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Introduction

Moduli spaces of curves and abelian varieties

A fundamental problem in algebraic geometry is the classification of algebraic
varieties. Moduli spaces represent a solution for this kind of problem. Let us
suppose that we want to classify all geometric objects (algebraic varieties) is a
certain class C up to a fixed equivalence relation. Then the associated moduli
space (if it exists) would be a geometric object M whose points are in one-to-one
correspondence with the equivalence classes of varieties in the class C. Further-
more, the local geometry of M should describe the geometry of deformations of
the varieties in C. When this correspondence is complete, we speak of fine moduli
spaces. By relaxing these requirements, one can get what is called a coarse moduli
space.

If one wants to classify algebraic varieties of fixed dimension, the first interest-
ing case is the classification of algebraic varieties of dimension 1, i.e., of algebraic
curves. In this case, there is a fundamental invariant to be taken into account:
namely, the genus of the curve. For a non-singular curve C' over the fields of
complex numbers, the genus can be defined geometrically as the dimension of
the space of regular differentials on C', or topologically interpreting C as a real
orientable surface and taking its topological genus (i.e. the number of “holes” of
the surface). The importance of the genus lies in the fact that two non-singular
curves can be deformed into each other if and only if they have the same genus.
In particular, to obtain a connected moduli space, we need to fix the genus of the
curves we consider. It is a fundamental result that the moduli space of smooth
curves of genus g exists for every g > 2. The coarse moduli space M, is a quasi-
projective variety that can be constructed using geometric invariant theory [M65,
Thm 5.11].

Furthermore, the costruction of the moduli space can be extended to the case
of smooth genus ¢ curves with n distinct marked points. In this case the objects
that are classified are n + 1-tuples (C,p,...,p,) where C is a smooth genus g
curve and the p; are distinct points on C. Two n-pointed curves (C,py,...,p,)
and (C',p),...,pl) are isomorphic if there is an isomorphism C' — C’ that maps
pi to p} for every i = 1,...,n. For every pair (g,n) with 29 — 2 +n > 0, the
coarse moduli space Mg, of n-pointed smooth genus g curves exists and is a
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INTRODUCTION

quasi-projective variety with locally quotient singularities. A fine moduli space
M, ,, exists as well, but in general not in the category of quasi-projective varieties.
Instead, to define M, ,, one needs to endow it with a more flexible structure and
work in the category of algebraic stacks [DM69, Kn83|. Then M, ,, exists and is
a smooth irreducible Deligne-Mumford stack of dimension 3g — 3 + n.

Moduli spaces of smooth curves are almost never complete (the only exception
is My 3, which is a point). On the other hand, they admit a natural compactifica-
tion, the Deligne-Mumford compactification Mg,n, the moduli space of n-pointed
stable curves of genus g, i.e. nodal n-pointed curves of arithmetic genus g with
finite automorphism group.

A different class of projective varieties whose moduli spaces have been inten-
sively studied is the moduli space of abelian varieties. An abelian variety is a
projective variety A, together with morphisms +: AXx A — Aand:: A— A
defining a group structure on the set of points of A. A polarized abelian variety
is a pair (4, [L]) where A is an abelian variety and [L] := ¢;(L) € H?(A;Z) is
the first Chern class of an ample line bundle L on A; if the space of sections of L
is 1-dimensional, (A, [L]) is called a principally polarized abelian variety.

Over the field of complex numbers, principally polarized abelian varieties of
dimension ¢ are isomorphic to complex tori. In particular, they can always be
written as C9/A for a lattice A = Z9+Zm +- - -+ Z1,, where 1, ..., 7, denote the
rows of a complex g X g-matrix 7 of maximal rank. On the other hand, not every
complex torus admits a polarization, i.e., not all of them are projective varieties.
More specifically, by the Riemann bilinear relations, a complex torus of the form
C?/A admits a principal polarization [L] if and only if the matrix 7 is symmetric
with positive definite imaginary part, i.e. if 7 is an element of Siegel space

H,:={reM(gxg,V): 7="7,3(7) > 0}

In this case, the theory of theta functions provides a canonical choice of the
principal polarization on CY/A.

It is also possible to describe explicitly when two principally polarized abelian
varieties CY/(Z9+71Z) and CY/7'Z are isomorphic. Let us consider the symplectic

group

Sp(29,Z) = {v € GL(2¢,2): 7( _Olg 109 )tvz ( _Olg 109 )}

There is a natural action of the symplectic group on Siegel space, defined by
Sp(2¢9.Z) xH, — H,
A B 4
C D , T — (AT+B)(CT+D) .

It is possible to prove that 7,7" € H, give rise to isomorphic abelian varieties
if and only if they lie in the same orbit for the action of Sp(2g,Z). Hence,

v



INTRODUCTION

the arithmetic quotient A, = H,/ Sp(2¢, Z) is the moduli space of g-dimensional
ppavs. Whether the moduli space so constructed is a fine or a coarse one depends
on the category in which we construct the quotient. The quotient stack yields
a fine moduli space, which is again a smooth Deligne-Mumford stack. If we
consider the quotient as an algebraic variety, we get the coarse moduli space of
Ay, which is a quasi-projective variety with locally quotient singularities.
Differently from the situation with the moduli space of curves and its Deligne—
Mumford compactification, for the moduli space A, one can consider several dif-
ferent compactifications, which are “natural” from different points of view. For
instance, the theory of moduli forms allows to construct the Satake compactifica-
tion .AS"“, which is in some sense the minimal compactification of 4,. However,
this compactification does not have a modular interpretation and moreover it
is also very singular. To solve this problem, Mumford et al. [AMRT75] intro-
duced the theory of toroidal compactifications of A,. Their approach allows to
construct a compactification of 4, starting from a certain combinatorial object:
namely, an admissible fan in the cone of positive semidefinite quadratic forms
in g variables. In this thesis we shall consider two of the most notable toroidal
compactifications of A4,: the perfect cone compactification Agerf and the second
Voronoi compactification A\g’(’r. The former is the toroidal compactification which
is most natural from the point of view of the birational geometry [SB06]. The
latter compactification is more natural from the point of moduli theory, because
it is the normalization of the main component of the moduli stack of certain
generalizations of principally polarized abelian varieties [A102, O108].

Cohomological investigations

In this thesis, we deal with moduli spaces from the point of view of a basic topo-
logical invariant: the cohomology with rational coefficients. This is an important
invariant, which can be used for instance to get information on the Chow groups
of the spaces considered and on their compactifications. Furthermore, in the spe-
cific case of moduli spaces of curves and abelian varieties, the knowledge of the
rational cohomology has applications in number theory (mainly in the study of
modular forms) and in mathematical physics (string theory). We will concentrate
on specific moduli spaces and describe the rational cohomology groups as graded
vector spaces with mixed Hodge structures.

Curves of genus 3 with extra structure

In the first chapter, we calculate the cohomology of the moduli space Msj, of
curves of genus 3 with 2 distinct marked points. The starting point is the well
known fact that a non-hyperelliptic curve of genus 2 can be canonically embedded
as a smooth cruve of degree 4 in the projective plane P?. If we denote by Hs 5 the
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locus of hyperelliptic curves in M3 o, we can interpret M3 o\ Hs 2 as parametrizing
equivalence classes of triples (y,p,q) where ¢ is a non-singular homogeneous
quartic polynomial in three variables and p, ¢ are two distinct points in P? lying
in the vanishing locus of ¢, up to the natural action of GL(3) on the coordinates.
On the one hand, the quotient map from the space Z, parametrizing the triples
(p,p,q) to Msa \ Hso allows to deduce the cohomology of M3, from that of
7T, in a straightforward way via a Leray spectral sequence. On the other hand,
the cohomology of Zy can be computed explicitly. This part of the computation
is based on a development of Vassiliev—Gorinov’s method for the computation
of complements of discriminants (see [Vas99, Gor05, Tom05]). This requires to
study the Borel-Moore homology of the space D of triples (p,p,q) where the
polynomial ¢ is singular. The space D possesses a structure given by the singular
locus of its elements. This allows to construct a cubical space whose geometric
realization is properly homotopy equivalent to that of D, so that the Borel-
Moore homology of both spaces coincides. Furthermore, this geometric realisation
admits a natural filtration that defines a spectral sequence converging to the
Borel-Moore homology of D. From the Borel-Moore homology of D we recover
the cohomology of Z, by combining a long exact sequence and the duality between
Borel-Moore homology and cohomology.

It is important to observe that this whole construction respects mixed Hodge
structures and the natural action of the symmetric group &, by interchanging the
two marked points. Therefore, in our result we get a description of H®(Ms2; Q)
including its structure as Ga-representation and its mixed Hodge structures.

In the second chapter, we use similar techniques to approach a different task:
determining the cohomology of the moduli space of smooth spin curves of genus 3.
Smooth spin curves of genus g are pairs (C, L) where C'is a smooth genus g curve
and L is a theta characteristic on C, i.e. a line bundle satisfying L®? = ws. A
spin structure is called odd (respectively, even) if the dimension of H°(C; L) is
odd (respectively, even). The situation with moduli spaces of spin curves is simi-
lar as with moduli spaces of curves: they are natural objects that originate from
classical constructions and whose study has also a string-theoretical motivation.
Furthermore, by work of Cornalba [Co89], these moduli spaces admit a natural
modular compactification called the moduli space of stable spin curves. Unfor-
tunately, a complete description of the cohomology of these moduli spaces is
available only for genus g < 2. In these cases, the descriptions rely heavily on the
fact that the curves of genus < 2 are either rational, or elliptic or hyperelliptic.
This allows to get a combinatorical description of theta characteristics on smooth
curves starting from configurations of points on P*.

Genus 3 is the lowest genus such that the general curve is no longer hyperel-
liptic. This makes the study of moduli of spin curves more interesting. In chapter
IT we compute the cohomology of the moduli space of smooth non-hyperelliptic
odd spin curves of genus 3. This gives an independent and more explicit proof
of a result of Looijenga [L093, Cor. 4.5], obtained by a completely different con-

vi
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struction of this space in terms of the complement of an arrangement of divisors
on an algebraic torus.

The starting point of our approach is the classical construction that identifies
non-hyperelliptic odd spin curves of genus 3 with plane quartic curves with a
marked bitangent line up to the action of PGL(3). The strategy of the proof
is similar to that of the first chapter, but is more involved, partially due to the
fact that one needs to distinguish between the cases in which the bitangent is a
proper one (i.e. with two distinct contact points) or whether it is a flex bitangent
(i.e. with one contact point with multiplicity 4).

Orbifold cohomology of moduli of curves

The subject of chapter III is the orbifold cohomology of moduli spaces of curves.
Orbifold cohomology, also known as Chen-Ruan cohomology, has been introduced
by Chen and Ruan in [CR04] as part of the project of extending Gromov-Witten
invariants to orbifolds.

As a vector space, the orbifold cohomology with Q-coefficients of an orbifold
X coincides with the ordinary cohomology of the inertia stack of X, which is
(loosely speaking) the stack parametrizing pairs (x, g) where x is an object of X
and g : x — x is an automorphism of x. The grading of the orbifold cohomology
is obtained by shifting the grading of the ordinary cohomology of each connected
component of the inertia stack by a rational number, called age or fermionic
twist.

In chapter 111, which is joint work with Nicola Pagani (KTH, Stockholm), we
study the inertia stack and the orbifold cohomology of the moduli space M, of
smooth genus g curves. In this case, the inertia stack I(M,) can be viewed as
the moduli space of pairs (C, a) where C' is a smooth genus g and o : C' — C an
automorphism. Following an idea of Fantechi, we describe all components of the
inertia stack of M, by associating to each of them certain numerical invariants
of the cyclic cover C' — C'/«v associated. These invariants arise from the classical
theory of abelian covers developed by Pardini in [Par91]. Furthermore, by a
recent result of Catanese [Cal0] the invariants of the cover identify the connected
components of I(M,).

Subsequently, we apply this theory and work out the details in the case of
curves of genus 3. In this special case we give a complete description of the
additive structure of orbifold cohomology of M3 by identifying all components
of I(M3) and computing the rational cohomology of each of them by a variety
of techniques. Furthermore, we consider the closure of the components (M3)
in the inertia stack of the Deligne-Mumford compactification Mjz. We calculate
the cohomology of these components and the orbifold cohomology of the subring
they generate inside the orbifold cohomology of M.

vii
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Moduli of abelian varieties

In chapter IV, which is based on joint work with Klaus Hulek, we deal with
the cohomology of the moduli space of abelian varieties of dimension 4 and,
more specifically, with the cohomology of two of its toroidal compactifications:
the perfect cone compactification A and the second Voronoi compactification
AYr. In the specific case of genus 4, these two compactifications are strictly
related, because A)°", which is a smooth stack, can be obtained as the blow-up
of A" in one point.

The aim of our work is to gain cohomological information on the cohomology
of AYr and AP starting from known information coming either from moduli
spaces of abelian varieties of smaller dimension or from moduli spaces of curves.
To this end, we exploit the combinatorial structure of toroidal compactifications,
which allows to stratify the boundary of them into locally closed subvarieties that
are fibred over moduli spaces of abelian varieties of smaller dimension. A geo-
metric analysis of these strata allows to compute their cohomology using certain
Leray spectral sequences from the cohomology of A for k& < 3 with values in cer-
tain symplectic local systems of small weight. In turn, the cohomology of these
local systems can be computed using information of moduli spaces of pointed
curves, such as Theorem I.1.1 in this thesis.

As for the interior A4, we do not deal directly with its cohomology, but only
with the cohomology of the Zariski closure of the image of the Torelli map My —
Ay, which is an irreducible hypersurface. The knowledge of the cohomology of
this divisor combined with the information from the cohomology of the boundary
suffices to compute the cohomology of AY°" in all degrees different from the middle
one and to compute the cohomology of A2 in degree < 9.

viil
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Chapter I

Rational cohomology of M3

1.1 Introduction

Let us denote by M3 5 the moduli space of non-singular complex projective curves
with two marked points, and by Qs the moduli space of plane quartic curves with
two marked points. In this paper, we prove

Theorem 1.1.1. The rational cohomology groups of Qs and Ms,, with their
mized Hodge structures and their structures as Go-representations, are as follows.

SQ ® Q k‘ — 0,
(SQ + Sl,l) & Q(—l) k= 2,
S -3 k=5
LHQiQ) =4 g0 .
(S2+S811)®@Q(=7) +81, ®Q(-8) k=8,
(0 otherwise.
82 ® Q k - 0,
(D°S;+811)®Q(-1) k=2,
(S2+S1,1) ® Q(—2) k=4,
2. Hk(./\/lgg; Q) = 82 X Q(—S) k= 5,
(S2+8S11) ®Q(—7) k=38,
0 otherwise.

\

Note that the Euler characteristic of M3 5 in the Grothendieck group of mixed
Hodge structures was computed in [BT07], exploiting Jonas Bergstrom’s count
of the number of points of M3, defined over finite fields ([Ber]|). Another com-
putation of this Euler characteristic can be found in [Tom05b, Chapter III]. All
these results agree with the topological Euler characteristic of M3, as calculated
in [BH].

O. Tommasi, Rational cohomology of M3 2. Compos. Math. 143 (2007), no. 4, 986-1002.



CHAPTER 1. RATIONAL COHOMOLOGY OF Mg,

It is well known that the canonical model of a non-hyperelliptic curve of genus
3 is a smooth quartic in the projective plane. Hence Qs is the complement of
the hyperelliptic locus H3 o inside M3 2. Let us start by considering the moduli
space @ of smooth quartic curves in the projective plane. Quartic curves are
defined by the vanishing of polynomials of degree four in three indeterminates,
i.e., by elements of S? := C|xg, z1, Zo]s. Clearly, not every element of S7 defines
a non-singular curve, but we have to exclude the locus ¥2 C S? of singular
polynomials. The action of G = GL(3) on the coordinates zg, x1, x2 induces an
action on 57 \ X%, and Q is the the geometric quotient of S? \ X2 by the action
of G.

The rational cohomology of S3 \ ¥2 was computed by Vassiliev in [Vas99].
Comparing this result with the rational cohomology of the moduli space Q, as
computed by Looijenga in [L.oo93|, one observes that the cohomology of the space
of non-singular polynomials in S? is isomorphic (as graded vector space) to the
tensor product of the cohomology of the moduli space Q and that of G = GL(3).
Indeed, Peters and Steenbrink [PS03] proved that this is always the case when
comparing the rational cohomology of the space of non-singular homogeneous
polynomials with the cohomology of the corresponding moduli space of smooth
hypersurfaces.

As explained in [BT07, § 5], Peters-Steenbrink’s result can be adapted to
moduli spaces of smooth hypersurfaces with m marked points, when m is small
enough. This requires to replace the space S of homogeneous polynomials of
degree d in z, ..., x, with a certain incidence correspondence. In our case (n =
2,d=4,m = 2) we set

T, == {(a, 8, f) € F(P*,2) x (S]\ X) : f(a) = () = 0},

where F'(P?,2) denotes the complement of the diagonal in P? x P2, The action
of G = GL(3) on P? and 5% can be extended to Z, and the geometric quotient
7,/G is isomorphic to Qs. Then the following isomorphism of graded vector
spaces with mixed Hodge structures holds:

HY(T>; Q) = H*(0:; Q) ® H*(GL(3); Q). (L1.1)

This follows from [PS03], in view of [BT07, Theorem 5.2]. As a consequence,
we have that determining the rational cohomology of 7, immediately yields the
rational cohomology of Qy. Note that the isomorphism (I.1.1) is compatible with
the action of the symmetric group G5 on the cohomology groups of Q, and 7o
induced by the involution interchanging the two marked points.

We compute H*(Z,; Q) by studying the natural projection my: Zy — F(P?2).
The map 7 is a locally trivial fibration, whose fibre is the complement of 32 in
a linear subspace of S7. Therefore, we can compute the cohomology of this fibre
with Vassiliev—Gorinov’s method for the cohomology of complements of discrim-
inants. The study of the Leray spectral sequence associated to the fibration
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allows to determine the cohomology of Z,. In this last step, we will use very often
the relation (I.1.1).

The plan of the paper is as follows. In §§ 1.2 and 1.3 we compute the rational
cohomology of Qs and prove Theorem [.1.1 by the methods explained above. We
conclude the paper with a concise review of Vassiliev—Gorinov’s method.
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Notation
G, the symmetric group in n letters.
gn vector space of homogeneous polynomials of degree d in n+1
d indeterminates g, ..., Zn.
X0 locus of singular polynomials in S7;.
Grothendieck group of rational (mixed) Hodge structures
Ky(HSq)
over Q.
K, (HSG”) Grothendieck group of rational (mixed) Hodge structures
Q endowed with an &,,-action.
Q(m) Tate Hodge structure of weight —2m.
L class of Q(—1) in K¢(HSq).
S Q-representation of &,, indexed by the partition A F n.
S Schur polynomial indexed by the partition A - n.
A; j-dimensional closed simplex.
A interior of the j-dimensional closed simplex.
F(Z,k) space of ordered configurations of k£ distinct points on the
’ variety Z (see Def. 1.4.5).
B(Z, ) space of unordered configurations of k distinct points on the

variety Z (see Def. 1.4.5).

Throughout this paper we will make an extensive use of Borel-Moore homol-
ogy, i.e., homology with locally finite support. A reference for its definition and
the properties we use is for instance [Ful84, Chapter 19].

To write the results on cohomology and Borel-Moore homology groups in a
compact way, we will express them by means of polynomials, in the following
way. Let T, denote a graded Q-vector space with mixed Hodge structures. For
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every i € Z, we can consider the class [T;] in the Grothendieck group of rational
Hodge structures. We define the Hodge—Grothendieck polynomial (for short, HG
polynomial) of T, to be the polynomial

p(T.) = Y _[Tt' € Ko(HSq)[t].

1€Z

If moreover a symmetric group &,, acts on 7, respecting the grading and the
mixed Hodge structures on 7,, we define the &,,-equivariant Hodge Grothendieck
polynomial (for short, &,-HG polynomial) ©®(7,) by replacing K¢(HSq) by
KO(HSS”) in the definition of the HG polynomial.

I.2 Rational cohomology of O,

Consider the space S? of homogeneous quartic polynomials in xg, z1, T9, and de-
note by Y := %2 the discriminant, i.e., the locus of singular quartic polynomials.
For every p € P?, denote by V,, the linear subspace of S of polynomials vanishing
at p. The aim of this section is to calculate the rational cohomology of the inci-
dence correspondence T, = {(a, 3, f) € F(P?,2) x (S2\ X) : f(a) = f(B) = 0}.
Note that knowing the cohomology of Z, is equivalent to knowing the cohomology
of its projectivization

Py ={(a, 3, 1f]) € F(P?,2) x P(S]\ ¥) : f(a) = f(B) = 0},

as the rational cohomology of 7, is isomorphic to the tensor product of the co-
homology of P, and H*(C*; Q).

We will start by applying Vassiliev—Gorinov’s method (see § 1.4) to the cal-
culation of the cohomology of (V, NV,) \ £, where p and ¢ are two fixed distinct
points in P2. Next, we will consider the Leray spectral sequence for the natural
projection my: Zy — F(P? 2). Note that the map 7, is a locally trivial fibration
with fibre isomorphic to V, NV, \ X.

