(.1170)

.0181
(.1426)

.4009
(.0561)

.0340
(.1012)

.4000
(.0411)

.0128
(.0584)

(ii) γ1 = 1 1.1567
(.2989)

.9346
(.2554)

1.1254
(.1853)

.8766
(.1623)

1.1021
(.1085)

.8544
(.1093)

1.0967
(.0743)

.8541
(.0690)

γ2 = .7 .8226
(.5229)

.2775
(.3628)

.7896
(.3142)

.2177
(.2517)

.7743
(.1624)

.2391
(.1646)

.7708
(.1143)

.2292
(.0994)

γ3 = .3 .3685
(.3325)

.6418
(.2152)

.3451
(.1895)

.6291
(.1403)

.3316
(.0897)

.5854
(.0826)

.3250
(.0672)

.5851
(.0513)

β1 = .2 .2681
(.1695)

.1575
(.1742)

.2113
(.0987)

.0981
(.1015)

.2010
(.0588)

.0825
(.0570)

.2005
(.0431)

.0863
(.0392)

β2 = .4 .3874
(.2270)

.0147
(.1553)

.4091
(.1554)

.0145
(.1031)

.4007
(.0963)

.0327
(.0631)

.4012
(.0635)

.0348
(.0440)

(iii) β3 = .9 .8858
(.1339)

1.1484
(.0829)

.8893
(.0957)

1.1739
(.0588)

.8992
(.0592)

1.1724
(.0346)

.8977
(.0403)

1.1664
(.0238)

γ1 = 1 1.1446
(.2707)

1.0109
(.2044)

1.1222
(.1637)

.9984
(.1346)

1.1044
(.0969)

.9923
(.0861)

1.0987
(.0630)

.9819
(.0561)

γ2 = .7 .8557
(.2600)

.7658
(.2334)

.8053
(.1556)

.7422
(.1520)

.7760
(.0877)

.7292
(.0872)

.7711
(.0582)

.7180
(.0576)

γ3 = .3 .3569
(.1622)

.4696
(.1385)

.3380
(.0834)

.4160
(.0756)

.3324
(.0501)

.4256
(.0455)

.3286
(.0349)

.4216
(.0313)

β1 = .2 .4320
(.3394)

.3423
(.2752)

.2554
(.2044)

.2899
(.1967)

.1995
(.0835)

.2248
(.0876)

.1988
(.0601)

.2260
(.0649)

β2 = .4 .2738
(.3803)

.0267
(.2147)

.3687
(.2173)

.0735
(.1532)

.4053
(.1219)

.1103
(.0819)

.3994
(.0818)

.1036
(.0603)

(iv) β3 = .9 .8887
(.1856)

1.0489
(.0747)

.8965
(.1063)

1.0462
(.0480

.8983
(.0651)

1.0516
(.0304)

.9010
(.0429)

1.0514
(.0209)

γ1 = 1 1.2063
(.5953)

1.5246
(.39175)

1.1415
(.4180)

1.5172
(.2665)

1.0920
(.2316)

1.4562
(.1525)

1.0882
(.1597)

1.4517
(.1111)

γ2 = .7 .8397
(.5378)

.4488
(.2963)

.7793
(.3654)

.4218
(.1890)

.7665
(.2137)

.4216
(.1099)

.7599
(.1391)

.4254
(.0805)

γ3 = .3 .3724
(.2849)

.5504
(.1572)

.3450
(.1935)

.5326
(.1060)

.3281
(.1062)

.5056
(.0604)

.3278
(.0719)

.5041
(.0426)

Source: Own calculations.
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Table 2.7: Descriptive statistics for the Mroz data

Variable Mean Std.dev.
log wage 4.1777 3.3103
exper 10.6308 8.0691
educ 12.2869 2.2802
nwifeinc 20.1290 11.6348
age 42.5379 8.0726
kidslt6 0.2377 0.5240
kidsge6 1.3533 1.3199
motheduc 9.2510 3.3675
fatheduc 8.8088 3.5723
huseduc 12.4914 3.0208
Sample size 753
No. of obs. with wage>0 428

Source: Mroz (1987) data; own calculations.
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Table 2.8: Estimation of a wage equation for married women based on the Mroz data

non-IV IV
Main Equation

const −0.5527∗∗ (0.2604) −0.2786 (0.3139)
exper 0.0428∗∗∗ (0.0149) 0.0449∗∗∗ (0.0151)
expersq −0.00008∗∗ (0.0004) −0.0009∗∗ (0.0004)
educ 0.1084∗∗∗ (0.0149) 0.0849∗∗∗ (0.0218)
ρ̃ 0.0141 (0.1491) 0.0248 (0.1492)
ψ11 0.0413 (0.0290)

Selection Equation
const 0.2664 (0.5090) 0.6084 (0.6522)
exper 0.1233∗∗∗ (0.0187) 0.1261∗∗∗ (0.0191)
expersq −0.0019∗∗∗ (0.0006) −0.0019∗∗∗ (0.0006)
nwifeinc −0.0121∗∗ (0.0049) −0.0105∗ (0.0053)
age −0.0528∗∗∗ (0.0085) −0.0543∗∗∗ (0.0087)
kidslt6 −0.8674∗∗∗ (0.1187) −0.8620∗∗∗ (0.1190)
kidsge6 0.0359 (0.0435) 0.0316 (0.0438)
educ 0.1313∗∗∗ (0.0254) 0.1046∗∗ (0.0406)
ψ21 0.0425 (0.0502)

“First Stage”
const 5.3947∗∗∗ (0.5826)
exper 0.0577∗∗∗ (0.0219)
expersq −0.0008 (0.0007)
nwifeinc 0.0147∗∗ (0.0058)
age −0.0051 (0.0098)
kidslt6 0.1269 (0.1298)
kidsge6 −0.0700 (0.0511)
motheduc 0.1307∗∗∗ (0.0224)
fatheduc 0.0951∗∗∗ (0.0212)
huseduc 0.3489∗∗∗ (0.0233)

*, ** and *** indicate significance at 1%, 5% and 10%, respectively. Standard errors in parentheses.

Source: Mroz (1987) data; own calculations.
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Chapter 3

Sieve Maximum Likelihood

Estimation of a Copula-Based

Sample Selection Model

This chapter is a major revision of the discussion paper No. 503, Department of Eco-

nomics and Business Administration, Leibniz University Hannover (Schwiebert, 2012b).

I thank Blaise Melly, Melanie Schienle, Jeffrey M. Wooldridge, Michael Lechner, par-

ticipants at the 16th IZA summer school and seminar participants from SEW St. Gallen

for providing valuable comments.

3.1 Introduction

The sample selection model has become the standard econometric tool when dealing

with sample selectivity. The model typically consists of a main equation (of interest)

and a selection equation, where the latter determines the probability of being in the

observed sample. If sample selectivity is present, ordinary least squares estimation of

the main equation is likely to produce inconsistent estimates because the observed sam-
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ple is a nonrandom sample from the overall population. Heckman (1979) showed that

the sample selection problem can be interpreted as an omitted variable bias problem.

He demonstrated that ordinary least squares estimation of the main equation includ-

ing a selectivity correction term (known as the inverse Mills ratio) leads to consistent

estimates of the parameters of interest. Besides estimating the model by ordinary (or

weighted) least squares techniques, it is also possible to estimate the model by maximum

likelihood.

Gallant and Nychka (1987) have proposed a semi-nonparametric maximum likeli-

hood estimator for estimating the sample selection model. The virtue of their approach

is that it is not necessary to assume a parametric (joint) distribution for the error

terms of the underlying econometric model. Consequently, consistent estimates of the

parameters of interest can be obtained under weak conditions. This is an important

advantage over the model proposed by Heckman (1979) who assumed a bivariate normal

distribution for the error terms of main and selection equation.

In this chapter, we propose a sieve maximum likelihood estimator for the sample

selection model. We make the crucial assumption that the joint distribution of the

error terms of main and selection equation can be characterized by a specific copula,

but we estimate the marginal distributions semiparametrically by the method of sieves

along with the structural parameters of interest. Our estimation concept is thus sieve

maximum likelihood estimation (Chen, 2007).

Our modeling and estimation approach has several advantages over the Gallant and

Nychka (1987) procedure. First, our approach allows to incorporate prior informa-

tion on the distribution of error terms into the estimation process. For example, the

joint distribution of error terms may be characterized by fat tails, hence a Student t

copula may be an appropriate modeling choice (Heckman, 2003). Furthermore, the

selection equation may reasonably be estimated by probit or logit, hence the marginal

distribution of the selection equation’s error term is normal or logistic, respectively.
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Since a copula couples two marginal distributions into a joint distribution, such prior

information on the joint or marginal distributions can be easily incorporated into our

econometric model. This is not possible in the Gallant and Nychka (1987) approach,

who estimate the entire joint density function of error terms semi-nonparametrically by

a series expansion.

Second, our method is less computationally demanding than the Gallant and Nychka

(1987) procedure. In Gallant and Nychka (1987) a two-dimensional density function

is approximated semi-nonparametrically by a series expansion (where the number of

series term grows with the sample size). The coefficients of the series expansion are

then estimated along with the parameters of interest. However, the approximation of a

two-dimensional density function requires a considerable number of series terms, which

leads to a computationally demanding estimation process. Our approach, on the other

hand, requires only the approximation of the one-dimensional marginal distributions,

which is far easier than approximating a (bivariate) joint distribution.1

Third, Gallant and Nychka (1987) have proved the consistency of their estimator, but

no (asymptotic) distribution results have been provided. Yet, such distribution results

are necessary for hypotheses testing and obtaining confidence intervals. Of course,

one could obtain estimates under the assumption that the number of series terms is

fixed rather than increasing with the sample size; in that case, distribution results

would follow from standard (parametric) maximum likelihood theory. However, this

procedure is in general not justified due to the semiparametric nature of the estimation

problem. Concerning our proposed method, conditions under which a sieve maximum

likelihood estimator is consistent and asymptotically normally distributed have been

provided by Chen et al. (2006) and Chen (2007). As will be shown below, under

suitable assumption these conditions are fulfilled in case of our estimator, hence we are

able to provide distribution results.

1The same argument has been used by Chen et al. (2006).



56 Copula-Based Sample Selection Model

Fourth, our approach offers an easy way to test for the validity of parametric assump-

tions. Incorporating correct parametric prior information into an econometric model

is desirable since this typically leads to efficiency gains. However, prior information

may not be correct, hence it is important to test for the validity of such assumptions.

Our copula framework provides an easy way to do so because one can separately test

for the validity of the assumed copula and for the validity of the assumed marginal

distributions. Details are given in Section 3.4.

Besides Gallant and Nychka (1987), several other authors have developed semi-

non-parametric estimators for the sample selection model which do not rely on strong

parametric assumptions. Examples include Powell (1987), Ahn and Powell (1993), Das

et al. (2003) and Newey (2009). These authors propose least-squares based estimation

procedures to consistently estimate the structural parameters of the main equation.

These estimation procedures are typically two-step. In a first step, the selection equation

is estimated by some semi-nonparametric technique. As in case of the model with

normally distributed error terms, one augments the main equation with a selectivity

correction term (a generalization of the inverse Mills ratio term). Then one either gets

rid of the selectivity correction term by differencing out (Powell, 1987; Ahn and Powell,

1993), or approximates the term by, e.g., a series expansion (Das et al., 2003; Newey,

2009). In a second step, estimation of the main equation is carried out by some variant

of ordinary or weighted least squares.

Our and the Gallant and Nychka (1987) approach differ from these least-squares

based techniques in three important ways. First, our and the Gallant and Nychka

(1987) approach are one-step. This facilitates the computation of standard errors and

confidence intervals (in case of our estimator) because one does not have to adjust

for the uncertainty associated with the first-step estimation. Second, no exclusion

restriction is needed, i.e., the selection equation need not contain a variable (with a

nonzero coefficient) which may not appear in the main equation. Such an exclusion is
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generally needed in least-squares based approaches, yet it is sometimes difficult to justify

economically why a variable should appear in the selection equation but not in the main

equation. Third, our and the Gallant and Nychka (1987) approach are not based on

least-squares but maximum likelihood estimation. This requires a specification of the

joint distribution of error terms of main and selection equation. Considered conversely,

a virtue of our and the Gallant and Nychka (1987) approach is that they also provide

information on the joint distribution of the error terms.

Information on the joint distribution of error terms is useful for a couple of reasons.

First, sample selectivity is a problem only if the error terms are dependent. Distri-

butional information helps to identify these dependencies, and thus reveals how the

sample selection mechanism works. Second, from the joint distribution one can derive

the marginal distributions of error terms. For instance, if the main equation is a wage

equation, an object of interest might be if wage densities are fat-tailed (Heckman and

Sedlacek, 1990). Third, the joint distribution is interesting because treatment parame-

ters depend on the tail behavior of error terms (Heckman et al., 2003).

A drawback of our proposed approach might be that it is necessary to specify a

parametric copula for the joint distribution of error terms in advance. However, if

one has prior information (e.g., from economic theory or empirical regularities) on the

features of the joint distribution (such as fat tails), then the copula framework provides a

very flexible environment to include such prior information into the econometric model.

Chen et al. (2006) also estimate a copula model with unknown marginal distributions

and note that “this class of semiparametric multivariate distributions is able to jointly

model any type of dependence with any types of marginal behaviors and has proven

useful in diverse fields” (Chen et al., 2006, p. 1228). Hence, our approach exhibits the

same flexibility as the semiparametric approach of Gallant and Nychka (1987), but may

be preferred due to the reasons given above.

The remainder of the chapter is organized as follows. In Section 3.2 we provide the
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model and our proposed estimation strategy. In Section 3.3 we derive the asymptotic

properties of our proposed estimator. Section 3.4 contains remarks and extensions

concerning different aspects of estimation, testing, and model specification. Finally,

Section 3.5 concludes the chapter.

3.2 Model Setup and Estimation

We consider an ordinary sample selection model given by

y∗i = x′iβ + εi (3.1)

d∗i = w′iγ + ui (3.2)

di = 1(d∗i > 0) (3.3)

yi =


y∗i if di = 1

“missing” otherwise

, (3.4)

where i = 1, . . . , n indexes individuals. The first equation is the main equation, where

y∗ is a latent outcome variable, x is a vector of (exogenous) explanatory variables with

corresponding parameter vector β and ε denotes the error term. The second equation

is the selection equation, where d∗ is the latent dependent variable, w is a vector of

(exogenous) explanatory variables with corresponding parameter vector γ and u denotes

the error term. The last two equations comprise the selection mechanism. The latent

variable y∗ can only be observed if d∗ > 0, or, equivalently, if the selection indicator d

is equal to one.

We make the following assumptions:

Assumption 1: {(xi, wi, εi, ui)}ni=1 are i.i.d. from some underlying distribution.

Assumption 2: The joint distribution function of ε and u is given by Hε,u(a, b) =

C(Fε(a), Fu(b); τ), where C : [0, 1]2 → [0, 1] is a known copula with dependence param-
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eter τ , and Fε and Fu denote the marginal distribution functions of ε and u. Further-

more, the marginal density functions fε and fu are absolutely continuous with respect

to Lebesgue measure.

Assumption 3: (x,w) and (ε, u) are independent.

Assumption 4: (i) x and w do not contain a constant term. (ii) The first element of

γ is equal to one in absolute value.

Assumptions 1 and 2 imply that our model can be estimated by maximum likeli-

hood. Assumptions 3 and 4 are basic conditions for identification. Assumption 4 (i)

is needed because constant terms are not identified, as they cannot be separated from

the constants in the unknown functions fε and fu. Assumption 4 (ii) imposes a scale

normalization on the parameters of the selection equation, since these are only identified

up to scale.

Note that we do not require that an exclusion restriction holds. That is, there need

not be a variable only appearing in the selection equation (with a nonzero coefficient)

but not in the main equation. Gallant and Nychka (1987, p. 383) derived an identi-

fication condition on their model which explicitly does not require the existence of an

exclusion restriction. Since the Gallant and Nychka (1987) and our model are to some

extent similar, the same applies to our model. For a more elaborate discussion of the

identification conditions, we refer the reader to the Gallant and Nychka (1987) paper.

In practice, our approach may work better than Gallant and Nychka (1987) since we

put an initial parametric restriction on the joint distribution of error terms (i.e., the

copula). Since without an exclusion restriction parameters will be identified by func-

tional forms, putting some restriction on the joint distribution of error terms may lead

to better results in practice (i.e., the likelihood function may not have too many local

maxima).
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The joint probability density function (p.d.f.) of ε and u is given by

hε,u(a, b) = c(Fε(a), Fu(b); τ)fε(a)fu(b), (3.5)

where c(·, ·; τ) denotes the p.d.f. associated with C(·, ·; τ). The log-likelihood function

then follows as

lnL(β, γ, τ, fε, fu;Z)

=
n∑
i=1

{
(1− di) ln

∫ ∞
−∞

∫ −w′iγ
−∞

hε,u(ε, u)dudε+ di ln

∫ ∞
−w′iγ

hε,u(yi − x′iβ, u)du

}

=
n∑
i=1

{
(1− di) lnFu(−w′iγ) + di ln

(
fε(yi − x′iβ)− ∂Hε,u(ε,−w′iγ)

∂ε

∣∣∣∣
ε=yi−x′iβ

)}
,

(3.6)

where Z = {zi}ni=1 and zi = (yi, xi, di, wi) denotes the observed data. Note that the

log-likelihood function is not only maximized over the structural parameters β, γ and

τ but over the unknown functions fε and fu as well. Furthermore, note that it suffices

that the log-likelihood function depends on fε and fu and not additionally on Fε and

Fu, because we have that Fε(x) =
∫ x
−∞ fε(v)dv and Fu(x) =

∫ x
−∞ fu(v)dv. Our interest

focuses on estimation of the structural parameters θ = (β′, γ′, τ)′, while the unknown

functions fε and fu are considered as nuisance parameters. Remember that the first

element of γ is equal to one in absolute value due to identification, hence it need not

be estimated. This restriction will be suppressed in the following in order to ease the

notation.

Since fε and fu are of infinite dimension, estimation requires that we approximate

these functions. We follow Chen et al. (2006) and Chen (2007) and approximate these

densities by the method of sieves. That means, we approximate an unknown function

(the densities) by a (e.g., linear) combination of known basis functions (such as poly-

nomials or splines) and unknown sieve coefficients. The unknown sieve coefficients are
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then estimated along with the structural parameters β, γ and τ . Since we approximate

density functions, we have to restrict the approximating functions to satisfy two funda-

mental properties of densities, i.e., that they are not negative and that they integrate

to one. The former property can be satisfied if we approximate not the density function

by the method of sieves but the square root of the density function instead. This is the

approach taken in Chen et al. (2006), who propose the following sieve space:

Fn,η =

fn,η(x) =

[
Kn,η∑
k=0

ak,ηAk,η(x)

]2

,

∫
fn,η,(x)dx = 1

 , Kn,η →∞,
Kn,η

n
→ 0,

(3.7)

where fn,η is an approximation to fη, η ∈ {ε, u}, based on Kn,η sieve coefficients,

{Ak,η(·) : k ≥ 0} denote known basis functions and {ak,η(·) : k ≥ 0} are unknown

sieve coefficients which must be estimated. Note that Kn,η depends on the sample size

n but grows at a slower rate. For the basis functions Chen et al. (2006) suggest to use

Hermite polynomials or splines; for details, see Chen et al. (2006). To ensure that the

approximation of the density function integrates to one in applications, one can set

fn,η(x) =

[∑Kn,η
k=0 ak,ηAk,η(x)

]2

∫ [∑Kn,η
k=0 ak,ηAk,η(v)

]2

dv
. (3.8)

Let

hn,ε,u(a, b) = c(Fn,ε(a), Fn,u(b); τ)fn,ε(a)fn,u(b), (3.9)

where Fn,η(x) =
∫ x
−∞ fn,η(v)dv, η ∈ {ε, u}. Then, our proposed sieve maximum likeli-

hood estimator θ̂n of θ is obtained by maximizing

lnL(β, γ, τ, a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u;Z)
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=
n∑
i=1

{
(1− di) ln

∫ ∞
−∞

∫ −w′iγ
−∞

hn,ε,u(ε, u)dudε+ di ln

∫ ∞
−w′iγ

hn,ε,u(yi − x′iβ, u)du

}

=
n∑
i=1

{
(1− di) lnFn,u(−w′iγ) + di ln

(
fn,ε(yi − x′iβ)− ∂Hn,ε,u(ε,−w′iγ)

∂ε

∣∣∣∣
ε=yi−x′iβ

)}
(3.10)

over θ and the unknown sieve coefficients (a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u).

As an example, we consider the well-known Gaussian copula. In that case, the joint

cumulative distribution function of ε and u is given by

Hε,u(a, b) = Φ2(Φ−1(Fε(a)),Φ−1(Fu(b)); τ), (3.11)

where Φ2(·, ·, τ) is the c.d.f. of the bivariate standard normal distribution with correla-

tion coefficient τ , i.e.,

Φ2(a, b) =

∫ a

−∞

∫ b

−∞

1

2π
√

1− τ 2
exp

(
− 1

2(1− τ 2)
(x2 + y2 − 2τxy)

)
dydx, (3.12)

and Φ−1(·) is the inverse of the c.d.f. of the univariate standard normal distribution.

This implies that the joint p.d.f. of ε and u is given by

hε,u(a, b) =

∣∣∣∣∣∣∣
1 τ

τ 1


∣∣∣∣∣∣∣
−1/2

exp

−1

2

Φ−1(Fε(a))

Φ−1(Fu(b)


′
1 τ

τ 1


−1

− I2


Φ−1(Fε(a))

Φ−1(Fu(b)




× fε(a)fu(b), (3.13)

where I2 is the 2-by-2 identity matrix. Lee (1983) was the first who applied the Gaussian

copula to sample selection models. He showed that the log-likelihood function is given

by

lnL =
n∑
i=1

{(1− di) ln(1− Fu(w′iγ))
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+di ln fε(yi − x′iβ) + di ln Φ

(
Φ−1(Fu(w

′
iγ)) + τΦ−1(Fε(yi − x′iβ))√

1− τ 2

)}
. (3.14)

Besides the Gaussian copula, there exist many other copulas which can be used to

model dependencies among the error terms. Popular examples are copulas from the

Farlie-Gumbel-Morgenstern (FGM) family and the Archimedean class of copulas. The

Archimedean class encompasses some well-known copulas such as the Clayton copula,

the Frank copula and the Gumbel copula. We refer the reader to Smith (2003) for a

description of these copulas. Smith (2003) also provides the likelihood functions for

sample selection models based on these copulas.

