Trust-aware Agents
for Self-organising Computing Systems

Von der Fakultét fiir Elektrotechnik und Informatik der Gottfried Wilhelm

Leibniz Universitit Hannover zur Erlangung des akademischen Grades

Doktor-Ingenieur (abgekiirzt: Dr.-Ing.) genehmigte Dissertation

von M.Sc. Yvonne Bernard

geboren am 28. Mérz 1982 in Hannover

2014

Referent: Prof. Dr.-Ing. Christian Miiller-Schloer

Korreferent: Prof. Dr. Theo Ungerer

Tag der Promotion: 08.10.2014

Danksagung

Ich m6chte meinem Doktorvater Prof. Christian Miiller-Schloer fiir die her-
vorragende Betreuung und Unterstiitzung danken. Im Rahmen meiner Pro-
motion und Tétigkeit an seinem Fachgebiet konnte ich mich dank seiner ver-
trauensvollen Fiithrung fachlich wie persénlich entfalten und weiterentwickeln.

Ich danke meinem Korreferenten Prof. Theo Ungerer fiir seine kontinuier-
liche konstruktive Unterstiitzung, nicht nur meiner Dissertation, sondern auch
im Rahmen der DFG-Forschergruppe OC-Trust.

Allen meinen ehemaligen Kolleginnen und Kollegen am Fachgebiet System-
und Rechnerarchitektur sowie an der "Aufenstelle SRA" danke ich herzlich
fiir die gemeinsame Zeit, die von viel Spak und gegenseitiger Unterstiitzung
in fachlicher wie menschlicher Hinsicht geprigt war. So viele tolle Menschen
namentlich zu erwdhnen wiirde den Seitenrahmen sprengen.

Ein besonderer Dank gilt meiner Familie, vor allem meinen Eltern, die
immer an mich geglaubt haben, meinem Partner Daniel fiir sein Verstindnis
und seine Motivationskraft und meinem Bruder Marcel fiir seine humorvolle

Unterstiitzung.

Zusammenfassung

In der heutigen Zeit liegt der Herausforderung im Systemdesign darin, Systeme einer-
seits trotz ihrer immensen Vernetzung beherrschbarer zu machen, andererseits jedoch
auch, die Offenheit in solchen komplexen Systemen zu beriicksichtigen. Offenheit ist
in komplexen Systemen Chance und Risiko zugleich: Werden neue Komponenten
(z.B. neue Agenten in einem Multiagentensystem) Teil eines Systems, sinkt die Be-
lastung der einzelnen Subsysteme, da ein zusitzlicher Knoten seine Resourcen zur
Verfiigung stellen kann. Ein geschicktes Management offener Systeme kann somit zu
Performancesteigerungen fithren. Andererseits muss das System jedoch sicherstellen,
dass neue Komponenten sich vertrauenswiirdig verhalten: Handelt die neue Kompo-
nente so, wie es von ihr erwartet wird? Sind die ihr iibergebenen Daten dort sicher
und werden iibernommene Aufgaben innerhalb von Deadlinegrenzen zuverlissig ko-
rrekt fertiggestellt? Ohne die Implementierung der neuen Komponente zu kennen,
muss das Gesamsystem rein aus dem Verhalten einer Komponente erkennen, ob es
sich um einen fehlerhaften oder bosartigen Knoten handelt und ggf. Gegenmafnah-
men einleiten.

In dieser Arbeit wird eine adaptive Agentenarchitektur vorgestellt, die eine verteilte
Erkennung und Ausgrenzung bosartiger Agenten unter Verwendung von Vertrauens-
werten ermoglicht. Basierend auf dieser Agentenarchitektur werden Instanzen ver-
schiedener Agentenklassen vorgestellt. Diese unterscheiden sich in der Fihigkeit,
Informationen aus ihrer Umgebung wahrzunehmen (Awareness) und im Verhalten,
das aus dieser Wahrnehmung resultiert. Je mehr Informationen ein Agent zur Ver-
fiigung hat, desto komplexer kénnen seine Entscheidungen ausfallen.

Die vorgestellten Agenten zeichnen sich durch die Féhigkeit zur selbstorgan-
sierten Bildung von Vertrauensgemeinschaften (Trusted Communities), verschiedene
Verfahren zum Lernen optimaler Verhaltensweisen, Vorhersagemechanismen und An-
passungsverfahren fiir Situationsentwicklungen sowie die Beriicksichtigung hierar-
chischer Erkenntnisse in lokalen Entscheidungen aus.

Anwendungsszenario zur Evaluation der Konzepte in dieser Arbeit ist ein Desk-
top Grid and Volunteer Computing System, in dem die teilnehmenden Knoten mit
einer Agentenkomponente versehen sind, die in der Lage sind, Kooperationsentschei-
dungen beziiglich der paralllen Nutzung freier Rechenressourcen im System zu treffen
und Vertrauenswerte zu erheben. Ziel dieser Agentenimplementierungen ist es, trotz
der Offenheit die Performanz und Robustheit des Systems aufrechzuerhalten.

Schlagworte: Organic Computing, Social Organic Computing, Vertrauen, Mul-

tiagentensysteme, offene verteilte Systeme, Vertrauen, Reputation, Desktop Grids

Abstract

Nowadays, the focus of systems design is to cope with the interconnectedness of
components, but at the same time management of the openness of such systems.
The openness of complex systems is benefit and risk at the same time: If new
components (here: agents) enter the system, they can reduce the workload of the
other system components, because they can take over certain tasks. Therefore, a
well-planned self-organised management of open systems can lead to performance
improvement.

On the other hand, the overall system needs to make sure that the new compo-
nents act in a trustworthy manner: Does the new component act as it is expected
to? Ts data safely stored and will tasks assigned to the component be completed
correctly and timely?

Without knowing the underlying implementation of the new components, the
overall system needs to detect from their actions, if the node is faulty or even mali-
cious and, if necessary, initiate countermeasures.

This thesis proposes an adaptive agent architecture, which allows for a distributed
detection and isolation of misbehaving agents by introducing trust. Instances of
agent classes, which differ in the ability to observe information (awareness) and their
behaviour based on the observed parameters are presented. The more information
is available, the more complex the decision can become.

The agents introduced here are equipped with the ability to self-organise Trusted
Communities, different learning techniques to optimise their behaviour at runtime,
prediction of and adaptation to situation changes as well as the consideration of
hierarchically perceived information in local agent decisions.

The evaluation scenario used to evaluate the concepts in this thesis is a desktop
grid and volunteer computing system, in which participating nodes are equipped
with an agent component, which is able to make cooperation decisions regarding
the parallel usage of idle computing resources and to collect trust information from
interactions.

It will be shown, how agent-based mechanisms are able to improve the perfor-
mance and robustness of such an open complex system.

Keywords: Organic Computing, Social Organic Computing, multi-agent sys-

tems, open distributed systems, Trust, reputation, Desktop Grids

iii

List of Abbreviations

AOM
BOINC
CPR
eTC
iTC
JML
MAS
OCL
OMG
P2P
SuOC
TC
TDG
UML

adaptive observation model

Berkeley Open Infrastructure for Network Computing
Common Pool Resource

explicit Trusted Community

implicit Trusted Community

Java Modeling Language

Multi-agent System

Object Constraint Language

Object Management Group
Peer-to-Peer

System under Observation and Control
Trusted Community

Trusted Desktop Grid

Unified Modeling Language

List of Figures

2.1

3.1

4.1

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Overview of the building blocks of this thesis 13
Opinion space [64] 39
Observer/Controller pattern according to [78] 58
Trust and reputation 79
Trust-based interaction of agents A; and A; using reputation 80
Trust-based nested control loops 83
Trusted Communities oL 84
Implicit Trusted Community (iTC) 86
Explicit Trusted Community 88
Agent component of the thesis. 92
Architecture combining agent types 94
Agent hierarchy based on information and solution quality 97
Trust-aware Agent L 99
Agent stereotypes are instances of static agents 100
Adaptive agents can choose a suitable strategy 101
iTC agent thresholds 102
Adaptive ranking table Lo 0oL 103
The chromosome structure of evolutionary agent A; decides how to

treat agent Aj; 107
Sigmoid function oo Lo 110
Structure of the CACLA neural network 111
Trust-strategic agent 113
Norm life cycle oo 117
Composite pattern oL 121
Adaptive observation model 0000000 123
Observation model submitter 00000 125
Observables in the TDGo . o 0. 126

LIST OF FIGURES v

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8
7.9

7.14
7.15
7.16
7.17

Step-method of the OrganicGridComputerAgent 138
Average total flow time and waiting time of TDG and Organic Grid
(OG) in undisturbed system state 0L 140
Average total flow time and waiting time of TDG and Organic Grid
(OG) in disturbed system state 141
Average waste ratio and scheduling success rate of TDG and Organic
Grid (OG) in disturbed system state 142
Average total flow time and total waiting time of TDG and H-Trust
in undisturbed system state o000 145
Average total flow time and waiting time of TDG and H-Trust in
disturbed system stateo L0 146
Waste ratio and scheduling success rate of TDG and H-Trust in dis-
turbed system stateo 147
Performance comparison of trust-neglecting and trust-adaptive agents. 148
Performance of trust-adaptive iTC agents with disturbance of 25 per-
cent free-riderso 151

Performance comparison of trust-adaptive iTC agents and misbehav-

ingagents 152
Results of experiment 1: Average fitness of evolutionary agents and

adaptive agents L 154
Results of experiment 1: Average reputation of evolutionary agents

and adaptive agents L 154
Results of experiment 1: Average workload of evolutionary agents and

adaptive agents 155
Results of experiment 2: Average fitness of evolutionary agents . . . 156
Results of experiment 2: Average workload of evolutionary agents . . 156
Results of experiment 2: Amount of gene 1 of evolutionary agents . . 157

Results of experiment 2: Amount of gene 4 and gene 8 of evolutionary
agents L. 158
Results of experiment 3: Average fitness of evolutionary agents and
egoisticagents oL Lo 159
Results of experiment 3: Amount of gene 5 and gene 9 of evolutionary
agents L. 159
Fitness of CACLA (ADA) agents with SSR, WR and FTR as reward

functions compared to adaptive agents in different disturbance situations164

vi

LIST OF FIGURES

7.21

7.22

7.23

7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31

7.32

Al

A2

A3
A4

A5

A6

Flow time ratio of CACLA agents with SSR, WR and FTR as reward
functions compared to adaptive agents in different disturbance situations165
Scheduling success rate of CACLA agents with SSR, WR and FTR as
reward functions compared to adaptive agents in different disturbance
situations 165
Waste ratio of CACLA agents with SSR, WR., and FTR. as reward
functions compared to adaptive agents in different disturbance situations166

Decision plane learned at runtime 166
Performance without workload prediction 168
Performance with workload prediction 168
Performance of trust-adaptive agents without overload workload norm 170

Reputation of agents without overload workload norm 171
Performance in overload situation with overload workload norm . . . 172
Reputation in overload situation with overload workload norm 173
This awareness adaptation not only reduces communication effort, but

can also improve performance (flow time and waiting time). 175
Speedup of different sampling distances used in different bandwidth

limitation scenarios 177

The Learning agent framework enabling system designers to exchange

the learning algorithm of trust-adaptive learning agents 204
The Hedger implementation based on learning agent framework . . . 205
UML representation of Adaptive Observation Model 205

Further performance results of trust-adaptive iTC agents. Misbehav-
ing agents reach severely higher flow times, turnaround times and
waiting times, have therefore no benefit from participating in the sys-
tem and are thus excluded from the TC. 206
Further performance results of tactical agents without workload pre-
diction. o 207
Further performance results of tactical agents with workload predic-
tion. The performance has been improved compared to the results
in Figure A.5. The flow times, turnaround times and waiting times
of tactical adaptive agents have been decreased, which means that

agents reach a better usage of the system if they adapt proactively to

List of Definitions

3.1
3.2
3.3
3.4
3.5

4.6
4.7
4.8
4.9
4.10
4.11
4.12

Bag-of-tasks applications: 17
Scheduling: 0oL 25
Matchmaking: L 26
Trustworthiness: L 35
Reputation: o 35
Multi-agent Systems: 65
Agents: 65
Proactivity: 67
AWATeness: oo 67
Institution: 68
The Normchange Definition: 72
The Mechanism Design Definition: 73

vii

Contents

Zusammenfassung
Abstract
List of Abbreviations

List of Figures

List of Definitions

1 Introduction

1.1
1.2
1.3

1.4
1.5

1.6

Motivationo
Application Scenario Trusted Desktop Grid
MAS .
1.3.1 Agent Architecture Enabling Proactive Decisions
1.3.2 Awareness
1.3.3 Institutions oL
Extension of Organic Computing Techniques
Self-organised Trust-based Agent-Society Coordination
Classification and Scientific Focuso 00

2 Research Questions and Aim of This Thesis

3 Related Work

3.1

3.2

3.3
3.4

Grid Computing Lo

3.1.1 Data and Task Composition in Grids
3.1.2 Bag-of-tasks Applications L.
Volunteer Desktop Grid Systems
3.2.1 Centralised Desktop Grid Systems
3.2.2 Peer-to-peer Desktop Grids
Requirements of Grid Systems
Trust-based or Adaptive Approaches to Grid Systems
340 QGrid . . .
342 RIDGE

ii
il
vi

vii

© 00 00 =1 =1 =1 W o~ e

—_
o

[y
-

15

17

19

CONTENTS ix

3.6
3.7
3.8

343 WaveGrid 22
34.4 A Pure Peer-to-peer Desktop Grid Framework with Efficient
Fault Tolerance 22
345 H-Trust 22
34.6 Organic Grid L 23
Scheduling and Matchmaking 25
3.5.1 Scheduling Mechanisms 26
3.5.2 Matchmaking Mechanisms 29
Taxonomy of Grid Systems, 33
Discussion of Grid Systems L. 34
Trust and Reputation Models 35
3.8.1 Requirements and Criteria 36
3.8.2 Valuation of Trust in Open Networks 37
3.8.3 A Metric for Trusted Systems 39
3.8.4 The EigenTrust Algorithm for Reputation Management in P2P
Networks 39
3.8.5 A Reputation-based Trust Management System for P2P Net-
works oL 40
3.8.6 PeerTrust: Supporting Reputation-based Trust for P2P Elec-
tronic Communities 41
3.8.7 A Dynamic Trust Metric for P2P Systems 42
3.8.8 Trust Network Analysis with Subjective Logic 43

3.8.9 A New Reputation Mechanism Against Dishonest Recommen-
dations in P2P Systems 44
3.8.10 ICRep: An Incentive-compatible Reputation Mechanism for
P2P Systems o 45
3.8.11 An Affair-based Interpersonal Trust Metric Calculation Method 45
3.8.12 Reputation System User Classification Using a Hausdorff-based
Metric 46
3.8.13 TwoHop: Metric-based Trust Evaluation for Peer-to-peer Col-

laboration Environments 47
3.8.14 SFTrust: A Double Trust Metric-based Trust Model in Un-
structured P2P System L. 48

3.8.15 RATM: A Reputation-based Attack-resistant Distributed Trust
Management Model in P2P Networks 49

CONTENTS

3.8.16 ARRep: An Adaptive and Robust Reputation Mechanism for

P2P Networks 51

3.9 Analysis and Discussion of Trust and Reputation Models 52
3.10 Summary ... 54
Supportive Technologies 57
4.1 OC Techniques 57
4.1.1 Analysis of Suitable Learning Techniques 59

4.2 MAS . L 65
4.2.1 Types of Agent Architecture 65
4.2.2 Reactivity and Proactivity 0L 67
423 AWAreness o. ... 67
4.24 Institutions 67
4.2.5 Normative MAS 72

4.3 Summary ... 7
System View 79
5.1 Trust Feedback Loops 79
5.2 Trusted Communities Lo 83
5.2.1 Trusted Communities Definition 84
5.2.2 TImplicit Trusted Communities 85
5.2.3 Explicit Trusted Communities 87

5.3 Summary ... oL 90
Adaptive Agent Architecture 91
6.1 Motivationo 92
6.2 Systematisation L 92
6.3 Adaptive Architecture Model 93
6.4 Agent Type Hierarchy 95
6.5 Information Spaces of TDG Agents 96
6.6 Trust-neglecting Agents 98
6.7 Trust-aware Agents 98
6.7.1 Egoistic Agent oL 99
6.7.2 Free-Rider oo 100

6.8 Trust-adaptive Agents Lo 101
6.81 iTCAgent. 101

6.8.2 Evolutionary Agent L. 104

CONTENTS xi

7

6.8.3 Learning Agent 108
6.9 Trust-strategic Agents L Lo L. 112
6.9.1 Tactical Agent: Situation Prediction 113
6.9.2 Norm-aware Agent: Consideration of Constraints 115
6.9.3 Adaptive Observation Model Agent 123
6.10 Summary 126
Evaluation 129
7.1 Evaluation Environment: Trusted Desktop Grid (TDG) 130
7.1.1 Disturbances Caused by Misbehaving Agents 131
7.1.2 Disturbances Analysable on System Level 132
7.2 Evaluation Metrics 132
7.2.1 Evaluation Metrics on System Level 133
7.2.2 Evaluation Metrics on the Agent Level 135
7.3 Comparison of TDG with State of the Art 137
7.3.1 Organic Grid oo 137
7.3.2 Comparison of Organic Grid with TDG 140
733 H-Trust 142
7.3.4 Comparison of H-Trust with TDG 144
7.3.5 Summary: Comparison with Related Work 147
7.4 Trust-awareness Used to Reduce Information Uncertainty 148
7.5 Trust-adaptivity to Improve Robustness 149
7.6 Evolutionary Approach for Continuous Run-time Adaptation 152
7.6.1 Evolutionary Agents vs. Adaptive Agents 153
7.6.2 Homogeneous System of Evolutionary Agents 155
7.6.3 Evolutionary Agents vs. Egoistic Agents 157
7.7 TLearning Optimal Behaviour at Run-time 160
7.7.1 Metrics for Learning Reward Functions. 160
7.7.2 Performance of Learning Modular Agents in Different Distur-
bance Situations L 162
7.7.3 Summary: Learning Agent L. 166
7.8 Using Predictions to Act Proactively 167
7.9 Inclusion of Norms into Local Agent Decision Making 169
7.9.1 Overload Workload Situation without Norms 170
7.9.2 Overload Workload Situation with Norm 172
7.10 Overhead Reduction by Using the Adaptive Observation Model . . . 174

7.10.1 Variation of Parameter Type and Scope 174

xii CONTENTS
7.10.2 Variation of Sampling Distance 175

711 Summary 179

8 Conclusion 181
8.1 Discussion 181
8.2 Generalisation L 183
Bibliography 185
List of Publications 199
A Appendix 203
A1 UML Diagrams oo 204
A.2 Further Evaluation results 206
A3 Parameter settingso 208
A.3.1 General simulation parameters 208

A3.2 TDG parameters 209

A.3.3 H-trust parameters 209

A.34 Organic Grid parameters. 211

A.3.5 Disturbance parameters 211

Chapter 1

Introduction

1.1 Motivation. 1
1.2 Application Scenario Trusted Desktop Grid 3
1.3 MAS . .. 7
1.3.1 Agent Architecture Enabling Proactive Decisions 7
1,32 Awareness 7
1.3.3 Institutions 8
1.4 Extension of Organic Computing Techniques. 8
1.5 Self-organised Trust-based Agent-Society Coordination . . . 9
1.6 Classification and Scientific Focus 10

1.1 Motivation

System designers nowadays are required more than ever before to cope with the in-
creasing complexity of systems. Decreases in the size, power consumption and prices
of embedded devices as well as increasing computational power and multiple commu-
nication channels have led to a variety of large systems of interconnected embedded
devices. For instance, the complex networks within modern cars have to deal with
not only permanent subsystems, but also the driver’s smartphone (car-to-x) and even
other cars (car-to-car). System designers must recognise this increasing openness.
On the one hand, the abilities of the system are being continuously extended and
optimised. For instance, the system receives more computational power or function-

alities through volatile devices, which increases the possibilities available to the user

2 CHAPTER 1. INTRODUCTION

for using the system. On the other hand, these volatile nodes can pose a threat
to the open system: they could be malfunctioning or even maliciously intending to

harm the system.

The overall aim of system designers in such open, complex systems is to find a
global system behaviour that is simultaneously efficient and robust with respect to

misbehaving agents.

In this context, robustness is regarded as the ability of the system to return to a
stable state after a disturbance has occurred e.g. when a misbehaving agent joins

the system.

As a way of dealing with unknown components in open systems, we use trust
as a computational concept to measure the expected behaviour of a node. Trust,
in general, is an expectation value derived from the rated former interactions. The
definition used here describes trust as an aggregation of direct interaction results
and reputation, where reputation is the aggregation of rated interactions from other
agents. This trust value counters the information uncertainty in open systems. If an
agent within such an open system has to decide whether or not to cooperate with
another agent, its decision will generally be based on its own interaction history
with this agent. If it had no former interaction or if the interaction took place a
long time ago, the agent will instead rely on the ratings of interactions that other
agents have had with this agent. Thus, the agent has more information available
in uncertain situations and is more likely to make beneficial decisions. Therefore, a
trust and reputation system that aggregates private knowledge from one’s own direct
interaction and community knowledge from other agents into an aggregated trust
value, is introduced and used as part of the cooperative decision input of the agents
developed in this thesis. This trust-enhanced cooperation strategies make agents as
well as the overall system robust regarding misbehaving agents and thus increase the
system performance. In the literature, no similar approach, which combines trust

consideration and adaptive self-organisation algorithms, is present.

The remainder of this chapter is organised as follows. In Section 1.2, the ap-
plication scenario, which is used for the evaluation of the techniques developed in
the thesis, is introduced. Section 1.3 shows which aspects of multi-agent systems
are applied and extended in this thesis. The thesis extends various techniques from
the organic computing domain as described in Section 1.4. The key component of
trust-enhanced self-organisation is introduced in Section 1.5, and the classification,

overview and scientific focus of this thesis is presented in Section 1.6.

1.2. APPLICATION SCENARIO TRUSTED DESKTOP GRID 3

1.2 Application Scenario Trusted Desktop Grid

The application scenario used in this thesis is an open desktop grid and volunteer
computing system [1]. Agents represent users of desktop PCs and act on their
behalf (delegation [2]). If the user needs to calculate large computational bag-of-tasks
applications like video rendering or face recognition, he has the option of letting the
agent distribute this task over the network. The agent uses the idle computational
power of other PCs in the system. Large tasks are split into smaller work units and
given to volunteer agents representing the PCs of other users. In return, these agents
can use the idle resources of this agent.

One example of a desktop grid and volunteer computing system is the Berke-
ley Open Infrastructure for Network Computing (BOINC [3]), where users can add
their PC’s computing resources to a community. Since projects (e.g. SETI@home
[4]) that submit their jobs to BOINC need to be registered, BOINC uses a central
scheduling service that can be a single point of failure. We consider applications
that produce jobs on the users’ machine e.g. video rendering; therefore, we expect
all agents to submit and compute jobs. Thus, we rely on decentralised scheduling
and matchmaking. Each agent can assume two roles: submitters give work units to
other agents and try to find the best match for their tasks; workers decide whose
work units to accept for computation. This completely decentralised trust-enhanced
scheduling algorithm is, in contrast to BOINC, more robust regarding partial failures
of the network as well as attacks caused by misbehaving agents.

Such open, volatile systems have the ability to increase the users’ performance
using parallelisation. But they also include threats due to their openness. System
designers cannot foresee each situation that the system might be in, especially with
regard to misbehaving agents. Misbehaviour can be induced by external factors
of the agents for instance, loss of internet connection, the PC being switched off,
or the user’s limiting the resources available to the agent to conduct calculations.
Moreover, misbehaviour can be a strategic decision made by the agent in order to
exploit other agents and, consequently, the overall system. Here, trust is a promising
mechanism to counter the information uncertainty.

A selfish agent would try to optimise its benefit by submitting many work units
but not computing for others. There are two types of agents showing selfish mis-
behaviour: free-riders do not accept other agents’ work units for computation and
egoists have a high probability of sending no, incomplete or wrong results. Usually,
grid systems use replication (sending the same work unit to several agents for com-

putation) and majority voting to determine the correct result. This safety measure

4 CHAPTER 1. INTRODUCTION

is very inefficient due to the large overhead of calculating the same work units several
times. Therefore, in our system, this kind of mishehaviour is coped with by using a
trust and reputation mechanism. Each interaction between agents is rated: a pos-
itive interaction like the computation of a work unit is rated positive, unsuccessful
interactions like declining, wrong or incomplete computation of work units are rated
negative. These trust values are used in both, submitter and worker roles. Agents
in the submitter role are able to submit work units to all agents, but can decide
to request for only the most trustworthy ones. Therefore, they are more likely to
find a cooperative interaction partner that increases their efficiency. In the worker
role, agents will only accept work units from agents with a minimal trust value. The
coupling of worker behaviour and submitter success leads to a self-organised exclu-
sion of uncooperative agents. If agents are uncooperative as workers, they are rated
as untrustworthy and will not find cooperation partners in the worker role. Thus,
the computation of their jobs will take longer, and the uncooperative agent’s benefit
from being part of the system will be minimised. Hence, the uncooperative agent

will either leave the system or change its behaviour and become more cooperative.

The set of agents where all members are cooperative and mutually trust each
other is called a Trusted Community. We call our open desktop grid and volunteer
computing system, which is enhanced by trust-based self-organisation, the Trusted
Desktop Grid (TDG). Similar approaches that use trust or adaptation for scheduling
and matchmaking are H-Trust [5] and the Organic Grid [6]. However, the adaptivity
and self-organisation abilities of these approaches are not as far-reaching as in the
TDG, especially regarding disturbances caused by misbehaving agents. We will

compare our concepts and results to these approaches later in this thesis.

The TDG is a specialisation of the general class of common pool resource (CPR)
problems |7|. Computational power is a resource shared among the community of
agents. All agents use this resource, but the times at which the resources are pro-
visioned and consumed are heterogeneous and depend on the users and on their
applications generating jobs e.g. a user requests the rendering of a video each time
he finishes a scene using his 3D creation tool. An overuse of computational power
within a desktop grid would lead to full queues, and agents would see lower benefits
due to long waiting times. This might motivate agents to leave the open volunteer
grid, which would destroy the grid system over time. This ‘tragedy of the com-
mons’ in our application scenario is prevented by the trust-based self-organisation

mechanisms.

The main reason for using the TDG as an application scenario is that it represents

1.2. APPLICATION SCENARIO TRUSTED DESKTOP GRID 5

both, open systems and CPR problems. Moreover, it is a scenario with practical
relevance that can be used both, as a simulation and on top of a middleware for
grid-based systems as developed in the OC-trust project.

The system is distributed without central control. The considered applications
produce bag-of-task jobs i.e. tasks that are independent of each other. Such an
open desktop grid is suited for scenarios where most clients run applications that
produce grid jobs and thus have high demand for computing resources—e.g. video
rendering.

According to the taxonomy of Choi [§], we classify the agents of this desktop
grid system as: egoistic, volatile, distributed over the internet, dynamic, faulty and
heterogeneous.

Clients have the capabilities to be both submitters and workers, which is de-
scribed below in detail. The clients are assumed to be heterogeneous in terms of
administrative domains, machine resources, usage patterns, volatility, etc. Such a
grid is suitable for scenarios where most clients run applications that produce grid
jobs and, thus, have high demand for computing resources.

In the TDG, agents become submitters whenever a user application on their
machine produces a grid job. These jobs are split into single work units that are
distributed among available worker clients. The workers process them and return
the results to the submitters, which validate the results. However, these systems are
exposed to threats by clients that plan to exploit or damage the system. A worker
can, for example, return an incorrect result or not return a result at all. Workers
can also refuse to accept a WU. In the area of volunteer desktop grid systems, such
cheating behaviour is a serious issue [9].

Usually in such systems, information uncertainty regarding the behaviour of
agents from other administrative domains is coped with using replication. A work
unit is given to several agents, which compute and return the result. Majority vot-
ing then determines the best result. This is very inefficient due to the tremendous
overhead caused by a work unit being computed several times. The payload in the
system is then decreased accordingly.

Agents can act as worker and submitter at the same time.

Here, trust mechanisms can help the agents to estimate the future behaviour
of other agents. Trust-considering agents are able to overcome the information un-
certainty in open systems and improve their performance. By extending each client
with an agent component and modelling the relations between the agents with a trust

mechanism, we expect to counter these threats, thereby increasing the efficiency of

6 CHAPTER 1. INTRODUCTION

such a system. If, for instance, an agent chooses only those workers that it already
had good experiences with, the expected outcome is better.

Agents use trust information to overcome the information uncertainty in open
systems in the submitter and worker components, in which they make the following

decisions:
e Submitter: To which agent will I give my jobs? (Submission)
e Worker: For which agents will I work? (Acceptance)

In order to include trust information in these decisions, the agents need a trust
and reputation system as described above. Therefore, the following types of misbe-

haviour during agent interaction are rated negative:

Work unit cancelling: The owner needs to find a new worker, and the calcula-

tion time until cancelling is the calculation overhead.

e Delayed computation (e.g. because resources have been used for own purposes):

The owner needs to resubmit the work unit.

Wrong results (e.g. the work unit has been completed, but the result is wrong/-
faked): This can happen due to hardware failures or be done on purpose by

malicious agents that try to harm the system.

Free riding: Generally rejecting the work units of other agents.

Agents showing one of these behaviours receive negative ratings. Thus, they are
considered less trustworthy and are less likely to be regarded as desirable cooperation
partners.

Positive behaviour, on the other hand, leads to good ratings:

e Returning a correctly computed work unit in time

e High reliability (often online)

Agents showing positive behaviour are rated positive and are desirable coopera-
tion partners because the possibility of reaching a good performance increases if an
agent cooperates with them.

Therefore, trust helps agents to find suitable cooperation partners and, therefore,
to increase their own performance as well as the overall system performance. Due

to the negative consequences of misbehaviour (bad ratings and, thus, decreased own

1.3. MAS 7

performance due to control loops), agents are incentivised to change their behaviour
and become more cooperative.
Moreover, misbehaving agents are identified in a distributed fashion and excluded

from the implicit Trusted Community (iTC, Section 5.2.2).

1.3 MAS

We model the TDG as a multi-agent system (MAS) in concordance with Foster [10].
The TDG agents can be used in a simulation environment as well as on top of a
middleware for grid systems. In this thesis, we concentrate on the evaluation of the
trust-adaptive agent mechanics using the TDG simulation. We extend the general
grid functionality (and, thus, system performance) by adding the adaptivity of an
agent-based approach. Agents act on behalf of their user and make autonomous

decisions.

1.3.1 Agent Architecture Enabling Proactive Decisions

The adaptive agent architecture presented in this thesis enables agents to adapt
proactively to changing situations. This is done by decoupling the complex decision
mechanisms into different decision levels. Using forecasting techniques, agents are
able to detect an upcoming change in situations or other agents’ behaviour. Based
on this, they are able to modify their behaviour in order to minimise the effects of
the future situation change by adapting even before the situation occurs. This goes
beyond the reactive definition of classical agents. Moreover, we extend the awareness
of the agent as well as its decision space by adding long-term considerations and more

flexibility to their behaviour.

1.3.2 Awareness

Moreover, the adaptive agent architecture enables agents to control their behaviour
depending on the needs of the current situation. In a critical situation, for instance,
an agent needs more information within shorter time intervals in order to make the
best decision. In non-critical, stable system states, agents can save communication
efforts by observing less information less often and still making reasonable decisions.
This is especially useful in situations involving limited bandwidth e.g. over the in-
ternet. Apart from information about the environment, agents also need information
regarding their possible cooperation partners: their availability, workload and trust

values are important parameters for its own cooperation decisions. The adaptive

8 CHAPTER 1. INTRODUCTION

observation model presented in this thesis enables agents to change the parameters
that they collect and analyse at run-time to the current situation’s needs. Therefore,
we extend the current notion of awareness used in the MAS community to adaptive
awareness in order to enable the agent to make the best decision possible. Further-
more, the adaptive observation model enables agents to save communication effort

by only observing and evaluating the parameters that are currently relevant to them.

1.3.3 Institutions

Additionally to the self-organisation mechanisms, we propose mechanisms to counter
situations that cannot be foreseen by single agents. A trust breakdown, for instance,
is a situation where agents lose trust in other agents—e.g. due to overload situations
or other internal or external disturbances and, therefore, do not find cooperation
partners. This situation cannot be observed through the local view of an agent.
Therefore, to counter such a situation, we need an institution that is able to observe
the situation and legislate norms which lead out of such undesired system situations.
We propose a mechanism within the adaptive agent architecture, which enables the
agents to ‘listen’ to such institutional norms and to take these norms into consid-
eration during behaviour selection reasoning. Thus, we are able to resolve global
situations using a hierarchical component that reacts only if necessary, and leaves
the system to the general control of the local self-organisation process whenever

possible.

1.4 Extension of Organic Computing Techniques

In this thesis, different techniques from the Organic Computing initiative are used
and extended in a general, reusable fashion. The adaptive agent architecture extends
the Observer/Controller pattern [11]. The idea of this pattern is that a system
under observation and control (SuOC) is continuously supervised by a higher-level
observer analysing the situation. As a consequence, the SuOC is parameterised by
the controller, which acts as soon as the observer detects a situation change. We

extend this pattern in four ways:

1. OC Extension 1: Prediction The observer not only analyses current situ-
ations, but also tries to forecast the future. Accordingly, the controller is able
to react based on this forecast with the suited adaptation of current behaviour

parameters.

1.5. SELF-ORGANISED TRUST-BASED AGENT-SOCIETY COORDINATION 9

2. OC Extension 2: Norms The controller is able to receive norms from a
higher-level institution outside the agent and to reason whether or not it is

worthwhile to obey this norm.

3. OC Extension 3: Learning In order to further enhance this self-organisation
process, we analyse and adapt suitable learning techniques (cf. Section 4.1.1)

that optimise the agents’ behavioural decision-making process.

4. OC Extension 4: Adaptive Observation Model We not only use the
well-known forward link between observer and controller, but also introduce
a backward link: the controller is able to define which parameter it currently
needs the observer to observe and analyse. This novel addition enables agents

to save communication effort; thus, it enhances the bandwidth for the payload.

Figure 2.1 in the following section shows how these OC extensions are embedded

in the architecture of this thesis.

1.5 Self-organised Trust-based Agent-Society Coordina-

tion

In this thesis, we show how agents must be designed in order to adapt to changing
situations and optimise system states in a distributed fashion.

On the agent level, this is realised by the adaptive agent architecture introduced
in Section 1.3, which leads to a new class of adaptive, trust-aware learning and
proactive agent implementations.

One of the key self-organisation processes on the system level is the formation
of trusted communities (TCs). Agents form TCs in order to achieve better effi-
ciency and robustness for the overall system, which is reached by maximising the
agents’ own efficiency. This is carried out by interacting with the most trustworthy
cooperation partners.

Such TCs can be explicit (ezplicit Trusted Communities (¢TC)), which means
they have a dedicated TC manager (TCM)that is elected as a hierarchical compo-
nent. The membership information is available to all agents. TCs can also be implicit
(implicit Trusted Communities (1TC)), which means there is no explicit membership
function, and each agent has its own view defining who is part of the iTC.

iTCs are groups of agents formed by the exclusion of misbehaving agents. This

is achieved through each agent locally by ranking the available agents using trust

10 CHAPTER 1. INTRODUCTION

values. The formation of iTCs is a purely self-organised mechanism and will be

analysed in this thesis.

1.6 Classification and Scientific Focus

This thesis is classified into the field of agent architectures in the context of self-
organising and adaptive systems, MAS (in general) and volunteer desktop grids.
We study how agents can be designed to self-organise in a way that maximises
system efficiency and robustness. This goes beyond the standard definition of agent
architectures and their dynamics (e.g. BDI, ContractNet). These general techniques
are evaluated in an open system, and the TDG is an instance of the class of CPR.
problems. The agent techniques developed in this thesis are not limited to the
desktop grid domain; rather, are applicable to all instances of CPR and similar
problem classes.

The thesis is organised as follows. In Chapter 2, we will introduce the main
research questions that the thesis will address. In Chapter 3, the related work will
be presented and we will argue, in which way the techniques presented in the thesis
differ from the existing approaches.

In Chapter 4, the techniques from the state of the art, which have been adapted in
order to be used in this thesis, are discussed. The system view of trust feedback loops
and self-organising TCs is shown in Chapter 5. Chapter 6 will introduce the adaptive
agent architecture, which is the general framework of the agent implementations
presented in this thesis, and a hierarchy of the different classes of agents in this thesis.
Chapter 7 presents the evaluation results of trust-adaptive agents and TCs, and
compares them to the state of the art. The last chapter summarises the developed

techniques and their effects.

Chapter 2

Research Questions and Aim of
This Thesis

The general aim of this thesis is to develop agents that are able to adapt their
behaviour to the current situation. This is carried out in the context of an open
complex system, which means that agents can join and leave the system at any
time. Thus, the agent cannot foresee the behaviour of other agents in the system; it
has incomplete information. Trust as a computational concept based on rated former
interactions can help in this respect. In order to cope with incomplete information,
agents use trust values that, as an aggregation of own direct trust and reputation (the
aggregated trust values of other agents) hint at how the unknown agent might behave
in the future. Agents then decide, based on trust values (and other information like
workload), with which agents cooperation is worthwhile. Furthermore, we evaluate
how machine-learning techniques can be used to optimise the agents’ trust-based
behaviour decisions.

In the TDG, cooperation decisions are made with respect to two roles. In the
submitter role, the agent searches for the most trustworthy available agent that is
able to calculate its work unit. In the worker role, the agent decides whose work
units to accept for computation if it is asked for this type of cooperation. Due to
the trust value representing the other agents’ experiences with an agent, an agent
will only be successful in a submitter role if it has been cooperative in a worker role.
This is because agents adapt their behaviour based on trust values; therefore, they
are only cooperative with cooperative agents.

Apart from current trust information, we extended the agents’ awareness of long-
term information. Agents are able to track previous situation parameters and predict

future situations. These predictions enable agents to act proactively: they adapt to

11

12 CHAPTER 2. RESEARCH QUESTIONS AND AIM OF THIS THESIS

changing situations before the situation occurs.

The amount of adaptivity must correspond to the needs of the current situation.
If there is no dynamism in the system, the agent does not need to predict situation
changes (because they do not exist in this situation and thus are trivial). But as
soon as the situation is dynamic, predictions are worthwhile to consider to improve
agent performance.

Similarly, trust is necessary only if there are misbehaving or, at least, unknown
agents in the system. If all agents are known as cooperative agents that never change
their behaviour, the trust and reputation mechanisms are just overheads. Therefore,
it is important that agents adapt their behaviour as well as their awareness to the
current situation. Agents only have to observe those parameters that are important
for their decisions in the current situation (adaptive cognition). By adapting the set
of observed parameters to the situation, agents can save communication overheads
without sacrificing the quality of their behaviour decisions and, thus, can maximise
their performance.

We introduce an architecture that decouples long-term decisions from short-term
ones. The long-term decision parameterises the decision space of the short-term
behaviour decision. For instance, if the long-term analysis predicts that the workload
is going to increase, the long-term decision process will constrain the set of possible
parameters of the short-term behaviour decision to only those parameters that are
cooperative, thereby enabling the agent to cope with the high future workload. The
short-term behaviour decision is able to select a behaviour within the preselected
parameter space.

Moreover, the agent is able to consider norms from an institution (e.g. the
manager of an eTC) by ‘listening’ to the legislated norms and incorporating them
in their long-term decision-making process. Thus, agents are able to resolve global
unwanted situations that could not be observed using local knowledge alone.

This thesis aims to show how an agent architecture that allows for all these
aspects, can be designed. Moreover, we propose a hierarchy in which all aspects of
the agent’s awareness and abilities are considered as agent classes. For each of these
agent classes, we present an implementation and evaluate the benefits of this class
in the TDG scenario.

Figure 2.1 gives an overview of the building blocks of this thesis including the
OC extensions introduced in Section 1.4.

The application scenario TDG (khaki) has already been introduced in Section
1.2

13

Implicit TCs

Adaptive
OC Extension 4 Observation
Model

I ezl OC Extension 3
OC Extension 1 Prediction

Trust Adaptivity
Awareness

OC Extension 2

Figure 2.1: Overview of the building blocks of this thesis

Chapter 5 introduces the system model used in this thesis. This relates to trust-
based interactions, which represent the main mechanics of the ‘Trust & Reputation’
(purple) building block, as well as to the self-organising TCs (blue), which includes
both, implicit and explicit TCs. Chapter 6 will present the Agent Architecture
(orange), which includes agent implementations showing the research aspects on
the Observer (trust awareness, adaptive observation model) and controller (norms,
learning, adaptivity) levels.

Chapter 7 presents the evaluation results of trust-adaptive agents and TCs, and
compares them to the state of the art. The last chapter will summarise the developed
techniques and their effects.

In the following chapter, the related work and state of the art of the aspects of
these building blocks, especially regarding grid systems and trust, will be presented.

CHAPTER 2. RESEARCH QUESTIONS AND AIM OF THIS THESIS

Chapter 3

Related Work

3.1

3.2

3.3
34

3.5

3.6
3.7
3.8

Grid Computing oo o oL
3.1.1 Data and Task Composition in Grids
3.1.2 Bag-of-tasks Applications
Volunteer Desktop Grid Systems
3.2.1 Centralised Desktop Grid Systems
3.2.2 Peer-to-peer Desktop Grids
Requirements of Grid Systems
Trust-based or Adaptive Approaches to Grid Systems
341 QGrid
342 RIDGE
343 WaveGrid 00000000

3.4.4 A Pure Peer-to-peer Desktop Grid Framework with
Efficient Fault Tolerance

345 H-Trust
34.6 Organic Grid 000000
Scheduling and Matchmaking
3.5.1 Scheduling Mechanisms
3.5.2 Matchmaking Mechanisms
Taxonomy of Grid Systems
Discussion of Grid Systems

Trust and Reputation Models

15

22

16 CHAPTER 3. RELATED WORK

3.8.1 Requirements and Criteria 36
3.8.2 Valuation of Trust in Open Networks 37
3.8.3 A Metric for Trusted Systems 39
3.8.4 The EigenTrust Algorithm for Reputation Manage-

ment in P2P Networks 39
3.8.5 A Reputation-based Trust Management System for

P2P Networks 40
3.8.6 PeerTrust: Supporting Reputation-based Trust for

P2P Electronic Communities 41
3.8.7 A Dynamic Trust Metric for P2P Systems 42
3.8.8 Trust Network Analysis with Subjective Logic 43

3.8.9 A New Reputation Mechanism Against Dishonest
Recommendations in P2P Systems 44
3.8.10 ICRep: An Incentive-compatible Reputation Mech-
anism for P2P Systems 45
3.8.11 An Affair-based Interpersonal Trust Metric Calcula-
tion Method 45
3.8.12 Reputation System User Classification Using a Hausdorff-
based Metric 46
3.8.13 TwoHop: Metric-based Trust Evaluation for Peer-
to-peer Collaboration Environments 47
3.8.14 SFTrust: A Double Trust Metric-based Trust Model
in Unstructured P2P System 48
3.8.15 RATM: A Reputation-based Attack-resistant Dis-
tributed Trust Management Model in P2P Networks 49
3.8.16 ARRep: An Adaptive and Robust Reputation Mech-
anism for P2P Networks 51
3.9 Analysis and Discussion of Trust and Reputation Models . . 52
3.10 Summary 54

In this chapter, the related work is presented and analysed.
First, we will provide a deeper understanding of the application scenario used in
this thesis. Therefore, we classify this volunteer desktop grid system and the types

3.1. GRID COMPUTING 17

of applications for which it is suited. We will analyse similar approaches regard-
ing the system architecture and the already existing scheduling and matchmaking
techniques.