By Alexander’s duality between reduced cohomology and Borel-Moore ho-
mology, we have

H*((V, N V,)\ 55.Q) & Moo (V, 1V, N 55 Q)(—13). (12.1)

To apply Vassiliev-Gorinov’s method to V,NV,NX, we need an ordered list of
all possible singular sets of the elements in V, NV, N¥. We can easily obtain such
a list by an adaptation of the list of possible singular configurations of quartic
curves (like the one in [Vas99, Proposition 6]). For every configuration in the
list, one has to distinguish further whether the singular points are or are not in
general position with respect to p and ¢ (for instance, if p or ¢ are or are not
contained in the singular configuration). This procedure yields a complete list of
singular sets of elements of V, N V; let us denote by R the number of types of
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configurations in the list. As recalled in § 1.4, Vassiliev—Gorinov’s method gives
a recipe to construct spaces ‘X }, A} and a map

lel: |[X] —V,nV,NE

inducing an isomorphism on Borel-Moore homology. The Borel-Moore homol-
ogy of }X } (respectively, }A‘) can be computed by considering the stratification
{Fj}j=1...r (resp., {®;};=1,.. r). The properties of F; and ®; are explained in
Proposition I.4.3. Recall in particular that F} is the total space of a vector bundle
over ®;, and that for finite configurations the Borel-Moore homology of ®; coin-
cides (after a shift in the indices) with the Borel-Moore homology of the space
of configurations of type j with coefficients in a rank 1 local system changing its
orientation every time two points in a configuration are interchanged.

In our case, for most indices j € {1,..., R} the space of singular configura-
tions of type j has trivial Borel-Moore homology in the appropriate system of
coefficients. Hence, the strata F; have trivial Borel-Moore homology. In view of
Lemma 1.4.6, this is the case for configurations with too many points lying on
the same rational curve. Furthermore, the same occurs for configurations con-
taining rational curves as components (see [Tom0ba, Lemma 2.17] and following
remarks).

In Table 1.2 we list all remaining configurations, i.e., all singular configurations
indexing strata that give a non-trivial contribution to the Borel-Moore homology
of ¥ NV, NV, In the same table, we also give a description of the strata of
}A‘ and }X } corresponding to each configuration. From the descriptions, it is
straightforward to compute the Borel-Moore homology of the strata ®; and F;
for 1 < j < 7. The most difficult strata (corresponding to configurations of type
8, 9 and 10) are studied separately in § 1.3. The results there, together with the
description of the strata given in Table 1.2, allow to compute the E! terms of the
spectral sequences in Borel-Moore homology converging to ‘A} and }X , induced
by the filtrations associated, respectively, with {®;} and {F}}.

The columns of the spectral sequences converging to the Borel-Moore ho-
mology of ‘X } and ‘A} can be divided into two blocks: one with the first seven
columns, the other with columns 8, 9 and 10. Looking at Hodge weights, one can
easily prove that all differentials in the spectral sequence between columns in the
block 1-7 and in the block 8-10 are trivial. Furthermore, this behaviour carries
on when one investigates the Leray spectral sequence associated to the fibration
mo. Therefore, we will consider the two blocks separately. The contribution of
columns 1-7 is computed below. The contribution of columns 810 to the rational
cohomology of 75 is computed in § [.3.

In the spectral sequence converging to the Borel-Moore homology of ’A} all
terms in the first seven columns are killed by differentials, with the exception of
an Ga-invariant 1-dimensional homology group in degree 0. This follows from
dimensional reasons: If these classes were not killed, they would give rise to
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4a.

4b.

10.

Table I.2: Singular configurations and their contribution
The point p or the point q.
Stratum: F} is a C''-bundle over ®; = {p, ¢}.
Any point different from p, q.
Stratum: F} is a C%-bundle over &, = P2\ {p, q}.
The pair {p, ¢}.
Stratum: Fj is a C?-bundle over &5 =2 A;.
Pairs of points on the line pq, different from {p, ¢}.
Stratum: Fj, is a C®-bundle over ®,,, which is a non-orientable A;-bundle over
a space which can be decomposed as the disjoint union of C* and B(C,2).
Pairs of points {a, b} with a € {p,q}, b & pq.
Stratum: Fj, is a C8-bundle over ®,,, which is a non-orientable A;-bundle
over the disjoint union of two copies of C2.
Pairs of points {a, b} with a € (pg \ {p,q}), b ¢ pq.
Stratum: Fy is a C’-bundle over ®5, which is a non-orientable A;-bundle over
C* x C2.
Triplets consisting of p, ¢ and another point outside pq.
Stratum: Fg is a C%-bundle over ®¢, which is a Ag-bundle over C2.
Triplets with two points on pg (not both in {p, ¢}) and another point outside
pq.
Stratum: F% is a C’-bundle over ®;, which is a non-orientable A,-bundle
over a space that can be decomposed as the disjoint union of C* x C? and
B(C,2) x C2
Five points a, b, ¢, d, e € P2, such that a, b, d, e, p, q lie on a conic different from
abUde, {c} =abnNde ¢ {p,q} and {p,q} ¢ {a,b,d,e}.
Stratum: Fg is a C-bundle over ®g, which is a A4-bundle over the configuration
space Xg of § [.3.
Six points that are the pairwise intersection of four lines ¢; (1 < i < 4) in
general position, such that {p, ¢} C U, l:.
Stratum: Fy is a C-bundles over @9, which is a As-bundle over the configu-
ration spaces Xy studied in § 1.3. The simplices bundle does not change its
orientation when two lines ¢;, ¢; are interchanged.
The entire P2
Stratum: Fg is an open cone over the space }A
strata ®; with 7 <9.

, which is the union of all
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Table 1.3: First seven columns of the spectral sequence converging to the Borel-
Moore homology of V, NV, NX

22 0 S, ® Q(12) 0 0 0 0 0

21| (Sy +S1.1) ® Q(11) 0 0 0 0 0 0

20 0 S, ® Q(11) 0 0 0 0 0

19 0 S11 ® Q(10) 0 0 0 0 0

18 0 0 0 0 0 0 0

17 0 0 0 (Sy +S11) ® Q(10) 0 0 0

16 0 0 S1.1®Q(9) 0 S, ® Q(10) 0 0

15 0 0 0 S, ®Q(9) S ®Q9) 0 0

14 0 0 0 Si11®@Q(8) 0 0 0

13 0 0 0 0 0 0 0

12 0 0 0 0 0 S11®Q(8) 0

11 0 0 0 0 0 0 S ® Q(8)

10 0 0 0 0 0 0 S11® Q(7)
1 2 3 4 5 6 7

cohomology classes of degree > 14 in the cohomology of (V, N'V,) \ X, and this
is impossible because the latter is affine of dimension 13. As a consequence, the
strata 1-7 do not contribute to the Borel-Moore homology of the open cone Fi,.

The first seven columns of the spectral sequence converging to the Borel—-
Moore homology of Fil; }X ’ are given in Table 1.3. Note that the description of
the strata of the domain }X ’ of the geometric realization given in Table 1.2 allows
us to study the behaviour of each Borel-Moore homology class with respect to
the interchange of the points p, ¢. Table 1.3 includes also the information on the
Gq-action generated by this involution.

In the spectral sequence in Table 1.3, the only possibly non-trivial differential
is dy: EZ 5 — E3 ¢ This is certainly zero, because otherwise we would get a
contradiction with the isomorphism

H((V, N V) \ 5;,Q) = H*(CH Q) @ H (P((V,NVy) \ X); Q).

In view of Alexander’s duality (I.2.1), we have that the part of the rational
cohomology of V, NV, \ ¥ that comes from the first seven columns of Vassiliev—
Gorinov’s spectral sequence has G9-HG polynomial

(1 + Lt) (82 + L2t3(282 + 8171) + L3t48171 + L4t6(82 + 8171) + L5t78171), (122)

where the Gs-action is generated by the involution interchanging p and ¢q. Note
that the second factor of (1.2.2) is the Go-HG polynomial of the cohomology of
the projectivization of V, NV, \ X.

Next, we study the contribution of this part of the cohomology of V,, NV, \ ¥
to the Leray spectral sequence for the fibration my: Z, — F(P?,2). It is simpler
to consider the C*-quotient and study the fibration 7h: Py — F(P?2), which
is a locally trivial fibration with fibre P(V, NV, \ ¥). The E, terms of the
Leray spectral sequence are written in Table 1.4. Note that the space F/(P?,2) is
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Table 1.4: First block of the Leray spectral sequence in cohomology associated
to 74

S1,1 (S2+8S1,1) (S2+S1,1) S
7 ® 0 ® 0 ® ®
Q(-5) Q(-6) Q(=7) Q(-8)
(S2+S1,1) (P2 S2+D%S1,1) (P? 824+ S1,1) (S2+8S1,1)
6 ® 0 ® 0 ® 0 ®
Q(—4) Q(-5) Q(-6) Q(-7)
5 0 0 0 0 0 0 0
4 S<21§1 0 (SQJFQ@SM) 0 (SQJg@SM) 0 S®3
Q(-3) Q(—4) Q(-5) Q(-6)
(B2 S2+S1,1) (D> S2+D*S1,1) (D S2+D>S1,1) (S2+D>*S1,1)
3 ® 0 ® 0 ® 0 ®
Q(-2) Q(-3) Q(—4) Q(-5)
2 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
(S2+8S1,1) (S2+8S1,1) S1,1
0 S, ® 0 ® 0 ®
Q(=1) Q(=2) Q(=3)
0 1 2 3 4 5 6

simply connected and that its cohomology has G»-HG polynomial (so+Ltsy 1) (1+
Lt? + L2t*) with respect to the natural action of G, generated by the involution

(@, 9) < (B, ).

The proof of the following lemma is based on a suggestion by Alexei Gorinov.

Lemma 1.2.1. In the spectral sequence associated to 7}, the differential dy: E2’3 —
Eff’o has rank two.

Proof. Denote by P; C P? x P(S% \ X) the variety of pairs (&,[f]) such that
f(&) = 0. Consider the inclusion i: Py — P; x P; defined by i(a, 5, [f]) =
(e, [f]), (B,[f])). There is a commutative diagram

P L P xPr
ﬂéJ{ J{Tr1><7‘('1 (123)
F(PZ, 2) inclusion P2 % P2,

where m;: P; — P? denotes the natural projection.

In particular, the differentials of the spectral sequences associated to 7} and
m X mp commute with the maps induced by 7 on the Ej; terms of the spectral
sequences.
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Recall from [BT07, Proposition 1] that the differential
By (m) = B(m)

has rank 1. This implies that the differential £y (m % ) &, E{°(m x m) has
rank 2. Since

By (my x my) 2 Ey°(m x m) = HY(P? x P4 Q) @ H(V, \ &; Q)

and
B0 (my) = Ey(rh) = HY(F(P%,2);Q) @ H'(V, NV, \ Z;Q),

one can verify directly that the composition of dy: Ey* (7 x m) — E}%(my x 1)
and the map E;°(m x m) — E;°(w) is surjective. Then the claim follows from
the commutativity of the diagram 1.2.3. O

Proof of Theorem I.1.1. Comparing the Leray—Hirsch isomorphism (I.1.1) with
Table I.4 implies that the entire contribution of the first block to the cohomology
of 7, is determined by the cohomology of Z, in degree < 5. This follows from the
fact that the cohomology of GL(3) is trivial in degree k > 10. Then Lemma 1.2.1,
together with the structure of H*(Zy; Q) as tensor product of GL(3), yields that
the first block contributes

(1 + Lt)(l + L2t3)(1 + L3t5)(82 -+ LtQ(SQ + 8171) -+ L3t582).

to the G5-HG polynomial of H*(Zy; Q). This implies that the S,-HG polynomial
of the cohomology of the moduli space Qy of smooth quartic curves with two
marked points is

So + Lt2(82 + 8171) + L3t582, (124)

plus the term coming from singular configurations of type 8-10. In the next
section (see page 20), we will prove that this term equals

L6t6$2 -+ L7t8(82 -+ 8171) -+ L8t88171. (139)

Summing the contributions of the two block of columns, we get that the G,-
HG polynomial of the cohomology of Qs is

So -+ LtQ(SQ + 8171) -+ L3t582 + L6t6$2 -+ L7t8(82 + 8171) + L8t8$171.

This establishes the first part of Theorem 1.1.1. To prove the second part of
the theorem, recall from [Tom05b, Corollary I11.2.2] that the Go-HG polynomial
of the cohomology of the hyperelliptic locus Hza C M3 is so + Lt*(sg + s11) +
L7t73171, and consider the long exact sequence associated to the inclusion Hsz o —

Mg,gi
— Hf(M;32;Q) — H*(Q2;Q) — H" '(H32;Q) ® Q(—1) — H*'(M3Q) —



CHAPTER 1. RATIONAL COHOMOLOGY OF Mg,

which can be rephrased in Borel-Moore homology as
= Hk(/\/l:s,z; Q) — Hk(Qz; Q) =, ﬁkfl(HS,% Q) — Hkﬂ(/\/l:s,z; Q) — .

If k£ # 8, the differentials d; are always zero for Hodge-theoretic reasons. If
k = 8, both Hg(Q; Q) and H;(Hz2; Q) have a one-dimensional summand of
Hodge weight 0, on which G, acts as the sign representation. Hence, a priori dg
can have either rank 0 or 1. To determine the rank of dg, we observe that both the
cohomology of Hs 9 and Qy were computed using Vassiliev—Gorinov’s method. In
particular, both Hg(Qy; Q) and H;(Hz9; Q) are related to configurations of at
least 4 singular points. Moreover, there configurations correspond to strata of the
geometric realizations that have Borel-Moore homology which is a tensor product
of that of the group acting. This means that both Borel-Moore homology groups
can be interpreted as Borel-Moore homology groups of certain moduli spaces.

Specifically, consider the moduli space N whose elements are isomorphism
classes of triples (C,p,q), where C' is the union of two smooth rational curves
intersecting transversally at 4 distinct points and p, ¢ are any distinct (but pos-
sibly singular) points on C'. Note that the arithmetic genus of such a curve C' is
3. Denote by S the rank 1 local system on A changing its orientation every time
a pair of nodes on C' is interchanged, and denote by A, the closed subset of N
such that the four nodes have the same moduli on both rational components.

Observe that the problem with the determination of dg only concerns the
Hodge weight 0 summands of the Borel-Moore homology groups. For this reason,
in the rest of the proof we will restrict to the Hodge weight 0 summands of each
homology group we consider.

The space N can be written as the disjoint union of locally closed strata, each
of them isomorphic to the quotient by the action of a finite group, of a product
of moduli spaces M, with 4 < n < 6, whose cohomology groups are completely
known (see e.g. [Get95]). Investigating this stratification, one gets that the only
Borel-Moore homology group of Hodge weight 0 is Hy(N;S) = S; 1. Analogous
considerations also apply to Nj,. In that case, one has Hg(Nh;S) = S5 as
only Borel-Moore homology group with Hodge weight 0. By the constructions
in [Tom05b, I11.2], there is a natural isomorphism Hs(N};S) = Hy(Hs2; Q).

The weight 0 part of the Borel-Moore homology of N\ N}, can also be com-
puted directly with Vassiliev—Gorinov’s method. This yields again that the only
non-trivial Borel-More homology group with S-coefficient of N'\ N, is @, S1,1
in degree 4. Moreover, the direct computation shows that Hy(N \ Ny; S) is gen-
erated by two classes, both related to configurations of type (9) in Table I1.2.
This allows to define a surjective map Hy(N \ Nj; S) — Hg(Qs; Q) making the

10
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following diagram commute:

S11 B, S1.1 S11
ik R Ik
0 —— HyWN;S) —— H N\ Ny S) —— Hs(N,;S) —— 0

l !

dg

Hs(Qz?Q) - H?(H:s,z?Q)-
The commutativity of the diagram immediately yields rank dg = ranky =1. O

I.3 Configurations of five and six points

The aim of this section is to compute the contribution of singular configurations
of type 8, 9 and 10 (see Table 1.2) to the rational cohomology of Z, and Q,. For
these configuration, it seems more natural to work directly with the cohomology
of Z,, without having to pass through the study of the fibre of my. This is indeed
possible. Namely, consider the space

D= {(a,8.f) € F(P*,2) x £ : f(a) = f(8) = 0}.

Note that D is a closed subset of V := {(a, 3, f) € F(P?,2) : f(a) = f(B) =
0}. The space V is the total space of a vector bundle over P? and Z, = V \
D. Vassiliev—Gorinov’s method can be exploited to compute the Borel-Moore
homology of D. This is done by defining the singular locus of an element (a, 3, f)
in D as the subset {(«, 3)} x K; of F(P? 2) x P2 where K; denotes the singular
locus of the polynomial f. In particular, the classification of singular sets of
elements of D is obtained from the classification of singular sets of elements of
V, NV, \ X by allowing the pair (p,q) to move in F(P?2).

Even though this is no longer the original setting of Vassiliev—Gorinov’s method,
one can mimic the construction of the cubical spaces A and X (see § 1.4), and ob-
tain cubical spaces A’ and X’ that play an analogous role. In particular, the map
}X ! } — D induces an isomorphism on the Borel-Moore homology of these spaces,
because it is a proper map with contractible fibres. Moreover, for the stratifica-
tions ®' and F’ obtained from the construction of A’ and X’, we have natural
maps &), — F(P?%2) and F] — F(P? 2) which are locally trivial fibrations with
fibre isomorphic to ®,, respectively, F}.

In view of the considerations above, computing the rational Borel-Moore ho-
mology of the spaces @’ and Fj for j € {8,9,10} is enough to get the contribution
of configurations of type 8-10 to the cohomology of Z,. We start by determining
the twisted Borel-Moore homology of the underlying families of configurations
Xg and XJ.

Define Yz C F(P?,2)x F(P?5) to be the space of configurations (p, g, e1, s, €3,
ey, ¢) such that

11
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o {c} =ereaNeses ¢ {p,q};

® P, q, e, 60,63, ¢4 lie on a conic different from the reducible conic ejes U esey;

hd {P;CI} Z {61762,63,64}'

Then X} C F(P? 2)x B(P?5) is isomorphic to the quotient of Y3 by the action of
the subgroup G of &4 generated by the permutations (1,2), (3,4) and (1, 3)(2,4).
The action of G on Yy is given by permuting the four points (eq, ez, 3, e4) in the
configurations. Since G is a subgroup of &y, it makes sense to restrict the sign
representation to it.

Furthermore, note that the conic passing through the points p, q, €1, €2, €3, e4
is uniquely determined for every configuration in Yg. Therefore, Yz can be
embedded in the space W C F(P?2) x F(P?5) x P(S3) of configurations
(p, q, €1, €3, e3,€e4,c, C), such that

o {c} =eieaNeses  {p,q};
e the points p, q, e1, €9, e3, 4 lie on the conic C'
e the conic C is distinct from the reducible conic ejeq U esey.

Hence, we have the chain of inclusions
Y — W — F(P? 2) x F(P?5) x P(S3).

Lemma 1.3.1. Denote by S the local system of coefficients induced on W/G and
X§ by the sign representation on G. Consider the Gq-action generated by the
involution interchanging the points (p,q) € F(P?,2). Then one has

P (Ha(Xg; 8)) = (L1 + L72t%) 5 - p(Hu(PGL(3): Q))-

To prove Lemma 1.3.1, we will consider the quotient of Yg and W by the action
of PGL(3). Since every configuration in W contains points ey, e, e3, e, which are
in general position, the group PGL(3) acts freely and transitively on W, hence
W is isomorphic to the product of PGL(3) and the quotient W/PGL(3). Recall
that PGL(3) is isomorphic to the configuration space of four ordered points in
general position in P?. This yields a natural identification between the quotient
W/PGL(3) and the space

Wg =W N (F(P? 2) x {(E\, Ey, Es, Ey, E5)}),
where
E, =11,0,0], E,=10,1,0], E3=10,0,1], E;=[1,1,1], E5=[1,1,0].

In the following, we identify each element o of G with the automorphism of P?
mapping E; to Ey(;). This allows to consider G as a subgroup of Aut(P?), and

12
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induces an action of G on Wy that makes the isomorphism W = Wy x PGL(3) is
G-equivariant. Note that the action of G on PGL(3) is defined by restricting to G
the natural action of the symmetric group &4 on PGL(3) — F(P? 4) permuting
the four points in the configuration. It is not difficult to prove that the rational
Borel-Moore homology of PGL(3) is G-invariant and hence also G-invariant.

By applying the Kiinneth formula to the Borel-Moore homology of W =
Wg x PGL(3), and considering the part of the Borel-Moore homology which has
the wished behaviour for the action of GG, one gets

H,(W/G;S) =~ H,(Wg/G; S)® H,(PGL(3); Q), (1.3.1)

where S denotes the local system of rank 1 induced by the restriction of the sign
representation to G C &y.
The reasoning above applies to Yg as well as WW. This yields the isomorphism

H, (X4 S) = H((Ys N Wg)/G; S) x H(PGL(3); Q). (1.3.2)

The space W can be described in the following way. Denote by £ the space of
conics passing through the E;’s and distinct from the reducible conic (zg—x1)xe =
0. Note that £ is isomorphic to an affine line. Then we have

Wg ={(p,q,C) € F(P*,2) x L:p,q € C}.