3.3 Asymptotic Properties

In this section, we derive consistency and asymptotic normality of our proposed sieve

maximum likelihood estimator using the results in Chen et al. (2006) and Chen (2007).

First, let A = Θ×Fε×Fu denote the parameter space. As in the last section, the sieve

MLE is defined as

α̂n = arg max
α∈An

lnL(α;Z) =
n∑
i=1

ln l(α, zi), (3.15)

where α = (θ′, fε, fu)
′ and α̂n = (θ̂′n, f̂n,ε, f̂n,u)

′ ∈ Θ×Fn,ε ×Fn,u = An. The true value

of the parameter vector is denoted as α0 = (θ′0, f0,ε, f0,u)
′ ∈ A.

Our first goal is to derive consistency of our proposed estimator. Suppose that

d(·, ·) is a (pseudo) metric on A. We make the following assumptions (in addition to

Assumptions 1-4), which are taken from Conditions 3.1’, 3.2’, 3.3’, 3.4 and 3.5 in Chen

(2007):

Assumption 5: (i) E[lnL(α,Z)] is continuous at α0 ∈ A, E[lnL(α0, Z)] > −∞

(ii) for all ε > 0, E[lnL(α0, Z)] > sup{α∈A: d(α,α0)≥ε}E[lnL(α,Z)].
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Assumption 6: Ak ⊆ Ak+1 ⊆ A for all k ≥ 1; and for any α ∈ A there exists a

sequence πkα0 ∈ Ak such that d(α0, πkα0)→ 0 as k →∞.

Assumption 7: For each k ≥ 1,

(i) lnL(α,Z) is a measurable function of the data Z for all α ∈ Ak; and

(ii) for any data Z, lnL(α,Z) is upper semicontinuous on Ak under the metric d(·, ·).

Assumption 8: The sieve spaces, Ak, are compact under d(·, ·).

Assumption 9: For all k ≥ 1, plimn→∞ supα∈Ak | lnL(α)− E[lnL(α)]| = 0.

Assumption 5 is an identification condition which implies that the true parameter

vector α0 uniquely maximizes the expected value of the log-likelihood function. As-

sumptions 6 and 8 contain assumptions on the sieve spaces. In particular, it is assumed

that asymptotically the difference between an (unknown) function and its sieve approx-

imation tends to zero. Assumption 7 is a continuity condition, while Assumption 9

assumes uniform convergence of the sample log-likelihood to its population counterpart

over the sieves.

We establish the following consistency theorem:

Theorem 1: Suppose that Assumptions 1-9 hold. Then d(α̂n, α0) = op(1).

Proof: See Chen (2007), pp. 5589-5591. �

In order to establish asymptotic normality, we show that Conditions 4.1-4.5 in Chen

(2007) are fulfilled. We derive asymptotic normality only for the structural parameters

of interest contained in θ. Our exposition closely follows Chen (2007, ch. 4).

Let

∂l(α0, z)

∂α′
[α− α0] = lim

ω→0

l(α0 + ω[α− α0], z)− l(α0, z)

ω
(3.16)

be the directional derivative of l(α0, z) in the direction [α − α0] and suppose that it is

well defined for almost all z. Let V be the completion of the space spanned by A− α0
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. As in Chen et al. (2006), we define the Fisher norm on this space as

||v||2 = E

[
∂l(α0, z)

∂α′
[v]

]2

, (3.17)

which induces the Fisher inner product

〈v, ṽ〉 = E

[
∂l(α0, z)

∂α′
[v]
∂l(α0, z)

∂α′
[ṽ]

]
. (3.18)

Let f(θ0) = λ′θ0, where λ is an arbitrary unit vector with the same dimension as θ. It

follows from the Riesz representation theorem that there exists v∗ ∈ V such that, for

any α− α0 ∈ V ,

λ′(θ − θ0) = 〈α− α0, v
∗〉 (3.19)

with ||v∗|| <∞.

To proceed further, it is necessary to compute the Riesz representer v∗. Define

Dwj(z) =
∂l(α0, z)

∂θj
− ∂l(α0, z)

∂f ′
[wj], j = 1, . . . , dim(θ), (3.20)

where f = (fε, fu)
′. Then, the Riesz representer v∗ = ((v∗θ)

′, (v∗f )
′)′ is given by

v∗f = −(w∗)′v∗θ (3.21)

v∗θ = (E[Dw∗(z)Dw∗(z)′])−1λ (3.22)

w∗j = arg inf
wj
E[(Dwj(z))2], (3.23)

where w = (w1, . . . , wdim(θ))
′ and Dw(z) = (Dw1(z), . . . , Dwdim(θ)(z))

′.

We make the following assumptions:

Assumption 10: θ0 ∈ int(Θ),Θ a compact subset of Rdim(θ).
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Assumption 11: The log-likelihood function lnL(α, z) is twice continuously pathwise

differentiable with respect to α ∈ A and ||α − α0|| = o(1), and the derivatives are

uniformly bounded with respect to α ∈ A and z.

Assumption 12: E[Dw∗(z)Dw∗(z)′] is positive definite.

Assumption 13: There is πnv
∗ ∈ An such that ||πnv∗ − v∗|| = O(K−ψ) = o(n−1/2).

Assumptions 10-12 are standard. Assumption 13 places a smoothness condition

on the Riesz representer v∗, which is similar to Assumption 3 of Newey (1997). We

establish the following theorem:

Theorem 2: Suppose that Assumptions 1-4 and 10-13 hold, and that ||α̂n−α0|| = op(1).

Then
√
n(θ̂n − θ0)

d−→ N (0, I∗(θ0)−1), where I∗(θ0) = E[Dw∗(z)Dw∗(z)′].

Proof: See the Appendix. �

Furthermore, θ̂n is semiparametrically efficient (see Chen, 2006).

In order to calculate standard errors or confidence intervals for θ̂n, one needs an

estimate of the asymptotic covariance matrix I∗(θ0)−1. Such an estimate can be obtained

in the following way (see Chen, 2007, p. 5616). Let

ŵ∗j = arg min
wj∈(Fn,ε×Fn,u)

1

n

n∑
i=1

[(D̂wj(zi))
2], (3.24)

with

D̂wj(z) =
∂l(α̂0, z)

∂θj
− ∂l(α̂0, z)

∂f ′
[wj], j = 1, . . . , dim(θ). (3.25)

Define D̂w(z) = (D̂w1 , . . . , D̂wdim(θ)
)′. Then an estimate Î∗(θ̂n)−1 of I∗(θ0)−1 is given by

Î∗(θ̂n)−1 =

(
1

n

n∑
i=1

[D̂ŵ∗(zi)D̂ŵ∗(zi)
′]

)−1

. (3.26)

The following theorem establishes the consistency of Î∗(θ̂n)−1 for I∗(θ0)−1:

Theorem 3: Suppose that Assumptions 1-4 and 10-13 hold, and that ||α̂n−α0|| = op(1).
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Then Î∗(θ̂n)−1 = I∗(θ0)−1 + op(1).

Proof: Follows from Lemma 2 in Ackerberg et al. (2012), pp. 493-494. �

In fact, Ackerberg et al. (2012) showed that there is a simpler way to obtain Î∗(θ̂n)−1.

Suppose there is a fictitious practitioner who uses the same sieve space (7) to approx-

imate the unknown densities fε and fu, but she treats the number of sieve terms,

Kn,η, η ∈ {ε, u}, as fixed rather than as increasing with the sample size. Consequently,

she has a finite dimensional parameter vector and maximum likelihood estimation and

inference can be carried out as usual. However, since the number of sieve terms is

considered fixed, the maximum likelihood estimator will not be consistent for the pa-

rameters of interest (i.e., θ) and will not have the correct limiting distribution proposed

in Theorem 2.

To fix ideas, let α̃ = (θ′, κ′)′ denote the parameter vector to be estimated by our

fictitious practitioner, where κ = (a0,ε, . . . , aKn,ε,ε, a0,u, . . . , aKn,u,u)
′ contains the sieve

coefficients. Note that the practitioner faces the same problem as in our sieve estimation

approach, but the difference is that the practitioner treats Kη, η ∈ {ε, u} as fixed. The

information matrix of the practitioner is given by

Ĩ(α̃0) =

E
[
∂l(z,θ0,κ0)

∂θ
∂l(z,θ0,κ0)

∂θ′

]
E
[
∂l(z,θ0,κ0)

∂θ
∂l(z,θ0,κ0)

∂κ′

]
E
[
∂l(z,θ0,κ0)

∂κ
∂l(z,θ0,κ0)

∂θ′

]
E
[
∂l(z,θ0,κ0)

∂κ
∂l(z,θ0,κ0)

∂κ′

]
 , (3.27)

which can be consistently estimated by

ˆ̃I( ˆ̃αn) =

 1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂θ

∂l(z,θ̂n,κ̂n)
∂θ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂θ

∂l(z,θ̂n,κ̂n)
∂κ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂κ

∂l(z,θ̂n,κ̂n)
∂θ′

1
n

∑n
i=1

∂l(z,θ̂n,κ̂n)
∂κ

∂l(z,θ̂n,κ̂n)
∂κ′

 , (3.28)

where θ̂n and κ̂n denote the practitioner’s estimates of θ0 and κ0. An estimate of

the asymptotic covariance of
√
n(θ̂n − θ0) is then given by the upper left block of the

inverse of ˆ̃I( ˆ̃αn). Ackerberg et al. (2012) derived the following result: Despite the fact
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that the likelihood function is misspecified (since Kn,ε and Kn,u are treated as fixed),

the practitioner’s estimate of the asymptotic covariance of
√
n(θ̂n − θ0) is numerically

equivalent to Î∗(θ̂n)−1.

The practical implication of this result is simple but powerful. A researcher who

wants to carry out sieve maximum likelihood estimation just has to maximize the log-

likelihood function over θ and the unknown sieve coefficients, and the (asymptotically)

correct standard errors for θ̂n can be easily obtained from the inverse of the information

matrix, provided that the information matrix is based on the outer product of gradients

(and not on the Hessian matrix). Hence, any statistical software package which is

capable of dealing with user-supplied likelihood functions can be used for sieve maximum

likelihood estimation and inference, as long as the researcher is allowed to specify how

the information matrix shall be calculated.

3.4 Remarks and Extensions

3.4.1 Closed Form Likelihood Function

The log-likelihood function in (3.10) does not exhibit a closed form expression due to

the presence of integral terms. Integrals arise because of the presence of the distribution

functions Fn,ε and Fn,u, which are related to fn,ε and fn,u via Fn,ε(x) =
∫ x
−∞ fn,ε(v)dv

and Fn,u(x) =
∫ x
−∞ fn,u(v)dv. Moreover, the copula function may contain integrals as

well; the Student t copula would be an example where this is the case (Demarta and

McNeil, 2005). Calculating the integrals within an optimization routine is of course pos-

sible, but may be computationally demanding if the sample size and/or the number of

parameters increases. Put differently, it may take a quite long time until the optimiza-

tion routine finds the maximum likelihood estimates. In this subsection we describe

a method how the integrals in Fn,ε and Fn,u can be replaced by closed form expres-

sions, which may facilitate maximum likelihood estimation in practice. The integrals
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appearing through the copula function are not considered here.2 Fortunately, many

well known copulas (such as the Gaussian copula, Archimedean copulas) indeed have

closed form expressions. Sample selection models based on these copulas are analyzed

in Smith (2003).

Our method to obtain closed form expressions for Fn,ε and Fn,u essentially relies

on an expansion of the unknown densities fε and fu by Hermite polynomials. More

specifically, we propose to approximate the unknown density functions by

fn,η(x) =

[∑Kn,η
k=0 ak,η(x/ση)

k
]2

φ(x/ση)/ση∫∞
−∞

[∑Kn,η
k=0 ak,η(v/ση)

k
]2

φ(v/ση)/σηdv
, η ∈ {ε, u}, (3.29)

where ση > 0 is a scale parameter which must be estimated, and φ(·) is the standard

normal probability density function.

An important advantage of using Hermite polynomials as basis functions in these

expansions is that Fn,ε and Fn,u have closed form expressions.3 Note that

Fn,η(x) =

∫ x
−∞

[∑Kn,η
k=0 ak,η(v/ση)

k
]2

φ(v/ση)/σηdv∫∞
−∞

[∑Kn,η
k=0 ak,η(v/ση)

k
]2

φ(v/ση)/σηdv
, η ∈ {ε, u}. (3.30)

To see that Fn,ε and Fn,u have closed forms, consider the denominator of (3.30) first.

To ease notation, we suppress η in the following formulas. The denominator can be

2To deal with such integrals, Maximum Simulated Likelihood techniques may be employed.
3Using Hermite polynomials to approximate the square root of a density has been suggested by

e.g. Gallant and Nychka (1987). Of course, there may exist other basis functions which imply closed
form distribution functions. However, such other basis functions will not be considered here. To be
precise, Fn,ε and Fn,u contain the standard normal c.d.f., which could also be regarded as an integral
which needs to be approximated. However, the standard normal c.d.f. is included in most statistical
software as a standard function and is computed immediately. Hence, using Hermite polynomials to
approximate the unknown densities may be interpreted as a transformation of a complicated integral
into a term involving integrals (the standard normal c.d.f.) which can be computed very quickly.
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simplified by making a change of variables z = x/σ, which yields

∫ ∞
−∞

[
K∑
k=0

ak(x/σ)k

]2

φ(x/σ)/σdx (3.31)

=

∫ ∞
−∞

[Z ′aa′Z]φ(z)dz (3.32)

=tr

[
aa′
∫ ∞
−∞

ZZ ′φ(z)dz

]
, (3.33)

where a = (a0, . . . , aKn)′ and Z = (z0, z1, z2, . . . , zKn)′. The integral term represents

moments of the standard normal distribution. For example, if Kn = 2, we have that

Z = (1, z, z2)′ and

∫ ∞
−∞

ZZ ′φ(z)dz =

∫ ∞
−∞


1 z z2

z z2 z3

z2 z3 z4

φ(z)dz =


1 0 1

0 1 0

1 0 3

 (3.34)

with

∫ ∞
−∞

zkdz = 0, k = 1, 3, 5, . . . (3.35)∫ ∞
−∞

zkdz = (k − 1)(k − 3) · ... · 1, k = 0, 2, 4, . . . . (3.36)

Hence, the denominator does not involve integrals any more and thus has a closed form.

Next, consider the numerator of (3.30). We have that

∫ x

−∞

[
Kn∑
k=0

ak(v/σ)k

]2

φ(x/σ)/σdv (3.37)

=

∫ x/σ

−∞

[
Kn∑
k=0

ak(z)k

]2

φ(z)dz (3.38)

= tr

[
aa′
∫ x/σ

−∞
ZZ ′φ(z)dz

]
(3.39)
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and

∫ x/σ

−∞
ZZ ′φ(z)dz =



b′0:Kn

b′1:(Kn+1)

...

b′Kn:(2Kn)


([Kn+1]×[Kn+1])

, (3.40)

where b′i:j = (bi, . . . , bj) with

b0 = Φ(x/σ) (3.41)

b1 = −φ(x/σ) (3.42)

bk = −φ(x/σ)(x/σ)k−1 + (k − 1)bk−2, k = 2, . . . , 2Kn, (3.43)

where Φ(·) is the standard normal cumulative density function. Hence, by these trans-

formations the integrals in the numerator of (3.30) vanish as well. Therefore, Fn,ε and

Fn,u have closed form expressions.

3.4.2 Initial Values for Maximum Likelihood Estimation

The likelihood function (3.10) usually contains a lot of parameters to be estimated, since

the sieve coefficients must be estimated as well. As in case of integral terms, this may be

associated with further computational complexity. However, having good initial values

for the maximum likelihood estimation routine may reduce this computational burden.

Such initial values can be easily obtained for the parameters β and γ if consistent

estimates are available. For instance, the parameters of the selection equation, γ, may

be estimated by a suitable semiparametric estimator for binary choice models. The

Klein and Spady (1993) semiparametric estimation procedure can be used in this case.

The parameters of the main equation, β, can be estimated by the approaches proposed

by Powell (1987) or Newey (2009).
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3.4.3 Testing for the Validity of Parametric Assumptions

As described in the introduction, a great advantage of our estimation approach is that

it is easy to test for the validity of parametric assumptions. Testing for the validity of

parametric assumptions is important since incorporating (correct) parametric informa-

tion into a model typically results in efficiency gains.

It is easy to test for the validity of parametric assumptions in our copula framework

because one can separately test for the validity of a certain joint distribution (repre-

sented by the copula) and for the validity of certain marginal distributions. Suppose

we want to test if a certain copula is valid to describe the joint distribution of error

terms. We could then estimate the model by the Gallant and Nychka (1987) procedure

which does not make any (parametric) assumptions on the joint distribution. Then

we would estimate the model by our approach, including the assumed copula whose

validity we seek to test. Since the Gallant and Nychka (1987) and our approach are

based on maximum likelihood estimation, one can test whether the parametric copula

assumption is justified by applying the Vuong (1989) test for nonnested models.4

In a similar manner, one can test for the validity of certain parametric marginal

distributions. Given a valid parametric copula, we would estimate the model by our

approach with unspecified marginal distributions, and then with one or both marginal

distributions parametrically specified. Again the Vuong (1989) test may help decide

if the parametric assumptions on the marginal distribution(s) are correct. In case of

the selection equation only one may also apply the Horowitz and Härdle (1994) testing

procedure to test if a certain parametric marginal distribution is valid for the selection

equation’s error term.5

4The validity of the Vuong test crucially depends on whether both models can be considered
nonnested for a given n. As in the case of the asymptotic variance, it might be conjectured that
the Vuong test is valid when treating the semiparametric estimation problem as if it were parametric.
Future research may resolve this issue.

5In the context of sample selection models, the Horowitz and Härdle testing procedure has been
applied by e.g. Martins (2001) and Genius and Strazzera (2008).
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3.4.4 Binary Dependent Variable

This subsection focuses on an extension of our semiparametric copula model to the case

of a binary dependent variable. Sample selection models with a binary dependent vari-

able have been used by van de Ven and van Praag (1981), Boyes et al. (1989), Greene

(1992) and Mohanty (2002). These authors, however, assumed a bivariate normal dis-

tribution for the error terms of main and selection equation, as Heckman (1979) did.

Thus, the following exposition generalizes these models by allowing for distributions

apart from the bivariate normal.

The model is now given by

y∗i = x′iβ + εi (3.44)

d∗i = w′iγ + ui (3.45)

di = 1(d∗i > 0) (3.46)

yi =


1(y∗i > 0) if di = 1

“missing” otherwise

. (3.47)

The difference between this model and the benchmark model from Section 3.2 is that

the dependent variable associated with the main equation, y1, now assumes only the

values one or zero.

Under the same assumptions as in Section 3.2 (except that a scale normalization

must be put on β), the log-likelihood function for this model is given by

lnL(β, γ, fε, fu;Z) =
n∑
i=1

{
(1− di) ln

∫ ∞
−∞

∫ −w′iγ
−∞

hε,u(ε, u)dudε

+ di(1− yi) ln

∫ −x′iβ
−∞

∫ ∞
−w′iγ

hε,u(ε, u)dudε+ diyi ln

∫ ∞
−x′iβ

∫ ∞
−w′iγ

hε,u(ε, u)dudε

}

=
n∑
i=1

{(1− di) lnFu(−w′iγ) + di(1− yi) ln[Fε(−x′iβ)−Hε,u(−w′iγ,−x′iβ)]
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+ diyi lnHε,u(−w′iγ,−x′iβ)} . (3.48)

Estimation and inference can be carried out as described above for the benchmark

model. In fact, there is no conceptual difference between the model considered in

this section and the benchmark model, apart from the binary nature of the dependent

variable.

3.4.5 Endogenous Covariates

In this subsection we show how our semiparametric copula model can be extended

to the case of endogenous covariates. Taking the potential endogeneity of covariates

into account is important since parameter estimates will be inconsistent otherwise. To

provide an illustration, we consider the classical example for which sample selection

models have been used. Suppose a researcher wants to estimate a wage equation for

females, and that her interest centers on the female returns to education. If she fitted

a wage regression to the observed sample of working females only, she would obtain

inconsistent estimates due to sample selectivity. So she would instead fit a sample

selection model to the observed data. But is sample selectivity the only source of

endogeneity in this example? Indeed, there may be sociological or intelligence-related

factors (which we will summarize by the term “ability”) which affect not only the wage

(main equation) and the probability of labor force participation (selection equation),

but education as well. If the researcher does not take the potential endogeneity of

education into account, she will obtain an inconsistent estimate of the female returns

to education.

To conceptualize these ideas, we consider the following extension of the model from

Section 3.2:

y∗1i = x̃′iβ̃ + δ1y2i + ε̃i (3.49)
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d∗i = x̃′iγ̃ + δ2y2i + δ3w̃i + ũi (3.50)

di = 1(d∗i > 0) (3.51)

y1i =


y∗1i if di = 1

“missing” otherwise

(3.52)

y2i = x̃′iα1 + q′iα2 + vi, (3.53)

where y2 is the endogenous covariate. The fifth equation is a reduced form equation for

y2 which includes an instrumental variable q which is not contained in x̃ or w̃ (exclusion

restriction). Furthermore, v is an error term which is assumed to be independent of x̃,

w̃ and q, but correlated with ε̃ and ũ. For instance, v, ε̃ and ũ may be affected by a

common variable like ability in the aforementioned example.

To estimate this model, we can insert the reduced form equation for y2 into the main

and selection equation, which gives the following reduced form model:

y∗1i = x′iβ + εi (3.54)

d∗i = w′iγ + ui (3.55)

di = 1(d∗i > 0) (3.56)

y1i =


y∗1i if di = 1

“missing” otherwise

(3.57)

y2i = x′iα + vi, (3.58)

where x = (x̃′, q′)′, w = (x′, w̃′)′, ε = δ1v + ε̃, u = δ2v + ũ, β = ((β̃ + δ1α1)′, δ1α
′
2)′, γ =

((γ̃ + δ2α1)′, δ2α
′
2, δ
′
3)′ and α = (α′1, α

′
2)′. Note that this model is conceptually similar

to the model from Section 3.2. If only the reduced form parameters β and γ were of

interest, the model could be estimated as in Section 3.2. However, one usually seeks
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to estimate the structural parameters (β̃′, δ1, γ̃
′, δ2, δ3, α)′. We propose the following

estimation strategy: Obtain the first order conditions associated with the likelihood

function resulting from the reduced form equations (3.54)-(3.57). The likelihood func-

tion is the same as in Section 3.2, because the reduced form equations contain exogenous

covariates only. Then estimate the structural parameters by using the first order con-

ditions and the normal equations associated with the reduced form equation for y2 in a

Generalized Method of Moments or minimum distance framework. This procedure will

give consistent estimates of the structural parameters. Asymptotic normality results

can be derived as well, but may be different from those in Section 3.2 (depending on

the estimation procedure). However, the results in Ackerberg et al. (2012) can still be

applied: The estimation problem may be treated as if it were parametric, and parameter

estimates and estimates of standard errors and confidence intervals may be obtained in

the usual parametric way. As demonstrated by Ackerberg et al. (2012) for quite general

classes of estimators, the standard error estimates are numerically equivalent to those

which would be obtained under the correct presumption that the estimation problem

was semiparametric.