This thesis deals with trust and reputation systems, in general, and places par-
ticular focus on a trust and reputation mechanism tailored to the agents developed
in the thesis and used in the application scenario. Therefore, we analyse the related
work of trust and reputation systems regarding the aspects necessary for our needs.

This chapter focuses on competing approaches, therefore, we analyse why the
existing technologies are not sufficiently suited for our application scenario and thus

justify the development of the approaches presented in this thesis.

3.1 Grid Computing

This section aims to provide an overview of the related work pertaining to the ap-
plication scenario of the Trusted Desktop Grid (TDG). First, possible jobs and ap-
plications within the TDG will be introduced and defined. The difference between
centralised and peer-to-peer systems will be pointed out, and we will compare the

TDG mechanics to the related work of decentralised volunteer grid systems.

3.1.1 Data and Task Composition in Grids

Distributed computing has a broad variety of applications. For instance, this can in-
clude computer-aided biology, weather forecasts, particle physics, and astronomy
[12]. Well-known projects within this area are gravitation wave research (Ein-
stein@home), protein folding (Folding@home) [13], and pattern recognition in radio
telescope data (SETI@home) [14]. The projects are either data or computational
intensive; sometimes both, as the two are not always completely distinguishable.
Therefore, in this thesis, we abstract from the classification of the job-generating
application and concentrate on the bag-of-tasks application. This class of applica-
tion defines jobs as a set of smaller work units that do not depend on the results of

previous work units or jobs.

3.1.2 Bag-of-tasks Applications

Definition 1. Bag-of-tasks applications:
Bag-of-tasks applications are applications that produce jobs containing causally

independent work units.

18 CHAPTER 3. RELATED WORK

Thus, each work unit of a job can be computed without communication with other
work units or processes. Therefore, bag-of-tasks jobs are ‘embarrassingly parallel’;
they can be distributed independently with ease. This parallelisation can be used to
reduce the computation time of large jobs within distributed systems. In order to
reach the best speedup (time taken for serial computation on the owner’s PC divided
by the time taken for parallel computation in the grid), it is essential for an agent to
find enough trustworthy, reliable workers that will use the parallel computation to
its best advantage. Therefore, we enhance the scheduling and matchmaking of our

agents in order to find the ‘best matches’ in a given situation.

3.2 Volunteer Desktop Grid Systems

A grid can be described as a pooling of geographically distributed computer sys-
tems. We differentiate between institutional grid systems and desktop grid systems.
Institutional grids consist of clusters that are interconnected, but from the same or
related administrative domains that also fund and maintain the grid. In contrast,
desktop grids usnally contain PCs from different administrative domains. In vol-
unteer desktop grids (VDG), private users offer their computing resources to other
users. Using idle resources is a cost- and energy-efficient method of desktop comput-
ing, but also requires new ways of dealing with the maintenance of these systems.
The scheduling in such VDGs can be either centralised or decentralised as pointed

out in the following.

3.2.1 Centralised Desktop Grid Systems

One of the most popular approaches used by volunteer desktop grids is the Berkeley
Open Infrastructure for Network Computing (BOINC) [14]. Developed at the Space
Sciences Laboratory of U.C. Berkeley, BOINC became a well-known project for sci-
entifically distributed supercomputing on private volunteer PCs over the internet. In
order to participate, each grid user installs a client software on his PC, which sends
performance data to a centralised server. This central component then organises the
scheduling: It decides which client uses which work unit. Abstract scheduling in
grid systems is a problem that, depending on the model prerequisites, is either NP-
hard[15] [16] or NP-complete[17] [18]. The difference between both classifications
is that the authors defining the problem as NP-complete define the problem itself
within NP complexity, whereas others do not define the problem itself into the set

of non-polynomial decision problems. Therefore, both definitions can be regarded

3.3. REQUIREMENTS OF GRID SYSTEMS 19

as valid, especially as we are mostly interested in the conclusion that scheduling
in grid systems has a high complexity and make heuristics a worthwhile candidate
for consideration. The main drawback of centralized grid management systems like
BOINC is that the central scheduler is a single point of failure. Since volunteer grids
are open systems, system designers need to cope with the risks of attacks not only
from outside, but also from inside the system by malicious agents. For instance,
corrupted clients can be spread over the internet or a user might develop his own
malicious grid client.

Apart from the security issues, the central server of centralised grids like BOINC
can also form bottlenecks if the system becomes too large to handle all requests.
Decentralised scheduling overcomes these drawbacks. Therefore, however, it needs
to find heuristics in order to make good scheduling solutions at run-time.

3.2.2 Peer-to-peer Desktop Grids

As pointed out above, centralised desktop grid systems have drawbacks in terms of
reliability (of the central component) and scalability (of the central entity). There-
fore, several decentralised solutions for grids have been developed. A prominent
example is Gnutella [19], which enables users to share files and data with each other.
The grid management tasks are distributed among the membersand PCs with higher
computational capacity, and/or better bandwidth is chosen to manage more traffic
than weak nodes in a distributed fashion. The grid client software is responsible for
these management tasks, thereby ensuring that the user does not have to worry. Sim-
ilarly, users could install a grid client software that incorporates the agent software.
The basic idea that grids and MAS can be combined was introduced in Ian Foster’s
Brain meets Brauwn [10]. Foster’s idea was to enhance the robustness mechanics of
decentralised grids with the adaptivity and scalability of MAS. In this thesis, the
TDG is implemented as an instance of the combination of peer-to-peer desktop grids
and MAS. We additionally introduce trust here because a combination of volunteer
grids and MAS needs to cope with the openness of volunteer grids in a context of

local, autonomous agent interactions.

3.3 Requirements of Grid Systems

The classification of grid systems given in the previous subsections has shown that
there are several different grid systems available. Nonetheless, there are certain re-

quirements a grid system needs to fulfill in order to be suited for our application

20

CHAPTER 3. RELATED WORK

scenario. Their requirements are introduced in this section and then, in the fol-

lowing two sections, applied to the related work in grid systems, scheduling and

matchmaking mechanisms.

ot

. First of all, the application scenario needs to be suited to process bag-of-tasks

applications. The large computation jobs need to consist of smaller work units
that do not depend on the results of previous work units or jobs. Therefore, the

distribution of the work units does not have to deal with causal dependence.

. Due to our aim to build scalable systems, we want the organisation of the grid

system to be decentralised. Therefore, we are able to enhance local agent

algorithms and thus reach a bottom-up global effect.

. Moreover, we want the decentralised management of the system to be scalable

as well, which does not necessarily have to be the case in all decentralised
systems. Therefore, the system management algorithms need to deal with

large system sizes as well as high dynamics within the overall systems.

. Despite the complexity of large systems, we also optimise the abilities of the

system to deal with openness. The system is volatile, agents can join and
leave at any time. Additionally, the system designer cannot control each agent
implementation, agents might be malfunctioning, selfish, unreliable or even ma-
licious. This can be broken down to the following two requirements of systems
being either trust-based or adaptive regarding different system situations and
agent behaviour implementation. The most promising, but also most complex

approach would be a combination of trust consideration and agent adaptivity.

. Trust-based systems are able to overcome the information uncertainty of

open systems by using trust information. This trust information helps agents
to make cooperation decisions although they have not enough own experience
with other agents. Therefore, trust can help to increase system performance

as well as robustness regarding attacks from misbehaving agents.

. Adaptivity in grid systems can be applied in different ways: Agents can

adapt to changing environmental conditions, changing agent compositions in
the overall system and changing user requirements. The requirement of adap-
tivity in this analysis therefore focuses on adaptivity regarding agent behaviour

in order to improve the system’s performance and robustness.

3.4. TRUST-BASED OR ADAPTIVE APPROACHES TO GRID SYSTEMS 21

Based on these requirements, in the following sections we will analyse grid sys-
tems (Section 3.4) as well as scheduling and matchmaking mechanisms (Section 3.5)

regarding their applicability as application scenario.

3.4 Trust-based or Adaptive Approaches to Grid Sys-

tems

This section presents the state of the art of adaptive and trust-based desktop grid
systems and compared to the requirements we determined in the precious section.
Especially, approaches that show aspects of either adaptivity or trust are introduced

in this section.

3.4.1 QGrid

The QGrid framework [20] is an adaptive system for resource management in grid
systems that consist of PCs of different users over the internet. Based on a q learning
[21] strategy and trust factors, the system aims at reducing the benefits enjoyed by
uncooperative users. The underlying strategy is a market-based one that uses a
virtual warranty. A resource provider decides according to a bid and trust value of a
consumer whether to provide the requested resources. The framework is implemented
within the CROWN grid, which is based on a two-tier architecture. The upper
layer is a high performance server that collects and maintains information about
the member’s nodes. Although it uses CROWN, QGrid is a centralised system;

therefore, it is not a suitable alternative for our decentralised application scenario..

3.4.2 RIDGE

RIDGE [22] is based on the BOINC architecture, but replaces the distribution strat-
egy with a reputation-based algorithm. The members are rated based on their former
calculation results and speed. In order to validate a work unit result and thereby
determine the set of reliable members, the work units are replicated and rated using
M-first voting . Due to the centralised BOINC architecture 3.2.1, RIDGE also uses
central administration and scheduling. Thus, it is not suitable for our application

scenario.

""In M-first voting, each workunit is replicated into at least M tasks and a workunit is said to
have completed successfully as soon as M results match." [22]

22 CHAPTER 3. RELATED WORK

3.4.3 WaveGrid

WaveGrid [23] is a peer-to-peer based desktop grid approach. The general idea is to
utilise the idle cycles of PCs around the world. Due to the geographic distribution
and different night phases in different geographic time zones, idle times can be seen
as a wave rotating around the globe in 24 hours. Usually, users need the computing
resources at daytime, and PCs (or clusters, servers, etc.) idle during the night.
In order to overcome this imbalance, WaveGrid aims at computing jobs in time
zones where most PCs idle. In particular, WaveGrid builds an overlay network
organising available nodes across different time zones. Thus, this peer-to-peer-based
system reaches a load balancing based on worldwide time zones. This approach is
interesting, but does not include trust information or other techniques to cope with

misbehaving agents.

3.4.4 A Pure Peer-to-peer Desktop Grid Framework with Efficient
Fault Tolerance

A pure peer-to-peer desktop grid framework is presented in [24]. It uses an unstruc-
tured peer-to-peer model in which the worker and submitter roles are connected, and
both roles are assumed simultaneously. Based on lamAlive messages, the state of
a note is broadcasted to all members of the grid at predefined intervals. Time-outs
then show that a node has left the system. Requests regarding resources are also
broadcasted to all agents.

Although the authors argue about parallel and serialised distribution as well
as different interaction modes, information about the scheduling and matchmaking
mechanisms are not presented in detail. Due to the purely broadcast-based system,
this approach has a lack of scalability and therefore does not fulfill the requirements

of our application scenario.

3.4.5 H-Trust

H-Trust |25] is a trust- and reputation-based desktop grid approach. The system
makes use of the Hirsch index [26], which is a function used to quantify the scientific
contribution of an individual. Therefore, the number of publications as well as the
number of citations of a person is evaluated. In the case of H-trust, the calculation
of trust and reputation is very similar. The calculation is based on three tables that
are stored locally by each grid member. In order to compute local trust, a local

service history table (LSHL) is used, in which the last experiences with other agents

3.4. TRUST-BASED OR ADAPTIVE APPROACHES TO GRID SYSTEMS 23

are stored. These events are rated and stored in a local trust rating table (LTRT).
Due to the limited storage, a kind of forgiveness is implemented and old experiences
vanish over time. Thus, agents that improve their behaviour have the opportunity
to become active members of the system even if they have been avoided in the past.
Since not all members can own local trust information about every other member
(there might be some with whom they had no personal experience), a reputation
system is used to overcome this lack of information. Therefore, a credibility table is
used which includes the credibility of all other members. If a submitter A does not
possess any own trust information about an agent B, it asks its known agents for
their trust value for B. The recommendations that it receives for B from agents with
a high credibility are stored and ordered by their trust value. According to their
rank in the table, agents are chosen and their cooperation sought. If a cooperation
attempt ends with a negative experience (e.g. work unit not completed), agent A
lowers the credibility of all agents that recommended B to it. If the cooperation is
successful, the credibility of all recommending agents is increased.

This trust-based approach works in a completely decentralised manner and is
suited for decentralised scheduling of bag-of-tasks applications. Despite the usage of
trust, the lack of adaptivity might lead to management overhead which influences the
scalability of the approach. Therefore, H-Trust is not an approach which completely
fulfills all criteria, but, due to its closeness to our requirements, a candidate for

comparison with the mechanisms developed in this thesis.

3.4.6 Organic Grid

A further decentralised approach is the Organic Grid [6]. The overlay network struc-
ture of this grid is a tree that is built by each agent in a submitter role. The
submitter itself is the root node. It orders the other agents according to their calcu-
lation performance. In order to build such a tree, each agent needs a list of known
grid members as a starting point.

The work unit distribution in the Organic Grid is in the pull mode. If an agent is
available as a worker, it advertises its computing resources and asks for work units to
compute. In contrast, all other adaptive or trust-based grid systems in the related
work use the push mode, where an agent in a submitter role needs to ask other
agents for computation.

The Organic Grid uses mobile agents: if a worker asks for work units, it receives
a copy of a mobile agent from a submitter, which then performs the task allocation.

The worker becomes a child node of the submitter. If the submitter has a work

24 CHAPTER 3. RELATED WORK

unit computation task for the worker, the mobile agent receives the task. A worker
can forward work units to its sub-nodes by copying a mobile agent to them. The
tree overlay is built in this way. A computed work unit is then delivered from the

executing worker back to the submitter node along the network.

Tf, for a given task, a set of jobs comprising several work units has been com-
pleted, the submitter sends a termination command to all child nodes, which then
forward this command to the leaves of the tree. An agent that receives such a termi-
nation message destroys its copy of the mobile agent. In some situations, however,

termination cannot be guaranteed for instance, if a message is lost.

For example, agent A receives a termination message for a job .J, whereas agent
B does not due to a communication error. Agent A destroys the mobile agent as
requested and tries to find a new mobile agent by offering its resources to the other
agents. Agent B receives this advertisement and sends a new copy of the mobile
agent for job J. Thus, agent A could become a sub-node of agent B for a task that
should have already been terminated. But this is prevented by a rule that sub-
node building is possible only if there are work units from Job J still waiting to
be distributed. Instead, agent B will terminate its mobile agent for J because the

attempt to recruit A as a sub-node failed.

Similarly, the Organic Grid is able to detect failed nodes. A list contains parent
nodes and, eventually, even their parent nodes. If there is no communication from
the parent node after a certain amount of time, the worker node contacts the parent
node, which then contacts its parent node and so forth. A communication problem

can be detected as can an incomplete termination.

The adaptivity in this approach is included in the adaptive tree overlay structure.
Each submitter has several child nodes that requested work units for calculation (pull
mode). In addition, each submitter owns a list of active workers and a list of potential
workers. Potential workers are nominated by other workers using child propagation,
and each worker sends the information about its best performing sub-node to its par-
ent node within a given time interval. The submitter uses active as well as potential
workers and rates them based on the time they needed to compute r results. The
performance estimation is the average number of results 7 in R result computation
intervals. Therefore, not only the worker node itself, but the whole tree (including all
its sub-nodes) is rated for its performance. If a potential worker returned the mini-
mum required result, it is added to the list of active workers. Based on the rating of
workers regarding the average duration of r- (R + 1) results, the tree is restructured

using the fastest nodes near the submitter root node. This mechanism continuously

3.5. SCHEDULING AND MATCHMAKING 25

minimises the delay between submitters and the best-performing workers.

Due to the limited size of the active node list, the slowest child is deleted after
each performance rating and added to the list of former child nodes. This node is
ignored for a certain time interval, which means that pulls for work as well as child
propagation messages are ignored. This minimises the threat of sudden structure
changes or even change loops that might occur if two nodes are similarly slow and
would continuously replace each other in the active node list.

Due to the adaptivity and pull mode strategy, the Organic Grid is a promis-
ing candidate for the decentralised scalable scheduling of bag-of-tasks applications.
Nonetheless, Organic Grid misses the notion of trust and therefore its suitability in
open systems with misbehaving agents has to be further evaluated. Therefore, Or-
ganic Grid fulfills most, but not all of the requirements we have for our application
scenario. Therefore, in Section 7.7.2 we will compare Organic Grid to the approaches
presented in this thesis.

In order to compare Organic Grid to our approaches, some adaptations have to
be made in order to translate the mobile agents concept as well as the pull mode

into the environment of our application scenario.

3.5 Scheduling and Matchmaking

While the previous section presented different desktop grid approaches in terms of
adaptivity or trust aspects, this section now concentrates on the different matchmak-
ing approaches in such grid systems. We will analyse, in which way the techniques
and mechanisms introduced here are suited for the requirements introduced in Sec-
tion 3.3.

Scheduling and matchmaking are used in different ways in the literature. In
[27], scheduling is defined as the assignment of jobs or work units to resources.
[28] presents different scheduling strategies that refer to the processing of jobs in a
scheduler. This definition of scheduling concentrates particularly on the temporal
order of work units on the resource. In contrast, matchmaking defines which work
units are given to which agent. In this thesis, we use the definition of |28], and define
the question of which work units are given to which agents, as matchmaking.
Definition 2. Scheduling:

Scheduling is the temporal organisation of the computation of work units on a

resource.

26 CHAPTER 3. RELATED WORK

Definition 3. Matchmaking:

Matchmaking is the allocation of work units to resources.

Matchmaking can also be a part of a scheduler component. The two mechanisms
are not always clearly distinguishable.

Due to the different definitions of scheduling and matchmaking, we will present
the matchmaking strategies that we are interested in and briefly introduce scheduling
mechanisms that contain interesting matchmaking aspects. Possibly, we could use
certain aspects from the literature to improve our trust-enhanced self-organising

mechanisms.

3.5.1 Scheduling Mechanisms

In this section, scheduling mechanisms are presented and analysed with respect to
their embedded matchmaking strategies and regarding our requirements introduced

in Section 3.3.

Application-specific Scheduling for the Organic Grid

In [29], the scheduling mechanisms of the Organic Grid (Section 3.4.6) are presented.
In addition to bag-of-tasks applications, this paper now also uses matrix operations
as jobs with causal dependencies. In this type of application, a causal dependence be-
tween work units requires further communication among the members of the desktop
grid. Tn order to fit the Organic Grid to the special needs of this class of applica-
tions, and in addition to the tree overlay network, a torus overlay ensuring efficient
data access for the matrix operations is introduced. This scheduling extension goes
beyond the requirements of the bag-of-tasks applications considered in this thesis,
but the basic scheduling mechanisms of the Organic Grid without extensions are a

worthwhile field of comparison for our results.

Agent-Based Autonomous Scheduling Mechanism Using Availability in
Desktop Grid Systems

[30] introduces a scheduling mechanism that includes the availability information of
the members in order to achieve efficient mapping between tasks and workers. The
overlay network is a content addressable network (CAN)[31]. organised by the logical
distance of the resources. This distance is the response time between coordinator

and worker. The coordinator is an instance that mediates between submitters and

3.5. SCHEDULING AND MATCHMAKING 27

workers. A work unit is transferred to a worker as a mobile agent that performs
the calculation using the worker’s resources. The workers are classified by their
reliability, and the replication of work units is adapted to the expected reliability.
Adapting the replication factor to the agents’ reliability is an interesting idea, but
there might still be room for improvement given the possibility that agents might
misbehave during scheduling. due to the missing consideration of trust, this approach

does not fulfill our requirements.

An Adaptive Decentralized Scheduling Mechanism for Peer-to-peer Desk-
top Grids

Based on a framework presented in [24], [32] introduces a scheduling mechanism
that ranks the available workers by their attributes and compares these attributes
to the requirements of the work units. The requirements are derived from statistical
analysis of former tasks on a resource. Trust is not considered in this approach,
which makes its suitability for completely open systems questionable. However, this

approach is currently not well-suited to the requirements of our system.

A Scheduling and Certification Algorithm for Defeating Collusion in Desk-
top Grids

[33] presented a scheduling approach that recognises malicious and even colluding
nodes based on replication and result verification. As it is based on the centralised
BOINC (Section 3.2.1) system, this approach is not suited for our decentralised

application scenario.

Fault-tolerant Dynamic Job-scheduling Policy

[34] presents a dynamic approach to fault-tolerant scheduling. This approach uses a
hierarchical organisation of schedulers on N levels. On the top level N, a grid super
scheduler is used; on the lowest level 0, several local schedulers are implemented.
Level 1 is used to distribute jobs and the levels on top are used for load balancing.
As the grid scheduler is a centralised component in the system, this scheduling

mechanism does not fulfill our requirement of decentralised management.

Result Verification and Trust-based Scheduling in Peer-to-peer Grids

Zhao [35] presents a trust-based approach to scheduling that includes result verifi-

cation techniques. Each grid member owns a task queue, which includes work units

28 CHAPTER 3. RELATED WORK

that need to be processed, a scheduler, and a verification system. Work units are
given to the most trustworthy agents. The work units are usually replicated and,
additionally, a quiz is distributed. The quiz is a ‘test work unit’ that cannot be
distinguished from other work units, but that can be validated for the submitter.
Based on the results of the quiz calculations, the trust value is updated, and the
replication is adapted to the trust value in order to minimise replication overhead.
The scalability of this approach is only given if there are not too many test packages
in the system. As soon as there are many potentially misbehaving agents, both
the replication rate and the number of test packages increase, which leads to an
increased workload. Although the combination of trust and adaptivity is promis-
ing, the scalability issues make this scheduling approach suboptimal regarding our

requirements.

Cluster Computing on the Fly: P2P Scheduling of Idle Cycles in the
Internet

The scheduling of WaveGrid [36] works as a CAN-based system that supports differ-
ent classes of applications (work piles, point-of-presence applications, and daytime-
based bag-of-tasks scheduling [37]). It is not suited for the scheduling needs of our
application scenario due to the lack of trust consideration and doubts regarding the

scalability of the overall system using this scheduling approach.

Intelligent Agent-based Scheduling Mechanism for Grid Service

An approach based on grid services is presented in [38]. Similar to [34], this approach
uses hierarchical schedulers, but concentrates on service-oriented architecture (SOA).
Due to the different application class (SOA instead of bag-of-tasks), this approach

is not suited for our needs.

Supporting Self-organization for Hybrid Grid Resource Scheduling

An interesting hybrid approach combining institutional and desktop grids is pre-
sented in [39], but is not relevant for our application scenario which requires a de-

centralised solution.

3.5. SCHEDULING AND MATCHMAKING 29

A Hybrid Policy for Job Scheduling and Load Balancing in Heterogeneous

Computational Grids

A scheduling and load balancing strategy for grid systems is presented in [40]. The
grid system here is decomposed into sites of homogeneous clusters, and the job
distribution concentrates on load information. Due to the centralised aspects and
the classification into homogeneous subsystems, which is not possible in our adaptive,
dynamic application scenario, this approach is not suited for our purposes.

Having provided this overview of scheduling mechanisms, which include match-

making aspects, we will now present ‘pure’ matchmaking strategies for desktop grids.

3.5.2 Matchmaking Mechanisms

This section presents the state of the art of matchmaking mechanisms, which con-
centrate on the allocation of work units to workers. These mechanisms are analysed
regarding our requirements 3.3. Here, we concentrate on the matchmaking strategies
that are suited for bag-of-tasks applications. Therefore, we leave out matchmaking
for SOAs.

Matchmaking with Limited Knowledge of Resources on Clouds and Grids

Melendez |41] presents a matchmaking strategy based on the reservation of re-
sources in order to fulfil deadlines. Based on the start time S;, deadline D; and
calculation time E;, the laxity L; = D; — S; — E; is calculated. According to the
Any-Schedulability theory, which is presented in the paper, a set of requests is dis-
tributable if the laxity for each request ¢ is larger than or equal to the worst case
delay of other overlapping requests. Due to the central resource broker necessary for

the matchmaking, this approach is not suited for our requirements.

A Matchmaking Algorithm for Resource Discovery on Grid

[42] and [43] present a tree-based matchmaking approach. The tree structure is
based on the attributes of the available nodes. The left part of the tree stores idle
nodes, the right one occupies resources. Attributed are, for instance, the architecture
(Intel, AMD) and the operating system (Windows, Linux, Solaris). The nodes of
the tree store table IDs, which point to tables including the resources that fulfil the
attributes.

If a worker is needed, the left part of the tree is processed according to the

attributes necessary for the job and its work units. The table of available suitable

30 CHAPTER 3. RELATED WORK

workers is then retrieved. The search time for d levels, n nodes and r table entries
is O(d+n+r).

The presented approach is interesting for resource matching, but the actual re-
source selection (which criteria are used to select the most suitable agent from the
table delivered by the mechanism) is not presented. In addition to that, the ap-
proach is not trust-based and therefore, the ability to cope with mishehaving agents

is questionable.

Matchmaking: Distributed Resource Management for High Throughput
Computing

Based on a central matchmaker, Raman [44] presents a strategy that matches the
work units’ resource requirements and available resources. Due to the central com-

ponent, this approach is not suited for us.

Distributed Grid Resource Discovery with Matchmakers

In [45], a grid is viewed as a set of distributed matchmakers. Each of these match-
makers provides its resources for calculations. All local matchmaking requests are
handled by the local matchmaker, which requests information about its neighbours’
availability. If the local resource is insufficient for a calculation request, the request
is forwarded to neighbouring matchmakers.

Since the presented approach lacks the handling of misbehaviour in open sys-
tems(e.g. using trust), it is not a suitable matchmaking strategy for our application

scenario.

A Peer-to-peer Approach to Resource Location in Grid Environments

A strategy for request forwarding is presented in [46]. In particular, four different
strategies for forwarding are compared. These include random forwarding, learning,
best neighbour, and a combination of learning and best neighbour. The idea of
immediate updates for resource information changes is interesting, but as there is

again no model of misbehaviour handling, it is not a suitable approach for our needs.

Condor Distributed Scheduler

The scheduling strategy of Condor, including matchmaking strategies, is presented in

[47]. Tt is based on a central manager for resource management and matchmaking.

3.5. SCHEDULING AND MATCHMAKING 31

Due to this central component, it is not a suitable candidate for our application
scenario.
Similarly, the job distribution based on a centralised broker presented in [48], is

unsuitable due to its central instance.

Centralized versus Distributed Schedulers for Multiple Bag-of-task Ap-

plications

Beaumont [49] presents four scheduling approaches. In addition to a simple first-
come first-served heuristic, two bandwidth-based models that prioritise the work
units according to the bandwidth between submitter and worker, are presented.
The coarse-grain bandwidth-centric (CGBC) approach accumulates smaller work
units to macro tasks and sends these to workers with a high bandwidth connection.
The parallel bandwidth-centric approach reduces communication by ensuring that
only threads of the same task class communicate with each other and then build a
tree structure in order to reach fairness in task allocation with respect to bandwidth.

The fourth heuristic is called data-centric. It uses the bandwidth-based approach
for data-intensive jobs.

In general, a bandwidth-based model for communication and data intensive tasks
is a promising idea. In our application scenario, however, the general focus is not on
bandwidth usage alone, but on a fair and efficient scheduling in spite of misbehaving

nodes, which is not covered by this approach.

Towards Bidirectional Distributed Matchmaking

[50] presents a distributed matchmaking strategy that is based on a bidirectional
process. In most classical grid strategies, workers wait passively for work units
whereas submitters search actively for workers. In contrast, [50] makes all agents
a part of the resource-finding process by providing each agent with an address list
of other agents, which is used to find suitable workers. If an agent searches for a
worker, it sends this information to all agents on this list. The agents then flood the
request across the network. As soon as a suited worker is found, this information is
backpropagated.

In order to reduce the communication overhead caused by broadcast, Teeming
and Time To Live (TTL) are used, although both approaches increase the time until
a match is found. Teeming only sends a request with a certain probability. The TTL
maximises the number of hops that the request is allowed to take before it is dropped.

Additionally, matching caching lists are introduced as further improvement; agents

32 CHAPTER 3. RELATED WORK

store the last unsuccessful requests and their types, making less successful routes in
the network less likely for a certain amount of time.

As we wand to abstract from neighbourhood information, prevent the system
from scalability issues caused by communication channels based on broadcasting
and concentrate on matchmaking in disturbed agent situations, this approach is not

considered in this thesis.

An Integrated ClassAd-Latent Semantic Indexing Matchmaking Algo-
rithm for Globus Toolkit-based Computing Grids

Montella [51] introduces a further broker-based approach, which due to its central

instance is not suited for our requirements.

Resource Discovery Techniques in Distributed Desktop Grid Environ-

ments

Kim [52] introduces two strategies, which map the matchmaking problem into a
routing problem.

The members of the grid are organised as a rendezvous node tree. Nodes are
organised by their available resources. Each submitter starts with its sub-tree when
searching for a worker. If there is no suitable candidate in the sub-tree, the search
process continues at the higher level. Tf there is more than one suitable worker
candidate, the worker with the lowest workload is chosen.

The second approach presented is based on a CAN overlay network based on the
abilities of the available nodes. Due to the multi-dimensional routing, agents (and
jobs) can be distinguished by their CPU power (power consumption) and available
RAM (RAM usage). The overlay is separated into zones and each zone has a manager
that receives the tasks for the zone and is responsible for the allocation of tasks to
resources in this area and the maintenance of the area.

According to the authors, the CAN-based matchmaking led to better results
and has been further improved in [53] and [54]. This might hold for applications
which allow for a variety of points in the CAN space, but in our scenario, the agents
constantly change their abilities (available computational power, bandwidth, trust).
Therefore, the overlay structure would continuously have to be updated, which would
cause management overhead. Therefore, this approach is not well suited for our

requirements.

3.6. TAXONOMY OF GRID SYSTEMS 33

GridP2P: Resource Usage in Grids and Peer-to-peer Systems

[55] developed a desktop grid matchmaking approach based on a Pastry overlay
network. The management functions of the system are organised in different layers
that are known to all members. The overlay network is used to locate resources and
is continuously updated. The updated information includes sender information (e.g.
ID), supported applications and available resources (e.g. CPU, bandwidth, RAM,
HDD). According to this information, agents calculate the availability of each node.
A node matches a resource request of a work unit if it has more resources available
than is required by the work unit. Therefore, a resource usage estimation has to be
performed.

The overlay network in this publication also allows for the distributed storage
of calculation results using replication. This is especially useful in highly dynamic
environments where agents have a high probability to leave the system without
warning.

Similar to the approach presented in the subsection above, this approach is only
as good as the overlay structure which can be build using the available agent in-
formation. due to the high dynamics of the system, this overlay structure would
decrease the scalability of the system due to increased management overhead by
continuous restructuring. Therefore, the approach is not suited for our application

scenario.

3.6 Taxonomy of Grid Systems

The overview of scheduling and matchmaking strategies has shown a variety of ap-
proaches tailored to the needs of a desktop grid. Nonetheless, there are tremendous
differences between the approaches. In order to differentiate between this large
set of possibilities, we used our own requirement analysis in combination with the
taxonomy of grid scheduling techniques proposed in [56]. Due to Choi’s definition
of scheduling, he also included matchmaking in the taxonomy. Therefore, we can
use his approach in combination with the requirements we determined in Section
3.3. Since many approaches could already be eliminated due to central instances
or lack of agent mishehaviour consideration, we can simplify the taxonomy here by
merely comparing the suitable approaches of H-Trust and the Organic Grid. Both
approaches are promising candidates, but miss one requirement: Whereas H-Trust is
trust-based, but not adaptive, Organic Grid shows adaptivity, but does not consider

trust information. Moreover, there is no known approach in literature which com-

34 CHAPTER 3. RELATED WORK

bines trust-consideration, adaptivity for throughput/workload optimisation and the
consideration of agent capabilities in the distributed matchmaking and scheduling
strategies.

Therefore, we come to the conclusion that the state of the art of grid systems,
scheduling and matchmaking mechanisms does not include a system which fulfills all
our requirements. Therefore, we decided to build our own application scenario grid
system, the Trusted Desktop Grid (TDG).

TDG | H-Trust [57] | Organic Grid [6]

central

Organisation distributed X X X
hierarchical

Mode push - -
pull X
Capability X

Heuristic Throughput X
Workload
Reputation/Trust X X

Table 3.1: Attributes of approaches

Table 3.1 compares the main aspects of the taxonomy, according to Choi [56], of
TDG, H-Trust and Organic Grid. All three systems fulfil the basic requirements of
decentralised system architecture, which allows for scalability and robustness.

TDG and H-Trust rely on the push mode, which means that submitters ask
workers for work unit calculations. In contrast, Organic Grid uses the pull mode
i.e. the workers advertise that they have spare computing resources. This mode
makes evaluation harder because the misbehaving agents need to be ‘translated’
into this mode.

The heuristics in Table 3.1 are condensed to those used by at least one of the

approaches.

3.7 Discussion of Grid Systems

The analysis of the state of the art has shown that the combination of agent adap-
tivity and trust as realised in the TDG is unique as here is no comparable approach.

Nonetheless, two approaches are supposed to show similar benefits: H-Trust, which

3.8. TRUST AND REPUTATION MODELS 35

makes matchmaking strategies based on trust and reputation information, and Or-
ganic Grid, which shows a high degree of adaptivity. Therefore, we want to compare

both approaches with the TDG in the evaluation (Chapter 7).

Overall, we can say that, except for Organic Grid and H-Trust, self-organisation
as a technique for efficient, robust scheduling in open desktop grids, is not considered
in the literature. Most existing systems as well as scheduling and matchmaking
techniques are unsuitable for systems where disturbances in terms of misbehaving

agents can occur.

3.8 Trust and Reputation Models

In this section, trust and reputation mechanisms from literature are presented. This
section concentrates on trust management systems, which receive trust information

from the interaction of their entities (e.g. agents).

Definition 4. Trustworthiness:

Trustworthiness, the capacity to commit oneself to fulfilling the legitimate expec-
tations of others, is both the constitutive virtue of and the key causal precondition
for the existence of any society.[58]

In addition to locally measured trust, we also relate it to reputation.
Definition 5. Reputation:

Reputation is a global aggregation of locally measured trust values.

We will analyse the different features of the trust and reputation models, and

formulate those aspects that are useful or interesting for usage in the TDG as criteria.

In the following section, we will introduce the requirements we need for a trust

and reputation mechanism suited for our application scenario.

Based on these criteria, we will later in this chapter analyse whether there are
systems that can be used as trust and reputation system of the TDG or if it is
necessary for us to build our own trust and reputation system based on the aspects

we have learned from the analysis of the state of the art.

If not defined differently, the scale of the trust values is in the interval [0, 1],

where () represents the lowest trust value and 1 the highest.

36 CHAPTER 3. RELATED WORK

3.8.1 Requirements and Criteria

The analysis of the state of the art of trust and reputation literature delivered criteria
that are important for the usage of a trust and reputation model in the TDG. These
criteria are listed here and their functionality is explained in such way that different

implementations of this functionality can be analysed in the following.

1. Criterion: Differentiation of service trust and feedback trust.

2. Criterion: Differentiation of service trust in direct trust and recommendation

trust.
3. Criterion: No trust increase for re-entering the system.

4. Criterion: Consideration of information timeliness using a decay factor.

ot

. Criterion: Higher costs for trust increase than benefit from trust decrease.

ad 1: The first criterion is the differentiation of service trust and feedback trust.
The trust in the ability of an agent to fulfil a given task (e.g. compute a work
unit in the TDG scenario) is separated from its ability to give honest ratings and,
thus, good recommendations. The agents act in two different roles (service provider
and feedback provider) and their performance in one role need not reflect their
performance in the other role. This leads to a class of attacks that is based on unfair
ratings and is less likely to succeed [59]. In the literature, feedback trust is often
referred to as credibility and can appear in two ways: (1) from supervising the trust
value of a rated interaction and the interaction result itself or (2) from using the
similarity between agent and feedback trust provider.

ad 2: The second criterion is the differentiation of service trust in direct trust
and recommendation trust. Direct trust is trust based on the agent’s own experi-
ences with another agent in the past. Recommendation trust consists of the trust
information of other agents that have had interactions with an agent. Separating
both values enables agents to adjust the weightings based on the available infor-
mation. If an agent has built direct trust based on many interactions, it can rely
on this information and, thus, reduce the threat of unfair rating attacks. If it had
only a few interactions or if its interactions are older, it can rely on the recommen-
dations of other agents, thereby reducing its information uncertainty. Collecting
recommendations from several agents makes discrimination attacks less likely.

ad 3: An important criterion is to prevent trust increase by re-entering the

system. This counters re-entry attacks on the trust management mechanism. The

3.8. TRUST AND REPUTATION MODELS 37

easiest way to account for this criterion is to initialise all trust values with minimal
trust [60]. In the TDG, the trust adaptivity of the agents needs a minimal amount
of trust; therefore, agents are initialised with a medium trust value and we rely
on authentication techniques whereby agents are recognised while re-entering the
system.

ad 4: Considering the timeliness of information is a criterion that accounts for the
dynamics of the system, which can also result in changing trust relations over time.
The older a piece of information is, the less relevant it can be for the current state
of the system. Differentiating information by their timeliness enables the system to
forget former actions and forgive [61] agents that have improved their behaviour.
This also incentivises agents to behave well and, thus, prevents the system from
being harassed by playbook attacks. [62]

ad 5: The last criterion is that the costs of trust increase should be higher than
the benefits of trust decrease. This again incentivises agents to behave cooperatively
and, thus, the trust management system supports a good system performance.

Besides the criteria mentioned above, the analysis of the state of the art led to
further aspects that are candidates for implementation in the TDG. For instance,
trust abuse or misuse factors, which store all violations without being influenced by
the decay factor, can be used to analyse system states, but would not be applicable
in the TDG, where we aim at self-organised adaptivity. Therefore, in this analysis,
we concentrate on the five most important criteria for a trust and reputation system
to meet our needs for the TDG.

In the following, the state of the art of trust and reputation models is presented

and analysed regarding our requirements.

3.8.2 Valuation of Trust in Open Networks

One of the earliest approaches to the formal usage of trust in open systems is [63]
(1994). The general model is that entities are connected via links and able to send
messages using these links. The application scenario here is an authentication sys-
tem, in which an entity A can ask an authentication server AS if an entity B is
trustworthy. Based on the trust value delivered by AS, A can decide whether the
risk of trusting B for an interaction should be taken.

In order to determine the trust value, this model distinguishes between direct
trust and recommendation trust. Direct trust is a value resulting from the direct

interaction of two entities as shown in equation 3.1.

38 CHAPTER 3. RELATED WORK

A trusts®®? B value v (3.1)

Here, seq represents the sequence of entities, which is the way how information
is forwarded.

Direct trust between entity A and entity B is measured by the value v. It is
calculated using the positive experiences p, that A has had with B and uses the
decay factor a.

v(p)=1-aof (3.2)

Value v can be regarded as the probability that entity B will have a higher reliability
for fulfiling a task than will A. If A encounters a negative experience with B, it will
set the direct trust to 0 because the trust relationship has been broken.

A recommendation trust relationship exists if A accepts reports about a cooper-
ation partner and rates their credibility. For instance, the credibility of reports from

AS about B result in recommendation trust.
A trusts.rec®® AS when.path S, when.target Sy value v, (3.3)

This is represented in Equation 3.3, where S; represents the target constraint set
i.e. the entity concerning the recommendation trust (e.g. entity B). S, describes
the path constraint set, which is the path of the information about entity B. This
path is used if AS has no information available and needs to request it from another
authentification server. The recommendation trust value v, then consists of the
positive and negative interaction results along with the entity to be recommended
(e.g. B) as shown in Equation 3.4.

wlpmy = e (3.4)
0, else

Both trust components are then combined to form the actual trust value. This
approach demonstrates a strict rule regarding negative experiences as well as the
ability to rely on the recommendations of other agents. Separating the actual expe-
riences (service trust) and the credibility to make recommendations (feedback trust)
is a useful measure for taking new information into account without blindly ‘trust-
ing’ the information’s owner. This is especially useful in systems where misbehaving
agents might be a threat, and giving wrong recommendations is a misbehaviour
strategy. Therefore, we use the separation of service trust and feedback trust as a

criterion that is useful for the TDG.

Criterion: Separation of Service Trust and Feedback Trust.

3.8. TRUST AND REPUTATION MODELS 39

Uneertainty

057%
0.
Di:;lk.’lil.‘l'[‘ i T y Belief

Figure 3.1: Opinion space [64]

3.8.3 A Metric for Trusted Systems

Josang |64] (1998) provides a mathematical definition of trust. Any event can either
happen or not happen. Since knowledge (especially in open systems) is mostly
limited, we are unable to make a unique statement if it occurs. Instead, there is an
opinion about the occurrence of an event. This opinion consists of the belief and
the disbelief regarding whether the event occurs as well as the uncertainty of this
statement. These components span the opinion space as shown in Figure 3.1.

An opinion is defined as w = (b, d, u), where w describes the opinion, b the belief,
d the disbelief and u the uncertainty. Belief, disbelief and uncertainty sum up to a
value of 1.

Using subjective logic, different opinions can be concatenated and united. Tt
is also possible to add other’s experiences using recommendations. Here, direct
trust and recommendation trust are separated (this is further pointed out in a later
publication by the author), which is important because trust in the occurrence of an
event is a subjective opinion. This definition of trust was novel, especially at the time
it was published, but still holds. The separation of direct trust and recommendation
trust is also important in the context of the TDG and, thus, is a further criterion to
us.

Criterion: Separation of Direct Trust and Recommendation Trust.
3.8.4 The EigenTrust Algorithm for Reputation Management in
P2P Networks

In [60] (2003), an n X n matrix is built for all n peers of a peer-to-peer network,

based on which a global trust vector is calculated. As described in Equation 3.5,

40 CHAPTER 3. RELATED WORK

each entry s;; of the matrix describes the sum of transaction ratings ¢;;, which i as

Sij = Zti]' (35)

Positive experiences between two peers are rated as +1 and negative experiences as

truster assigns to j as trustee.

-1. The trust value is the normalised sum of positive and negative ratings c;; 3.6.

o max(si;,0)
E >, max (s, 0)

If a peer ¢ wants to acquire more information about a peer k, it asks the former

(3.6)

cooperation partner j’s row for k’c column. The entries about k are weighted with

i’s trust towards j and then added to an aggregated trust value (3.7).
ik = Z Cij * Cjk (3.7)
J

According to the algorithm, 4 is supposed to not only ask his known peers, but
also their known peers and so forth. Using this flooding approach, a global trust
vector for all peers can be derived from local trust values. New peers begin with
an empty row in the matrix, so that it is not worthwhile for agents to leave and
re-enter the system. This is important in open systems and thus represents a further
criterion.

Criterion: No trust bonus for re-entering the system.

3.8.5 A Reputation-based Trust Management System for P2P Net-
works

In the trust management system presented in [65] (2004), a peer stores the trust
values for each other peer in a bit vector. Additionally, an integer variable is needed,
which indicates the size of the vector. The size starts with 8 bits, but can be increased
to 16 bits, 32 bits and so forth. For each positive interaction, a 1 is shifted to the
most-significant bit (left); for each negative interaction, the value shifted is 0. In
order to determine a trust value between (0 and 1, the trust vector is regarded as
an m-Bit binary and divided by 2. Using the complement of the vector, a distrust
value can be computed. If there is not enough local information about a peer j,
a request is sent to neighbouring peers. These peers send their trust vectors as
credibility vectors. The entries ¢; of this credibility vectors are weighted with the
own credibility value ¢; towards the sending peers. This results in the trust value
t; of the formerly unknown peer j according to (3.8), with k being the number of

requested peers.