Lemma 1.3.2. In the notation of Lemma 1.3.1, we have p=2(H,(Wg/G;S)) =
L_2t482.

Proof. The space () = Wg/G can be decomposed as the union of a closed locus
K containing all equivalence classes of triples (p, ¢, C') such that C' is a singular
conic, and an open part U where the conic C' is always non-singular.

We compute the Borel-Moore homology of K first. The locus K has two
components, according to the position of the two points p,q. We denote by M
the component of K such that p, ¢ lie on the same irreducible component of C,
and N the component in which p, ¢ lie on two different components of C. The
elements of the intersection M N N are the configurations in which the singular
point of C' is either p or gq.

Up to the G-action, the space M can be identified with the space of ordered
configurations of two points on the projective line x; = 0, hence the Go-HG
polynomial of H,(M;S) is (L7142 + L~2t4)s,.

Next, we identify the space N \ M with a &,-quotient of the space of pairs
(p, q) where p lies on x; = 0, the point ¢ lie on xy — x5 = 0 and both points are
distinct from the intersection point of these lines. The Gs-action interchanges
F, and Ej3, and Fy and E4, and we have to take invariant classes with respect
to it. This implies that the G,-HG polynomial of H,(N \ M;S) is (L~2t%)s,.
Then, from the long exact sequence in Borel-Moore homology associated with

13
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the closed inclusion M — K we can conclude that the G,-HG polynomial of
H,(K;S) is (L™1%2 + 2L 2t%)s,.

Subsequently, we compute the Borel-Moore homology of U by lifting U to
a G-invariant subset U’ C Wpg, and looking for the part of the Borel-Moore
homology of U’ that has the wished behaviour with respect to the G-action. We
have that U’ projects to the locus of non-singular conics in £, which is isomorphic
to C\ {£1}. Note that the action of (1,2) € G on £ = C interchanges the two
singular conics. The projection U — C \ {£1} is a locally trivial fibration
with fibre isomorphic to the space F(R,2), where R is a chosen non-singular
conic through the E;’s. In order to study the action of G on the Borel-Moore
homology of F(R,2), we assume that the conic R is fixed by all automorphisms in
G C Aut(P?). If we fix an isomorphism R = P!, we have that taking the quotient
by G gives finite maps R = P! — P! and F(R,2) = F(P',2) — F(P',2). In
particular, the Borel-Moore homology with standard coefficients of F(R,2) is
isomorphic to that of its quotient by G, hence all Borel-Moore homology classes
of F(R,2) are G-invariant. Hence, the &5-HG polynomial of H,(U;S) is the
product of p(F (P, 2))sy and the HG polynomial of the part of the Borel-Moore
homology of C\ {£1} which is anti-invariant for the involution £ < —¢, which
equals t.

To compute H,(Q; S), we can now use the long exact sequence in Borel-Moore
homology associated to the closed inclusion K — Q:

s f_fk(K§ S) — ﬁk(Q; S) — Hk(US S) — F[kfl([ﬂ S)— -

This yields immediately H(Q;S) = 0 if k > 5 or k < 2. Moreover, we have
0 — FI5(Q:5) — Q(2) % Q2)* ™ A,(Q:S) — 0,

0 — 3(Q; 5) — Q(1) 2 Q(1) 2 Hy(Q; ) — 0.

Then the claim follows from the fact that both d5 and 3 are injections. As we
will see, the subset M UU has trivial Borel-Moore homology with S-coefficients,
hence H(M;S) is contained in the kernel of dj, for every k.

To compute the Borel-Moore homology of M UU, consider the surjective map
m: MUU — L/G obtained by restricting the natural projection Wr — L. The
map 7 is clearly locally trivial on U. We claim that 7 is also locally trivial in a
neighborhood of the point wy in £/G parametrizing singular conics. Up to the
G-action, and possibly the choice of a sufficiently small neighbourhood Uy, we
can assume that this singular conic is Y: x1(z¢ — x2) = 0, and identify 7! (w)
(w € Up) with the locus of triples (Y, a, ) such that « and 3 lie on the line z; = 0.
Then the fibre of 7 near wy can be identified with F'({z; = 0},2) by considering
the projection from the point F,, which maps every non-singular conic in £
onto the line x; = 0. This construction yields a map from the preimage in 7 of
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a neighbourhood of wy to F(P!,2) = F({z; = 0},2), which admits a section.
Hence, the map 7 is a locally trivial fibration over £/G.

Note that this implies that the Borel-Moore homology of M U U in the local
system S is trivial. The Borel-Moore homology of L is clearly G-invariant, hence
the elements of H (M U U;S) have to come from Borel-Moore homology classes
of the fibre of 7, in a local system different from the standard one. The fibre of 7
is isomorphic to a G-quotient of F(P!,2), and the whole Borel-Moore homology
of F(P',2) is G-invariant. For this reason, the fibre of 7 has trivial Borel-Moore
homology in all local systems different from the standard one. O

Proof of Lemma 1.3.1. We start by investigating the space Wg \ Y5 and its quo-
tient " by the action of G. Recall that a configuration (p,q,C) € @ lies in
Q' if and only if {p,q} C {FE1, Es, FE3, E4}. It is easy to see that @’ has two
components, according to whether p and ¢ lie both on the same component of
the reducible conic zo(xg — 1) = 0, or not. Denote by @, the component corre-
sponding to the first case and by (), the component corresponding to the second
case. Up to the action of G, we may assume that for every configuration in @,
we have p = Ey, ¢ = E,. Hence, the space @), is isomorphic to the quotient £/¢,
where the involution ¢ is (3,4) € G C Aut(P?). Since £/¢ is isomorphic to C,
the Borel-Moore homology of @), with S-coefficients is isomorphic to the Borel-
Moore homology of C induced by the sign representation on (1) = S,, which is
trivial.

Analogously, up to the G-action one can assume that p = E;, ¢ = E3 hold
for every configuration in ). In particular, (), is isomorphic to £ = C and is
invariant for the involution interchanging p and ¢. This proves that H,(Q’; ) is
isomorphic to H,(C) and is invariant for the involution p «+ q. Then the claim
follows from the long exact sequence in Borel-Moore homology associated to the
closed inclusion Q' — @ and isomorphism (I.3.2). O

Recall from Table 1.2 that X{ is the locus

P { (p,q,S) € F(P?,2) x B(P?6): }
9 Hrihicica € B(P?,4)(S = Sing(U;7i),p,q € U;mi) [

Observe that giving six points that are the pairwise intersection of four lines
in general position is equivalent to giving the configuration of four lines. Denote
by F(PQV, 4) the space of ordered configurations of lines in general position (i.e.,
such that no three of them pass through the same point), and by B(P?",4) the
analogous space of unordered configurations. Then we have

XS/) = {(p>Qa {r1>7n2ar377n4}) € F(PQ’ 2) x B(P2vj4) pae UTZ} '

We start by investigating the closed subset XY, of configurations (p, ¢, {r;}:) €
X such that p and ¢ lie on the same line r; for some index j.
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Lemma I1.3.3.

7 (Ha(X50: £Q)) = 97 (Ho(F(P',2): Q)) - p(H.(PGL(3); Q).

Proof. Consider the variety
A= {(p,q,r1,72,73,74) € F(P?,2) x F(P?,4) : p,q € 14}

Note that X, is the quotient of A by the action of &3 interchanging 7,79 and
r3. On the other hand, we have A = F(P?!,2) x PGL(3), where we used the
fact that PGL(3) is isomorphic to the space of four lines in general position, and
chosen an isomorphism P! 2 r, (for instance, the one mapping 0 to r; N7y, 1
to 7o N7y and oo to r3 N ry). Hence, we can obtain the Borel-Moore homology
of X{, by taking the Gs-invariant part of the Borel-Moore homology of A. This
establishes the claim. O

Next, we consider X{, := X§ \ X{,.
Lemma 1.3.4.
0% (Ho( Xl £Q)) = (s11 + LtYs,) - p(H(PGL(3); Q)).

Proof. Consider the space

}/9 = {(p7Q7r17T27T37T4) € F(P27 2) X F(P2“,4) 2R UTZ}

Observe that F(P?",4) is isomorphic to PGL(3), and that the group PGL(3)
acts freely and transitively on Yy. The quotient of this action is isomorphic to the
fibre of the projection Yy — F(P?",4) at the configuration (I1,ls, I3, 1), where

lli.To:O, l2:x1:0, l3i.f172:0, l4i$0+[[’1+$2:0.

If we pose L: xor122(x9+x1+x9) = 0, this implies that Yy/PGL(3) is isomorphic
to F'(L,2), and we have an isomorphism

Yy 2 F(L,2) x PGL(3). (L3.3)

Consider the action of &4 on L and F(L,2) defined by identifying every
permutation o € &, with the automorphism of P? sending the line /; to I,, for
all i, 1 < i < 4. The natural action of &4 on F(P2,4) defines an action on
PGL(3) via the isomorphism PGL(3) = F(P?",4), making isomorphism (I.3.3)
G -equivariant. Applying Kiinneth formula and taking the &4-invariant part of
the Borel-Moore homology of Yy yields

H,(Xg: Q) = Ho(F(L,2); Q) ® H,(PGL(3); Q).
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where we used the fact that X is the quotient of Yy by the action of &4, and
that the whole Borel-Moore homology of PGL(3) is &,-invariant.

Let us see what these considerations tell us about the Borel-Moore homology
of X{,. The space X, is isomorphic to the &4-quotient of the product of PGL(3)
and the locus of configurations of two points (a,b) € F(L,2) not lying on the
same component of L. This locus can be decomposed according to whether a and
b are or are not singular points of L into the loci

S1:={(a,b) € F(L,2) : a and b are both singular points},

Sy :={(a,b) € F(L,2) : only one of the points a and b is a singular point of L},
S3 :={(a,b) € F(L,2) : a and b are non-singular points of L}.

The quotient S} /&, consists of only one point, the class of the pair ([1,0, 0],
[0,1,—1]). The quotient S3/&, has two isomorphic components, according to
which point (a or b) is a singular point of L. Consider the case in which a is
singular. Up to the action of &4, we can assume that a is the point [1,0,0] and b
lies on xg = 0. By the definition of S5 we know that b is different from the points
[0,1,—1], [0,0,1] and [0,1,0]. Note that, since we are working modulo &, the
coordinates of b are defined up to the involution interchanging x; and xs. This
proves that both components of S;/&, are isomorphic to C*.

Finally, we determine the Borel-Moore homology of the quotient of S3 by
the action of &4. Up to the action of the group, we can assume that a lies on
the line I3 and b on l;,. The position of both points is determined up to the
involution interchanging the lines [; and lo. If we identify I3 and I, with P!, and
I3 N1y with the point at infinity of the projective line, we have that S3/&, can
be embedded into the quotient of (C\ {£1})? by the relation (¢, s) ~ (—t, —s).
The complement of S3/&, in this quotient is the locus such that either ¢ or s are
equal to +1. We can study (C\ {£1})?/ ~ as follows:

cz i {(x,y,2) € C*: y* = 22} _mod O, C?
(t,s) +—— (t2,ts, s?) — (P4 $2,ts)
(1,s) +— (1,s,5?) — (s2+1,s)
(t,1)  +— (t2,¢,1) — (t* +1,¢),

where the second map denotes the quotient by the action of G, interchanging ¢
and s. Concluding, the spectral sequence associated to this stratification has E!
term as in Table 1.5 (where we have taken into account the Ga-action interchang-
ing a and b).

We can use the geometric description of S, Sy and S3 to determine all differ-
entials of the spectral sequence above. In particular, the the 0-th row is exact, and
both differentials in the row of index —1 have rank 1. Then the claim follows from
the fact that H,(X},; Q) is isomorphic to H,(S;US,US3; Q)% @ H,(PGL(3)). O
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Table 1.5:
110 0 S, ® Q(2)
0] 0 (S2+S11)®@Q(1) (S2+S11)®Q(1)
—11|Ss So+S14 @2 Si1
‘ 1 2 3

Proposition 1.3.5. The Borel-Moore homology groups of the unions of strata
oL U D C ’A’} and F{ U F§U F|, C }X’} are as follows:

O (Ho(PUPG; Q) = (L2594 (L "5y + Ll s1 1 4511)t7) - p(H.(PGL(3); Q)).
(1.3.4)
0 (Ho(FRUFgUF|;; Q) = (L% sy+ (L™ 5o+ L s1,14511)t7)-p(Ho(GL(3); Q)).
(1.3.5)

Proof. Lemmas 1.3.3 and 1.3.4 imply that p2(H,(X}; £Q)) equals (1+L2t3)(1+
L3t75)L78¢16 . (2L~ 2t%sy + (L™ + 1)#%sy,1). Recall from Table 1.2 (page 6) that
®j is a simplices bundle with 5-dimensional fibre. Hence, the Go-HG polynomial
of the Borel-Moore homology of @} equals that of X} multiplied by #°. Analo-
gously, Lemma 1.3.1 and Table 1.2 yield that p®2(H,(®%; Q)) is (1 + L%3)(1 +
L3t P)L78¢1% - (L7268 + L 't7)s,.

We compute the Borel-Moore homology of ¥ := & U &y by exploiting the
long exact sequence

o H (P Q) — Hi(W:Q) — Hi(®h; Q) ™ Hyy (0;Q) — -+ (L3.6)

Both the Borel-Moore homology of ®§ and ®f are tensor products of the
Borel-Moore homology of PGL(3). The question is whether their structure as
tensor products of H,(PGL(3); Q) is respected by the maps in (1.3.6) or not.

We computed in § [.2 that the strata 1-7 do not contribute to the Borel-
Moore homology of F},. Recall that F§ U Fy is a vector bundle of rank 1 over V.
By comparing the geometry of D and its projectivization, we can conclude that

H.(U F;Q) = H.(7;Q) ® H,(C*; Q). (L3.7)

Isomorphism (I.1.1), together with the computation of the Borel-Moore ho-
mology of UZ:1 F! in § 1.2, yields that the Borel-Moore homology of U}ig F! is
a tensor product of H,(GL(3);Q) = H,(C*;Q) ® H,(PGL(3); Q). In view of
(I.3.7), this property implies that the Borel-Moore homology of W is a tensor
product of H,(PGL(3); Q). The only possibility for this is that the maps of the
exact sequence (1.3.6) respect the structure of ®} and @ as tensor products of
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H,(PGL(3); Q). This is important, because it implies that all differentials Jj
in (1.3.6) are determined, once one knows the rank of

2
025 : H25(<Dg)§ Q) = @ Sy ® Q(Q) - H24(<Dé§ Q) =S ® Q(Q)

We claim that do5 has rank one. This would yield part (I1.3.4) in the claim.
Note that, in view of (1.3.7), equality (1.3.4) implies (1.3.5).
Define B C X as the locus of configurations (p, ¢, {r;}) such that

D, q ¢ Slng (UTZ> ’ Pq ¢ {T17T27T37T4}‘

)

Denote by B — B the restriction of the bundle ®; — Xg to B. Next, consider the
locus A C X} of configurations (p, g, {e1, €2, €3, e4}) such that p € eje3, q € esey,
{p,q} N ({e1, e, e3,e4} U (e1e2 Nezes) = 0. Denote by A — A the restriction
of the bundle ®; — X} to A. Note that for every element a = (p,q,{e;}) of
A, the configuration C, := (p, q, {e1ez, e1€3, eae4, e3e4}) is an element of B. This
means that the face of the 4-dimensional open simplex lying above a is identified
(in ’A’ ’) with one of the external faces of the 5-dimensional simplex contained
in B which lies above C, € B. Moreover, this 4-dimensional open simplex is
the only face of C, which lies in \A. Recall that the Borel-Moore homology of
the union of an open simplex and one of its open faces is trivial, because of the
characterization of Borel-Moore homology as the relative homology of the one-
point compactification of a space modulo the added point. This implies that the
Borel-Moore homology of A U B is trivial.
We have the following chains of inclusions:

A — P

open
closed M M closed
AUB— U

open
open U U open
B — .

open
In particular, if we consider the long exact sequence in Borel-Moore homology
associated to the closed inclusion A — AUB, we have that the map Ho5(B; Q) —
Hj4(A; Q) is an isomorphism. By the computation of the Borel-Moore homology
of Xg in Lemmas [.3.1 and 1.3.2 we have that Hyi(A; Q) = Hau(®P4; Q) and
Hos(B; Q) C Has(Py; Q) are both one-dimensional. O

Now that the contribution of strata 810 to the Borel-Moore homology of D
is known, we want to deduce their contribution to the rational cohomology of Zs.
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Then the closed inclusion D — V (for the definition, see the beginning of the
present section) induces a long exact sequence

o HNV; Q) — HM(T5; Q) — iy (D5 Q)(—k) — HE (05 Q) — -+

which in the case of the part of Borel-Moore homology of D that comes from
strata 810, gives the following contribution to the G,-HG polynomial of the
rational cohomology of Z,:

(14 Lt)(1 4+ L) (1 + L*°) (LOCsy + L7t%(so + s11) + L%®s11),  (1.3.8)

hence the contribution of these strata to the HG polynomial of the cohomology
of Q2 is
L6t6$2 + L7t8(82 -+ 8171) -+ L8t88171. (139)

1.4 Vassiliev—Gorinov’s method

In order to make the article as self-contained as possible, we include here an
introduction to Vassiliev-Gorinov’s method for computing the cohomology of
complements of discriminants, following [Tom05a] and [Tom05b]. This review of
the method is by no means complete, and we encourage the interested reader to
consult [Vas99|, [Gor05] and [TomOba).

Let Z be a projective variety, F a vector bundle on Z and V the space of
global sections of F. Define the discriminant > C V as the locus of sections with a
vanishing locus which is either singular or not of the expected dimension. Assume
that ¥ is a subvariety of V' of pure codimension 1. Our aim is to compute the
rational cohomology of the complement of the discriminant, X =V \ ¥. This is
equivalent to determining the Borel-Moore homology of the discriminant, because
there is an isomorphism between the reduced cohomology of X and Borel-Moore
homology of . If we denote by M the dimension of V', this isomorphism can be
formulated as 3

H*(X;Q) = Hope1(3;Q)(—M).

Definition I.4.1. A subset S C Z is called a configuration in Z if it is compact
and non-empty. The space of all configurations in Z is denoted by Conf(Z).

Proposition 1.4.2 ([Gor05]). The Fubini-Study metric on Z induces in a natural
way on Conf(Z) the structure of a compact complete metric space.

To every element in v € V', we can associate its singular locus K, € Conf(Z)U
{0}. We have that Ky equals Z, and that L(K) :={v € V : K C K,} is a linear
space for all K € Conf(Z).

Vassiliev—Gorinov’s method is based on the choice of a collection of families
of configurations Xj,...,Xr C Conf(Z), satisfying some axioms ([Gor05, 3.2],
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[TomOba, List 2.1]). Intuitively, we have to start by classifying all possible singu-
lar loci of elements of V. Note that singular loci of the same type have a space
L(K) of the same dimension. We can put all singular configurations of the same
type in a family. Then we order all families we get according to the inclusion
of configurations. In this way we obtain a collection of families of configurations
which may already satisfy Gorinov’s axioms. If this is not the case, the problem
can be solved by adding new families to the collection. Typically, the elements
of these new families will be degenerations of configurations already considered.
For instance, configurations with three points on the same projective line and a
point outside it can degenerate into configurations with four points on the same
line, even if there is no v € V' which is only singular at four collinear points.

Once the existence of a collection Xj, ..., X satisfying Gorinov’s axioms is
established, Vassiliev—Gorinov’s method gives a recipe for constructing a space
}X ’ and a map

le|: |X| — X,

called geometric realization, which is a homotopy equivalence and induces an
isomorphism on Borel-Moore homology. The original construction by Vassiliev
and Gorinov uses topological joins to construct ’X } This construction was re-
formulated in [Tom05a] by using the language of cubical spaces. This ensures in
particular that the map induced by |e| on Borel-Moore homology respects mixed
Hodge structures.

Vassiliev-Gorinov’s method provides also a stratification {F};};—;  n on ‘X }
Each F} is locally closed in ’X }, hence one gets a spectral sequence converging
to Ho(3; Q) = H,( X}; Q), with E! = H,.,(F,). To compute the Borel-Moore
homology of Fj for all 7 = 1,..., R, it is helpful to use an auxiliary space ‘A},
whose construction depends only on the geometry of the families X ..., Xg, and
which is covered by locally closed subsets {®;};—1. . n.

Proposition 1.4.3 ([Gor05]). 1. For every j =1,..., R, the stratum Fj is a
complex vector bundle over ®;. The space ®; is in turn a fiber bundle over
the configuration space X;.

2. If X; consists of configurations of m points, the fiber of ®; over any x € X,
is an (m—1)-dimensional open simplex, which changes its orientation under
the homotopy class of a loop in X, interchanging a pair of points in x;.

3. If Xp = {Z}, Fg is the open cone with vertex a point (corresponding to the
configuration Z), over |A|\ ®p.

We recall here the topological definition of an open cone.

