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Spin state switching of metal complexes by visible
light or hard X-rays

Daniel Unruh,a Patrick Homenya,a Manish Kumar,b Ralf Sindelar,b Yann Garcia*c and
Franz Renz*a

Electromagnetic stimuli of spin crossover compounds restricted to UV-vis light irradiation for many years

could be recently extended to X-ray excitation. This review covers a large variety of light-induced effects,

as well as recent analogues stimulated by X-ray irradiation which have not yet been reviewed. The focus is

also on multistable multinuclear spin crossover compounds which are the subject of lively discussions

within the spin crossover community. Their spin transition often occurs incompletely and with different

switching mechanisms. In this review, we recall a predicted sequential switching induced thermally as

well as a concerted stimulation mechanism by light irradiation for these interesting multifunctional

materials.

Introduction

More and more systems bearing high-density and high speed
data transfer with low power consumption are currently con-
sidered in the communication market for the design of future
spintronic devices.1,2 In this context, coordination compounds

presenting spin crossover (SCO) phenomena are currently con-
sidered to be potential materials of choice. These compounds
are reversibly convertible between a low-spin (LS) state and a
high-spin (HS) state by an external stimulus. The stimuli-
responsive transition can be triggered chemically (e.g. by
solvent, ligand exchange, pH, etc.) as well as physically (e.g. by
temperature, pressure or electromagnetic radiation etc.).3,4

The spin states of these materials can be monitored by a
large panel of physical techniques to follow changes in their
structural, magnetic, vibrational and most often optical pro-
perties. Mössbauer spectroscopy is popularly used for the
study of iron compounds since it gives much information on
the spin and oxidation states and on the structural features
and lifetimes of excited states including relaxation phenom-
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ena.5,6 Since the spin state switching of coordination com-
plexes is accompanied by modification of the macroscopic pro-
perties of the material (e.g. magnetism, colour, size, etc.), these
compounds have gained a lot of interest due to their potential
for applications in spintronics, display devices and
sensors.7–12 Despite their great potential, very few technical
applications including such materials are known at present –
possibly limited by problems in handling such complexes on a
molecular level (e.g. addressing single molecules, chemical
instability, etc.).7–9 Solving these issues is currently an impor-
tant topic in the field of nanoscience with the aim to custo-
mize future spintronic devices.13–16

In this respect, electromagnetic or even electric excitations
are considered the most promising stimuli, compared to ther-
mally induced SCO.3 In this review, we provide a brief survey of
the different SCO stimuli, in particular those induced by
visible light and hard-X-rays.4,17 We then outline different
switching mechanisms of recently discovered multinuclear
SCO compounds.18 The status on ligand induced isomeriza-
tions leading to spin state transitions including Ligand Driven
Light Induced Spin Change (LD-LISC)19 and Light Driven
Coordination Induced Spin State Switching (LD-CISSS)20 was
covered in a recent comprehensive review.21

Stimuli of spin transitions – a brief
overview

The story starts in 1931, when Cambi et al. observed for the
first time an anomalous magnetic behaviour, which was
ascribed to a spin conversion in an FeIII mononuclear complex
induced by thermal energy.22 Three years later, a spin tran-
sition stimulated by ligand exchange was reported by Pauling
et al.23 Several years later, a growing interest in iron SCO

compounds, stimulated by the discovery of the Mössbauer
effect in 1958,24 led to the discovery of several other methods
to stimulate the spin transition (e.g. by pressure) in a further
period of time (Scheme 1).25 In 1970, Gütlich et al. introduced
an original approach to switch the spin state, using Mössbauer
emission spectroscopy to investigate SCO analogues (57Co-
labelled compounds), e.g. [57Co/Co(phen)2(NCS)2] (phen =
1,10-phenanthroline).26 Besides other alterations (e.g. change
of the inner coordination sphere or metal–ligand bond
rupture), a change of spin states was observed as well. In par-
ticular, the [Fe(phen)2(NCS)2] (phen = 1,10-phenanthroline)
model complex, which undergoes a thermally induced spin
transition, could be trapped in its HS state despite falling
below its typical transition temperature T1/2 (∼180 K).27 This
uncommon phenomenon, which was termed NIESST (Nuclear
Induced Excited Spin State Trapping), was recently reviewed.27