3.8. TRUST AND REPUTATION MODELS 41

25:1 Cj * ti

. (3.8)

t; =

This approach uses only limited memory, but has no support for adaptive agent

behaviour.

3.8.6 PeerTrust: Supporting Reputation-based Trust for P2P Elec-
tronic Communities

A trust model featuring two different ways of computing the feedback trust of a peer
is presented in [66] (2004). The trust valne T'(u) of a trustee w consists of several

components as depicted in (3.9).

I(u)
T(u)=ax Y S(u,i)* Cr(p(u,i)) « TF(u,i) + 8+ CF(u) (3.9)
i=1

Rating S(u, i) represents the rating of the i-th interaction with peer u. I(u) is the
number of interactions. T'F(u,) is the transaction context factor, which can be used
to differentiate between different types of interactions. Thus, larger transactions can
be rewarded with a high influence on the trust value, whereas smaller tasks only
have a small impact on the trust value. CF(u) is the community context factor,
which is used to incentivise agents to give feedback. The feedback credibility Cr(v)
is used to determine the credibility of a feedback given by a peer v = p(u,7); thus,
it represents what we call feedback trust. p(u,i) here is the cooperation partner of
peer u in its ith transaction.

The first approach to the credibility of feedback trust is given in (3.10). Here,
the trust in the feedback is derived from the trust in the feedback-giving peer v
normalised by the trust in other peers. The idea is that untrustworthy peers give
bad feedback, whereas trustworthy peers good feedback. This is crucial if we regard

badmouthing attacks, where agents behave well, but give inaccurate ratings.

I(u))
Crp(u,i)) =Y T(p(u,i))

_ 3.10
=i T(p(u, 5) (10

Therefore, a second approach to feedback trust is presented in (3.11). Here,
the similarity of the asking agent to the feedback-giving agent v is considered to
determine the credibility of feedback trust. In order to determine similarity, the

ratings of the agents are compared using the root mean square; agents with similar

42 CHAPTER 3. RELATED WORK

ratings are trusted as feedback providers.

I(u) . .
} Sim(p(u, i),)

Or(p(i), w) =
D)= 2 T intpta))

Due to the heterogeneity of the agents in the TDG, it might occur that agents

(3.11)

rate similarly not because they behave similarly, but due to external factors like the
agent society currently in the system. Therefore, both approaches to feedback trust

are questionable for usage in the TDG.

3.8.7 A Dynamic Trust Metric for P2P Systems

Chang [62] (2006) aims at a trust metric for peers in a peer-to-peer system, which
dynamically changes their behaviour. Such peers can, for instance, perform a play-
book attack by building trust in the system and then suddenly starting to distribute
malicious software or refuse cooperation. In order to protect the system from such
misbehaviour, a forgetting factor or decay factor is introduced. This also corresponds
to the idea of forgiveness [61]: agents must be able to re-enter the system if they
have improved their behaviour and become more cooperative.

Former behaviour vanishes over time from the collective minds of the agents. In
this publication, forgetting is realised by a decay factor p, which rates older ratings

as being less important than fresh ones.

DY =D« (1—p ") e+ p" (3.12)

As shown in (3.12), a new direct trust value DEj between peer i and peer j at time
t consists of the decay factor p, the last direct trust value Df; and a new rating e;;.
t is the time step of the current trust calculation, ¢ the time of the last one. pis a
constant, but can also be defined as a function of the trust abuse if Dﬁ; and e;; are
very different (see (3.13)).

pl, e, — D! > —¢

b 1, 1] =
p= ST (3.13)

p2, else

e is the error factor, p2 ((3.15)) describes the trust abuse consideration, which is

stored in the misusing trust factor ATfJ

t! t . [P
AT + D — e, Djj—eij > ¢

AT}, else

ATY = (3.14)

3.8. TRUST AND REPUTATION MODELS 43

p2 = p2 (3.15)

c
" et AT{(i.j)
Here, ¢ is a constant defining the decrease of the decay factor. The aim of this
approach is to detect malicious peers and to reduce their trust values as soon as pos-
sible. Trust increase is possible only slowly. This makes misbehaviour less attractive
and incentivises cooperative behaviour. Therefore, the decay factor must be chosen
carefully. If it is too small, agents forget too fast; as a result, malicious peers are
forgiven too soon. If it is too large, the trust values are deprecated and changes in
behaviour are realised too slowly.

This approach also separates direct trust from recommendation trust.

) ¢
Crir x Dy

TL =A% DL+ (1—)) S
K K Zre](]‘) Crir

rel(j)

(3.16)

Recommendation trust is added as a factor in trust Tfj It consists of the direct trust
values Dﬁj of known peers r, which are weighted by the recommendation credibility
C'ryy, which is the direct trust value of truster i to recommending peers k.

This trust mechanism shows two core functionalities that are important criteria
for the TDG. The decay factor allows for the timeliness of trust information and,
thus, allows for forgetting and forgiving. Since the costs of building trust are higher

than the benefits of trust loss, it incentivises agents to behave cooperatively.

Criterion: Consideration of information timeliness using a decay factor.

Criterion: Costs of trust building are higher than benefits of trust abuse.

3.8.8 Trust Network Analysis with Subjective Logic

An extension of the above-mentioned [64] is [67] (2006). The definition of trust is
modelled further by introducing direct trust, recommendation trust, and indirect
trust derived from recommendation trust. Direct trust defines the trust resulting
from the direct interaction of two parties, while recommendation trust is direct
trust forwarded from a third party. Indirect trust results from the interpretation of
recommendation trust.

The opinion space w = (b,d,u,a) is extended by the base rate a. This is a
weighting factor representing the uncertainty of the trust computation. If there is
no information about another party, it is a measure for the initial trust.

A decay factor is introduced in [67] as well in order to implement forgiveness and

forgetting in the system.

44 CHAPTER 3. RELATED WORK

3.8.9 A New Reputation Mechanism Against Dishonest Recom-
mendations in P2P Systems

Chang [68] (2007) extended his former model [62] by adding the separation of direct
trust and recommendation trust.

The direct trust D;; of two peers i and j is calculated using the values e.v of the
ratings e stored in EXP_LIST.

Y ceBXP LIST U * alt=eh
alt—et)

t
D= (3.17)

ZeEEXPiLIST

« is a decay factor that determines the forgetting rate using the time when the
ratings were made e.t and the current time ¢.
The indirect trust Rf-j, which determines the recommendation trust at time ¢, is
calculated as given in Equation (3.18).
- > Orly * tCI,zj * f%eczj
Do Crhx C’ij

(3.18)

Rcc',;j is the direct trust between peer k and trustee j, where k is asked for its
opinion. Crfk, is the credibility of peer k and, thus, the feedback trust. CI,tcj is the
level of confidence that peer k has in its own experiences. This reduces the loss of

feedback trust if a recommended peer behaves not as well as expected.
t _ t t
CI; = CIN;; x CID;; (3.19)

CIit]- depends on the number of transactions CINitj made with the recommended
peer, as well as the variance in the ratings of transactions CID%.

The credibility Cr!, towards peer k is given in Equation 3.20. The list REC'_LIST
contains all recommendation ratings e of other peers.
Yeerec ListeVoxal"DxeCl,

Ycerpe_prst ol xe.Cly

t
Cri; = (3.20)
e.C1, is the level of confidence that peer k has in the ratings of peer j, and « is again
the decay factor. e.V,, is computed as the difference between the recommendation
value Vi; and the value Vj; of the agent’s own trust in peer j. Thus, it is the feedback
trust.

Vip =1 Vi — Vil (3.21)

The overall trust Of]- consists of the direct trust Déj and the recommendation trust
R,
¢ t L
Oij =A% Dj; + (T—=XN) % R (3.22)

3.8. TRUST AND REPUTATION MODELS 45

A here is a factor in the interval [0, 1], where A = 0 means that direct trust is ignored
and A\ = 1 means that recommendation trust is ignored.

_ EXP(i,j)n
- m

A (3.23)

A is dynamically adapted to the number of transactions EX P(i, j).n between truster

i and trustee j. With an adjustable threshold m, peers only rely on direct trust.
This trust mechanism meets all the criteria we have determined so far, except

for the different weightings of trust increase and decrease. Due to this missing

functionality, we decided not to use this approach in our application scenario.

3.8.10 ICRep: An Incentive-compatible Reputation Mechanism for
P2P Systems

ICRep in [68] (2007) is an extension of Chang’s trust model with a trust ezchange
protocol Therefore, a level of participation lﬁj is introduced, which determines how
often a peer provides recommendation trust information (see Equation 3.24.

It
; -
o= InZiz’ if Ii]‘ < Inaax

4 (3.24)
1, else

Ifj is the number of answers peer i received from peer j, and I,,,4, is the threshold at
which all requests are answered. This extension provides an incentive to rate agents

and rating information to other agents.

3.8.11 An Affair-based Interpersonal Trust Metric Calculation Method

In [69] (2008), two tree-based data structures are built: a trust performance tree and
an affair behaviour tree. The two trees relate to the different trust facets defined by
the authors.

The trust performance tree consists of three main branches: benevolence, integrity
and ability, which related to the three different trust facets of the authors. The more
distant that a node is to a root, the more details about its performance are available.

The affair behaviour tree stores the affairs. An affair is an interaction between
two parties at a certain time in a certain context. New encounters are added as new
branches.

To calculate the trust values, the branches of the affair behaviour tree are mapped
to the leaves of the trust performance tree. Each performance here is on a scale

between -1 and 5. -1 here means no trust, 0 means uncertainty, and 1 to 5 represent

46 CHAPTER 3. RELATED WORK

different degrees of trust. The trust degree T'D is calculated level by level from the
leaves to the root and then the three main branches are added as a weighted sum
(Equation 3.25).

3
TD=BTD+TC+ITD*TCy+ ATD+TC3 Y TC;=1 (3.25)
i=1

Here, BT D is the benevolence trust degree, IT D the integrity trust degree and AT D
the ability trust degree. T'C; is the weighting factor.

This model was initially designed for the rating of relationships between human
beings. In a trust-based desktop grid like the TDG, the number of different en-
counters is not large enough to make a tree structure worthwhile. Moreover, the
scalability of a system where each participant stores two tree structures of a large

network is not sufficient.

3.8.12 Reputation System User Classification Using a Hausdorff-
based Metric

The StarWorth algorithm presented in [70] (2008) is an approach to filter irrelevant
offers from a pool of resources from other users for a user. The value of a resource
is given on a worth scale from 0 to 5, where 0 is a useless/unsuited resource and
5 (MaxWorth) an extremely well-suited resource offer. An explicit rating of a
resource of a user U; by a user Uj is called WE_UU (U;, Uj). If the value has been
determined implicitly using the recommendation of other users, we call the rating
WI_UU(U;,Uj) (see Eq. 3.26). This corresponds to the separation of direct trust

and recommendation trust.

S WU (U, U « WE(ULL U;)
k x MaxWorth

WI_UUU,Uj) = (3.26)

Uil are the users asked by truster U; about trustee U;. k is the number of users that
have been asked, WE(U},U;) is the users’ explicit rating of U;. WU (U;, U}), and the
rating of U; about a user U} is used as a weight.

Similarly, the reputation of a user in the system can be computed by extending

the implicit worth value to the opinion of all users.

3.8. TRUST AND REPUTATION MODELS 47

3.8.13 TwoHop: Metric-based Trust Evaluation for Peer-to-peer
Collaboration Environments

TwoHop |71] (2008) received its name due to reduction of the time-to-live (TTL) of
recommendation trust requests to two hops.
Each peer maintains a collection C, which contains for each service S of a service

provider i a portfolio P.
C = (P, ... P), Jkes, j#k (3.27)

A portfolio (Eq. 3.28) consists of identity ¢ of the providing peer, the value v,

assessment value a and the review value r.

Py = (i0,70,a0,J0); s (in, Tns Gny jn), nEN, s€S (3.28)

As the value is the result of the evaluation of a situation, the assessment judges
the evaluation, and the review surveys this rating. To compute the trust value T'
of a service s, a peer uses its own available data in its root portfolio Py, and
sends a recommendation trust request to its direct neighbour j. This is used to
determine the OneHop portfolio. Within this portfolio, all direct evaluation entries
of the service as well as the assessments of the evaluating peers are selected. The
found evaluations of a peer j are weighted with the assessment for j from P, and

added to sumyys as per equation 3.29.

Vi,s
_ SUMrust Zj:l Wi * Uj (3 29)
SUMnpeights Z;/’:Sl w;

wy — a; if vj € OneHop (3.30)
rixa; if v; € TowHop
Here, V; s is the set of all collected evaluations of a service s of provider i. The
assessments about a service found in the OneHop portfolio are used as pointers for
new trust requests, whereas only peers are asked for information that is not already
known in Pyoot.

The results of the second request wave are stored in the TwoHop portfolio, which
is again analysed with respect to the evaluations of service s. Found entries are
combined with value v;, the review value of P.,¢ and the assessment value from
OneHop to sumy,.s. If several paths lead to the same evaluation value, the shortest

path is chosen.

48 CHAPTER 3. RELATED WORK

The approach is interesting and scalable, but not suited for our application sce-

nario, which abstracts from neighbourhood information.

3.8.14 SFTrust: A Double Trust Metric-based Trust Model in Un-
structured P2P System

Zhang’s [72] (2009) trust mechanism SFTrust defines service trust, feedback trust,
direct trust and recommendation trust as we use the terms throughout the thesis.
The direct trust DT[JL (Eq. 3.31) between peer i and peer j is calculated using

the service values Sj; of peers j. A is a decay factor in the interval [0, 1].

Lo 'S
(T=2m/(=X)

n is the number of transactions. To update the direct trust value, the subsequent

DT = (3.31)

direct trust value (see Eq. 3.32) can be calculated with the new service and the former

direct trust value, which decreases the storage needs of the approach.

DT (1= X") + A" (1= X) = S7F!
(1—nt)

+1 _
DTZ; = (3.32)
The recommendation trust RT;; (Eq. 3.33) is computed from the recommenda-
tions of peers from a neighbour list N L. Therefore, each peer i sends a neighbour
request to several peers when it enters the system. The request is accepted if i’s trust

value is high enough. Therefore, all new peers have a medium initial trust value.

Yoy FTy [
Z;n:1 Fﬂk
frj is the service trust value that truster i receives from neighbouring peers k about

RT;; = (3.33)

trustee j. FTy is the feedback trust value, which depends on the cosinus similarity
(Eq. 3.34) of truster ¢ and neighbour k.

Zlecs(l k) Jid * Jrd
\/ZZECS(I k) zl * \/Elecs (i,k) sz

The common set CS includes all peers [that have rated trustee j and have been

Sim(i, k) (3.34)

rated by truster ¢ and neighbour k.
FTj +nx (1= FTj), Sim(i, k) > Simg
FTytt = FTZ, Sim(i,k) = Simg (3.35)
FTj, — 0+ (1= FT}), Sim(i,k) < Simg

3.8. TRUST AND REPUTATION MODELS 49

Factors i and 6 realise the different increase and decrease of the feedback trust (Eq.
3.35) with a corresponding increase or decrease in trust.

SFTrust is an interesting approach because it combines the similarity-based feed-
back trust calculation of PeerTrust [66] with the general mechanics of the ICRep
algorithm.

As the trust values of new peers are set to a high value, the model is vulnerable
to re-entry attacks. Additionally, the number of transactions is not included in the
trust relationship evaluation; thus, the credibility of the trust values is not always

given.

3.8.15 RATM: A Reputation-based Attack-resistant Distributed
Trust Management Model in P2P Networks

The RATM trust management model presented in |73| (2010) also distinguishes
direct from indirect trust.

The direct trust value D, (4,7) (Eq. 3.36) is computed from the contentedness
with a transaction f(7,j) and is averaged by the number of transactions m.

Sk f(i)
le”’ m#0

Dn(i,5) = (3.36)

0, m=0

The indirect trust i.e. recommendation trust consists of the direct trust values

D,,(m, j) delivered by peers m and the credibility Criy,, (i.e. feedback trust).

. mDn m,j * Crim
Rn(%]) = E Z(CT) (337)

The feedback trust depends on the received recommendations R, (i,5) (Eq. 3.37)
and the agent’s own direct trust D, (m,j) in the feedback-giving peer.

€ =|Ru(i,§) = Dn(m, j)|/sij (3.38)

The dynamics of the feedback trust change ¢ (Eq. 3.38) and are computed using
the standard deviation s;; of the recommendation trust calculation.
Cri+6(1—Cri)1—¢), 0<e<1,k>0
Orim+1=1 Crl—aCrk1 - (1e)), e>1,k>0 (3.39)
1/2, k=0

In order to have different weights for trust increase and decrease, 6 and ~ are used.

50 CHAPTER 3. RELATED WORK

Direct trust and recommendation trust are aggregated (Eq. 3.40) to a peer trust

value, which corresponds to our definition of service trust.
PT,(i,7) = a* Dy(i,j) + (1 — a) * R, (4,) (3.40)

«in [0,...,1] is another weighting factor.
RATM introduces further values to investigate trust abuse. The trust deviation

value Pjj (Eq. 3.41) computes the previous deviation of a peer’s trust ratings.

ST 2 (g(k) (Dy(i,) — Ri(6,9))2)
PT;; = - 3.41
’ \/ ST o () (3.41)

Here, k& marks the beginning of the time interval, and maxTZ marks the end. A

time fading function g(k) (Eq. 3.42) is introduced in order to make old ratings less
important than new ones.
9(k) = pfage — (3.42)
Here, n is the current time interval and p the fading factor.
With the information about the trust deviation P;;, thetrust abuse value Q;; (Eq.
3.43) is computed.
_ X% (g(k) x max (0, Ry(i,) — Py — Di(is 5)))
Qij = macTZ
1 g(k)

As the trust abuse value includes all encounters of abusive behaviour, negative be-

(3.43)

haviour is never completely forgotten. In order to prevent (or at least punish) oscil-

lation, in Equation 3.44, the peer trust value is updated using these two factors.
PTo(ij) = BPTa(i, 5) — (1 = B)(uPij + 7Qu) (3.44)

Therefore, 1 and 7 are used as weights for trust deviation and trust abuse. Factor
[can be used to set the impact of a punishment.
Additionally, the new peer trust value can be used to differentiate between short-

term and long-term trust trends.

o (L= w)STy(i,§) + uPTnia (i, 5), PToga(isj) — STu(i, j) = —¢
STht1(i, j) =
(1 =0)STu(i,§) + vPTpa(i,5), else
(3.45)

In order to determine the short trust value ST,+1(i,7) (Eq. 3.45) at time n + 1, the
new peer trust and the last short trust are taken into account. The factors v and v
are again used to differentiate between trust increase and decrease.
LT, (i,7) *n+ PTh41(i,5)

n+1

LTn+1(i7j) = (346)

3.8. TRUST AND REPUTATION MODELS 51

The long trust value Ly11(7,7) (Eq. 3.46) computes the mean trust value of all the
time intervals regarded.

The final trust value shown in Equation 3.47 is the minimum of the short trust
and the long trust.

To(iy) = min(ST,(i,5), LT, (i, 7)) (3.47)

The analysis of this approach shows that the decay factor (time fading function)
is introduced very late (and applied to the trust deviation). Therefore, the trust
deviation is crucial to detect oscillation. In the TDG, a certain degree of oscillation
is planned by the system designer as it is part of the adaptivity of the agents.

Moreover, since negative behaviour is never forgotten, it represents a problem in
the TDG because we want to incentivise malicious agents to change their behaviour

and, therefore, need to implement forgiveness [74].

3.8.16 ARRep: An Adaptive and Robust Reputation Mechanism
for P2P Networks

The last trust model in this state-of-the-art analysis is ARRep [59].
It computes the direct trust Tl? (Eq. 3.48) between truster ¢ and trustee j using

the ratings ex;jr, which are available after transaction n;; about peer j.
MNij n;i—k k
D Sopl (A *e:rij)
T v —
Doy AT

A is the decay factor in (0,1].

(3.48)

7D
p_ i Cin* 1) (3.49)
K Zk;ﬁz‘ Cik
The recommendation trust Tff (Eq. 3.49) is computed from the recommendation
credibility Cj, and the transaction-based direct trust TkD7 (Eq. 3.50), which is the

direct trust weighted by the number of transactions with trustee j.
70 =1 «n'/m (3.50)

7 is a weighting factor in (0,1] to control the influence of the direct trust. Therefore,
reports from peers, with which many interactions have been made in the past, are
taken into account to an increasing extent.
The recommendation credibility Cj is computed based on similarity as shown
in Equation 3.51.
Simiy =1~ [S (TP — 152 /w (3.51)
leCcs

52 CHAPTER 3. RELATED WORK

The similarity Sim;, computes from the deviation of ratings of truster 7 with the
ratings of peer k about peer [. The common set CS includes the peers that have
rated trustee j and have been rated by truster i. w is the number of peers in the

common set.

Ci = Simp, + (1 — \/u— w/w) (3.52)

Based on w and the number of peers w, which have interacted with peer ¢, the
feedback trust is computed in (3.52).
Direct trust and recommendation trust are combined in (3.53) to the overall trust

value T;j, which corresponds to our service trust.
D R -
Tij = axTjj + (1 —a) =T (3.53)
The weighting factor a depends on the number of transactions n;;.

B op < M
a={ M Y (3.54)

1, else

If n;; is larger than threshold M, only direct trust is used to compute service trust.

This approach fulfils most of the criteria that we analysed to be worthwhile for a
trust management system in the TDG; only the different weighting of trust increase
and decrease is missing. It is questionable whether relying solely on direct trust with
a certain number of own interactions is worthwhile without taking into account the
age of the interactions. If an agent’s own interactions are old, he might be better off

relying on recommendation trust as well.

3.9 Analysis and Discussion of Trust and Reputation Mod-

els

In this section, the different approaches from literature are rated based on the criteria
we have determined as important mechanisms for the TDG.

Table 3.2 shows which trust models fulfil the criteria and are thus compared more
thoroughly. In the following, we will argue which trust model is best suited for the
TDG and why we needed to implement our own approach rather than use a model
from the reviewed literature.

After having applied the criteria to the trust models from literature, we now take
a deeper look into the approaches that fulfil most of the criteria and their dynamics
in a system like the TDG.

3.9. ANALYSIS AND DISCUSSION OF TRUST AND REPUTATION MODELS 53

Trust Mechanism Criterion No. of fulfiled
Criteria
& 5 & .
R
Beth [63] 4 4 2
Josang [64] - 4 - - 2
Eigentrust [60] 4 1
Selcuk [65] V4 4 2
PeerTrust [66] 4 - Vv - - 2
Chang [62] N 4 4 V4 4
Josang 2[67] - V4 Vv Vv - 3
Chang 2[68| 4 Vv 4 Vv 4
ICRep [75] v v vV Vv 4
Affair-based [69] - - 4 - - 1
Star Worth |70] N V4 2
TwoHop [71] - Vv Vv - - 2
SFTrust |72] V4 V4 V4 V4 4
RATM [73] Vv 4 vV Vv vV 5
ARRep [59] V4 Vv V4 Vv 4

Table 3.2: Criteria fulfilment

54 CHAPTER 3. RELATED WORK

The trust model from [62] is not suited for the TDG because service trust and
feedback trust are not separated, which makes the system vulnerable to unfair rating
attacks.

As [75] includes the approaches of [68], the younger model is obsolete.

Therefore, four trust mechanisms, ICRep |75], SFTrust |72], RATM |73] and
ARRep [59] remain as interesting candidates for the TDG as they fulfil most of the
criteria and are applicable in our simulation environment.

At first glance, RATM is the only trust model fulfiling all of the five criteria. In
this approach, feedback trust is calculated, as in TCRep, using the difference between
the reputation of trustee j and an agent’s own trust towards trustee j. Therefore,
in this approach, service trust and feedback trust are separated, but are not truly
independent from each other.

SFTrust and ARRep evaluate feedback trust using heuristics to estimate the
similarity of two agents. This makes discrimination and collusion attacks less likely
because cooperative agents do not rely on the feedback trust of malicious agents [59].

ICRep and ARRep both miss the criterion of different weightings of trust increase
and decrease. Adding this aspect to the trust models would be possible, but the
modification might affect the dynamics of these trust models. Such effects cannot
be foreseen completely by analysing the models beforehand.

SFTrust does not meet the criterion of prevention of trust increase for re-entering
the system. The authors argue that authentication is a task of the system itself and
need not be performed by the trust mechanism [72|. This is a valid assumption
as there already exists related work on authorisation and authentication for grid
systems, which could be used by the TDG. Additionally, SFTrust does not take into
account the number of interactions on which a trust value is based [72].

Based on the analysis of our taxonomy in 3.2, we can see that there is no trust
model in literature which matches all the criteria necessary for the TDG.

Therefore, we decided to develop a trust and reputation management system
that is customised for the requirements of the TDG. Apart from fulfiling all neces-
sary requirements for our application scenario, this model also incorporates dynamic

components as presented in the Section 5.

3.10 Summary

In this chapter, we have presented the state of the art of self-organised or trust-

based grid systems, scheduling and matchmaking techniques for grids and trust and

3.10. SUMMARY 55

reputation models. We have seen that many similarities exist, but each system aims
at slightly different purposes and, thus, fulfils different criteria. Therefore, we decided
to develop a system, which fulfils all our requirements regarding open desktop grids
and trust and reputation mechanisms. We use a self-organised agent-based approach
which embeds the trust and reputation mechanism as part of the agent interaction
as presented in Section 5.2. Nonetheless, we adapt several techniques from the state

of the art as will be presented in the following chapter.

CHAPTER 3. RELATED WORK

Chapter 4

Supportive Technologies

41 OC Techniques 57
4.1.1 Analysis of Suitable Learning Techniques 59
42 MAS . e 65
4.2.1 Types of Agent Architecture. 65
4.2.2 Reactivity and Proactivity 67
4.2.3 AWAreness 67
4.24 Institutions 67
4.2.5 Normative MAS oL 72
4.3 Summary 77

This chapter presents the technologies from the state of the art, which have been
extended or adapted in order to be used in this thesis.

This thesis is classified into the area of Organic Computing techniques. Therefore,
we will present the state of the art of the most important aspects of OC for this thesis,
the Observer/Controller pattern, and learning techniques.

As we use techniques from MAS and normative systems, an overview of these

will be given as well.

4.1 OC Techniques

Self-organisation is a bottom-up mechanism based on the emergent global effects of
local interactions. Therefore, local decisions are an important aspect of such systems.

This makes way not only for local optimisations leading to global improvements, but

57

58 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

Figure 4.1: Observer/Controller pattern according to 78]

also for new ways of modelling such self-organising systems. Moreover, we must
ensure that these systems are secure even though they reorganise at run-time, and
subsystems can join and leave at any time. One example of these security techniques
are assertions [76] that constrain the system into an area predefined by the designer.
Within this area, the system is autonomous. One example of an architecture enabling
this controlled autonomy is the Observer/Controller pattern |77].

Figure 4.1 shows the general architecture of the Observer/Controller pattern.
The underlying system (system under observation and control (SuOC)) is constantly
observed and controlled by a higher-level component, which consists of an Observer
part and a Controller part. The Observer supervises the system and analyses certain
parameters. These parameters, as defined by the observation model, have to be
initialised at system startup by the Controller (derived from user goals) or the system
designer. All parameters of the observation model are observed and analysed. If a
critical situation occurs, the Controller is informed. The Controller plans the future
actions, changes the parameterisation of the SuOC, and forces the system back into
the desired target space |79].

In this thesis, we extend the Observer/Controller pattern in several ways.

1. Adaptive Observation Model

We make the observation model adaptive in such a way that the Controller
can choose at run-time the parameters that need to be observed in the current
situation. This enables the agent to make better behaviour decisions because it
can itself define which information is currently necessary. Moreover, we reduce
the communication overhead by adapting the set of observed parameters to

the needs of the Controller and to the situation; i. e. we observe only what is

4.1. OC TECHNIQUES 59

necessary. Since Organic Computing systems are especially suited to handle
changing situations, we extend this suitability by adapting not only system

actions, but also system observations to the changed situation.

2. Situation Prediction

Moreover, we extend the Observer component with the ability to predict situ-
ational changes before these even occur. This enables the Controller to adapt
proactively to situations changing in the near future rather than react after

the situation has already changed.

3. Controller Learning

Furthermore, we enhance the Controller’s decision-making process. The Con-
troller is able to learn at run-time which action leads to the best result in which

situation.

4. Norm-aware Controller

We extend the Controller’s behaviour selection by the ability to include in-
stitutional norms into the decision-making process. A higher-level institution
observes and analyses the situation, and legislates norms regarding how the
agents need to behave in order to resolve a global system conflict. The agent’s
Controller is enabled to interpret these norms and to tailor its decision to a

norm-conforming one.

4.1.1 Analysis of Suitable Learning Techniques

This section provides an overview of the learning techniques that we have analysed
regarding their suitability for usage in our trust-adaptive agents. In the beginning
of this section, we will introduce the possible candidates for implementation in our
system. Later, we will analyse these candidates using a taxonomy that we have
developed and will discuss the algorithms that we chose for implementation.

The techniques that we have chosen for analysis and comparison are CACLA [5],
Fuzzy XCS |80], SMC' Learning, |81], Continuous Q-Learning, |82], and Hedger [83].
These algorithms all extend classical reinforcement learning techniques like learning
classifier systems (LCS; cf. simplified ZCS-algorithm [|84|) and @-Learning [85].

Learning Algorithm Prerequisites

In order to be suitable for our agents, learning approaches must be able to make

agents improve their decision process without any user interaction. Therefore, three

60 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

prerequisites have to be met.

First of all, the agent needs to be aware of its environment. Therefore, we have
introduced an Observer [11] that collects information regarding the agent itself and
its environment.

The second prerequisite for the application of learning mechanisms is that the
agent needs to be able to influence its environment. This is realised by a Controller
[11] that maps situations into actions.

The last prerequisite is a reward function. The agent needs to be able to rate
and judge the results of each reaction in a given situation. The reward is used to
optimise the situation/action mapping of each agent.

These prerequisites are crucial for learning algorithms to be applied to our agents
in general. However, there are also requirements a learning algorithm has to meet in
order to be suited as a good learning mechanism for our agents. These requirements

are explained in the following section.

Learning Algorithm Requirements

In this section, the requirements a learning algorithm needs to comply with in order

to be suited for our agents are presented.

1. In order to prevent the agents from sampling errors, we want the learning
mechanism to be able to map continuous situations into a continuous action
space. Therefore, no errors will result from the fact that the sampling of a

situation has not appropriately been chosen.

2. Knowledge representation is crucial for a learning mechanism: The more
efficient a representation is chosen, the faster the runtime performance of the
algorithm is. Moreover, it is one of the key factors to ensure scalability in large
systems. One approach to improve the runtime performance is to decouple
the storage of the situation/action representation (e.g. Q/V) and reward.
The ability to generalise knowledge and thus transfer knowledge to similar
situations is also helpful regarding efficient knowledge management.

3. In addition to that, the ability to include a priori knowledge into the
learning process is interesting for our agents, because the mechanisms that
have been developed by system designers can be used as an efficient starting

point for the learning algorithm.

4.1. OC TECHNIQUES 61

4. In our application scenario, feedback (e.g. in terms of reward) is usually given
after a job has been completed. Therefore, the reward is not measurable after
the decision, but rather after the job, for which the decision was made, is
finished. Therefore, the learning algorithm has to be able to cope with delayed

rewards.

5. Apart from delayed rewards, the learning algorithm also needs to be suited for
multi-step learning. The reward is given after the next job is finished, but
the reward cannot always be broken down to exactly one decision. Moreover,
a set of decisions is responsible for a reward outcome. Therefore, the learning
algorithm has to make sure that the reward is broken down to all decisions

which led to the reward in a suited manner.

Fuzzy XCS

The general problem of LCS is the restriction to discrete situation and action spaces.
Fuzzy XCS |80] eliminates this constraint by using fuzzy logic [86] to map contin-
uous input values to linguistic terms with certain affiliation degrees that are then
concatenated using if/then statements and logical operators within (0, 1) intervals to
define output variables, which are then aggregated. Broadly speaking, this matches
our definition of reputation values being low, medium or high, but adds optimisation

by weight adaptation.

SMC Learning

Sequential Monte Carlo (SMC) learning [81] belongs to the category of actor-critic
learning techniques. These consist of two separate subsystems: The actor saves the
behaviour rules (action policy) and contains situation/action mappings. The critic
uses the reward to predict expected rewards for actor actions. This rating is used by
the actor to optimise the stored situation/action mapping using a specialised version
of the g function (the q value represents the expected reward). SMC learning requires
discretized situations; therefore, it would need further adaptation in order to be used

for our agents.

Hedger

Hedger [83] is a Q-learning based mechanism that uses regression methods to gen-
eralise the representation of its knowledge. This is especially useful in situations

where rewards appear only rarely. The knowledge is represented and stored. As it

62 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

is impossible to store all situations and actions that might occur, Hedger stores only
tuples that have already occurred in the system. The storage is accessed by seeking
a q value (expected reward) for a given situation/action pair. If a situation/ac-
tion pair is not stored yet, Hedger uses a regression function to approximate the
expected reward. This regression uses all situation/action pairs within a given eu-
clidean distance kipresp. The success of this approximation depends on the quantity
of supporting points used. In order to determine whether a useful approximation can
be computed, Hedger uses a convex covering of the sampling points. Additionally, it
ensures that the quantity of sampling points is larger than a predefined parameter
Kmin- In general, to define a hyperplane in an n-dimensional space, we need at least
n sampling points. If insufficient points are given, a default q value is returned.
After the execution of the best-suited action, its q values are updated according to
the reward achieved by the action. Additionally, all sampling points that have been
used to approximate an action’s ¢ values are updated in such a way that the weights
are adapted.

This is possible even if the reward is generated only seldom—for instance, in our
system, most rewards are calculated after the entire job has been processed, which
is why the reward is delayed.

Additionally, Hedger is able to use designer-given information (such as our 77
table) as starting sampling points. Therefore, the learning algorithm needs not
start from scratch. The knowledge possessed by the agents is already part of the

algorithm’s solution space.

CACLA

The continuous actor-critic learning automata (CACLA) [5] is similar to SMC, and
stores the mapping between situations and actions as an Actor Critic (AC) function.
The critic part of the algorithm stores the expected reward of situation/action pairs:
the so-called V function.

The actor and critic parts in CACLA are both realised as neural networks !
to store the AC and V function. Thus, both situation and action spaces can be
continuous. The adaptation of the weights within the neural networks is carried out
using the gradient ascend method.

After an action has been selected and executed, the reward is compared to the
expected reward (see Equation 4.1). This temporal difference error is called o, r¢ is

the reward, and V;(s;) the current approximation. In order to account for the future

! An overview of neural networks can be found in [87] and [88].

4.1. OC TECHNIQUES 63

development of the reward, the current approximation of the following situation,
Vi(st41), is also taken into account. The influence of the following situation is defined

by the discount factor ~.

Ot = e — Valse) + vVa(se41) (4.1)

Thus, d; can be used to improve the approximation of the critic. Similarly, CA-
CLA improves the actor’s decision using a Gauss exploration. A parameter defines
the probability of changing an action. Therefore, a Gaussian distribution with the
starting action as the mean and a predefined variance is used. Within this distribu-
tion, a random action is chosen. If the chosen action is executed and rated with a

positive error (reward), the actor is adapted accordingly.

Taxonomy of Learning Mechanisms

Learning Techniques Criteria No. of Criteria Met
& =]
s
g £
g 22 g £
Lz S & g
£ 2 £9 3% ¢
25 & 5§ § £ &H &
w o< o =% E 23 g
- - ol = — 5] = =,
ooy B < 0z = g =
5 8 2 § & & 2 =2
O U = U wn gk & A
708 v vV VY 5
Q-Learning - - v - - - - 2
Fuzzy XCS v v W)Y v vV 6(7)
SMC Learning - v v - Vv Vv - 3
Cont. Q-Learning VARV VARV VAR VAR 6
Hedger v vy v vV 7
CACLA v v Y - - - 5

Table 4.1: Taxonomy of learning techniques

In this section, we analyse the learning techniques using the taxonomy provided
in Table 4.1.
Due to the restriction towards discrete situations and discrete actions, ZCS and

Q-learning are not suited as learning mechanisms in our scenario. SMC learning is

64 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

suitable only for discrete situation spaces; therefore, it too is not applicable in our
system. Due to the usage of fuzzy logic, Fuzzy XCS is able to deal with continuous
situation/action spaces. Knowledge is represented in a compact way and a priori
knowledge can be implemented as rules. Additionally, it can be used in a multi-step
manner, which means that the reward can be broken down to the set of actions
leading to this reward. In other words, it is possible, but that delayed rewards can

be dealt with has not yet been shown.

Continuous Q-Learning presents many useful properties (see table 4.1), but is

unable to deal with delayed rewards a factor that is crucial in our system.

Hedger has been developed to map continuous situations to continuous actions.
The adaptation of q values using temporal difference enables Hedger to deal with
multi-step problems. Generalisation is enabled by using regression with a few sam-
pling points. Actions and q values are not separable, but at least knowledge is
well represented because the complex q function is approximated using only a few
sampling data points. Therefore, Hedger is a suitable candidate for learning in our
application scenario agents. Thus, we implemented Hedger but came to realise that,
due to the complex regression algorithm necessary for decision making in our appli-
cation scenario, Hedger’s run-time behaviour was insufficient. Therefore, although
Hedger is theoretically a suitable candidate for learning in our agents, we had to rule

it out due to its poor run-time behaviour for large, complex systems.

CACLA has also been developed to work in continuous situations and to compute
actions in a continuous spectrum. Also, based on temporal difference, it is able
to solve multi-step learning problems. Due to the neural networks used in both,
actor (AC function) and critic (q function), knowledge is represented in a compact
and generalised manner. But this has the disadvantage of CACLA‘s being unable
to include a priori knowledge (like our T7% table) into the learning mechanism.
Additionally, CACLA in its basic implementation is unable to deal with delayed
rewards. But, since it is the most lightweight learning algorithm regarded here, we

decided to implement the missing functionality of CACLA.

In Chapter 6.8.3, the adaptations necessary to use CACLA in our system will be

explained in detail.

4.2. MAS 65

4.2 MAS

In concordance with Wooldrige, we define multi-agent systems (MAS) as follows:

Definition 6. Multi-agent Systems:
Multi-agent systems are ‘systems composed of multiple interacting computing sys-

tems, known as agents’[89].

Accordingly, agents in this thesis are defined as being capable of showing au-
tonomous behaviour and interacting with each other in a social fashion within an
environment. Agents have specific goals that are usually defined by the user they
represent in the system.

Definition 7. Agents:

‘Agents are computer systems with two important capabilities. First, they are at
least to some extent capable of autonomous action of deciding for themselves what
they need to do in order to satisfy their design objectives. Second, they are capable

of interacting with other agents’[/89).

Agents continuously perceive their environment, use reasoning to make their
decisions, and then act within the environment. The fitness landscape [79] within
the environment can be influenced by the different agent’s actions.

This way of thinking and system design allows for a new way of dealing with
the complexity of open distributed systems. Therefore, in this thesis, we use the
multi-agent system approach as the basis of the system in which our trust-strategic
agents act and interact.

In the following sub-sections, we will provide an overview of types of agent ar-
chitectures and agent design principles before introducing the class of normative
systems and the principles that we adopted from this area for the mechanisms in
this thesis.

4.2.1 Types of Agent Architecture

There exist many different paradigms regarding how agents should be built in order
to fulfil specific needs. Many approaches focus on the communication of agents,
which is the basis of all cooperation and interaction. For instance, FIPA [90] and the
FIPA-conform JADE [91] standardised agent communication as a means to enable

agents from different developers to ‘understand’ each other.

66 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

In our MAS implementation, we abstracted the agent communication by encap-
sulating the communication component. Therefore, we can either use the physical
communication layers of an underlying middleware [92] or the communication system
based on encapsulated method calls within Repast [93] agents.

Apart from the communication base, the agent architecture, in general, is used
to decompose complex decision-making mechanisms.

A prominent example of agent architectures is BDI [94], where, similar to a
human being’s reasoning mechanism, the agents’ beliefs, desires and intentions are
separated. The belief stores the agent’s observation of its environment, including
other agents’ behaviours. The agent’s motivation and goals are formalised in the
desire component. As a result of these desires and the agent’s perception of the
environment, the intentions are formalised: The agent selects a specific desire that
must be achieved in the current situation.

The BDI pattern is realised in several types of agent architecture. The Open
Agent Architecture (OAA) [95] uses a broker-based approach to allocate software
services on BDI-based agents. Apart from the restriction towards software services,
the support of the community seems to have been lost, and the most recent update
has been released in 2007.

The Adaptive Agent Architecture by Kumar [96] also uses a hroker-based BDI
approach, but concentrates on teamwork and, thus, on the self-healing of the sys-
tem. The self-healing and fault-tolerance properties of this approach are interesting
and relevant, but do not go as far as the self-organisation, learning, optimisation
and proactive approaches reached by the Adaptive Agent Architecture developed
and presented in this thesis. Specifically, the combination of trust-awareness, the
Adaptive Observation Model, situation prediction and Controller enhancement re-
garding learning optimal behaviour and norm-awareness reach to a combination of
self-organisation, self-healing and self-optimisation far beyond Kumar’s approach.

The DARPA-funded Cognitive Agent Architecture Open Source Project (COUGAAR)
[97] provides a framework for developing distributed systems with a large number of
member agents. This approach concentrates on a common goal of the agents. This
is in contrast to our application scenario, where the individual goals might interfere
with the individual goals of the other agents within the system.

Similar to the three-level architecture presented in [98], we order the different
agent decisions in levels to enable different behavioural classes in one combined
architecture. For instance, the temporal component when the agent’s decision is

made can be decomposed into two levels.

4.2. MAS 67

4.2.2 Reactivity and Proactivity

Reactive agents are able to perceive their environment and react to changes by
changing their own behaviour in order to achieve a better performance. Deliberative
agents are able to select between different types of behaviour, which means that
they can act differently in different situations. The agents presented in this thesis
are called proactive.
Definition 8. Proactivity:

Proactive entities are able to react or act deliberatively, predict future system de-
velopments or agent actions, and adapt their behaviour even if the situation has not

occurred yet.

This proactivity enables agents to reduce the performance decrease that usually

occurs before the reactive adaptation has taken effect.

4.2.3 Awareness

Awareness can be defined as the ability of agents to perceive their environment.
There exist different gradings of awareness. Perception is a prerequisite for agent
actions because agents, in general, need to know what happens around them as well
as how their actions influence other agents and the environment.

Definition 9. Awareness:

Awareness is the ability of an entity to perceive its environment.

Usually, the agent awareness is static and provided in the observation model,
where the set of perceived parameters is defined once at startup by the system
designer. In this thesis, we show how this observation model can be adapted at
run-time by the agent itself. Agents only need to perceive the information that is
important in its current situation. This reduces the observation overhead, which
always causes a communication overhead in our application scenario because other
agents need to be asked for information. This is especially interesting in systems
with limited bandwidth or a high amount of payload compared to the available

bandwidth.

4.2.4 Institutions

As discussed in Section 1, our application scenario TDG can be viewed as a common-

pool resource management problem. Ostrom [7] argued that open access to a

68 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

common-pool resource need not inevitably lead to a tragedy of the commons (the
total depletion or exhaustion of the resource) as predicted by game theory. Under
certain conditions, there is an alternative to privatisation or centralised control of
the resource—namely, management of the commons by a self-governing institutions.
Definition 10. Institution:

An institution is ‘a set of working rules used to determine who is eligible to make
decisions in what area, what actions are allowed or constrained, what aggregation

rules are used, etc.’. [99]

In this thesis, the institution is represented by a manager (either a norm manager
or part of a Trusted Community manager) that observes and analyses the system
states and legislates norms.