One word of caution remains, though. The joint distribution implied by the copula

and the (unknown) marginal distributions is now the joint distribution of the composite

error terms ε and u. This has to be taken into account when interpreting the joint

distribution of the error terms associated with the reduced form model.

3.5 Conclusions

In this chapter we proposed a sieve maximum likelihood estimation approach for a

copula-based sample selection model. We also provided the asymptotic properties of

our proposed estimator and showed that its asymptotic covariance matrix can be eas-

ily obtained using statistics software which is capable of dealing with user-supplied
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likelihood functions. To facilitate estimation, we showed how closed form likelihood

functions can be obtained and how appropriate initial values for maximum likelihood

estimation may be chosen. We demonstrated that parametric assumptions on the joint

or marginal distributions of error terms can be easily tested for in our framework. We

also extended our basis model to the cases of a binary dependent variable and endo-

geneity of covariates.

The semi-nonparametric maximum likelihood estimation approach of Gallant and

Nychka (1987) has not often been used in applied econometrics. One reason may be

that no distribution theory is available, which is necessary to compute standard errors

and confidence intervals. Another reason may be that the approximation of a two-

dimensional density function is rather complex, hence the whole estimation problem is

complex as well. The approach derived in this chapter reduces the complexity since

only one-dimensional densities have to be approximated. Furthermore, standard errors

and confidence intervals can be easily obtained in practice by treating the estimation

problem as if it were parametric. We thus hope that our exposition fosters the applica-

tion of semi-nonparametric maximum likelihood estimators to sample selection models,

especially if the distribution of the error terms of main and selection equation is of

interest.
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3.6 Appendix

Proof of Theorem 2:

We prove Theorem 2 by verifying that the Conditions 4.1-4.5 in Chen (2007) are ful-

filled. For convenience, we restate these conditions here. In the following, µn(g(z)) =

1
n

∑n
i=1(g(zi)− E[g(zi)]) denotes the empirical process indexed by the function g.

Condition 4.1:

(i) There is ω > 0 such that |f(θ)− f(θ0)− ∂f(θ0
θ

[θ − θ0]| = O(||θ − θ0||ω) uniformly in

θ ∈ Θ with ||θ − θ0|| = o(1).

(ii) ||∂f(θ0)
∂θ
|| <∞.

(iii) There is πnv
∗ ∈ An such that ||πnv∗ − v∗|| × ||α̂n − α0|| = op(n

−1/2).

Condition 4.2’:

sup
{ᾱ∈An:||ᾱ−α0||<δn}

µn

(
∂l(ᾱ, z)

∂α
[πnv

∗]− ∂l(α0, z)

∂α
[πnv

∗]

)
= op(n

−1/2). (3.59)

Condition 4.3’:

E

[
∂l(α̂n, z)

∂α
[πnv

∗]

]
= 〈α̂n − α0, πnv

∗〉+ o(n−1/2). (3.60)

Condition 4.4:

(i) µn(∂l(α0,z)
∂α

[πnv
∗ − v∗]) = op(n

−1/2).

(ii) E[∂l(α0,z)
∂α

[πnv
∗]].

Condition 4.5: n1/2µn(∂l(α0,z)
∂α

[v∗])
d−→ N (0, σ2

v∗), with σ2
v∗ > 0.
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Condition 4.1 (i) is fulfilled with ω = ∞. Condition 4.1 (ii) is fulfilled by Assump-

tion 12. Condition 4.1 (iii) is satisfied by Assumption 13 and the consistency of α̂n.

Condition 4.2 can be verified using Theorem 3 from Chen et al. (2003). Theorem

3 requires continuity conditions on m(z, α) = ∂l(α,z)
∂α

[πnv
∗] − E[∂l(α,z)

∂α
[πnv

∗]], which are

satisfied in our case because of Assumption 11.

Condition 4.3 is trivially satisfied because we have used the Fisher norm (Chen 2007,

p. 5617). Condition 4.4 (i) is fulfilled because we have i.i.d. observations and

E

[
µn(

∂l(α0, z)

∂α
[πnv

∗ − v∗])
]2

= n−1E

[
∂l(α0, z)

∂α
[πnv

∗ − v∗]
]2

(3.61)

= n−1||πnv∗ − v∗||2 = o(n−1). (3.62)

Hence, by the Markov inequality we have that µn(∂l(α0,z)
∂α

[πnv
∗− v∗]) = op(n

−1/2). Con-

dition 4.4 (ii) is satisfied since

E

[
∂l(α0, z)

∂α
[πnv

∗]

]
= E

[
∂l(α0, z)

∂α
[πnv

∗]

]
− E

[
∂l(α0, z)

∂α
[v∗]

]
+ E

[
∂l(α0, z)

∂α
[v∗]

]
= E

[
∂l(α0, z)

∂α
[πnv

∗ − v∗]
]
, (3.63)

and by Jensen’s inequality,

(
E

[
∂l(α0, z)

∂α
[πnv

∗ − v∗]
])2

≤ E

[
∂l(α0, z)

∂α
[πnv

∗ − v∗]
]2

= ||πnv∗ − v∗||2 = O(K−2ψ) = o(n−1) (3.64)

by Assumption 13, hence E
[
∂l(α0,z)
∂α

[πnv
∗ − v∗]

]
= o(n−1/2). Condition 4.5 is fulfilled

because we have i.i.d. observations and

σ2
v∗ = V ar

[
∂l(α0, z)

∂α
[v∗]

]
(3.65)

= V ar

[
∂l(α0, z)

∂θ
− ∂l(α0, z)

∂f ′
[w](v∗θ)

]
(3.66)
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= (v∗θ)E[Dw∗(z)Dw∗(z)′](v∗θ)
′ (3.67)

= λ′(E[Dw∗(z)Dw∗(z)′])−1E[Dw∗(z)Dw∗(z)′](E[Dw∗(z)Dw∗(z)′])−1λ (3.68)

= λ′(E[Dw∗(z)Dw∗(z)′])−1λ > 0 (3.69)

by Assumption 12. By Theorem 4.3 in Chen (2007) it follows that n1/2(f(θ̂n) −

f(θ0))
d−→ N (0, σ2

v∗), hence

√
n(θ̂n − θ0)

d−→ N (0, (E[Dw∗(z)Dw∗(z)′])−1) = N (0, I∗(θ0)−1). (3.70)

�



Chapter 4

One-Step Sieve Estimation of a

Sample Selection Model with

Endogeneity - with an Application

to Estimating the Female Returns

to Education

This chapter is a major revision of the discussion paper No. 504, Department of Eco-

nomics and Business Administration, Leibniz University Hannover (Schwiebert, 2012c).

I thank Melanie Schienle and Jeffrey M. Wooldridge for providing valuable comments.

4.1 Introduction

The sample selection model is used when the observed data is considered a nonrandom

sample from the underlying population. It is well-known that not accounting for sample

selectivity may result in inconsistent estimates of the parameters of interest. Heckman
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(1979) demonstrated that the sample selection problem can be interpreted as an omitted

variable bias problem, and suggested procedures to overcome the selection bias. Heck-

man assumed that the error terms of the main equation of interest and the selection

equation have a bivariate normal distribution. With this assumption, the model can be

estimated by ordinary least squares including a control function (the inverse Mills ratio

term) or by maximum likelihood. However, since the bivariate normality assumption

may be quite restrictive, several authors have proposed semiparametric estimation pro-

cedures for sample selection models which give consistent estimates under far weaker

conditions (e.g., Gallant and Nychka, 1987; Powell, 1987; Ahn and Powell, 1993; Das

et al., 2003; Newey, 2009).

In this chapter, we consider another semiparametric estimation procedure for a sam-

ple selection model based on the method of sieves (Chen, 2007). As it is common in

the literature, we augment the main equation of interest with an unknown control func-

tion term which accounts for the sample selectivity. This term can be considered a

generalization of the inverse Mills ratio term known from the Heckman (1979) model.

The main equation then consists of finite dimensional structural parameters and the

unknown control function which is an infinite dimensional nuisance parameter. The se-

lection equation, on the other hand, is also associated with finite dimensional structural

parameters and the cumulative distribution function (c.d.f.) of the selection equation’s

error term, where the latter is an infinite dimensional nuisance parameter. Our strategy

is to estimate the main equation including the control function and the selection equa-

tion simultaneously (i.e., one-step) by the method of sieves in a Generalized Method

of Moments framework. To do this, we approximate the unknown control function of

the main equation and the c.d.f. of the selection equation’s error term by simpler basis

functions. The coefficients associated with these basis functions are then estimated

jointly with the structural parameters of interest.

Our model setup and estimation procedure differ in some aspects from those pro-
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posed in the literature. First, our estimation procedure is one-step. Two-step methods

seem to dominate the literature on sample selection models because they are computa-

tionally less demanding than one-step procedures. However, to conduct inference the

researcher has to adjust the estimator’s covariance matrix from the second step for the

uncertainty due to the first-step estimation. This typically involves the computation

of the derivative of the optimized objective function with respect to the first-step pa-

rameters. Researchers sometimes avoid the effort associated with such adjustment and

use bootstrap procedures instead. This, however, may be computationally demanding

depending on the number of bootstrap replications, the sample size and the numbers of

parameters to be estimated. A one-step procedure, on the other hand, does not require

adjustments of the estimator’s covariance matrix, but provides a valid estimate imme-

diately. Furthermore, a one-step procedure is typically more efficient than a two-step

method since the correlation between the error terms of the estimating equations can

be exploited, which results in efficiency gains.

Second, our econometric model allows covariates to be endogenous. Endogeneity of

covariates in sample selection models has been analyzed by Das et al. (2003), Dustmann

and Rochina-Barrachina (2007), Wooldridge (2010) and Semykina and Wooldridge

(2010). These authors, however, do only consider endogeneity of covariates in the main

equation.1 We extend this setting by allowing the covariates of the selection equation

to be endogenous as well. Such a setting is quite realistic since many covariates enter

both the main and the selection equation.

We consider an important empirical application of our estimator. Our goal is to

obtain an estimate of the female returns to education. Our sample includes married

women only, as these may decide whether to be a homemaker or to participate in the

labor market. Our main equation is a wage equation, and the coefficient associated

1To be precise, Das et al. (2003) mention the possibility to extend their model to the case of
endogenous covariates in the selection equation, but do not provide asymptotic distribution theory for
this extension.
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with the education variable in this wage equation is known as the returns to education.

Obtaining a consistent estimate of the coefficient of education is difficult, though. First,

the wage is only observed for women who participate in the labor market. Since only

women participate in the labor market whose (potential or actual) wage exceeds their

reservation wage, the sample of working women is nonrandom. Ordinary least squares

estimation of the wage equation is thus inappropriate due to sample selectivity. On

the other hand, employing a sample selection model to account for the selectivity may

be not sufficient. A variable like education is affected by unobserved latent factors

like ability. Ability is also likely to affect the wage as well as the probability of labor

market participation. Since ability is unobserved it is captured by the error terms of

our econometric model. As a consequence, the education variable will be correlated

with these error terms and must thus be considered endogenous. Hence, an appropriate

econometric model on which estimation of the female returns to education is based

should account for sample selectivity and endogeneity jointly. Our econometric model

accounts for both issues and is thus suited to estimate the female returns to education.

We apply our estimation procedure to females from the 1980 U.S. Census. This data

set provides us with information on the quarter of birth of individuals. As demonstrated

by Angrist and Krueger (1991), the quarter of birth of an individual is correlated with

its educational attainment. Since the quarter of birth may be considered to be randomly

assigned to individuals, this variable is suited as an instrumental variable for education.

Our empirical results show that it is indeed important to account for selectivity and

endogeneity of education jointly. In particular, we find that the returns to education

are smaller than those obtained under estimation strategies which do not account for

the joint presence of selectivity and endogeneity of education.

The remainder of this chapter is organized as follows. In Section 4.2 we present the

econometric model and propose our estimation procedure. Section 4.3 deals with the

asymptotic properties of our estimator. Section 4.4 contains the empirical application
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of the estimator to the female returns to education. Section 4.5 concludes the chapter.

4.2 Model Setup and Estimation

To facilitate the exposition, we analyze a model where a single endogenous variable

enters the main and the selection equation. A generalization to several endogenous

variables is straightforward. We consider the following model:

y∗1i = x̃′iβ̃ + δ1y2i + ε̃i (4.1)

d∗i = x̃′iγ̃ + δ2y2i + δ3w̃i − ũi (4.2)

di = 1(d∗i > 0) (4.3)

y1i =


y∗1i if di = 1

“missing” otherwise

(4.4)

y2i = x̃′iα1 + q′iα2 + vi, (4.5)

where i = 1, . . . , n indexes individuals. The first equation is the main equation (of inter-

est), where y∗1 is the latent dependent variable, x̃ is a vector of exogenous explanatory

variables, y2 is an endogenous explanatory variable and ε̃ is an error term. The second

equation is the selection equation, where d∗ is the latent dependent variable, w̃ is a

vector of exogenous explanatory variables appearing only in the selection equation, and

ũ is the error term. The third equation expresses that only the sign of d∗ is observable.

The fourth equation comprises the sample selection mechanism: y∗1 is only observable if

the selection indicator d is equal to one. The fifth equation is the reduced form equation

for the endogenous explanatory variable y2, where q is a vector of exogenous explana-

tory (instrumental) variables and v is an error term. Note that this model contains the

sample selection model without endogenous covariates as a special case.

Absorbing equation (4.5) into equations (4.1) and (4.2) gives the following reduced
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form model:

y∗1i = x′iβ + εi (4.6)

d∗i = w′iγ − ui (4.7)

di = 1(d∗i > 0) (4.8)

y1i =


y∗1i if di = 1

“missing” otherwise

(4.9)

y2i = x′iα + vi, (4.10)

where x = (x̃′, q′)′, w = (x′, w̃′)′, β = ((β̃ + δ1α1)′, δ1α
′
2)′, γ = ((γ̃ + δ2α1)′, δ2α

′
2, δ
′
3)′,

α = (α′1, α
′
2)′, and ε and u denote appropriate error terms.

We make the following assumptions:

Assumption 1: {(x̃i, w̃i, qi, ε̃i, ũi, vi)}ni=1 are i.i.d. from some underlying distribution.

Assumption 2: (i) (x̃, w̃, q) and (ũ, v) are independent. (ii) The first element of δ3 is

equal to one or minus one. (iii) q contains at least one variable (except from a constant

term) which is not included in w̃. (iv) x̃ and w̃ do not contain a constant term. (v)

E[ε|d = 1, x = a, w = b] = E[ε|w′γ = b′γ] = g(b′γ).

Assumption 1 is a standard i.i.d. assumption. Assumptions 2 contains identification

conditions. Assumption 2 (i) is a standard condition to identify the reduced form pa-

rameters of the selection equation. Assumption 2 (ii) and (iv) also identify the reduced

form parameters of the selection equation by imposing location and scale restrictions;

cf. Klein and Spady (1993). Assumption 2 (iii) imposes an exclusion restriction associ-

ated with the selection equation, which is a standard condition in semi-nonparametric

estimation of sample selection models. Assumption 2 (iv) and (v) identify the reduced

form parameters of the main equation. The function g(·) is the control function which

accounts for the selectivity effect.
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For the observations with di = 1, we may rewrite the main equation as

y1i = x′iβ + g(w′iγ) + ri, (4.11)

where r is a mean-zero error term. Then, we have the following three conditional

moment restrictions which form the basis of our minimum distance estimation approach:

E[di(y1i − x′iβ − g(w′iγ))|wi] = 0 (4.12)

E[di −H(w′iγ)|wi] = 0 (4.13)

E[y2i − x′iα|wi] = 0, (4.14)

where H(·) is the c.d.f. of u. Note that Pr(d = 1|w = b) = Pr(d = 1|w′γ = b′γ) =

Pr(u < b′γ) = H(b′γ).

If g and H were known, estimation would be straightforward in a (parametric)

minimum distance (or GMM) setting. However, since these functions are nuisance

parameters which are unknown, a semiparametric estimation procedure is needed. We

propose estimation based on the method of sieves. That is, we approximate the unknown

functions g and H by simpler basis functions and estimate the parametric part of the

model jointly with the coefficients associated with these basis functions. For example,

g may be approximated by a linear expansion:

gn(t) =
Kn∑
k=0

akAk(t), Kn →∞,
Kn

n
→ 0, (4.15)

where gn is an approximation to g based on Kn sieve coefficients, {Ak(·) : k ≥ 0} denote

known basis functions and {ak : k ≥ 0} are unknown sieve coefficients which must be

estimated. Note that Kn increases with the sample size but at a slower rate. Other

classes of approximating functions are analyzed in Chen (2007). The idea of sieve

estimation is that in the limit, as n approaches infinity, the approximating function
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becomes equal to the actual function. When approximating the c.d.f. H, however, we

have to make sure that the approximating function only takes values between zero and

one (because it is a c.d.f.). Instead of approximating H in a similar manner as g, it

may be more convenient to write H(t) = Φ(h(t)), where Φ(·) is a known c.d.f., and

approximate h instead of H. h may indeed be approximated in a similar manner as g,

while Φ(·) ensures that the approximating c.d.f. always takes values between zero and

one.

Let θ = (β̃′, δ1, γ̃
′, δ2, δ̃

′
3, α

′
1, α

′
2)′ denote the finite dimensional parameter vector of

interest, where δ̃3 contains all elements of δ3 except for the first (which has been set

equal to one due to identification). Furthermore, define

ρ(θ, g, h, zi) =


di(y1i − x′iβ − g(w′iγ))

di − Φ(h(w′iγ))

y2i − x′iα

 , (4.16)

where zi = (y1i, y2i, di, xi, wi) denotes the data. We propose to obtain an estimate θ̂n of

θ by minimizing the criterion function

1

n

n∑
i=1

ρ(θ, gn, hn, zi)
′Σ(wi)

−1ρ(θ, gn, hn, zi) (4.17)

over θ and the unknown sieve coefficients associated with gn and hn, where Σ(·) denotes

a positive definite weighting matrix.

4.3 Asymptotic Properties

In this section, we derive consistency and asymptotic normality of our proposed sieve

minimum distance estimator using the results in Chen (2007). First, let A = Θ×G×H

denote the parameter space. G and H denote the function spaces in which the true
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functions g and h are included. On the other hand, Gn and Hn denote the sieve spaces,

i.e., the classes of functions used to approximate g and h. For instance, if we consider

linear sieves as in Section 4.2, we would have

Fn =

{
fn(x) =

Kn∑
k=0

ak,nAk,n(x)

}
, Kn →∞,

Kn

n
→ 0, (F , f) ∈ {(G, g), (H, h)}. (4.18)

As in the last section, the sieve minimum distance estimator is defined as

α̂n = arg min
α∈An

Q(α;Z) =
1

n

n∑
i=1

ρ(α, zi)
′Σ(wi)

−1ρ(α, zi), (4.19)

where Q(·) denotes the criterion function, Z = {zi}ni=1, α = (θ′, g, h)′ and α̂n =

(θ̂′n, ĝn, ĥn)′ ∈ Θ×Gn×Hn = An. The true value of the parameter vector is denoted as

α0 = (θ′0, g0, h0)′ ∈ A.

Our first goal is to derive consistency of our proposed estimator. Suppose that

d(·, ·) is a (pseudo) metric on A. We make the following assumptions (in addition to

Assumptions 1-2), which are taken from Conditions 3.1’, 3.2’, 3.3’, 3.4 and 3.5 in Chen

(2007):

Assumption 3: (i) E[Q(α,Z)] is continuous at α0 ∈ A, E[Q(α0, Z)] <∞

(ii) for all ε > 0, E[Q(α0, Z)] < inf{α∈A: d(α,α0)≥ε}E[Q(α,Z)].

Assumption 4: Ak ⊆ Ak+1 ⊆ A for all k ≥ 1; and for any α ∈ A there exists a

sequence πkα0 ∈ Ak such that d(α0, πkα0)→ 0 as k →∞.

Assumption 5: For each k ≥ 1,

(i) Q(α,Z) is a measurable function of the data Z for all α ∈ Ak; and

(ii) for any data Z, Q(α,Z) is upper semicontinuous on Ak under the metric d(·, ·).

Assumption 6: The sieve spaces, Ak, are compact under d(·, ·).

Assumption 7: For all k ≥ 1, plimn→∞ supα∈Ak |Q(α)− E[Q(α)]| = 0.

Assumption 3 is an identification condition which implies that the criterion function

is uniquely minimized at the true parameter vector α0. Assumptions 4 and 6 contain
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assumptions on the sieve spaces. In particular, it is assumed that asymptotically the

difference between an (unknown) function and its sieve approximation tends to zero.

Assumption 5 is a continuity condition, while Assumption 7 assumes uniform conver-

gence of the sample criterion function to its population counterpart over the sieves.

We establish the following consistency theorem:

Theorem 1: Suppose that Assumptions 1-7 hold. Then d(α̂n, α0) = op(1).

Proof: See Chen (2007), pp. 5589-5591. �

In order to establish asymptotic normality, we show that Assumptions 4.1 and 4.2

in Chen (2007) are fulfilled. We derive asymptotic normality only for the structural

parameters of interest contained in θ. Our exposition closely follows Chen (2007, ch.

4).