Definition I.4.4. Let B be a topological space. Then a space is said to be
an open cone over B with vertex a point if it is homeomorphic to the space
B x [0,1)/R, where the equivalence relation is R = (B x {0}).
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The fiber bundle ®; — X, of Proposition 1.4.3 is in general non-orientable.
As a consequence, we have to consider the homology of X; with coefficients not in
Q, but in some local system of rank one. Therefore we recall some constructions
concerning Borel-Moore homology of configuration spaces with twisted coeffi-
cients.

Definition 1.4.5. Let Z be a topological space. Then for every k£ > 1 we have
the space of ordered configurations of k£ points in Z,

F(Zk)y=2Z\ |J {(z,....;) € 2" 2 = 55}

1<i<j<k

There is a natural action of the symmetric group &, on F(k, Z). The quotient
is called the space of unordered configurations of k£ points in Z,

B(Z,k) = F(Z,k) /.

The sign representation 7 (B(Z,k)) — Aut(Z) maps the paths in B(Z, k)
defining odd (respectively, even) permutations of k points to multiplication by —1
(respectively, 1). The local system +Q over B(Z, k) is the one locally isomorphic
to Q, but with monodromy representation equal to the sign representation of
m1(B(Z,k)). We will often call H,(B(Z,k),+Q) the Borel-Moore homology of
B(Z, k) with twisted coefficients, or, simply, the twisted Borel-Moore homology of
B(Z,k).

The following is Lemma 2 in [Vas99].

Lemma 1.4.6. 1. If N > 1, k > 2, the twisted Borel-Moore homology of
B(CN k) is trivial.

2. If N > 1, we have isomorphisms
H (B(PY k); Q) = Hy_ipo1)(G(k — 1,PV); Q)
for every k > 1, where G(k—1,PY) denotes the Grassmann variety of (k—

1)-dimensional linear subspaces in PN . In particular, Hy(B(PY,k); £Q) =
0ifk>N+2.

22



Bibliography

[Gor05)]

[Lo093]

[PS03]

[TomO05a]

[Tom05b]

J. Bergstrom. Cohomology of moduli spaces of curves of genus three
via point counts. Preprint math.AG/0611815, 2006.

J. Bergstrom and O. Tommasi. The rational cohomology of M, Math.
Ann. 338(1):207-239, 2007.

G. Bini and J. Harer. Euler Characteristics of moduli spaces of curves.
Preprint math.AG/0506083, 2005.

W. Fulton. Intersection theory, volume 2 of FErgebnisse der Mathe-
matik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics. Springer-Verlag, Berlin, 1984.

E. Getzler. Operads and moduli spaces of genus 0 Riemann surfaces. In
The moduli space of curves (Texel Island, 1994 ), volume 129 of Progr.
Math., pages 199-230. Birkhauser Boston, Boston, MA, Providence,
RI, 1995.

A. Gorinov. Real cohomology groups of the space of nonsingular curves
of degree 5 in CP?. Ann. Fac. Toulouse Math.(6), 14(3):395-434, 2005.
Preprint available at arXiv:math.AT/0105108.

E. Looijenga. Cohomology of M3 and M3. In Mapping class groups
and moduli spaces of Riemann surfaces (Géttingen, 1991 /Seattle, WA,
1991), volume 150 of Contemp. Math., pages 205-228. Amer. Math.
Soc., Providence, RI, 1993.

C. A. M. Peters and J. H. M. Steenbrink. Degeneration of the Leray
spectral sequence for certain geometric quotients. Mosc. Math. J.,
3(3):1085-1095, 2003. Preprint available at arXiv:math.AG/0112093.

O. Tommasi. Rational cohomology of the moduli space of genus 4
curves. Compos. Math., 141(2):359-384, 2005.

O. Tommasi. Geometry of Discriminants and Cohomology of Moduli
Spaces. Ph.D. Thesis, Radboud University Nijmegen, 2005. Available
at http://webdoc.ubn.ru.nl/mono/t/tommasi_o/geomofdia.pdf.

23



BIBLIOGRAPHY

[Vas99] V. A. Vassiliev. How to calculate the homology of spaces of nonsin-
gular algebraic projective hypersurfaces. Proc. Steklov Inst. Math.,
225(2):121-140, 1999.

24



Chapter 11

Cohomology of the moduli space
of smooth plane quartic curves
with an odd theta characteristic

II.1 Introduction

The subject of this chapter is the rational cohomology of the moduli space Q~ of
smooth plane quartic curves with an odd theta characteristic. In other words, the
elements of Q@ are isomorphism classes of pairs (C, £) where C is a smooth plane
quartic curve and £ is a line bundle on C such that £82 = ws and the dimension
of H°(C, L) is odd. It is a classical results that for a fixed quartic curve C' such
theta characteristics £ correspond to the divisors on C' cut by the 28 bitangents
of C'. Therefore, we can equivalently interpret O~ as the moduli space of pairs
(C, 1) where C' is a smooth quartic curve and 7 is a bitangent line to C'. Note
that there are two possibilities for line 7 to be a bitangent line to a smooth plane
quartic C: either 7 intersects C' in two distinct points with multiplicity two, in
which case we will call 7 a proper bitangent, of T intersects C' in one point with
multiplicity 4, in which case we will call 7 a flex bitangent of C.

Our interest in the cohomology of Q™ arises from a more general interest in
the moduli space S, of genus g curves with a theta characteristics (also known
as smooth spin curves) and in its compactification, the moduli space gg of stable
spin curves, constructed in [Co89]. This space has been extensively studied in the
last years from several points of view, including its birational geometry [Lul0],
combinatorial aspects [CCO03] and intersection theory [FSZ10], mainly motivated
by applications to mathematical physics. Nevertheless, the cohomology of S, and
S, is only known for genus g < 2 [BF07, Kr]. In particular, the computation in
genus 2 heavily depends on the fact that all genus 2 curves are hyperelliptic, so
that theta characteristics can be expressed as linear combinations of Weierstrass

points. In this way, the coarse moduli space of spin curves can be interpreted as
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a moduli space of partially ordered configurations of points on rational curves.
However, these results do not generalise to genus 3.

In the pursuit of cohomological information about Mj, Looijenga studied
the moduli space @~ and identified it with a quotient of the complement of an
arrangement of divisors on an algebraic torus. Using a relation between this
arrangement and the root system Fjg, he proved in [Lo93, Cor. 4.5] the following
result:

Theorem I1.1.1. The cohomology with rational coefficients of Q™ is non-trivial
only in degree k € {0,5,6}. All cohomology groups carry pure Hodge structures.

Specifically, one has H>(Q™; Q) = Q(=5) and H%(Q~; Q) = Q(—6)%2.

Our aim is to give a completely independent proof of Theorem II.1.1 in which
the cohomology classes are directly related to degenerations of the quartic curve
considered. This kind of approach is interesting because it can be generalized
to an open subset of component of the boundary S; \ S; corresponding to irre-
ducible nodal curves. The cohomology of this boundary component is unknown
at present and is the main obstruction to the computation of the cohomology
of S; . Furthermore, our approach could be more suitable for understanding the
map in cohomology associated with the inclusion of Q= into the moduli space
S5 of smooth genus 3 curves with an odd theta characteristic.

To explain our approach, let us start by considering the moduli space Q of
smooth quartic curves in the projective plane. Forgetting the chosen bitangent
yields a map o: Q- — Q, which is finite of degree 28. Quartic curves are defined
by the vanishing of polynomials of degree four in three indeterminates, i.e. by
elements of the vector space V := C|xg, z1, 22]4. Clearly, not every element of
V' defines a non-singular curve, but we have to exclude the locus ¥ C V of
singular polynomials. The action of GL(3) on P? and Clzg, 1, 2] preserves %,
thus inducing an action on V'\ . The moduli space Q is the geometric quotient
of V'\ ¥ by the action of GL(3).

The rational cohomology of V'\ ¥ was computed by Vassiliev in [V99], using his
method for the computation of the cohomology of complements of discriminants.
Comparing this result with the rational cohomology of the moduli space Q, as
computed by Looijenga in [Lo93], one observes that the cohomology of the space
of non-singular polynomials in V' is isomorphic (as graded vector space) to the
tensor product of the cohomology of the moduli space Q and that of GL(3).
Indeed, Peters and Steenbrink [PS03] proved that this is always the case when
comparing the rational cohomology of the space of non-singular homogeneous
polynomials with the cohomology of the corresponding moduli space of smooth
hypersurfaces.

In this chapter we use an analogous construction, in which we replace the
vector space V' of homogeneous polynomials of degree 4 with a certain incidence
correspondence. This follows the approach of [T07], where we considered quartic
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curves with two marked points. A bitangent line 7 to a fixed smooth plane quartic
C is always uniquely determined by the scheme-theoretic intersection of C' and
7, which is a subscheme P C P? of length 2. Note that any P € Hilby(P?) spans
a uniquely defined line /p C P2, If P is the intersection of C' with a bitangent
line, then this bitangent line is exactly /p.

Therefore, we consider the incidence correspondence

I~ = {(P, f) € Hilby(P?) x (V\ )| f|ep € I(P)*}.

The action of GL(3) on P? and V extends to Z~ and the geometric quotient
7~ /GL(3) is isomorphic to Q~. Then the following isomorphism of graded vector
spaces with mixed Hodge structures holds:

HY(17;Q)= H*(Q;Q) ® H*(GL(3); Q).

This follows from [PS03], in view of [BT07, Theorem 5.2]. As a consequence,
we have that determining the rational cohomology of 7~ immediately yields the
rational cohomology of Q™.

A natural way to investigate Z~ and its cohomology is to use the natural
projection 7~ : Z— — Hilby(P?). First one observes that all fibres of 7~ lying
over reduced subschemes in Hilby(P?) are isomorphic. Analogously, all fibres
of 7~ lying over fat points P € Hilby are isomorphic. Furthermore, in both
cases the fibres are the complement of Y in a linear subspace of V. This enable
us to apply Vassiliev-Gorinov’s method for the cohomology of complements of
discriminants [V99, Go05, T05a]) to compute the cohomology of these fibres. The
study of the Leray spectral sequence associated to the restriction of 7~ to the
stratum of Z~ corresponding to proper bitangent, respectively, to the stratum of
7~ corresponding to flex bitangent allows us to determine the cohomology of Z~.

The structure of the chapter is as follows. In Section I1.2 we set up our nota-
tion and we prove the relationship between the rational cohomology of the inci-
dence correspondences we deal with and the cohomology of their GL(3)-quotients.
In Section II.3 we compute the cohomology of the moduli space of plane smooth
quartic curves with a proper bitangent. The proof of this result relies on the
analysis of singular configurations performed in Sections I1.5-11.10. Finally, in
Section I1.11 we prove that the moduli space of smooth plane quartic curves with
a flex bitangent has the rational cohomology of a point. For Vassiliev—Gorinov’s
method, we refer to Section 1.4 in the previous chapter.

Notation
v vector space of homogeneous polynomials of degree 4 in g, 1, x2.
by locus of singular polynomials in V.
Gn the symmetric group in n letters.
V(f) vanishing locus of f.
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Ko(HSq) Grothendieck group of rational (mixed) Hodge structures over Q.

KO(HSS“) Grothendieck group of rational (mixed) Hodge structures endowed with
an &,,-action.

Q(m) Tate Hodge structure of weight —2m.

L class of Q(—1) in K¢(HSq).

S Q-representation of &,, indexed by the partition A F n.

S Schur polynomial indexed by the partition A - n.

A; j-dimensional closed simplex.

Aj interior of the j-dimensional closed simplex.

F(Z,k) space of ordered configurations of k distinct points on the variety Z (see
Def. 1.4.5).

B(Z,k) space of unordered configurations of k distinct points on the variety Z
(see Def. 1.4.5).

+Q the twisted local system over B(Z, k) induced by the sign representation
on 1 (B(Z,k)). Le. the local system +Q is the rank one local system
that changes its orientation under paths inducing an odd permutation
of the points in the configuration.

F(P2,4) open subset of F(P?,4) such that no three points in the configuration
are collinear.

B(P2,4) open subset of B(P?,4) such that no three points in the configuration
are collinear.

P2 the dual projective plane, parametrizing all projective lines in P?.

Throughout this chapter we will make an extensive use of Borel-Moore ho-
mology, i.e. homology with locally finite support, which we will denote by the

symbol H,. A reference for its definition and the properties we use is for instance
[F84, Chapter 19].

To write the results on cohomology and Borel-Moore homology groups in a
compact way, we will express them by means of polynomials, in the following
way. Let T, denote a graded Q-vector space with mixed Hodge structures. For
every i € Z, we can consider the class [T;] in the Grothendieck group of rational
Hodge structures. We define the Hodge—Grothendieck polynomial (for short, HG
polynomial) of 7, to be the polynomial

p(T.) = Y _ITi]t' € Ko(HSq)[t].

1€Z

If moreover the symmetric group &,, acts on T, respecting the grading and
the mixed Hodge structures on T,, we define the &,,-equivariant HG polynomial
0" (T,) of T, by replacing Ky(HSq) by KO(HSS") in the definition of the HG
polynomial.
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I1.2 Setup

In this section, we establish the notation we will use in the next sections. The
main ingredient of our construction is the incidence correspondence Z~ parametriz-
ing pairs (P, f) such that f is a polynomial defining a smooth plane quartic
curve and P is the length two subscheme in P? cut on the zero locus V(f) by
a bitangent line. We consider two natural maps on Z—, namely the projection
7~ I~ — Hilby(P?) and the quotient map Z~ — Q= by the action of GL(3).

As explained in the introduction, we stratify Z— into two strata, according
to whether the bitangent line ¢p is a proper bitangent or a flex bitangent. For
a pair (P, f) in Z—, the bitangent line {p is a proper bitangent if and only if
P is a reduced subscheme. The locus in Hilby(P?) parametrizing reduced sub-
schemes can be identified with B(P? 2), the configuration space of unordered
pairs of points in P2. The complement Hilby(P?)\ B(P? 2) is the locus of fat
points of multiplicity two, which is naturally isomorphic to the total space of the
projectivized tangent bundle P (Tp2).

Therefore, we define the open stratum Z; C Z~ to be the preimage of B(P?,2)
under 77—, and the stratum Z; to be the preimage of P(7p2). When restricted
to these two strata, the map 7~ is a locally trivial fibration. We will denote the
restriction of 7~ to the preimages of these two strata of Hilby(P?) by

7y Iy — B(P?2), 7y Iy — P(Tp2).

Note that the quotient Q, = Z, /GL(3) is a well-defined open subset of Q~,
with complement the divisor Q5 = Q~ \ Q; = Z; /GL(3). The quotient Qg
is the moduli space of smooth quartic curves with a marked proper bitangent,
whereas Qj is the moduli space of smooth quartic curves with a marked flex
bitangent, i.e. a flex line with contact of order 4 with the curve.

In the next sections, we will compute the cohomology of Zy and Z; by using
their structure as fibrations given by the maps m, respectively, 75 . This will
allow us to obtain the cohomology of the moduli spaces Qy and Qj by means of
the following lemma.

Lemma 11.2.1. The following isomorphisms of graded vector spaces with mized
Hodge structures hold:

H*(I;;Q) = H*(Q,: Q) ® H*(GL(3); Q). (I1.2.1)
H*(Z;5Q) = H*(Q5: Q) ® H*(GL(3); Q). (11.2.2)
We recall Peters-Steenbrink’s generalization of the Leray-Hirsch theorem:

Theorem 11.2.2 ([PS03]). Let ¢ : X — Y be a geometric quotient for the action
of a connected group G, such that for all x € X the connected component of the
stabilizer of x is contractible. Consider the orbit inclusion

Poy: G — X
g = 9gZo,
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where xg € X s a fived point. Suppose that for all k > 0 there exist classes
egk), . .,67(1]26) € H*(X;Q) that restrict to a basis for H*(G; Q) under the map
induced by py, on cohomology. Then the map

a®pt () — graue

extends linearly to an isomorphism of graded linear spaces
H*(Y; Q)@ H*(G; Q) = H*(X;Q)
that respects the rational mized Hodge structures of the cohomology groups.

Proof of Lemma I1.2.1. Recall from [PS03] that the assumption of Theorem I1.2.2
are satisfied for the action of GL(3) on the space X := V \ ¥ of non-singular
quartic polynomials. In particular, the map pj: H*(X;Q) — H*(GL(3);Q)
associated to the orbit inclusion ps: GL(3) — X is surjective for any choice of a
base point f € X.

Next, let (P, f) be a point of Z; and let us denote by py: Z, — X the
natural projection, which is clearly GL(3)-equivariant. Then the orbit inclusion
py is the composition of py and the orbit inclusion ppy): GL(3) — Z;. Hence,
also the induced map p} in cohomology is the composition of Pip.p) and pg. This
implies that P(p,y) 1s surjective, so in particular it satisfies the assumptions of
Theorem I1.2.2. This establishes the isomorphism (I1.2.1).

The proof of the isomorphism (I1.2.2) is analogous, and requires to consider
the orbit map p(p s : GL(3) — Z,; associated with a point (P, f) € Z; . O

II.3 Quartic curves with a proper bitangent

In this section, we compute the rational cohomology of the moduli space Q, of
pairs (C, 7) such that C'is a smooth quartic curve and 7 a proper bitangent. This
is the main ingredient in the proof of Theorem II.1.1.

Theorem I1.3.1. The HG polynomual of the rational cohomology of Q™ is equal
to 14 tL 4 t°L° + 2t°L°,

We start by considering the fibre of the map m, : Z; — B(P?%2) over a
configuration {p,q} of distinct points in P?. Denote by ¢ the line pq and set
t* =t \ {p, q}. Consider the 11-dimensional complex vector space

the line pq is either contained in V(f) or it }

Vg = {f €V ’ is tangent to V(f) at the points p and ¢

Then the fibre (7; )~ ({p, q}) is equal to V},, \ X. Hence, the fibre of 7, can
be viewed as the complement of the discriminant in the vector space V,,. In
particular, its cohomology can be computed using Vassiliev—Gorinov’s method.
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To apply Vassiliev—Gorinov’s method to V}, ;¥ we need an ordered list of all
possible singular sets of the elements in V,, ;N 3. We obtain such a list by refining
the list of possible singular configurations of quartic curves in [V99, Prop. 6]. For
the convenience of the reader, we copied this list in Table II.2. In the right-hand
side column of that table one can read the dimension of the space of quartic
polynomials which are singular at any fixed configuration of the corresponding
type.

For every configuration in Table I1.2, one has to distinguish further whether
the singular points are or are not in general position with respect to p and ¢ (for
instance, if the singular configuration intersects or not the line ¢ := pq). This
procedure yields a complete list of singular sets of elements of V,, , MY, which we
will describe in Sections I1.5 and I1.6. For every type j of singular configurations,
we will denote by X the space of all configurations of type j.

As recalled in Section 1.4, Vassiliev—Gorinov’s method gives a recipe to con-
struct spaces }X ’ and }A’ and a map

}6}: }X’—ﬂ/;?’qﬂz

inducing an isomorphism in rational Borel-Moore homology. In the version of the
method we use, the spaces ‘X } and ‘A} are constructed as the geometric realiza-
tions of certain cubical spaces associated to the ordered list of singular sets. The
Borel-Moore homology of }X ‘ (respectively, A‘) can be computed by considering
the stratification F, (resp. ®,), which is indexed by the types of configurations
in the list. The properties of F; and ®; associated to the configuration type j are
explained in Proposition 1.4.3. Recall in particular that F} is the total space of a
vector bundle over ®;, and that for finite configurations ®; is the total space of a
(non-orientable) bundle in open simplices over the configuration space X;. As a
consequence, for finite configurations the Borel-Moore homology of ®; coincides
(after a shift in the indices) with the Borel-Moore homology of X; with coetfi-
cients in a rank 1 local system changing its orientation every time two points in
a configuration are interchanged. We will call this local system the twisted local
system +Q.

It is also possible to compute directly the cohomology of Z; , without having
to pass through the study of the fibre of 7;. Namely, consider the space

D ({a, B}, f) € F(P?%2) x & : the line af is either contained
o in V(f) or it is tangent to it at the points o and 3 '

Note that Dy is a closed subset of

V- ({a, B8}, f) € B(P?%2) : the line af is either contained
o in V(f) or it is tangent to it at the points a and 3 '

The space V; is the total space of a vector bundle over P2, and Z, = V, \
D, . Vassiliev-Gorinov’s method can be exploited to compute the Borel-Moore
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Table I1.2: Singular sets in P? of quartic homogeneous polynomials according to

V99, Prop. 6].
1 Any point in P? Cc*2
2 Any pair of points in P2 (O
3 Any three points on the same line in P2 C’
4 Any triple of non-collinear points in P2 C¢
5 Any line in P? C¢
6 Any three points on the same line ¢ plus a point outside | C*
l
7 Any quadruple of points, no three of them collinear C3
8 The union of a line in P? and a point outside it c?
9 Five points {a,b,c,d, e} such that {e} = abN cd. C?
10 Six points which are the pairwise intersection of four | C
lines in general position
11 Any non-singular quadric in P2 C
12 The union of two lines in P2 C
13 The entire projective plane 0

homology of D,. This is done by defining the singular locus of an element
({a, B}, f) in Dy as the subset {{c, 8}} x K of B(P?,2) x P? where K; denotes
the singular locus of the polynomial f. In particular, the classification of singular
sets of elements of D, is obtained by the classification of singular sets of elements
of V,,\ ¥ by allowing the pair {p, ¢} to move in B(P? 2).