Ostrom identified eight principles for the self-management of CPRs, which were
necessary and sufficient conditions for institutions to endure (and, by implication,

for the common pool resource to be maintained):

1. Clearly defined boundaries: Those who have rights or entitlement to appropri-

ate resources from the CPR are clearly defined, as are its boundaries;

2. Congruence: between appropriation and provision rules and the state of the

prevailing local environment;

3. Collective choice arrangements: In particular, those affected by the operational

rules participate in the selection and modification of those rules;

4. Monitoring: of both, state conditions and appropriator behaviour, is by ap-
pointed agenciesthat are either accountable to the resource appropriators or

are appropriators themselves;

. A flexible scale of graduated sanctions: for resource appropriators who violate

ot

communal rules;
6. Access to fast, cheap conflict resolution mechanisms;

7. Existence of and control over their own institutions: is not challenged by ex-

ternal authorities; and

8. Systems of systems: layered or encapsulated CPRs, with local CPRs at the

base level.

4.2. MAS 69

Ostrom proposed the idea of self-governing, common-pool resources through col-
lective action in the context of an institution.
In the following sections, we analyse the TDG from the perspective of institutions

for common-pool resource management.

Analysis of Institutional Concepts within the TDG

In this section, we visit each of Ostrom’s principles, as introduced in the previous
section, and analyse the extent to which they are already encapsulated within our
iTC and eTC concepts.

Principle 1: Clearly Defined Boundaries

The first principle to ensure enduring institutions is the definition of clearly
defined boundaries. The iTC is adaptive in such a way that the boundaries are
implicitly defined by the set of agents belonging to the community. This set changes
according to the community’s need in the current situation. Therefore, an iTC does
not have clearly defined boundaries known to all member agents. Thus, we see that
the current system does not entirely conform with the first principle for enduring
institutions. An eTC, on the other hand, has clearly defined boundaries as it has an
explicit membership function and the TCM observes whether an agent’s behaviour
conforms to the community’s norms.

Principle 2: Congruence The second principle of enduring institutions is
congruence between appropriation and provision rules and the state of the prevailing
local environment.

In an iTC, it is argnably precisely the lack of correlation between the interaction
norms and the system states in which there is no mutual cooperation because of
trust breakdown. Hence, an iTC only partially implements the second principle for
enduring institutions.

An €TC, on the other hand, can be made fully compliant with Principle 2, but
this requires an additional communication protocol so that global states can be
identified from reported local states. Furthermore, there has to be some assurance
that the configuration of ‘community rules’ is precisely correlated with the intended
outcomes.

Principle 3: Collective choice arrangements According to Principle 3, the
agents affected by the operational rules participate in the selection and modification
of those rules. Due to the adaptivity in our system, the agents are able to chose the
extent to which they obey the existing norms, but they do not control the norms

themselves. For instance, it is a norm that agents should work for other agents—i.e.

70 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

offer their idle computing resources. If the majority of the agents chooses to be less
cooperative, this results in a new situation of less trust among the agents. We call
this an effect of a self-referential fitness landscape: by making a choice, each of the
agents actively changes the situation in which it acts. Thus, the agents have the local
choice of whether or not to obey a rule, but they do not have collective legislative
power.

In an eTC, the agent occupying the role of TCM has the institutionalised power
to pass, enforce and adapt norms. As these norms could also be decided by collective
choice (e.g. by voting or consultation), it would be possible to implement the third
principle of enduring institutions in eTCs.

Principle 4: Monitoring In our distributed self-organised system, monitoring

is carried out by the agents themselves. Each agent has
1. knowledge about the agent itself,
2. private knowledge about other agents gathered during former interactions,
3. community knowledge about other agents (especially from the reputation database).

Thus, there exists no entity or entities with a responsibility for monitoring global
states or behaviour. This is a problem if situations occur that cannot be observed
locally—for instance, a breakdown of trust or other more complex macro-level prop-
erties that emerge from micro-level behaviour and interactions. For these situations,
the introduction of the TCM, which observes or infers not only memberships but
also system states among the members, is necessary. With an eTC run by a TCM,
Principle 4 can be fulfilled.

Principle 5: Graduated Sanctions If the community rules are violated, the
violator needs to be punished according to the severity of the damage caused. This
principle is mandatory for the isolation of malicious agents from the iTC, which is
built based on a trust management and sanctioning mechanism. Our system already
has a trust and reputation mechanism, which also takes into account the amount of
violations that the agent has committed. Therefore, Principle 5 of enduring institu-
tions is already established in the iTCs of the TDG, and must be retained for eTCs
as well.

Principle 6: Conflict Resolution According to Principle 6, agents require
access to fast and cheap conflict resolution mechanisms in order to establish enduring
institutions. In case an agent objects to a sanction (e.g. bad rating for a wrong
or delayed computational result, or unintentional error), this conflict needs to be

resolved. In the existing TDG, the ability to object to a rating is not implemented.

4.2. MAS 71

Instead, we rely on demanding a minimal trust value from agents to be allowed to
provide feedback in the reputation system. But as soon as an objection to negative
feedback is allowed, some form of conflict resolution is needed in particular, to
avoid escalating negative feedback or the stoning effect observed in some reputation
systems [100]. Managing and adjudicating the process would be another task for the
TCM of an eTC.

Principle 7: No External Control As there are no external instances in both
implicit and explicit TCs, Principle 7 is met by the current version of our system.
For a future version, we envision multiple TCs with a possible overlap of concerns.
In such a system, it might be necessary to allow a mutual influence of TCMs of
different TCs.

Generally, there will always exist the possibility of human intervention to override
the decisions of the TCM. Hence, Principle 7 is useful only to a certain degree within
a socially organised system.

Principle 8: Systems of Systems If we regard TCs (implicit or explicit) as
systems, systems of systems are TCs composed of sub-TCs. In the current implemen-
tation, there exists only one bottom-up built TC, but we are also interested in the
relations between different TCs. In particular, overlapping TCs might have differ-
ent, even contradicting goals, and hence utility functions. Furthermore, as TCs are
currently defined only by the trust values and thresholds of the members, we could
also imagine nested TCs where larger TCs could define a minimal trust threshold
(to skip basic security measures) and nested sub-TCs accept only trustworthy agents
(for instance, to guarantee a certain QoS standard). The TC approach is well-suited
for systems of systems aspects, but so far, Principle 8 has not been met because the

application showed no necessity to implement it.

Analysis of Trusted Communities and Institutions

The aim of this section was to analyse, which of the design principles are already
implemented in the trust-adaptive algorithms of our TDG agents and which princi-
ples need to be augmented by a TCM in order to transform our TCs into enduring
institutions with hierarchical management properties. Principles 5 and 7 are already
represented in the TDG and the iTC approach to agent management. One general
task of the TCM is to observe the members of its explicit Trusted Community (Prin-
ciple 1). It is also responsible for the recruitment of new members for the TC. If an
agent misbehaves, it needs to store this interaction result in a reputation database.

Additionally, it needs to resolve rating conflicts (Principle 6). If this occurs repeat-

72 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

edly, it needs to exclude this malicious agent from the TC and inform the members.
This refers to Principle 2, which ensures that only members are given resources. One
of the monitoring functions of the TCM is to react if a global situation occurs that
cannot be resolved locally—e.g. trust breakdown within the community. In these
situations, the TCM is required to install norms for the agents’ behaviour (Principle
3), and monitor whether these norms are obeyed by the agents (Principle 4). As
soon as we regard more than one TC/institution, the TCM will also be responsible
for the inter-TC relations, even with respect to systems of systems, and will thus
fulfil Principle 8.

In addition, a way of explicitly realising Principle 6 would be through a forgive-
ness mechanism [74] based on explicit evaluation of the violation incident rather than
‘forgetting’.

In the current thesis, we use a forgetting mechanism that, when combined with
the dynamics of trust and workload, leads to a reintegration of formerly untrustwor-
thy agents if they have changed their behaviour.

4.2.5 Normative MAS

In this thesis, useful aspects or normative MAS are adapted in order to improve
system performance. In particular, we introduce a hierarchical component (repre-
senting an institution) that is able to observe those system states which might not
be observable through only a local view (e.g. trust breakdown). From the analysis
of these system states, the institution derives norms. Norms define the expected
behaviour of an agent in a society of agents.

Two basic definitions can be used to define normative MAS, the normchange
definition [101], which describes a top-down approach, and the mechanism design
[102] describing a bottom-up approach.

Definition 11. The Normchange Definition:

‘A normative multi-agent system is a multi-agent system together with normative
systems in which agents on the one hand can decide whether to follow the explicitly
represented norms, and on the other the normative systems specify how and in which

extent the agents can modify the norms.’[101]

This definition implies that the MAS and the normative system are encapsulated
and separated from each other.

Norms need to be explicitly represented and modified, and agents need the ability

4.2. MAS 73

to decide whether or not to obey to a norm.
Definition 12. The Mechanism Design Definition:

‘A normative multi-agent system is a mulli-agent system organized by means of
mechanisms to represent, communicate, distribute, detect, create, modify, and en-
force norms, and mechanisms to deliberate about norms and detect norm wviolation

and fulfilment.’[102]

In this bottom-up definition, the agents themselves are responsible for legislating
and controlling the norms. In this thesis, the top-down definition of the normchange
definition is used to enhance the MAS with norms. Therefore, we need to enable
agents to ‘listen’ to such standardised norms and to provide the system with an
institutional component that is able to analyse the system state and to legislate

norms to improve the system’s performance.

Formalising Norms as Constraints

Norms can be represented in many different ways. Making the norm definition adhere
to a well-known standard makes the mechanics more intuitive and understandable;
moreover, standards make the extension of the existing sources easier. Therefore,
we here analyse which norm representations are suited for norm-aware TDG agents
(Section 6.9.2) and provide examples of how ‘typical norms’ can be represented in
different language structures.

Constraints are used by the norm manager, which observes the system state and
enacts norms for the agent in order to improve the global system state with the
set of local interaction changes. In general, constraints can be defined as a set of
conditions that have to be met in order for a norm to be enacted. The norm then
represents the action instructions given from a norm manager to the agents in the

system.

Requirements for Norm Representation Languages

First of all, we need a standardised representation of norms in order to define norms
in such way that they can be understood and interpretable by our agents. Therefore,
we need to define a condition and an action part as well as provide a way to observe
whether conditions are met. The language should also be easy to understand for
system and agent designers in order to make extensions as simple as possible. Also,
we need a language which has a good integration into our tools. Therefore, the

possibility to use the language in the software planning phase, e.g. integrated in

74 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

Unified Modeling Language UML would be interesting. Similarly, the usage of the
language as additional Java annotations would be an interesting way to define norms
understandable for both agents and humans.

An analysis of the state of the art led to two promising candidates for norm
representation languages.

One of the most prominent languages for constraints is the Object Constraint
Language (OCL) [103]. It is an extension of the Unified Modeling Language (UML)
and, thus, is quite common. One of the benefits is that during the planning phase of a
software artefact, OCL constraints can be included in UML diagrams, extending the
graphical representation of UML through a more formal way of defining conditions.
At run-time, OCL can be used to monitor the constraint requirements.

As an alternative, the Java Modeling Language (JML) is introduced. JML is
also a language for constraints, but uses the Java annotation to supervise directly
at run-time whether or not constraints are met.

In the following sections, we will take a deeper look into the functionality of OCL
and JML and decide, based on our requirements, which language is most suited for

our norm-aware agents.

OCL

The Object Management Group, Inc. (OMG) has been founded in 1989 and is an
open membership, not-for-profit computer industry standards consortium, which,
for instance, released the UML and OCL standards. OCL extends UML as a formal
language to express constraints in a system.

We here give an overview of the OCL definitions and expressions used in this

thesis.

e Invariants

An invariant must hold at all times for all instances of a type.
e Initial Condition The initial condition defines the start value of a variable.

e Pre- and Post-condition for Operations and Methods

A precondition defines the state that a variable has to be in before an operation

or a method can be executed.

A post-condition defines the state of a variable after an operation or method

has been executed.

4.2. MAS 75

e Body Definition

The body definition is a function. Its result must equal the result of an oper-
ation or method. Preconditions, post-conditions and body conditions can be

combined.

Listing 4.1: OCL syntax

1 context NormManager:: createOverload WLNorm ()

2 pre: self.overloadWLActive=—false and self.avgWL>400
3

4 context NormManager:: deactivateOverloadWLNorm ()

5 pre: self.overloadWLActive—true and self . avgWL<=400
6

7 context NormManager:: createTrustbreakdownNorm ()

8 pre: self.trustberakedownNormActive—false

9 and self.avgRep>0.2

10

11 context NormManager:: deactivateTrustbreakdownNorm ()
12 pre: self.trustberakedownNormActive—true

13 and self.avgRep<-0.2

The OCL syntax allows the expression of highly complex constraint combinations.
Therefore, we defined functions that facilitate the usage of OCL within the Adaptive
Agent Architecture. A parser within the normative framework of this thesis ensures
that the definitions can be transferred into agent behaviour decisions at run-time.
For instance, Listing 4.1 shows a combination of preconditions that has been used
to define agent behaviour; specifically, the norm manager defines when a norm is
activated or deactivated.

Context always begins the expression. The context is followed by the expression
itself, here defined by the class and method it is used in. A nesting of norms is
possible, but currently not needed in the TDG. Nonetheless, extensions can easily
be made due to the normative framework structure. The precondition pre: defines
which variable combination needs to hold in order to make the norm active. Here,
the self again points at the variables being in the same class as the method. For
instance, the first part of the example says that the boolean overload WLActive has

to be true and the average workload avg WL>400 in order to call the function.

76 CHAPTER 4. SUPPORTIVE TECHNOLOGIES

JML

The Java Modeling Language (JML)[104] is based on design by contract (DBC).
DBC is a pattern, which defines that a class has a contract with its client. The
client needs to fulfil prerequisites in order to execute a method. JML presents an
easy way to include conditions by adding Java annotations into the source code. Like
OCL, JML can be used directly with the Eclipse IDE, and the conditions defined at
design time can be supervised by the JML library at run-time.

The aforementioned four functions from the TDG example can be expressed in

JML syntax as follows:

Listing 4.2: JML syntax

//@ requires overloadWLActive=false and avgWL>400
//@ requires overloadWLActive=true and avgWL<=400

//@ requires trustberakedownNormActive=—false and avgRep>0.2

00 =1 @ Ot = W N =

//@ requires trustberakedownNormActive=—true and avgRep<=0.2

Since the constraints have to be defined directly before the method definition,
the scope need not be defined here. Despite the different names, JML and OCL

conditions can be mapped:

e Inwvariant can be mapped with the OCL invariant.
e Requires can be mapped as OCT preconditions.

e Fnsures can be mapped as OCL post-conditions.

OCL Initial and OCL Body Definition are not known in JML. Instead, there
is a set of JML commands, which refers to Java functions and lacks any exact

correspondence with OCL. Some examples are listed here.
e Signals There is a post-condition if an exception is thrown.

e Assignable

Assignable defines which areas can be changed by the method.

4.3. SUMMARY 77

e Spec Public

Spec public enables the designer to make a private order-protected variable

public for a specific cause.

Analysis of Norm Representation Languages

The examples in the previous section show that there are similarities between OCL
and JML, but both languages have special abilities suited for specific needs. For the
needs of the norm-aware agents in this thesis, both OCL and JML can be used. We
use a tailored version focusing on the core aspects of OCL, but making the definitions
easier to handle due to our own language parser. The integration of OCL into UML
helps the designer to include norms already during the planning phase of new agents.
The standardised representation of norms in OCL makes norms easily interpreted
by agents and also easy to add further norms to already exisiting agents and norm
managers.

Several OCL implementations are available, but due to the wide distribution, free
license and active support, we decided to use DresdenOCL as the basis of our norm
definitions. DresdenOCL is based on Java and can be used directly in the Eclipse
IDE. The integration in Eclipse IDE-based projects like our RePast [93] simulation
TDG makes it easy to use for designers. It enables designers to define constraints
formally and to execute a function if and only if the constraints are met. Therefore,

the constraints are saved in an ‘.ocl’ file, which is referred to by the source code.

4.3 Summary

Tn this chapter, the technologies, which have been adapted for usage in this thesis,
have been presented and discussed. The extension of the Observer/Controller patter,
usage of learning algorithms as well as agent architectures, norms and institutional
components from the MAS area have been analysed regarding their suitability for
the thesis.

In the following chapter, the system view of this thesis will be presented.

78

CHAPTER 4. SUPPORTIVE TECHNOLOGIES

Chapter 5

System View

5.1 Trust Feedback Loops 79
5.2 Trusted Communities 83
5.2.1 Trusted Communities Definition 84
5.2.2 Implicit Trusted Communities 85
5.2.3 Explicit Trusted Communities 87
53 Summary 90

In this chapter, the functionality and dynamics of the trust and reputation system

are presented. The second part introduces the concepts of implicit and explicit TCs.

Work on the trust and reputation system, the application scenario (Section 1.2)

as well as TCs has been conducted in cooperation with Lukas Klejnowski and Jan

Kantert in the context of the DFG research unit OC-Trust (FOR 1085).

5.1 Trust Feedback Loops

In this section, our trust and reputation model as well as
its dynamics are presented. This model is the foundation
of all trust-based agent interaction and system mechanics
in this thesis (see Figure 5.1).

As discussed in Section 3, we defined our own trust
and reputation system in order to tailor it to the needs
of our agent dynamics and application scenario prerequi-

sites. Therefore, the model is described in detail here.

79

Application Scenario TDG

Trusted Communities

Implicit TCs

Explicit TCs

Observer

Adaptive
Observation
Model

Awareness

Agent architecture

Controller

m
Adaptivity

Figure 5.1:

reputation

Trust and

80 CHAPTER 5. SYSTEM VIEW

The current implementation of the reputation system uses

a centralised database, but it is also possible to exchange

the underlying reputation component and use a distributed storage for instance,
the middleware currently developed in the OC-Trust project.

To make interaction and cooperation decisions, agents use the aggregated trust
level T; ;, which is an aggregation of the agent’s own experiences and the global
reputation of another agent. The global reputation is used for feedback loops, which
increases the agents’ efficiency as well as the system’s robustness. We will first
introduce the basic mechanics of the trust feedback loops before providing detailed

information about the calculation of T; ;.

RW regues

Bohavicur seloction

Production engine
[Grid Compating * (Grid Computing Trust rating: [+
interactian control) intoraction cantral) W st T, = 1 rop. £
i ! agent A agont A S

Figure 5.2: Trust-based interaction of agents A; and A; using reputation

Figure 5.2 shows the steps of a trust-based interaction. The agents have a pro-
duction engine that performs the actual task (e.g. the grid client software of an agent
in the TDG). In the TDG, the production engine distributes work units (submitter)
and accepts work units from other agents (worker). To decide which agent to ask
for work unit calculation and whose work units to accept, the production engine of
agent A; calculates the aggregate trust value T;; of the cooperation candidate A;
(step 1).

T; ; is calculated using the reputation value rep; of agent A; (step 2) and the own
experiences of Aj, Ej; ; (step 3). The type of interaction is additionally influenced by

the behaviour selection component (step 4). In this component, strategic preselection

5.1. TRUST FEEDBACK LOOPS 81

is performed—for instance, altruistic behaviour in order to build up reputation in
the long-term.

The agent A; undergoes an analogous loop, until in step 5, the actual interaction
between A; and A; takes place. After the interaction, the behaviour of the interaction
partners is rated (step 6). The aggregated ratings of several agents leads to an update
of the reputation value (step 7).

The aggregated trust value 7; ; of an agent A; towards an agent A; is computed
as a weighted sum of the reputation rep; of agent A; and the own experience E; ; of
agent A; with agent A;. The aggregated trust value is within an interval between -1
(not trustworthy) and +1 (trustworthy).

Each time that agent A; is asked for cooperation (e.g. to compute a work unit),
the asking agent A; rates the interaction with a rating r; ;. The value of this rating
depends on the behaviour of the agent and the application scenario. For instance,
in the TDG, it is more crucial for an agent if a wrong work unit result is returned
(which has to be distributed and computed once more) than a rejection of a work
unit, because in case of a reject, the work unit can be distributed in the next time
step. With negative ratings r; ; € R™, positive ratings r; ; € R, in the TDG, the

ratings are realised as follows:

o If A; has accepted and correctly returned a work unit, the work unit owner A;
informs the reputation database about a positive rating and adds a positive

rating to its own experiences.

e If A; has accepted a work unit but retrieved an incorrect result, the owner A;
will give a strong negative rating to both, the reputation database and its own

experience storage.

e In case a work unit has been rejected by Aj, the agent will receive a nega-
tive rating in both, the reputation database and the work unit owner’s own

experience database.

If A; has accepted a work unit, but cancelled it during computation, the owner
A; stores and reports a negative rating, which depends on the computation
progress of the cancelled work unit (0 < progress < 1). If the work unit has
been cancelled in the beginning of the calculation, A; loses a small calculation
time interval and, thus, gives a slightly negative rating (Rating™" € R™). If
the work unit has been cancelled following a long calculation time, this is more

crucial to the owner, and it will give a strong negative rating (Rating'** €

82 CHAPTER 5. SYSTEM VIEW

R7). Rating™™ > Rating™*®. The rating (r; ;) for a cancelling (c) of a work
unit is a linear function defined as follows:

rij = Rating™™ + (Rating™" — Rating™™) % progress (5.1)
In concordance with the literature [60] as well as the human understanding of
trust, a negative experience is weighted as more severe than is a positive experience.
Hence, we analysed different weighting models [105] and came to the conclusion
that, for our model, a weighted sum depending on the ratings is best suited. The
more of its own experiences an agent has, the less it needs to rely on the community
knowledge of reputation values. Therefore, we introduce a parameter RepW eight,

which accounts for the influence of negative ratings:

Tijs rig 20

RepWeight; j(ri;) = (5.2)

—rij+ 1, rij < 0
This weighting is used to compute a reputation value rep;, which includes all
ratings. In order to compute the aggregated trust value T;;, rep; and E;; are
weighted with the reputation weight 8 (0 < 8 < 1). 8 depends on the number of

own experiences #I; ; as follows:

e If the number of own experiences is larger than a threshold RT;?tmgs’mm
(#E;j > RT??“"“’S’"""), the reputation is only included with a minimal weight

(B = B™") because A; can mostly rely on its own experiences with A;.

o If #FE;; < Rﬂr;tmgs’mi", B is computed proportional to the number of own

experiences:
1— ﬁmin) ()
B=(—#Eij* ——om) + 15 5.3
RT:; ings,min
Using the weighting factor 3. the aggregated trust value that A; has in A; is
computed as:

Tij = (1= B)* Eij + B xrepj. (5.4)

Figure 5.3 shows the control loops that result from our reputation model. Control
loop I (blue) is located on the productive level. The production engine of agent A;
requests the reputation value of a potential cooperation partner. Based on the
aggregated trust value calculated from the reputation value and the agent’s own
experiences with the potential partner, it decides whether or not to interact with the

agent. After each interaction, the behaviour of the cooperation partner is rated.

5.2. TRUSTED COMMUNITIES 83

Reputalion requist Reputation institution

T
@ Parameterizatan Paramatarization

Reputaticn o

Production angine
requast

(Grid Computing interaction contral)
| Fitness function Bahay
avaluation rating

agent A

Figure 5.3: Trust-based nested control loops

Control loop II (green) is used for the self-adaptation of agent A;. It requests its
own reputation value rep; and modifies its behaviour in order to change this value.
The actual modification of rep; is performed by the other agents, which rate the inter-
actions they have with A;. This control mechanism is based on the assumption that
changes in reputation values result in performance improvement. Although there are
many cases where this assumption holds, there are system situations where agents
can change their reputation but will not reach better performance—for instance, in
an overload situation.

Therefore, a third control loop for self-adaptation is loop III (orange). Agent
A; evaluates its own performance and changes its behaviour accordingly in order to
optimise its performance. This control loop is realised by learning agents (see Section
6.8.3). Instead of using the reputation value as a steering parameter for adaptation,
agents using control loop IIT directly concentrate on the performance metric and
find behaviour parameters that optimise the performance. Such behaviour can lead
to changes in reputation, but does not have to do so. Moreover, control loop III
overcomes the problem of situations where reputation optimisation does not lead to

the best performance output.

5.2 Trusted Communities

In this section, the concepts of implicit and explicit trusted communities are intro-
duced (Fig. 5.4). We generally differentiate between implicit and explicit Trusted

84 CHAPTER 5. SYSTEM VIEW

Communities. Implicit Trusted Communities as result of local agent interaction
(Chapter 6), whereas explicit TCs are an agent organisation based on unique mem-

bership functions.

5.1 Trust Feedback Loops 79
5.2 Trusted Communities, 83
5.2.1 Trusted Communities Definition 84
5.2.2 Implicit Trusted Communities 85
5.2.3 Explicit Trusted Communities 87
5.3 Summary ... e 90

‘ Application Scenario TDG ‘

5.2.1 Trusted Communities Definition
I

A Trusted Community (TC) is an association of agents
Agent architecture

that mutually trust each other due to previous experiences

Observer Controller

from direct interactions and knowledge about reputation. Adaptive Norms

Observation
TCs are understood as a general approach that can be Model =
earning
used in MAS with underlying trust mechanics. In our sce-
. : . . Trust Adaptivity
nario TDG, agents act on behalf of their respective grid -

users and some of the users’ properties are mirrored in

‘ Trust & Reputation ‘

the agent (e.g. an egoistic agent represents a user who

. . . .
might suddenly restrict the agent’s access to computer re Figure 5.4: Trusted

sources). .
) Communities

TCs are characterised by strong trust relations among
the members, which enables them to share information
and perform tasks more efficiently. If, for example, an agent A has not yet had any
interaction with an agent B, he can rely on the estimation of his community about
the reputation of this particular agent. This reduces the information uncertainty
that generally exists in dynamic systems with respect to interactions between au-
tonomous agents; therefore, it enables and improves cooperation among these agents.
Besides, in a TC, agents can rely on the trustworthiness of the other members. Thus,
they omit control mechanisms like work unit replication as long as their work units
are processed by other members of the TC. Obviously, this can lead to better system

performance.

5.2. TRUSTED COMMUNITIES 85

Generally, in a TC, an agent always needs to find a trade-off between its own
personal goals (like processing all work units as fast as possible) and the system goal
(like maximum overall system performance that can be reached if agents not only
submit work units but also process work units for others). TCs can increase the
overall system performance as well as a single user’s benefit from participating in

the network.

In our system, TCs emerge over time. Each TC represents an agent organisation
that is dynamic regarding the membership of its agents. If an agent changes its
behaviour in such a way that it influences the TC in a negative way, it will be
excluded from this organisation. If an agent that formerly acted uncooperatively
changes its behaviour and becomes more altruistic, it will be able to re-join the TC.
An implicit Trusted Community (iTC) emerges from the local views of the agents
whereas an explicit Trusted Community (eTC) has predefined rules for the entry and
departure of agents. These rules lead to a closed set of member agents. Therefore,
using eTCs enables us to explore how agents from different disjointed TCs interact

with each other. In the following, both shapes of TCs are described in detail.

5.2.2 Implicit Trusted Communities

iTCs have no fixed rules governing how an agent enters or leaves the society, and
agents do not have explicit knowledge about these communities or their membership.
Instead, the membership can be defined according to membership functions. Since,
in our system, agents generally decide to send their work units to trustworthy agents
and each agent has its own view on these rankings, the structure of a TC can be
defined as all agents that are perceived as trustworthy by the majority of other agents.
Therefore, the organisation of an iTC results from the exclusion of uncooperative
agents by the means of avoiding cooperation with these agents.

Figure 5.5 shows an example of an iTC that we will describe in the following.
Agent X has a set Syyusteq,x Of agents it trusts, which is a subset of all the agents it

knows.

Strustcd,x Cc Sknoum,X (55)

This means that the aggregated trust level of each trusted agent A is greater than

a threshold predefined by agent X. Agent X can adapt its constraints regarding the

86 CHAPTER 5. SYSTEM VIEW

Figure 5.5: Tmplicit Trusted Community (iTC)

aggregated trust level to the current system situation over time.
VA e Strusted,X (CngTLX (A) > aggTLmin,X) (56)

Analogously, agents M and S define their trusted agents. The implicit Trusted
Community is the set ITC, which is highlighted in Figure 5.5 and which forms the
intersection of the sets of trusted agents of X, M and S:

SITC = St'rusted,X n StTusted,M n StTusted,S (57)

If an agent needs to distribute more work units than its preferred (top-ranked)
agents (e.g. the community members) are able to accept, it will either wait and
distribute the remaining work units at a later time or ask less trustworthy agents.
Waiting and distributing the remaining work units will decrease its personal benefit
from participating in the system, whereas asking less trusted agents may result in
decreased overall system performance. If the agent decides to ask less trustworthy
agents, it will also increase the control mechanisms and, e.g. send the work units
to more than one agent, allowing majority voting to decide the correct result. This
replication technique helps it to receive correct results, but influences the overall
system throughput in a negative way by increasing the overall workload.

As can be seen in Figure 6.8, we expect our system to isolate egoistic and free-
riding agents in such a way that they are the last agents in a ranking based on the
aggregated trust level. This means that these agents will only be asked if all better-

ranked agents are unable or unwilling to process a work unit. Although the poorly

5.2. TRUSTED COMMUNITIES 87

rated agents show sub-optimal cooperation, they can still be asked to process work
packages. For instance, instead of waiting until a better-rated agent is available,
a submitter can decide to replicate a work unit and give it to several agents and
determine the correct result by majority voting. The strategy of asking average-
rated agents rather than waiting for top-rated agents will, on the one hand, lead to
better system performance because if the system load is high, all available workers
are used. On the other hand, it will lead to a better personal benefit because the
waiting time is minimised. We will later introduce the ability of agents to learn and
change their behaviour over time. This means that agents that shift to more altruistic
behaviour rise in the ranking over time, whereas non-adaptive agents remain in their
excluded ranking position. Checking whether an agent has become more altruistic
occurs automatically if the system load forces an agent to not only ask the top-rated

agents but also other agents with the cost imposed by additional control mechanisms.

5.2.3 Explicit Trusted Communities

Klejnowski [106] presents a very detailed description and evaluation of eTCs. Explicit
trusted communities (eTCs) have clear rules defining the requirements that an agent
has to fulfil in order to join a TC. This enables the system designer to define inter-TC
interactions. These will enable collaboration between different TCs within a system,
thereby enhancing the possible actions and interaction partners of an agent (and,
thus, indirectly influencing the system performance). For instance, if a submitting
agent requests a task that cannot be fulfilled by any agent of its TC, it is able to
ask agents of another TC that cooperate within their own community.

In an €TC, a trusted manager, which can be dynamically chosen, monitors the
actions of other agents in the group and receives ratings for each interaction. It can
decide whether a new agent will be allowed to join the TC or not. Eventually, it tests
members of the community with sporadic, pre-processed tasks in order to estimate
if their behaviour is correct (return right results) and conforms with the community
(cooperate with members). The trusted manager is also responsible for the exclusion
of agents whose behaviour no longer complies with the expectations of the TC.

The trusted manager can be implemented using the observer/controller pattern
[11], which is common in the area of Organic Computing. A generalised picture
of an €TC architecture can be seen in Figure 5.6. A dedicated TCM manages and
observes the members of its TC. Cooperation with unassociated agents is possible,
but TC members are preferred partners.

The observer supervises certain parameters of the TC and reports the results

88 CHAPTER 5. SYSTEM VIEW

Figure 5.6: Explicit Trusted Community

to the controller. The controller realises if any critical condition is reached. The
controller will then influence the community in a way that leads to a better overall
system status. As there are several observer/controller entities for a system consist-
ing of more than one TC, the system is still decentralised in its core, though a few

hierarchical components exist.

Trusted Community Manager

The Trusted Community manager (TCM) can, for instance, be chosen using dis-
tributed leader election algorithms from the distributed systems domain. For in-
stance, the agent with the highest ID can be chosen if each agent sends its own id
and forwards the highest id it receives along the network.

An agent can also autonomously decide to found an eTC. This decision is usually
made if the agent computes that it would reach a better performance within an eTC.
If the agents decides to establish a new TC, it will invite other agents to join the
TC. Usually, it will decide to invite only trustworthy agents in order to maintain
a robust TC. Agents that are invited compute whether it would be worthwhile for
them to accept the invitation.

The TCM is responsible for the maintenance of its TC. It needs to supervise its
members and their actions. If necessary, it is responsible for expelling a misbehaving
agent from the TC. This can be due to reports from other members or test packages
that have been rejected or returned incorrectly from the mishehaving agent.

The TCM is able to assign roles and tasks to other agents in order to optimise
the TC management as well as its own performance within the system and TC.

The TCM can also be responsible for legislating norms that resolve undesired

5.2. TRUSTED COMMUNITIES 89

system states. If the TCM realises that the agents would be better off if the TC is

dissolved, it needs to evoke this action, too.

eTC Life Cycle

Here, we describe the life cycle of an eTC.
In the first phase an eTC is always in the unassociated phase:

The agents of the system are completely without central control and act au-
tonomously. The only common structure in this phase is the trust and reputation
system where the agents rate the interactions that they had with each other. Addi-
tionally, constructs without centralised control, like the iTC, can emerge over time.
Agents build up trust relations over time. After a certain amount of interactions and
trust decisions, agents reach a point where they predict that their own performance
can be improved if an eTC is formed. As soon as a critical number of agents has

decided to initiate the formation process of the eTC, the next phase is reached.

In the formation phase, the agents try to find suitable members for the TC and
elect a TCM. Thus, the eTC is formed.

In the T'C maintenance phase, agents are able to optimise their performance by
mostly relying on TC members when looking for cooperation partners. Nonetheless,
they are also able to interact with agents outside the TC as well as with agents
from other TCs. But it is a norm that agents which are asked for cooperation from
members of their own TC, should be cooperative.

Moreover, within the TC, due to the bilateral trust relations, agents can leave
out safety measures like work unit replication. This might enable them to reach a
higher performance than without the TC membership.

The TCM supervises the agents and their interaction before deciding which
agents to invite to join the TC and which agents should be excluded from the TC.

If a TC becomes too big, the maintenance cost do not scale anymore, and the
agents are better off if they split the TC into two smaller, independent TCs.

Each agent supervises its own performance and estimates its performance poten-
tial if it were not a member of the T'C. In case the membership leads to a disadvantage
for the agent, it can decide to leave the TC. If the TC becomes too small over time,
the TCM will dissolve the TC.

In case the TCM leaves the system (for example, loses internet connection), the

TC will execute the election process as already performed in the formation phase.

90 CHAPTER 5. SYSTEM VIEW

5.3 Summary

In this chapter, we have introduced how trust-based cooperation takes place. We
analysed the agent dynamics and determined three nested control loops that are
responsible for the trust-adaptive behaviour of agents.

In the second part of this chapter, we presented two definitions of Trusted Com-

munities, implicit and explicit, and discussed their suitability for open grid systems.

Chapter 6

Adaptive Agent Architecture

6.1 Motivation. Lo 92
6.2 Systematisation 92
6.3 Adaptive Architecture Model 93
6.4 Agent Type Hierarchy 95
6.5 Information Spaces of TDG Agents 96
6.6 Trust-neglecting Agents 98
6.7 Trust-aware Agents 98
6.7.1 Egoistic Agent 0oL 99
6.7.2 Free-Rider00 100
6.8 Trust-adaptive Agents 101
6.81 ITCAgent. 101
6.8.2 Evolutionary Agent. 104
6.8.3 Learning Agent 108
6.9 Trust-strategic Agents L. 112
6.9.1 Tactical Agent: Situation Prediction 113
6.9.2 Norm-aware Agent: Consideration of Constraints . . 115
6.9.3 Adaptive Observation Model Agent 123
6.10 Summary 126

91

92 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

6.1 Motivation

This section presents the adaptive agent architecture and different implementation

details of each included agent class (Fig. 6.1). [Application Scenario TG |
In order to enable agents to adapt continuously to Trusted Communities

both, changing environmental situations and varying trust
Their Agent architecture

relations, we need to extend agents as follows:

awareness needs to be augmented with the ability to ob-

Adaptive Norms
serve trust and reputation values. Moreover, our agent ob- ObSMef;a‘I'OH
ode
. L i
server is able to predict how situations might evolve and — -
rediction
how the trustworthiness of an agent could change. This Trust Adaptivity

Awareness

enables agents to be not only reactive, but also proactive

by adapting even before the situation change has occurred. ‘ ouscs Reputation |

Agents are extended through their ability to learn.

This is extremely helpful in open dynamic systems be- Figure 6.1: Agent com-

cause the system designer cannot predict every situation ponent of the thesis
that might occur and so cannot always preset optimal be-

haviour parameters. Therefore, enabling agents to continuously optimise their be-
haviour at run-time is promising.

Additionally, there are critical situations that the agents cannot observe using
only their local knowledge. Therefore, we extend the agents’ ability in such a way
that they are able to percept norms from an institution which observes the system
state. The institution derives norms from its observation, which bring a system from
critical to desired states.

Extended agent abilities come at a cost: an agent can only react to parameters
it has observed. This might be useful in critical situations, but in other situations,
there is a large observation overhead that is simply not necessary. Therefore, we
enable the agent’s observer to adapt the set of parameters and their update intervals

to the needs of the current situation.

6.2 Systematisation

In the following sections, we will first introduce an architecture that enables us to
add all the above-mentioned features to the agent in a level-based way. Not all
levels need to be implemented for all types of agents. Instead, we decompose the
agent’s decision-making process into different levels; the more the number of levels

implemented in an agent, the more complex its decisions can become. This chapter

6.3. ADAPTIVE ARCHITECTURE MODEL 93

is ordered by growing agent awareness and, consequently, increasing agent abilities.
Starting with agents that have no notion of trust and are, thus, static in their social
behaviour, we introduce agents that have a static notion of trust. The next step in the
agent hierarchy is to make the agents trust-adaptive in order to ensure optimisation.
Further improvements to adaptivity can be reached by enabling agents to learn, as
has been demonstrated by the two example implementations. The next level is to
make agents act strategically: agents are enhanced by prediction methods and the
ability to consider institutional norms in their decision-making process. Additionally,
they are able to improve the usage of their communication bandwidth by adapting
not only their controller decisions, but also their observer actions to the current

situation.

6.3 Adaptive Architecture Model

Agents can be distinguished by the amount of information available to them and
the solution quality that they can reach. In Figure 6.2, we introduce an agent
architecture featuring three agent levels, which corresponds with the agent types that
will be dealt with in the following sections. Not all agent types need to implement
all levels of the architecture. Agents can be built using one, two or three levels,
depending on the level of awareness and decision complexity. Moreover, level-based
architecture is used to decouple the different decision mechanisms located in each
of the levels. Using the principle of subsidiarity in our agent architecture, we are
able to reduce the complexity of agent design. Moreover, the level-based agent design
increases the benefits of adaptivity by making not only the agents, but also the agent
architecture adaptive. For instance, agents can decide to activate a higher level in
order to make better decisions at run-time. Analogously, agents can switch off the
usage of parts of their architecture in order to reduce the observation overhead and
the decision complexity in non-critical situations.

The productive level is the basic level of each agent designed according to the
architecture introduced in Figure 6.2. It is able to interact with other agents based
on trust levels. In the productive level, there exists a simple mapping between the
internal situation that has been observed by the observer component and the pro-
ductive interaction parameters selected by the controller component. The productive
interaction of the productive level’s controller in the TDG is achieved through two
roles: submitter (decision of which agent to give work units to) and worker (decision

of whose work units to accept for processing). The parameters used in this single

94 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Predict (Wiow)
Predict (Wire)
Predict(Trust} ™|

Predict(Trust) ||

Figure 6.2: Architecture combining agent types

level are predefined by the user; they are very coarse and static as there is no way to
adapt the behaviour to changing situations or to optimise parameters at run-time.

Therefore, we introduce an operational level that can be used on top of the
productive level in order to choose parameter boundaries based on the analysis of
the current situation. The behaviour chosen by the operational level determines the
configuration of the productive level. The observer of the operational level is able to
categorise the situation based on the observable environmental parameters (workload
in the Trusted Community, trust levels of available agents, own trust level). Based
on the determined situation, the controller of the operational level chooses a suitable
behaviour. Using a mapping of situation, behaviour and outcome reached in a certain
situation with a selected behaviour, the operational level of the agent is able to
learn which behaviour is most suitable for a certain situation. This learning and
optimisation is done at run-time. The behaviour selection is a short-term decision
based on the current situation. Thus, it may be worthwhile to adopt a longer-term
perspective on the system’s environment. This is realised in the optional strategic
level. The observer of the strategic level is able to analyse previous situations,
and thereby determine trends and make predictions for the future. Therefore, the
controller of the strategic level is able to act proactively before the situation actually
takes place. This proactive strategic decision is given to the operational level in
terms of pre-selected behaviour. Thus, the strategic level diminishes the operational
level’s set of possible behaviour by only allowing behaviours that conform to the
long-term strategy.

As an institution outside the agent, the norm manager (for instance, the Trusted

6.4. AGENT TYPE HIERARCHY 95

Community manager of an explicit TC) needs to be able to create norms in order to
constrain the behaviour of the agents. These norms can be used as policies filtering
the decisions of the strategic level. The agent is still able to decide the extent to
which it follows the rules given by the institution. As the inclusion of the norm
is realised at the top level, the decision of whether or not to stick to the norm
is a strategic one. The productive and operational levels are not concerned with
this decision at all as they only receive the already predefined behaviour (including

norm-filtering) from the strategic level.

6.4 Agent Type Hierarchy
Agents can be classified in two dimensions:
e The information space—i.e. the set of data available to the agent

e The configuration space—i.e. the set of parameters determined by the agents
as well as their granularity and update frequency. Thus, we define the control
flow of an agent to the productive entity as the flow of information per time
unit (e.g. in bit/sec).

A growing information space leads to a knowledge increase, which is also in
concordance with growing complexity in the agent’s decisions. Nonetheless, a broad
information space enables the agent to cope with a larger configuration space. If the
configuration space itself is similar for all agent classes, they can still differ in the
quality of the solution. For instance, having more information on a situation can
result in a more suitable solution for this situation even though it might occupy the
same configuration space. Additionally, a broader information space can be used to
adapt to changing situations more quickly because the recognition of this situation
change happens faster. For instance, having long-term information of situations
enables agents to predict future system states and, thus, to adapt proactively before
the actual situation change takes place.

We define the aggregated trust value Tj; of an agent A; in an agent A; as a
weighted sum of the reputation rep; of agent A; and its own experience Ej j, which
contains an aggregation of agent A;’s experiences with agent A; (see Chapter 5 for
details).

In the TDG scenario, the agent’s configuration space is broken down into two
parameters (777" and TTF) in the two roles of an agent A;. The submitter role

deals with the question of which other agent should be given work units (WU). The

96 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

submitter trust threshold TTf“b determines the threshold up to which agents are
regarded as trustworthy. Agent A; only submits a WU to agent A; if T;; > TT.
In the worker role, A; decides whether or not to accept a WU that has been offered
to it by agent A;. A; will only accept a WU offer by Aj; if T;; > TT“. In this
example, all agent types determine the same configuration space parameters TT;'“”
and TT{“. Depending on their information space and decision-making complexity,
the difference between the configuration spaces of the agents is the update frequency
of these parameters as well as the granularity of the chosen parameters e.g. the
sampling resolution of the two parameter values.