The discovery of the possibility to switch the spin state by light
in the crystalline state, termed LIESST (Light Induced Excited
Spin State Trapping), constituted a milestone, which is cur-
rently widely applied in current chemistry.17 Decurtins et al.
identified the LIESST effect for the first time on the mono-
nuclear FeII complex [Fe(ptz)6](BF4)2 (ptz = 1-propyltetrazole)
by green light irradiation (λ = 514.5 nm) at helium tempera-
tures using diffuse reflectance and 57Fe Mössbauer spectrosco-
pies.28 Later, Hauser reported on the back switching effect –

termed reverse-LIESST – in which the spin transition from HS
to LS was induced by red light irradiation (λ = 820 nm).29 In
both ways electronic excitation to singlet as well as MLCT
states with very short lifetimes is followed by a decay to either
HS or LS states via several intersystem crossing steps.29 As the
HS → LS transition is highly spin-forbidden and the tunnelling
rate is very low, at low temperatures – described by the inverse
energy gap law by Hauser et al. in 199129 – long lifetimes of
the respective metastable states are observable. At raising
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temperatures, the system returns back to the LS state due to
higher tunnelling rates.29,30 First limited to 57 K for the
[Fe(ptz)6](BF4)2 complex,31 the relaxation temperature could be
increased up to 135 K for the macrocyclic mononuclear
complex [FeL222N3O2(CN)2]·H2O (L222N3O2 = 3,12,18-triaza-6,6-
dioxabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene).32

Similarly, the relaxation temperature after thermal trapping
is as high as 156 K for the same complex,32 and even reaches
250 K for an FeII trinuclear 1,2,4-triazole complex discovered
recently.33 Although bidirectional switching by pulsed laser
irradiation and temperature jump effects with a thermal hys-
teresis loop of a 3D coordination polymer were discovered by
Bousseksou et al.,34 partial bidirectional optical switching was
demonstrated in FeII mononuclear tetrazole complexes, with
memory effects up to ∼70 K.35 More recently, Hauser et al. dis-
covered a persistent bidirectional optical switching of the HS
2D coordination polymer [Fe(bbtr)3](BF4)2 (bbtr = 1,4-di(1,2,3-
triazol-1-yl)butane) with a light-induced stability below
100 K.36 The stabilization of the LS state and the persistent

bistability were explained by strong cooperative effects result-
ing in the presence of a large hysteresis loop with Tc

↑ = 100 K
and Tc

↓ near or formally even below 0 K.36

The strong field (SF)-LIESST – discovered by Renz, Gütlich
et al. – opened up a new door in the SCO area because of the
totally unexpected spin switching in SF complexes in which no
thermal SCO is observable.37

SF-LIESST was detected in a metal-diluted coordination
compound, [57Fe0.02Mn0.98(tpy)2](ClO4)2 (tpy = 2,2′:6′,2″-
terpyridine), although [Fe(tpy)2](ClO4)2 is known to be LS. It
proved to be a single-molecule mechanism and could be
explained by a stabilization of the excited spin state by the
host lattice (in this case [Mn(tpy)2]

2+) (Scheme 2).37 The
SF-LIESST was also found on a nondiluted mononuclear
FeII complex [Fe(L222N5)(CN)2]·H2O (L222N5 = 2,13-dimethyl-
3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-
pentaene).38

Yet, LIESST and NIESST are initiated at cryogenic tempera-
tures due to low tunneling rates, which led to the thermal
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Scheme 1 Historic time line of various spin crossover stimuli. Adapted from ref. 4.
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decay of metastable states at higher temperatures, preventing
potential room temperature photo-induced spin state switch-
ing. Over the last two decades more spin transition effects
induced by visible light have emerged, differentiating between
light irradiation as a “single” excitation pulse and a continu-
ous exposure. At continuous irradiation all these effects
described below are based on the LIESST phenomenon.
Whereas stimulation in LITH (Light Induced Thermal Hyster-
esis)39,40 and LIOH (Light Induced Optical Hysteresis)39 are
induced at cryogenic temperatures, LiPTH (Light Induced Per-
turbed Thermal Hysteresis) and LiPOH (Light Induced Per-
turbed Optical Hysteresis) could occur at much higher
temperatures,41,42 thus foreseeing potential applications.