Let

∂ρ(α0, z)

∂α′
[α− α0] = lim

ω→0

ρ(α0 + ω[α− α0], z)− ρ(α0, z)

ω
(4.20)

be the directional derivative of ρ(α0, z) in the direction [α− α0] and suppose that it is

well defined for almost all z. Let V be the completion of the space spanned by A− α0

. As in Chen (2007), we define the norm on this space as

||v||2 = E

[
∂ρ(α0, z)

′

∂α′
[v]Σ(w)−1∂ρ(α0, z)

∂α′
[v]

]
, (4.21)

which induces the inner product

〈v, ṽ〉 = E

[
∂ρ(α0, z)

′

∂α′
[v]Σ(w)−1∂ρ(α0, z)

∂α′
[ṽ]

]
. (4.22)

Let f(θ0) = λ′θ0, where λ is an arbitrary unit vector with the same dimension as θ. It

follows from the Riesz representation theorem that there exists v∗ ∈ V such that, for
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any α− α0 ∈ V ,

λ′(θ − θ0) = 〈α− α0, v
∗〉 (4.23)

with ||v∗|| <∞.

To proceed further, it is necessary to compute the Riesz representer v∗. Define

Drj(w) =
∂ρ(α0, z)

∂θj
− ∂ρ(α0, z)

∂f ′
[rj], j = 1, . . . , dim(θ), (4.24)

where f = (g, h)′. Then, the Riesz representer v∗ = ((v∗θ)
′, (v∗f )

′)′ is given by

v∗f = −r∗v∗θ (4.25)

v∗θ = (E[Dr∗(w)′Σ(w)−1Dr∗(w)])−1λ (4.26)

r∗j = arg inf
rj
E[Drj(w)′Σ(w)−1Drj(w)], (4.27)

where r = (r1, . . . , rdim(θ)), and Dr(w) = (Dr1(w), . . . , Drdim(θ)
(w)) is a (dim(ρ) ×

dim(θ))-matrix.

We make the following assumptions:

Assumption 8: θ ∈ int(Θ),Θ a compact subset of Rdim(θ).

Assumption 9: ρ(α, z) is twice continuously pathwise differentiable with respect to

α ∈ A and ||α− α0|| = o(1), and the derivatives are uniformly bounded with respect to

α ∈ A and z.

Assumption 10: E[Dr∗(w)′Σ(w)−1Dr∗(w)] is positive definite.

Assumption 11: Σ(w) and Σ0(w) = V ar[ρ(α, z)|w] are positive definite and bounded

uniform over w.

Assumption 12: There is πnv
∗ ∈ An such that ||πnv∗ − v∗|| = O(K−ψ) = o(n−1/2).

Assumptions 8-11 are standard. Assumption 12 places a smoothness condition on

the Riesz representer v∗, which is similar to Assumption 3 of Newey (1997). We establish
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the following theorem:

Theorem 2: Suppose that Assumptions 1-2 and 8-12 hold, and that ||α̂n−α0|| = op(1).

Then
√
n(θ̂n − θ0)

d−→ N (0, V −1
1 V2V

−1
1 ), where

V1 = E[Dr∗(w)′Σ(w)−1Dr∗(w)] (4.28)

V2 = E[Dr∗(w)′Σ(w)−1Σ0(w)Σ(w)−1Dr∗(w)]. (4.29)

Proof: Chen (2007) proves that under Assumptions 4.1 and 4.2 in that paper, the

sieve minimum distance estimator has the asymptotic distribution stated in Theorem 2.

Hence, we have to check whether these assumptions are satisfied in our case. Assump-

tions 4.1 (i), (ii) and 4.2 (i) are identical to our Assumptions 8, 10 and 11. Assumption

4.1 (iii) is implied by the consistency of θ̂n and Assumption 12. Assumptions 4.2 (ii)

and (iii) are implied by Assumption 9, the definition of the norm (4.21), and our con-

ditional moment restrictions (4.12)-(4.14). �

In order to calculate standard errors or confidence intervals for θ̂n, one needs esti-

mates of the the matrices V1 and V2. Such estimates can be obtained in the following

way (see Remark 4.2 in Chen, 2007). Let

r̂∗j = arg min
rj∈(Gn×Hn)

1

n

n∑
i=1

[(D̂rj)(w)′Σ(wi)
−1D̂rj(w)], (4.30)

with

D̂rj(w) =
∂ρ(α̂0, z)

∂θj
− ∂ρ(α̂0, z)

∂f ′
[rj], j = 1, . . . , dim(θ). (4.31)

Define D̂r(w) = (D̂r1(w), . . . , D̂rdim(θ)
(w))′. Then, consistent estimators V̂1 and V̂2 of V1

and V2 are given by

V̂1 =
1

n

n∑
i=1

D̂r̂∗(wi)
′Σ(wi)

−1D̂r̂∗(wi) (4.32)
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V̂2 =
1

n

n∑
i=1

D̂r̂∗(wi)
′Σ(wi)

−1Σ̂0(wi)Σ(wi)
−1D̂r̂∗(wi), (4.33)

where Σ̂0(w) is a consistent estimator of Σ0(w) = V ar[ρ(α, z)|w].

However, Ackerberg et al. (2012) show that there is actually a simpler way to obtain

an estimate of the asymptotic covariance matrix V −1
1 V2V

−1
1 . Suppose there is a fictitious

practitioner who uses the same sieve spaces to approximate the unknown functions g

and h, but she treats the number of sieve terms, K, as fixed rather than increasing

with the sample size. Hence, the practitioner faces a parametric estimation problem,

and inference can be done as usual. Let α̃ = (θ′, κ′)′ denote the parameter vector

to be estimated by our fictitious practitioner, where κ contains the sieve coefficients.

The parametric practitioner may calculate the following consistent estimator (consistent

from the practitioner’s perspective) of the asymptotic covariance matrix of ˆ̃αn:

̂aV ar( ˆ̃αn) = ˆ̃V −1
1

ˆ̃V2
ˆ̃V −1

1 , (4.34)

where

ˆ̃V1 =
1

n

n∑
i=1

∂ρ( ˆ̃αn, zi)
′

∂α̃′
Σ(wi)

−1∂ρ( ˆ̃αn, zi)

∂α̃′
(4.35)

ˆ̃V2 =
1

n

n∑
i=1

∂ρ( ˆ̃αn, zi)
′

∂α̃′
Σ(wi)

−1Σ̂0(wi)Σ(wi)
−1∂ρ( ˆ̃αn, zi)

∂α̃′
. (4.36)

Note that ˆ̃V1 and ˆ̃V2 have larger dimensions than V̂1 and V̂2 due to the sieve coefficients.

The practitioner’s estimate of the asymptotic covariance matrix of θ̂n is then given by

the upper left block of ̂aV ar( ˆ̃αn).

Ackerberg et al. (2012) provide the following important result: Despite the fact that

the parametric model is misspecified, the parametric estimate of the asymptotic covari-

ance matrix of θ̂n is numerically equivalent to the semiparametric estimate V̂ −1
1 V̂2V̂

−1
1 .
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Therefore, a researcher who wants to carry out sieve minimum distance estimation can

treat the semiparametric estimation problem as if it were parametric and estimate the

asymptotic covariance of the estimator in the usual parametric way. In particular, any

econometrics software which is capable of performing (nonlinear) minimum distance

estimation can be used to obtain estimates and valid standard errors of these estimates.

Thus, the practical implementation of our proposed sieve minimum distance estimator

is fairly simple.

Finally, we discuss the efficiency of our estimator. In parametric minimum distance

estimation, it is well known that the optimal weighting matrix is Σ(w) = Σ0(w) =

V ar[ρ(α, z)|w]. The same result holds for sieve minimum distance estimation. Ai and

Chen (1999) suggest the following procedure to obtain an efficient estimator:

1. Obtain a consistent (but inefficient) estimator ˆ̂αn by using the identity matrix as

the weighting matrix.

2. Use these estimates to compute a consistent estimator Σ̂0(w) of Σ0(w) = V ar[ρ(α, z)|w].

3. Use Σ̂0(w) as the weighting matrix to obtain the final estimator α̂n.

Then,
√
n(θ̂n − θ0)

d−→ N (0, V −1
1 ), and θ̂n is semiparametrically efficient (see Chen,

2007, p. 5621).

4.4 Empirical Application

In this section, we apply our proposed estimation procedure to 1980 U.S. Census data2

to obtain an estimate of the female returns to education, where we consider married

women only. Hence, our goal is to estimate the average percentage wage increase of

married women if educational attainment is raised by one year of schooling. The reason

why we consider married women only is that these women may indeed be able to select

2We obtained our data files from the IPUMS-USA database (Ruggles et al., 2010).
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among being a homemaker or participating in the labor market, as the husband’s income

may be sufficiently high to make a living in either case.

The “selected women” in our analysis comprise those women who worked full time

full year (FTFY) in the previous year, i.e. who worked at least 36 hours per week and

at least 50 weeks in the previous year. The reason for this sample restriction is that

it is difficult to distinguish whether women who did not work the full year belong to

the workforce or not. Moreover, the weekly worked hours of women who worked part

time only may be contaminated by measurement error. To avoid dealing with such

difficulties, we define the workforce to be the women who worked full time full year in

the previous year. Hence, the selection decision of married women amounts to working

full time full year or not working full time full year.

Our sample consists of white non-Hispanic women between 25 and 54 years of age

not living in group quarters. The hourly wage of women belonging to the workforce

as defined in the last paragraph is calculated as the annual salary income divided by

(52 times the usual hours of work). We restricted our sample to FTFY working women

above the 5th and below the 95th percentile of the overall wage distribution (including

non-married women), since we are interested in the results for women located in the

the main part of the wage distribution (as results in the tails may be different).3 We

also eliminated self-employed workers and observations for which incomes have been

imputed by a “hot deck” procedure. Furthermore, we excluded unemployed women

as we cannot say whether these (potentially) belong to the FTFY women or to the

remaining population.

Our basic model is given by

lwagei = β̃1agei + β̃2age2i + δ1educi + ε̃i if di = 1 (4.37)

di = 1(γ̃1agei + γ̃2age2i + δ2educi − nchlt5i − ũi > 0) (4.38)

3Since our main equation is linear in the coefficients, we expect that linearity is more likely to hold
in the main part of the overall wage distribution.
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educi = α0 + α1agei + α2age2i + α3qtr1i + α4qtr2i + α5qtr3i + vi, (4.39)

where lwage is the natural logarithm of the hourly wage, age is the years of age, age2

is age squared, educ is the years of education, nchlt5 is the number of children less

than five years of age, and qtr1, qtr2, qtr3 are quarter of birth dummies. The remaining

notation is the same as in Section 4.2. Note that in light of our discussion on the

sample restriction above the selection indicator d is equal to one if a woman belongs to

the FTFY workforce and zero otherwise.

In order to identify the parameters of our model, we made the following decisions

(recall Assumption 2). First, the number of children less than five years of age (nchlt5)

is supposed to directly affect the labor market participation decision4, but not (directly)

the wage and educational attainment. This is the exclusion restriction associated with

the selection equation. Note that the coefficient of nchlt5 has been set equal to −1,

which is in accordance with Assumption 2. We set the coefficient to −1 because it seems

plausible that the number of children has a negative impact on the probability of labor

market participation. Parametric estimation of the selection equation using probit and

logit models confirmed that nchlt5 has a strong negative impact on the probability of

labor market participation, hence our choice seems to be justified.

Our second identification decision concerns the choice of the instrumental variables

for education. These have to fulfill two requirements. First, they have to be independent

from the error terms of our econometric model (exogeneity of instruments). This implies

that only education is directly affected by the instrumental variables, but neither the

wage nor the probability of labor market participation. This is the exclusion restriction

associated with the reduced form equation for education. The second requirement

for instrumental variables is that they be (highly) correlated with the variable to be

instrumented, which is education in our case. Instrumental variables which fulfill these

4Labor market participation refers only to FTFY working women, as discussed above.
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requirements (especially the first one) are hard to find. We exploit the idea used by

Angrist and Krueger (1991) to resolve this issue. In their well-known study, Angrist and

Krueger (1991) used the quarter of birth (and various interactions) as an instrumental

variable for education. The idea is that children in the United States attend school

in the year they turn six, where December 31st is the cutoff date. Thus, a child who

turns six late in the year attends school at the age of five, whereas a child who turns

six early in the year attends school at the age of six. Since the legal high school drop

out age in the United States is 16 years of age, Angrist and Krueger (1991) argue that

children born late in the year attend school at an earlier age and, thus, stay longer

in school. Hence, the quarter of birth has an impact on education and, moreover, it

can be considered to be randomly assigned. Therefore, both requirements for (valid)

instrumental variables are fulfilled, at least in theory.

Table 4.1 contains some summary statistics for the variables appearing in our model

formulation. Note that the selection indicator d has a mean of about 0.31, meaning

that 31 percent of the women are working full time full year. In total, we have 840,173

observations. Note further that the quarter of birth dummies have rather similar means,

which indicates that the instrumental variable quarter of birth is indeed randomly

assigned.

Before we proceed, we provide some evidence that the second requirement for valid

instrumental variables, i.e. that the instrumental variables have an impact on education,

is fulfilled. In Table 4.2 we listed the means of education by quarter of birth. As can

be seen, the mean of education is largest in the last two quarters of the year, which is

in accordance with the Angrist and Krueger (1991) idea. Furthermore, we estimated

the reduced form equation for education in advance. Table 4.3 contains the results.

The estimated coefficients of qtr1 to qtr3 support the descriptive evidence that women

born late in the year have higher education on average (note that the fourth quarter,

i.e. qtr4 serves as the base category). Important is the value of the F statistic in the
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last row of Table 4.3. The F statistic is associated with a test of the joint hypothesis

that the coefficient of each instrumental variable is equal to zero. A large value of the

F statistic indicates that the instrumental variables have a strong impact on education.

In our case the F statistic is 36.23, which is not too low but may be considered relatively

small, given the sample size of 840,173 observations. We will make some remarks on

the strength of the instruments when we present our estimation results below.

We now turn to our estimation procedure. As described in Section 4.2, we used a

series expansion to approximate the unknown functions g and h. As basis functions

we chose polynomials, so that we approximated g and h by polynomial expansions.

For the c.d.f. Φ(·) we selected the standard normal distribution function. However,

before we estimated the system of equations in a minimum distance framework, we

determined in advance the number of sieve terms (i.e., K) by estimating reduced form

versions of the main equation and the selection equation (i.e., both including the reduced

form expression for education) separately and considering which K seemed appropriate.

Concerning h we found that K = 1 is appropriate. We obtained this conclusion by

trying different K’s and found that estimates of the structural parameters were rather

stable for low K, but became unstable thereafter due to the multicollinearity caused by

the increased sieve terms. We then estimated the main equation, using polynomials of

the estimated index w′γ̂n (from the selection equation) to approximate the (unknown)

control function. Due to similar reasoning as in case of the selection equation, we

selected K = 3 as the appropriate number of sieve terms for g.

We estimated four different models. Model I is the basic model given by eq. (4.37)-

(4.39). In this model, both sample selectivity and endogeneity of education are being

accounted for. Model II treats education as exogenous, hence only the first two equa-

tions (4.37)-(4.38) are estimated. Note that we can estimate Model II in the same

way as Model I, since a sample selection model without endogeneity is a special case of

our proposed sample selection model with endogeneity. We selected the number of sieve
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terms in an analogous manner as in case of Model I and found that K = 3 is appropriate

for approximating both g and h. Model III assumes that there is no sample selectiv-

ity, but endogeneity of education. We estimate this model by instrumental variable

techniques. Model IV comprises the main equation only, hence it assumes that neither

sample selectivity nor endogeneity of education is present. This model is estimated by

ordinary least squares (OLS).

Estimation results are presented in Table 4.4. The estimated standard errors are

heteroskedasticity-robust in case of all models. In particular, the estimated standard

errors for Models I and II have been obtained according to the formula in Theorem 2.

Moreover, we utilized the results by Ackerberg et al. (2012) and obtained the standard

errors from a nonlinear minimum distance estimation routine, proceeding as if the

estimation problem was parametric. As described in Section 4.3, these standard error

estimates are numerically equivalent to those which would have been obtained if we

treated the estimation problem as semiparametric (what is indeed the case!).

From Table 4.4 we see that the estimated coefficients of the main equation are rather

similar across the four models. In particular, the estimate of the returns to education

is approximately 5 percent, so that a one year increase in education is associated with

a wage increase of approximately 5 percent on average. Since the estimates of Model

I are rather similar to those of Models II (which controls for sample selectivity only)

and IV (which does not account for sample selectivity and/or endogeneity), one may

raise the question whether it is important at all to account for sample selectivity and/or

endogeneity in case of our data. The instrumental variable results in Model III reveal

that the coefficient of education may be larger than the OLS estimate, although the

standard error of this coefficient is relatively large. Hence, endogeneity seems to be

important to some extent. The question is why Model I nevertheless yields an estimate

which is similar to the OLS estimate, although endogeneity seems to be present. The

answer lies in the selection equation. Note that the coefficient of education in the
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selection equation is very different in Models I and II. In Model I, the coefficient is

seven times larger. Thus, endogeneity seems to be a very important issue in the selection

equation.

The estimates of the selection equation in Models I and II and the instrumental

variable estimates of the main equation in Model III indicate that endogeneity is indeed

present in main and selection equation. However, the effect of endogeneity in the main

equation seems to be offset by the corresponding effect in the selection equation, as

both equations are interrelated through the control function. This may explain why the

OLS (Model IV) estimates are not very different from those in Model I, which accounts

for both endogeneity and sample selectivity.

In sum, we have evidence that Model I which accounts for sample selectivity and

endogeneity jointly is the appropriate model to estimate the female returns to education.

Regarding the fact that the estimated coefficient of education is similar to those obtained

under models which only account for selectivity (Model II) or neither selectivity nor

endogeneity (Model IV), we note that the standard error of the estimate in Model I

is rather large. This may indicate that the effect of the instrumental variables on the

education variable is not sufficiently strong to get precise estimates. Since the confidence

interval around the coefficient of education is quite large, the “true” coefficient may be

far larger or far smaller than 0.05. One could argue that better instruments would

be needed to identify whether OLS under- or overstates the “true” female returns to

education.

However, we can also get more precise estimates by choosing the weighting matrix

of our minimum distance approach optimally, as described in Section 4.3. For the

calculations up to now we simply used the identity matrix as the weighting matrix,

which is not optimal of course as the conditional moment restrictions are correlated.

To exploit this correlation pattern, we followed Ai and Chen (1999) and used the three-

step procedure described in Section 4.3 to obtain efficient estimates. That is, we first
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obtained an estimate of the model parameters using the identity matrix as the weighting

matrix. We then calculated the residuals

η̂1i = di(y1i − x′iβ̂n − ĝn(w′iγ̂n)) (4.40)

η̂2i = di − Φ(ĥn(w′iγ̂n)) (4.41)

η̂3i = y2i − x′iα̂n (4.42)

for each individual i = 1, . . . , n, where we used the notation from Section 4.2. Since we

have discrete covariates in w, a nonparametric estimator of Σ0(w) is given by

Σ̂0(w) =
1
n

∑n
i=1 η̂iη̂

′
i 1(wi = w)

1
n

∑n
i=1 1(wi = w)

, (4.43)

where η̂ = (η̂1, η̂2, η̂3)′. Put differently, we computed the cell means of η̂η̂′ for each

combination of w. We then used Σ̂0(w) as the (optimal) weighting matrix to obtain

efficient estimates.

These efficient estimates are presented in Table 4.5. Overall, the estimates are

similar to those in Table 4.4. However, the returns to education are estimated with

more precision, and they are smaller than those in Table 4.4 (3.3 percent instead of

5 percent). Therefore, the efficient estimates indicate that Models II-IV overstate the

returns to education. That is, when both selectivity and endogeneity issues are jointly

accounted for, the estimate of the returns to education is smaller than obtained under

models which control for selectivity only (Model II), endogeneity only (Model III) or

neither (Model IV).

4.5 Conclusions

In this chapter, we proposed a one-step sieve estimation strategy for a sample selec-

tion model with endogenous covariates. We showed that our estimator is consistent
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and asymptotically normally distributed. With regard to the conjecture that inference

based on a semiparametric model may be complicated, we demonstrated that this is not

the case for our estimator. Actually one can treat the estimation problem as if it were

parametric and obtain standard errors and confidence intervals in the usual parametric

way. As demonstrated by Ackerberg et al. (2012), these (estimated) standard errors

and confidence intervals are numerically equal to those obtained under the (correct)

presumption that the estimation problem was semiparametric. Put differently, with re-

spect to coefficient estimates and estimated standard errors it does not matter whether

we treat the estimation problem as parametric or semiparametric. Hence, our estima-

tion strategy can be easily implemented by practitioners, who might favor parametric

models.

We presented an application of our strategy to the (married) female returns to ed-

ucation. Our empirical results clearly demonstrate that both accounting for sample

selectivity as well as for endogeneity of education is important, as the returns to educa-

tion are smaller than obtained under models which do not account for the joint presence

of selectivity and endogeneity.

Many researcher using selection models assume (implicitly) that covariates are ex-

ogenous. However, such an assumption may not be appropriate, as in our empirical

example on the female returns to education. We hope that future research puts more

emphasis on endogeneity issues in sample selection models, since it is likely that such

issues are important in empirical work.
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4.6 Tables

Table 4.1: Summary statistics

Variable Mean Standard deviation Min Max
lwage 2.4264 0.3312 1.7084 3.1137
d 0.3091 0.3091 0 1
age 38.3789 8.8685 25 54
educ 12.1587 2.3881 0 17
nchlt5 0.3369 0.6312 0 6
qtr1 0.2477 0.4317 0 1
qtr2 0.2411 0.4278 0 1
qtr3 0.2628 0.4402 0 1
qtr4 0.2484 0.4321 0 1
Number obs.: 840,173

Source: 1980 U.S. Census data; own calculations.
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Table 4.2: Mean of education by quarter of birth

educ
qtr1 (Jan-Feb-March) 12.1338
qtr2 (April-May-June) 12.1169
qtr3 (July-Aug-Sept) 12.1846
qtr4 (Oct-Nov-Dec) 12.1965

Source: 1980 U.S. Census data; own calculations.

Table 4.3: Reduced form estimates for education

Coeff. (Std.err)
age -0.0053 (0.0030)
age2 -0.0006 (0.0000)
qtr1 -0.0516 (0.0073)
qtr2 -0.0625 (0.0073)
qtr3 -0.0088 (0.0072)
const 13.2851 (0.0572)
F statistic 36.23

Source: 1980 U.S. Census data; own calculations.