Figure 6.3 presents a structured overview of the different agent types introduced
in this thesis. In general, the more the information available to an agent, the higher
the solution quality of the agent behaviour. The information space of trust-neglecting
agents consists solely of workload (WL); thus, they only reach a low behaviour solu-
tion quality. In contrast, trust-considering agents know both, WL and the reputation
(Rep) of possible cooperation partners. Therefore, they are able to reach better so-
lutions than agents that possess less information. Trust-adaptive agents have access
to the short-term situation description SD.S, which contains not only WL and Rep,
but also the average reputation values in the agent group relevant to them and
their own reputation value. Instead of just one static strategy, they possess different
strategies suited to different situations. Thus, they are able to adapt their behaviour
to the situation and reach an even better behaviour solution quality than do trust-
considering agents. The best solutions are found by trust-strategic agents. These
agents have access to the long-term situation description SD.L and, thus, are able to
predict future situations. This prediction enables them to adapt not only reactively
(like trust-adaptive agents), but also proactively before the predicted situation even

occurs. The four different agent classes will be introduced in detail below.

6.5 Information Spaces of TDG Agents

This section provides an overview of the different parameters that agents can use in
the TDG application scenario.

In general, the information space of agent A; can consist of
e W L; workload of agent A;
e Number of jobs/WUs that have to be distributed FWoy,

e Rep;—i.e. its own reputation values in the eyes of the other agents

6.5. INFORMATION SPACES OF TDG AGENTS 97
Trust-strategic agents
v
5 Trust-adaptive agents
-
E Trust-aware agents
[} Fixed stereotype agents
Trust-
neglecting
—Awareness+
Figure 6.3: Agent hierarchy based on information and solution quality
e Rep; values of agent A;, j in the set of all available agents
e Trust;; i.e. the trust value that agent A; assigns to agent Aj, j in the set of
all available agents
® W Liyq—i.e. the average workload aggregated among all agents
e WLpc ie. the average WL within the TC (all agents being above a prede-
fined threshold)
e Flitness; or other performance metrics (e.g. from grid computing)
e Predict(Trust) i.e. prediction of trust, expected behaviour in the next agent
interaction
— 2nd order exponential smoothing
Neural network
e Predict(WL) i.e. prediction of WL (either total or TC)
e Predict(Rep) i.e. predicted reputation of an agent based on former interac-

tions.

Tt can be said that information causes overheads in terms of communication as well

as calculation time. A communication overhead is produced whenever information

is aggregated among several agents, because all of these agents need to be asked and

need to answer in order to determine the requested information. Since we have a

98 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

global reputation database, we can also think about using this information source
to store further data (like workload information), even though this data needs to
be updated often (thereby causing communication overheads, too). The predictions
used for the trust-strategic agent are computationally intensive. Therefore, we must
carefully analyse in which situations and with which frequencies predictions are
made available. Therefore, a feedback loop from the controller to the observer can
be used to control which information is currently relevant to the agent and which
information does not need to be perceived at the moment. Thus, the communication

and computation overheads can both be reduced without losing relevant information.

6.6 Trust-neglecting Agents

Trust-neglecting agents do not have access to trust or reputation information. There-
fore, they represent agents having a simple grid strategy e.g. taking into account
only the current workload and waiting queue of available agents. We use trust-
neglecting agents only for reference and, therefore, do not present them further in
this thesis but rather refer to the related work in the area of desktop grid computing

as presented in Section 3.1.

6.7 Trust-aware Agents

An agent is called trust-aware, if the trust value (e.g. reputation, own experience
or both combined) is considered in the agent’s decision regarding with whom to
cooperate. Therefore, the parameters 7T and TT%¢ are simple constant values,
as can be seen in Figure 6.4.

Examples of such a simple, trust-considering agent are static agents, such as
the agent stereotypes: free-rider, egoistic agent, rational agent and altruistic agent.
Each agent stereotype is defined by different 777" in the worker role as is depicted
in Figure 6.4. An altruistic agent has a low 777, which means that it accepts
work units from nearly all agents. A rational agent accepts a work unit only if its
owner has a certain trustworthiness (777 is medium). An egoistic agent has a high
TT7“, which means that it accepts work units from only very trustworthy agents.
free-riders have a TT/ that is beyond the scope of the parameters. This means
free-riders never accept any units, not even from highly trustworthy agents. Thus,
the agent stereotypes have been defined solely in terms of different worker thresholds

(see Figure 6.5). The submitter threshold is not regarded here.

6.7. TRUST-AWARE AGENTS 99

Worker Submitter
T b
highl high
constant TT**
. medium
constant TT*
medium
low) low
low medium high low medium high
WiLrc WLre

Figure 6.4: Trust-aware Agent

6.7.1 Egoistic Agent

In the TDG, egoistic agents accept work units but have a high probability to cancel
them during computation. Therefore, a simplified trust threshold function cannot
be drawn here. Moreover, Figure 6.5 indicates the approximated trust threshold of
egoistic agents, which can be interpreted as follows. The probability that an egoistic
agent accepts and completes a work unit is low. This can be performed on purpose
as a strategy of egoistic agents. If other agents do not control which work unit has
been successfully completed, its misbehaviour can remain undetected. Moreover,
advanced strategies like delivering fake results can be performed by this agent type
in order to reduce its own effort to become a member of the system.

Egoistic behaviour does not necessarily have to be on purpose. In the TDG, for
instance, agents can represent a user that suddenly withdraws the resources from the
agent. In the worst case, the user simply turns off the PC, leaving no possibility for
the agent to inform the grid members that it is going offline and, therefore, cannot
finish the queued work units. No matter how cooperatively the agent would like to
parameterise its behaviour, the user as an external factor can force it into egoistic
behaviour.

Technical problems can also result in egoistic agent behaviour. For instance,
in the TDG, agents rely on the internet as a communication channel. Therefore,
package loss, delays, low bandwidth or even lost connections can result in a kind of
agent behaviour that outside agents rate as egoistic.

Regardless of whether the egoistic behaviour is a learned strategy or the result

of factors external to the agent, it is a behaviour that disturbs the overall system

100 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

and, therefore, needs to be detected. Detected egoistic behaviour can be countered
by isolating the misbehaving agent in order to protect the overall system from its

actions or even by incentivising a change of behaviour to a more cooperative one.

6.7.2 Free-Rider

A free-rider is an agent that never cooperates with other agents. In the TDG, a
free-rider asks other agents to compute work units, but does not accept work units
from other agents for cooperation. This corresponds to the free-riders in the Gnutella
network [19], which use data from other agents without giving back any data. In
Figure 6.5, the free-rider has a trust threshold that is larger than the highest trust

value defined. Hence, the free-rider never accepts work from others.

Adar [107] has evaluated that 70% of Gnutella users share no files and 90% of
the users answer no queries. Therefore, free riding is a serious issue in open systems

that needs to be tackled.

Worker TT" Free-Rider
) T |
high

medium

oW 1o Altruistic Agent

low medium high
Wiy

Figure 6.5: Agent stereotypes are instances of static agents
In this thesis, we present the adaptive agent architecture and trust-based self-

organisation mechanisms that are able to prevent the system from being exploited

by misbehaving nodes like egoistic agents and free-riders.

6.8. TRUST-ADAPTIVE AGENTS 101

6.8 Trust-adaptive Agents

Agents are called trust-adaptive if they do not adhere to constant trust thresholds
but are able to adapt these thresholds autonomously at run-time. This autonomous
adaptation is implemented depending on the short-term situation description SD.S
that the agent has gathered from its observer’s information space. In the TDG, SD.S
currently consists of the current workload in the TC (W Lp¢), it’s own reputation

value Rep; and the reputation value Rep; of its possible cooperation partner A;.

Worker/Submitter
Behaviour/
™

WLy, Rep,, Rep,
Figure 6.6: Adaptive agents can choose a suitable strategy

Based on its SD.S, the trust-adaptive agent A; decides which behaviour graph
is best suited to the current situation. The set of possible behaviour graphs is given
by the system designer. Figure 6.6 shows an example of such possible behaviour
graphs based on different parameters. These behaviour graphs depend on different
parameters (W Lrc, Rep;, Repj), which of the behaviour graphs is currently used by
the agent is determined at runtime. This function deciding which behaviour graph
is suited in which situation is also predefined. One example of the class of trust-
adaptive agents is the iTC (implicit Trusted Community) agent used in the TDG,
which will be illustrated in the following.

6.8.1 iTC Agent

The iTC agent is able to adapt its behaviour in both worker and submitter roles.!

In the worker role, the iTC agent A; determines the acceptance threshold 7T

"Work on this has been conducted in part in cooperation with Lukas Klejnowski in the context
of the DFG research unit OC-Trust (FOR. 1085).

102 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Worker Submitter
T Rep, high T
high| high
medium R medium
low Rep low low
low medium high low medium high
Wi Wiie

Figure 6.7: iTC agent thresholds

W Liotal Rep; low | Rep; medium | Rep; high
low 7T low | TT*¢ medium | 77 high
medium | 779 low | TT%° low TT¢ medium
high 7T low | TT* low 7T low

Table 6.1: Discretised trust threshold matrix of adaptive agent A; in worker role

based on Rep; and W Lpc. This means that T = f(W Ly, Rep;, Repj). This
worker decision graph can also be modelled as a table:

Each agent A; which has been offered a work unit by agent A; reacts according
to Figure 6.7 as described in Table 6.1.

In the submitter role, the decision is made regarding which agents are eligible for
a work unit offer. We use an adaptive ranking mechanism that orders the available

agents according to
1. their reputation Rep
2. their performance level PL
3. their workload W L.

This adaptive ranking mechanism of the iTC agent is done as follows:

The threshold T'T,; within the adaptive ranking mechanism is determined ac-
cording to Fig. 6.7. Both, the worker and submitter strategies of the adaptive agents,
realise local algorithms. A system where several agents act according to these local

mechanisms is called an implicit Trusted Community (iTC). Each agent’s view of

6.8. TRUST-ADAPTIVE AGENTS 103

<Rep, PL, WL =

Cooperative
agents

TT® =07

Non-adaptive
Free-Riders

Figure 6.8: Adaptive ranking table

the TC is the set of agents above TT*% (e.g. the green area in the adaptive ranking
in Figure 6.8). The global view of the iTC is now the set of agents that is within all
agents‘TCs, as described in Section 5.2.2.

Workwu
+
Per formanceLevely orker

ETAwu,worker = Queuelengthy orger (6.1)

Equation 6.1 shows the estimated time of arrival (ETA) algorithm used by sub-
mitters to determine the most suitable agent for a work unit. All agents that are
suitable workers according to their aggregated trust level, as presented in 6.7, are
ordered by the time in which they are expected to deliver the work unit. This de-
pends not only on the current queue length of the potential worker, but also on the
potential worker’s performance level (computation speed) and the computational
complexity of the work unit. For instance, if an agent has 75 calculation steps to
work off until its queue is empty and the work unit to be distributed needs 25 time
steps with its performance level, the ETA of this agent is 100.

An example of such a rating is shown in Table 6.2, where the agents will be asked
in the resulting order to calculate the work unit. This shows that, by first filtering
the available agents by 7% and then ranking the remaining agents according to
the ETA strategy, the most suitable agent does not necessarily have to be the most
trustworthy. Moreover, the ETA algorithm leads to a load balancing by evenly
distributing the work units among a set of trustworthy agents rather than always

demanding the most trustworthy agent. This load balancing leads to performance

104 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Ranking | ETA Trust

Position

1. 50 0.8
2. 100 0.9
3. 150 0.9
4 200 0.8

Table 6.2: ETA ranking table

improvement for the agents that use it and, if a sufficient number of agents use ETA,

also for the overall system, as will be presented in Chapter 7.

6.8.2 Evolutionary Agent

Another example of the class of trust-adaptive agents is the evolutionary agent.
The aim of this implementation was to be able to learn optimal decisions within
the large solution space of trust-adaptive agents. Evolutionary agents are initialised
with random behaviour functions. In contrast, learning agents 6.8.3 use the decision
mechanism of iTC agents as starting points; therefore, they search the solution space
in a different way.

An evolutionary agent is characterised by 10 genes defining the behaviour as well
as the information perception (genes of other agents to be considered or ignored) of
the agent. Based on this behaviour, agents interact with other agents. If two evolu-
tionary agents meet, they exchange a certain set of their chromosome information.
In general, the agent with the highest fitness is copied by the less successful agent.
Additionally, mutations are possible in order to add some random changes in the
agents’ chromosome cycle. This agent type has proved highly successful, especially
in very heterogeneous agent systems. A prerequisite of the evolutionary agent is that
at least 25 percent of the agent population in the system needs to be evolutionary
agents in order to achieve a dominant chromosome structure being spread along the
set of all evolutionary agents.

The evolutionary agent is an approach to the run-time optimisation of trust-
based interactions. Based on [108], we aimed at creating an evolutionary agent
model that enables cooperation and trust-building. This model has been adapted
for our application scenario TDG in order to make it the basis of the worker and

submitter decisions.

6.8. TRUST-ADAPTIVE AGENTS 105

In this section, we will introduce the general design of this agent type as well
as focus on how this design is used to make the agent decisions in the application
scenario TDG in both, the worker and submitter roles.

The evolutionary agent is defined by a chromosome structure that contains 10
genes. The bit values of the genes represent the alleles of the agent. The combina-
tions of these genes influence the behaviour and decisions of the agent. The genes
contain instructions that are interpreted as characteristics of the agents. Each agent
follows its own strategy that is induced by the sequence of bits in its chromosome.

Table 6.3 describes the chromosome and the genes it contains, which encode the
behaviour of the agent. The chromosome consists of 10 genes. Gene 1 is used to
define the general character of the agent. Genes 2 to 5 define how the agent comes to
trust decisions, whereas gene 10 marks the actual trust decision. Genes 6 to 9 define
which characteristics of other agents are taken into account for decision making.

Each gene can have the value 1 or 0. Thus, there exist 210 different types of
evolutionary agents. Gene 1 defines the character of the agent. It decides whether
the agent is an egoist (E) (G1 = 0) or a cooperator (C) (Gy = 1), and tries to do its
job as well as possible. This means that an egoist will accept work units if it trusts
its partner, but has a high probability of aborting them before they are finished. A
cooperator will accept work units if the number of work units in its queue is not too
high and it trusts its partner. It will then try to process the work units and avoid
aborting them. Genes 2 to 5 influence the decisions of the agent regarding whether
or not it will trust its partner. These genes determine the signals to which the agent

must pay attention:
o Its own intentions (Gene 2)
e Reputation of the partner (Gene 3)
e Fitness of the partner (Gene 4)
e Workload of the partner (Gene 5)

Genes 6 to 9 determine how to interpret these signals. If the value of the signalling
gene (2--5) is 0 then the corresponding gene (6-9) is ignored.

The following example (cf. Fig. 6.9) will illustrate the signals and the corre-
sponding behaviour of an agent A;as it decides how to interact with an agent A;:
We assume that the values of gene 2 and gene 4 are 1 and the values of gene 3
and gene 5 are 0. Since gene 2 has the value 1, its own intentions (Gene 1) will be

included in the process of building trust. This depends on the value of gene 6. If

106

CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Genes

Alleles ‘ Rules

0

E (Egoist: aborts Work Units (WUs) with high probability).

C (Cooperator: tries to process WUs as well as possible).

Don’t involve your own intentions (G4) into building trust.

1
0
1

Involve your own intentions (Gp) into building trust, given

(G).

Ignore the partner’s reputation.

Pay attention to the partner’s reputation, given (Gr).

Ignore the fitness of the partner.

Pay attention to the fitness of the partner, given (Gs).

Ignore the workload of the partner.

Pay attention to the workload of the partner, given (Gy).

Assume that others are the opposite of your gene (G).

Assume that others are the same as your gene (G).

o|l=|lo|l~=lo|~|lo|~=|o

Distrust those who have a relatively high reputation. Trust

those who have a relatively low reputation.

Trust those who have a relatively high reputation. Distrust

those who have a relatively low reputation.

Distrust those who have a relatively high fitness. Trust those

who have a relatively low fitness.

Trust those who have a relatively high fitness. Distrust those
who have a relatively low fitness.

Distrust those who have a relatively high workload. Trust

those who have a relatively low workload.

Trust those who have a relatively high workload. Distrust

those who have a relatively low workload.

10

Distrust everybody (reject all WUs).

Trust everybody (try to process all WUs).

Table 6.3: Chromosome structure of the evolutionary agent

6.8. TRUST-ADAPTIVE AGENTS 107

gene 6 = 0, then the agent assumes that the partner is the opposite of the agent’s
gene 1. If gene 6 has the value 1, the agent assumes that the partner’s gene 1 has the
same value as the agent’s gene 1. The assumption that the partner is a cooperator
will increase trust while the assumption that the partner is an egoist will decrease
trust. Since gene 4 = 1, the agent pays attention to the partner’s fitness. If gene 8
= (), the agent will trust those that have a lower fitness than itself and distrust those
with a higher fitness. If gene 8 = 1, then the behaviour is inverted. The number
of signals that recommend trust are normalized with the total number of signals to
which the agent pays attention, so that it results in a value between 0 and 1. This
value represents the probability that the agent will trust a partner. If an agent pays
attention to none of the four signals, then gene 10 decides if the agent will trust the
partner. Based on total trust (Gip = 1) or total distrust (Gi9 = 0), the agent will
accept all work units or reject all work units respectively.

0 1 0
ram if “Cooperate if A’s

A's Trust value is Trust value is high
high

o 1
1 Dpont cooperate if Cooperate if A's
A's Workload is high Workload is high

7=

If Genes 2.5 =0:
Gene 10 0
Trstiois st Assume A hasthe © Assume A has the
0‘/.\1. opposite Gene 1of A, same Gene 1as A

Total distrust, Total trust,
reject all WUs accept all WUs

Cooperate if rate if
Fitness{A) < Fitness(A) Fitness(A) > Fitness(A)

Figure 6.9: The chromosome structure of evolutionary agent A; decides how to treat

agent A;

Gene Initialisation The genes of each agent are set randomly at creation.
For each gene, there exists a parameter that has a value between 0 and 1. This
parameter determines the probability that the corresponding gene is set to 1 when
an evolutionary agent is created. Regarding the population of all evolutionary agents,
the value of the parameter corresponds to the expected number of agents that have
the corresponding gene equal to 1. The standard value is 0.5, so that each gene of
half of the evolutionary agents takes the value 1.

Evolution and Spreading of the Genes To ensure the evolution of the genes

108 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

and the corresponding trust strategies, a gene exchange between the agents can
occur when they come into contact. In this process, the genetic instructions will
be transferred with a fixed probability from the agents with a higher fitness to
those who have a lower fitness. If two agents interact, the partner with the lower
fitness replaces a random part of his chromosome structure with a part of the fitter
partner’s chromosome. In this procedure, each bit in a chromosome can be replaced
independently of the others. Whether a bit of the agent with a lower fitness is
replaced by the fitter agent’s bit is determined by the recombination probability. In
this case, the recombination probability was 50%.

Furthermore, to increase heterogeneity, mutation occurs during the gene replace-
ment. Thus, during the transfer of the genes from the fitter agent to the weaker
agent, random copying errors (mutations) can arise. The probability that a copying
error occurs during a gene replacement is 1%. This value allows for sufficient hetero-
geneity without affecting the stability of evolution. Thus, evolutionary agents are
able to leave local optima in their fitness landscape and have a higher probability to
reach the global optimum.

‘Worker: Acceptance of Work Units To decide whether or not a work unit is
accepted, the chromosome structure is analysed. If the agent pays attention to more
than one signal of the partner, each bit is considered equally. Partners that send out
mixed cooperation signals will be trusted with a corresponding probability. Let us
assume that three of the signal genes are used, where two show trust in the partner
and the third distrust. In this case, the agent will trust the partner and accept the
work unit with a probability of % Here, the signal genes are weighted equally.

Submitter: Distribution of Work Units In our grid agent model, a ranking
of the suited worker agents is created to distribute the work units [109]. This is
achieved by calculating a score of reputation, fitness and workload whereby genes 3,
4 and 5 determine which of these characteristics are included and genes 7, 8 and 9
determine whether the total score will be increased or decreased. After creating the
ranking, its own work unit is offered in order of ranking to the other agents until

one of them accepts or the submitter has to process the work unit itself.

6.8.3 Learning Agent

The evolutionary agent uses the complete solution space of the class of trust-adaptive
agents, which results in the potential of finding the perfect solution over time, but
also in a less stable solution. This is because evolution does not stop but goes

on at run-time, and the agents continuously adapt their behaviour. Therefore, the

6.8. TRUST-ADAPTIVE AGENTS 109

learning agent is able to learn as well as to use solutions predefined by the designer.
Therefore, the potential of learning can be used without loss of the stability of the
solutions already found. Tn Section 4.1.1, we have analysed which learning techniques
from related work are suitable for our application scenario. As the adaptive agent
architecture is generic, we also want to make way for the usage of other learning
techniques within this architecture. Therefore, the learning agent framework has
been developed.

Learning Agent Framework

In order to to extend the trust-adaptive iTC agent [105] in a generic manner, we
built a framework that is especially necessary because we tested different learning
techniques and could reuse the essential parts of the code base. We encapsulate
the learning function and the reward metrics in order to exchange them easily or to
integrate further functions or metrics.

In this approach to learning agents, we concentrated on the worker role, thereby
extending the adaptive mechanism used by iTC agents via a function that is learned
and optimised by the agents at run-time.

The framework is built upon the abstract classes, AbstractModularAgent, Ab-
stractLearningFunction and AbstractRewardMetric. New learning agents, learning
techniques and reward metrics simply need to extend these classes in order to be
used in the system.

The framework structure is depicted in Figure A.1.

Within the framework, the action sequence of a learning agent is as follows:

Initialisation
The agent class that extends the AbstractModularAgent is initialised at the beginning
of the simulation. During the initialisation process, an instance of a reward metric
that extends AbstactRewardMetric is created. Similarly, a learning mechanism in-
stance extending AbstractLerningFunction is created. Both instances are referenced
by the learning agent.

Worker Role
Each time that an agent is asked to process a work unit, the function getTTack of
the learning agent is called. This function asks the learning mechanism of the agent
for the parameter and returns it to the calling agent.

Reward Propagation
In each time step, the learning agent calls the step method of the reward metric
instance. The statistical data of the agent is called, the reward is calculated, and

finally returned to the learning mechanism using propagateReward. The learning

110 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

: : C/(1rexp(x)) ——
X S S

0.6 -

0.2 -

-10 -5 0 5 10

Figure 6.10: Sigmoid function

mechanism then updates its values accordingly.

CACLA Implementation

The core of CACLA are two neural networks (see Section 4.1.1) that store the V and
Ac functions. According to Hasselt [5], the networks need 12 hidden neurons that
are fully connected with the two input neurons and one output neuron. Neurons are
represented by the class neuron, which implements the interface ISynapseHandling.
Each neuron needs an activation function for initialisation. This has been realised
as a sigmoid function (Equation 6.2). The input and output neurons use a simple

linear function represented by the mean of the input values.

f(ﬂﬂ):H%

The sigmoid function is preferred for hidden neuron activation because it is con-

(6.2)

tinuous and differentiable. This is important if a neural network is used for back-
propagation learning [110].

The NeuralNetwork class interconnects the created nodes using Synapse classes
and sets the initial weights (used here: weight 1). The structure of the implemented

neural network is depicted in Figure 6.11.

6.8. TRUST-ADAPTIVE AGENTS 111

activationFunction

0.*
inputSynapses outputSynapses

1 0.*

outputSynapse inputSynapses

Figure 6.11: Structure of the CACLA neural network

112 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

The learning algorithm implemented in the Learner class, according to 4.1.1, is
called each time that a reward is returned. In the TDG application scenario, this is
usually each time that a job is finished. The weights of the two neural networks are
read and modified according to the reward.

To integrate domain knowledge like the worker role acceptance matrix, we imple-
mented a mechanism derived from Hedger4.1.1. With this extension, CACLA uses
the worker acceptance matrix as the default function during the initial supervised
learning period, and stores the received results in the Learner class. After a given
amount of rewards, CACLA switches from supervised learning to the operational

mode.

6.9 Trust-strategic Agents

Trust-strategic agents are an extension of the trust-adaptive agents. In addition
to SD.S, they obtain a long-term situation description SD.L, which contains the
trends of values like reputations or workload. These trend data can be used as a
basis for predicting possible future situations. Therefore, trust-strategic agents are
able to act proactively as soon as they expect the situation to change in a certain
way (e.g. expect the workload to increase) before the situation change actually takes
place. Therefore, trust-strategic agents do not simply react to changed situations,
but react as soon as they expect such a situation to occur. We differentiate four

types of trust-strategic agents:

e Tactical agents, which use predictions of other agents’ future behaviour to

adapt their behaviour towards them in a proactive manner.

e eTC agents, which have the ability to decide whether or not to form or join
an eTC (see Chapter 5 for details).

e Norm-aware agents, which understand norms from an external institution

and reason whether or not it is worthwhile for them to obey the norms.

e Adaptive observation model agents, which are able to adapt the parame-
ters they observe and need for their currently used behaviour selection mech-

anism to the situation and, thus, save communication overheads.

6.9. TRUST-STRATEGIC AGENTS 113

Worker Submitter
T 3 Rep, high T
high high
medium ErTe e — medium

~ 2
passible TT,. adaptive agent
low | Replow jow| with low.reputation
low medium high low medium high
Wi Wire

Figure 6.12: Trust-strategic agent

6.9.1 Tactical Agent: Situation Prediction

As depicted in Figure 6.12, in the TDG scenario, we are able to extend the notion of
trust-adaptive agents (Figure 6.4) through a cooperation control loop. This enables
agents to adapt not only if the situation has changed but also if there are cues that
the situation is going to change. If such a future change in the situation is likely,
the configuration space of the operational level is restricted by a strategic level in
order to omit solutions that are not optimal in the current situation. Trust-strategic
agents can belong to two classes: one-step tactical agents that determine the next
action step, and multi-step agents that are able to determine a longer-term strategy
(e.g. until the situation changes). The one-step tactical agent [111] is able to predict
the cooperation partner A;’s next step by analysing previous interactions. Based on
this predicted cooperation probability, the tactical agent decides how to treat A; in

the current time step.

Prediction of Agent Cooperation Based on Former Interactions

In order to take into account more than one past interaction for the cooperation
decision, we enhanced our tactical agents with a history data structure storing the
results of former interactions with all other agents.

We then implemented a simple prediction method based on double exponential
smoothing. This prediction was used as an input for the novel prediction method
based on neural networks. The results stored in the history data structure were
transferred into a numeric value that was then used as input for the neural network.

The prediction approach is based on time series analysis and is used for a short-

114 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

term prediction of the cooperation partner’s next behaviour. This approach is used
for the initialisation of the training data set of the neural network introduced in the
following. Tn the equations above and below, x is the value of the time series where
x" is the value of the simple exponential smoothing function and x“ is the value of
the double exponential smoothing. x* denotes the values of the prediction by the
exponential smoothing function used.

Here, o (0< a <1) is a weight that determines the extent to which previous
values are taken into account. A small « weights new values much higher than
previous ones. Thus, the time series is smoothed to only a small extent and the
adaptation occurs very fast. A high o weights old values higher, and new values are
accounted for only to a small extent. This leads to a much smoother time series and,
thus, to a very slow adaptation to changes in the situation. We have chosen a =
0.5, which results in a medium adaptive and smooth function and leads to the best

experimental results.

We use second-order exponential smoothing as shown in Equation 6.3.

2 =axa,+ (1 —a)xa) 4 (6.3)

To compute this value, we need to determine the first-order exponential smooth-

ing function with prediction given in Equation 6.4.

=2 =axz+ (11— o)z =axz+ (1 —a)af (6.4)

The reason for using second-order exponential smoothing is that, if the data
implies a trend, this function is able to recognise this trend and predict the next

value in the time series (see Eq. 6.5).

s . U i . U U s
Tipq = 2w — @y = v+ (2 - a) (6.5)

Equation 6.5 now shows the actual prediction function of the double exponential
smoothing used in the prediction function of trust-strategic agents. The tactical
agent as a one-step function uses the prediction of aggregated trust values and work-
load to decide with which agent to cooperate in the next decision step. With this
mechanism, the agent is able to act proactively, adapting its behaviour as soon as it

expects a critical situation to evolve.

6.9. TRUST-STRATEGIC AGENTS 115

6.9.2 Norm-aware Agent: Consideration of Constraints

This section presents the implementation details of the norm-aware agent. This
subtype of the class of trust-strategic agents is able to perceive norms from an in-
stitution. Currently, we use a norm manager as the institution that is authorised
to legislate norms in case of a critical system state that cannot be observed and

resolved via local view only.

Norm Formalisation

In order to consider the norms given by an institution, a norm-aware agent must
‘speak the same language’ as the institution. Therefore, we introduce a representa-
tion of norms and present an example of how this norm is used to solve a globally
observable situation (overload). This normative framework can be used to formulate
further norms and, thus, presents a basic building block for communication between
institution(s) and agents. Here, we abstract from general institutional tasks by defin-
ing a norm manager. This global instance supervises the system state. Each possible
norm that the norm manager is able to enact is encapsulated in a class implementing
a norm interface. This ensures that the ‘language’ constraints necessary for a norm
to be understood by all agents are met.

If the norm manager detects a crucial system state being present or approaching,
he activates those norms that he expects to be suited to lead the system out of this
state. The activation of the norm is broadcasted to all agents registered for the
norm. The agents then decide whether or not to obey the norm.

If the system situation returns to the stable desired state, the norm manager
deactivates the corresponding norm and broadcasts this norm to all agents.

Pre- and Post-selection

In general, the consideration of norms can be considered by the agent in two
ways: pre-selection and post-selection.

Pre-selection means that the agent’s solution space—i.e. the set of all possible
solutions is reduced before the agent enters its decision-making reasoning process.
Thus, all solutions that the agent develops are compliant with the norm.

Using post-selection, the agent will first perform its standard decision-making
process. In the next step, it will check whether its solution is compliant with the
norm. If not, the agent needs to recapitulate its decision process with changed
parameters in such a way that a new solution is computed. This solution is then

checked again for compliance and so forth.

116 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Both pre- and post-selection lead to norm-compliant behaviour if the agent de-
cides to obey a norm. But, the designer must ensure that the solution space is not
empty. Moreover, we do not want norms to restrict the agent’s solution space to
only one possible solution as this would be remote controlling of the agent by the in-
stitution. In order to enable agents to consider norms, we extend the adaptive agent
architecture in such a way that the agent is able to receive norm activation or deacti-
vation messages and to reason about its own actions based on this information. Here,
we use a top-down approach, which means that the MAS and the normative system
are connected but can be distinguished from each other. This is useful because the
norm-aware agent extends the MAS that we already have developed. Thus, instead
of having to start from scratch, we can extend the existing concepts and classes.
We decided to use pre-selection in order to reach a fast computation of the agent’s
decision without repetition of the decision-making process if the decision does not

match the norms.

Overload Workload Norm In order to demonstrate an example of how norms
can be implemented in the norm-aware agent, we introduce the overload workload
norm. The workload is the amount of work to be computed in the system. An
overload situation occurs if the workload is higher than the amount of work that can
be worked off by the agents in the system. This can either be a real overload where
the computational capacity of all system members forms less power than is necessary
to cope with the ‘to-do pile’ of the overall system or a relative overload where the
parameterisation of the agents does not allow the system to cope with the overload.
In the first case, we as system designers have no chance to change the agents in order
to bring the system to stable workload state again. In the second case of relative
overload, there is room for improvement by better adapting the agents to the system
situation. In this case, we concentrate on situations where there is a possibility to

bring the system into a stable state by adapting agents’ parameters.

We consider a situation where the agents try to distribute more work units than
can currently be worked off by the agents. Such a workload peak can be dealt with
by adapting the agents’ local interaction thresholds in such a way that the agents
are more likely to accept work units. Such a mechanism will not only lead to a
faster handling of the workload peak, but a trust breakdown can also be prevented:
A trust breakdown is a system situation where agents do not trust each other any
more and, therefore, do not find any cooperation partners. A longer overload of
workload, in general, can lead to such an undesired system state. A denied request

for cooperation (computation of a work unit) is rated as bad behaviour. Hence, the

6.9. TRUST-STRATEGIC AGENTS 117

greater the overload in the system, the more likely the possibility that agents are
rated badly because they will decline if they are already occupied (with own or other
agents’ work units) and their queues are full. Therefore, if a norm manager finds a
way to make agents more cooperative in overload situations, we can not only counter

the overload situation, but also prevent a trust breakdown situation.

The overload workload norm is activated by the norm manager if it detects an
overload situation. If the overload workload norm is active, agents change their coop-
eration threshold (TT%cc) to cooperative behaviour, thereby making the acceptance

of an offered work unit more likely.

Norm Life Cycle This chapter shows an example of a norm life cycle, starting
with the prerequisites for activation, the active ‘living’ state and the deactivation
phase. As an example, we use the trust breakdown norm. A trust breakdown exists
in a system where no agent trusts any other agents and, thus, no cooperation can

take place. Figure 6.13 shows the life cycle of a norm as a UML sequence diagram.

sd NormLifecycla j

= o =]
' 1. observal) !
_ Mormai Stats__+)

I
|
|
|
2 observe :
|
|

_TrustEreskdonn)
| 3 actvate{) .
| 3.1: Trust Breakdown Norm activated() b
|
| e e e e e e e e J]
| S

T
I
| 4 obsarval) | |
|
|
L

ITE — blomalStele | 5 deactivate() P l

| 5.1: Trust Ereakdown Norm deactivated() P
|
|

§: observe [e=====]
— -blammal State_ -~

Figure 6.13: Norm life cycle

118 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

The norm manager monitors the global state of the MAS (1., 2., 4., and 6.). If
a trust breakdown is observed, he will activate the trust breakdown norm. This is
broadcasted to all agents in the system. Agents that want to act in a norm-compliant
manner react to this norm, for instance, by changing their trust threshold T7T%cc in
such a way that they are more likely to accept work units. This is necessary in a
trust breakdown situation because all agents have a trust value that is too low to
find cooperation partners.

As soon as the norm manager observes that the undesired system state of a
trust breakdown has been resolved, he deactivates the trust breakdown norm and
communicates this to the agents. In turn, these agents do not have to obey the trust
breakdown norm. Thus, they can once again change their parameters according to
their own local strategies.

This norm life cycle is generic. If another norm (e.g. overload norm) needs to be
activated, the mechanism is analogue.

Norm Manager The norm manager is a hierarchical institutional component
that observes the system at run-time. This could, for instance, be the Trusted
Community Manager of an eTC. In our current implementation, the norm manager
is a singleton class, which means that there can only be one instance in the system.
It may be possible to extend the system in such a way that more than one norm
manager exists, but the designer will have to be even more careful with respect to
conflicts. For instance, if there is no mechanism to ensure that norm managers do
not have contradictory norms, the agents need to have a mechanism to decide whose
norm to obey. Therefore, we concentrate on systems with a singleton norm manager
class. The norm manager continuously observes the system and becomes active only
if the system is in a critical situation.

The actions that the norm manager performs at each time step (tick) are best
described as a pipe from the pipe and filters pattern, which means that they are

worked off in chronological order, and the step function can easily be extended.

Listing 6.1: calculatoverload WLVariables

private void calculatoverload WLVariables
(Vector<Float> socialValueVector) {
ObservableWL observerWL =
new ObservableWL (1,socialAgents ,
TEMAdapter. getInstance ().getCurrentTime (),97);

Collection <ObservableValue> valuesWL =

N o Ot e W N =

6.9. TRUST-STRATEGIC AGENTS

119

8

9
10
11
12
13
14
15
16
17
18
19
20
21

observerWL . get Values ();

Iterator iterWL = valuesWL.iterator ();

while (iterWL.hasNext()) {
ObservableValue value =
(ObservableValue) iterWL.next ();
socialValueVector .add
((Float)value.getCurrentValue ())

}

avgWL = 0;

for (float f : socialValueVector){
avgWL = avgWL + f;

}

avgWL — avgWL/socialValueVector.size ();

}

3

Usually, a norm manager will observe the different parameters that determine

critical system situations. Therefore, in the following example, we will combine the

OverloadWL norm (Listing 6.1) and the trust breakdown norm (Listing 6.2). ~

© 00 I O Ut e W N

e = i e =
N O Ot kR W N = D

Listing 6.2: Calculate trust breakdown variables

private void calculateTrustbreakdownVariables
(Vector<Float> socialValueVector) {
ObservableReputation observerRep =

new ObservableReputation (1,socialAgents

TEMAdapter. getInstance (). getCurrentTime () ,97);

Collection <ObservableValue> valuesRep =

observerRep . getValues ();

Iterator iterRep = valuesRep.iterator ();

while (iterRep.hasNext()) {
ObservableValue value =
(ObservableValue) iterRep.next ()

socialValueVector .add
((Float)value.getCurrentValue ())

avgRep = 0;

3

120 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

18 for(float f : socialValueVector){

19 avgRep = avgRep + f;

20 }

21 avgRep = avgRep/socialValueVector.size ();
22}

In order to evaluate the ObservableWL norm, the norm manager creates an ob-
servable of the workload values of the agents it wants to observe. Tt then iterates over
the collection all workload values, calculates the average workload of these agents,
and decides based on this aggregation if an overload situation exists. Similarly, it
could also determine whether there is an imbalance of workload—for instance, if a
part of the system has an overload situation whereas another part of the system is
idle.

Analogously, the trust breakdown norm is activated if the average value of the
global reputation value of the observed agents is below a threshold (see Listing 6.2).

Constraints

As introduced in Section 12, we implemented our own precondition version of con-
straints. On the one hand, this frees us from our dependence on proprietary libraries.
On the other hand, our own version of constraint implementation is compliant with
the norm can easily be extended to all kinds of constraints. Therefore, we realised
the interface IConstraint, which is implemented by all our constraints. There exist
two types of constraints which we use here: Value Constraint and BooleanConstraint.

The ValueConstraint is given two values, A and B, and an operator, and it returns
whether the operator (valueA, valueB) is true. We implemented the operations that
we needed for the Overload WL and the trust breakdown norm, but the method can
easily be extended or overloaded for further operators.

A BooleanConstraint can be used if the constraint test has to determine whether
two Boolean values are equal. Of course, this is a specialisation of the valueCon-
straint, but as it often occurs, it is worth implementing as an own class by extending
the IConstraint.

The norm manager uses a ConstraintCollection of preconditions based on these
constraint classes. According to the composite pattern, constraints can be composed
of other constraints as shown in Figure 6.14.

The ConstraintCollection returns true only if all constraints within this set return
true. As soon as one constraint is not met, the whole collection will return false. The
norm manager creates the constraints and corresponding actions, as, for instance,
listed in Listing 6.3. The Overload WL and the trust breakdown norm both need a

6.9. TRUST-STRATEGIC AGENTS 121

ICenstraint

+ calculate() - Boolean

ConstraintContainer Constraint

Liste : IConetraing

+ calculate() : Boolean

+ calculate() | Boolean
+add{) : void

Figure 6.14: Composite pattern

creation and a deactivation function available to the manager.

Listing 6.3: Creation of constraints

1

2 ConstraintCollection createOverload WLNormCollection —

3 new ConstraintCollection ();

4

5 createOverload WLNormCollection .add

6 (new ValueConstraint (avgWL,2,(float) 400));

7 createOverload WLNormCollection . add

8 (new BooleanConstraint (overloadWLActive, false));

9

10 ConstraintCollection deactivateOverloadWLNormCollection =
11 new ConstraintCollection ();

12 deactivateOverload WLNormCollection .add

13 (new ValueConstraint (avgWL,1,(float) 400));

14 deactivateOverload WLNormCollection . add

15 (new BooleanConstraint (overloadWLActive, true));

16

17 ConstraintCollection createTrustbreakdownNormCollection =
18 new ConstraintCollection ();

122 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE
19 createTrustbreakdownNormCollection .add

20 (new ValueConstraint(avgRep,1,(float) 0.1));

21 createTrustbreakdownNormCollection .add

22 (new BooleanConstraint (trustberakedownNormActive, false));
23

24 ConstraintCollection deactivateTrustbreakdownNormCollection —
25 new ConstraintCollection ();

26 deactivateTrustbreakdownNormCollection .add

27 (new ValueConstraint (avgRep,2,(float) 0.1));

28 deactivateTrustbreakdownNormCollection .add

29 (new BooleanConstraint (trustherakedownNormActive, true));

According to the values used in this example, an OverloadWL norm is activated

if the norm manager discovers that the average workload is larger than 400 and

the norm is not yet active. Similarly, the TrustBreakdown norm is activated if the

average reputation of the agents is below 0.1 and the norm is not active yet. As

soon as a norm is activated, the agents are informed via broadcast. Analogously, a

norm deactivation occurs as soon as the system returns to the desired states and the

constraints are met again. All agents are then informed that they no longer have to

follow the norm.

Agent Norm Consideration

System designers have to ‘inform’ the agents beforehandabout which norms could

occur in the system. Agents must know the language in which the norm manager

‘speaks’ to them in order to be able to interpret the norms. The norm-compliant

behaviour modification is then carried out as follows. If no norm is active, the norm-

aware agent simply acts in a trust-adaptive manner. As soon as a norm is active, the

agent changes its own view of the system. If the Overload WL norm is active, then

the agent does not change the designer-given thresholds, but rather pretends that its

workload is lower than it actually is. This gives the designer the opportunity not to

change the entire decision-making behaviour but only the state of the agent within

this process (trust threshold plane). It also simplifies the combination with the trust

breakdown norm: instead of changing the trust threshold plane in two dimensions

(workload, trust) at the same time, the agents merely change their view and, thus,

their position within the plane. This makes the combination of both norms very

elegant. Conflicts do not occur in this case because a combination of changes in two

dimensions is possible if we do not exchange the function in both dimensions but

only the position within the function.

6.9. TRUST-STRATEGIC AGENTS 123

Of course, this elegant combination of norms regarding different parameters in
one function is not possible in most situations. We restrict the abilities of norm-
aware agents to the combination of norms that are generally not contradictory. This
is easily applicable in the TDG scenario. If we have further norms that might lead
to conflicting solutions, the agents’ reasoning must be extended in such way that the
agents are able to decide which norm is more important. Additionally, agents would
need a mechanism to predict the outcome of norm violation. The system would also
need mechanisms to detect and punish norm violations — e.g. using the already

existing reputation system.

6.9.3 Adaptive Observation Model Agent

So far, we have assumed that each agent type is associated with a fixed scope of
(social) awareness. In the more general case, agents need different information in
different situations. If the agent can control the observations at run-time, we will
spend only the minimum overhead that is absolutely necessary to make the currently

vital decisions.

OMObserver initialSD OMControllers
Specification
extractUniqueObservables
I switchom |
cloneOM TDGController TCController
Generate SD controllerSpecificSD| OMise OMye
TDGObserver

updateObservable
ValuesFromOwners

Active OM <OMypg, OMyg, ...>

<> <>

IOMAgent
Figure 6.15: Adaptive observation model

We differentiate between calculation overhead, storage overhead and communi-
cation overhead. Calculation overhead, for instance, is necessary for aggregations

(e.g. trust) or predictions (e.g. future trust). Storage overhead is necessary because

124 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

former values are the foundation for many calculations. The trust calculation as well
as prediction methods need a certain amount of data to be stored as the basis of their
calculation. Both types of overhead are not the crucial problem in PCs today. The
communication overhead is a problem for current systems. Exchanging information
about reputation or workload among agents results in management messages that
decrease the bandwidth of the communication channel for the actual payload (the

work units and their results).

A solution of the threat of too much management data with regard to payload
is to enable agents to adapt the parameters they observe as well as their update

intervals at run-time.