In LITH, after LIESST population of the metastable HS state
at low temperature, green light irradiation was maintained in
both warming and cooling modes. Indeed, while reversibly
varying the temperature at constant irradiation, Létard et al.
and Varret et al. independently observed a hysteresis loop on
an FeII mononuclear complex40 and a coordination polymer,39

respectively. This phenomenon could be explained by an inter-
play between HS state light excitation and its increasing
thermal decay at higher temperatures.41,42 Intermolecular inter-
actions of single molecule switching centres were also identi-
fied, thus allowing to ascribe the presence of a LITH to
cooperative effects.39 The LITH thus found its usefulness for the
study of noncooperative thermally induced spin conversions of
a gradual nature, which were expected to be cooperative. This
was nicely exemplified in the [2 × 2] Fe4 SCO grid by Lehn,
Gütlich et al. who evidenced a LITH loop using 57Fe Mössbauer
spectroscopy, despite the very smooth character of the SCO
curve as concluded from bulk magnetic measurements, which
was not expected for a tetranuclear SCO complex (Fig. 1).43

A similar cooperative behaviour was observed by Varret
et al. by changing the intensity of the irradiated light at a con-
stant temperature. Also similar to LIESST, this hysteresis effect
was called LIOH.39 In comparison with the abovementioned
hysteresis effects at cryogenic temperatures, LiPTH and
LiPOH41,42 are spin transition stimuli at higher temperatures.
Based on the same interplay between HS state excitations by
light and thermal decay, the hysteresis behaviour could be
manipulated. For instance, the coordination compound
[Fe(phy)2](BF4)2 (phy = 1,10 phenanthroline-2-carbaldehyde-
phenylhydrazone) shows a thermal hysteresis between 270 K and

280 K, which was shifted to lower temperatures (∼10 K) by con-
tinuous irradiation with green light and shifted to higher
temperatures by red light.41

Apart from UV-vis light irradiation, X-ray excitation experi-
ments on SCO materials experienced recently a renaissance.
The first excitation effects induced by X-rays were discovered
by Collison et al. in 1997,44 although different kinds of X-ray
spectroscopy like XPS or XAFS were earlier used to monitor
spin transition in coordination compounds.45,46 Collison et al.
have shown that L-edge absorption of X-rays with relatively low
energy could be used to stimulate a spin transition at low
temperatures. In the so-called SOXIESST (Soft X-ray Induced
Excited Spin State Trapping) the HS state could be trapped
below a certain temperature by irradiation with soft X-rays,
similar to the LIESST effect. Unfortunately the SOXIESST effect
is accompanied by SOXPC (Soft X-ray Photochemistry) which
causes chemical changes in the investigated SCO compound,
[Fe(phen)2(NCX)2] (X = S, Se). Over time the compound gets
degenerate to an irreversible LS state form which seems to be
chemically different from the initial LS ground state. This
phase transition, which has not yet been explained fully, is
temperature-independent.44

A SOXIESST effect has also been recently reported for the
mononuclear complex [Fe(bpz)2(phen)] (bpz = dihydrobis(pyr-
azolyl)borate) either adsorbed on Au(111)47 or in direct contact
with a highly oriented pyrolytic graphite surface.48 Apart from
soft X-rays, Vankó et al. were able to stimulate a spin transition
in an FeII compound using high energy X-rays.49 The so-called
HAXIESST (Hard X-ray Induced Spin State Trapping) effect is
comparable to the abovementioned effects (LIESST, NIESST
and SOXIESST). Although the mechanism has not been evalu-
ated so far, a similar trapping mechanism was discussed. In
contrast to NIESST and SOXIESST, a K-shell excitation causes
almost no significant structural or chemical transition of the
complexes, which gives the HAXIESST effect an enormous
advantage for using it in potential applications. The idea of
using the large penetration power and spatial resolution of
hard X-rays enhances this potential because hard X-rays could
theoretically be used to address single molecules or a small

Scheme 2 SF-LIESST mechanism in a schematic view of the
[57Fe0.02Mn0.98(tpy)2]

2+ crystal lattice. The LS Fe ion is blue and the HS
one is red.