Even though this is no longer the original setting of Vassiliev-Gorinov’s method,
one can mimic the construction of the cubical spaces A and X (see Section 1.4)
and obtain cubical spaces A’ and X’ that play an analogous role. In particular,
the map }X ! ‘ — D, induces an isomorphism on the Borel-Moore homology of
these spaces, because it is a proper map with contractible fibres. Moreover, for
the stratifications ®, and F) obtained from the construction of A’ and X’ we
have natural maps @, — B(P? 2) and F| — B(P? 2) which are locally trivial
fibrations with fibre isomorphic to ®,, respectively, Fj.

In the next sections, we proceed by giving the classification of the singular
sets in P2 of quartic curves that are tangent to ¢ at p and ¢g. These are exactly
the singular sets of the elements of V,, ,NX. In view of the discussion above, this
classification also yields the classification of the singular sets in B(P?,2) x P? of
the elements of D .

Before giving the refined list, we briefly comment about which types of singular
configurations will arise. A first distinction is between configurations containing
a finite number of points versus configurations containing curves. In the specific
case of plane quartics, singular curves are always rational. In particular, one can
apply Lemma [T05a, 2.17] (and the remarks following it) to conclude that all
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strata ®; and F}; have trivial Borel-Moore homology for j a type of configuration
which contain rational curves. Hence, it is important to concentrate on finite
configurations.

A further distinction is whether the stabilizer of a general configuration of
type j in PGL(3) is finite or not. We will call configuration types with finite
(resp., infinite) stabilizer rigid configurations (resp., non-rigid configurations).
Typically, non-rigid finite configurations will contain few singular points which
will be relatively free to move. Anyway, it is important to notice that non-rigid
configurations will give a non-trivial contribution only if they contain very few
points. This follows from Lemma 1.4.6, which ensures that the twisted Borel-
Moore homology of configurations of more than one point in affine space vanishes
in all degrees, and that the same is true for B(P!, k) for k > 3 and B(P? k) for
k > 4. We will deal with non-rigid configurations in Section II.5.

The main result is the following:

Proposition I1.3.2. Let us denote by Fiy C }X’ the union of the strata cor-
responding to non-rigid configurations (for the precise definition of these, see
Sect. 11.4). Then the Sq-equivariant HG polynomial of Fyig with respect to the
Ga-action generated by the interchange of the points p and q is given by

(389 + 81, )t L0 + (359 + 351 )t L7 + (59 4 3511 )t 8L 7% + 51 1t L7,

At the other end of the spectrum one finds rigid configurations. As we will
see in Section IL.6, if configurations of type j are rigid, then the Borel-Moore
homology of the strata ®; and F7 is automatically a tensor product of the Borel-
Moore homology of PGL(3). For this reason, for rigid configurations it is practical
to work directly with the configuration space X; C B(P? 2) x P? rather than
with the configuration space X; C P2 As we explained above, the relationship
between the two is that X7 is fibred over B(P?,2) with fibre isomorphic to X;.
We will investigate the contribution of rigid configurations in Section II.6, where
we will prove the following

Proposition I1.3.3. The HG polynomial of FY,, := | X'|\ Fl, equals

rig

£3(1 4+ 21L) - (AL (GL(3): Q)).

Lemma I1.3.4. The Borel-Moore homology with constant (respectively, twisted)
rational coefficients of the space B(P?,2) of unordered configurations of 2 distinct
points on P? is given by

o(Hy(B(P%,2);Q)) = (1 + ’L™" + 'L)¢'L 2,
respectively, by

o(Ho(B(P?,2); £Q)) = (1 + *L~ ' + 'L )L
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Proof. The space B(P?,2) is fibred over the space P?” of lines in P? by the map
{p,q} — pq, which is Gs-equivariant. The fibre is isomorphic to the configuration
space B(P!,2). Then the claim follows from p(H,(B(P!,2);Q)) = t*L=2 and
o(H(B(P,2); £Q)) = t?L~! (see Lemma 1.4.6). O

The proof of Theorem I1.3.1 follows from the last two parts of the following
lemma.

Lemma I1.3.5. 1. The differentials o5, in the long exact sequence in Borel—-
Moore homology

- _ - I =
= Hp(Dy 3 Q) — Hin (i Q) = Hyo(Flg: Q) — Hi(Dy3Q) — -+
(I1.3.1)
associated with the inclusion F' . C ‘X’} and the augmentation € : ‘X" —

nrig
D, wvanish for all indices k.

2. The contribution of non-rigid configurations to the cohomology of I, has
HG polynomial 1 + tL.

3. The contribution of rigid configurations to the cohomology of Z; has HG
polynomial t°L5 + 2t5L°.

Proof. Recall from Lemma I1.2.1 that the cohomology of 7, is a tensor product
of the cohomology of GL(3). There are two equivalent ways to compute the
cohomology of Z;. One possibility is to compute the Borel-Moore homology
of Dy by using the long exact sequence (I1.3.1) and successively calculate the
Borel-Moore homology of Z; by the long exact sequence

-+ — Hy(Dy; Q) — Hy(Vy; Q) — Hi(Zy;Q) — Hia(Dy;Q) — --- (IL3.2)

Since V, is a complex vector bundle of rank 11 over B(P? 2), its Borel-
Moore homology is equal to H, 2 (B(P?%2); Q) ® Q(11). In particular, from
Lemma I1.3.4 it follows that Hy(Z;; Q) — Hy_1(Dy; Q) is an isomorphism for
k < 25. If we compare this with the Borel-Moore homology of F};, as given in
Proposition II.3.2, we have that all Borel-Moore homology classes of Dy coming
from H,(F},; Q) via the long exact sequence (IL1.3.1) are in this range. Finally,
since Z, is smooth and 15-dimensional, its cohomology and Borel-Moore homol-

ogy are related by
H*(Zy;Q) = Hzo-o(Z;: Q) ® Q(—15). (11.3.3)

Applying this to ]:I.(Fr’ig; Q), one gets that its contribution to the cohomology of
7, is as described in (3), provided 0y, is trivial for all k£ < 25.

Another way to compute the cohomology of Z; is to use Vassiliev-Gorinov’s
method to compute the Borel-Moore homology of the discriminant V,, ,N%, then
Alexander’s duality (I.2.1) to deduce from this the cohomology of its complement
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Table I1.3: FE; and Ej3 terms of the Leray spectral sequence of the fibration
7 — B(P?,2) contributed from non-rigid configurations

q
4/ 0 0 Q(-5) 0 Q(-6) 0 Q(-7)
31 Q(=3) 0 Q(-4)* 0 Q(=5)" 0 Q(-6)°
21Q(=2)> 0 Q(=3)° 0 Q(-4)° 0 Q(-5)°
11Q(-1)* 0 Q(-2)* 0 Q(-3)* 0 Q(—4)
0 Q 0 Q(-1) 0 Q(-2) 0 0

0 1 2 3 4 5 6 P
q
40 0 0 0 0 0 Q-7
3] 0 0 Q(-4) 0 Q(-5 0 Q(-6)
2| Q(-2) 0 Q(=3)> 0 Q(—4)* 0 Q(-5)
11Q(=1)> 0 Q(-2) 0 Q(=3) 0 0
0 Q 0 0 0 0 0 0

0 1 2 3 4 ) 6 P

Voo \ A, and finally compute the cohomology of Z; using the Leray spectral
sequence associated to m, : Z, — B(P?% 2). If we follow this program for the
contribution of rigid configurations, the F5 term of the Leray spectral sequence
in cohomology associated to m, is as given in the first part of Table II.3.

The information given so far determines the contribution of rigid and non-
rigid configurations, up to the d, differentials of the Leray spectral sequence
associated with m; and the computation of the kernel of the maps ¢y of (I1.3.1).
At this point, it is important to keep in mind that the rational cohomology of Z;
has to be a tensor product of the cohomology of GL(3), whose HG polynomial is
(1—tL)(1—t*L?)(1—t°L3). Then one discovers that the only possibility to obtain
H*(Z; ; Q) with a structure as tensor product of H*(GL(3); Q) is that all maps dj
are 0 and that all dy differentials in the Leray spectral sequence in Table I1.3 have
the maximal possible rank. The triviality of the maps d; yields part (1) of the
claim. The result on the rank of the differentials of the Leray spectral sequence
associated to m, implies that the contribution of non-rigid configurations to the
E3 term of this spectral sequence is as given in the second part of Table II.3.
In particular, this yields that the contribution of non-rigid configurations to the
cohomology of Z; is as described in part (2) of the claim. O

Proof of Theorem I1.3.1. The previous Lemma implies that the cohomology of
7, is the direct sum of the contribution of non-rigid and of rigid configurations,
and that its HG polynomials is (1 + ¢L 4 ¢°L° + 2t°L°) - o(H*(GL(3); Q)). Then
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the claim follows from the isomorphism (I1.2.1) in Lemma II.2.1. O

11.4 Proof of the main theorem

Proof of Theorem II.1.1. In Theorem I1.11.1 we will prove that H°(Q5;Q) = Q
is the only non-trivial rational cohomology group of Qj. Therefore, the coho-
mology of O~ and @, coincide in degree larger than 2 and the latter is known
from Theorem I1.3.1.

To complete the proof of Theorem II.1.1, we only need to show that the
cohomology group H'(Q;;Q) = Q(-1) is killed by H°(Q5;Q) = Q. This is
equivalent to show that H'(Q~; Q) vanishes.

The most direct way to show this is to consider the projectivization P(Z~) of
1, i.e. the space

P(Z)={(Pt,0) e Sym*P* x P> x P(V\X) xP*: Cnt= P}

Then Q- is the quotient of P(Z~) by the natural action of PGL(3) and the
Leray spectral sequence associated with P(Z7) — Q~ degenerates at Es by
Lemma I1.2.1. As the cohomology of PGL(3) vanishes in degree 1 and 2, this
implies that the first cohomology groups of P(Z~) and Q™ are isomorphic.

To prove the vanishing of the cohomology of P(Z~) in degree 1, we proceed
as follows. First, we compactify P(Z~) by considering the space

W ={(P,t,C) € Sym*>P? x P> x P(V) x P*: C'nt > P}.

Considering the projection W — P?” yields that W is a smooth variety with
cohomology isomorphic to that of P10 x P2 x P?" as graded vector spaces with
pure Hodge structures. In particular, one has H*(W; Q) = Q(—1)%3.

The complement W \ P(Z~) is the union of three divisors: the divisor ¥,
whose general element is a triple (p; + po,t,C) with C singular in either p; or
p2, the divisor ¥, corresponding to curves C' containing ¢ and the divisor .
whose general element is a curve C' singular outside ¢. Thus, what we need to
prove is that the fundamental classes of 3,, %}, and Y. generate H*(W;Q). As
W is smooth, we prove this by exploiting Poincaré duality and intersecting the
Y with the classes of three curves contained in W. Specifically, we consider
the class C of a general pencil of curves such that all elements are bitagent to
a fixed line ¢y in two prescribed points p,q; the class C5 of a rational family
({2 = 0},[1,0,0] + [to, t1,0], Cto,r,)) Where the equation of Cyy, 4y is @3 (t1z —
tox1)? + tixag(wo, 21, T2) With g a fixed cubic polynomial; the class Cj of triples
({tows — tizy = 0},[1,0,0] + [0, to, 1], Dt,t,]) Where the equation of Dy, is
tordz? + (toxe — tix1)h(xg, 1, 7o) With h a fixed cubic polynomial. Then the
claim follows from the fact that the intersection matrix (X - C;) has maximal
rank. O
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I1.5 Non-rigid configurations

In this section we deals with the configuration types between 1 and 6 in Vas-
siliev’s list (Table 11.2). We need to refine these configuration types to get the
classification of singular configurations of elements in V,, N X. For this first
group of configuration types, one gets the cases which we list in Table I1.4. In
that list, we maintain the reference to the corresponding types in Vassiliev’s list
(Table 11.2) by indicating the refined strata by roman letters. Furthermore, when
it is convenient to group refined strata together, we will denote them collectively
by the letter x.

In Table II.4 we also describe the configuration spaces Xjx corresponding
to each refined configuration type jk and the associated strata ®j, C }A’ and
Fy C ’X ’ From the this description one finds that configurations of types
from la to 6x either are non-rigid, or give strata Fjx and ®;c which have trivial
Borel-Moore homology.

Next, we compute the contribution of non-rigid configurations to the spectral
sequence e converging to H,(|A|\ ®13; Q) associated with the stratification @,
indexed by the configuration types. Hence, the e! term of this spectral sequence
is given by e}w = H, ,(®,;Q), where u refers to the uth configuration type in
our list. Rigid configurations contribute the first nine non-trivial columns, and
specifically, to the configuration types la, 1b, 1c, 2a, 2b, 2¢, 2d, 4a and 4b. For
the sake of simplicity, we will omit from the spectral sequence all configuration
types jk such that the Borel-Moore homology of ®,y is trivial.

Then one gets from the description of the strata given in Table I1.4 that e, ,
for 1 <wu < 9is as in the first part of Table II.5.

Lemma I1.5.1. The spectral sequence €, , = H,,(|A| \ ®13; Q) associated with
the stratification ®, and converging to the Borel-Moore homology of }A‘ \ @3
satisfies

er 1 =Sy, ey, =0 for (u,v) # (1,-1)

for =3 <v <1,1<u<9 (i.e. for all terms coming from non-rigid configura-
tions).

Proof. This is based on the fact that for every 7 = 1,...,4, the union of the
spaces @i in ‘A} coincides with the contribution of configurations of type 14 to
the auxiliary Vassiliev spectral sequence in the case of unmarked quartic curves
treated in [V99, Thm 3]. Then the claim follows from Vassiliev’s proof that
configurations of type 1-4 contribute only trivially to the Borel-Moore homology
of the open stratum of the spectral sequence converging to the Borel-Moore
homology of the discriminant of unmarked plane curves. O

Remark 11.5.2. In view of Lemma 1.4.3, the stratum Fi3 corresponding to the
configuration P? is an open cone over }A‘ \ ®13. Then Lemma I1.5.1 proves that
the only contribution of configurations of type 1-4 to the Borel-Moore homology
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Table 11.4: Configurations of type 1-6 (non-rigid configurations) and the associ-
ated strata.

la The point p or the point gq.
Stratum: Fy, is a C'%-bundle over ®1, = {p,q}.

1b Any point in t*.
Stratum: Fjy, is a C%-bundle over ®}, = C*.

lc Any point in P2\ t.
Stratum: F). is a C8-bundle over ®;. = C2.

2a The pair {p, q}.
Stratum: Fb, is a C?-bundle over ®9, = Al.

2b Any other pair of points on t.
Stratum: Fyy, is a C3-bundle over @9}, which is a non-orientable Arbundle over
B(t,2)\ {{p. q}}-

2¢ One point in {p, ¢} and any point outside .
Stratum: Fi. is a C’-bundle over ®4., which is a non-orientable Al—bundle over
the disjoint union of two copies of C?.

2d A point on t* and any point outside t.
Stratum: Fhq is a CO-bundle over ®94, which is a non-orientable Al-bundle over
C* x C2.

2e Any pair of points in P? \ t.
Stratum: Fb, is a C°-bundle over ®4,, which is a non-orientable Al—bundle over
B(C?,2). Therefore, the Borel-Moore homology of ®s. and Fb, is trivial.

3x Any three points on the same line ¢ in P2.
There are different strata to consider (¢ = t; p € ¢ # t and p is one of the
singular points; ¢ € £ # t and ¢ is one of the singular points; the three points
do not contain p or ¢ but ¢ do; ¢ # {p,q} = (). In view of Lemma 1.4.6, the
Borel-Moore homology of the configuration space B(¢,3) is trivial. Hence, all
these strata contribute trivially.

4a p, q and a further point outside ¢.
Stratum: Fy, is a C%-bundle over ®4,, which is a non-orientable Ag—bundle
over C2.

4b Any other pair of points on ¢t and a point outside it.
Stratum: Fyy, is a CP-bundle over @43, which is a non-orientable Agfbundle over
C? x (B(t,2) \ {{p, a}})-

4x Any other triple of non-collinear points in P2.
There are several cases to consider (p or ¢ and two more points lying outside
t; one point on ¢ and two points outside; three points outside ¢). All of them
contribute trivially in view of Lemma 1.4.6.1.

5x Any line £ in P2,
There are several cases to be considered, according to whether the line £ is ¢, it
passes through p of g, or it is in general position with respect to p,q. Observe
that for every line ¢ in P2, all subsets of ¢ of cardinality at most 3 belong to
configurations of type 1-4. This allows us to apply Lemma [T05a, 2.17] and
conclude that the contribution of all strata of type 5x is trivial.

6x Any three points on the same line £ plus a point outside /.
Several cases, all of them do not contribute. The proof is analogous to case 3x.
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Table I1.5: E! terms of the spectral sequences e’ = Hu+v(’A} \ ®13;Q) and

E,, = H,(

u,v

X}? Q) = H-(Vp,q N Q).

ey, for 1 <u<09.

v
1 0 0 Sy(2) O 0 0 0 0 0
0 0 Sy(1) 0 0 0 0 S5(3) 0 0
—1 SQ + Sl«,l Sl,l 0 0 0 (SQ + Sl,l)(2) Sl,1(2) 0 SQ (3)
-2 0 0 0 0 Sy(1) 0 0 S11(2) S11(2)
-3 0 0 0 Si; Si, 0 0 0 0
1 2 3 4 5 6 7 8 9 w
type | (la)  (1b) (lc) (2a) (2b) (2¢) (2d)  (4a)  (4b)
E,, for 1 <u<9.
v
19| (S2+S11)(10) 0 0 0 0 0 0 0 0
18 0 S,(10) 0 0 0 0 0 0 0
17 0 S11(9) Sy(10) 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0
15 0 0 0  S1:(9) 0 0 0 0 0
14 0 0 0 0 S2(9) 0 0 0 0
13 0 0 0 0 Sii(8) (S2+S:11)(9 0 0 0
12 0 0 0 0 0 0 S»(9) 0 0
11 0 0 0 0 0 0 Si1(8) 0 0
10 0 0 0 0 0 0 0 S8 0
9 0 0 0 0 0 0 0 0 S,(8)
8 0 0 0 0 0 0 0 0 S1.(7)
1 2 3 4 5 6 7 8 9
type (1a (1b) (1c) (2a) (2b) (2¢) (2d) (4a) (4b)
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of [A|\ @15 is to Ho(|A]\ ®13;Q) = 0. If we decompose the open cone Fis
over }A’ \ ®;3 as the union of its vertex and a A;-bundle over }A’ \ D3, we
see that the Borel-Moore homology group ﬁl(ﬁl; Q® HO(}A \ ®13; Q) is killed
by the Borel-Moore homology of the vertex. In other words, this implies that

configurations of type 1-4 contribute trivially to the Borel-Moore homology of
the stratum Fjs C }X‘

We compute the contribution of non-rigid configurations to the spectral se-
quence Ej = = Hu+v(‘X}; Q) & H,.,(V,,NY; Q) associated with the stratifica-
tion F,. Again, this will give the first 9 columns of the spectral sequence. If we
restrict our considerations to these first 9 columns, we obtain a spectral sequence
converging to the Borel-Moore homology of the space Fiig := |J Fjx where the
union is over all configurations jk between la and 6x.

Lemma 11.5.3.

The E' terms of the spectral sequence Eow = Hu%(Vm NY; Q) associated with
the stratification Fy for 1 < u <9 are as given in the second part of Table I1.5.

Proof. In this spectral sequence, the E! term is given by Ei,u = H,,(F;Q),
where u refers to the uth configuration type in our list. Since F, is a vector

bundle of a certain rank k, over ®,, one has E , = e, , 5. ® Q(k,). O

Proof of Proposition I1.53.2. Since F., is the union of the strata Fj with j <6,
its Borel-Moore homology can be computed by a spectral sequence whose E!
term coincides with E;, , if u < 9 and is 0 if u > 10. Hence, the E" term coincides
with the E} , in the second part of Table IL5.

We observe that for 1 < u < 9 the Hodge structure in E}w is pure of weight
—2(u + v — 10). This implies that for every w,r such that 1 <u < u+1r <9,
the Hodge weight of Ej , and Ej, ., are different, hence all d, differentials

u,v

vanish in this range. From this the claim follows. O

I1.6 Rigid configurations

In this section, we refine the second part of List I11.2 (i.e. configuration types
from 7 to 13) to complete the list of singular configurations we need to apply
Vassiliev—Gorinov’s method to V,,, N X and the incidence correspondence D .
As we have briefly explained in Section II.3, the configuration spaces associ-
ated with the refinements of configuration types 7-12 give a non-trivial contri-
bution unless they correspond to rigid configurations, i.e. finite configurations
({p,q}, {s1,-..,8-}) C P? x P? with finite stabilizer in PGL(3). For such config-
urations, the computation of the Borel-Moore homology is easier for the “fibred”
configuration space X} than for the configuration space X; where we assume the
bitangent to be fixed.
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Table I1.6: Rigid configurations of type 7

Ta Any quadruple of points containing p and ¢. No three points in the configuration
are allowed to be collinear.
Stratum: Fy, is a C3-bundle over ®7,, which in turn is a non-orientable Ag—
bundle over the configuration space X7,. The space X7, is isomorphic to

{{a,b} € B(P*\t,2)| abn {p,q} = 0} .