Therefore, we have extended the agent architecture with an adaptive observation
model (AOM). The agent controller can specify exactly which information should
be collected at any given moment and how this information is to be processed. This
corresponds to the tunnel view effect experienced in life-threatening situations where
our sensory equipment (as well as the motor equipment) is tuned on escape. Figure
6.15 shows how the adaptive observation model is used. Each agent implementing
the interface IOMAgent has at least one controller and one observer. Each controller
chooses the set of parameters (observables) that should be determined in order to
enable its decision mechanism to function at the beginning phase (initialSDSpec-
ification). An example of the data structure defining the initialSDSpecification is
given in Figure 6.16. The observer collects the different initialSDSpecifications from
all controllers and determines the unique observables (extractUniqueObservables) in
order to prevent a parameter being asked for more than once. The observer then asks
all agents assigned to an observable for the values. The raw observable values are
then aggregated according to the requirements of the initialSDSpecification of each
controller. Aggregation is a function applied to the set of raw data e.g. average,
minimum or maximum. If necessary, the aggregated observables can also be classi-
fied using an application-specific classificator class—e.g. to determine if a workload
is low, medium or high according to designer-defined thresholds. As soon as the
situation changes, a controller might want to change its awareness according to the
requirements of the new situation. This is done using the switchOM method. As
soon as an OM switch is triggered, the observer creates a new activeOM that fulfils
the new controller requirements. In order to save calculation and communication
time, values from the old OM that are still observed in the new OM are stored and

used for further evaluation (cloneOM).

Which data should be observed and how often these should be updated must be

6.9. TRUST-STRATEGIC AGENTS 125

Situation Description
sD Submitter Role

Classificator WLy Low, Medium, High

Identity Classificator

Aggregator Avg. Wy
ageTL Aggregator

Value: WL
SRl o e ol Agents in TC
Observable Observable
Value: Rep, Value: Trust,.,,
Scope: k B Scope: k AR

Figure 6.16: Observation model submitter

determined by the controller. For instance, in a situation where all agents behave
well, trust information does not have to be updated as often as in a situation involving
unknown or potentially malicious agents.

Moreover, the observer is able to merge data requests from different controllers
for different roles. Potentially, these data can be identical or the data requests from
one role may be a subset of the data requested from the other role. For instance,
the submitter role is interested in the aggregated trust value of agents. Similarly,
the worker role needs to know the aggregated trust value of requesting agents. It
is possible that the information about requesting agents is already contained in the
data requested in the submitter role.

Therefore, the AOM merges the initialSDs of all registered controllers, requests
information for this data superset, and later dissolves this superset into the format
requested by the controllers.

In Figure 6.17, the different observables of the different agent types presented in
this thesis are listed. These observables apply to the TDG application scenario 5.2.
Self-knowledge is knowledge the agent has about itself, whereas private knowledge
adheres to information about other agents (like trust values) that the agent has
gathered on its own. Community knowledge is information the agent has collected
about other agents with the help of other agents or the reputation mechanism. It is
the most expensive class of information with respect to communication costs.

The AOM agent is able to adapt the observables in the current situation. There-

fore, these are displayed in brackets. Based on the selection of the observables, the

126 CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Observables of agent types in the TDG

Trust-aware | Trust-adaptive agents Trust-strategic agents
agents
General observables Trust- Fixed iTC | Evolutionary | Tactical | Norm- Adaptive
neglecting stereotype | agent agent agent aware OM agent
agent agent agent
Self Ki Fl
'WLown X X X X X X (x)
Repown X X X X (x)
Fitness X X X X X (x)
Speedup/Flow Timeg,, X (x)
Communication overheadoyn X (x)
Private Knowledge
Trustagents” X [x| X X x |]
C. ity Knowledg
Wlre X X X X X X (x)
Repagents X X X x x ()
Fllpems X X X X X X (x)
Normsyc 3 X 3 X X X (x)

* Trust includes credibility and availability trust.

Figure 6.17: Observables in the TDG

AOM agent can take each behaviour of the other agent types, but also change the
observables and, accordingly, its own behaviour at run-time as will be presented in
Section 7.10.

6.10 Summary

In this chapter, the adaptive agent architecture has been presented. It decom-
poses the decision complexity of trust-strategic agents into short-term and long-term
decision-making levels. The number of levels depends on the required complexity of
the decision. The more complex the controller decision is, the more information has
to be gathered by the Observer component.

For each class of levels (trust-neglecting, trust-aware, trust-adaptive, trust-strategic),
we presented different techniques pertaining to how the controller side of the agent
can be implemented in order to use the available information in the best possible
way.

Trust-neglecting and trust-aware agents have been introduced as reference im-
plementation and as disturbances within the system (egoistic agents, free-riders).

Trust-adaptive agents were able to identify and isolate these disturbing agents
(iTC agents), thereby ensuring a good performance and enhancing the robustness

of the system. We also presented two possibilities on how learning can be applied

6.10. SUMMARY 127

to trust-adaptive behaviour. The evolutionary agent learns and optimises strategies
from scratch and, thus, finds new solutions that might not always strike the system
designer. The learning agent, on the other hand, uses the behaviour encoded in the
already successful iTC agents as a starting point and finds new behaviour solutions
in that area.

The class of trust-strategic agents is able to include long-term information in the
decision-making process. Tactical agents are able to identify trends in situations,
make predictions on how these will develop in the future, and adapt their behaviour
proactively.

Norm-aware agents are able to consider institutional norms in their decision.
Therefore, they can overcome situations that cannot be resolved solely using local
knowledge.

AOM agents combine the different features and advantages of the agent types.
They are able to adapt their observation model to the current situation and, there-
fore, also select the controller behaviour that is best suited for the situation from
the set of all agent type behaviours. Moreover, by evaluating only that information
which is relevant in the agent‘s current situation, AOM agents save communication

overheads, thereby leading to a better usage of bandwidth.

128

CHAPTER 6. ADAPTIVE AGENT ARCHITECTURE

Chapter 7

Evaluation

7.1

7.2

7.3

7.4

7.6

7.7

Evaluation Environment: Trusted Desktop Grid (TDG) . . 130

7.1.1 Disturbances Caused by Misbehaving Agents 131
7.1.2 Disturbances Analysable on System Level 132
Evaluation Metricso 0000000 132
7.2.1 Evaluation Metrics on System Level 133
7.2.2 Evaluation Metrics on the Agent Level 135
Comparison of TDG with State of the Art 137
7.3.1 Organic Grid 137
7.3.2 Comparison of Organic Grid with TDG 140
733 H-Trust o oo 142
7.3.4 Comparison of H-Trust with TDG 144
7.3.5 Summary: Comparison with Related Work 147

Trust-awareness Used to Reduce Information Uncertainty . 148
Trust-adaptivity to Improve Robustness 149

Evolutionary Approach for Continuous Run-time Adaptation152

7.6.1 Evolutionary Agents vs. Adaptive Agents 153
7.6.2 Homogeneous System of Evolutionary Agents 155
7.6.3 Evolutionary Agents vs. Egoistic Agents 157
Learning Optimal Behaviour at Run-time 160
7.7.1 Metrics for Learning Reward Functions 160

129

130 CHAPTER 7. EVALUATION

7.7.2 Performance of Learning Modular Agents in Differ-

ent Disturbance Situations 162

7.7.3 Summary: Learning Agent 166

7.8 Using Predictions to Act Proactively 167
7.9 Inclusion of Norms into Local Agent Decision Making . . . 169
7.9.1 Overload Workload Situation without Norms 170
7.9.2 Overload Workload Situation with Norm 172

7.10 Overhead Reduction by Using the Adaptive Observation

Model 174
7.10.1 Variation of Parameter Type and Scope 174
7.10.2 Variation of Sampling Distance 175
711 Summary 179

7.1 Evaluation Environment: Trusted Desktop Grid (TDG)

Our application scenario TDG (Section 1.2) is an instance of an open system as
well as of common pool resource problems. We want to use this scenario to show
situations in which trust and adaptivity can enhance the quality of solutions found
by local agents participating in the system.

Trust is useful in situations where misbehaviour is possible. If all agents are
cooperative and there are no agent-based attacks to be expected, trust causes more
overheads than benefits. Therefore, we want to evaluate situations where trust or

adaptivity plays a role:
e Misbehaving agents try to exploit the system.
e Attacks try to outsmart the trust mechanism.
e Global effects occur, which cannot be countered with the only local agent view.

We will first discuss the different local attacks on system performance as well as
on the trust and reputation system, before debating about which situations need to

be analysed on the system level.

7.1. EVALUATION ENVIRONMENT: TRUSTED DESKTOP GRID (TDG) 131

7.1.1 Disturbances Caused by Misbehaving Agents

The commonest disturbance in peer-to-peer systems like the TDG is free-riding.
According to the analysis of Hughes [112], about 66% of Gnutella network are free-
riders, which consume common goods (files) without giving back to the community.
Free riders are part of the system and ask other agents to compute work units for
them, but refuse to work for other agents. Here, the trust-adaptive control loops are
a perfect candidate measure to counter this threat. If an agent rejects a work unit,
this results in a bad rating and, over time, these bad ratings result in a negative
trust value. This trust value is used in the agents’ cooperation decision. Agents
accept work units only from agents with a good-enough trust value (Section 5.1).
Therefore, the iTC (Section 5.2.2) evolves. We will show later in this chapter that

the exclusion of free-riders by trust-adaptive agents is successful.

Another type of misbehaviour involves the egoistic agent. This agent works for
others, but has a high probability of sending no result, a wrong result or an incom-
plete result. The verification of the correctness of a work unit must be performed
by the application, a replication mechanism or the user. If the job can be validated,
this checking can be carried out by the application. If the application does not pro-
duce jobs that can be validated, the decision of whether a calculation is correct must
either be done by the user (which might be a lot of work) or the client can replicate
the work units several times, distribute them and then determine the correct result

using majority checking or similar approaches.

An overuse of replication, on the other hand, can also be seen as a misbehaviour
in the submitter role. The trust-adaptive mechanisms presented in this thesis aim at
minimising replication overheads by ensuring that only trustworthy agents are asked

for their cooperation.

Tactical behaviour like building up trust, exploiting trust, building it up again
and so forth can also be regarded as agent misbehaviour and is punished by some
existing trust and reputation systems (Section 3.8). In the TDG, we use a positive
version of this behaviour in order to make agents successfully trust-adaptive. As
long as agents remain within positive trust parameters, we regard this behaviour as

non-critical.

Other types of misbehaviour, like attacks on the reputation system or its stored
values, attacks on messaging or authorisation, and authentication attacks are a mat-

ter of security and, therefore, not regarded in this thesis in particular.

132 CHAPTER 7. EVALUATION

7.1.2 Disturbances Analysable on System Level

Collusion attacks are attacks realised by a set of agents that arrange a common be-
haviour in order to harm or, at least, exploit the overall system. For instance, agents
could compromise the reputation database by giving each other positive ratings
without any real cooperation taking place. Thus, researchers at Cornell University
discovered a theoretical collusion attack on the Bitcoin mining community [113].

Apart from different collusion attacks, there are also system states that are not
easy to observe locally. For instance, an overload situation, where there is more
workload in the system than agents can handle, is hard to obtain as a single agent.
The agent itself only knows its own workload and may be able to derive from the
answers of agents it asks for cooperation that the workload of other agents might be
high as well. However, a system-wide overload situation must be observed on the
system level rather than by each local agent trying to obtain a system-wide view of
the situation.

Similarly, a trust breakdown situation [114], where the agent’s mutual trust rela-
tions are broken, can hardly be observed locally. The trust breakdown can be due to
agent decisions or external effects like an ongoing overload situation (where agents
can no longer receive positive ratings) or message losses (which causes bad ratings
because requests or answers are not received).

Overload as well as trust breakdown situations are severe problems that can
result in agents deciding to leave the system and, therefore, destroy the system
over time. As local observation alone is insufficient for such situations, we need a
hierarchical component (institution) that is able to observe the system, detect these
critical situations, and legislate norms telling the agents how to behave as long as
this abnormal situation prevails. One example is the TCM observing on system
level and being able to legislate norms to lead the system out of critical or undesired

situations.

7.2 Evaluation Metrics

In this section, the evaluation metrics used in this thesis are presented. On the
system level, we use metrics from the desktop grid computing area because these
measures are used to determine successful strategies on a global scale. On the agent
level, we also analyse metrics that are used to determine the agent behaviour. These
metrics can lead to global success but are also interesting tools for the analysis of

local behaviour decisions.

7.2. EVALUATION METRICS 133

7.2.1 Evaluation Metrics on System Level

The evaluation metrics that we use to measure the performance of the adaptive
agents on the system level are derived from performance metrics in grid computing
literature. Additionally, there are some indicator metrics that we use for further

analysis of the effects on a global scale.

Waiting Time

Jiang |27] describes the average waiting time as ,,the average waiting time spent by a
job in the grid.“|27] Therefore, the average waiting time is a measure for the efficiency
of work unit distribution. A bad load balancing, for instance, can result in long
waiting times because the workload is concentrated on too few agents. Nonetheless,
the average waiting time can also be high if the system is in an overload situation.
The total waiting time (as the sum of all waiting times) can bring more clarity to the
analysis because averaging can decrease the informational power of the single values.
Therefore, we use the total waiting time to analyse system situations, but combine
it with the flow time and speedup in order to determine comparable situations and

settings for analysis.

Total Flow Time

In this thesis, we use the definition of Lee [115], which defines flow time (Eq. 7.1)
and total flow time (Eq. 7.2) as follows:

E = CZ — T (71)

The flow time Fj is the difference between the end time and the release time of
a job J;. The sum of the flow times of all jobs is then the total flow time (Eq. 7.2).

> F (7.2)

The total flow time is a measure to analyse the degree of parallelism of job
execution.

The flow time ratio is the total flow time normalised by the overall time which
has passed. The lower the flow time ratio is, the less time an agent had to wait for
the completion of its jobs.

Similar to the flow time, the turnaround time of a job is defined: It is the

calculation time of a job from the submitter’s perspective, starting with sending the

134 CHAPTER 7. EVALUATION

first work unit, including waiting times, until the last work unit is calculated and

returned.

Speedup

The speedup used in this thesis follows the general definition of speedup from the area
of parallel computing. It defines how much faster the algorithm can be executed in a
parallel system than on a serial system. In this thesis, the average speedup describes
how much faster each job j can be executed in parallel by other agents than serialised
on the owner’s machine (see Eq. 7.3).

The speedup can be defined either as a global value observed during the com-
plete simulation time or as the average speedup which is evaluated after each job
completion. Therefore, we measure both values.

. . W;
processingtime, ; e

S(z,y) = (7.3)

processingtime, ; + waste - %‘ + Y wastes
S

In the speedup according to Eq. 7.3, the size W; of a work unit and the worker
performance P, are considered and contrasted with the a posteriori measure of the

submitter performance P, and the summed waste in all time steps s.

Scheduling Success Rate

There exist two definitions in literature for the scheduling success rate:

wScheduling success rate: the percentage of jobs successfully completed in the
grid“[27]

and

»Success rate: The success rate for a run is defined as the ratio of the number of
successful work unit completions (without rescheduling) to the total number of work
units allocated.”[22]

The general statement is similar. It is defined as the proportion of successfully
completed work units of all work units. As the second definition is more detailed
and does not controvert the first one, we use the second definition for our purposes.
Moreover, the second definition enables us to use the scheduling success rate as a

quality criterion for successful matchmaking.

‘Waste Ratio

Kondo [116] defines waste as follows:

7.2. EVALUATION METRICS 135

» Waste: of the CPU time that is used, the fraction used by jobs that miss their
deadline.“|116]

We transfer this definition into our simulation environment. Therefore, we also
include all the times that an agent has computed a work unit, which has been
cancelled later, as waste. Therefore, waste is the sum of all time ticks that haven
been spent in useless calculations. We normalise this waste value by the overall time
spent for computations in order to compute the waste ratio. This normalised value is
better for comparison because the problem size is directly taken into account. This
value represents the amount of unproductive computing steps in the whole system
and is, therefore, a measure for the effectiveness of cooperation partner selection.
The higher the number of misbehaving agents chosen for computation, the higher is

the waste ratio.

7.2.2 Evaluation Metrics on the Agent Level

On the agent level, we can evaluate the system metrics for each agent, but are also
interested in metrics to analyse the behavioural performance of an agent. Therefore,
we added a fitness function, considering the benefit and the effort taken to reach this
benefit. We also analyse the observation overhead by measuring the communication

effort of the agents.

Fitness

The fitness of an agent is used to measure its success independently from the scenario.
The fitness is used in two ways. On the one hand, the agent designer has a measure
for the agent success, which also takes the effort used into account. For cooperation-
based agent strategies, this is extraordinarily important and goes beyond the system
metrics, which could also be used at agent level. On the other hand, agents like the
evolutionary agent (Section 6.8.2) can also use this metric themselves to measure
their success on-line, thereby optimising their behaviour accordingly. This is the
third loop in the trust-based interaction mechanics presented in Section 5.1.

The fitness is calculated as a weighted sum of benefit and 1 - effort (Eq. 7.4),
where the term 1 - effort is used to take into account the effort which has been spend
in order to reach a certain benefit and also to enable users to define the minimisation

of the effort as a goal for the agent.

fitness = ax benefit + (1 — a) * (1 —ef fort) (7.4)

136 CHAPTER 7. EVALUATION

The fitness of an agent is evaluated each time one of its jobs has been completed
in the TDG. The weight « is defined between 0 and 1, and can be determined by
the user or the system designer. This weight defines whether benefit (cooperative
behaviour) or the minimisation of effort (egoistic behaviour) is preferred.

The fitness is a normalised function in an interval between 0 and 1. The nor-
malised benefit, which an agent receives from the calculation of its last job, is defined

as:

) 0, if actualPTime > ownerPTime
benefit =))) (7.5)
1— actual PTime—potential PTime else

owner PTime—potential PTime’ :

The benefit is the proportion of time that an agent has saved by distributing
its job in the system instead of calculating it on its own. The actual calculation
time needed for the job, actual PTime (including waiting times), is calculated as
a ratio of the time it would have taken the agent itself to compute the work unit
(ownerPTime). To normalise this ratio, the potential PT'ime is also taken into
account. This is the time it would have taken to compute the job in a perfect system
where all work units of the job can be computed in parallel by the fastest agents
i.e. the perfect parallelisation. Therefore, owner PTime > potential PTime always
holds. This normalisation transfers the benefit into an interval between 0 and 1.

In order to reach this benefit, the agent has to make some effort (0 < ef fort <1).
Due to the coupled trust and reputation loops (Section 5.1), this effort in the worker
role can be necessary to reach a reputation that is high enough to receive a good
benefit in the submitter role by finding suitable cooperation partners that rely on

trust values as the basis for cooperation decisions.

timeActive AsWorker
timeSince Last.Job

ef fort =

The effort is computed from the time steps that the agent has been actively

(7.6)

working for other agents (timeActive AsWorker) normalised by the time which has
passed overall since the last job (timeSinceLast.Job). This fraction is already in an
interval between 0 and 1. The effort is 0 if the agent did not work for others since the
last job has been completed; it is 1 if it has been actively working for other agents
throughout the time interval since the last job. By using the term 1 - effort in the
fitness definition, we make sure that a maximisation of fitness can be reached not
only by maximising the benefit (which is not always possible for an agent), but also
by minimising the effort an agent has to participate in the system (e.g. being more

egoistic in certain situations).

7.3. COMPARISON OF TDG WITH STATE OF THE ART 137

Observation Overhead

The observation overhead is measured as the average number of messages per agent
per tick. The less the overhead spent for observation, the more the payload that
can be sent and received in the network. The TDG is a system involving commu-
nication over the internet. As the bandwidth here is limited, a minimisation of the
observation overhead can result in a better usage of the available bandwidth. The
observation overhead is a metric which we used to analyse how agents use their
available bandwidth.

7.3 Comparison of TDG with State of the Art

In this section, we will compare our system to the state of the art. Our analysis of
the state of the art (Chapter 3) has shown that the most promising candidates for
comparison are H-trust and the Organic Grid. Therefore, we implemented both ap-
proaches and compared the efficiency of the agents and the robustness of the system
regarding how misbehaving agents are evaluated. The changes to the simulation in
order to create a fair evaluation environment for all approaches are presented in the

following.

7.3.1 Organic Grid

This section presents our implementation of the Organic Grid according to [6]. As the
H-Trust agent, the Organic Grid agent extends our basic agent class ComputerAgent.
The Organic Grid uses pull mode, which means that agents advertise their free
computing resources as soon as they are available rather than waiting for others to
ask them for computation. Therefore, the step method of the ComputerAgent is
overwritten in the OrganicGridComputerAgent in such a way that the agent uses
the pull mode instead of the push mode.

The general behaviour of the step method OrganicGridComputerAgent can be
seen in Figure 7.1.

In each time step, the step method of each agent is called and executes several
methods, of which, we focus below only on those that add an extra functionality to
the system:

updateAncestors: Each node needs to know which nodes are its parents; there-
fore, it continuously asks them if this is still the case. This is done recursively and

the resulting tree overlay information is stored in the local ancestor list of each agent.

CHAPTER 7. EVALUATION

138

updateAncestors()

[currentTick == 1]

initStrategies()

updateOldchildren()

[Application.hasWaitingJob]

collectiob()

[HobEnvironments.isEmpty]

[obEnvironment finished]

passlobResults()

executelobClientStep()

currentiobEnvironment = null

requestForWork()

executeWorkerStep()

Figure 7.1: Step-method of the OrganicGridComputerAgent

7.3. COMPARISON OF TDG WITH STATE OF THE ART 139

Agents eliminate circles by searching for their own ID in the list and, if they find it,
informing their parents that they are not child nodes any more.

updateOldChildren is used to remove nodes that have become too slow or that
do not answer any more. These child nodes are removed from the tree overlay and
stored in a list. After a predefined interval, agents from that list can be tested for
cooperation and performance once again, which makes the Organic Grid a forgiving
system.

requestForWork is an abstract method in our framework, but it is implemented
for the OrganicGrid agent as follows. Agent B informs its parent node agent A if it
is idle and able to compute work units for others. Agent A gives agent B work units
to compute as long as the sum of work unit computation ticks does not exceed the
initialworkunitrequestsize, which is dynamically adapted to agent B’s performance at
run-time. Due to the dynamic recursive structure of the overlay, agent B will always
try to find new parent nodes if it has more computational power than required by
its current parent node.

After having presented the key components of the Organic Grid agents, we will
show how the two types of misbehaving agents are included in the Organic Grid

system.

Egoist

In the requestFor Work method, we needed to develop an adaptation to implement
egoistic behaviour. With a probabilityforegoistWUabort, there is a communication
error generated (which could also relate to misbehaviour on purpose), and the work
units are aborted during computation and are not completed. The information
about the aborted work unit is then forwarded to the submitting agent through the

network.

Free-rider

The free-riding misbehaviour had to be transferred into the Organic Grid mechanics.
In the submitter role, free-riders hbehave like all OrganicGrid agents: they distribute
work units in the network. In the worker role, the requestFor Work had to be over-
loaded with an empty method, which means that free-riders never request work from
other agents. This is the translation of the free-rider behaviour ‘never accepting a

work unit’ from push mode to pull mode (‘never requesting work’).

140 CHAPTER 7. EVALUATION

7.3.2 Comparison of Organic Grid with TDG
Undisturbed System State

We executed the same set of experiments with the TDG and the Organic Grid system
using the parameters listed in Table A .4 for the Organic Grid and and Table A.2 for
the TDG-specific parameter settings. The Organic Grid with its tree-based overlay
structure reached a system state with a higher total flow time and a higher total
waiting time (see Fig. 7.2).

The TDG has advantages over the Organic Grid in low- and medium-load situa-
tions like the one used in Figure 7.2. Under a high workload, however, the Organic
Grid leads to a better performance in terms of total flow time and total waiting time.
This can be explained by the push strategy, which leads to an efficient load balancing
as agents will only ask to work if they are available. In particular, situations involv-
ing parallel distributions cannot occur. In the Organic Grid, an available agent asks
only its parent for work, whereas in the TDG, the best-ranked agent according to
trust and workload can be asked by several submitters in parallel for computation
in the same time step. As the Organic Grid concentrates on adaptivity and does not
use trust information, it is very promising that the TDG approach (with its overhead
of trust mechanisms) led to similar results as the Organic Grid in a system without

disturbances.

1.1e+006
1e+006
900000
800000
700000
600000
500000
400000
300000
200000

971004.4

681758.5 594126.4

time[ticks]

333456.2

total flow time total waiting time

Figure 7.2: Average total flow time and waiting time of TDG and Organic Grid (OG)
in undisturbed system state

7.3. COMPARISON OF TDG WITH STATE OF THE ART 141

Disturbed System State

Figure 7.3 shows the total flow time and the total waiting time of the TDG and the
Organic Grid approach with a mean workload of 3,000 ticks (i.e. medium in this
scenario), and a disturbance caused by 15 egoists and 15 free-riders to 70 agents (see
A.5 for the other parameters used in this disturbance setting). This means that, in
this disturbance and workload situation, the TDG has a lower flow time and waiting

time; thus, it is able to compute work units in a faster and more effective way.

1.2e+008
TDG ===
[—
1e+008 + oG i
8e+007 - _
)
o
= 6e+007 - -
.g 30829654.9
4e+007 |- -
¢ 24449368.9
2e+007 - |
3347360.9 3955716.2

total flow time total waiting time

Figure 7.3: Average total flow time and waiting time of TDG and Organic Grid (OG)

in disturbed system state

Moreover, the TDG was able to prevent the production of waste (see Figure 7.4
by making agents concentrate on trustworthy cooperation partners. The scheduling
success rate of the Organic Grid shows that the agents find workers in the first
place, but the higher waste shows that these workers are untrustworthy (e.g. egoists)
and not suited as cooperation partners. Once again, this is explained by the self-
organising mechanisms of the iTCs in the TDG, whereas the Organic Grid tries to

rely on the untrustworthy agents as well.

Summary: Organic Grid vs. TDG

Tn overload situations, the Organic Grid was better able to perform well due to
the distribution restrictions within the scheduling mechanism [117]. In situations
involving a high workload, the Organic Grid reaches a better total flow time than

does the TDG. This is, as in the undisturbed situation involving a high workload,

142 CHAPTER 7. EVALUATION

14 TDG =3
OG =@

12 B

1 0.916 8
0.8
0.6 -
04 -
0.2 - 0.135

0 0.00064

waste ratio scheduling success rate

Figure 7.4: Average waste ratio and scheduling success rate of TDG and Organic
Grid (OG) in disturbed system state

due to the efficient push mechanism in the Organic Grid. In situations with low or
medium workload, the TDG was comparable or even superior to the Organic Grid.
In a disturbed system state, the TDG reached better total flow times, total waiting
times and a minimisation of waste compared to Organic Grid. This is due to the
self-organised iTCs that build up in the TDG and, thus, effectively minimise the
total waiting time. In the TDG, free-riders and egoists are recognised and isolated

over time, resulting in a minimisation of flow times, waiting times and waste.

7.3.3 H-Trust

This section presents the implementation of H-Trust, which we have conducted for
the sake of comparison with our mechanisms. The H-Trust system consists of five
phases. The first one is the trust recording phase |25], in which the former interaction
results of workers are stored. The local trust evaluation phase is used to compute
the local trust value of an agent. Since an agent in a desktop grid cannot have
complete trust information about all agents, in the trust query phase, an H-trust
based trust value is computed based on trust ratings and credibility information. To
keep the trust and credibility tables updated, the tables are periodically renewed
in the spatial-temporal update phase. Finally, in the group reputation evaluation
phase, the reputation of agent groups is computed based on thresholds and the

H-trust function.

7.3. COMPARISON OF TDG WITH STATE OF THE ART 143

The implementation of H-Trust is based on the publications of the inventing
author in [25] and [57]. Nonetheless, we had to make some assumptions due to
lacks of information in these publications. These assumptions are presented in the
following.

Each H-trust agent owns three tables called the local service history table, the
local trust rating table and the local credibility rating table [25].

The service history table is updated with a new entry for each interaction that
the agent has with another agent. This entry includes the agent (remote Peer ID),
the time step at which the interaction has ended, the service quality that has been
provided, and the importance of the interaction (service importance). We transferred
this into our TDG simulation environment by storing an entry for each work unit
calculation, rejection and cancellation with a constant service importance of 3 (as
the authors did not define how these values are initiated, and as all services are
equal in our simulation). A work unit rejection results in a service quality of 1, and
a finished work unit leads to a service quality of 5.

The trust values of known agents are stored in the local service history. Accord-
ing to Zhao [25], these trust values are computed using the vector-based approach
presented by Selcuk [65]. A positive experience is rated with 1, a negative one with 0.
The number of experiences used is based on the quantity of significant bits and then
used to compute the trust value according to Eq. 7.7 (for example, vector 11101000

with five experiences).

(11101000),

5 =0.90625 (7.7)

Trustrating =

The trust vector is shifted once to the left with each new experience. In the
example above, four out of five experiences are positive, and the first five digits are
taken into account, which makes 11101 = 29.

An agent stores such a vector for each agent that it has used as a worker and uses
this local trust rating information to decide with whom to cooperate if it is asked
for cooperation (worker role).

In the submitter role, the agent uses the trust rating table. The agent uses
a quantity of agents defined by the queryPercentage parameter. These agents are
filtered in such a way that only agents with a trust rating greater than the selection-
Threshold are selected and asked for cooperation. This behaviour is derived directly
from the Netlogo implementation given in [118] and [25]. As can be derived from
the details of this implementation, the H-Trust approach is designed to deal with

incomplete knowledge about other agents and their behaviour.

144 CHAPTER 7. EVALUATION

In our implementation of the H-Trust approach, we used all the simulation pa-
rameters presented in [57| (Table 5). These include initial trust and credibility values,
expectation values and standard deviation of the Gaussian distribution.

Having presented the details of our H-Trust agent implementation, we will pro-
vide an overview of the implementation details of the disturbing agents, the egoistic
agent and the free-rider. These had to be adapted to the functionality of H-Trust

agents in order to enable interactions among all agent types.

Egoist

Egoistic behaviour in an H-Trust MAS is implemented in the HTrustEgoisticAgent.
If it is asked by a submitter, the HTrustEgoisticAgent in the worker role decides,
based on its selection Threshold and the submitter’s trust value, whether or not to
accept the work unit. If the work unit is accepted, the HTrustEgoisticAgent will
cancel the work unit with a probabilityforegoistWUabort. This represents exactly the
egoistic behaviour that we model as a disturbance within the TDG in general.

In the following section, our implementation of free-rider behaviour in an H-

Trust-based system is presented.

Free-rider

The disturbance caused by free-riders is implemented in the HTrustFreeRidingAgent.
Free riders do not accept work units. Thus, they model system members that con-
sume computational power without providing any in return and exploit the system in
this way. In this implementation, the HTrustFreeRidingAgent always declines when
asked to be active as a worker. In the submitter role, however, the agent acts like

any H-Trust agent and uses the same distribution strategy.

7.3.4 Comparison of H-Trust with TDG

The trust-based mechanics of H-Trust are a promising candidate for comparison with
the TDG. Therefore, we compare the two systems in different situations.
Here, we concentrate on the metrics that help us to explain the main performance

differences and effects; a more detailed analysis is presented in [117].

Undisturbed System State

In a system situation that has no disturbing agents, we expect high performance in

both systems. The trust mechanism here is an overhead because all agents behave

7.3. COMPARISON OF TDG WITH STATE OF THE ART 145

in a trustworthy manner. Here, we compare the load-balancing mechanism of both
trust-based systems. In order to compare both approaches, we used the parameters
defined in A.3.1 for both simulations, and A.3.2 for the TDG-specific parameter
settings.

Figure 7.5 shows the average total flow time and the total waiting time of the
agents in a scenario with the above-mentioned settings in a long-term experiment
conducted with the TDG and H-Trust.

TDG ===
2.5¢+009 - H-Trust
2147483647.0

2e+009 - B
2

S 1.5e+009 - .
)
£

= 1e+009 B

615291599.6
5e+008 - B
0 1641706.1 600348.2
total flow time total waiting time

Figure 7.5: Average total flow time and total waiting time of TDG and H-Trust in

undisturbed system state

The variance between the different experiments, especially regarding the total
waiting time, is caused by the parallelism in some of the randomly initialised work-
load situations: several agents had similar jobs in similar time intervals, but all of
the jobs could not be distributed at the first attempt. Therefore, these jobs were
postponed for a time interval and then distributed. This delay is a part of the wait-
ing time; therefore, in some experiments, it leads to larger waiting times than the
average. Nonetheless, these values can be used for comparison with the H-Trust.

It is clear that H-trust leads to a lower performance, as agents spend much more
time waiting in queues than they did in the TDG. This is due to the distribution
mechanism, which is based on trust and random selection, but does not take the
performance of the agents into account. In contrast, TDG agents adapt to both,
trust and workload; therefore, it is more successful than H-Trust in finding fast

workers.

146 CHAPTER 7. EVALUATION

Disturbed System State

Figure 7.6 shows the total flow time and total waiting time of the H-Trust approach
in the same disturbance setting as used above. It is obvious that H-Trust agents
in a medium workload situation reach a massively higher total waiting time and an
extremely high flow time. This shows that, despite the benefits of trust, H-Trust is
inferior to both, the Organic Grid and the TDG, due to the lack of load balancing
in the scheduling approach.

1.2e+009
TDG ===
- —
16+009 |- H-Trust i
789571459.1
8e+008 - =
)
Q
= 6e+008 - =
£
4e+008 - =
2e+008 - B
98579121.0
24449368.9
0 3347360.9 [N
total flow time total waiting time

Figure 7.6: Average total flow time and waiting time of TDG and H-Trust in dis-

turbed system state

Figure 7.7 shows the waste ratio and scheduling success rate in the same sce-
nario. It is interesting to see that, despite the slightly better waste ratio, H-Trust
still reaches a worse scheduling success rate than does the Organic Grid. This can
be explained by a successfully working trust mechanism (resulting in less waste pro-
duction), which is unfortunately overcome by the still insufficient load balancing in
H-trust: agents know which agents are trustworthy workers, but still cannot make
good cooperation decisions.

The TDG again reaches a better waste ratio and scheduling success rate than do
the H-Trust and the Organic Grid.

Summary: H-Trust vs. TDG

Due to the better load balancing, the TDG clearly outperforms H-Trust in undis-

turbed system states as well as under disturbance. This shows that agents reach a

7.3. COMPARISON OF TDG WITH STATE OF THE ART 147

14 + TDG =
H-Trust

0.8 -

0.6 -

0.4

02 L 0.168987507

0.00064
waste ratio scheduling success rate

Figure 7.7: Waste ratio and scheduling success rate of TDG and H-Trust in disturbed

system state

better performance if they do not use trust as the only cooperation criterion, but

take a combination of trust and workload as well adaptivity into account.

7.3.5 Summary: Comparison with Related Work

The general idea of the agent approaches in this thesis is to combine trust and
adaptivity in order to increase their performance in open MAS like open desktop
grids. Therefore, we develop an architecture that allows for the combination of
trust, adaptivity, learning, and even a long-term strategy component.

In this section, we compared trust-adaptive iTC agents that adapt their be-
haviour to workload and trust situations, to the state of the art in trust-based or
adaptive grid systems—H-Trust and Organic Grid. The Organic Grid had advan-
tages in systems involving a high or even overloaded workload situations: the push-
mechanism ensured that work units are always given to the fastest available agents.
This proved successful in situations without disturbances, but the approaches of
the trust-adaptive iTC agents were competitive, too. In situations involving distur-
bances caused by free-riders or egoists, the lack of trust consideration in the Organic
Grid was visible and the Organic Grid was outperformed by the TDG agents. Only
in overload situations under disturbances, could the Organic Grid succeed due to
the stable push mechanism.

H-Trust showed drawbacks regarding the load balancing mechanisms: work units

148 CHAPTER 7. EVALUATION

were given to the most trustworthy agents, rather than to the fastest ones. Therefore,
despite trust consideration, H-Trust was outperformed by both, Organic Grid and
TDG agents.

To sum up, by comparing our approaches to the state of the art, we could show
that trust alone does not suffice, but a combination of trust and adaptivity to work-
load situations as implemented by our agents leads to both, high performance and

robustness of the system.

7.4 Trust-awareness Used to Reduce Information Uncer-

tainty

In this experimental setting, we will demonstrate that agents can enhance their
performance by using trust as additional information.!

In this scenario, 30 agents are confronted with five egoistic agents and five free-
riders, which try to exploit the system. Figure 7.8(a) shows an example of the
performance of trust-neglecting agents confronted with both types of misbehaving
agents. Tt is obvious that trust-neglecting agents reach a very low fitness. This is
because they are exploited by egoistic agents and free-riders, both of which achieve

a good fitness.

j trus(-ned\ecling agen‘ts —x— a&ap(ive agen‘ts —x—
1 freeriding agents ——— 1 freeriding agents ———
egoistic agents egoistic agents ———
0.8 0.8
S 06 S 06
P 2
2 2 e
£ o4 £ o4 Wt Wt
i W i
02 \ J:jf\ 'MMM\ i . 02)
. T g -
ol o s AN A AN,
0 100000 200000 300000 400000 0 100000 200000 300000 400000
Time [Tick] Time [Tick]
(a) Performance of trust-neglecting agents (b) Performance of trust-adaptive iTC agents

Figure 7.8: Performance comparison of trust-neglecting and trust-adaptive agents.

In Figure 7.8(b), we repeated the same experiment using trust-adaptive iTC

agents. These only cooperate with agents that are rated as trustworthy. Since

"Work on this has been conducted in part in cooperation with Lukas Klejnowski in the context
of the DFG research unit OC-Trust (FOR 1085).

7.5. TRUST-ADAPTIVITY TO IMPROVE ROBUSTNESS 149

egoistic agents and free-riders are rated negative as soon as they reject or cancel a
work unit, both types of misbehaving agents have low trust values; therefore, they
are not regarded as cooperation partners by trust-adaptive iTC agents.

Egoistic agents and free-riders reach a very low fitness because they are avoided by
the trust-adaptive iTC agents. Therefore, we define the set of agents that mutually
trust each other as iTC agents (Section 5.2.2).

This can also be seen in the desktop grid metrics that we evaluated as Figure

7.10 in the following section will show.

7.5 Trust-adaptivity to Improve Robustness

Tn this experimental setting, the job generation pause was 1,500 to 4,500 ticks. 2

In compliance with Schmeck [119], we have examined the hehaviour of the TDG
in case of sudden, unexpected disturbances. We focused on the introduction of
additional free-riding agents into a system consisting of 30 adaptive agents, five
egoists and five free-riders.

|119] defines target space as the set of ideal system states. The acceptance space
contains all acceptable system states and, therefore, also includes the target space.
The survival space contains all system states that are not acceptable, but from which
a reconfiguration is still possible without damage to the system. According to [119],
a weakly robust system leaves target space if a disturbance occurs, but remains in
acceptance space and will return to the target space after a recovery phase. We
adhere to these definitions and define our system as a weakly robust one. Therefore,
we define the target space of our system as the system states where the overall fitness
in the iTC, which is the bottom-up formed set of all agents being trusted by the other
agents, is above a threshold of Trqrges = 0.45. This value is chosen based on the
current system configuration and influenced especially by the workload existing in
the stable phase without further disturbances. The system is in the target space
for as long as Fitnesssystem >= Trarget- If a disturbance occurs, it decreases the
fitness function and, thus, pushes the system into acceptance space. We define the
acceptance space of our scenario to be above the threshold between acceptance space
and survival space. Here, survival space means that the system fitness is below a
threshold determined by system configuration parameters in general and the current

workload in particular. Here, we chose Tacceptance = 0.1 as the threshold between

2Work on this has been conducted in part in cooperation with Lukas Klejnowski in the context
of the DFG research unit OC-Trust (FOR. 1085).

150 CHAPTER 7. EVALUATION

acceptance space and survival space. As the fitness is an average of all agents, an
overall system fitness of 0.1 or less would lead to a state where a number of agents
might have a fitness that is nearly 0. A fitness value of 0 means that the agent does
not profit from using the grid for its calculation and could have processed its work
units on its own. Therefore, we define the acceptance space in such a way that the
overall fitness still indicates a positive benefit from the system. Thus, our system
is in the acceptance space if Fitnessgystem >= TAcceptance- The system is in the
survival space if Fitnesssysiem < TAcceptance- This value indicates that some of the

agents might as well leave the system as they do not benefit from it.

In the experimental setup that was used here, the initial agent population con-
sisted of 25 percent uncooperative agents (i.e. egoistic agents and free-riders). In
Figure 7.9, the disturbance doubled the number of uncooperative agents, which is a

substantial disturbance.

In traditional systems that lack trust-based detection mechanisms for agent mis-
behaviour, this arrival of free-riders would raise the average workload of the system
for the above-mentioned reasons, would lower the average reputation of the agents
as they are often forced to reject the processing of additional work units because of
their high load, and consequently, the average fitness of the agents would decrease.
Although we first see exactly these characteristics in the TDG at the time the distur-
bance is introduced (cf. tick 35,000 in Figure 7.9), the system is in a self-organising
recovery phase just after the occurrence of the disturbance. The system recovers
from the mentioned low performance state in the acceptance space to return to the
target space as defined in [119]. After the recovery phase, the workload is reduced
to the level that prevailed before the disturbance although the additional free-riders
remain in the system. This is an indicator that these agents have been isolated by
the iTC.

The behaviour of the new agents entering the system is not known. They start
with a reputation of 0.1, which makes them potential cooperation partners for the
adaptive agents. These free-riders are therefore able to delegate the processing of
their work units to the trust-adaptive iTC agents, which shows as a reduction of the
workload of the free-riders. Additionally, these work units are returned correctly and
the free-riders in the beginning benefit from their participation in the grid. However,
in the further progression, the cooperative agents realise that the free-riders do not
return the favour of being a worker, which results in negative trust ratings and thus
decreasing reputation. The consequence for the adaptive agents is that they do not

accept further processing requests from the free-riders. However, they do not cancel

7.5. TRUST-ADAPTIVITY TO IMPROVE ROBUSTNESS 151

= Fitness
= Reputation
— Workload

LTUAP SR AY

6 T o8

Figure 7.9: Performance of trust-adaptive iTC agents with disturbance of 25 percent

free-riders

the processing of already accepted work units, mainly because of the negative ratings
that this would imply. Thus, in Figure 7.9, we see a slow reduction in the workload
of the adaptive agents.

In Figure 7.10, we present the evaluation of the self-organised iTC formation in
the system consisting of 70 trust-adaptive iTC agents and 30 misbehaving agents (15
free-riders and 15 egoistic agents) using metrics from the grid computing domain.

The most important metric here is the average speedup. It is obvious that trust-
adaptive iTC agents reach a good speedup (8.73 on average) whereas the mean
speedup of misbehaving agents is below 1.0 (0.86), which means that these agents
have no benefit from distributing their work units in the grid. This decrease of the
performance of misbehaving agents is due to the fact that their misbehaviour is over
time recognised by the iTC agents and punished with low reputation. Due to the
low reputation, misbehaving agents are less likely to find cooperation partners and
thus reach a low performance. This is also visible in the flow time ratio, which, for
cooperative agents is about 0.13 whereas misbehaving agents have a flow time ratio
of 1.32, again being interpreted as having no benefits from the grid. The scheduling
success rate indicates that, due to their low reputation, misbehaving agents do not

find agents to compute their work units (scheduling success rate 0.01). In contrast

152 CHAPTER 7. EVALUATION

all agents m—
adaptive agents . |
misbehaving agents E—

8.
71
6.
1.
ol 001 0.01 0.00 i 001 ﬁ“-lL

waste ratio scheduling success rate average speedup flow time ratio

@

w

B

w

[N

Figure 7.10: Performance comparison of trust-adaptive iTC agents and misbehaving

agents

to that, trust-adaptive iTC agents are regarded as trustworthy (i. e. have positive
reputation values) and thus reach a high scheduling success rate of 0.95.
Further evaluation results of this experimental settings supporting the analysis

are depicted in Figure A 4.