4.6 Tables 105

Table 4.4: Estimation results

Model I Model II Model III Model IV
Main equation (dep. var.: lwage)
age 0.0123 0.0164 0.0145 0.0104

(0.0009) (0.0008) (0.0067) (0.0007)
age2 -0.0001 -0.0002 -0.0001 -0.0001

(0.0000) (0.0000) (0.0001) (0.0000)
educ 0.0500 0.0500 0.0734 0.0520

(0.0240) (0.0004) (0.0341) (0.0003)
const 1.1579 1.5271

(0.5889) (0.0142)
Selection equation
age -0.1291 -0.0995

(0.0022) (0.0021)
age2 0.0016 0.0010

(0.0001) (0.0000)
educ 0.4601 0.0615

(0.0717) (0.0009)
nchlt5 -1 -1

(-) (-)
Reduced form equation for educ
age -0.0031

(0.0030)
age2 -0.0006

(0.0000)
qtr1 -0.0555

(0.0070)
qtr2 -0.0627

(0.0072)
qtr3 -0.0141

(0.0066)
const 13.2415

(0.0562)

Note: Heteroskedasticity-robust standard errors in parentheses.

Source: 1980 U.S. Census data; own calculations.
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Table 4.5: Efficient estimates

Coeff. (Std.err)
Main equation (dep. var.: lwage)
age 0.0118 (0.0005)
age2 -0.0001 (0.0000)
educ 0.0329 (0.0138)
Selection equation
age -0.1246 (0.0024)
age2 0.0015 (0.0001)
educ 0.5268 (0.0737)
nchlt5 -1 (-)
Reduced form equation for educ
age 0.0101 (0.0029)
age2 -0.0007 (0.0000)
qtr1 -0.0538 (0.0064)
qtr2 -0.0639 (0.0068)
qtr3 -0.0152 (0.0056)
const 12.9174 (0.0549)

Source: 1980 U.S. Census data; own calculations.



Chapter 5

Semiparametric Estimation of a

Binary Choice Model with Sample

Selection

This chapter is a revision of the discussion paper No. 505, Department of Economics

and Business Administration, Leibniz University Hannover (Schwiebert, 2012d). I thank

Melanie Schienle for providing valuable comments.

5.1 Introduction

Since the seminal work of Heckman (1979), the sample selection model has become a

standard tool in applied econometrics. Its objective is to obtain consistent estimates of

the parameters of interest by removing a potential sample selection bias. In most cases,

the sample selection model consists of a main equation with a continuous dependent

variable (which is only partially observable) and a binary selection equation determining

whether the dependent variable of the main equation is observed or not.

In this chapter, we consider semiparametric estimation of a binary choice model
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with sample selection. That means, we do not assume a continuous dependent variable

in the main equation but a binary one instead, taking only the values one or zero.

Parametric estimation typically involves an assumption on the distribution of error

terms (e.g., bivariate normal) and the setup of an appropriate likelihood function which

is then maximized to obtain parameter estimates. However, as in the ordinary sample

selection model originated by Heckman (1979), a parametric assumption on the joint

distribution of error terms gives inconsistent parameter estimates if these assumptions

are not fulfilled.

For these reasons, several authors have analyzed semi-nonparametric methods to

estimate the ordinary sample selection model which assumes a continuous dependent

variable; examples include Gallant and Nychka (1987), Powell (1987), Ahn and Powell

(1993), Das et al. (2003) and Newey (2009). Only Klein et al. (2011) provided a

semiparametric maximum likelihood estimator for a sample selection model with a

binary dependent variable. However, their estimator is one-step, and thus may be

computationally demanding if the sample size and/or the number of covariates is large.

In this chapter we consider two-step estimators, which may be less computationally

demanding. In particular, we propose two different estimation strategies based on two

distinct assumptions on the sample selection mechanism. Both strategies may be asso-

ciated with what has been called the “control function approach”. Our first estimation

strategy is an extension of the Klein and Spady (1993) semiparametric estimation pro-

cedure for binary choice models. More specifically, our approach closely resembles the

one of Rothe (2009), who extended the Klein and Spady estimator to a binary choice

model with endogenous covariates. We can follow Rothe’s approach since handling

endogeneity and sample selectivity is conceptually similar.

Our second estimation strategy is based on augmenting the main equation with a

“control function” term which accounts for sample selectivity. This term is simply a

generalization of the inverse Mills ratio term in the ordinary sample selection model.
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We will show how combining “similar” observations makes it possible to get rid of

the unknown control function, so that the resulting model can be estimated by known

techniques. In particular, we employ the maximum score estimator due to Manski

(1975) and the smoothed maximum score estimator due to Horowitz (1992). This

approach is conceptually similar to Powell (1987).

A sample selection models for a binary dependent variable was first considered by van

de Ven and van Praag (1981). They simply augmented a probit model with an inverse

Mills ratio term and estimated the model by maximum likelihood. The authors proposed

to consider these probit estimates as approximative since the probit specification is

inappropriate (as the error term after including the inverse Mills ratio term is not

normally distributed even if the original error term is normally distributed). However,

van de Ven and van Praag (1981) also provide the “true” likelihood function (based on a

joint normality assumption).1 The reason why the authors considered the approximative

probit model with the inverse Mills ratio term included instead of the true likelihood

function was due to the computational costs of maximizing the true likelihood function

at that time.

The van de Ven and van Praag (1981) model has often been employed in empirical

research. Van de Ven and van Praag (1981) used their model to analyze empirically the

demand for deductibles in private health insurance. Further examples of application

of the model include, for instance, Boyes et al. (1989), Greene (1992) and Mohanty

(2002). While Boyes et al. (1989) and Greene (1992) used the model to analyze loan

default probabilities, Mohanty (2002) employed the model to study teen employment

differentials in Los Angeles county.

However, the van de Ven and van Praag (1981) model is parametric since it relies

on a joint normality assumption on the error terms in the (latent) main equation and

the selection equation. As raised above, parametric estimation leads to inconsistent

1Meng and Schmidt (1985) also analyzed this model and provided the likelihood function.
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parameter estimates if the parametric assumptions are not fulfilled.

We will investigate the consequences of estimating a misspecified parametric model

in a small Monte Carlo study, in which we will also investigate the finite sample proper-

ties of our proposed semiparametric estimators. We also provide an empirical example

in which we apply parametric and semiparametric estimators to study the determinants

which lead women to work from home. In this example, we show how semiparametric

estimates may indicate that parametric estimates are subjected to misspecification.

The remainder of this chapter is organized as follows. In Section 5.2 we set up the

econometric model. In Section 5.3 we review parametric estimation of the model, and

in Section 5.4 we propose our semiparametric estimation strategies. In Section 5.5, we

conduct a small Monte Carlo study to compare the performance of the parametric and

semiparametric estimators in small samples. Section 5.6 contains an empirical example

where we apply our estimators to real data. In Section 5.7, we extend our model to

the case where explanatory variables are allowed to be endogenous. Finally, Section 5.8

concludes the chapter.

5.2 The Model

The model we consider is given by

y∗i = x′iβ + εi (5.1)

d∗i = w′iγ + ui (5.2)

di = 1(d∗i > 0) (5.3)

yi =


1(y∗i > 0) if di = 1

“missing” otherwise

, (5.4)
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where i = 1, . . . , N indexes individuals. The first equation is the main equation of

interest, where y∗ is the latent dependent variable, x is a vector of exogenous explanatory

variables and ε is an error term. The second equation is the selection equation, where

d∗ is the latent dependent variable, w is a vector of exogenous explanatory variables and

u is an error term. The third equation expresses that only the sign of d∗ is observable.

By equation (5.4), the same is true for y∗, but only if d is equal to one. Otherwise, y∗

cannot be observed (“missing”). This model differs from the ordinary sample selection

model by the fact that the dependent variable of the outcome equation is binary, taking

only the values one or zero.

Now we make three assumption which are assumed to hold irrespective of whether

the model is estimated by parametric or semiparametric techniques. The first assump-

tion is standard in sample selection modeling and is needed to identify the parameters

of our model:

Assumption 1: w contains at least one variable (with a nonzero coefficient) which

is not included in x.

Assumption 1 is a well-known exclusion restriction on the variables appearing in the

main equation. It says that there is at least one variable included in the selection equa-

tion which can be excluded from the main equation (i.e., a variable that has no direct

impact on the dependent variable).

Our next assumption is on the sampling process:

Assumption 2: {y∗i , xi, d∗i , wi}Ni=1 is an i.i.d. sample from some underlying distri-

bution. yi ≡ 1(y∗i > 0) is observable if and only if di ≡ 1(d∗i > 0) = 1.

We further require that there is no “multicollinearity”:

Assumption 3: x and w are not contained in any proper linear subspace of RK and

RL, respectively, where K and L denote the dimension of x and w, respectively.

This is again a standard assumption which is needed to identify the model parameters.

Having made these basic assumptions, we proceed to consider parametric and semi-
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parametric estimation of our model.

5.3 Parametric Estimation

We briefly consider parametric estimation of the model set up in the last section, as

proposed by van de Ven and van Praag (1981).2 To do this, we have to make an

assumption on the joint distribution of the error terms of main and selection equation.

Assumption H: (ε, u) has a bivariate standard normal distribution with correlation

coefficient ρ, i.e. Pr(εi < a, ui < b|xi, wi) = Φ2(a, b; ρ) ∀i = 1, . . . , N , where Φ2(·, ·; ρ)

denotes the bivariate standard normal c.d.f. with correlation coefficient ρ.

The log-likelihood function for this model is given by

logL(β, γ) =
N∑
i=1

log(1− Φ(w′iγ))1(di = 0) +
N∑
i=1

log(Φ2(x′iβ, w
′
iγ; ρ))1(di = 1, yi = 1)

+
N∑
i=1

log(Φ2(−x′iβ, w′iγ;−ρ))1(di = 1, yi = 0), (5.5)

where Φ(·) denotes the univariate standard normal c.d.f. Maximization of the log-

likelihood function can be carried out as usual, giving estimates of β and γ which are

consistent, asymptotically normal and asymptotically efficient (provided Assumption H

holds). Formally, we establish Theorem H:

Theorem H: Let θ = (β̂′, γ̂′)′. Under Assumptions 1, 2, H and standard regularity

conditions as in Amemiya (1985, Theorems 4.1.2 and 4.1.3), we have that (a) θ̂ − θ =

op(1) and (b)
√
N(θ̂ − θ) d−→ N (0, I(θ)−1), where I(θ) = N−1E

[
∂L
∂θ

∂L
∂θ′

]
.

Proof: Follows from standard maximum likelihood theory; see Amemiya (1985),

chapter 4. �

We will denote the (parametric) maximum likelihood estimator of β by β̂H , where

the “H” is a shortcut for “Heckprob”, named after the STATA command for estimat-

2Also see Greene (2008), pp. 895-897.
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ing a probit model with sample selection. Note that Assumption 1 is technically not

needed for identification, since identification is already ensured by the parametric as-

sumptions. However, in practice researchers might not want to identify β by functional

form assumptions alone.

As already raised in the introduction, the “Heckprob” estimator loses its (asymp-

totic) optimality properties if the assumptions on the distribution of the error terms are

not satisfied. In the next section, we will consider semiparametric estimation procedures

which do not rely on strong parametric assumptions.

5.4 Semiparametric Estimation

In order to estimate the model set up in Section 5.2 semiparametrically, we first have

to make an identifying assumption. Assumption 1 from Section 5.2 is a necessary

assumption to identify the model parameters but it is not sufficient.3 Here we give two

identifying assumptions which give rise to different estimation strategies.

Assumption 4: Either

(a) Pr(yi = 1|di = 1, xi, wi) = E[1(εi > −x′iβ)|w′iγ] = G(x′iβ, w
′
iγ) with ∂G(u,v)

∂u
>

0 ∀i = 1, . . . , N or

(b) median[εi|di = 1, xi, wi] = median[εi|w′iγ] = g(w′iγ) ∀i = 1, . . . , N

holds with probability one.

Assumption 4 (a) allows to estimate the model parameters by semiparametric max-

imum likelihood. In particular, we propose to estimate β by Rothe’s (2009) extension

of the Klein and Spady (1993) semiparametric estimation procedure for binary choice

3Of course, Assumption 3 is needed for identification as well. We highlight Assumption 1 because
it is specific to sample selection models, whereas Assumption 3 is a more general assumption which is
usually required to hold in any point-identified econometric model.
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models. Note that the log-likelihood function of our observed sample is given by

logL(β|γ = γ̂) =
1

n

n∑
i=1

yi log(G(x′iβ, w
′
iγ̂)) + (1− yi) log(1−G(x′iβ, w

′
iγ̂)), (5.6)

where n < N is the number of observations for which y is observable. Note that we used

a preliminary estimate of γ in the log likelihood function. In principle, we could estimate

the parameters of main and selection equation simultaneously which would be efficient.

However, two-stage estimators are often preferred due to a reduction of dimensionality

and computational issues regarding the stability of numerical optimization routines.

Consequently, we assume that the parameters in γ can be consistently estimated by

some first-stage estimation procedure:

Assumption 5: For the first-stage estimator of γ, it holds that γ̂ − γ = op(1).

However, the log-likelihood function cannot simply be maximized in order to yield

estimates of β since the function G(·) is unknown. Klein and Spady (1993) and Rothe

(2009) suggest to replace this function by kernel density estimates. More specifically,

Ĝ(x′iβ, w
′
iγ̂) =

1
n

∑n
j 6=i yj

1
hxhw

K(x′iβ/hx)K(w′iγ̂/hw)
1
n

∑n
j 6=i

1
hxhw

K(x′iβ/hx)K(w′iγ̂/hw)
, (5.7)

where K : R → R is a univariate kernel density function (e.g., the standard normal

probability density function) and hx and hw are bandwidth parameters satisfying hx → 0

and hw → 0 as n→∞. Then, estimation can be performed as usual with G(·) in (5.6)

replaced by (5.7), i.e.,

β̂KS = arg max
β

1

n

n∑
i=1

yi log(Ĝ(x′iβ, w
′
iγ̂)) + (1− yi) log(1− Ĝ(x′iβ, w

′
iγ̂)). (5.8)

Since the coefficients of a binary choice model are only identified up to scale, we

have to put a restriction on β. A common choice is to set the first component of β

equal to one, i.e., β = (1, β̃′)′.
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In order to prevent the log-likelihood function from becoming unbounded, one could

multiply the contribution of a single observation in the log-likelihood function with a

trimming factor τi, which excludes observations for which G(x′iβ, w
′
iγ̂) is close to one or

zero. Introducing trimming facilitates the derivation of the asymptotic distribution of

the estimator, but is usually ignored in practical applications.

Furthermore, we restate in slightly modified form the assumptions in Rothe (2009)

used to establish the consistency (and asymptotic normality) of his estimator. We

summarize these assumptions in Assumption 6:

Assumption 6:

a) There exists a unique interior point β̃ ∈ B such that the relationship E[y|x,w, d =

1] = E[y|x′β, w′γ] holds for (x,w) ∈ A, a set with positive probability.

b) The parameter space B is a compact subset of RK−1 and β̃ is an element of its

interior.

c) (i) For all β̃ ∈ B, the distribution of the random vector (x′β, w′γ) admits a

density function f(x′β, w′γ) with respect to Lebesgue measure.

(ii) For all β̃ ∈ B, f(x′β, w′γ) is r times continuously differentiable in its argu-

ments and the derivatives are uniformly bounded.

(iii) For all β̃ ∈ B, G(x′β, w′γ) is r times continuously differentiable in its argu-

ments and the derivatives are uniformly bounded.

(iv) f(x′β, w′γ) and G(x′β, w′γ) are twice continuously differentiable in β̃.

d) For X a compact subset of the support of (x,w), define T (X ) = {t ∈ R2 : ∃(x,w) ∈

X , β̃ ∈ B s.t. t = (x′β, w′γ)}. Then X is chosen such that:

(i) inft∈T (X ),β̃∈B f(x′β, w′γ) > 0

(ii) inft∈T (X ),β̃∈BG(x′β, w′γ) > 0 and supt∈T (X ),β̃∈BG(x′β, w′γ) < 1.
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e) The matrix

Σ = E

[
τ(∂G(x′β, w′γ)/∂β̃)(∂G(x′β, w′γ)/∂β̃)′

G(x′β, w′γ)(1−G(x′β, w′γ))

]

is positive definite.

f) The kernel function K : R → R satisfies (i)
∫
K(z)dz = 1, (ii)

∫
K(z)zµdz = 0

for all µ = 1, . . . , r − 1, (iii)
∫
|K(z)zµ|dz < ∞ for µ = r, (iv) K(z) = 0 if

|z| > 1, (v) K(z) is r times continuously differentiable.

g) The bandwidths hx and hw satisfy: h = cn−δ, h ∈ {hx, hw} for some constant

c > 0 and δ such that 1/(2r) < δ < 1/8.

We can now establish the following theorem:

Theorem 1: Under Assumptions 1-3, 4 (a), 5 and 6, we have that ˆ̃βKS− β̃ = op(1)

.

Proof: Our estimation approach is conceptually the same as in Rothe (2009). The

difference is that Rothe proposes a control function approach to control for endogeneity

of covariates instead of sample selectivity. In his derivations, a reduced form error term

(resulting from the reduced form equation of the endogenous explanatory variable) plays

the same role as w′γ does for our estimator. We can thus follow the arguments in

Rothe (2009), who derives consistency (and asymptotic normality) of his estimator (by

checking whether the conditions in Chen, Linton and van Keilegom, 2003, are fulfilled).

�

Instead of deriving the asymptotic distribution to conduct inference, we follow

Rothe’s (2009) arguments and propose to employ the bootstrap for inference. The

reason is that the asymptotic distribution of this estimator depends on unknown deriva-

tives which would have to be computed in order to calculate the asymptotic variance.

Hence, using the bootstrap is a simpler way to obtain standard errors in practice.
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Now we consider estimation when Assumption 4 (b) is valid. Assumption 4 (b) is

on the conditional median of ε. It allows to rewrite the (observable part of the) main

equation as

y∗i = x′iβ + g(w′iγ) + vi, i = 1, . . . , n, (5.9)

where vi ≡ εi −median[εi|w′iγ]. Since, by construction, v has a conditional median of

zero, we could apply Manski’s (1975) maximum score estimator to obtain parameter

estimates. Again, this is not feasible as the function g(·) is unknown. However, suppose

we have two individuals with the same value of w′γ. In that case, we can subtract

equation (5.9) for individual i from the equation for individual j, i.e.,

y∗i − y∗j = (xi − xj)′β + g(w′iγ)− g(w′jγ) + vi − vj (5.10)

= (xi − xj)′β + vi − vj. (5.11)

The differencing in equations (5.10) and (5.11) resembles the underlying idea of Manski’s

(1987) conditional maximum score approach for binary panel data. In the panel data

approach, an individual specific “fixed effect” is removed by differencing over time for a

given individual, while in our case we have a cross sectional data set and use differencing

to remove an unknown function.

Moreover, Powell (1987) used the same strategy to estimate an ordinary sample

selection with a continuous dependent variable. He also augmented the main equation

with a control function, which is a generalization of the inverse Mills ratio term occurring

in the ordinary Heckman selection model with normally distributed error terms. As

in our approach, Powell then combined “similar” observations, differenced the main

equations, thereby eliminating the unknown control function, and estimated the model

parameters using the differenced variables.4

4This strategy has also been used by Ahn and Powell (1993). In their case, the control function
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Note that despite of the model transformation in equations (5.10) and (5.11) due to

differencing we are still able to identify the parameters in β. We simply combine only

observations for which yi 6= yj. Then, we have the following correspondence:

y∗i − y∗j


> 0 if yi = 1 ∧ yj = 0

< 0 if yi = 0 ∧ yj = 1

, (5.12)

which implies that the transformed model using only observations with yi 6= yj is again

a binary choice model. Since the conditional median of the differenced error terms is

zero, we can apply the maximum score estimator to the transformed model in order to

obtain an estimate of β.

In general, however, w′γ will assume a continuum of values rather than a finite

number. Hence, it will be nearly impossible to find and combine observations with

the same value of the selection index w′γ. Instead, one may combine individuals with

a “similar” index value. This yields a maximum score estimator which puts most

weight on pairs of observations which have “close” selection indexes. More precisely,

our proposed estimator of β is given by

β̂MS = arg max
β
− 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)1(yi 6= yj), (5.13)

where ỹij = 1(y∗i − y∗j > 0), x̃ij = xi − xj, w̃ij = wi − wj, K : R → R is a univariate

kernel density function which is bounded, absolutely integrable and symmetric about

zero, and h is a bandwidth parameter which converges to zero when the sample size

approaches infinity. Note that the minimization problem in equation (5.13) uses only

observations for which yi 6= yj, and, for the same reasons as given above, preliminary

depends on the probability of being selected. On the contrary, in our and Powell’s (1987) approach,
the control function depends on the selection index w′γ. A further application of the strategy has been
provided by Kyriazidou (1997), who considered semiparametric estimation of a panel data sample
selection model.
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estimates of γ.

Note further that K(·) serves as a weighting function. In particular, pairs of obser-

vations who are very similar in their selection index w′γ receive a relatively large weight,

whereas pairs of observations who differ substantially in w′γ take a weight which is close

to zero. In the limit, only pairs of observations with very close selection indexes receive

a positive weight. So in the limit it is possible to base estimation on pairs of observa-

tions with roughly the same selection index, so that the impact of the control function

vanishes (since it is completely differenced out) and we can consistently estimate the

model parameters.

However, since the objective function in (5.13) is not differentiable it may be diffi-

cult to obtain parameter estimates. Horowitz (1992) proposes a smoothed maximum

score estimator which features a smooth objective function. Using that estimator, our

estimation problem may be written as

β̂SMS = arg max
β

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)1(yi 6= yj),

(5.14)

where Φ(·) is a smooth function satisfying limu→−∞Φ(u) = 0 and limu→∞Φ(u) = 1, and

hx is a bandwidth parameter which converges to zero when the sample size approaches

infinity.

Note again that both the maximum score and the smoothed maximum score esti-

mator estimate β only up to scale. We will set the same identifying assumption as in

the case of the Klein and Spady estimator, hence β = (1, β̃′)′.

In order to establish consistency of ˆ̃βMS and ˆ̃βSMS we need some further assump-

tions which lead to consistency of the maximum score and smoothed maximum score

estimators in general, i.e. without sample selectivity. We take these assumptions from

Horowitz (1992) and summarize them in Assumption 7:
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Assumption 7:

a) 0 < Pr(ỹ = 1|x̃, w̃′γ = 0) < 1 for almost every x̃.

b) β1 6= 0, and for almost every (x̃2, . . . , x̃K), the distribution of x̃1 conditional on

(x̃2, . . . , x̃K) and w̃′γ = 0 has everywhere positive density with respect to Lebesgue

measure.

c) β1 = 1 and β̃ is contained in a compact subset of RK−1.