The complement P? \ ¢ is isomorphic to C?, hence the twisted Borel-Moore
homology of B(P? \ t,2) vanishes by Lemma I.4.6. Analogously, also the twisted
Borel-Moore homology of {{a,b} € B(P?\ t,2)| abN {p, q} # 0} vanishes, since
it is a B(C, 2)-bundle over C LU C. Hence the twisted Borel-Moore homology of
X7, is trivial.

7b Any quadruple of points of which exactly two lie on ¢. No three points are
allowed to be collinear and {p, ¢} cannot be contained in the configuration.
Stratum: Fyy, is a C2-bundle over ®7;,, which has trivial Borel-Moore homology
(the proof is analogous to that for case 7a).

7c Any quadruple {a,b,c,d} of points lying outside ¢, such that no three points
in the configuration lie on the same line, and ¢ is a common bitangent to two
distinct quadrics in the pencil passing through {a,b, ¢, d}.
Stratum: F7_ is a C-bundle over the space ®%_, which is a non-orientable Ag-
bundle over the configuration space X%, C B(P?,2) x B(P%,4). In Lemma I1.7.1
we will prove that the twisted Borel-Moore homology of X7’ vanishes.

7d Quadruples {a,b,c,d} 2 {p,q} of points in general linear position such that
there is a conic C' A t passing through p, q,a,b,c,d. The conic C is allowed to
be singular.
The stratum F7, is a C-bundle over the space ®7, which is a non-orientable As-
bundle over the configuration space X7, studied in Section II.8. In Lemma I1.8.1
we will prove that the twisted Borel-Moore homology of X7, vanishes.

The refinement of configuration type 7 (four points in general position) gives
the four configuration types described in Table I1.6. For all of these configurations
7k, k € {a,b,c,d} we can prove that the twisted Borel-Moore homology of
the associated configuration space X/, vanishes (see in particular Lemma I1.7.1
and I1.8.1). Here we abuse notation and we define the twisted local system +Q
for a fibred configuration space S C B(P? 2) x B(P? k) as the restriction to S
of the pull-back of the twisted local system +Q under the projection B(P?,2) x
B(P% k) — B(P? k).

Configuration type 8 corresponds to the union of a line ¢ in P? and a point
s outside it. This type gives rise to several refined configuration types. For
instance, one has to distinguish if ¢ coincides with the bitangent ¢, if it passes
through one of the bitangency points p,q or through none of them. Also the
point s may lie on t, coincide with either p or ¢ or simply lie on t. For every
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refined substratum 8k one has that the Borel-Moore homology of the space ®gy
vanishes, and hence the same holds for Fg,. This follows from Lemma [T05a,
2.17] and following remarks). To apply that lemma, we have to check that for
every {U{s} € Xg the space B(¢,4) x {s} was contained in one of the preceding
configurations la-7d. Moreover, one has to check that for a fixed £ U {s} € Xg
the vector subspaces L(K) = {f € XNV, ,|K; D K} for every K € B((,4) x {s}
defines a vector bundle. This ensures the vanishing of the Borel-Moore homology
of &g and Fyy for all k.

The refined singular configurations of type 9 and 10 are described in Table I1.7.
We will calculate the contribution of these configuration types in Sections I1.9
and I1.10. Configurations of type 11 (non-singular conics in P? passing through
p and ¢) and of type 12 (the union of two lines containing p and ¢) correspond
to strata ®;; and ®;5 with trivial Borel-Moore homology. In both cases the
singular configurations are (possibly reducible) rational curves. The vanishing of
Borel-Moore homology follows from Lemma [T05a, 2.17] in the case of ®;; and
from Lemma [T05a, 2.17] in the case of ®1s.

The only remaining stratum is the stratum Fj5 C }X ! } corresponding to the
configuration P2 As explained in Proposition 1.4.3, the stratum F}; is a topo-
logical open cone with vertex a point over the space }A’ } \ @5, which is the union
of all @ with j < 12.

Lemma I1.6.1. The HG polynomial of the Borel-Moore homology of F|; equals
t°p(H.(PGL(3); Q))-

Proof. Let us denote by B := }A’} \ @5 the base of the open cone F};. We intend
to compute its Borel-Moore homology by using the spectral sequence associated
to the stratification ®,. We have already proved that the Borel-Moore homology
of CIDQ»X with 5 < j < 8 or 11 < j < 12 is trivial, either in a straightforward
way because these configurations contain too many points on the same rational
curve, or in the Lemmas II.7.1 and I1.8.1. The union Uke{&b’c’d} g, has trivial
Borel-Moore homology in view of Lemma I1.9.5. Furthermore, as we explained
in Remark I1.5.2; configurations of type 1-4 contribute trivially to the Borel-
Moore homology of Fj;. From this it follows that the only strata contributing
to the Borel-Moore homology of the basis of the open cone Fj5 are ®j, and ®),.
Therefore, there is a long exact sequence

— — — 5 —
- — Hy(Pye; Q) — Hi(B; Q) — Hip(P; Q) = Hi—1(P4; Q) — - -

in Borel-Moore homology. In Lemma I1.9.4 and Lemma II.10.1 we prove that
both the Borel-Moore homology of ®j, and of &), are tensor products of the
Borel-Moore homology of PGL(3). This is a consequence of the fact that these
configurations are rigid. Since PGL(3) acts equivariantly on the whole of Dy
and ‘A’ , the differentials §;, have to respect this structure as tensor products of
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Table I1.7: Rigid configurations of type 9 and 10.

9a Configurations of five points {a, b, c,d, e} such that a,b € t and t Ncd = {e}.
Stratum: Fy, is a C?-bundle over ®g,, which has trivial Borel-Moore ho-
mology. This follows from the fact that the map Xg, — B(C?,2) mapping
{a,b,c,d,e} as above to {c,d} is a locally trivial fibration with fibre isomor-
phic to B(C,2). Since Ho(B(C,2); +Q) vanishes, the twisted Borel-Moore
homology of Xg, must vanish as well.

9b Configurations of five points {p, ¢, a,b, c} with pa N gb = {c}.

Stratum: Fy, is a C%-bundle over ®g;,, which is a A4—bundle over the space
Xgp studied in Section II1.9.

9c Configurations of five points {a, b, ¢, d, e} such that abNed = {e}, p € ab\ {e},

g€ cd\{e} and {p,q} Z {a,b,c,d}.
Stratum: Fg, is a C-bundle over &, which is a non-orientable A4-bundle over
the space X{. studied in Section II1.9. Note that for a configuration of type 9c
the unique quartic curve with the prescribed singularities and with ¢ = pq as
bitangent is the degenerate double conic ab U cd.

9d Configurations of five points {a,b,c,d, e} with e € {p,q}, a,b,¢c,d ¢ t such
that abNed = {e} and t is tangent to the conic passing through a, b, c,d, q for
e = p, and to the conic through a, b, c,d,p for e = q.

Stratum: Fyq is a C-bundle over ®gq, which is a non-orientable A4—bundle
over the space Xgq studied in Section II.9. In Section I1.9 we will prove that
the fibred configuration space X has trivial twisted Borel-Moore homology.
9¢ Configurations of five points {a,b,¢c,d,e} with a,b € t, {a,b} # {p,q} such
that ac N bd = {e}.
Stratum: Fy, is a C-bundle over ®g., which is a non-orientable A4—bundle over
the space Xg studied in Section I1.9. Note that for a configuration of type
9e, the unique quartic curve with the prescribed singularities with t = pq as
bitangent is the union of lines ab U ac U bd U cd.

10 Six points which are the pairwise intersection of four lines in general position.
Stratum: FY], is a C-bundle over ®},, which is a non-orientable As-bundle
over the space X{,. The Borel-Moore homology of the stratum FY, will be
computed in Section II.10.
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H,(PGL(3); Q). In particular, in our specific case this implies that all &, are
induced from the differential do5 between the non-trivial Borel-Moore homology
classes of 15 and Py, in top degree. Furthermore, the claim is equivalent to
showing that the differential do5 is an isomorphism.

Assume by contradiction that do5 were the 0 map. Then we would have
Hy5(B; Q) = Q(10) and thus Ha(Fj3; Q) = Q(10) for the open cone over B.
By briefly comparing this with the Borel-Moore homology of the strata Fj_with
Jj < 12, we find that the contribution of Has(F5; Q) to the spectral sequence
E = H,(Dy ; Q) cannot be killed by any differential of that spectral sequence.
In particular, this means that Has(Dy; Q) is an extension of Q(10). By duality
(see (I1.3.2) and (IL.3.3)), this would imply that H3(Z;;Q) is an extension of
Q(—5), which is clearly impossible since the Hodge weight of Q(—5) is 10 > 2- 3,
whereas Hodge weights in cohomology can never be larger than twice the degree.

From this it follows that d95 must have rank 1 and

H,(B; Q) = Ho_5(PGL(3); Q).

Then the claim follows from the structure of FJ; as an open cone over B. O

Remark 11.6.2. One can also give a direct proof of the non-vanishing of 55 based
on geometric considerations on the configuration spaces involved.

Proof of Proposition 11.3.3. We consider the spectral sequence
EITJ,Q = HP+¢](D()_; Q)? E;l),q - 7p+q(FI;§ Q)

We concentrate on the rigid configuration types, i.e. those of type jx with 7 < j <
13. Their union is the space Fj, of which we want to compute the Borel-Moore
homology.

In view of the results in this section and in Sections II.8-11.10, the only strata
Fi, with non-trivial Borel-Moore homology are those of type 9x, 10 and 13,
whose Borel-Moore homology is computed in Lemmas 11.9.1-11.9.4, 11.10.1 and
I1.6.1. Furthermore, the Borel-Moore homology of each of these strata is a tensor
product of the Borel-Moore homology of PGL(3). Hence, the E' terms coming
from such configurations are of the form E), = E}” ® H,(PGL(3);Q). We

give the E! terms in Table I1.8. Note that, by construction, differentials should
respect the structure of the columns of the spectral sequence as tensor products
of the Borel-Moore homology of PGL(3). This implies that the only differential
that can possibly be non-trivial is d': El ,; = Q(3) — Ely = Q(3). From
the definition of E! , we have El 0 ® H5(PGL(3); Q) = Hor(F};; Q) and El y ®
Hy6(PGL(3); Q) = Has(Fy; Q). This means that d' is induced by the differential
Hor(Fly; Q) — Hog(Fy; Q) of the long exact sequence associated to the inclusion
of F{, as a closed subset of Fy, U FY,.

We claim that d' is an isomorphism or, equivalently, that the Borel-Moore
homology of Fg, U Fj, vanishes in degree 27. Indeed, the union Fg, U F}, is a
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Table IL.8: E! terms associated with the spectral sequence converging to the
Borel-Moore homology of D, coming from configurations of type 5-13.

q
91Q(B) QB) o0
8| 0 0 0
71Q2) 0 0
6|Q(1)*20 0
50 0 Q1) 0
4 0 0 0
31 0 0 Q2
1 2 3 p
type | (9x) (10) (13)

C-bundle over &g, U @), whose Borel-Moore homology in degree 25 vanishes by
the proof of Lemma I1.6.1. From this the claim follows. In particular, the spectral
sequence EJ restricted to rigid configurations types degenerates at E2. O

I1.7 Configuration type 7c — Pencils of conics

The aim of this section is to compute the contribution of singular configurations
of type Tc (see page 41) to the Vassiliev spectral sequence converging to the
Borel-Moore homology of the incidence correspondence D, . In other words, we
will compute the rational Borel-Moore homology of the spaces @7 and F7..

Lemma I1.7.1. The stratum o7, C ’A” and of the stratum F;_ of }X’} have
trivial Borel-Moore homology.

Proof. We start by determining the twisted Borel-Moore homology of the under-
lying family of configurations XZ.. Denote by B(P? 4) the space of quadruples
of points in general position, i.e. such that no three of the points lie on the
same line. For every element K of B(P2 4) there is exactly one pencil of conics
My C V with base locus K. For every point p € P?\ K we denote by Qg , the
unique conic in K passing through p.

The family of configurations X7, C B(P?,2) x B(P?, 4) is the locus of con-
figurations (a, 3, K) such that K N «af = () and the pencil My contains a conic
tangent to 7 = a3 in a and a conic tangent to 7 in 3. We can rephrase this by
saying that the space X,. C B(P? 2) x é(P2,4) is the space of configurations
({a, B}, K) such that the tangent line at a to the conic Q)i , and the tangent line
at [ to the conic Qi g are both equal to 7 := af. Note that two general conics
admit exactly four common tangents of this type. If we fix the base locus K of
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the pencil of conics and a line 7 disjoint from K, we have that exactly two conics
in My are tangent to 7. These two conics coincide if and only if 7 intersects the
base locus of the pencil M.

From the discussion above, it follows that X7 is isomorphic to the locus
Yz. € P?" x B(P?,4) of configurations (7, K') where the line 7 does not contain
any of the points in K. The natural map Y7, — X/, — B(P? 2) is defined by
associating to (7, K) the set of two points at which 7 is tangent to a conic in M.

Let us start from the case in which the configuration K = {ay,as, as, a4} is
fixed. Then the space of lines 7 such that 7N K = @ is the complement in P?”
of the union of four lines a;” in general position, given by that pencil of lines
passing through each of the a;. To proceed we need to know the Borel-Moore
homology of U := P?"\|Ja;” and its structure as representation of the symmetric
group &4 given by the natural action of &4 permuting the points in K. This is
computed in Lemma I1.7.2 below. In particular, the Borel-Moore homology of
U does not contain any alternating classes. Since U is isomorphic to the fibre of
X!. — B(P? 4) and the whole Borel-Moore homology of F(P?,4) = PGL(3, C)
is G4-invariant, this implies that also the Borel-Moore homology of X7 . does not
contain any non-trivial G4-alternating class.

In view of the structure of @’ as non-orientable simplicial bundle over X7 _,
and of F7_ as vector bundle over @7, the vanishing of the twisted Borel-Moore
homology of X7 _ implies the vanishing of the Borel-Moore homology of ®7,. and
F7. is trivial as well. O

Lemma I1.7.2. The &4-equivariant HG polynomial of Hy(P* \ Ja;"; Q) is equal
to t4L284 + t38371L + t28371.

Proof. We start by computing the Borel-Moore homology of C := [Ja;". First
we consider the singular locus of C, which is the union of six points on which &4
acts as the representation Sy @ Sy @ Sy11. For each 4, the locus a;” \ Cying is
isomorphic to P! minus three points. To determine the G,-action on the Borel-
Moore homology of C \ Cgng, We start by observing that the group &3 permuting
the three singular points on a4~ acts as S3 on the Borel-Moore homology in degree
2 and as Sg; in degree 1. By extending these representations to representations
of &4 we get that the Borel-Moore homology of C \ Csng is (S4 @ S31)(1) in
degree 2 and Sz 1 @ Sg2 @ So.1,1 in degree 1. In all other degrees the Borel-Moore
homology is trivial.

The closed inclusion Cgn, — C induces a long exact sequence in Borel-
Moore homology which yields that the &4-equivariant HG-polynomial of C is
sS4+ 831t + (844 s31)t2L. Here we used the fact that Hy(C; Q) is 1-dimensional to
compute the rank of the only non-trivial differential of the long exact sequence,
i.e. Hi(C\ Csing; Q) — Ho(Cying; Q). Then the claim follows from the long exact
sequence associated to the closed inclusion C — P?", with complement . O
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I1.8 Configuration type 7d — Conics through 6
points

In this section we deal with the configuration space X7, of semi-ordered config-
urations ({c, 3}, P = {p1, p2, p3, pa}) of points in P?, satisfying

e the points py, ps, p3, ps are in general position, i.e. P € B(P?, 4);

e there is a conic C' € K := P(C[xzg, 1, ¥2)2) containing {a, f} U P;
e {a,f} £ P,ap ¢ C.

In the following, we will always use the notation K for the projective space of
conic curves in P2,
We will prove the following result:

Lemma I1.8.1. Consider the rank 1 local system of coefficients induces by the
sign representation of the symmetric group &y on the points in the configura-
tion P € B(P? 4). Then the Borel-Moore homology of X,y with S-coefficients

vanishes.

We start with the observation that the conic C' on which the points «, 3, py, . . .,
p4 lie is unique for all (o, 3, P) € X7q. Therefore, one can view Xzq as a subset
of B(P%,2) x B(P2,4) x K. A partial compactification is given by considering
the space Y7, of configurations

({a, 3}, P,C) € B(P?2) x B(P%4) x K

such that {c, 3} U P lie on the conic C. Note that the local system S extends to
Y’?ld-
Then Lemma I1.8.1 follows from the following lemma:

Lemma I1.8.2. The Borel-Moore homology with S-coefficients of both Y], and
Y2\ X5y vanishes.

Proof. We can stratify Y7, as the disjoint union of the subset Y7, where the
conic C'is singular and the locus Y74, of Y7, such that the conic C' has maximal
rank. Then the proof of the first part of the claim consists of showing that the
Borel-Moore homology of each of the strata Y7, ; vanishes. For instance, the
open stratum Y7 , is fibred over the space of all non-singular conics in P? with
two distinct marked points «, 3, and the fibre is isomorphic to B(C,4). Then the
claim follows from the fact that C' = P! and S restricts to the local system +Q
on the fibre. Recall from Lemma [.4.6 that the twisted Borel-Moore homology
H,(B(P!,k); £Q) vanishes for k& > 3. The proof of the vanishing for Y74, is
similar, and is based on the fact that Y74, can be realised as a fibration with
fibres isomorphic to B(C,2). From this the vanishing of the twisted Borel-Moore
homology of Y7, follows.
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Next, let us consider the complement Y7, \ X7,. Since for these configurations
({a, B}, P,C) one has a, 3 € P, one can view Y7, \ X7, as the set of partially
ordered configurations ({«, 3}, {ql,qg} C) in (F(P*4)/ ~) x K such that C
contains {a, 3, q1,¢2}. The relation ~ on F(P2 4) is generated by (a, 5, ¢1, ¢2) ~
(B, a,q1,q2) and («, B, q1,q2) ~ (@, 3,q2,q1) and the local system S is the local
system induced by the sign representation of the Gs-action interchanging ¢; and
qz-

Hence, Y7, \ X/, is a finite quotient of the subset Z of F(P?,4) x K of configu-
rations («, 3, q1, g2, C') such that C' contains the points «, 3, q1, g2 but is different
from the rank 1 conic Cy := aFUq1q2. This space Z is a rank 1 affine bundle over
F (P?,4), the fibre over a configuration of four points being the pencil of conics
passing through the them, minus Cy. From the isomorphism F(P?,4) = PGL(3)
one gets that the whole Borel-Moore homology of F (P?,4) is invariant under
the interchange of two points in the configuration. Moreover, also the whole
Borel-Moore homology of the fibres of the C-bundle is invariant under such an
interchange. Hence the Borel-Moore homology of Y7, \ X7, with constant co-
efficients, which equals the part of the Borel-Moore homology of Z which is
invariant under the interchange of the third and four point in the configuration,
is equal to the Borel-Moore homology of Z. From the construction of Y7, \ X7,
as the quotient of Z under an involution, and from the definition of S, we get
HJ(Z;Q) = H (Y}, \ X44;Q) @ Hl (Y, d\X7d7 S). From this the vanishing of

H,(YZ,\ XLy S) follows. O

I1.9 Type 9

In this section we compute the Borel-Moore homology of the strata Fg, C ’X ! ’
with k € {b,c,d, e} that correspond to singular configurations containing the
union of four points {a, b, c,d} in general position with the point e which is the
intersection of the lines ab and cd. The configuration spaces Xg were described
in Table I1.7 on page 43.

We will prove the following results:

Lemma I1.9.1. For configurations of type 9b one has:

A, (Xﬁl)baj:Q) H,(PGL(3); Q)
H,(®y,; Q) = H,_4(PGL(3); Q).
Ho(Fy,; Q) = Ho- s(PGL( ); Q) © Q(2).

Lemma 11.9.2. For configurations of type 9c one has:

Hy (X5 £Q) = Ho 1 (PGL(3); Q),
Ho (P Q) = Ho- 5(PGL( ); Q)
H,(Fg.; Q) = H,7(PGL(3); Q) ® Q(1).
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Lemma 11.9.3. For configurations of type 9d one has:
Ho(Xg; £Q) = He(Pyy; Q) = Ho(Fy; Q) = 0.
Lemma I1.9.4. For configurations of type 9e one has:

p(Ho(X5.: £Q)) = (L2 1 1) - p(H, (PGL(3); Q))
o(Ho(P4,; Q)) = (1°L72 + 1°) - o(Ho(PGL(3); Q))
p(Ho(Fge; Q) = (t"L7° + t'L71) - p(Hl(PGL(3); Q))

Lemma 11.9.5. 1. The Borel-Moore homology of the union U of the config-
uration spaces Xg, and X} inside B(P? 2) x B(P? 6) has trivial twisted
Borel-Moore homology.