Fig. 1 Identification of cooperative effects in a grid like FeII SCO
complex [Fe4L4]

8+ thanks to LITH below 100 K (left side) despite the
gradual character of the thermally induced spin conversion (right side,
bottom).
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number of complexes individually.49 The HAXIESST effect was
discovered in [Fe(phen)2(NCS)2] at low temperatures, the very
same compound which was investigated for the SOXIESST
effect. A maximum amount of 72% of the complex could be
converted to the HS state at 10 K by hard X-ray irradiation
(Fig. 2). In this case absorption of high energy photons creates
1s holes, causing following processes to fill these vacancies.
Consequently the iron compound gets trapped in the meta-
stable HS state. Triggers for this excitation could be several sec-
ondary processes following the electron capture in the 1s
orbital (e.g. secondary electrons, scattered electrons, X-ray
emission, etc.) but the exact mechanism has not been eluci-
dated so far. Increasing temperature lowers the HS state frac-
tion to 42% at 45 K, while the HS state completely disappears
at 55 K (Fig. 2).49 The existence of thermal decay at higher
temperatures is in accordance with observations in compar-
able effects like LIESST, NIESST or SOXIESST. In line with
LIESST but in contrast to NIESST and SOXIESST, almost no
significant chemical changes in the samples were observed,
making the effect completely reversible.49

The preserved integrity of the sample after irradiation with
hard X-rays suggests that a hysteresis effect – compared to
LITH induced by visible light – could, in principle, exist. The
first evidence of a HAXITH, i.e. the determination of a thermal
hysteresis loop at continuous irradiation of a SCO compound
with hard X-rays at cryogenic temperatures, was discovered by
Renz et al. in 2012.50 By reversibly changing the temperature
between 40 K and 50 K with constant heating and cooling
rates, respectively, increasing amounts of the HS state fraction
of [Fe(phen)2(NCS)2] with every cycle up to a maximum were
observed.44 Similarly, vacuum UV photons can populate the
metastable HS state leading to the Vacuum UV Induced
Excited Spin State Trapping (VUVIESST) effect discovered by
Ludwig et al. in 2014.51

Compared to the large variety of effects to stimulate a SCO
by visible light (e.g. LITH, LIOH, LiPTH, LiPOH) only a few
analogues excited by hard X-ray irradiation have been found

up to now. Considering the similarity between visible light and
hard X-rays as a stimulus, one should be able to observe other
spin transition effects induced by hard X-rays (Fig. 3). For
example, a strong field effect similar to SF-LIESST is conceiv-
able and first results of investigations on this phenomenon
will be published anytime soon.

Finally, it is worth mentioning the possibility to switch the
spin state using electrons, studied by Ruben et al. on an
iron(II) mononuclear complex,53 followed by other examples of
electrical switching of the 1D chain [Fe(Htrz)2trz]BF4,

54,55

including the Electron Induced Excited Spin State Trapping
(EIESST) first described by Gopakumar et al.47,56

Concerted or sequential switching in
multinuclear spin crossover complexes

In contrast to electromagnetic induced spin transitions which
were discussed in the first part of this review mostly on mono-
nuclear SCO systems, the second part focuses on multinuclear
complexes showing thermal SCO as well as some interesting
photomagnetic effects. Multinuclear SCO complexes have been
investigated intensively within the last 15 years, exhibiting
promising SCO behaviours for possible applications, in
particular binuclear complexes.57–76 Compared to spin state
switching in mononuclear compounds, multinuclear com-
plexes promise more drastic changes of the macroscopic
material properties. For instance, the total amount of unpaired
electrons – and therefore the magnetic moment – as well as
their coupling could accumulate over all metallic centres,
increasing interactions compared to those in mononuclear
complexes (e.g. FeIII-d5 in HS: S = 5/2; dinuclear FeIII-d5 in HS:
S = 10/2; up to S = 60/2 in a dodecanuclear complex).64,77 In
addition, some intermediate states can be populated, leading
to various switching processes and intramolecular interactions
between metal centres. For instance, dinuclear FeII complexes
assumed the existence of spin pairs being in either a [LS–LS]
state at lower temperatures or a [HS–HS] state at higher temp-
eratures, leading to sequential switching or direct spin tran-
sitions. Furthermore a mixed spin state situation of [HS–LS]
nature could be identified.57,60,78 Therefore a one- or two-step
spin transition could be evidenced in such oligomers. Kseno-
fontov et al. were the first to prove the existence of such
intermediate states by running applied magnetic field

Fig. 2 HAXIESST effect evidenced at 30 K on [Fe(phen)2(NCS)2]. The
red lines are a guide for the eyes. The black line represents magnetic
measurements. A HAXITH is evidenced below 50 K.