7.6 Evolutionary Approach for Continuous Run-time Adap-

tation

So far, we have analysed trust-adaptive agents [109]. These agents are able to adapt
their behaviour to the current situation that they observe based on predefined thresh-
olds. These thresholds are tailored to the situation—e.g. if there is a high workload,
an agent needs to ask more (and, occasionally, even less trustworthy) agents for coop-
eration. For each situation, the system designer defines a suitable threshold based on
his knowledge of the system at design-time. However, we want these agents to learn
and optimise at run-time the threshold best suited in a given situation. Thus, opti-
mising agent behaviour at run-time is crucial for a successful adaptation to changing
environmental conditions as requested in the open, dynamic systems that we con-

sider. Therefore, we develop evolutionary agents that are able to find new agent

7.6. EVOLUTIONARY APPROACH FOR CONTINUOUS RUN-TIME ADAPTATION 153

configurations at run-time without prior knowledge of the system and its dynamics.
One possibility for optimisation is an evolutionary approach where a new population
arises during agent interaction, continuing life with the dominant genes of the suc-
cessful agents from the last generation. This completely distributed way of learning
and optimisation seems to be worth considering for the agents in our application
scenario. Therefore, we here evaluate the evolutionary agents, which optimise deci-
sion making in both, worker and submitter roles, at run-time through imitation of
the fitter agents in combination with mutation. We will investigate which strategies
evolve as an emergent phenomenon of the interaction of the evolutionary agents.

In the experiments presented in this section, we investigated how the evolution-
ary agents behave in interaction with other types of agents and with each other.
In Experiment 1 (Sect. 7.6.1), we analysed how evolutionary agents behave in a
heterogeneous system featuring both, evolutionary and adaptive agents, without
evolutionary learning approaches. Experiment 2 (Sect. 7.6.2) has been conducted
in order to evaluate the behaviour of evolutionary agents in a homogeneous system.
In Experiment 3 (Sect. 7.6.3), we investigated the behaviour of evolutionary agents
when they interact with egoistic ones. This is a misbehaviour we would like the

agents to recognise in a distributed fashion and adapt to at run-time.

7.6.1 Evolutionary Agents vs. Adaptive Agents

Figure 7.11 shows the average fitness of the evolutionary agents and the adaptive
agents. The average fitness of the evolutionary agents is much higher than the fitness
of the adaptive agents. The average reputation of the adaptive agents shown in Fig.
7.12 is higher than that of the evolutionary agents, but the latter still have a good
reputation that is greater than 0.5. Thus, a good reputation can help to reach
a higher fitness, but a high reputation does not necessarily imply a high fitness.
Already after tick 30,000, a dominant chromosome structure has evolved: genes 1,
4,5, 6,7, 8 and 9 have the value 1 and genes 2, 3 and 10 the value 0. Figure 7.13
shows that the workload of the evolutionary agents decreases and the workload of
the adaptive agents increases, which means that the evolutionary agents successfully
distribute the work units to the adaptive agents. In other words, the evolutionary
agents are able to exploit the adaptive agents. This behaviour can also be observed in
systems involving other agent types. Evolutionary agents are successful regardless of
what the other agents in the system might be because their behaviour continuously
adapts to the system configuration. The agents with the highest fitness are copied;

thus, the most successful strategy for a given situation evolves and spreads over

154 CHAPTER 7. EVALUATION

Average fitness of agent types

Average fitness of Adaptive Agents
Average fitness of Evolutionary Agents

I’N‘ R . P L o N

IJJ.A
05 rJ

Fitness (0:1)

0 20000 40000 60000 8OO0 110
Time (Tick)

Figure 7.11: Results of experiment 1. Average fitness of evolutionary agents and
adaptive agents

Average reputation of agent types

1.2 T T T I
Average reputation of Adaptive Agents
= Average reputation of Evolutionary Agent |
o8| /—/”h/‘—-rf
5./
5 06 .
3
g‘ 0.4
5 .
0.2 B
0 B
| | | |
0 20,000 40,000 60,000 80,000 1-10°

Time (Tick)

Figure 7.12: Results of experiment 1: Average reputation of evolutionary agents and
adaptive agents

7.6. EVOLUTIONARY APPROACH FOR CONTINUOUS RUN-TIME ADAPTATION 155

Average workload of agent types

T T T
1 —— Average workload of Adaptive Agents
—— Average workload of Evolutionary Agents
0.8 |- 5
S 06 A
o
<
S
-
§ 0.4 5
It s
0 .
| | | |
0 20,000 40,000 60,000 80,000 1-10°

Time (Tick)

Figure 7.13: Results of experiment 1: Average workload of evolutionary agents and

adaptive agents

time. Therefore, in unknown system configurations, an evolutionary approach is
worthwhile. This holds as long as there are enough agents using this strategy. Our
further experiments have shown that the enforcement of successful chromosomes
needs about 25% of the system population to be evolutionary agents in order for the

system to be fast enough to adapt to the environment successfully.

7.6.2 Homogeneous System of Evolutionary Agents

It can be seen from Fig. 7.16 that value 1 for gene 1 wins from almost immediately
after the start of the simulation. This shows that being cooperative is a more suc-
cessful strategy than being egoistic. In Fig. 7.14, it is particularly noticeable that at
tick 20,000, the fitness strongly drops and rises again at tick 30,000. This matches
with the fact that, during the same period, the value 0 of gene 4 in Fig. 7.17 has
been established and so the majority of the agents will pay no attention to the fitness
of the partner when accepting work units. In Fig. 7.15, it is noticeable that due to
the increased workload in this period and due to the lack of trust, the agents cannot
distribute their work units any more and are forced to process them on their own.
As soon as the value 1 for gene 4 prevails, the fitness increases and the work-
load decreases again because new trust is created between the agents. Thus, it is

important to note to which of the chromosome signals the evolutionary agents pay

156 CHAPTER 7. EVALUATION

Average fitness of agent types

T T T T
1 Average fitness of Evolutionary AgcntsL

0.8 - o

Fitness (0:1)

| | | |
0 20,000 40,000 60,000 80,000 1-10°
Time (Tick)

Figure 7.14: Results of experiment 2: Average fitness of evolutionary agents

Average workload of agent types

T T T T
1 Average workload of Evolutionary Agems},

0.8 - n

0.6 - ,

0.4 n

Workload (0:1)

| | I |
0 20,000 40,000 60,000 80,000 1-10%
Time (Tick)

Figure 7.15: Results of experiment 2: Average workload of evolutionary agents

7.6. EVOLUTIONARY APPROACH FOR CONTINUOUS RUN-TIME ADAPTATION 157

attention: paying attention to the others’ fitness is crucial to an agent’s success.
After gene 4 wins through, the chromosome structure stabilizes and it becomes ob-
vious that, in this experiment, it is not important for the evolutionary agents to
pay attention to their own intentions based on gene 1 and to the reputation of the
partners. Furthermore, it can be seen in Fig. 7.17 that the number of agents with a
gene 8 develops to a high value. This means that agents trust agents with a fitness
higher than their own, which also leads to a stable population of agents with a high
fitness.

Thus, agents pay attention to the fitness of other agents (percentage of gene 4

near 1) and imitate agents with a high fitness (percentage of gene 8 near 1).

Gene 1 of Evolutionary Agent

Percentageof gene 1
T Terr

Gene percentage (0:1)

| | | |
0 20,000 40,000 60,000 80,000 1-10°
Time (Tick)

Figure 7.16: Results of experiment 2. Amount of gene 1 of evolutionary agents

7.6.3 Evolutionary Agents vs. Egoistic Agents

In Fig. 7.18, the average fitness of the evolutionary agents and the egoistic agents
is plotted. Comparing the two fitness curves, it can be seen that the fitness of the
egoistic agents does not exceed a value of 0.1. The fitness of the evolutionary agents
increases at the beginning and reaches a value of 0.5, but the fitness starts to decrease
at tick 23,000. After a stabilisation in the lower range (< 0.2), at tick 65,000, the
fitness starts to increase again. Hence, the fitness curve of the evolutionary agents
can be separated into three sections. The first section goes from tick 0 to tick 30,000.

In this section, the evolutionary agent has a high fitness. The second section is the

158 CHAPTER 7. EVALUATION

Gene 4 and gene 8 of Evolutionary Agent

T T T T
—— Percentageof gene 4
—— Percentageof gene 8
_ 1 T ‘ “V’"" TR
g I
o
2
=
k53
3
2 0.5 -
o
=
3
0 B
| | | |
0 20,000 40,000 60,000 80,000 1-10°

Time (Tick)

Figure 7.17: Results of experiment 2: Amount of gene 4 and gene 8 of evolutionary

agents

interval from tick 30,000 to tick 80,000 in which the evolutionary agents have a low
fitness. But in the third section from 80,000 to 100,000, the fitness is high again. The
decreasing fitness in the second interval is because the strategy of the evolutionary
agents changed at tick 30,000. This can be seen in Fig. 7.19 in the distribution
of gene 5. At tick 30,000, the evolutionary agents stop paying attention to the
workload. Therefore, they start to accept WUs from egoistic agents, which have a
very low workload during the whole simulation. This causes the drop in the fitness
of the evolutionary agents because they process the WUs of the egoistic agents but
do not get their distributed WUs processed in return. Later, the strategy changes
back and the evolutionary agents are able to detect the egoistic agents because of
their low workload.

Overall, evolutionary agents are also quite successful in homogeneous systems.
However, the amplitude of the fitness is large, as there are changes in the genes while
trying to adapt the chromosome structure to the self-referential fitness landscape in

a continuously changing environment (cf. [79] (Chap. 2)).

This section introduces the evolutionary agent as an approach to a self-optimising
trust-adaptive agent. The results of experiment 1 show that, in a heterogeneous sys-
tem, evolutionary agents can achieve a higher fitness than trust-adaptive iTC agents,

with a good reputation and low workload. In other words, evolutionary agents learn

7.6. EVOLUTIONARY APPROACH FOR CONTINUOUS RUN-TIME ADAPTATION 159

Average fitness of agent types

T T T
—— Auverage fitness of Egoistic Agents
—— Average fitness of Evolutionary Agents

0.8

Fitness (0:1)

| | I |
0 20,000 40,000 60,000 80,000 1-10°
Time (Tick)

Figure 7.18: Results of experiment 3: Average fitness of evolutionary agents and
egoistic agents

Gene 5 and gene 9 of Evolutionary Agent

T T T T
Percentageof gene 5

Percentageof gene 9

o
~ v P
: | A
°
o0
g
=
8
305 1
Qo
=
8

ol

| | | |
0 20,000 40,000 60,000 80,000 .08

Time (Tick)

Figure 7.19: Results of experiment 3: Amount of gene 5 and gene 9 of evolutionary
agents

160 CHAPTER 7. EVALUATION

to exploit trust-adaptive iTC agents without any malicious behaviour coded in their
genes. Experiment 2 shows that evolutionary agents are able to interact in homoge-
neous systems as well. In experiment 3, we have seen that evolutionary agents are
also successful in a system where disturbances are caused by egoistic agents. The
former are able to detect the misbehaving egoistic agents, although the fitness is not
always stable. Surprisingly, evolutionary agents do not learn trust-based strategies;
they even ignore the trust values to which they have access. This is because the
observation of trust is relevant only if it leads to advantageous behaviour modifi-
cation, which is not necessarily the case in the current experimental setting of our
simulation. Therefore, we aim at investigating further learning techniques like that
of the learning agent (Section 6.8.3), whose results are presented in the following

section.

7.7 Learning Optimal Behaviour at Run-time

In this section, we evaluate, how agents can learn to optimise their behaviour if they
use predefined behaviour settings as a starting point of the learning algorithm. We
used the implementation of our adaptive agent architecture and replaced the 779
decision table with an extended version of CACLA (as presented in Sections 4.1.1
and 6.8.3), learning the decision plane of trust-adaptive agents at run-time.

We conducted long-term experiments in order to give the learning function the

ability to tune in.

7.7.1 Metrics for Learning Reward Functions

Tn order to implement the learning mechanism CACLA, we must determine which
metrics (out of all the metrics that we use in our application scenario) are best
suited as a reward function for the learning algorithm. Three requirements have to

be fulfilled for a metric to be a good reward function:

e The metric has to create relative values in an interval (0,1). Absolute values

have to be normalised before they can be used.

e A maximisation or minimisation of the metric value must be useful for the agent
and the system. If maximising or minimising leads to undesired behaviour in

the system, the metric is not applicable.

e The metric has to be calculated in fixed time intervals (e.g. after each job

7.7. LEARNING OPTIMAL BEHAVIOUR AT RUN-TIME 161

completion) because the learning algorithm needs the value for run-time adap-

tation.

Table 7.1 shows the taxonomy used to define suitable reward function metrics.

Metric Criteria No. of Fulfilled
Criteria

Run-time Evaluation

Relative Values

Lo <
W = = NN W W N

Makespan
Flow Time
Flow Time Ratio

Scheduling Success Rate

L
< <_ <. <_ <_| Mini-/Maximisation Useful

Average Resource Utilisation
Waiting Time -
Throughput

Waste - -
Waste Ratio v

Table 7.1: Taxonomy of grid metrics as reward functions

According to these criteria, we found three candidates for reward function met-

rics:

e The flow time ratio is the sum of interval lengths from job activation to job
completion of all jobs normalised by the calculation times of all jobs. Minimis-
ing the flow time ratio means maximising the agent’s performance. The flow

time ratio can be evaluated at run-time and is a relative value.

e The scheduling success rate defines how many work units an agent has submit-

ted to other agents during the first attempt. It is a relative value, computable

162 CHAPTER 7. EVALUATION

at run-time, and maximising this value leads to performance improvement on

the agent and system levels.

e The waste ratio defines the amount of wasteful computation (e.g. cancelled
work units). It is a relative value, can be evaluated during run-time, and

minimising the waste ratio optimises both agent and system performance.

We evaluated CACLA with the three reward functions that we have analysed
to be suitable for our system in order to determine which reward function is best
in which situation and overall. For each reward function, we have evaluated five

different agent populations. The agents in these populations are

e Modular agents: Agents that show trust-adaptive behaviour in the beginning,
but that switch to the threshold plane they have learned at run-time. In the
implementation used for this evaluation, modular agents use CACLA with

different reward metrics.

Free riders: Agents that submit work units, but refuse to work for others.

Egoistic agents: Agents that have a high probability to cancel a work unit they
have accepted in the first place for instance, if the user of the agent’s machine
suddenly withdraws the resources from the agent. free-riders and egoists are

disturbances within the system.

Adaptive agents: For comparison, we repeated all of the experiments using
our standard trust-adaptive agents with the 77 decision table instead of

modular agents.

The quantity of modular agents varies from 100%, 80%, 60%, 40% to 20%. The
remainder of the population consists of egoists and free-riders. Table 7.2 shows an
overview of the different situations that we have evaluated.

Each experiment has been conducted 20 times, and the resulting graphs show

the mean average of these 20 runs in order to eliminate random effects.

7.7.2 Performance of Learning Modular Agents in Different Dis-
turbance Situations

Tn this section, we present the experimental results of CACLA, measured using the

)
metrics we analysed as useful for the reward function as well as the fitness, which is
not one of the metrics used to optimise the function learned, and is thus independent

from the reward functions.

7.7.

LEARNING OPTIMAL BEHAVIOUR AT RUN-TIME

Combination Population
CACLA & = B\ &
Flow Time Ratio 100 0 0
80 10 10
60 20 20
40 30 30
20 40 40
Scheduling Success Rate 100 0 0
80 10 10
60 20 20
40 30 30
20 40 40
Waste Ratio 100 0 0
80 10 10
60 20 20
40 30 30
20 40 40

Table 7.2: Evaluation setup

164 CHAPTER 7. EVALUATION

1 FJ.E:
ADA ———
0,95 SSR
HR -
8.9 FTR "
0.85 = e
o 0.8
ﬂ!
Zamse
o
a.7
0,65
8.6
08.55
8.5
28 38 98 188

48 58 (1] 78
Amount of Modular Agents

Figure 7.20: Fitness of CACLA (ADA) agents with SSR, WR and FTR as reward

functions compared to adaptive agents in different disturbance situations

In Figure 7.20, the mean fitness of CACLA agents with three different reward
metrics (flow time ratio (FTR), scheduling success rate (SSR), and waste ratio (WR))
is given and compared to the fitness of non-learning adaptive agents. Fitness is a
weighted sum of the performance that the agents gain from the system and the effort
that they expend to reach this performance. We regard this metric because it is not
one of the metrics used in the reward functions; thus, it measures the performance
independently from the reward, which is used in the learning function’s feedback
loop. This has been done for each population combination from table 7.2.

It can be seen that, in all cases, learning leads to a performance improvement.
In particular, the combination of CACLA with waste ratio or scheduling success rate
is successful.

As fitness is an aggregation of success and effort, we are also interested in the ef-
fects that the different reward functions for CACLA show in other metrics, especially
those used as reward metrics.

Figure 7.21 shows the mean flow time ratio of the agents in the different dis-
turbance situations. Again, the combinations of CACLA and SSR as well as WR
lead to the most successful configurations. CACLA with FTR as a reward function
delivers worse results than the adaptive agents in situations with many (60% to 80%)
disturbing agents.

Similarly, the scheduling success rate (see Fig. 7.22) of modular agents is best
when CACLA combines with SSR and WR; CACLA and FTR show a lowered per-

7.7. LEARNING OPTIMAL BEHAVIOUR AT RUN-TIME

Flow Time Ratio

a

50 e0 70 88
Amount of Modular Agents

FTR

%8 108

Figure 7.21: Flow time ratio of CACLA agents with SSR, WR and FTR as reward

functions compared to adaptive agents in different disturbance situations

Scheduling Success Rate

ROA
FTR —

28 30

58 68 78 i)
Amount of Modular Agents

Figure 7.22: Scheduling success rate of CACLA agents with SSR, WR and FTR as

reward functions compared to adaptive agents in different disturbance situations

166 CHAPTER 7. EVALUATION

formance under high disturbance than do adaptive agents.

In Figure 7.23, the waste ratio evaluation of this scenario can be seen. Under
high disturbances, adaptive agents have a slightly better performance; low to medium
disturbances are again best dealt with by CACLA + SSR and CACLA + WR.

Haste Ratio
0,066 . ; —
ADA
FTR ——
| SSR ——
0,004 HR
g
,802
al |
20 38 108

48 50 68 7a a8
Amount of Modular Agents

Figure 7.23: Waste ratio of CACLA agents with SSR, WR and FTR as reward

functions compared to adaptive agents in different disturbance situations

In order to take a look into the agents, we plotted the decision plane the agents
have learned. An example is given in Figure 7.24. In general, it can be said that
agents learn quite similarly to the 77%““ decision planes. If the workload increases,
the variance between the agents’ decision planes grows, and they learn different
strategies to cope with tincreased load.

Average learned decision plane S

min
max

Workload L Repatation

Figure 7.24: Decision plane learned at runtime

7.7.3 Summary: Learning Agent

After having analysed which learning techniques are best suited to improve the de-

cision mechanisms of our trust-adaptive agents at run-time. In this section, we

7.8. USING PREDICTIONS TO ACT PROACTIVELY 167

evaluated which effect the application of our extended CACLA learning algorithm
had on the performance of the agents, compared to a designer-given threshold de-
cision table. In previous experiments, we realised that the run-time behaviour of
Hedger was unsuitable for the complexity of our system. Hence, we concentrated on
an enhanced version of CACLA. We evaluated which reward metrics are best suited
for use by CACLA to determine an action’s success. All in all, it can be said that
CACLA in combination with the waste ratio metric led to the best results, directly
followed by CACLA using scheduling success rate as the reward metric. CACLA
combined with flow time ratio was unable to cope with high disturbance (60% and
more free-riders and egoists).

Analysing the decision planes that the agents have learned, we found that the
more critical the situation becomes (e.g. high workload), the greater the number of

different solutions for decision planes that agents learn at run-time.

7.8 Using Predictions to Act Proactively

In this section, the functionality of tactical agents 6.9.1 is evaluated. We here regard
multi-step tactical agents, which means that agents are able to analyse a set of former
incidents and thus predict future developments of their situation.

In this experimental setting, we confronted 70 tactical agents with 15 egoistic
agents and 15 free-riders. Jobs to be distributed by the agents occurred according
to a normal distribution within 2000 and 5000 ticks.

Aim of this experiment was to evaluate, whether the inclusion of the ability to
predict future workload situations in agent decisions improves the performance of
agents. As work units usually appear in bursts (each time a job has to be distributed),
it is useful to adapt the agent behaviour as soon as a high workload is likely to appear.

Figure 7.25 shows the performance of agents without the usage of workload pre-
dictions. We conducted the same set of experiments with identical seeds, but this
time enabled agents to adapt their behaviour earlier, which is as soon as the predic-
tion indicates that the workload will rise in the future. The results of the experiments
with usage of workload prediction are shown in Figure 7.26.

It can clearly be seen that the inclusion of workload prediction in agent adap-
tivity can be used to increase agent as well as system performance. Adapting their
behaviour early based on prediction increases the speedup of agents. Due to the
proactivity enabled by workload prediction consideration, agents reach a faster cal-

culation of their work units. Analogously, the flow time ratio decreases, which means

168 CHAPTER 7. EVALUATION
B T 1
all agents m——
adaptive agents
¥ misbehaving agents m—
E 4
St
4
3

29
24 |
1. 09 |
0ag % 058 |
003 004 000 i 005 3l |

waste ratio scheduling success rate average speedup flow time ratio

Figure 7.25: Performance without workload prediction

;a‘nagenh === |
adaptive agents
misbehaving agents m—

7.0
5 1
: |
o 0.8 0.8 i
i 0 038 01 |
002 003 000 - B |

waste ratio scheduling success rate average speedup flow time ratio

Figure 7.26: Performance with workload prediction

7.9. INCLUSION OF NORMS INTO LOCAL AGENT DECISION MAKING 169

that agents reached a faster calculation of their jobs.
The scheduling success rate has been increased by using workload prediction,

which means that agents are more likely to find a suited cooperation partner.

The performance improvements reached by the consideration of workload pre-
diction in agent decisions are further underlined by the comparison of Figures A.5
and A.6 in the appendix. These figures show that the waiting time as well as the
turnaround time could be decreased, work units could be retrieved faster if agents

adapted proactively to future workload increase.

7.9 Inclusion of Norms into Local Agent Decision Mak-

ing

In this section, we present the evaluation results reached using norm-aware agents
(Section 6.9.2). In order to show that the inclusion of institutional norms can lead to
performance improvement on the agent and system levels, we triggered a situation
that cannot be resolved using local knowledge alone. In this experiment setting,
the system is in an overload situation, where agents have to cope with a greater
workload than their standard parameters can handle. Such a situation cannot be
observed locally. Therefore, a norm manager observes the system and, as soon as
it detects the overload situation, legislates a norm recommending that the agents
adapt their parameters so that it leads to a rise in their cooperative behaviour and,

thus, an increase in their likelihood of accepting work units from other agents.

We will first show how the performance of the agents and the system suffers
from this overload situation and how an overload can lead to a trust breakdown over
time. We will then show how the application of norms leads to slight performance
improvements and, more importantly, how a trust breakdown can be prevented by
norms.

The experiments presented here are conducted in a scenario involving 70 agents
(either simply trust-adaptive or norm-aware), 15 egoistic agents and 15 free riders.
The job generation pause has been set as the range from 1,500 to 3,000 ticks, which
in this setting is an extremely high load situation in which agents cannot reach good
performance values by design. The simulation lasted 30,000 ticks, which is roughly
the time during which such an undesired system state can occur. Therefore, longer

experiments with such special system states would be unrealistic.

170 CHAPTER 7. EVALUATION

7.9.1 Overload Workload Situation without Norms

In this experiment, we show how the system behaves in a situation where no norm

tries to counter the agent behaviour in overload.

8 "
all agents —
adaptive agents I
misbehaving agents E—
6|
4}
21 1.85
1.571 4.4
0.70] 0751 0.58
001 001 000 o004 005 o0 .
o =L —_—

waste ratio scheduling success rate average speedup flow time ratic

Figure 7.27: Performance of trust-adaptive agents without overload workload norm

Figure 7.27 shows the performance of trust-adaptive agents in an overload situ-
ation without the overload workload norm. Of course, we cannot expect agents to
achieve a good performance in this critical situation. Despite the low performance,
the iTC formation still works, and misbehaving agents record a worse performance

than do adaptive agents.

In Figure 7.28, we take a deeper look into the agent behaviour and reputation of
the different agents. It is obvious that the overload situation causes a complete loss
of trust relations in the system; all agents reach a negative reputation. Thus, an over-
load situation can lead to a trust breakdown from which the system cannot recover
using only local knowledge. Even if the overload situation is resolved (for instance,
if the applications do not produce too many jobs any more), the agents still remain
in a situation where no cooperation is possible and, thus, no good performance can
be reached.

We will now repeat the experiments in the same situation, but with an institu-

tional overload workload norm in place.

7.9.

INCLUSION OF NORMS INTO LOCAL AGENT DECISION MAKING 171

Reputation [-1:1]

=1

Average reputation of agent types

L I ' averag'e reputation " of adaptive .'agents
H average reputation of freeriding agents
average reputation of egoistic agents

L:] oe88 16688 156888 20008 25680 o088

Figure 7.28: Reputation of agents without overload workload norm

172 CHAPTER 7. EVALUATION

7.9.2 Overload Workload Situation with Norm

In this section, we repeat the above experiment, but enable the norm manager to
legislate an overload workload norm. Since the workload is beyond the amount that
can be handled by the system, we do not expect a speedup that is greater than 1,
but rather, a slight performance improvement in combination with the prevention

of a trust breakdown, which was inevitable in this situation without institutional

norms.
8 "
all agents m—
adaptive agents
misbehaving agents E—
6|
4}
2] 1.66]
148
. 0807 _0.85_p e
04d 064 A
o 001 000 001 Mo

waste ratio scheduling success rate average speedup flow time ratic

Figure 7.29: Performance in overload situation with overload workload norm

Figure 7.29 shows the performance metrics of the overload situation with norms
activated by the norm manager and considered by the norm-aware agents.

We can see that the performance values involving norms are higher than in the
identical situation without norms (Fig. 7.27). Regarding the speedup, for instance,
we can see that the improvement by considering norms in this situation is more than
12%. As stated above, we could not expect the speedup to become greater than 1 in
this setting because it is an overload situation in which agents cannot gain speedup
by distributing their jobs in the grid.

Apart from a slight performance improvement in highly critical situations, we
want the norms to maintain the system in a state from which it can recover. In
order to evaluate this, we regard the reputation of the agents, which, in this situation
without norms (Fig. 7.28), had been negative for all agent types.

Figure 7.30 shows the reputation of the agents in the overload situation with an

overload workload norm activated.

7.9.

INCLUSION OF NORMS INTO LOCAL AGENT DECISION MAKING 173

Reputation [-1:1]

Average reputation of agent types

averag'e reputation "of adaptive .'agents
average reputation of freeriding agents
average reputation of egoistic agents

L:] oe88

Figure 7.30: Reputation

16688 156888 20008 25680 o088

in overload situation with overload workload norm

174 CHAPTER 7. EVALUATION

The misbehaving agents (free-riders and egoistic agents) still achieve a negative
reputation, which is valid and aimed for by the system designer. But the overload
workload norm leads to a situation where agents know that the system is in an
overload situation. They try to be more cooperative, but are also warned that despite
more cooperation, other agents might still not be able to compute all requested
work units. Therefore, although the trust and reputation mechanism has not been
manipulated by the overload workload norm, agents are able to maintain a good
reputation (nearly 0.7). Therefore, as soon as the overload situation is overcome,
agents are in a state where they can easily find cooperation partners, thereby reaching
a good performance. Thus, the overload workload norm was used to prevent the

system from running into a trust breakdown situation.

7.10 Overhead Reduction by Using the Adaptive Obser-

vation Model

The aim of the Adaptive Observation Model (Section 6.9.3) is to enable agents
to manipulate the information they observe. This can affect the parameters they
observe, the scope from which they receive the parameters (e.g. a set of agents,
all agents), and the frequency with which the parameters are updated. Reducing
the parameters, scope and frequency leads to a reduction of communication effort
and, therefore, especially in a scenario like the TDG, a better usage of the available
bandwidth.

7.10.1 Variation of Parameter Type and Scope

Here, we present an experimental setting conducted in order to show how the vari-
ation of parameter types and the set of agents from which they are obtained can be
performed.

Figure 7.31 shows a comparison of two different observation models used by the
agents. In the first set of experiments (Fig. 7.31(a)), the agents used the standard
observation model of iTC agents (see Fig. 6.17). One observable of this model is
W Lyc, the average workload of the agents that are regarded as trustworthy by the
agents and, thus part of its iTC. Obtaining this parameter is expensive because
all trustworthy agents have to be asked as often as possible in order to obtain the
correct value. This value is used as an input in the worker role to adapt the agent’s
cooperative behaviour to the current workload situation. In order to minimise the

communication effort for this value, in Figure 7.31(b), we conducted the same set of

7.10. OVERHEAD REDUCTION BY USING THE ADAPTIVE OBSERVATION MODEL 175

P a8 agerts —
scapisee wperts. m— Tee07 sdapiove sgerts mm—
sest e = | m—-,zm —_
16340472 13pshm e
Lses0? 140517383 Lt 1353663 10
P oweem e
sest Sesct
20at00n.7 27T e
187ER 1 “*-W9 3 1072 52 nmu
ors i .mm 2,
o . o
.uowm- uunu\nvmw .uowm- uunu\nvmw

(a) High communication effort to retrieve average (b) Reduced communication effort by using
workload from all agents of the iTC agent’s own workload as input for the decision

mechanism

Figure 7.31: This awareness adaptation not only reduces communication effort, but

can also improve performance (flow time and waiting time).

experiments, but used the agent’s own workload instead of determining the average
of all trustworthy agents.

This slight adaptation of the observable (private knowledge instead of community
knowledge) not only led to a similar performance, but even to a slight improvement
of the average flow time and waiting time. This indicates that a smart reduction of
observed information can lead to comparable or even better agent decisions. This
adaptation of the observation model led to a reduction of communication costs by
about 14%.

7.10.2 Variation of Sampling Distance

In this experimental setting, we evaluated how the sampling distance of the obser-
vation model can be adapted to the available bandwidth in the system. The less
bandwidth is used for management data like reputation or workload information
exchange, the more bandwidth is available for the user data, e.g. the work units
and their results. In volunteer desktop grid systems, the bandwidth of the agents is
usually defined by the internet connection of the underlying PC. As the grid client
software only uses the idle computing resources, the foreground tasks of the user
should have a higher priority and therefore, the bandwidth available to the agent is
only the remaining bandwidth, which is not used by the foreground tasks. There-
fore, limited bandwidth is an issue such systems need to cope with. The sampling
distance of the observation model defines, how often the observed parameters are

updated. On the one hand, updating more often than necessary leads to an un-

176 CHAPTER 7. EVALUATION

necessary reduction of the available bandwidth. On the other hand, be updating
too seldom, agents can miss important information. The types of information which
might be missed by a sampling distance, which is too high for the agent to make a

good decision, are:
e new agents (esp. potential workers) entering the system

e agents leaving the system

changes in the system’s workload situation, which might need behaviour adap-

tation

changes in the behaviour of an agent (e.g. becoming more altruistic and thus

a potential worker or becoming egoistic and thus untrustworthy)

Therefore, the ability to adapt the sampling distance at runtime to the current
situation’s needs is an important ability for agents and thus one of the key advantages
of the adaptive observation model.

In the simulations conducted for these experiments, we use a simple bandwidth
model, which, as soon as the available bandwidth of an agent in a time sliding
window is exceeded, has a probability of a collision leading to message extinction.
Despite several collision avoidance techniques, collisions are still an issue, especially
in UDP (User Datagram Protocol)-based connections like used by Wireless LAN (e.
g. discussed in [120]. Moreover, several foreground applications run by users (e.g.
TV streaming) exploit a lot of bandwidth and thus the grid client agent needs to
adapt its bandwidth usage accordingly.

In Figure 7.32, we evaluated which sampling distances are best suited for a
scenario of 70 AOM agents, 15 free-riders and 15 Egoistic agents with a normal
distribution of workload.

We varied the bandwidth from 10000 messages per tick interval to 300000 mes-
sages per interval. Additionally, we evaluated the setting with unlimited bandwidth,
which used to be the standard setting at design time of the TDG and the agent algo-
rithms. In the scenario setting with unlimited bandwidth, a sampling distance of 1,
which means updating the observed parameters each tick, reached the best speedup,
followed by sampling distance 10. In this setting, a sampling distance of 100 still
reached quite good results. This is reasonable because, in this setting, neither the
agent society nor the workload situation changed severely. Therefore, the agents did

ns

not "‘miss"’” many information between two sampling time points.

7.10. OVERHEAD REDUCTION BY USING THE ADAPTIVE OBSERVATION MODEL 177

— speedupSD 1

——speedup SD 100

4 —— speedup SD 10
N —— speedup SD 1000
2
1
[
S53335925833338.8.8.833323 888333385873
88858888885 :8888¢8s:888¢gs8¢s8¢8¢8¢:
SRES88RE88SS8S8888¢8¢8¢:cRg83¢es8¢g8¢E
available bandwidth [messages/tickinterval] E

Figure 7.32: Speedup of different sampling distances used in different bandwidth

limitation scenarios

Tn general, especially if the system is dynamic (new, unknown agents enter the
system), a smaller sampling distance is usually better, but as soon as the bandwidth
is limited, our evaluations have shown that the timeliness of the information is less
important than the reduction of message overhead, because lost messages lower the
performance severely.

As soon as the bandwidth is limited, the formerly optimal sampling distance 1
shows to reach lower speedup (see Fig. 7.32), because too many messages collide and
information like reputation updates are lost due to collisions. Here, the sampling
distances 10 and 100 both show a constantly high speedup despite bandwidth reduc-
tion. Nonetheless, a sampling distance of 1000 led to a low speedup with unlimited
bandwidth, because, despite the rather static scenario, the information retrieved
from the observation was too deprecated to allow for optimal behaviour decisions.
In situations with very low bandwidths (up to 20000), the sampling distance 100
reaches a higher speedup than sampling distance 10, collisions are prevented, but
still the information is more accurate than in the scenario using sampling distance
1000.

This evaluation shows, that there is not one sampling distance optimal for each
situation. Moreover, a continuous autonomous runtime adaptation of the sampling
distance enables agents to always have the best-suited view for the current situation.

The sampling distance should be chosen by the agent based on:

e the system size (number of agents),

178 CHAPTER 7. EVALUATION

e the system dynamics (volatility of agents),

e the available bandwidth,

e the expected behaviour of the agents in the system,

e the system workload,

e the own workload,

e and the amount of work units to be distributed.

The system size influences the number of messages the agent needs to send and
receive, both for the actual cooperation communication (which is the payload, e.g.
requests to compute a work unit, sending results) and for the management informa-
tion like ratings.

The system dynamics, in the TDG defined by the volatility, is a measure how
likely it is that agents join or leave the system. The available bandwidth is an issue
as soon as the system size and dynamics require more messages than can be send
through the channel in order to have a full view of the occurrences in the system.

The expected behaviour can, for instance, be deviated from the reputation of the
agents (e.g. by using the prediction methods presented earlier in this chapter): If an
agent has shown constant behaviour in the past, he is more likely to stay constant.
The higher the workload in the system is, the more communication needs to be
preserved for payload messages.

The more own workload the agent has or will have in the future, the more payload
messages he will send, but the more important an up-to-date view of the available
agents and their reputation is for him.

Based on this analysis, our AOM agents define their observation model as fol-
lows: in general, they choose a sampling distance which is rather high in situations
where agents are known and remain constant. As soon as the situation changes and
requires the agents to stay more alarmed (e.g. unknown agents enter the system),
the sampling distance is minimised to a value, which is small, but still does not
overuse the available bandwidth. This adaptive design of the observation model, es-
pecially regarding the sampling distance, enables agents to always have the necessary

information to make optimal decisions in every situation.

7.11. SUMMARY 179

7.11 Summary

The evaluation has underlined the advantages of the different agent aspects in this
thesis. We have seen that trust-enhanced interaction leads to performance improve-
ments and a higher system robustness. Self-organised mechanisms on agent levels
lead to the creation of iTCs, which are able to detect and isolate misbehaving agents.

We compared our trust-based algorithms to the state of the art of trust-based
and adaptive grid scheduling systems. The self-organised iTC creation led to a bet-
ter grid performance (total flow time, total waiting time) than H-Trust in general
due to the better implementation of fairness within the distributed algorithms. Or-
ganic Grid reached a better performance in undisturbed system states, but could be
outperformed by our algorithms in systems under disturbance.

On the Controller level, we have shown that evolutionary algorithms and learning
can lead to further performance improvement. Especially our extended adaptation of
the CACLA learning algorithms show that agents are able to learn better behaviour
at runtime despite the complexity of continuous situation and action spaces.

Tn order to make agents able to adapt proactively before a situation change
occurs, we implemented and evaluated prediction techniques on agent level. These
prediction techniques lead to a higher horizon of agent behaviour and, therefore, to
performance improvement in changing situations.

By enhancing the agents with norm consideration, we could show that hierarchi-
cal institutional components within self-organised systems are worthwhile and able
to overcome situations where local agent knowledge alone does not suffice. We could
evaluate that these mechanisms are able to prevent the system from being drawn
into a trust breakdown situation.

The different ways of using the Adaptive Observation Model for communication
reduction have been shown to improve the bandwidth usage within the system and
therefore make agents adapt their overhead to the allowance and needs of their

situation.

180

CHAPTER 7. EVALUATION

Chapter 8

Conclusion

8.1 Discussion 181

8.2 Generalisation oL 183

In this thesis, we have shown how agents in open systems can be enhanced with
a trust and reputation mechanism and trust-based interaction algorithms in order
to cope with the information uncertainty caused by the open nature of the systems.

We mainly focused on the class of open organic computing systems, which means
that solutions containing self-x properties and observer/controller-pattern-based agents
are extended with the ability to observe and use trust information in complex coop-

eration decisions.

8.1 Discussion

Our application scenario TDG was chosen due to its open nature and the relevance
of the system to current research. Moreover, we analysed the state of the art of
desktop grid systems as well as the scheduling and matchmaking techniques in such
systems, and compared our approaches to comparable candidates from literature.

We presented our own trust and reputation system on which all trust information
of the agents are based. This system covered both, the requirements of our adaptive
agent architecture and of the application scenario TDG, which were not met by the
current state of the art of trust and reputation models.

The adaptive agent architecture is a general framework where the complexity of
agents in open systems is decomposed into different decision levels. For each agent

complexity level, a class of agents exists, which is able to make decisions based on

181

182 CHAPTER 8. CONCLUSION

the available awareness on this level.

For each class of decision complexity levels (trust-neglecting, trust-aware, trust-
adaptive, trust-strategic), we presented different techniques pertaining to how the
controller side of the agent can be implemented in order to use the available infor-
mation in the best possible way.

Trust-neglecting agents have been introduced as reference implementation and
showed that trust-consideration leads to a performance increase. Two different im-
plementations of trust-aware agents (egoistic agents, free-riders) have been used as
disturbances within the system. These disturbances enabled us to demonstrate the
robustness of our agents and algorithms.

Trust-adaptive agents were implemented in three different design examples.

ITC agents are able to identify and isolate these disturbing agents using local
algorithms; thus, they ensure a good performance and enhance the robustness of the
system.

Based on an analysis of the state of the art, two possibilities regarding how learn-
ing techniques have been applied to trust-adaptive behaviour have been presented.
The evolutionary agent uses a bit-code representation of its behaviour and evolution-
ary algorithms strategies from scratch, thereby finding new solutions. The learning
agent uses the behaviour encoded in the already-successful iTC agents as a starting
point and finds new behaviour solutions in that area by applying a modified version
of the CACLA algorithm.

Trust-strategic agents include long-term and institutional information in their
decision-making process.

One implementation of this class involves tactical agents that identify trends in
situations, make predictions on how these will develop in the future, and adapt their
behaviour proactively.

Norm-aware agents as a second implementation of trust-strategic agents are able
to consider institutional norms in their decision. Therefore, they can overcome situa-
tions that cannot be resolved with local knowledge alone. We have shown that norm
consideration can help agents to overcome overload situations and thus prevent the
system from further damages, e.g. a trust breakdown.

AOM agents as the last implementation of trust-strategic agents combine the
different features and advantages of the agent types. They are able to adapt their
observation model to the current situation. Therefore, they also select the controller
behaviour that is best suited for the situation from the set of all agent-type be-

haviours. We have shown that by evaluating only the information that is relevant

8.2. GENERALISATION 183

for decision making in the agent’s current situation, AOM agents save communica-
tion overheads, thereby leading to a better usage of bandwidth.

On the system level, we have presented two types of TCs. iTCs are formed as
an emergent effect of locally interacting iTC agents. This bottom-up formation led
to an exclusion of misbehaving agents and thereby, to a performance improvement
in well-behaving agents. Moreover, this self-organised formation of the TC leads to
an enhancement of system robustness.

eTCs have been presented as an example of TCs with higher-level components.
In contrast to the implicit definition of a TC, these are managed by an institutional
component. Moreover, membership information is available to and from all agents.
Therefore, this agent organisation allows for algorithms that require a closed envi-
ronment. The eTC consists of only trustworthy agents. Therefore, it is possible to
use algorithms without trust-enhancement within the closed subsystem of the actual
system. For instance, agents could rely on a pull mode like in the Organic Grid,
which might further enhance the load balancing in this undisturbed subsystem.

To sum up, we have presented a combined architecture for an agent hierarchy
and different implementations of classes of this agent hierarchy. We have shown the
benefits of the agent classes and each of their characteristics by evaluating them in
a desktop grid scenario. Nonetheless, the concepts of the agents presented in this

thesis can be applied to many different domains.

8.2 Generalisation

The agents that we have introduced and analysed in this thesis are able to use trust
information and adapt their behaviour in a self-organised way. Therefore, they can
be used in each system that is suited for Organic Computing and self-organisation
techniques.

Due to the encapsulation of the agent decision making process, is also possible
to adapt specific aspects of the agent abilities to other application scenarios and
domains, even without implementing the complete adaptive agent architecture. For
instance, the adaptive observation model as a general concept to enable agents to
adapt their awareness at run-time and thus minimse observation overhead and max-
imise the performance in situations with limited bandwidth is applicable in various
domains and settings. Similarly, the algorithms developed to consider trust, enable
prediction, learn in dynamic environments and consider norms on agent level can be

transferred to other agent-based applications as well.

184 CHAPTER 8. CONCLUSION

Moreover, the concepts presented in this thesis have outstanding abilities with
respect to open systems. They overcome the information uncertainty by using trust
and reputation information, thereby improving the robustness and performance of
such systems. Similarly, an open MAS can be enhanced by the trust-based algorithms
presented here.