2. The Borel-Moore homology of the union of the strata @y, and @y, inside
}A’ } is trivial.

Proof of Lemma I1.9.1. Recall that the configuration space Xg, is a finite quo-
tient of the space F/(P?, 4) of ordered configurations of points in general position,
via the map

F(P2,4) — X,
(ala&27&37a4) — ({&h&Z}a{&1a&27a37a47a5})a

where the point as is the intersection point of the lines a,a3 and asas. This map
can be identified with the quotient map of F(P?,4) by the involution (1,2)(3,4).
Note that the involution (1,2)(3,4) has even sign, so that the restriction to Xg,
of the local system +Q (defined by the sign representation of the action of Gj
on the 5 singular points) equals the constant local system Q. Then the claim
follows from the fact that F (P2 4) is isomorphic to PGL(3) and that the whole
of its Borel-Moore homology is invariant under permutation of the points.

The result over the Borel-Moore homology of &g, follows from the fact that
@), is a Ay-bundle over X},. Note that the involution (1,2)(3,4) does not change
the orientation of the simplex with vertices ay, as, as, as, as, so that the simplicial
bundle @y, — X, is orientable in this case. The result over the Borel-Moore
homology of Fy, follows from the fact that Fy, — @, is a complex vector bundle
of rank 1. 0

Proof of Lemma I1.9.5. The union U of the configuration spaces X, and X,
inside B(P?,2) x B(P?5) is the locus of configurations ({a, 8}, {a;}1<i<5) such
that aq,as, ag, ay are in general linear position, the point a belongs to ajas, the
point 3 belongs to agay and furthermore ayas Nagay = {as} ¢ af.

Consider the configuration space

Y = {(Oé,ﬁ, CL1,CL2,CL3,CL4) - F(PQ,Q) X F(P2,4) ac alaQ’ﬂ < a3, }

a, B & (a1as N asay)
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of ordered configurations of six points, such that the last four points ay, as, as, as
are in general position, the first point « lies on ajas \ azas and the second point (3
lies on agays\ajas. Notice that interchanging the configurations (a, 3, ay, as, ag, ay)
and («, 3, az, a1, as, ay) gives a well defined involution on Y. It is easy to prove
that the whole Borel-Moore homology of Y is invariant with respect to this
involution. Namely, the space Y is fibred over F(P2, 4) 2 PGL(3), whose Borel-
Moore homology is invariant under the involution interchanging a; and as. The
involution interchanging a; and as induces a trivial action also on the Borel-
Moore homology of the fibre of ¥ — F(P2,4), which is isomorphic to C? =
(a1a2 \ {pt}) x (asas \ {pt}).

The space U is the quotient of Y by the group generated by the involutions

(05757 CLl,CLQ,CL3,CL4) — (a7ﬁ7a27a17a37a4)7
(05757 CLl,CLQ,CL3,CL4) — (a7ﬁ7a17a27a47a3)7
(a7ﬁa a17a27a3a&4) s (ﬁ,a,ag,a4,a1,a2).

Thus, the twisted Borel-Moore homology of U is contained in the part of the
Borel-Moore homology of Y which is alternating under the involution interchang-
ing a; and as in the configurations. This proves that the twisted Borel-Moore
homology of U is trivial.

The second part of the claim follows from the fact that ), U®}, is a As-bundle
over U. O

Proof of Lemma I1.9.2. We start by observing that the part of the claim on the
twisted Borel-Moore homology of X} implies the claimsthe result for H,(®}_; Q)
and H,(F}.; Q). This follows from the structure of ®), as As-bundle over X,
and from the structure of F{_ as rank 1 complex vector bundle over ®j_.

The configuration space X{, is an open subset of the space U of Lemma I1.9.5,
with complement the configuration space Xg,. The twisted Borel-Moore homol-
ogy of U is trivial, whereas the twisted Borel-Moore homology of Xg, is iso-
morphic to the Borel-Moore homology of PGL(3) by Lemma I1.9.1. Then the
claim follows from the long exact sequence in Borel-Moore homology with +Q-
coeflicients associated to the closed inclusion Xg, — U. O

Proof of Lemma I1.9.3. Consider the space
Yoa := {(a1, a9, a3,a4,7) € F(PQ, 4) x PQVI’T Najay =T Nazay = ajas Nasay}

of ordered configurations of four points ay, as, as, a4 in general position, together
with a line 7 passing through the common point of the lines ajas and agay,
and different from these two lines. The natural map Yoq — F (P?,4) gives Yoq
the structure of a C*-bundle over F(P2 4). Note that the whole Borel-Moore
homology of Yyq is invariant under the interchange of the points ai,as. This
involution fixes the fibres of the C*-bundle (considered as a subset of P?7), and it
also acts trivially on the Borel-Moore homology of the basis F(P2,4) 2 PGL(3).
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Next, fix a configuration y = (a1, as, as, aq, 7) € Yoq and consider the pencil of
quadrics through the points ay, as, as, as. Every quadric in the pencil intersects
the line 7 in a subscheme of length 2, and exactly two quadrics in the pencil are
tangent to 7, namely, the reduced conic a;as Uazas and a further conic, which we
will denote by @,. Note that the tangency points of the two conics are distinct
points on 7, otherwise we would get a contradiction with the assumption that
the a; are in general position.

Consider next the map

Yoa - Xod
Yy = (a17a27a37a477—) — ({a7ﬁ}7{alaa27a37a4aa})

where {a} = ajasNasa, and [ is the intersection point of (), and 7. This map is
surjective with finite fibres, and allows to identify X}, with the quotient of Ygq by
the subgroup of &4 generated by (1,2), (3,4) and (1,3)(2,4). We are interested
in the local system of coefficients of X¢, induced by the sign representation on
the 5 singular points. Since the involution (1,2) interchanges exactly 2 singular
points, the twisted Borel-Moore homology of X¢, is contained in the part of the
Borel-Moore homology of Ygq which is alternating under (1,2). Therefore, as
the whole Borel-Moore homology of Yyq is invariant, the twisted Borel-Moore
homology of X{, must vanish. Furthermore, the structure of ®g, and Fj, as
fibrations over Xg, also implies that the Borel-Moore homology of these spaces
vanishes. O

Proof of Lemma I1.9.4. Let us consider the configuration space

dim({a, 3, a1, as) = 1, }
{Oé,ﬁ} 7é {aba?} '

Let us choose a standard frame (ey, €5, es, e4) € F(P?,4) and identify P! with
the line e;eo. Then Yy, is isomorphic to the product (B(P!,2)\{pt}) x PGL(3) by
the map sending ({«, 5}, a1, as, as, aq) to ({p(a), ¢(B)}, ¢) where ¢ is the unique
automorphism of P? such that p(a;) = e; for all i = 1,...,4. In particular, this
implies that the Borel-Moore homology of Yy, with constant coefficients has HG
polynomial t*L~2 — t.

The map Yo, — X, given by

Yoo i {({a,ﬂ},al,ag,ag,m) € B(P?,2) x F(P?,4)

({%5}&1,@2,@3,@4) — ({Oéaﬁ}, {al,ag,a3,a4,a5})

with a5 the intersection point of the lines ajaz and asay allows to identify X,
with the quotient of Yy, by the involution

v ({a7ﬁ}7&17a27&3a&4) E— ({a7ﬁ}7&27a17a4a&3)'

Since 7 interchanges two pairs of singular points, the twisted Borel-Moore
homology of X, coincides with the part of the Borel-Moore homology which is
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invariant under 7. Then the claim follows from the fact that the Borel-Moore
homology of both factors PGL(3) and B(P',2) \ {pt} of Y. is invariant under
the Gs-action induced by i. O

I1.10 Configurations of type 10

In this section, we deal with the singular sets of singular quartics with a marked
bitangent that are the union of four lines in general position. Such a quartic
has 6 distinct singular points, hence a singular set of the configuration space X7,
will be an element of B(P?,2) x B(P?6). As always, we will denote by +Q the
pull-back of the local system +Q under the forgetful map X, — B(P?,6).

Lemma I1.10.1.

p(Ho(X10; £Q)) = (L2 +1) - p(H.(PGL(3); Q)),
p(Ho(P10; Q) = (L% + 1) - p(H.(PGL(3); Q)), (11.10.1)
p(Ho(Fp; Q) = 'L 1 (L2t + 1) - p(Hl(PGL(3); Q)).

i,
H,

Proof. We start by observing that it suffices to prove the description of the Borel—
Moore homology of the configuration space Xj,. The results on @}, and F}, will
immediately follows from their structures as simplicial bundle and vector bundle,
respectively.

Recall that the elements of X, are configurations ({«, 5}, K) such that K
is the singular set of C = |J,¢; C P? for a configuration of 4 lines {1, 5, {3, (4
in general position and the line 7 = «f is either tangent to C at the points «
and f3, or it is contained in C. This implies that we may view X, as a subset of
B(P2,2) x B(P*,4), and that X/, has two connected components:

X{Oa = {({Oé,ﬁ}, {Eh s 764}) S X{0|O‘6 - ng}

and

X{Ob = {({055}7 {617 S 7£4}) S X{O‘gl Nty = {Oé},£3 Nty = {ﬁ}}v

because the only bitangent lines to the singular quartic C are the components of
C and the lines joining the intersection points of two disjoint pairs of components
of C.

We need to compute the Borel-Moore homology of X, in the twisted local
system of coefficients Q. This local system of coefficients coincides with the
restriction to X!, of the trivial local system on B(P?,2) x B(P?,4) under the
inclusion X}, < B(P?,2) x B(P?",4). This follows from the fact that interchang-
ing two lines ¢;, ¢; interchanges two pairs of singular points of C, thus inducing a
permutation of even sign in the configuration of six singular points.
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We proceed to consider configurations of type 10a. Notice that without loss
of generality we can always assume that the marked points «, 3 lie on the line /4.
In other words, we can obtain X7, as the quotient of the space

Yioa = {({, BY, (t1, ..., £y)) € B(P?,2) x B(P* 4)|a, 5 € {4}

by the action of &3 permuting the lines ¢, (5, (3.

The space Yig, is fibred over F(P? 4) = PCL(3) with fibre isomorphic to
B(f4,2) = B(P',2). The space B(P',2) is isomorphic to Sym®P! with the
diagonal removed, i.e. to the complement of a smooth conic in P2. Hence we
have

p(Ha(Yioa; Q) = t'L7*p(H.(PGL(3); Q),

and since the whole Borel-Moore homology of Yjg, is invariant under the &3-
action, this yields the Borel-Moore homology of X7, as well.

Analogously, we realize X, as the quotient of B(P2',4) the action of the
group generated by the involution interchanging ¢; < /¢ and the involution
{4 « U5, 0y < £4. Since the Borel-Moore homology of B(P?",4) = PGL(3) is
invariant under any permutation of the points, the Borel-Moore homology of
Xop, coincides with that of PGL(3). Then the claim follows from the fact that
the Borel-Moore homology of X7, is the direct sum of the Borel-Moore homology

of its two components X{,, and Xj. O

II.11  Quartic curves with a flex bitangent

In this section, we will compute the rational cohomology of the moduli space Qj
of pairs (C, 7) such that C'is a smooth quartic curve and 7 a flex bitangent.

Theorem I1.11.1. The rational cohomology of Qf is one-dimensional and con-
centrated in degree 0.

Recall that Z; is fibred over the space P (Tp2), which can be viewed as the
incidence correspondence

{(a,7) € P> x P¥|a € 7}.

We start by considering the fibre of the map n; : Zy — P(Tp2) over (p,t) €
P(Tp2). Set t' =t \ {p}. Consider the 11-dimensional complex vector space

Ve {f cv ’ the line t is either contained in V(f) or it } ‘

or is a flex bitangent to t at the point p

Then the fibre (75)~!(p,t) is equal to V,; \ X. Hence, the fibre of 7; can be
viewed as the complement of a discriminant in the vector space V,,;. In particular,
its cohomology can be computed using Vassiliev—Gorinov’s method.
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Table I1.9: Singular configurations of type 1-3 and associated strata.

la The point p.
Stratum: F, is isomorphic to C'.

1b One point on t'.
Stratum: Fy, is a C%-bundle over ¢’ = C.

lc A points outside t.
Stratum: F. is a C®-bundle over the affine space C2.

2a Two points on t.
Stratum: Fb, is a C8-bundle over ®,,, which is a non-orientable Al—bundle over
Xo. = B(PL,2).

2b The point p and a point outside ¢.
Stratum: Fy, is a C-bundle over ®oy,, which is a non-orientable Al—bundle over
X, =2 C2

2¢ A point on ¢ and a point outside ¢.
Stratum: Fh. is a CS-bundle over ®y., which is a non-orientable Al—bundle over
Xy =2 C3.

2d Two points outside t.
The Borel-Moore homology of F5q and ®54 vanishes, because they are fibred over
the configuration space B(C?,2), whose twisted Borel-Moore homology vanishes.

3x Configurations with three collinear points.
To get all strata, we have to distinguish whether the line is ¢, if one of the singular
points coincide with p or lies on ¢ or if the configuration is general. In each of
these cases the space X3, admits a locally fibration with fibre isomorphic to
either B(P1,3) or B(C?,2). Since the twisted Borel-Moore homology of both
these configuration spaces vanishes, configurations of type 3 do not contribute to
the Borel-Moore homology of Dy .

We proceed by giving the classification of the singular sets in P? of quartic
curves that pass through p and have the line ¢t 3 p as flex bitangent. These are
exactly the singular sets of the elements of V,, N3, First, we classify in Tables I1.9
and II.10 the singular sets that come from refining singular configurations of
type 1-6 in Vassiliev’s list (Table I1.2).

For configurations K of type 7-13 in Table I1.2 we can distinguish whether
the general curve singular at K will not contain the line ¢ (in which case we will
call it a configuration of the first kind) or if every curve singular at K will contain
t (configuration of the second kind).

It is easy to see that if the V(f) does not contain ¢, and its singular locus
contains a configuration K of type 7-12 in Vassiliev’s classification, then the
singular locus K C P? is either a line through p, or a conic (possibly singular)
tangent to t at the point p. Hence, a configuration K of the first kind will either
contain a rational curve, or a finite number of point lying on a rational curve.
In this way we can prove that configurations of the first kind do not contribute
to the spectral sequence converging to the Borel-Moore homology of V,, N X.
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Table I1.10: Singular configurations of type 4-6 and associated strata.

4a Two points on ¢ and one point outside t.
The stratum Fj, is a C°-bundle over ®4,, which is a Ag—bundle over the config-
uration space Xy, = B(P!,2) x C2.

4x All other configurations of three points in linear general position.
We have to consider the following subcases: one of the points is p and the other
two lie outside ¢ (C*bundle), a singular point lies on #' and the other two lie
outside ¢ (C3-bundle), all three points lie outside ¢ (case 4*, C?-bundle). All
these subcases correspond to configuration spaces with trivial twisted Borel—
Moore homology.

5x A line in P2.
We have to distinguish whether the line equals ¢, passes through p of not. In
each case x the Borel-Moore homology of ®s, is trivial, because the singular
configuration contains a rational curve.

6x Three collinear points p1, p2, ps and a fourth point ¢ in general linear position.
We have to distinguish between the following subcases: the three collinear points
belong to ¢ (C*-bundle), a point p; and ¢ both lies on ¢ (C3-bundle), p; belongs
to ¢t but and po,p3 and ¢ do not (C3-bundle), none of the p; lies on ¢ but ¢ € ¢
(C2-bundle), p; € t but all other point lie outside ¢ (case 6*, C-bundle). In each
of these cases the configuration space is fibred over a base space with fibre isomor-
phic to either B(C?,2), B(C,2) or B(P!,3). For this reason, all configurations
of type 6 contribute trivially to the Borel-Moore homology of Dy .

Therefore, it suffices for us to consider the strata associated to configurations of
the second kind, which we list in Table II1.11.

In view of the description of the strata given there, it suffices to deal with
the configuration types 9b and 10’. The Borel-Moore homology of Xg, and X
is not difficult to compute. However, we will not need this result, because it is
possible to prove that the contributions of these two strata kill each other in the
spectral sequences associated to the stratifications ®, and Fj.

Lemma 11.11.2. The Borel-Moore homology of ®g, U P10 C ‘A} is trivial, and
the same holds for Fo, U Fio C ‘X}

Proof. The stratum ®,( is a simplicial bundle over Xy . Its fibre over a configu-
ration K € Xy is an open 5-dimensional simplex whose vertices are in canonical
correspondence with the six points in K. We can partially compactify @, by con-
sidering the simplicial bundle ¥ over X;o whose fibres are closed 5-dimensional
simplices, in such a way that the fibres of ®;y coincide with the interiors of the
fibres of ¥ — X;y. The simplicial bundle V¥ is contained ‘A}, where it can be re-
alized as the union of the simplices corresponding to subsets of the configurations
in X 10/ -

Observe that every configuration K € X; contains exactly three points lying
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Table II.11: Singular configurations of the second kind and associated strata.

7/

8a

8b

9a

9b

10/

12/

13

Two points on ¢t and two other points (no three points in the configurations are
allowed to be collinear).

Stratum: The general curve singular in such a configuration K is the union of the
line ¢, the line passing through the two points in K \ ¢ and a conic passing through
the points of K. The configuration space X7 is contained in B(t,2) x B(C?,2)
with complement a fibration over F(P! 2) with fibre isomorphic to B(C,?2).
Since the twisted Borel-Moore homology of both B(C? 2) and B(C,2) vanish
by Lemma [.4.6, the twisted Borel-Moore homology of X7 and the Borel-Moore
homology of ®7 and Fy/ are trivial as well.

The union of the line ¢ and a point outside t.

The strata Fg, and $g, have trivial Borel-Moore homology, because the singular
configurations of this type contain a rational curve.

The union of a line different from ¢ and a point on t.

The Borel-Moore homology of the strata ®g;, and Fgy, is trivial, because config-
urations of type 8b always contain a rational curve.

Five points {a,b,¢,d, e} with a,b € t, ¢,d € (P?\ t) and {e} =t N cd.

Stratum: The configuration space Xg, is isomorphic to X7/, hence its twisted
Borel-Moore homology vanishes. Therefore also the Borel-Moore homology of
®g, and of Fy, is trivial.

Five points {a,b,¢,d, e} with a,b € t, ¢,d € (P?\ t) and {e} =t N cd.

Stratum: The stratum Fyy, is a C-bundle over ®gp,, which in turn is a A4—bundle
over the configuration space Xg;,, which is the quotient of the space {(a,b,c,d) €
F(P2, 4)|a,b € t} by the equivalence relation generated by (a, b, c,d) ~ (b,a,d, c).
Six points which are the pairwise intersection of four lines in general position,
one of which is ¢.

Stratum: The stratum Fjy is a C-bundle over ®1(y, which in turn is a At—)—bundle
over the configuration space Xjo which is isomorphic to the configuration space
of three unordered lines in general position and such that their union intersects
t in three distinct points.

The union of ¢ and another line.

The strata ®,9» and Fjo have trivial Borel-Moore homology. This is a conse-
quence of the fact that the singular locus contains a rational curve.

The whole projective plane.
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outside t. They correspond to a 2-dimensional face Dy of the fibre Vi of ¥ —
Xy lying over K. Let us define X to be the union of the interior of all the
faces of the 5-dimensional simplex Wy that contain the interior of Dg. The
complement of Xy in W is the union of all closed faces that do not contain
the three vertices of Dg. The Borel-Moore homology of Xk coincides with the
relative homology of the pair (W, W \ X ), which is trivial because both spaces
can be contracted to the same point.

Let us consider the subset X C W given by the union of the Xy for all
K € Xjp. Then the Borel-Moore homology of X is trivial as well. On the other
hand, we can view X as the disjoint union of open simplices of dimension varying
from two to five. For k = 2,...,5, denote by X*) the union of the interior of all
k-dimensional faces of simplices contained in X.

The space X® is fibred over Xy with fibre the interior of Dy. It coincides
with the stratum ®,+ coming from configurations of type 4*, containing three
points in general linear position not lying on ¢ (see Table I11.10). In particular, the
Borel Moore homology of X? is trivial. Analogously, the stratum X®) coincides
with the stratum ®g. corresponding to configurations of type 6* (three collinear
points of which exactly one lies on ¢ and a fourth point not lying on ¢ and not
collinear with the others). As we explained in Table II.10, the Borel-Moore
homology of X® is trivial.

Hence, the Borel-Moore homology of X coincides with the Borel-Moore ho-
mology of the union of its strata X = &g, and X®) = &;,,. This proves that the
Borel-Moore homology of ®g, U®( is trivial. As to the second part of the claim,
it suffices to observe that Fy, U Fio is a complex line bundle over ®g, U &1y [

Furthermore, also the configuration space X3 = {P?} contributes trivially to
the Borel-Moore homology of V,,, N X.

Lemma I1.11.3. 1. The ¢! terms of the spectral sequence

6271) = Hquv(}A’ \ @13; Q)

associated with the stratification ®, are as given in Table I1.12.
2. The Borel-Moore homology of Fi3 is trivial.