Fig. 3 Illustration of established SCO effects stimulated by visible light
or hard X-rays including the publication year, author and predicted
effects which have not yet been found.52
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Mössbauer measurements,79 although later Mössbauer experi-
ments showed that the application of a magnetic field was not
always necessary.80 Besides thermal spin transition, LIESST
occurs in Fe dinuclear SCO compounds as well.81 In compari-
son with LIESST in mononuclear complexes, Létard et al.
observed an unexpected increase of the [HS–HS] state at increas-
ing temperatures, which was explained by strong antiferro-
magnetic interactions of the Fe(II) centers.81 In this context,
Moussa et al. used different wavelengths to excite either [HS–LS]
or [HS–HS] states. While irradiation with infrared light (λ =
1342 nm) populates [HS–LS] states, red light (λ = 647.1 nm)
stimulates [HS–HS] states.82 In the meantime a large number
of multinuclear spin transition compounds have been pub-
lished containing three to twelve metal centres, including or
not including iron,83 as well as for coordination polymers.84

The list includes trimers,33,64,85,86 tetramers,43,86–94 pentanuc-
lear assemblies,95–97 tetradecanuclear assemblies,98 heptamers,99

as well as a pentadecanuclear spherical cluster {Fe9[Re(CN)8]6}
showing an incomplete spin conversion of only one iron
center.100 The LIESST effect was also encountered in iron(II)
coordination polymers,36,39,101 in particular in 1D
chains.10a,102 The first example of a LIESST effect in a 1D
chain was discovered by Koningsbruggen et al. on [Fe(btzp)3]
(ClO4)2 (btzp = 1,2-bis(tetrazol-1-yl)propane).103 The thermal
relaxation after LIESST was found to proceed in two steps, pre-
sumably due to different chain lengths in the 1D material.103

Interestingly, chain length distributions were also taken to be
responsible for the two step character of the thermally induced
spin transition of [Fe(βAlatrz)3](BF4)2·2H2O (βAlatrz = 1,2,4-
triazol-4-yl-propionate), the first of its kind for a 1D iron(II)
chain with 1,2,4-triazole ligands.104 The topic was recently
reviewed with the focus centred on the LIESST effect on 1D
iron(II) 1,2,4-triazole SCO chains.105

We highlight below some examples of multinuclear SCO
systems. Gembický et al. initially described an Fe(II)/Fe(III) mixed
valence heptanuclear system, consisting of six Fe(III) pentaden-
tate precursor building blocks and a [Fe(CN)6]

4− centre unit,106

which could be tuned to a SCO system by Boca et al. (Fig. 4).99b

Renz et al. investigated multinuclear compounds using Co
and Mo surrounded by either six or eight Fe(III) pentadentate
complex precursors.107 Surprisingly, SCO was observable in
those systems although single Fe(III) building blocks are typical
weak-field complexes, populating exclusively the HS state.107

Especially the nonanuclear Mo complex [[53,3 LFeNC]8Mo]Cl4
(Fig. 5) could see its peripheral iron units be thermally
switched to LS on cooling as shown by Mössbauer spec-
troscopy (Fig. 6a and b).107 Interestingly, green light irradiation
(λ = 514 nm) induced a partial population of the HS state at
20 K (Fig. 6d).17 Despite the similarity to LIESST in mono-
nuclear coordination compounds, the mechanism of multi-
nuclear photonic-stimulated transitions could differ
completely. Saadat et al. postulated the existence of a small
fraction of FeII ions in the LS state. Considering the mechan-
ism to achieve such a FeII LS, they suggested a concerted
switching mechanism by light irradiation, which is shown in
Fig. 6c.18 In this particular case they assumed that all FeIII

Fig. 4 Mössbauer spectra (left), crystal structure (top, right) and mag-
netic measurements (bottom, right) of the mixed Fe(II)/Fe(III) hepta-
nuclear complex [FeII{(CN)FeIIIL5}6]Cl2.99

Fig. 5 Schematic view of the nonanuclear Mo complex
[[53,3 LFeNC]8Mo]Cl4.