We want to point out that desktop grids, in which the agents in this thesis are
evaluated, are only one example of the applications that could benefit from trust-
enhanced agents. Desktop grids are an instance of the general class of CPR prob-
lems. One example of such open CPR problems is energy markets. The so-called
prosumer, which produces and consumes energy (based on the availability of its en-
ergy resource), is growing in importance and self-organised distributed solutions to
match energy resources and requirements are needed. Therefore, the agent-based
algorithms, architectural frameworks and results presented in this thesis can be ap-
plied to any instance of CPR problems. In particular, CPR problems that have to
cope with the openness and volatility of subsystems are candidates that benefit from

the trust-aware agents presented in this thesis.

Bibliography

1

[2

B

[4]

[5]

I6

[7

I8]

A. Jgsang and S. J. Knapskog, “A metric for trusted systems (short paper),”
in Proceedings of the 1998 IFIP/SEC International Information Security Con-
ference, Kluwer, 1998, pp. 16 21. iv, 39, 43, 53

Emre Cakar, Moez Mnif, Christian Miiller-Schloer, Urban Richter, and Hart-
mut Schmeck, “Towards a quantitative notion of self-organisation,” in Proceed-
ings of the 2007 IEEE Congress on Evolutionary Computation (CEC 2007),
September 2007, pp. 4222 4229. iv, 58

SungJin Choi, HongSoo Kim, EunJoung Byun, MaengSoon Baik, SungSuk
Kim, ChanYeol Park, and ChongSun Hwang, “Characterizing and classifying
desktop grid,” in Cluster Computing and the Grid, 2007. CCGRID 2007.
Seventh IEEE International Symposium on, May 2007, pp. 743 748. 3

R. Falcone and C. Castelfranchi, “The human in the loop of a delegated agent:
the theory of adjustable social autonomy,” in IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 2001, vol. 31, pp. 406—
418. 3

BOINC Berkeley Open Infrastructure for Network Computing,
“https://boinc.berkeley.edu/,” |Online; accessed 21-March-2014]. 3

Seti@home, “http://setiathome.berkeley.edu,” [Online; accessed 20-Sept.-
2013]. 3

Hado van Hasselt and Marco A. Wierling, “Reinforcement learning in continu-
ous action spaces,” Proceedings of the 2007 IEEE Symposium on Approzimate
Dynamic Programming and Reinforcement Learning (ADPRL 2007), pp. 272
279, 2007. 4, 59, 62, 110

A.J. Chakravarti, G. Baumgartner, and M. Lauria, “The organic grid: self-

organizing computation on a peer-to-peer network,” IEEE Transactions on

185

186

BIBLIOGRAPHY

9l

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Systems, Man and Cybernetics, Part A: Systems and Humans,, vol. 35, no. 3,
pp. 373 384, May 2005. 4, 23, 34, 137

E. Ostrom, Governing the Commons, Cambridge University Press, 1990. 4,

67

Sungjin Choi, Rajkumar Buyya, Hongsoo Kim, and Eunjoung Byun, “A tax-
onomy of desktop grids and its mapping to state of the art systems,” Tech.
Rep., Grid Computing and Distributed Systems Laboratory, The University
of Melbourne, 2008. 5

David P. Anderson, “Public computing: Reconnecting people to science,” in
Conference on Shared Knowledge and the Web. Residencia de Estudiantes,
Madrid, Spain, 2003. 5

Tan Foster, Carl Kesselman, and Nicholas Jennings, “Brain meets brawn: Why
grid and agents need each other,” in Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AA-
MAS, 2004, pp. 8-15. 7, 19

T. Schéler and C. Miiller-Schloer, “An observer/controller architecture for
adaptive reconfigurable stacks,” Proceedings ARCS 05, pp. 139 153, 2005. 8,
60, 87

S. Varrette, E. Tantar, and P. Bouvry, “On the resilience of [distributed]
eas against cheaters in global computing platforms,” in IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011s, May 2011, pp. 409-417. 17

A.L. Beberg, D.L. Ensign, G. Jayachandran, S. Khaliq, and V.S. Pande, “Fold-
ing@home: Lessons from eight years of volunteer distributed computing,” in
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, May 2009, pp. 1 8. 17

D.P. Anderson, “Boinc: a system for public-resource computing and storage,”
in Fifth IEEE/ACM International Workshop on Grid Computing, 2004. Pro-
ceedings., Nov. 2004, pp. 4-10. 17, 18

Michael R. Garey and David S. Johnson, Computers and Intractability. A
Guide to the Theory of NP-Completeness., W. H. Freeman and Company,
New York, 1979. 18

BIBLIOGRAPHY 187

(18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

M. MadadyarAdeh and J. Bagherzadeh, “An improved ant algorithm for grid
scheduling problem using biased initial ants,” in Computer Research and De-
velopment (ICCRD), 2011 3rd International Conference on, 2011, vol. 2, pp.
373-378. 18

D. Fernandez-Baca, “Allocating modules to processors in a distributed system,”
in IEEE Transactions on Software Engineering, 1989, pp. 1427-1436. 18

R. Sharma, V. Kant Soni, M. Kumar Mishra, and P. Bhuyan, “A survey of
job scheduling and resource management in grid computing,” vol. 4, no. 4, pp.
418-424, 2010. 18

M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in Peer-
to-Peer Computing, 2001. Proceedings. First International Conference on, Aug.
2001, pp. 99-100. 19, 100

Li Lin and Jinpeng Huai, “Qgrid: An adaptive trust aware resource manage-
ment framework,” Systems Journal, IEEE, vol. 3, no. 1, pp. 78-90, march
2009. 21

Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Intro-
duction, Chapter 6.5, 2005. 21

Krishnaveni Budati, Jason Sonnek, Abhishek Chandra, and Jon Weissman,
“Ridge: Combining reliability and performance in open grid platforms,” in Pro-
ceedings of the 16th international symposium on High performance distributed
computing - HPDC ’07. 2007, p. 55, ACM Press. 21, 134

Dayi Zhou and Virginia Lo, “Wavegrid: a scalable fast-turnaround heteroge-
neous peer-based desktop grid system,” in Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium. 2006, TEEE. 22

A.E. El-Desoky, H.A. Ali, and A.A. Azab, “A pure peer-to-peer desktop grid
framework with efficient fault tolerance,” in International Conference on Com-

puter Engineering Systems. ICCES ’07., Nov. 2007, pp. 346-352. 22, 27

Huanyu Zhao and Dr. Xiaolin (Andy) Li, “H-trust simulator,
http://cs.okstate.edu/ huanyu/h-trust/h-trust.html,” [Online: accessed on 10-
Feb-2012], 2008. 22, 142, 143, 209

188

BIBLIOGRAPHY

28]

[29]

(30]

[31]

32]

[33]

[34]

[35]

[36]

J. E. Hirsch, “An index to quantify an individual’s scientific research out-
put,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 102, no. 46, pp. 16569 16572, 2005. 22

Congfeng Jiang, Cheng Wang, Xiaohu Liu, and Yinghui Zhao, “A survey of
job scheduling in grids,” in Advances in Data and Web Management, Guozhu
Dong, Xuemin Lin, Wei Wang, Yun Yang, and Jeffrey Yu, Eds., vol. 4505 of
Lecture Notes in Computer Science, pp. 419-427. Springer Berlin / Heidelberg,
2007. 25, 133, 134

Kirk Pruhs, Jiri Sgall, and Eric Torng, “Online scheduling,” in Handbook of
Scheduling: Algorithms, models, and performance analysis, Joseph Y-T. Leung
and James H. Anderson, Eds., pp. 196-231. CRC Press, Boca Raton, 2004. 25

Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria, “Application-
specific scheduling for the organic grid,” in GRID ’0}: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, Washington, DC,
USA, 2004, pp. 146 155, IEEE Computer Society. 26

HongSoo Kim, SeockIn Kim, EunJoung Byun, ChongSun Hwang, and Jang-
Won Choi, “Agent-based autonomous scheduling mechanism using availability
in desktop grid systems,” in Proceedings of the 15th International Conference
on Computing, Washington, DC, USA, 2006, pp. 174 179, IEEE Computer
Society. 26

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker, “A scalable content-addressable network,” SIGCOMM Comput. Com-
mun. Rev., vol. 31, no. 4, pp. 161-172, Aug. 2001. 26

A.A. Azab and H.A. Kholidy, “An adaptive decentralized scheduling mecha-
nism for peer-to-peer desktop grids,” in International Conference on Computer
Engineering Systems. ICCES 2008., Nov. 2008, pp. 364-371. 27

L. Canon, E. Jeannot, and J. Weissman, “A scheduling and certification algo-
rithm for defeating collusion in desktop grids.” in 31st International Conference
on Distributed Computing Systems. ICDCS 2011., June 2011, pp. 343 352. 27

J. Abawajy, “Fault-tolerant dynamic job scheduling policy,” in Distributed
and Parallel Computing, Michael Hobbs, Andrzej Goscinski, and Wanlei Zhou,
Eds., vol. 3719 of Lecture Notes in Computer Science, pp. 165 173. Springer
Berlin / Heidelberg, 2005. 27, 28

BIBLIOGRAPHY 189

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Shanyu Zhao, Virginia Lo, and Chris GauthierDickey, “Result verification and
trust-based scheduling in peer-to-peer grids,” in Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing, Washington, DC, USA|
2005, pp. 31-38, IEEE Computer Society. 27

Virginia Lo, Daniel Zappala, Dayi Zhou, Yuhong Liu, and Shanyu Zhao, “Clus-
ter computing on the fly: P2p scheduling of idle cycles in the internet,” in In
Proceedings of the IEEE Fourth International Conference on Peer-to-Peer Sys-
tems, 2004, pp. 227 236. 28

Dayi Zhou and Virginia Lo, “Wave scheduler: Scheduling for faster turnaround
time in peer-based desktop grid systems,” in 11th Workshop on Job Scheduling
Strategies for Parallel Processing. ICS 2005. 2005, pp. 194-218, Springer. 28

Chang-Qin Huang, De-Ren Chen, and Hua-Liang Hu, “Intelligent agent-based
scheduling mechanism for grid service,” in Proceedings of 2004 International
Conference on Machine Learning and Cybernetics., Aug. 2004, vol. 1, pp. 16—
21. 28

D. Cenk Erdil and Michael J. Lewis, “Supporting self-organization for hybrid
grid resource scheduling,” in Proceedings of the 2008 ACM symposium on
Applied computing, New York, NY, USA, 2008, SAC "08, pp. 1981-1986, ACM.
28

Kai Lu and A.Y. Zomaya, “A hybrid policy for job scheduling and load balanc-
ing in heterogeneous computational grids,” in Sizth International Symposium
on Parallel and Distributed Computing. ISPDC 07., July 2007. 29

J.O. Melendez and S. Majumdar, “Matchmaking with limited knowledge
of resources on clouds and grids,” in International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS),
July 2010, pp. 102 110. 29

R. Islam, Z. Islam, and N. Leyla, “A matchmaking algorithm for resource
discovery on grid,” in International Conference on Information and Commu-
nication Technology. ICICT ’07., March 2007, pp. 193-196. 29

Md. Rafiqul Islam, Md. Zahidul Islam, and Nazia Leyla, “A tree-based ap-
proach to matchmaking algorithms for resource discovery,” International Jour-
nal of Network Management, vol. 18, no. 5, pp. 427-436, September 2008. 29

190

BIBLIOGRAPHY

[46]

[47]

(48]

[49]

[51]

2

[53]

[54]

R. Raman, M. Livny, and M. Solomon, “Matchmaking: distributed resource
management for high throughput computing,” in The Seventh International
Symposium on High Performance Distributed Computing. Proceedings., Jul
1998, pp. 140-146. 30

M. Imran Shaik, S.M. Saira Bhanu, and N.P. Gopalan, “Distributed grid
resource discovery with matchmakers,” in Second International Conference on
Semantics, Knowledge and Grid. SKG '06., nov. 2006, p. 28. 30

Adriana Tamnitchi, Tan Foster, and Daniel C. Nurmi, “A peer-to-peer ap-
proach to resource discovery in grid environments,” in In High Performance
Distributed Computing. 2002, IEEE. 30

Chang Liu, Zhiwen Zhao, and Fang Liu, “An insight into the architecture of
condor - a distributed scheduler,” in International Symposium on Computer
Network and Multimedia Technology. CNMT 2009., Jan. 2009, pp. 1 4. 30

Zar Lwin Phyo and A. Thida, “Best resource node selection using rough sets
theory,” in 3rd International Conference on Computer Research and Develop-
ment (ICCRD), March 2011, vol. 2, pp. 461 464. 31

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y. Robert,
“Centralized versus distributed schedulers for multiple bag-of-task applica-
tions,” in 20th International Parallel and Distributed Processing Symposium.
IPDPS 2006., april 2006, p. 10 pp. 31

Victor Shafran, Gal Kaminka, Sarit Kraus, and Claudia V. Goldman, “Towards
bidirectional distributed matchmaking,” in Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems - Volume 3,
Richland, SC, 2008, AAMAS 08, pp. 1437-1440, International Foundation for
Autonomous Agents and Multiagent Systems. 31

Raffaele Montella, Giulio Giunta, and Angelo Riccio, “An integrated classad-
latent semantic indexing matchmaking algorithm for globus toolkit based
computing grids,” in Parallel Processing and Applied Mathematics, Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski,
Eds., vol. 4967 of Lecture Notes in Computer Science, pp. 942-950. Springer
Berlin / Heidelberg, 2008. 32

Jik-Soo Kim, Bobby Bhattacharjee, Peter Keleher, and Alan Sussman, “Match-

ing jobs to resources in distributed desktop grid environments,” Tech. Rep.

BIBLIOGRAPHY 191

[55]

6

[57]

[58]

[59]

[60]

[61]

(62]

Technical Report CS-TR-4791 and UMIACS-TR-2006-15, University of Mary-
land, April 2006. 32

J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee, D. Richardson,
D. Wellnitz, and A. Sussman, “Creating a robust desktop grid using peer-
to-peer services,” in IEEE International Parallel and Distributed Processing
Symposium. IPDPS 2007., March 2007, pp. 1 7. 32

Jik-Soo Kim, Beomseok Nam, M. Marsh, P. Keleher, B. Bhattacharjee, and
A. Sussman, “Integrating categorical resource types into a p2p desktop grid
system,” in Proceedings of the 2008 9th IEEE/ACM International Conference
on Grid Computing, Washington, DC, USA, 2008, GRID 08, pp. 284-291,
IEEE Computer Society. 32

S. Esteves, L. Veiga, and P. Ferreira, “Gridp2p: Resource usage in grids and
peer-to-peer systems,” in IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum. IPDPSW 2010., April 2010,
pp- 1-8. 33

Sungjin Choi, Hongsoo Kim, Eunjung Byun, and Chongsun Hwang, “A tax-
onomy of desktop grid systems focusing on scheduling, technical report: Ku-
cse-2006-1120-01,” Department of Computer Science and Engineering, Korea

University, November 2006, Email: lotieye@csse.unimelb.edu.au. 33, 34

Huanyu Zhao and Xiaolin Li, “H-trust: a group trust management system for
peer-to-peer desktop grid,” J. Comput. Sci. Technol., vol. 24, pp. 833 843,
September 2009. 34, 143, 144

J Dunn, “The concept of trust in the politics of john locke,” in Philosophy in
History: Essays on the Historiography of Philosophy, 1984, pp. 279 301. 35

M. Wang, F. Tao, Y. Zhang, and G. Li, “An adaptive and robust reputation
mechanism for p2p network,” in Communications (ICC), 2010 IEEE Interna-
tional Conference on, May 2010, pp. 1 5. 36, 51, 53, 54

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina, “The
eigentrust algorithm for reputation management in p2p networks,” in WWW
03: Proceedings of the 12th international conference on World Wide Web, New
York, NY, USA, 2003, pp. 640-651, ACM. 37, 39, 53, 82

192

BIBLIOGRAPHY

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Asimina Vasalou, Astrid Hopfensitz, and Jeremy V. Pitt, “In praise of forgive-
ness: Ways for repairing trust breakdowns in one-off online interactions,” Int.
J. Hum.-Comput. Stud., vol. 66, pp. 466 480, June 2008. 37, 42

Junsheng Chang, Huaimin Wang, and Yin Gang, “A dynamic trust metric for
p2p systems,” in Grid and Cooperative Computing Workshops, 2006. GCCW
'06. Fifth International Conference on, October 2006, pp. 117 120. 37, 42, 44,
53, 54

T. Beth, M. Borcherding, and Birgit Klein, “Valuation of trust in open net-
works,” in Proceedings of the European Symposium on Research in Computer
Security (ESORICS), Brighton, UK. 1994, pp. 3 18, Springer-Verlag. 37, 53

A.A. Selcuk, E. Uzun, and M.R. Pariente, “A reputation-based trust manage-
ment system for p2p networks,” in Cluster Computing and the Grid. CCGrid
2004. IEEE International Symposium on, April 2004, pp. 251-258. 40, 53, 143

Ti Xiong and Ling Liu, “Peertrust: supporting reputation-based trust for
peer-to-peer electronic communities,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 16 (7), pp. 843 857, July 2004. 41, 49, 53

Audun Jgsang, Ross Hayward, and Simon Pope, “Trust network analysis with
subjective logic,” in Proceedings of the Australasian Computer Science Con-
ference (ACSC’06), Hobart, January 2006. 43, 53

Junsheng Chang, Huaimin Wang, Gang Yin, and Yangbin Tang, “A new
reputation mechanism against dishonest recommendations in p2p systems,” in
WISE 07 Proceedings of the 8th international conference on Web information
systems engineering. 2007, Springer-Verlag Berlin / Heidelberg. 44, 45, 53, 54

Gang Li, Sheng Ge, and Zhenhai Yang, “An affair-based interpersonal trust
metric calculation method,” in The 9th International Conference for Young
Computer Scientists. ICYCS 2008., November 2008, pp. 1938 1943. 45, 53

L. Alboaie and T. Barbu, “Reputation system user classification using a
hausdorff-based metric,” in Computational Intelligence for Modelling Control
Automation, 2008 International Conference on, December 2008, pp. 1035
1040. 46, 53

D. Glynos, P. Argyroudis, C. Douligeris, and D. O’'Mahony, “Twohop: Metric-

based trust evaluation for peer-to-peer collaboration environments,” in Global

BIBLIOGRAPHY 193

(73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Telecommunications Conference. IEEE GLOBECOM 2008. IEEE, December
2008, pp. 1 6. 47, 53

Yunchang Zhang, Shanshan Chen, and Geng Yang, “Sftrust: A double trust
metric based trust model in unstructured p2p system,” in Parallel Distributed
Processing. IPDPS 2009. IEEE International Symposium on, May 2009, pp.
1 7. 48,53, 54

Jianli Hu, Xiaohua Li, Bin Zhou, and Yonghua Li, “A reputation based attack
resistant distributed trust management model in p2p networks,” in Third
International Symposium on Electronic Commerce and Security (ISECS), July
2010, pp. 237-241. 49, 53, 54

Asimina Vasalou, Jeremy Pitt, and Guillaume Piolle, “From theory to practice:
forgiveness as a mechanism to repair conflicts in CMC.,” in Proceedings of
the 4th International Conference on Trust Management (iTrust 2006), Ketil
Stolen, William H. Winsborough, Fabio Martinelli, and Fabio Massacci, Eds.,
Pisa, Italy, May 2006, vol. 3986 of LNCS, pp. 397-411, Springer. 51, 72

Junsheng Chang, Huaimin Wang, Gang Yin, and Yangbin Tang, “Icrep: an
incentive compatible reputation mechanism for p2p systems,” in WISA'07
Proceedings of the 8th international conference on Information security appli-
cations. 2007, Springer-Verlag Berlin / Heidelberg. 53, 54

Oodes, Krisp, and Miiller-Schloer, “On the combination of assertions and vir-
tual prototyping for the design of safety-critical systems,” in ARCS, Schmeck,
Ungerer, and Wolf, Eds. 2002, vol. 2299 of Lecture Notes in Computer Science,
pp- 195 208, Springer. 58

Richter, Mnif, Branke, Miiller-Schloer, and Schmeck, “Towards a generic ob-
server controller architecture for organic computing,” in INFORMATIK 2006
Informatik fiir Menschen, 2006, pp. 112 119. 58

Cakar, Population-Based Runtime Optimisation in Static and Dynamic Envi-
ronments, Ph.D. thesis, Leibniz Universitdt Hannover, 2011. 58, 65, 158

Jorge Casillas, Brian Carse, and Larry Bull, “Fuzzy-xcs: An accuracy-based
fuzzy classifier system,” Congreso Espanol Sobre Tecnologias Y Logica Fuzzy,
vol. 12, pp. 369-376, 2004. 59, 61

194

BIBLIOGRAPHY

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini, “Reinforcement
learning in continuous action spaces trough sequential monte carlo methods,”
2007. 59, 61

Jose Del R. Millan, Daniele Posenato, and Eric Dedieu, “Continuous-action

g-learning,” Machine Learning, vol. 49, pp. 247 265, 2002. 59

William D. Smart and Leslie Pack Kaelbling, “Practical reinforcement learning

in continuous spaces,” 1999. 59, 61

Stewart W. Wilson, “Zes: A zeroth level classifier system,” Evolutionary
Computation, vol. 2, pp. 1 18, 1994. 59

Christopher J.C.H. Watkins, “Learning from delayed rewards,” 1989. 59

J. Mendel, “Fuzzy logic systems for engineering: a tutorial.,” Proceedings of
the IEEE, vol. 83, pp. 345-377. 1995. 61

Simon Haykin, “Feedforward neural networks: An introduction,” 1998. 62

Richard P. Lippmann, “An introduction to computing with neural nets,” IEEE
ASSP Magazine, April 1987. 62

Michael J. Wooldridge and Michael Wooldridge, An Introduction to MultiAgent
Systems (2. ed.), Wiley, Chichester, UK, 2 edition, 2009. 65

The foundation for intelligent physical agents, “Fipa,” . 65

Fabio Bellifemine, A Poggi, and Giovanni Rimassa, JADE - A FIPA-compliant
agent framework, pp. 97-108, The Practical Application Company Ltd., 1999.
65

Gerrit Anders, Florian Siefert, Nizar Msadek, Rolf Kiefhaber, Oliver Kosak,
Wolfgang Reif, and Theo Ungerer, “Temas - a trust-enabling multi-agent sys-

tem for open environments,” Tech. Rep. 2013-04, Informatik, 2013. 66
“Repast simphony,” 2013. 66, 77

Michael E. Bratman, “Intention, plans, and practical reason,” in Center for
the Study of Language and Information (CSLI) Publications, Stanford, CA,
U8, 1999. 66

BIBLIOGRAPHY 195

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Adam Cheyer David L. Martin and Douglas B. Moran, “The open agent archi-
tecture: A framework for building distributed software systems,” in Applied
Artificial Intelligence, 1999, vol. 13, pp. 91 128. 66

Sanjeev Kumar, “The adaptive agent architecture: Achieving fault-tolerance
using persistent broker teams,” in In Proceedings of the Fourth International
Conference on Multi-Agent Systems. 2000, pp. 159 166, IEEE Computer So-
ciety. 66

“Cognitive agent architecture (cougaar) open source project,” . 66

Sven Tomforde, An Architectural Framework for Self-configuration and Self-
improvement at Runtime, Ph.D. thesis, Leibniz Universitdt Hannover, 2011.
66

J. Pitt, D. Ramirez-Cano, M. Draief, and A. Artikis, “Interleaving multi-agent
systems and social networks for organized adaptation,” Computational and
Mathematical Organization Theory, vol. 17, no. 4, pp. 344 378, 2011. 68

T. Khopkar, X. Li, and P. Resnick, “Self-selection, slipping, salvaging, slacking,
and stoning: the impacts of negative feedback at ebay,” in Conference on
Electronic Commerce. 2005, pp. 223 231, ACM Press. 71

Guido Boella, Leendert van der Torre, and Harko Verhagen, “Introduc-
tion to normative multiagent systems,” in Normative Multi-agent Systems,
Guido Boella, Leon van der Torre, and Harko Verhagen, Eds., Dagstuhl, Ger-
many, 2007, number 07122 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFT), Schloss Dagstuhl,
Germany. 72

Guido Boella, Gabriella Pigozzi, and Leendert van der Torre, “Normative
systems in computer science - ten guidelines for normative multiagent systems,”
in Normative Multi-Agent Systems, Guido Boella, Pablo Noriega, Gabriella
Pigozzi, and Harko Verhagen, Eds., Dagstuhl, Germany, 2009, number 09121
in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, Germany. 72, 73

Inc. (OMG) Object Management Group, “Omg object constraint language
(ocl),” Tech. Rep., 2012. 74

Yoonsik Cheon Gary T. Leavens, “Design by contract with jml,” 2006. 76

196

BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Yvonne Bernard, Lukas Klejnowski, Jorg Héahner, and Christian Miiller-
Schloer, “Towards trust in desktop grid systems,” Cluster Computing and
the Grid, IEEFE International Symposium on, vol. 0, pp. 637 642, 2010. 82,
109

Lukas Klejnowski, Trusted Community: A Novel Multiagent Organisation for
Open Distributed Systems, Ph.D. thesis, Leibniz Universitidt Hannover, 2014.
87

Eytan Adar and Bernardo A. Huberman, “Free riding on gnutella,” First
Monday, vol. 5, pp. 2000, 2000. 100

Michael W. Macy and John Skvoretz, “The evolution of trust and cooperation

between strangers: A computational model,” Tech. Rep., Oct. 1998. 104

Y. Bernard, L. Klejnowski, E. Cakar, J. Hihner, and C. Miiller-Schloer, “Effi-
ciency and robustness using trusted communities in a trusted desktop grid.” in
Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2011 Fifth
IEEE Conference on, 2011. 108, 152, 209

R. Rojas, Theorie der neuronalen Netze: FEine systematische Einfihrung,
Springer, 1996. 110

Yvonne Bernard, Lukas Klejnowski, Ronald Becher, Markus Thimm, Jorg Hih-
ner, and Christian Miiller-Schloer, “Grid agent cooperation strategies inspired
by game theory,” in 4. Workshop Grid-Technologie fiir den Entwurf technischer
Systeme, Dresden, 21.-22. September, 2011, vol. ISSN 1862-622X. 113

Daniel Hughes, Geoff Coulson, and James Walkerdine, “Free riding on gnutella
revisited: The bell tolls?,” IEEE Distributed Systems Online, vol. 6, no. 6, 2005.
131

I. Eyal and E. G. Sirer, “Majority is not Enough: Bitcoin Mining is Vulnerable,”
ArXiv e-prints, Nov. 2013. 132

Christiano Castelfranchi and Rino Falcone, Trust Theory: A Socio-Cognitive
and Computational Model, Wiley Publishing, 1st edition, 2010. 132

Kangbok Lee, Joseph Leung, and Michael Pinedo, “Makespan minimization
in online scheduling with machine eligibility,” 4OR: A Quarterly Journal of
Operations Research, vol. 8, pp. 331-364, 2010. 133

BIBLIOGRAPHY 197

[116]

[117]

[118]

[119]

[120]

D. Kondo, D.P. Anderson, and J. McLeod, “Performance evaluation of schedul-
ing policies for volunteer computing,” in IEEE International Conference on
e-Science and Grid Computing, Dec. 2007, pp. 415 422. 134, 135

Christopher Seifert, “Analyse und vergleich von adaptiven und trustbasierten
desktop grid matchmaking-verfahren,” M.S. thesis, Leibniz Universitdt Han-
nover, 2012. 141, 144, 211

Huanyu Zhao and Xiaolin Li, “H-trust: A robust and lightweight group repu-
tation system for peer-to-peer desktop grid,” in 28th International Conference
on Distributed Computing Systems Workshops. ICDCS ’08., June 2008, pp.
235-240. 143

Hartmut Schmeck, Christian Miiller-Schloer, Emre Cakar, Moez Mnif, and Ur-
ban Richter, “Adaptivity and self-organization in organic computing systems,”
ACM Trans. Auton. Adapt. Syst., vol. 5, pp. 10:1 10:32, September 2010. 149,
150

Ashikur Rahman and Pawel Gburzynski, “Hidden problems with the hidden
node problem,” in Proceedings of 23rd Biennial Symposium on Communica-
tions, 2006, pp. 270-273. 176

198

BIBLIOGRAPHY

List of Publications

1

ot

. J. Kantert, Y. Bernard, L. Klejnowski and C. Miiller-Schloer: “Estimation of
reward and decision making for trust-adaptive agents in normative environ-
ments”, in Proceedings of the 27th International Conference on Architecture of
Computing Systems (ARCS 2014), 978-3-319-04890-1, Feb. 25 28, 2014.

. Y. Bernard, L. Klejnowski, D. Bluhm, J. Hihner and C. Miiller-Schloer: “Self-
organisation and Evolution for Trust-adaptive Grid Computing Agents”, in
Evolution, Complexity and Artificial Life, Springer, ISBN: 978-3-642-37576-7
(Print), 978-3-642-37577-4 (Online), 2014.

. J. Kantert, L. Klejnowski, Y. Bernard and C. Miiller-Schloer: “Influence of
Norms on Decision Making in Trusted Desktop Grid Systems - Making Norms
Explicit, Poster at ICAART 2014, in Proceedings of the 6th International Con-
ference on Agents and Artificial Intelligence, March 6 8, 2014.

. Y. Bernard, J. Kantert, L. Klejnowski, N. Schreiber and C. Miiller-Schloer:
“Application of learning to trust-adaptive agents”, Workshop on Social Con-
cepts in Self-Adaptive and Self-Organising Systems, in Proceedings of the Sev-
enth IEEE International Conference on Self-Adaptive and Self-Organising Sys-
tems Workshop (SASOW), IEEE, Philadelphia, USA; Sept. 9-13, 2013.

. J. Kantert, Y. Bernard, L. Klejnowski and C. Muller-Schloer: “Interactive
Graph View of explicit Trusted Communities in an open Trusted Desktop
Grid System”, 2013 Demo Entry, in Seventh IEEE International Conference
on Self-Adaptive and Self-Organising Systems (SASO), IEEE, Philadelphia,
USA; Sept. 9 13, 2013.

. G. Anders, J.-P. Steghofer, L. Klejnowski, M. Wissner, S. Hammer, F. Siefert,
H. Seebach, Y. Bernard, W. Reif, E. André and C. Miiller-Schloer: “Reference
Architectures for Trustworthy Energy Management, Desktop Grid Computing

199

200

BIBLIOGRAPHY

11.

12.

13.

Applications, and Ubigitous Display Environments”, Technical Report 2013—
05, Universititsbibliothek der Universitit Augsburg, Universititsstr. 22, 86159
Augsburg.

. L. Klejnowski, S. Niemann, Y. Bernard and C. Miiller-Schloer: “Using Trusted

Communities to improve the speedup of agents in a Desktop Grid System”,
in Proceedings of the Tth International Symposium on Intelligent Distributed
Computing - IDC 2013, Prague, Czech Republic, Springer, vol. 511, ISBN:
978-3-319-01570-5.

. L. Klejnowski, Y. Bernard, G. Anders, C. Miiller-Schloer and W. Reif: “Trusted

Community - A Trust-Based Multi-Agent Organisation for Open Systems”, in
ICAART 2013 - Proceedings of the 5th International Conference on Agents and
Artificial Intelligence, Barcelona, Spain, 15-18 Feb., 2013.

. M. Pacher, C. Miiller-Schloer, Y. Bernard and L. Klejnowski: “Social Aware-

ness in Technical Systems, The Computer After Me”, Imperial College Press/-
World Scientific Book.

. L. Klejnowski, Y. Bernard, C. Miiller-Schloer and J. Hahner: “Using Trust

to reduce wasteful computation in open Desktop Grid Systems”, TSOS 2012,
in Proceedings of the 10th Annual Conference on Privacy, Security and Trust,
ISBN: 978-1-4673-2323-9, IEEE 2012, pp. 250-255.

Y. Bernard, L. Klejnowski, C. Miiller-Schloer, J. Pitt and J. Schaumeier: “En-
during Institutions and Self-Organising Trust-Adaptive Systems for an Open
Grid Computing Infrastructure”, 2nd Awareness Workshop, in Proceedings of
the 2012 IEEE International Conference on Self-Adaptive and Self-Organising
Systems Workshop (SASOW 2012), IEEE, pp. 163-168, ISBN: 978-1-4673-
5153-9.

Y. Bernard, L. Klejnowski, D. Bluhm, J. Hihner and C. Miiller-Schloer: “An
Evolutionary Approach to Grid Computing Agents”, in Proceedings of the Ital-
ian Workshop on Artificial Life and Evolutionary Computation WIVACE 2012,
pp. 1-12, ISBN: 978-88-903581-2-8.

Y. Bernard, L. Klejnowski, Emre Cakar, J. Hihner and C. Miiller-Schloer:
“Efficiency and robustness using Trusted Communities in a Trusted Desktop
Grid”, in Proceedings of the 2011 Fifth IEEE International Conference on Self-

BIBLIOGRAPHY 201

14.

16.

17.

18.

19.

20.

Adaptive and Self-Organising Systems Workshop (SASOW 2011), IEEE, Oc-
tober 2011, pp. 21 26, ISBN 978-1-4577-2029-1.

Y. Bernard, L. Klejnowski, R. Becher, M. Thimm, J. Hihner and C. Miiller-
Schloer: “Grid agent cooperation strategies inspired by Game Theory”, in Pro-
ceedings 4. Workshop Grid-Technologie fir den Entwurf technischer Systeme
Grid4 TS, Dresden, ISSN 1862-622X, September 21-22, 2011.

. J.-P. Steghdfer, F. Nafz, W. Reif, Y. Bernard, L. Klejnowski, J. Hihner and

C. Miiller-Schloer: “Formal Specification and Analysis of Trusted Communi-
ties”, in Proceedings of the 2010 Fourth IEEE International Conference on
Self-Adaptive and Self-Organising Systems Workshop (SASOW 2010), IEEE;
September 2010, pp. 190 195.

J.-P. Steghdfer, R. Kiethaber, Karin Leichtenstern, Y. Bernard, L. Klejnowski,
W. Reif, T. Ungerer, E. André, J. Hihner and C. Miiller-Schloer: “Trustworthy
Organic Computing Systems: Challenges and Perspectives”, Proceedings of the
7th International Conference on Autonomic and Trusted Computing (ATC
2010), Springer, ISBN: 978-364216575-7, pp. 62-76.

L. Klejnowski, Y. Bernard, J. Hihner and C. Miiller-Schloer: “An architecture
for Trust-adaptive Agents”, Proceedings of the 2010 Fourth TEEE International
Conference on Self-adaptive and Self-organising Systems Workshop (SASOW
2010), IEEE, pp. 178-183, ISBN 978-1-4244-8684-7.

Y. Bernard, L. Klejnowski, J. Hihner and C. Miiller-Schloer: “Towards Trust
in Desktop Grid Systems”, ccgrid, pp. 637 642, 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, IEEE Computer

Society.

Sven Tomforde, M. Hoffmann, Y. Bernard, L. Klejnowski and .J. Hihner:
“POWEA: A System for Automated Network Protocol Parameter Optimi-
sation Using Evolutionary Algorithms”, Beitrage der 39. Jahrestagung der
Gesellschaft fiir Informatik e.V. (GI), 2009, pp. 3177-3192.

M. Hoffmann, M. Wittke, Y. Bernard, R. Soleymani and J. Hihner: “DMC-
trac: Distributed Multi Camera Tracking”, ICDSC 2008. Second ACM/IEEE
International Conference on Distributed Smart Cameras.

202

BIBLIOGRAPHY

Appendix A

Appendix

203

204 APPENDIX A. APPENDIX

A.1 UML Diagrams

learingFunction

1

leamingFuncton |

Figure A.1: The Learning agent framework enabling system designers to exchange

the learning algorithm of trust-adaptive learning agents

Al

UML DIAGRAMS

Figure A.2: The Hedger

implementation based on learning agent framework

[oa]

et Ve ey
g Vet

e e ey rar .

]
arta o owe v oty e, sciey]
sigs ¥ e
(=" ;
=y 1
ot

Figure A.3: UML representation of Adaptive Observation Model

206 APPENDIX A. APPENDIX

A.2 Further Evaluation results

Bt 00T |

500007 |
41 16.70
40+ 00T |
4051562 .25
33t0gj08.r2 3204303387
3e+007 |
204007 |
1e+007 +
51894]_:!1.04 435709003 St
. 79154101 i - 1065974.76

fotad flow time total tumaround time total wailting lime

fime [tick]

Figure A.4: Further performance results of trust-adaptive iTC agents. Misbehaving
agents reach severely higher flow times, turnaround times and waiting times, have
therefore no benefit from participating in the system and are thus excluded from the
TC.

A.2. FURTHER EVALUATION RESULTS 207

' ﬂlw —
1404007 adaptive agents =
1276474407 misbohaving agents m—
1.26+007 |
1e+007 |
i 804006 |
-
Ge+006
404006 |
1861870.72
. mna‘““m“

IOIII'IMIM mﬂmmmum total waiting lime

Figure A.5: Further performance results of tactical agents without workload predic-

tion.
' aill agants m—
1.40+007 | adaptive agents
misbohaving apents E—
1.20+007
164007 |
1.18
T sovo0e -
i
Savc0s | 53251202 saaedrate
4
404006 |
27421 .18
204008 | 1206088 22
832387.38 a3 or
| =
fotal flow time: fotal turnaround time total waiting time

Figure A.6: Further performance results of tactical agents with workload prediction.
The performance has been improved compared to the results in Figure A.5. The
flow times, turnaround times and waiting times of tactical adaptive agents have
been decreased, which means that agents reach a better usage of the system if they

adapt proactively to workload predictions.

208 APPENDIX A. APPENDIX

A.3 Parameter settings

A.3.1 General simulation parameters

The general parameters of the experiment are listed in Table A.1.

Parameter ‘ Value
min_work unit_number_for job 10
max_work unit number for job 15
min_computing costs_for workunit [Tick| 450
max_ computing _costs_for_workunit |Tick| 650
min_job_generation pause |Tick| 2000
max_job_ generation pause [Tick]| 4000
throughput Tnterval [Tick| 10.000
Job Generation Length [Tick] 50.000
Simulation length [Tick| 200.000
Number of agents 100

Table A.1: General simulation parameters

The number of work units for each generated job is randomly chosen in the inter-
val between 10 and 15. The computing costs (number of computation ticks) for each
work unit are uniformly distributed between 450 and 650. The computation time
on an agent is then computed by dividing the computing costs by the Performance
level of the agent, which in this experiment has been randomly initialised between 2
and 5. For instance, a work unit with 500 ticks computing costs which is computed

on an agent with Performance level 5 needs 100 ticks computation time.

The interval, in which the next job is generated, is uniformly distributed between
2000 and 4000 ticks. This interval can be varied in order to increase or decrease the
workload of the system. The throughput interval is used to define the interval in

which the throughput is evaluated.

The last parameters define the maximal time step at which new jobs in the system
are generated (Job Generation Length |Tick]), the simulation length and the number

of agents in the simulation.

A.3. PARAMETER SETTINGS 209

A.3.2 TDG parameters

The results of the TDG runs have been conducted with the tdg specific parameters
listed in Table A.2. Basically, these are responsible to parameterise the worker and

submitter thresholds of the iTC agent decision mechanism 6.8.1.

Parameter Value
ada_work own_high rep 0.3
ada_work own_low_rep -0.2

ada_work others high aggTL 0.2
ada_work others med aggTL | -0.01

ada_ work_others_low_aggTL -0.3
ada_sub min trust req -0.3
ada_sub_med_trust_req -0.005
ada_sub_high trust req 0.3
ada_ workload _low_med 0.05
ada_ workload _med _high 0.3

Table A.2: TDG parameters

The parameters ada_work_own_ high rep and ada_work own_low rep define
the TT®cc boundaries for the low, medium and high classification. The agent de-
cisions whether or not to accept a work unit are based on its own reputation and
the workload in the system defined by ada_workload_low med and ada_workload-
~med_ high as low, medium or high.

The trust value of an agent in submitter role is also discretised into low, medium
and high, which is defined by ada_work others low aggTL, ada_work others-
~med_aggTL and ada_work_others high aggTL.

The sampling in submitter role is defined using ada_ workload_low_med and
ada_workload med_high for work and ada_sub high trust req, ada sub med-

_trust_req and ada_ sub_min_ trust_req for trust thresholds [109].

A.3.3 H-trust parameters

In our experiments, we used the parameters given in [25] where these were defined.

The parameters of our experiments are given in Table A.3.

210

APPENDIX A. APPENDIX

Parameter Value
selectionThreshold 10.0
queryThreshold 7
queryPercentage 0.1
initial TrustRatingMean 75.0
initial TrustRatingStdDev 10.0
initialCredibilityFactor 5.0
minimumCredibilityRating 1
maximumCredibilityRating 10
maximumServiceHistory TableSize 30
localTrust UpdatePeriod 1.000
incrementalQualityRating 0
performanceLevel Threshold -1
initialtrustcount 1
probabilityofinitial Trustvalue 0.0

Table A.3: Simulation parameters of H-Trust

Parameter

Wert

initialFriendListSizePercentage
resultBurst-BurstSize
resultBurstIntervalsCount
childPropagation
initialworkunitrequestsize
maximumchildren

maximumpotentialchildren

[SO SR SO

bestPerformingChildPropagationPeriod | 2.000

oldChildrenTimeoutInterval

1.000

Table A.4: Simulation parameters of Organic Grid

A.3. PARAMETER SETTINGS 211

A.3.4 Organic Grid parameters

We used the parameters listed in A.4, which we either derived from literature or

optimised in our simulation [117] in order to reach the best performance.

A.3.5 Disturbance parameters

Table A.5 lists the parameters used for the disturbance situation for the comparison
of H-Trust, Organic Grid and the TDG.

Parameter Wert
min_ work unit_number_for_job 10
max_work unit number for job 15
min_job_generation pause |Tick]| 2000
max__job_ generation_pause |Tick| 4000
min_computing costs_for workunit |Tick| 450
max_computing costs_for workunit |Tick| 650
throughput_ Interval [Tick| 10.000
Job Generation Length [Tick] 100.000
Simulation Length |Tick| 200.000
Adaptive Agents 70
Egoists 15
Free Riders 15
probability for egoist WU abort 0.9

Table A.5: Simulation parameters for disturbance experiments

212

APPENDIX A. APPENDIX

Curriculum Vitae

Personal Information

Name: Yvonne Bernard

Date of Birth: March 28, 1982

Place of Birth: Hannover

Nationality: German

Education

10/2005-06/2008 Degree in Computer Science at the Leibniz University in Hannover,

Germany (M. Sc.),
Thesis: "Distributed Object Tracking in Smart Camera Networks"

10/2001-10/2005 Degree in Computer Science at the Leibniz University in Hannover,
Germany (B. Sc.),
Thesis: "Implementierung einer Testumgebung mit
Emergenzeigenschaften anhand eines agentenbasierten Simulators"

08/1994-06/2001 Grammar school (Gymnasium Burgdorf), Burgdorf; Abitur 2001
(A-levels)

Experience

06/2008 - 12/2013 Research Assistant at Institut fiir Systems Engineering,

Fachgebiet System- und Rechnerarchitektur

. Research project "OC-Trust": Development of Trustworthy Multiagent Systems

. Tutorial Parallel Computing, Tutorial Organic Computing, Seminar Complex Systems

11/2003 - 05/2008 Student Assistant at Institut fiir Mensch-

Maschine-Kommunikation, Fachgebiet Graphische
Datenverarbeitung

. Tutorial Datastructures and Algorithms, Conference Management, 3D Workshops
10/2006 — 03/2007 Student Assistant at Institut fiir Kartografie
und Geoinformatik
. Programming of graphic rectification (C++, Qt)
06/2002 - 08/2002 Student Assistant in Project "Mentoring fiir Schiilerinnen”
Languages
German Native language
English Fluent both orally and in writing

French Basic knowledge