Moreover, we need an assumption on the marginal distribution of w̃′γ, which is

taken from Assumption R4 in Kyriazidou (1997):

Assumption 8: The marginal distribution of W ≡ w̃′γ is absolutely continuous,

with density function fW which is bounded from above on its support and strictly positive

at zero, i.e. fW (0) > 0.

We establish the following theorem:

Theorem 2: Under Assumptions 1-3, 4 (b), 5, 7 and 8 we have that ˆ̃βMS − β̃MS =

op(1) and ˆ̃βSMS − β̃SMS = op(1).

Proof: First, let

SMS(β) = − 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)1(yi 6= yj)

and

SSMS(β) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)1(yi 6= yj).

denote the objective function whose maximization yields ˆ̃βMS and ˆ̃βSMS, respectively.

Combining Lemma A1 of Kyriazidou (1997) with a law of large numbers for U-statistics

(see Serfling, 1980, Theorem A, p. 190) and Lebesgue’s dominated convergence theorem
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(see Billingsley, 1995, Theorem 16.4.) to handle γ̂, we obtain that

SMS(β)
p−→ S∗(β) uniformly

and

SSMS(β)
p−→ S∗(β) uniformly,

where S∗(β) = −fW (0)E
[
|ỹij − 1(x̃′ijβ > 0)|1(yi 6= yj)|w̃′ijγ = 0

] ∫
K(v)dv. Uniform

convergence follows from the boundedness of the objective functions. The implied equiv-

alence of the probability limits of the maximum score and smoothed maximum score

objective functions has been proven by Horowitz (1992). To prove consistency of ˆ̃βMS

and ˆ̃βSMS, respectively, it remains to show that S∗ is uniquely maximized at β̃. To do

this, we just have to consider the expectation term in S∗ as the remaining terms are

independent of β̃, so S∗ is maximized when the expectation is minimized. Since the

expectation in S∗ is conditional on w̃′γ = 0, we just have the situation of an “ordinary”

binary choice model where there is no unknown function g(·). We just have a binary

dependent variable ỹ and a set of covariates x̃. Hence, the same arguments which are

needed to show point-identification of the maximum score estimator can be applied (see

Manski, 1985, or Newey and McFadden, 1994, p.2139) to show point-identification of β̃,

which in connection with the uniform convergence of SMS and SSMS towards S∗ implies

convergence in probability of ˆ̃βMS and ˆ̃βSMS towards β̃. �

We do not provide asymptotic distribution theory for these estimators since in case

of the maximum score estimator the form of the asymptotic distribution is very compli-

cated and not suitable for practical inference; as an alternative, Manski and Thompson

(1986) examined the performance of the bootstrap and found encouraging results. In

case of the smoothed maximum score estimator Horowitz (1992) derived the asymptotic

distribution and reported a relatively weak finite sample performance of the asymptotic
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theory, hence he also proposes to use the bootstrap.

We follow these lines of reasoning and propose to use the bootstrap for obtaining

standard errors, too; for instance, the standard errors in our empirical example in

Section 5.6 have been obtained in that way.

5.5 Monte Carlo Evidence

In this section, we provide some (limited) Monte Carlo evidence on the finite sample

performance of our proposed estimators. We not only consider the behavior of the

semiparametric estimators from Section 5.3, but also the behavior of the parametric

“Heckprob” estimator from Section 5.2. Our simulated model is given by

y∗i = β1qi + β2xi + εi (5.15)

d∗i = xi + wi + ui (5.16)

εi = ui + νi (5.17)

di = 1(d∗i > 0) (5.18)

yi =


1(y∗i > 0) if di = 1

“missing” otherwise

, (5.19)

i = 1, . . . , N , where β1 = β2 = 1, x ∼ U[0,1], q ∼ N (1, 1) and w ∼ N (1, 1).

For u and ν, we consider the following distributions:

(i) u ∼ N (0, 1), ν ∼ N (0, 5)

(ii) u ∼ N (0, 1), ν ∼ 0.8N (−1, 0.6) + 0.2N (4, 2)

(iii) u ∼ N (0, exp(0.1 + 0.5(x+ w))), ν ∼ N (0, 5)

(iv) u ∼ N (0, 1), ν ∼ N (0, exp(0.1 + 0.5(q + x))).
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Except for distribution (iii), these distributions have been taken from Rothe (2009). In

case of distribution (i) we have a normal distribution for which the parametric “Heck-

prob” estimator should yield consistent estimates. Distribution (ii) is a mixture of two

normal distributions. Its density is skewed to the right and bimodal (see Rothe, 2009).

Distribution (iii) aims to consider the effects of conditional heteroskedasticity in the

selection equation. In this case, all three semiparametric estimation procedures should

yield consistent estimates. On the other hand, distribution (iv) implies conditional

heteroskedasticity in the main equation only. In this specification, only the Klein and

Spady estimator should yield consistent estimates.

Note that our proposed estimators each require a normalization. We implemented

such a normalization by setting β1 equal to its true value of one. That means, the only

parameter to be estimated in the main equation is β2.

For all our proposed estimators, we have to specify kernel-type functions and band-

widths. We made the following choice: For the Klein and Spady estimator (KS), we

chose the standard normal p.d.f. as the kernel function. Instead of specifying band-

widths in advance, we follow Rothe (2009) and let the bandwidth choice be a part of the

optimization problem. Put differently, our optimization routine simultaneously seeks

for the optimal parameter values and the optimal bandwidth values. Advantages of

this procedure are that (a) there is no subjectivity in bandwidth choice and (b) a very

large value of hw would indicate that sample selection bias is not relevant (see Rothe,

2009).

In case of the maximum score estimator (MS), we chose the standard normal p.d.f.

as the kernel function and selected a bandwidth according to the rule h = n−1/6.5. For

the smoothed maximum score estimator (SMS) we chose the standard normal c.d.f. for

Φ(·) and the standard normal p.d.f. for K(·). We set hx = hw = n−1/6.5. We also

normalized the arguments of the kernel functions to have unit variance, which justifies

the choice of the same bandwidth rule for both kernel functions. In contrast to the
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Klein and Spady estimator, the bandwidths are given ad hoc rather than being part

of the optimization problem. We did this because computation of the maximum score

and smoothed maximum score estimator is relatively difficult due to the presence of

local optima. Instead, we specified the bandwidths in advance so that there is only one

parameter, i.e. β2, over which optimization is performed. To find the optimal value of

β̂2, we performed a grid search over the interval [−1, 3] with a step length of 0.005.

We performed the Monte Carlo simulations for sample sizes of N ∈ {250, 500, 1000}

and used 100 replications. For each simulation we computed the mean of the estimates

over the replications, as well as the standard deviation and the root mean squared error

(RMSE). These measures of estimator performance are typically used in Monte Carlo

studies and should help to gauge the performance of the estimators under consideration.

At first we seek to analyze the performance of our three proposed estimators inde-

pendently of the first-stage estimation of the selection index w′γ. Recall that each of

our semiparametric estimators relies on first-stage estimates of the selection index. In

principle, we could use any first-stage estimator provided we use the same estimator for

all three second-stage estimators (so that we can reasonably compare the second-stage

estimates). We, however, refrain for the moment from estimating the selection index

and consider how the estimators perform in an “ideal” situation where the selection

index is known, so that estimation results of the second stage are not contaminated by

estimation error in the first stage.

Table 5.1 contains the results for distribution (i) and a known selection index. We

see from Table 5.1 that, in terms of RMSE, the estimators perform better as the sample

size increases (as expected). However, we also see that the mean of the estimates

differs slightly from the true value of one even for the relatively large sample size of

N = 1000. The reason is that the estimates exhibit a lot of variation, as indicated

by the standard deviations. Among the three estimators, the maximum score and the

smoothed maximum score estimator have lower RMSE’s then the Klein and Spady
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estimator due to lower standard deviations, which means that these estimators seem

to be slightly more precise. We will investigate if this property also holds true for the

remaining distributions and in case that the selection index is estimated rather than

known in advance.

In Table 5.2, we reconsider distribution (i) but now the selection index is estimated.

For obtaining these estimates, we used the same type of estimator in the first stage

as in the second stage. That means, for the Klein and Spady estimator we used a

Klein and Spady estimator in the first stage, for the maximum score estimator we used

a maximum score estimator in the first stage and for the smoothed maximum score

estimator we used a smoothed maximum score estimator in the first stage. The idea

is that in practice it would seem a bit uncommon to use one semiparametric estimator

in the first stage and to use a different semiparametric estimator in the second stage,

at least in principle. In the empirical example in Section 5.6 we will, however, provide

a practical reason why using different estimators in first and second stage might be

sensible.

Note that Table 5.2 also contains results for the parametric “Heckprob” model from

Section 5.2. Since distribution (i) implies a normal distribution of the error terms in

main and selection equations, one might expect that the “Heckprob” model should per-

form quite well. Table 5.2 confirms this conjecture. We see that the estimators perform

relatively similar with respect to the standard deviation. The differing means are again

a result of the relatively great deal of variation of the estimators. When comparing these

results with those from Table 5.1 we see that there is not much difference in standard

deviations. Hence we may conclude that using the same type of estimator for first and

second stage does not lead to stark distortions between the estimators.

In Table 5.3 we consider the mixed normal distribution (ii). We can see that the

“Heckprob” estimator performs surprisingly well, having the least bias and the least

RMSE among all estimators and for all sample sizes. The standard deviations of the
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estimators are generally lower when compared to distribution (i), which is due to the fact

that the error term variance is smaller for distribution (ii). Among the semiparametric

estimators, the maximum score estimator has the least bias but the largest RMSE.

Table 5.4 contains results for distribution (iii) where we have conditional heteroskedas-

ticity in the selection equation but not in the main equation. In this case, all three

semiparametric estimators are consistent, whereas the “Heckprob” estimator is not.

However, from Table 5.4 we see that the “Heckprob” estimator performs very well. All

estimators exhibit a great deal of variation, which again explains the slight biases of

these estimators.

Finally, we consider distribution (iv), where we have conditional heteroskedasticity

in the main equation but not in the selection equation. In this case, only the Klein

and Spady estimator is consistent. From Table 5.5 we see that not only the Klein and

Spady estimator but also the remaining semiparametric estimators perform relatively

well. The “Heckprob” estimator, however, exhibits a larger bias than one might have

expected. Nevertheless, the “Heckprob” estimator has the smallest RMSE among all

estimators.

From these results, we can draw two major conclusions. First, in all considered

designs the estimators exhibit a lot of variation (as indicated by the standard devia-

tions). Moreover, we also experienced considerable variation between the estimators.

Hence, the first major conclusion is that one needs substantial sample sizes to obtain

precise estimates. Second, the parametric “Heckprob” estimator performs relatively

well even in situations where it should be biased. Of course, these results may be an

artifact of our simulation designs and need not hold in general. However, especially in

small sample sizes the parametric estimator may be a sensible alternative due to its

favorable RMSE properties. At least one could test the parametric estimator against

a semiparametric alternative (at least in a heuristic way, e.g. by considering whether

the confidence intervals overlap). When considering the standard deviations of the
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semiparametric estimators over the simulations, it seems relatively likely that results

based on the parametric estimator would not be rejected empirically. For large sample

sizes, however, a semiparametric estimator should be preferred as it relies on consider-

ably fewer assumptions than the parametric estimator. Put differently, the larger the

sample size the more obvious it should be when the parametric assumptions are not

fulfilled.

5.6 Empirical Example

In this section, we present an empirical example in order to illustrate the applicability

of our proposed estimators to real data. In this example, we seek to analyze whether

the number of children has an effect on a woman’s probability of (partly) working from

home. We are thus concerned with a situation where we have a binary dependent

variable (working from home: yes/no) which is only observable for women who are

working. This fact may constitute a sample selection bias.

We emphasize that our example is mainly of illustrative purpose. In particular,

our empirical specification may be considered to contain not all relevant variables. Our

specification is mainly practically motivated, as a large number of explanatory variables

makes semiparametric estimation of the model computationally challenging (especially

since standard errors are obtained by bootstrapping).

Now we describe our empirical specification. Our main equation contains the number

of children and education attainment as explanatory variables. With regard to our

dependent variable, we expect the following effects: We conjecture that the number of

children has a positive effect on the probability of working from home, since a larger

number of children requires a higher amount of child care services. We also expect a

positive effect of education, since a better education may be correlated with “technology-

affine” jobs in which it is possible to work from home. For instance, working from home



128 Binary Choice Model with Sample Selection

may require the capability of getting along with electronic equipment (e.g., personal

computers).

Since our dependent variable is only observable for those women who are working,

we have to specify a selection equation which governs the probability of working. We

selected the following explanatory variables: the number of children, education, age

and age squared. Since the selection equation contains more variables than the main

equation, we suppose that the exclusion restriction from Assumption 1 is satisfied.

Our data is taken from the German Socio-Economic Panel (GSOEP) for the year

2002. Our sample consists of 989 married women aged 25 to 35 with German nationality.

From these women, 565 are working (57.1 %). Summary statistics of the variables are

given in Table 5.6.

We specify our estimators as in the last section. That means, in case of the Klein

and Spady estimator we selected the standard normal p.d.f. as the kernel function and

let the optimal bandwidth be obtained simultaneously with the parameters of interest;

in case of the maximum score estimator, we chose the standard normal p.d.f. as the

kernel function and selected a bandwidth according to the rule h = n−1/6.5; for the

smoothed maximum score estimator we chose the standard normal c.d.f. for Φ(·) and

the standard normal p.d.f. for K(·). We set hx = hw = n−1/6.5.

However, for the estimation of the selection equation we employed the Klein and

Spady estimator irrespective of the second-stage estimator. The reason is that we

have four covariates. In this case, using the maximum score or smoothed maximum

score estimator is rather complicated since one needs a suitable optimization routine

and optimization results may be contaminated by the presence of local maxima. For

these reasons, the maximum score and the smoothed maximum score estimator have

only seldom been used in applied econometrics. On the contrary, the Klein and Spady

estimator works well if the number of covariates is moderate. Since semiparametric

estimation of the selection equation requires a normalization, we set the coefficient of
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education equal to one.

Table 5.7 contains the Klein and Spady estimates of the selection equation param-

eters. As expected, the number of children has a negative impact on the probability

of working. For a woman’s age we get a U-shaped pattern which is plausible for the

sample under consideration, since women start working when they are young, then leave

the labor market to raise their children and return thereafter. Standard errors of these

estimates have been obtained by performing 100 bootstrap replications.

Table 5.8 contains the second-stage results for the Klein and Spady estimator (KS),

the maximum score estimator (MS) and the smoothed maximum score (SMS) estimator.

The coefficient of education has been set equal to one due to normalization. We also

provide estimates using the “Heckprob” estimator. Standard errors are again based on

100 bootstrap replications. As can be seen from Table 5.8, the coefficient of the number

of children is positive over all estimators. However, only in case of the “Heckprob” and

smoothed maximum score estimator the coefficient is significantly different from zero (as

suggested by the bootstrap standard errors). We get the same picture as in the Monte

Carlo simulations from the last section: The semiparametric estimates exhibit a lot of

variation and relatively large standard errors. However, the semiparametric estimates

also indicate that the effect of the number of children on the latent dependent variable

may be larger than suggested by the estimate of the “Heckprob” model. Although it

is unlikely that the parametric “Heckprob” model would be rejected by the data when

compared to one of these semiparametric alternatives, the semiparametric estimates

at least hint that the parametric estimates may be biased, i.e. that the effect of the

number of children is larger than the parametric estimate indicates.5

Finally, we conducted a small robustness check. While in case of the Klein and Spady

estimator the bandwidth is selected optimally by being part of the optimization problem,

5It would probably be more interesting to study the effects of the explanatory variables on the
dependent variable instead of the latent dependent variable. However, since this chapter is concerned
with the estimation of the index parameters in β, we did not consider such marginal effects.
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the bandwidths for the maximum score and smoothed maximum score estimator have

been selected ad hoc. We, thus, provide some robustness analysis by varying these

bandwidths. From Table 5.9 we see that variations of the bandwidths alter the estimates

for the maximum score and smoothed maximum score estimator to some extent, but

the differences are relatively small. We conclude that estimation results are not very

sensitive with respect to bandwidth choice.

5.7 Endogenous Covariates

In empirical applications, one may often be confronted with variables in the main and

selection equation which may be endogenous. In that case, our proposed estimators are

inconsistent in general. However, our control function framework easily allows to take

endogeneity of covariates into account. To see this, let xe be an endogenous explanatory

variable appearing in the main equation and possibly in the selection equation, too.

Moreover, let the reduced form equation for xe be

xei = z′iα + ηi, (5.20)

where z is a vector of instrumental variables and η is an error term. We can now modify

Assumption 4 to take the endogeneity into account:

Assumption 4’: Either

(a) Pr(yi = 1|di = 1, xi, wi, zi, ηi) = E[1(εi > −x′iβ)|w′iγ, ηi] = G(x′iβ, w
′
iγ, ηi) with

∂G(u,v,w)
∂u

> 0 ∀i = 1, . . . , N or

(b) median[εi|di = 1, xi, wi, zi, ηi] = median[εi|w′iγ, ηi] = g(w′iγ, ηi) ∀i = 1, . . . , N

holds with probability one.

We can once again implement the estimators proposed above. In case of Assumption
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4’ (a), we choose a modified Klein and Spady estimator such that

β̂eKS = arg max
β

1

n

n∑
i=1

yi log(Ĝ(x′iβ, w
′
iγ̂, η̂i)) + (1− yi) log(1− Ĝ(x′iβ, w

′
iγ̂, η̂i)), (5.21)

where

Ĝ(x′iβ, w
′
iγ̂, η̂i) =

1
n

∑n
j 6=i yj

1
hxhwhη

K(x′iβ/hx)K(w′iγ̂/hw)K(η̂i/hη)
1
n

∑n
j 6=i

1
hxhwhη

K(x′iβ/hx)K(w′iγ̂/hw)K(η̂i/hη)
. (5.22)

Note that the only difference between equation (5.22) and equation (5.7) above is that

we have to take the (estimated) reduced form error term of our endogenous variable into

account, so that we need an additional kernel function. It is obvious that augmenting the

function G(·) with more kernel functions requires large sample sizes to produce reliable

estimation results. This problem is even more severe when we have several endogenous

explanatory variables. In that case, estimation results might be contaminated by the

curse of dimensionality.

If Assumption 4’ (b) is true, we can again choose between the maximum score

estimator and the smoothed maximum score estimator. In the first case, our proposed

estimator of β is given by

β̂eMS = arg min
β
− 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

|ỹij − 1(x̃′ijβ > 0)|1
h
K(w̃′ij γ̂/h)

× 1

hη
K(˜̂ηij/hη)1(yi 6= yj), (5.23)

while in the second case

β̂eSMS = arg max
β

2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(2ỹij − 1)
1

hx
Φ(x̃′ijβ/hx)

1

hw
K(w̃′ij γ̂/hw)

× 1

hη
K(˜̂ηij/hη)1(yi 6= yj), (5.24)



132 Binary Choice Model with Sample Selection

where ˜̂ηij = η̂i − η̂j and hη is a bandwidth parameter which converges to zero as the

sample size tends to infinity.

Note, once again, that these estimators are based on first-stage estimates not only of

the selection index, but of the reduced form error term as well. The reduced form error

term can be naturally obtained by an ordinary least squares regression of the endogenous

explanatory variable on the instrumental variables. For a consistent estimation of the

selection index, it matters whether the endogenous explanatory variable is included in

the selection equation as well. If not, the selection index can be estimated as before,

using one of the available semiparametric procedures already considered in this chapter.

However, if the endogenous covariate is included in the selection equation, an application

of these procedures would produce inconsistent estimates as the endogeneity is not taken

into account. In that case, one must apply estimators for binary choice models which

control for endogeneity. Such estimators have been proposed by Blundell and Powell

(2004) and Rothe (2009), for instance.

5.8 Conclusion

In this chapter, we proposed three semiparametric estimators to estimate a sample

selection model with a binary dependent variable. We conducted some Monte Carlo

simulations and found that estimates based on these estimators exhibit a lot of variation

and come along with large root mean squared errors. On the contrary, the parametric

“Heckprob” estimator which is based on a joint normality assumption performs quite

well and has sometimes relatively low root mean squared errors.

The conclusions from these findings are that (a) one should use the semiparametric

estimators in case of large sample sizes and (b) in small samples, the parametric esti-

mator may be preferred if it is successfully tested against a semiparametric alternative.

The reason for preferring parametric estimates is that coefficient estimates, especially
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in small samples, are estimated with higher precision. However, in large samples it

may become obvious that the parametric model is misspecified, hence a semiparametric

estimation procedure should be chosen.

As our empirical example has shown, semiparametric estimates, though subjected

to a lot of variability, can nevertheless be used to gauge and to improve on parametric

estimates. More specifically, our example indicates that the effect of the number of

children on the probability of working from home is underestimated if one chooses the

parametric “Heckprob” estimator. Indeed, if sample sizes become larger, a semipara-

metric estimator should clearly be preferred in order to avoid inconsistencies resulting

from a misspecified parametric model.

We also outlined an extension of our semiparametric estimators to the case of en-

dogenous covariates. Endogenous covariates may be a concern in many empirical ap-

plications, and not accounting for this endogeneity will lead to inconsistent parameter

estimates in general. Extending our estimators to handle endogenous covariates is quite

straightforward. However, given the variability of the semiparametric estimators shown

in Section 5.4 (which do not control for endogenous covariates), we conjecture that this

problem may be even more severe if our estimation procedures also have to account

for endogeneity of covariates. This indicates that one needs even larger sample sizes to

obtain reliable estimates.

From the three proposed semiparametric estimators, the Klein and Spady estimator

is the most promising and most likely to be used in applications. This is due to the

fact that the maximum score and smoothed maximum score estimator require a rather

complicated optimization procedure which should also account for the presence of po-

tentially many local maxima. On the other hand, the Klein and Spady estimator can

be obtained quite easily (if the number of covariates is moderate) and has already been

used successfully in applied econometrics in order to estimate binary choice models.
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5.9 Tables

Table 5.1: Design I - normal + known index

Mean Std.dev. RMSE

N=250 KS 0.9549 0.9384 0.9395
MS 1.1426 0.9181 0.9292
SMS 1.1029 0.8803 0.8864

N=500 KS 0.8715 0.6840 0.6961
MS 0.9535 0.6789 0.6806
SMS 0.9938 0.6774 0.6774

N=1000 KS 0.9704 0.5877 0.5885
MS 1.0264 0.5306 0.5312
SMS 1.0448 0.5298 0.5317

Source: Own calculations.