Fig. 6 Schematic illustration of the presumable switching mechanisms
in [[53,3 LFeNC]8Mo]Cl4. Thermal-induced SCO occurs sequentially
between HS (a) and LS (b) FeIII ions while a complete transition to the LS
state could not be observed. Green light irradiation at low temperatures
could lead to either a concerted switching to (c) or a sequential tran-
sition to (d) similar to LIESST.18
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centres of the nonanuclear complex are in their LS state at
20 K. Green light irradiation switches seven of those centres to
their HS state. Simultaneously an electron transfer from the
Mo centre to one FeIII centre, which remains in its LS state,
would take place (Fig. 6c).18

Light Induced Electron Transfer Coupled Spin Transition
(LIETCST) was first observed on Prussian blue analogues.27a,108

More recently, several photoswitchable polymetallic com-
plexes containing also [Mo(CN)8]

4− building blocks and Mn,
Cu or Zn centres were communicated by Marvaud, Mathoniere
et al.109–116 Their switching mechanism is under discussion
and could be related to the Fe8Mo system described above,
given the fact that in addition to electron transfer from the Mo
to Cu atoms, a LS to HS transition centred on the Mo atom
was postulated thanks to X-ray magnetic dichroism.117 More
precise investigations of the suggested mechanisms in such
multinuclear systems are needed to verify different switching
mechanisms stimulated by light (concerted) or thermally
(sequential). Further examples of electron-transfer-coupled
spin transition (ETCST) can be found for cyanide bridged
molecular systems.118,119 Even more exciting are the important
application perspectives provided by bimetallic metal organic
frameworks regarding room temperature magnetic bistability,120

and magnets based on the LIESST effect.121,122

Concluding remarks

In this review article, we have covered different kinds of stimuli
to induce spin crossover in iron compounds, focusing on elec-
tromagnetic irradiation-induced spin state switching phenom-
ena in mono- as well as multinuclear coordination compounds.
In particular, we have outlined well known effects such as
LIESST or LITH occurring in mononuclear complexes as well as
their new analogues HAXIESST and HAXITH. In addition, we
have predicted other effects such as HAXIOH, HAXIPTH, and
HAXIPOH which have not yet been described. Furthermore, we
have outlined thermal and light induced spin crossover occur-
ring in multinuclear coordination compounds containing two
to twelve metal centres. While the LIESST effect was found in
several dinuclear complexes, light stimuli in higher nuclearity
complexes often follow an intramolecular electron transfer
mechanism. We anticipate that the present report could stimu-
late investigations on the abovementioned light and X-ray
induced phenomena in mononuclear as well as multinuclear
switchable coordination compounds. The recent communi-
cation that the LS spin state of MoIV complexes can be photo-
induced leading to a long-lived HS state (stable on warming up
to 90 K) after a structural rearrangement123 could indeed stimu-
late future studies on numerous unexplored systems.

Abbreviations

EIESST Electron induced excited spin state trapping
ETCST Electron transfer coupled spin transition

HAXIESST Hard X-ray induced excited spin state trapping
HAXITH Hard X-ray induced thermal hysteresis
HAXIOH Hard X-ray induced optical hysteresis
HAXIPOH Hard X-ray induced perturbed optical hysteresis
HAXIPTH Hard X-ray induced perturbed thermal hysteresis
LD-CISSS Light driven coordination induced spin state

switching
LD-LISC Ligand driven light induced spin change
LIESST Light induced excited spin state trapping
LIETCST Light induced electron transfer coupled spin

transition
LIOH Light induced optical hysteresis
LiPOH Light induced perturbed optical hysteresis
LiPTH Light induced perturbed thermal hysteresis
LITH Light induced thermal hysteresis
NIESST Nuclear induced excited spin state trapping
SF-HAXIESST Strong field hard X-ray induced excited spin

state trapping
SF-LIESST Strong field light induced excited spin state

trapping
SOXIESST Soft X-ray induced excited spin state trapping
SOXPC Soft X-ray photochemistry
VUVIESST Vacuum UV induced excited spin state

trapping
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