Table 5.2: Design I - normal + unknown index

Mean Std.dev. RMSE

N=250 KS 0.9935 0.9049 0.9050
MS 1.0921 0.9315 0.9361
SMS 1.1539 0.8183 0.8328
Heckprob 1.2045 0.9478 0.9699

N=500 KS 1.0829 0.6524 0.6577
MS 0.9542 0.7621 0.7635
SMS 1.0918 0.7194 0.7252
Heckprob 1.0415 0.7188 0.7200

N=1000 KS 0.9235 0.5576 0.5629
MS 1.0349 0.5536 0.5547
SMS 1.1381 0.5437 0.5611
Heckprob 1.1075 0.5278 0.5387

Source: Own calculations.



5.9 Tables 135

Table 5.3: Design II - mixed normal

Mean Std.dev. RMSE

N=250 KS 0.9582 0.7122 0.7135
MS 1.0270 0.7139 0.7144
SMS 1.2323 0.6327 0.6744
Heckprob 1.0819 0.6016 0.6072

N=500 KS 0.8736 0.4902 0.5064
MS 0.9370 0.4960 0.5000
SMS 1.1107 0.4486 0.4621
Heckprob 1.0143 0.4181 0.4184

N=1000 KS 0.9061 0.3551 0.3675
MS 0.9591 0.3853 0.3875
SMS 1.0873 0.3199 0.3317
Heckprob 1.0112 0.3009 0.3011

Source: Own calculations.

Table 5.4: Design III - heteroskedasticity in selection equation

Mean Std.dev. RMSE

N=250 KS 0.9161 0.9395 0.9432
MS 0.9237 1.0451 1.0479
SMS 0.9356 0.8893 0.8916
Heckprob 0.9739 1.1096 1.1099

N=500 KS 0.8329 0.8355 0.8522
MS 1.0303 0.8617 0.8623
SMS 1.0601 0.8266 0.8288
Heckprob 0.9152 0.8227 0.8271

N=1000 KS 0.9278 0.6498 0.6539
MS 0.9673 0.5557 0.5567
SMS 1.0467 0.5290 0.5311
Heckprob 0.9637 0.5093 0.5106

Source: Own calculations.
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Table 5.5: Design IV - heteroskedasticity in main equation

Mean Std.dev. RMSE

N=250 KS 0.8518 0.8785 0.8910
MS 0.9777 0.9164 0.9167
SMS 1.1839 0.8249 0.8453
Heckprob 0.8827 0.7572 0.7664

N=500 KS 0.8211 0.6351 0.6601
MS 0.9931 0.8260 0.8261
SMS 1.1176 0.7913 0.8001
Heckprob 0.7617 0.5831 0.6304

N=1000 KS 0.9288 0.5548 0.5594
MS 1.0700 0.6632 0.6670
SMS 1.1745 0.5800 0.6059
Heckprob 0.7868 0.4517 0.5000

Source: Own calculations.
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Table 5.6: Summary statistics

Mean Std. Min Max

hoffice 0.156 0.363 0 1
children 1.499 1.068 0 5
educ 12.213 2.272 7 18
age 31.624 2.848 25 35

No. of obs. 989
No. of obs. working 565

Source: GSOEP data (2002 wave); own calculations.

Table 5.7: Estimates of selection equation parameters

children -0.7721
(0.2027)

age -0.6471
(0.6392)

age2 0.0117
(0.0104)

educ 1
(-)

Note: Standard errors in parentheses. Standard errors are based on 100 bootstrap replications.

Source: GSOEP data (2002 wave); own calculations.
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Table 5.8: Estimation results

Heckprob KS MS SMS

children 0.4565 0.9059 0.835 1.725
(0.0477) (3.0815) (1.4042) (0.4826)

educ 0.0441 1 1 1
(0.0253)

const -1.2384 - - -
(0.4013)

Note: Standard errors in parentheses. Standard errors are based on 100 bootstrap replications.

Source: GSOEP data (2002 wave); own calculations.

Table 5.9: Varying the bandwidth

h = n−1/6.5 h = n−1/6 h = n−1/7 h = n−1/8

ms 0.835 0.835 0.875 0.9
sms 1.725 1.61 1.825 2

Source: GSOEP data (2002 wave); own calculations.



Chapter 6

A Detailed Decomposition for

Limited Dependent Variable Models

This chapter is a revision of the discussion paper No. 506, Department of Economics

and Business Administration, Leibniz University Hannover (Schwiebert, 2012e). I thank

Olaf Hübler, Patrick Puhani and Melanie Schienle for providing valuable comments.

6.1 Introduction

Decomposition methods in economics have been a nascent field of research over the

last years. Recently, in the fourth volume of the Handbook of Labor Economics a full

chapter has been devoted to this topic (Fortin et al., 2011).

In this chapter, we consider a detailed decomposition method for limited dependent

variable models, such as probit, logit and tobit models. In contrast to models which

are linear in parameters and explanatory variables, a detailed decomposition in limited

dependent variable models is not straightforward and comes along with some difficul-

ties, as shown below. Approaches already presented in the literature to tackle these

difficulties are not satisfactory as they do not lead to a unique decomposition or do
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not take into account the nonlinearity of the model. On the contrary, we propose a

decomposition approach which leads to a unique decomposition and accounts for the

nonlinearity of the model in a rather intuitive manner.

Our decomposition approach is in the spirit of the famous Oaxaca-Blinder decom-

position method. The Oaxaca (1973) and Blinder (1973) decomposition is a well-known

and often applied technique to decompose the mean differential in some outcome vari-

able between two groups into a part which is due to differences in observable characteris-

tics (explained differential) and another part which is due to differences in unobservable

characteristics (unexplained differential). A typical example is an analysis of the mean

wage differential between, e.g., men and women or white and black people. Under

some conditions, the unexplained differential can be attributed to discriminatory be-

havior of firms, households or other economic institutions; hence the Oaxaca-Blinder

decomposition has often been applied to analyze the impact of discrimination.

The Oaxaca-Blinder decomposition in its original version can be applied to econo-

metric models which are linear in parameters and explanatory variables. An extension

to limited dependent variable models has been suggested by Bauer and Sinning (2008),

for instance. However, Bauer and Sinning only provide a decomposition into the total

explained and unexplained differential. We proceed further and consider a detailed de-

composition of the explained differential, which means that we seek to decompose the

explained differential into the contribution of each explanatory variable. In case of wage

differentials, a detailed decompositions allows the researcher to make statements like

“10 percent of the mean wage differential between men and women can be explained by

differences in educational attainment, 20 percent by differences in working experience”,

and so on.

In this chapter, we focus our attention on the explained differential only since the

unexplained differential is hard to interpret. In the linear Oaxaca-Blinder decomposi-

tion, the unexplained differential is given by differences in coefficients multiplied by a
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vector of characteristics of a particular group (e.g., men or women). In nonlinear models

such as limited variable models, however, differences in coefficients could also be the

result of a misspecified model. Moreover, nonlinear models typically involve nuisance

parameters (such as a variance parameter); a detailed decomposition of the unexplained

differential would also have to attribute differences in nuisance parameters to the effects

of specific factors. A detailed decomposition is then hard to justify economically. A

further critique which applies to linear and nonlinear decompositions has been pointed

out by Jones (1983). As Jones has shown, a detailed decomposition of the unexplained

differential is not unique if there are dummy variables among the list of explanatory

variables. The detailed decomposition then depends on the reference category chosen

for the dummy variable, hence the decomposition is not unique.

On the contrary, a detailed decomposition of the explained differential assumes an

identical model structure for the analyzed groups. That means, we relate the mean

differential in the outcome variable only to differences in explanatory variables, but

holding constant the model structure. In case of the Oaxaca-Blinder decomposition

that means we consider differences in (mean) explanatory variables, evaluated at a

constant coefficient vector of one particular group.

A detailed decomposition in linear models is rather straightforward, since the mean

differential in the outcome variable can directly be attributed to the mean differential

in the explanatory variables. This, however, is not true for limited dependent variable

models. Fairlie (1999, 2005) and Yun (2004) have proposed approaches to obtaining

detailed decompositions in such models. As will be shown below, Fairlie’s decomposi-

tion is path-dependent, which means that the decomposition relies on the ordering of

explanatory variables. Since different orderings imply different decomposition results,

Fairlie’s approach has the drawback that it does not lead to a unique decomposition.

Yun (2004) seeks to tackle the difficulties associated with the nonlinear model struc-

ture by two linearizations, thus bringing the model back to the linear case where mean
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differences in the outcome variable can directly be related to mean differences in the

explanatory variables. However, such a procedure has the drawback that it ignores the

nonlinear model structure. For instance, if the outcome differential is located in the

tails of the distribution or in case of large differences in the explanatory variables (see

Fortin et al., 2011, p. 52), such a linearization is likely to be inadequate.1

Our approach is based on a linearization using marginal effects, hence we explicitly

account for the nonlinearity of the model in a way which is familiar from the general

analysis of limited dependent variable models. Fortin et al. (2011) have already men-

tioned such a possibility (without providing details, though), but have also remarked

that the contribution of each variable derived in such a decomposition would not add

up to the total differential. This remark is only partly true. By applying the mean

value theorem, we will show that there is exactly one marginal effect which not only

leads to a detailed decomposition that adds up to the total differential, but which also

leads to a unique decomposition and which has a very appealing interpretation.

The remainder of the chapter is structured as follows. In Section 6.2, we set up

the econometric framework. In Section 6.3 we derive the detailed decomposition the-

oretically, whereas Section 6.4 shows how to estimate the detailed decomposition. In

Section 6.5, we compare our decomposition method to the approaches of Fairlie (2005)

and Yun (2004). Finally, Section 6.6 concludes the chapter.

6.2 Econometric Framework

We consider the following latent representation of a limited dependent variable model:

y∗i = x′iβ + εi, (6.1)

1This is the same argument why one should at all use a limited dependent variable model.
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where i = 1, . . . , n indexes individuals, y∗ is the latent dependent variable, x is a vector

of explanatory variables associated with a coefficient vector β ∈ RK+1 and ε is a zero-

mean error term. We assume that x contains a constant term in its first component

and K “real” explanatory variables. We denote the observable dependent variable by

y which is functionally related to y∗. For instance, in a binary choice model we would

have that y = 1(y∗ > 0), where 1(·) denotes the indicator function. Furthermore, we

let d be a group indicator, taking a value of one if an individual belongs to a certain

group and zero otherwise.

We make the following assumptions:

Assumption 1: (yi, xi, di), i = 1, . . . , n, are i.i.d. observations.

Assumption 2: E[yi|xi, di] = G(x′iβ, ψ), ∀i = 1, . . . , n almost surely, where G :

R×Ψ→ R is a known (link) function which (a) is differentiable, (b) depends on x only

through x′β; ψ ∈ Ψ denotes a vector of nuisance parameters.

We need these assumptions for deriving our proposed detailed decomposition in

the next section. Note that Assumption 2 covers some well-known limited dependent

variable models such as probit, logit and tobit. For these three models, we have the

following link functions:

• Probit: G(x′iβ, σ) = Φ(x′iβ/σ);

• Logit: G(x′iβ, σ) = Λ(x′iβ/σ) =
exp{x′iβ/σ}

1+exp{x′iβ/σ}
;

• Tobit with truncation from the left at zero: G(x′iβ, σ) = Φ(x′iβ/σ)
(
x′iβ + σ

φ(x′iβ/σ)

Φ(x′iβ/σ)

)
,

where σ =
√
E[ε2

i |xi], ∀i = 1, . . . , n; Φ(·) and φ(·) denote the standard normal cumu-

lative distribution function and density function, respectively.

Note that Assumption 2 imposes the same conditional expectation G(x′iβ, ψ) for all

individuals, i.e. irrespective of whether d is equal to one or zero. Since we are only

concerned with a detailed decomposition of the explained differential, we can ignore

issues such as group-dependent parameters or other group-dependent model structures.
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When reviewing the Oaxaca-Blinder decomposition for the linear model in the con-

text of discrimination, Oaxaca and Ransom (1994) suggest that the explained differen-

tial should be evaluated not at the coefficient vector of one particular group, but at the

coefficient vector in the absence of discrimination. We generalize this point of view and

consider the framework in equation (6.1) and Assumption 1 and 2 to represent a model

structure in the absence of discrimination.

This point will also be important for the economic interpretation of our proposed

detailed decomposition, which will be derived in the next section.

6.3 Derivation of the Detailed Decomposition

In this section we derive (and define) the detailed decomposition. Consider two indi-

viduals i and j, where i belongs to the group with d = 1 and j to the group with d = 0,

respectively. We begin with a formal notation of the total explained differential, which

we define as

∆ = E[yi|di = 1]− E[yj|dj = 0]. (6.2)

This definition has also been proposed by Fortin et al. (2011, p. 52). The explained

differential is thus given by the expected difference in the outcomes of each group. By

the law of iterated expectations and Assumption 2, it follows that

E[yi|di = 1]− E[yj|dj = 0] = E[G(x′iβ, ψ)|di = 1]− E[G(x′jβ, ψ)|dj = 0]. (6.3)

Since observations are i.i.d. (due to Assumption 1), we can write

E[G(x′iβ, ψ)|di = 1]− E[G(x′jβ, ψ)|dj = 0] (6.4)

= E[G(x′iβ, ψ)|di = 1, dj = 0]− E[G(x′jβ, ψ)|di = 1, dj = 0] (6.5)
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= E[G(x′iβ, ψ)−G(x′jβ, ψ)|di = 1, dj = 0]. (6.6)

In order to obtain a detailed decomposition of the explained differential, we linearize

the term in the expectations operator by applying the mean value theorem. This yields

E[G(x′iβ, ψ)−G(x′jβ, ψ)|di = 1, dj = 0] (6.7)

= E[g((x∗ij)
′β, ψ)(xi − xj)′β|di = 1, dj = 0], (6.8)

where g(u, ψ) = ∂G(u, ψ)/∂u and (x∗ij)
′β is a scalar lying on the line segment joining

x′iβ and x′jβ. Note that x∗ij can also be represented as

x∗ij = λxi + (1− λ)xj (6.9)

for some λ ∈ (0, 1).

Due to the linearization, we define the contribution of each variable to the explained

differential as follows:

Definition 1: Detailed Decomposition. The contribution of a variable xk to

the explained differential is given by ck = E[g((x∗ij)
′β, ψ)βk(xi,k − xj,k)|di = 1, dj = 0],

∀k = 1, . . . , K.

Note that the mean value theorem guarantees that the contributions of the variables

add up to the total explained differential. Furthermore, note that Definition 1 implies

that the contribution of each variable is given by the difference in explanatory variables

multiplied with the marginal effect of this variable. Hence, as suggested by Fortin et

al. (2011) our decomposition approach evaluates differences in variables between two

groups at the marginal effects of these variable, thus taking into account the nonlinearity

of the underlying model.



146 Detailed Decomposition for Limited Dependent Variable Models

But we have a specific marginal effect. In general, marginal effects could be evaluated

at any value of the explanatory variables. However, it makes an intuitive sense that we

choose the marginal effect evaluated at x∗ij in order to define the detailed decomposition.

To see this, note that, by equation (6.9), the marginal effect in Definition 1 is based

on a convex combination of the explanatory variables of two individuals which belong

to different groups. Suppose for the moment that one group consists of males and the

other one of females. The convex combination may be interpreted so as to represent a

synthetic individual, so that the marginal effect in Definition 1 is the marginal effect of

a synthetic individual which is a combination of the male and female individual. Now

suppose that our synthetic individual is initially endowed like the female individual (j).

Then, after receiving the difference xi − xj, the marginal effect implies a change of the

synthetic individual from the female (j) to the male individual (i) in terms of the value

of the link function G. Given that our model represents a situation in the absence of

discrimination, this marginal effect can thus be interpreted as the marginal effect in the

absence of discrimination. This is a generalization of the suggestion by Oaxaca and

Ransom (1994) that the explained differential in linear models should be evaluated at

a coefficient vector which would be prevalent in the absence of discrimination.

6.4 Estimation of the Detailed Decomposition

The detailed decomposition proposed in Definition 1 is, of course, a theoretical one

and represents a population concept (due to the expectations operator). In this section

we show how the detailed decomposition can be estimated. Furthermore, we prove

consistency and asymptotic normality of our proposed estimator. The latter allows to

obtain standard errors for the decomposition results.

Let D = {i : di = 1} denote the set of individuals belonging to the group with d = 1

and m =
∑n

i=1 1(di = 1) be the corresponding number of group members. We propose
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to estimate ck = E[g((x∗ij)
′β, ψ)βk(xi,k − xj,k)|di = 1, dj = 0] by

ĉk =
1

m(n−m)

∑
i∈D

∑
j /∈D

g((x∗ij)
′β̂, ψ̂)β̂k(xi,k − xj,k). (6.10)

Thus, we take all possible pairs between members of both groups, compute the detailed

decomposition as in Definition 1 for each pair and then average over these pair-specific

decompositions to obtain an approximation to the theoretical expectation in Definition

1. Note that estimates θ̂ = (β̂′, ψ̂′)′ of θ = (β′, ψ′)′ enter this expression. For the

link functions listed in Section 6.2, estimates could be obtained by using the probit,

logit or tobit model; estimation routines for these models are contained in any standard

statistical software package. Furthermore, note that the estimator ĉk contains x∗ij which

follows from the mean value theorem. However, it is not necessary to calculate x∗ij

explicitly. It suffices to calculate g((x∗ij)
′β̂, ψ̂) by

g((x∗ij)
′β̂, ψ̂) =

G(x′iβ̂, ψ̂)−G(x′jβ̂, ψ̂)

(xi − xj)′β̂
. (6.11)

Hence, in practice it is not complicated to calculate ĉk for each explanatory variable.

Instead of estimating θ and (c1, . . . , cK) separately, we propose to estimate these

parameters simultaneously in a generalized method of moments (GMM) framework.

Let α = (θ′, c1, . . . , cK)′ denote the parameter vector to be estimated whose true value

is denoted by α0, andA is the parameter space. Furthermore, suppose that θ̂ is obtained

from solving

1

n

n∑
i=1

τ(yi, xi; θ̂) = 0. (6.12)

This equation may come from the first order condition of a maximum likelihood or min-

imum distance estimation approach or from the empirical counterpart of a population
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moment restriction. Define δn = m/n and observe that

1

m(n−m)

m∑
i=1

n−m∑
j=1

{δnτ(yi, xi; θ̂) + (1− δn)τ(yj, xj; θ̂)} (6.13)

=
1

m(n−m)

m∑
i=1

n−m∑
j=1

δnτ(yi, xi; θ̂) +
1

m(n−m)

m∑
i=1

n−m∑
j=1

(1− δn)τ(yj, xj; θ̂) (6.14)

= δ−1
n

1

n

m∑
i=1

δnτ(yi, xi; θ̂) + (1− δn)−1

n−m∑
j=1

(1− δn)τ(yj, xj; θ̂) (6.15)

=
1

n

n∑
i=1

τ(yi, xi; θ̂). (6.16)

Let

h(yi, yj, xi, xj;α) =



δnτ(yi, xi; θ) + (1− δn)τ(yj, xj; θ)

c1 − g((x∗ij)
′β, ψ)β1(xi1 − xj1)

...

cK − g((x∗ij)
′β, ψ)βK(xiK − xjK)


. (6.17)

Then, the GMM estimator α̂ of α0 is defined by

1

m(n−m)

m∑
i=1

n−m∑
j=1

h(zi, zj, α̂) = 0, (6.18)

where zt = (yt, xt), t ∈ {i, j}.

We make a set of assumptions which are summarized in Assumption 3:

Assumption 3:

(a) α0 ∈ int[A], where A is a compact set.

(b) E[τ(y, x; θ)] = 0 only at θ = θ0.

(c) τ(y, x; θ) is continuously differentiable with respect to θ.

(d) G(x′β, ψ) is twice continuously differentiable with respect to its arguments.
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(e) E[h(zi, zj;α0)h(zi, zj;α0)′] exists and is positive definite.

(f) E[
∂h(zi,zj ;α0)

∂α′
] exists and is positive definite.

These assumptions are technical and needed to prove the following theorem, which

provides consistency and asymptotic normality results for the estimator α̂ of α0:

Theorem 1: Suppose that Assumptions 1-3 hold and that δn → δ. Then,

(a) α̂
p−→ α0.

(b)
√
n(α̂− α0)

d−→ N (0,M−1CM−1),

where M and C are defined in the Appendix.

Proof. See the Appendix. �

Statistical software packages like STATA supply a user-friendly GMM estimation

procedure. The researcher has to specify the moment equations h(zi, zj;α), and the

software will produce the estimates. Hence, it is not complicated to implement our

estimation procedure in practice. To obtain standard errors, a bootstrap procedure may

be applied, since obtaining the sample analogue of the asymptotic covariance matrix

from part b) of Theorem 1 may be difficult in practice.

6.5 Comparison to Existing Decomposition Meth-

ods

In this section, we compare our proposed decomposition method to competing ap-

proaches proposed by Fairlie (1999, 2005) and Yun (2004). Both authors derive their

detailed decompositions in a finite-sample-context and do not provide population con-

siderations (as expressed by the expectations operator on Defintion 1 above). We briefly

discuss their methods and show that our proposed detailed decomposition overcomes

the main drawbacks of these approaches.
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We begin with Fairlie (1999, 2005) who proposes what is called a sequential decom-

position. Fairlie analyzes a detailed decomposition for binary choice models, i.e., probit

and logit models. For simplicity, we consider the case of only two explanatory variables

(K = 2). For notational ease, we index individuals with d = 1 by w and individuals

with d = 0 by b. Fairlie’s procedure works as follows:

1. Reduce the size of the larger group (by randomly selecting individuals) so that

both groups have the same size l.

2. Rank observations by their predicted probability that y is equal to one (i.e., by

G(x′β, ψ)) within each group.

3. Match observations from both groups which have the same rank.

4. Let xv,i,j denote the value of variable xj for an individual i from group v ∈ {w, b}.

Fairlie’s sequential decomposition would then be given by

∆ ≈1

l

l∑
i=1

{G(β0 + xw,i,1β1 + xw,i,2β2, ψ)−G(β0 + xb,i,1β1 + xb,i,2β2, ψ)} (6.19)

=
1

l

l∑
i=1

{G(β0 + xw,i,1β1 + xw,i,2β2, ψ)−G(β0 + xb,i,1β1 + xw,i,2β2, ψ)}︸ ︷︷ ︸
ĉ1

(6.20)

+
1

l

l∑
i=1

{G(β0 + xb,i,1β1 + xw,i,2β2, ψ)−G(β0 + xb,i,1β1 + xb,i,2β2, ψ)}︸ ︷︷ ︸
ĉ2

,

(6.21)

where the index i runs over the matched observations from both groups.

Hence, the contribution of a variable is given by the average change of the link

function G if the variable of interest is changed while holding all other variables con-

stant. Note that the decomposition ensures that the sum of the contributions of the

explanatory variables is equal to the individual gap in the values of the link function
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between the matched individuals. A disadvantage is, however, that the contributions of

each variable depend on the ordering of variables. If the order of variables during the

decomposition is interchanged, different decomposition results will be obtained, so that

the decomposition is not unique. This problem, which is known as path-dependency

(cf. Fortin et al., 2011, p. 27), is a drawback of any sequential decomposition. On the

contrary, our approach derived in Section 6.3 is not a sequential one, implying that our

decomposition results are unique in the sense that they do not depend on the ordering

of variables.

However, our decomposition results are not only unique in this sense. As mentioned

before, Fairlie’s methodology is based on a matching procedure for individuals from

both groups. However, the matching procedure is arbitrary and lacks a theoretical

foundation. Our approach, on the other hand, is theoretically founded and uses all

between-group-pairs (recall equation (6.10)) of individuals, thus avoiding an arbitrary

matching procedure.

The decomposition approach proposed by Yun (2004)2 is based on two lineariza-

tions to bring the model back to the linear case, where a detailed decomposition is

straightforward. His decomposition is given by

∆ ≈ 1

m

∑
i∈D

G(x′i β, ψ)− 1

n−m
∑
i/∈D

G(x′i β, ψ) (6.22)

= G(x̄′wβ, ψ)−G(x̄′bβ, ψ) +RM (6.23)

= (x̄w − x̄b)′βg(x̄′wβ, ψ) +RM +RT , (6.24)

where x̄w = 1
m

∑
i∈D xi and x̄b = 1

n−m
∑

i/∈D xi; RM and RT denote appropriate remain-

2For the explained differential, Even and Macpherson (1990, 1993) used the same decomposition
methodology as derived by Yun (2004) in order to explain the decline of unionism in the United States.
However, they just stated the decomposition method without providing a formal derivation.
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der terms. The contribution of a variable xk is given by

ĉk =
(x̄w,k − x̄b,k)βkg(x̄′wβ, ψ)

(x̄w − x̄b)′βg(x̄′wβ, ψ)

{
1

m

∑
i∈D

G(x′i β, ψ)− 1

n−m
∑
i/∈D

G(x′i β, ψ)

}
. (6.25)

Note that Yun develops weights based on equation (6.24) which are given by

(x̄w,k − x̄b,k)βkg(x̄′wβ, ψ)

(x̄w − x̄b)′βg(x̄′wβ, ψ)
. (6.26)

These weights are then multiplied with the observed differential 1
m

∑
i∈DG(x′i β, ψ) −

1
n−m

∑
i/∈DG(x′i β, ψ) in order to yield the contribution of a variable xk.

However, note that the weights in equation (6.26) reduce to

(x̄w,k − x̄b,k)βk
(x̄w − x̄b)′β

, (6.27)

so that we have the same weights as in decompositions for linear models since the non-

linear component g(x̄′wβ, ψ) cancels out. Put differently, the Yun procedure ignores the

nonlinear model structure. As mentioned in the introduction, this may be problematic

if the outcome differential is located in the tails of the distribution or in case of large

differences in the explanatory variables (see Fortin et al., 2011, p. 52).

We illustrate this point by means of a small numerical example. Our model is given

by

y∗i = −6 + x1 + x2 + εi (6.28)

yi = 1(y∗i > 0) (6.29)

εi ∼ N (0, 1). (6.30)

Hence, we consider a probit model with a link function given by G(x′iβ) = Φ(x′iβ), where

Φ(·) is again the standard normal cumulative distribution function. We set n = 2, 000
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with 1,000 individuals belonging to each group. Moreover, for the group with d = 1

we specified that x1 ∼ N (6, 1) and x2 ∼ N (3, 1). For the group with d = 0 we took

x1 ∼ N (2, 1) and x2 ∼ N (2, 1). Hence, the group with d = 1 has larger mean values

for both explanatory variables, in particular with respect to the variable x1.

We simulated this model with 1,000 replications and performed our proposed decom-

position and Yun’s method. We then averaged over the 1,000 replications in order to

obtain results. Over these replications, the (averaged) mean of our dependent variable

y is 0.959 for the group with d = 1 and 0.124 for the group with d = 0, so that the aver-

aged differential in the outcome variable is given by 0.835. The averaged decomposition

results are given in the following table:

ĉ1 ĉ2

Our decomposition .6912 .1432

Yun’s decomposition .6675 .1669

Hence, we see that our proposed decomposition and Yun’s method yield different

results. In this example, the differences are not large. Nevertheless, they indicate that

the Yun method may be too rough since it does not properly account for the nonlinearity

of the underlying model.

6.6 Conclusion

In this chapter we derived a detailed decomposition (of the explained differential) for

limited dependent variable models. We first defined the detailed decomposition theoreti-

cally and then showed how the theoretical decomposition can be consistently estimated

using sample data. We also provided (asymptotic) distribution results for obtaining

standard errors for the decomposition results and demonstrated that our estimation

procedure can be easily implemented in practice. Unlike existing approaches discussed

in the literature to perform detailed decompositions in nonlinear econometric models,
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our method leads to a unique decomposition and accounts for the nonlinearity of the

model in a rather intuitive way (i.e., by using marginal effects to evaluate differences

in explanatory variables). Moreover, in light of the suggestion by Oaxaca and Ran-

som (1994) that the explained differential should be evaluated at a parameter vector

which would be prevalent in the absence of discrimination, our decomposition approach

provides a natural extension of this idea to nonlinear models.

A detailed decomposition of the explained differential in a limited dependent variable

model is important because it allows to relate differences in non-continuous outcome

variables to differences in characteristics. For instance, one can analyze which char-

acteristics contribute most to the differential in, say, labor force participation rates

between men and women. Another field of research where our method can be applied

is an analysis of the erosion of union membership over time, where the erosion can be

attributed to changes in the characteristics of the workforce (see Fitzenberger et al.,

2011). Hence, our method cannot only be applied to group differences at a given point

in time, but it can also be used to analyze changes over time (where two points in time

serve as “groups”). However, such applications are left for future research.
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6.7 Appendix

Proof of Theorem 1.

A first order expansion of

1

m(n−m)

m∑
i=1

n−m∑
j=1

h(zi, zj; α̂) = 0 (6.31)

about α̂ = α0 yields (by Assumption 3 (a), (c) and (d))

1

m(n−m)

m∑
i=1

n−m∑
j=1

h(zi, zj;α0) +
1

m(n−m)

m∑
i=1

n−m∑
j=1

∂h(zi, zj;α0)

∂α′
(α̂− α0) + op(n

−1/2) = 0.

(6.32)

Hence,

α̂− α0 = M−1
n Un + op(n

−1/2), (6.33)

where

Mn =
1

m(n−m)

m∑
i=1

n−m∑
j=1

∂h(zi, zj;α0)

∂α′
, (6.34)

Un =
1

m(n−m)

m∑
i=1

n−m∑
j=1

h(zi, zj;α0). (6.35)

By Assumption 3 (e) and (f), and a law of large numbers for 2-sample U-statistics (e.g.

Serfling, 1980, p. 190-191), we can establish that Mn
p−→M , where

M = E

[
∂h(zi, zj;α0)

∂α′

]
. (6.36)
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and Un
p−→ 0 (since E[h(zi, zj;α0)|di = 1, dj = 0] = 0). Hence, α̂

p−→ α0, and part (a)

of Theorem 1 is established.

To prove part (b), we apply a central limit theorem for 2-sample U-statistics to

√
nUn; see van der Vaart (1998, p. 166) for the univariate case and Yu et al. (2011,

p. 461) for the extension to multivariate U-statistics. This yields
√
nUn

d−→ N (0, C),

where

C =δ−1
{
E[h(zi, zj;α0)h(zi, z̃j;α0)′|di = 1, dj = 0, d̃j = 0]

}
+ (1− δ)−1

{
E[h(zi, zj;α0)h(z̃i, zj;α0)′|di = 1, d̃i = 1, dj = 0]

}
(6.37)

We thus obtain that
√
n(α̂ − α0)

d−→ N (0,M−1CM−1), which establishes part (b) of

Theorem 1. �



Chapter 7

Identification and Estimation of

Endogenous Regressor Models

When the Endogenous Regressor is

Discrete

I thank Patrick Puhani for providing valuable comments.

7.1 Introduction

In this chapter, we consider identification and estimation of a linear regression model

with an endogenous regressor, where we assume that the endogenous regressor is dis-

crete. The virtue of our approach is that we do not need an additional instrumental

variable for identification. Instead, identification is fully achieved through the nonlinear

relationship between the discrete endogenous regressor and the remaining (exogenous)

variables included into the model.

Instrumental variable techniques have been used a number of times in applied econo-
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metrics in order to consistently estimate the parameters of interest in models with en-

dogenous regressors. However, the requirements for suitable instrumental variables are

quite high. In particular, the instrumental variable should be highly correlated with the

endogenous regressor and it must not be correlated with the error term of the equation

of interest. Finding instrumental variables which fulfill these conditions is a hard task,

and sometimes virtually impossible.

Klein and Vella (2010) and Lewbel (2012) have used heteroskedasticity to identify

models with endogenous regressors. By putting restrictions on the higher moments of

the error terms, these authors established estimators which do not require additional

instrumental variables to achieve identification. The approach presented in this chapter

also uses nonlinearities for identification. However, unlike Klein and Vella (2010) and

Lewbel (2012), no heteroskedasticity is needed to achieve identification. Indeed, if

heteroskedasticity is absent, these approaches fail to estimate the parameters of interest,

whereas ours still works.

We proceed as follows. In the next section, our identification strategy is presented

along with the underlying assumptions. In Section 7.3, we provide a small Monte Carlo

study to analyze the properties of our estimator. Section 7.4 contains an empirical

application to the returns to education. Finally, Section 7.5 concludes the chapter.

7.2 Identification and Estimation

We consider the following linear regression model:

y1i = x′iβ + γy2i + εi, (7.1)

where i = 1, . . . , n, y1 is the dependent variable, x is a vector of exogenous variables, y2

is the discrete endogenous regressor and ε is the error term. By the exogeneity of x we

mean that ε is mean independent of x, i.e., E[ε|x] = 0. Note that the mean independence
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assumption implies that ε is uncorrelated with any function of x, which will become

crucial for the identification of γ. Furthermore, note that mean independence is a

stronger assumption than uncorrelatedness of x and ε, which is usually imposed for

identification of instrumental variables estimates.

The discreteness of y2 entails that the relationship between y2 and the exogenous

variables in x is intrinsically nonlinear. To see this, suppose that y2 is generated from

some underlying latent model:

y∗2i = x′iδ + ui (7.2)

y2i = h(y∗2i), (7.3)

where y∗2 is a (continuous) latent variable which is related linearly to the explanatory

variables in x, h(·) is a function which transforms the latent variable into the discrete

variable and u is the error term. For instance, if y2 is binary, then h(y∗2) = 1(y∗2 > 0),

where 1(·) is the indicator function. Moreover, we can write

y2i = E[y2i |xi] + vi, (7.4)

where vi ≡ y2i−E[y2i |xi]. Since y2 is discrete, the conditional expectation E[y2i |xi] will

typically be nonlinear. For instance, if we assume that y2 is binary and u ∼ N (0, 1),

we have that

y2i = Φ(x′iδ) + vi, (7.5)

where Φ(·) is the standard normal cumulative distribution function.

In a typical instrumental variables or two stage least squares estimation procedure

one would obtain the linear projection of y2 on x and an instrumental variable and use

the projected values as an instrument for y2. In that case, identification of γ would
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be achieved solely through the instrumental variable which guarantees that the linear

projection and the variables in x do not exhibit perfect multicollinearity.

In our identification approach we use a nonlinear projection. In the probit example

above, we would just estimate a probit model for y2 using x as the explanatory variables.

The (estimated) predicted values are a valid instrumental variable for y2 since they are

correlated with y2 but uncorrelated with ε (provided the mean independence assumption

holds). Moreover, the nonlinear projection guarantees that our instrumental variable

is not perfectly correlated with the variables in x, which implies that γ is identified.

Hence, identification is achieved through the nonlinearity of the nonlinear projection of

y2 on x.1

The reason why our approach works is that the nonlinear relationship between y2

and x is intrinsically present through the discreteness of y2. Our approach could also

be interpreted as an ordinary instrumental variable approach where nonlinear transfor-

mations of x are used as instrumental variables. Of course, using a correct nonlinear

form (instead of using various transformations of x as instrumental variables) results in

efficiency gains.

Finally, we make some cautionary remarks. Our proposed procedure only works well

in finite samples if the nonlinearity between y2 and x is substantial. Put differently,

if the relationship between y2 and x is close to being linear, γ will not be properly

identified (in the sense that standard errors will become unbounded). Furthermore, x

may not include too many nonlinear terms, because in that case the nonlinear projection

of y2 on x and the variables in x may be perfectly correlated as well. In any case, a

sufficiently large sample size is needed to get reliable results. The Monte Carlo results

in the next section illustrate this point.

1Even more nonlinearities can be exploited for identification when conditional heteroskedasticity
is present in equation (7.2). The proposed instrumental variable would then be a nonlinear transfor-
mation of the exogenous variables due to the discreteness of the endogenous variable and due to the
heteroskedasticity. This may be useful, since, as shown below, the higher the degree of nonlinearity
the better performs our proposed estimator.
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7.3 Monte Carlo Evidence

The goal of our small Monte Carlo study is to illustrate how our proposed estimator

performs depending on (a) the degree of nonlinearity of the nonlinear projection of y2

on x and (b) the sample size. Concerning the former, we expect that the higher the

degree of nonlinearity the better our model will be identified, and thus the better our

estimator should perform. Regarding the latter, we expect that a fairly large sample

size is needed to obtain precise estimates of γ.

We consider the following model:

y1i = 1 + xi + y2i + εi (7.6)

y∗2i = α + xi + ui (7.7)

y2i = 1(y∗2i > 0) (7.8)

εi = ui + vi, (7.9)

where x ∼ N (1, 1), u ∼ N (0, 1) and v ∼ N (0, 1). The object of interest is the parameter

γ associated with the endogenous explanatory variable y2, whose true value is set equal

to one. The parameter α is varied in order to obtain different degrees of nonlinearity.

To see this, note that the model corresponds to the probit example from the last section.

For different values of α we obtain different means of y2. As it is well known from the

properties of the standard normal cumulative distribution function, the link between y2

and the exogenous variables exhibits the highest degree of nonlinearity if the mean of

y2 is either very small or very large. We choose α ∈ {−3,−1, 1}, which corresponds to

means of y2 given by approximately 0.08, 0.5 and 0.92, respectively. Furthermore, we

consider sample sizes of n ∈ {250, 500, 1000, 2000, 5000, 10000}.

As noted in the last section, we used the following procedure to obtain estimates of

γ. We estimated a probit model for y2 using x and a constant as explanatory variables.
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The predicted values ŷ2 were then used as instrumental variables for y2 in the framework

of a two stage least squares regression.

Our Monte Carlo results are based upon 1,000 replications. For each sample size

and for each value of α, we computed the mean of the estimates of γ, the standard

deviation as well es the root mean squared error (RMSE). Moreover, we computed the

mean of the F statistics from the “first stage” of an instrumental variable estimation

approach. In our case, the F statistic is the test statistic associated with the hypothesis

H0 : ψ2 = 0 in a regression

y2i = ψ0 + ψ1xi + ψ2ŷ2i + ηi. (7.10)

The Monte Carlo results are presented in Table 7.1. We see that a sample size of

n = 1, 000 is sufficient to obtain estimates whose mean is close to the true value of one,

irrespective of the value of α. Apart from a sample size of n = 250, we also see that the

root mean squared error of our estimator is smaller for α = −3 or α = 1 compared to

α = −1, which provides evidence for our hypothesis that the higher the nonlinearity the

better the identification of γ, and thus the better the estimator performance. Regarding

our second hypothesis, we see that the sample size has to be quite large in order to obtain

precise estimates. This is of great practical importance, since if ordinary least squares

(OLS) and IV estimates are quite close one needs large sample sizes to decide whether

OLS and IV estimates are actually different from each other.

Considering the averaged F statistics, we see that these are larger for higher degrees

of nonlinearity (i.e., α = −3 or α = 1). However, there is no clear link between the F

statistic and the estimator performance as measured by the RMSE. For instance, when

α = −1 an F statistic of about 225 is associated with a RMSE of about 0.23. On the

other hand, when α = −3 or α = 1, an F statistic of about 225 is associated with a

RMSE of about 0.41, which is nearly twice as much! However, for a given degree of
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nonlinearity we still have (as it should be) that the larger the F statistic the better the

estimator performance.

7.4 Empirical Application

In this section, we consider an application of our estimation strategy to the measurement

of the returns to college education. We use data from the 2000 U.S. Census (Ruggles

et al., 2010). This provides us with a very large sample size, which is needed to obtain

precise results with regard to the results of the last section. Our sample consists of

white men not living in group quarters and between 25 and 54 years of age, and who

are not self-employed. Moreover, we consider only full time full year (FTFY) workers.

We are interested in results for the main part of the wage distribution, hence we keep

only observations whose wage is located between the 5th and 95th percentile of the

wage distribution.2

We estimate the following model: Our dependent variable is the natural logarithm

of the hourly wage. Explanatory variables are age (age), age squared (age2 ), dummy

variables for the Census region (northeast, midwest, south), a dummy variable for the

marital status (married), and a dummy variable for college education (college). The col-

lege indicator is equal to one if the years of education are larger than twelve. Summary

statistics for all variables are given in Table 7.2.

Since college education is potentially endogenous, we apply the estimation method-

ology proposed in Section 7.2 to obtain a consistent estimate of the coefficient of college

education, which may also be called the “returns to college education”. For comparison,

we also present the OLS estimates in the first panel of Table 7.3.

College education is a binary variable, hence we could estimate the relationship

between college education and the exogenous variables by means of a probit model,

2Since our main equation is linear in the coefficients, we expect that linearity is more likely to hold
in the main part of the wage distribution (as opposed to the tails).



164 Discrete Endogenous Regressor

as outlined in the last two sections. However, this “first stage” relationship may be

characterized by even more nonlinearities (such as conditional heteroskedasticity). To

obtain a nonlinear projection of college education on the exogenous variables, we thus

use a very flexible modeling device: We simply create cells for each combination of our

exogenous variables, and then compute the cell means with respect to college education.

This is equivalent to fitting a saturated model for the regression of college education on

the exogenous variables. Hence, we model the “first stage” of our estimation procedure

fully nonparametrically. The cell means are then used as an instrumental variable for

education.

A two stage least squares (2SLS) procedure yields the results given in the second

panel of Table 7.3. We see that the coefficient of education is significantly larger when

estimated by 2SLS. This suggests that OLS underestimates the returns to education.

Since the value of the F statistic is very large, we may have some confidence that the

2SLS procedure indeed gives a correct (and precise) estimate of the returns to college

education.

7.5 Conclusions

In this chapter, we have provided an identification strategy for an endogenous regressor

model in case that the endogenous regressor is discrete. Our identification and esti-

mation strategy may prove useful in situations where “classical” instrumental variables

are hard to find. Moreover, our method may serve as a robustness check to compare

estimates obtained under our strategy with estimates which have been obtained using

“classical” instrumental variables.

While in settings with “classical” instrumental variables the exogeneity assumption

of the instrument may be doubtful, our strategy crucially hinges on the degree of nonlin-

earity associated with the discreteness of the endogenous regressor. If the nonlinearity
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is substantial and the sample size is sufficiently large, our approach may provide a

valuable estimation strategy if a “classical” instrumental variable is unavailable.
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7.6 Tables

Table 7.1: Monte Carlo results, 1,000 replications

α = −3
n Mean Std.dev. RMSE Mean F

250 0.6709 2.7117 2.7316 31.4890
500 0.9449 0.9778 0.9793 57.9315
1,000 0.9825 0.6020 0.6022 113.5824
2,000 0.9943 0.4148 0.4148 223.8416
5,000 1.0005 0.2594 0.2594 554.4310
10,000 0.9961 0.1847 0.1847 1104.5113

α = −1
n Mean Std.dev. RMSE Mean F

250 0.8256 2.0697 2.0771 6.4913
500 0.9096 1.1765 1.1800 11.8646
1,000 0.9741 0.7817 0.7821 23.5757
2,000 0.9954 0.5325 0.5325 45.7948
5,000 0.9946 0.3299 0.3299 113.2809
10,000 1.0003 0.2257 0.2257 225.8149

α = 1
n Mean Std.dev. RMSE Mean F

250 0.6628 5.7067 5.7166 31.9808
500 0.9012 0.9434 0.9486 59.9713
1,000 0.9416 0.5997 0.6025 113.1646
2,000 0.9720 0.4155 0.4164 224.1928
5,000 0.9880 0.2570 0.2572 555.3603
10,000 0.9952 0.1838 0.1839 1104.2445

Source: 2000 U.S. Census data; own calculations.
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Table 7.2: Summary Statistics

Variable Mean Std. Dev.

log hourly wage 2.87 0.42
age 39.42 8.10
northeast 0.19 0.39
midwest 0.28 0.45
south 0.34 0.47
married 0.72 0.45
college 0.59 0.49

Source: 2000 U.S. Census data; own calculations.

Table 7.3: Estimation results

OLS 2SLS

Variable Coefficient (Std. Error) Coefficient (Std. Error)

college 0.2549 (0.0008) 0.4470 (0.0128)
age 0.0582 (0.0005) 0.0630 (0.0006)
age2 -0.0006 (0.0000) -0.0007 (0.0000)
northeast 0.0239 (0.0013) 0.0382 (0.0017)
midwest -0.0368 (0.0012) -0.0203 (0.0017)
south -0.0776 (0.0011) -0.0617 (0.0017)
married 0.1134 (0.0009) 0.1111 (0.0010)
constant 1.3348 (0.0095) 1.1195 (0.0178)

n 961,224
F statistic 3,861.45

Note: Estimation results are based on Census weights and robust standard errors.

Source: 2000 U.S. Census data; own calculations.
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