Proof. The terms of this spectral sequence are given by e}w = H,(®,; Q) for all
configuration types u such that the Borel-Moore homology of ®,, is non-trivial.
Furthermore, we can omit all configurations with more than 4 singular points
in view of Lemma II1.11.2. Then the first part of the claim follows from the
description of the strata ®;y given in Table I1.9 and II.10.

We can observe that only configurations of type 1-4 contribute non-trivial e'
terms. Furthermore, the union of the configuration spaces X, with j =1,...,4
gives all configurations of < 4 points in P2. Hence, the reasoning in the proof of
Lemma II.5.1 applies also in this case, thus yielding

et =0, ey, =0 for (u,v) # (1,—1).
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Table I1.12: e' terms of the spectral sequence €], , = Huﬂ(‘/\} \ $13; Q).

1o 0 Q2 0 0 Q3 QB
0] 0 Q1 0 0 Q2 0 0
1lQ 0 0 Q1 0 0 0
1 2 3 4 ) 6 7T u
type | (1a) (1b) (lc) (2a) (2b) (2¢) (4a)

Table 11.13: E! terms of the spectral sequence E,, = Hu+v(’X Q) =

Hu—l—v(‘/p,t N Ea Q)
v

19 | Q(10)®3
18 0
17 0
16 0
15 0

1

1x

type | (

As a consequence, the Borel-Moore homology of }A} \ @13 is 1-dimensional
and concentrated in degree 0. Then the second part of the claim follows from the
fact that the F}3 is an open cone over }A} \ ®y3 in view of Proposition 1.4.3. O

We are ready to calculate the Borel-Moore homology of V,,; N .

Lemma I1.11.4. 1. The E! terms of the spectral sequence
EZ,v = Hu-l—v(vpi N Z; Q)
are as given in Table II.13. This spectral sequence degenerates at E!.

2. The rational cohomology of V,; \ ¥ has HG polynomial (1 — tL)3.

Proof. We have E}w = H,.o(Fy;Q), where u refers to the uth configuration
type in our list. Since F), is a vector bundle of a certain rank k, over ®,, one
has E, , = e} ,_o., @ Q(k,). This allows to compute the E} , as in Table IL.13.
Degeneracy at E! follows immediately from the shape of the spectral sequence.
The result on the cohomology of the complement of the discriminant V,; \ X

follows from Alexander’s duality (I.2.1). O
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Table I1.14: Leray spectral sequence of the fibration Z; — P (Tp2)

q Eg,q
31 Q(=3) 0 Q(—4)* 0 Q(-5)?* 0 Q(-6)
21Q(=2)> 0 Q(=3)° 0 Q(-4)° 0 Q(-5)°
11Q(=1)* 0 Q(=2)° 0 Q(=3)° 0 Q(-4)’
0] Q 0 Q(=1)° 0 Q(=2° 0 Q(-3)
0 1 2 3 4 5) 6 D

q Ez,q

3 0 0 0 0 0 0 Q(—6)

20 0 0 Q(=3) 0 Q(-4) 0 Q(-5)

11Q(-1) 0 Q(=2) 0 Q(=3) 0 0

0 Q 0 0 0 0 0 0

0 1 2 3 4 5) 6 D

Proof of Theorem I1.11.1. We want to compute the cohomology of Z; by using
the Leray spectral sequence associated to the fibration Z; — P (Tp2) with fibre
V,.:\ 2. From the fact that P (Tp2) is a P!-bundle over P? and from the computa-
tion of the cohomology of the fibre given in Lemma I1.11.4 above we get that the
E5 term of the Leray spectral sequence is as given in the first part of Table I1.14.

To compute the differentials of the spectral sequence, we keep in mind that we
proved in Lemma II.2.1 that it has to be a tensor product of the cohomology of
GL(3). There is only one possible behaviour of the differentials that would ensure
such a divisibility: This is the case in which the E3 term is as in the second part
of Table I1.14 and the spectral sequence degenerates at E3. This yields

H*(Z;;Q) = H*(GL(3); Q).
This isomorphism implies the claim, since by Lemma II.2.1 we also have

H*(Z;;Q) = H*(Q5;Q) ® H*(GL(3); Q).
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Chapter 111

The orbifold cohomology of
moduli of genus 3 curves

III.1 Introduction

It was a remarkable discovery of the beginning of this century, anticipated in
physics in the nineties, that the degree zero small quantum cohomology of a
smooth Deligne-Mumford stack is a (proper) ring extension of its ordinary co-
homology ring: its definition was recognized and given in symplectic geometry
by Chen and Ruan in [CR04]. The algebraic counterpart of this theory was
developed by Abramovich-Graber—-Vistoli in [AGV02], [AGV08].

The Chen—Ruan cohomology of a smooth Deligne-Mumford stack X is, by
definition, the degree zero part of the small quantum cohomology ring of X, and
the orbifold cohomology of X is the rationally graded vector space that underlies
the Chen-Ruan cohomology algebra. The general idea, coming from stringy
geometry, is that an important role in the study of X is played by the so-called
inertia stack of X. When X is a moduli space for certain geometric objects, the
inertia stack of X parametrizes the same geometric objects, together with the
choice of an automorphism on them. The stack X itself appears as the connected
component of its inertia stack associated with the trivial automorphism, but in
general there are other connected components, usually called the twisted sectors of
X, a terminology that originates from physics. Orbifold cohomology is simply the
ordinary cohomology of the inertia stack, endowed with a different grading. Each
twisted sector is assigned a rational number, called (depending on the author)
degree shifting number, age or fermionic shift: this number depends on the action
of the given automorphism on the normal bundle to the twisted sector in X. Then
the degree of each cohomology class of the twisted sector is shifted by twice this
rational number.

In this chapter, we study the inertia stack of moduli spaces M, of smooth

Joint with Nicola Pagani, KTH (Stockholm).
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CHAPTER I11I. ORBIFOLD COHOMOLOGY

genus g curves. The starting point of our construction is that one can associate
with each object (C, ) of the inertia stack the cover given by quotienting C' by the
cyclic group generated by «. Following an idea of Fantechi [Fan08], we exploit
this correspondence to tackle the problem of the identification of the twisted
sectors of M, by using the classical theory of cyclic (possibly ramified) covers
of algebraic varieties, as developed in [Par91]. We identify some discrete data in
order to separate the inertia stack of M, in its connected components. The first
data are the genus of the quotient curve and the order N of the automorphism;
the latter is a general invariant of twisted sectors as it appears already in the
definition of the inertia stack. Finally, the branch locus of the covering can be
split in N — 1 parts according to the local monodromy around each of its points.
The last invariants are simply the degrees of each of these N — 1 divisors. It
is a recent result of Catanese ([Cal0]) that these numerical data single out a
connected component of the moduli space of connected cyclic covers.

Thus the topology of the moduli space of cyclic covers of curves, which was of
classical interest, plays a central role in the study of the stringy geometry of the
moduli spaces of curves, their Gromov—Witten theory and quantum cohomology.
The construction outlined in the last part of the previous paragraph describes the
connected components of this moduli space. For low values of g, it is possible to
study explicitly the topology of the twisted sectors of M, ,,. This has been done
with elementary techniques in [Pag08|, [S06] and [Pagl0a] for genus 1 and 2.

In this chapter, we work out the details of the theory of twisted sectors of
moduli of curves explained above in the case when g equals 3. We first solve the
simple combinatorics of the numerical discrete data of genus 3, and then study
the geometry and topology of the resulting twisted sectors of M3. In most cases,
the cohomology of the twisted sector is computed in a rather straightforward way.
The main exceptions are the twisted sectors corresponding to bielliptic and to
quadrielliptic genus 3 curves, which require a more detailed analysis. In particu-
lar, our computation of the cohomology of the moduli space of bielliptic genus 3
curves is achieved by using a combination of Vassiliev—Gorinov’s method for the
computation of the cohomology of complements of discriminants with the study
of certain Leray spectral sequences, following the approach of [T05], [T07]. We
expect that these techniques could be applied also in other cases of moduli spaces
of cyclic covers, at least for small values of g. Finally, we partially extend our in-
vestigation to the orbifold cohomology of the Deligne-Mumford compactification
M3 of M. Specifically, we study the Zariski closure of I(M3) inside the inertia
stack I(M3). The connected components of this compactification are precisely
the connected components of I(M3) whose general element is a smooth curve.
We can think of this situation in analogy with what happens in the theory of
moduli of stable maps: it is often the case that compactifying the space of maps
one introduces “extraneous” components, and that the main interest is focused
on the connected components of the moduli space whose general element is a map
from a smooth curve. In the present work, the study of the compactification of
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the inertia stack is performed using moduli stacks of admissible covers (we refer
for the general theory to [ACV03]). The cohomology of the twisted sectors con-
tained in this compactification contributes what we call the compactified orbifold
cohomology of M.

Our main results are the description of the connected components of the
twisted sectors of M, (Sect. II1.2.1), the age for each of them (Prop. II1.5.6) and
the explicit computation of the orbifold cohomology of M3, which we recollect
in the following two theorems:

Theorem III.1.1 (Theorem II1.5.7). The orbifold Poincaré polynomial of Msj
18:

Lt 420+ 5465 412 + 4"+ 262 + 265 47 + 500 49 17
168 uoos0 39 AT a0 o524 6 | L1
L35 f T AL 4t 4T 4t T S T 41065 1T
56 4419 45 58 B 46 20 48 ez sl
+t9 +t7 +t3 +t7 +t9 +3t2 4t +2t3 417 +to +t7.
Theorem III.1.2 (Theorem I11.5.9). The compactified orbifold Poincaré poly-
nomial (see Definition I11.5.5) of M3 is:

Tt 424485 115 115 + 1665 412 £ 25 47 + 1265
46 36 16 38 11 50 39 40 52 41
1T 44T 55 T 55 4t 4T T 4t b7
FBUS 4T 41T LT LT LD 4D 44T 45 44T 4t
12T T 2T Lt 165 T Lt 410 4 4400 1 412

The ordinary additive cohomology of M3 and Mj was studied by Looijenga and
Getzler, respectively in [Lo91, (4.7)] and [Ge98, Prop. 16]: our results are an
extension of theirs.

The chapter is developed on three levels. On the first level, we introduce the
theory of inertia stack, age grading, orbifold cohomology, and orbifold Poincaré
polynomial for a general smooth Deligne-Mumford stack X as developed by
Chen-Ruan in [CR04] and Abramovich-Graber—Vistoli in [AGV02], [AGVO08].
The compactified orbifold cohomology is introduced for any choice of a smooth
compactification X C X. On the second level we introduce the theory and prove
some general results for the inertia stack of the moduli stack of curves M, and
its Deligne-Mumford compactification M. Finally the third level is devoted to
work out all the details in the case g = 3.

We observe that we work with cohomology, as in the seminal paper of Chen—
Ruan. Nevertheless, the techniques we use are algebraic, thus in this sense our
work is closer to Abramovich—Graber—Vistoli’s approach.

I1I.1.1 Acknowledgments

We would like to thank Barbara Fantechi, who introduced us to the study of the
orbifold cohomology of M, and shared with us her insight on this subject. We
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also thank Gilberto Bini and Carel Faber for useful conversations and comments.
The first author was supported by the Wallenberg foundation. The second author
would like to thank KTH for hospitality during the first stage of the preparation
of this work.

I11.1.2 Notation

We work over the field of complex numbers, and cohomology is always taken
with rational coefficients. By a stack, we shall always mean a Deligne-Mumford
stack, of finite type over C. In this context, the canonical map from a stack to
its coarse moduli space induces an isomorphism in cohomology: we will often
identify the two cohomologies by means of this isomorphism. We adopt the
convention that orbifold cohomology is the graded vector space underlying Chen—
Ruan cohomology, where the latter carries the additional ring structure.

In our work, we shall consider the cohomology with its mixed Hodge struc-
tures. We shall denote by Q(—k) the Hodge structure of Tate of weight 2k. The
class of Q(—1) in the Grothendieck group K¢(HSq) of rational Hodge structures
will be denoted by L = [Q(—1)].

Results on the cohomology with compact support of a quasi-projective variety
(or stack with quasi-projective coarse moduli space) X shall often be expressed
by means of its Euler characteristic in Ky(HSq). Following [PS08, § 5.5.2], we call
this Euler characteristic the Hodge—Grothendieck character for compact support
of X and denote it by

Xiae(X) = Y _(1)'[HAX; Q)] € Ko(HSq).

1€EN

Hodge—Grothendieck characters for compact support are sometimes called Serre
characteristics in the literature.

Similarly, to state results on cohomology with compact support in a concise
way, we shall express them as polynomials with coefficients in the Grothendieck
group of Hodge structures:

Px(t) = [HAX;Q)t" € Ko(HSq)[t].

1€EN

We work with cyclic covers f: C — C’, where C' and C’ are, respectively,
the covering and the covered space. If the cyclic cover is not étale, it contains,
respectively, ramification and branch points.

We shall denote the symmetric group in d letters by &, and the group of kth
roots of unity by py.
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II1.2 The inertia stacks

I11.2.1 Definition of the inertia stack

In this section we recollect some basic notions concerning the inertia stack. For
a more detailed study of this topic, we address the reader to [AGV08, Section 3].

We introduce the following natural stack associated to a stack X, which points
to where X fails to be an algebraic space.

Definition III.2.1. ([AGV02, 4.4], [AGVO08, Definition 3.1.1]) Let X be a stack.
The inertia stack I(X) of X is defined as:

I(X):= J] InX)

N€N>o
where Iy(X)(S) is the following groupoid:

1. The objects are pairs (£, a), where £ is an object of X over S, and o : uy —
Aut(¢) is an injective homomorphism;

2. The morphisms are the morphisms g : £ — £ of the groupoid X (5), satis-
fying g - (1) = /(1) - g.

The inertia stack comes with a natural forgetful map f: I(X) — X.

We also define Irw(X) = [[y.;In(X). The connected components of
Irw (X) are called twisted sectors of the inertia stack of X, or simply twisted
sectors of X.

We remark that, by its very definition, I (X) is an open and closed substack
of I(X), but it rarely happens that it is connected. One special case is when N
equals 1: in this case the map f restricted to [;(X) induces an isomorphism of
the latter with X. The connected component [;(X) will be referred to as the
untwisted sector. We also observe that after the choice of a generator of uy,
we obtain an isomorphism of I(X) with I'(X), where the latter is defined as
the (2-)fiber product X X xxx X where both morphisms X — X x X are the
diagonals.

Remark 111.2.2. There is an involution ¢ : In(X) — In(X), which is induced by
the map ' : uy — py given by ¢/(¢) := (L.
The inertia stack, which we have just defined, is the fundamental ingredient in

the definition of orbifold cohomology (Chen—Ruan cohomology as a vector space).
We observe that, at this level, we do not need X to be smooth nor proper.

Definition ITI.2.3. ([CR04]) Let X be a stack. The orbifold cohomology (with
rational coefficients) of X is defined as a vector space as:

Hep(X) == H*(1(X); Q).
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Now if X < X is an open dense embedding, we can define an intermediate

space between I(X) and I(X), namely:

Definition II1.2.4. Given a compactification of a stack i : X — X, we define
the compactified inertia stack of X as the stack

I(X) = ] In(x)

NeN

where Ty (X) is the stack of all connected components Y of In(X) such that
i*Y # (). We can thus define the compactified orbifold cohomology as the following

vector space: o 3
H'(X):=H*(I(X); Q).

In the following sections, we will study the inertia stack for moduli of smooth
genus ¢ curves and its compactified inertia stack with respect to the Deligne—
Mumford compactification. In the first case we will use the theory of cyclic
covers of smooth curves (see [Par91]), in the second we will use the theory of
admissible covers developed by various authors.

Remark 1I1.2.5. The orbifold cohomology of X only depends upon the topo-
logical space (coarse moduli space) underlying 7(X). In [AGVO08], the authors
introduce two notions related to the inertia stack: the stack of cyclotomic gerbes
([AGV08, Definition 3.3.6]) and the rigidified inertia stack (JAGV08, 3.4]), show-
ing in [AGV08, 3.4.1] that they are equivalent. It is relevant to observe that all
these different notions of inertia stacks share the same coarse moduli space, and
therefore they give rise to the same orbifold cohomology theory.

I11.2.2 The inertia stack of moduli of genus ¢ smooth
curves

We want to study the twisted sectors of the inertia stack of moduli of smooth
genus ¢ curves. For this, we study the moduli stacks of cyclic ramified covers
of curves of genus ¢’ < g. This approach is due to Fantechi [Fan08], and builds
on the theory of abelian covers of algebraic varieties (see Pardini [Par91]). A
description of the theory of abelian covers in the case of curves and of cyclic
groups that is closely related to the one we use can be found in [Cal0, Sections 1
and 2]. A similar construction for covers of prime order was studied in [Co87].
We start by summarizing informally the description of cyclic covers we will use
in our constructions.

Fact I11.2.6. ([Par91, Proposition 2.1]) Let C' be a smooth genus g’ curve. Then
the following data are equivalent:

o A cyclic (possibly ramified) py-cover i : C — C', where C' is a smooth
curve, possibly disconnected;
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o A sequence of N — 1 smooth effective divisors Dy, ..., Dy_1 (with pairwise
disjoint support, possibly empty), a line bundle L on C" together with an
isomorphism ¢ : LN — Oc/(Y,4iD;).

With this result in mind, let us define:

Definition IT1.2.7. Let g > 1 be an integer. A g-admissible datum is an (N +1)-
tuple of nonnegative integers A = (¢/, N;dy,...,dy_1) with N > 2 and ¢’ < g,
satisfying the following conditions:

e Riemann—Hurwitz formula
29 —2=N(2¢' —2)+ (> _d; ged(i,N) N ). (I11.2.1)
ged(i, N) ’

e the structural equation of abelian covers

> idi=0 mod N. (111.2.2)

The integers N and ¢’ will be called respectively the order and the base genus of
the g-admissible datum A.

Note that, for a fixed g, the set of all g-admissible data A is finite. With
every admissible g-datum, we associate the integers d = ) d;, and a disjoint
union decomposition {1,...,d} =[]~ Ji by:

Ji = {j| > dy <j<2dl}.

1< 1<i

Moreover, we will denote by S the subgroup of &, (the symmetric group on d
elements) defined by Sy := {o| o(J;) = J;}.

We shall now construct the twisted sectors of M, as stacks of cyclic N-covers
of curves of genus ¢’, with branch locus of type di,...,dy_1.

Definition ITI.2.8. Let A be a g-admissible datum. We define the stack M4
whose objects over a scheme S are (N + 2)-tuples (C, Dy, ..., Dy_1, L, @), where
C is a smooth family of genus ¢’ curves over S, the D; are sections of (Symgf C'\
Ag) — S (where Ay, denotes the big diagonal) defining disjoint divisors on C,
L is a line bundle and ¢ : L®N — O¢(>-4D;) is an isomorphism.

The stack M/, is defined as the open and closed substack of M 4 whose objects
under the correspondence I11.2.6 correspond to connected covers.

Remark 111.2.9. Let us be more explicit about the morphisms of M 4(S). Let
(C, Dy, L, ¢) and (C", D;, L', ¢') be two objects as in Definition I11.2.8. Then a
morphism between them is a couple of isomorphisms (o : C — C',7:0*L' — L)
satisfying the following conditions: The map o is an isomorphism of curves such
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that o*(D}) = D; and 7 is an isomorphism of line bundles that makes the following
diagram commute:

ot (LN Z ) e (00 (3 iDL (I11.2.3)

lT®N . l'yt
LN Oc(X_iDy),

where we denoted by 7 the isomorphism induced by o. A different definition
for a morphism between the two families (C, D;, L, ¢) and (C’, D, L, ¢') is the
following: a single isomorphism o : C' — C’ satistying o*(D}) = D; and such that
there exists an isomorphism 7 : ¢*L’ — L making diagram (II1.2.3) commute.
These two different definitions of morphisms give rise to two different stacks,
which share the same coarse moduli space.

Remark 111.2.10. Let us denote by My 4(Buy) the open substack of the moduli
stack of stable maps Ky 4(Bpy) whose source curve is smooth. The moduli
stack Ky q(Bpuy) is defined in [AV02]; see also [ACV03], where Ky 4(Buy) is
denoted By 4(pn). We observe that the stack M4 we have just defined (with
the first definition of morphisms in 111.2.9) is an open and closed substack of the
quotient stack [My 4(Bpn)/Sa] prescribed by the assignment of the ramifications
d1> .. ,del.

Remark 111.2.11. If A is a g-admissible datum, then disconnected covers appear
exactly when N is not prime and the greatest common divisor of N and all the
1 with d; # 0 is strictly bigger than 1. If this condition is satisfied, and moreover
g =0, then M’y =), as M4 only parametrizes disconnected covers.

We can see that the moduli stacks M’, we have just constructed constitute
open and closed substacks of the inertia stack of M,:

Corollary II1.2.12. Let us fixt g, N > 1. Then the stack In(M,) of Definition
II1.2.1 is isomorphic to the disjoint union of all nonempty stacks M’y for all
g-admissible data A = (¢',m,dy, ..., dpn_1) with order m equal to N.

Proof. Follows from Definitions I11.2.7, I11.2.8 and by adapting the proof of [Par91,
Theorem 2.1, Proposition 2.1] to this relative case (cf. Fact I11.2.6). Indeed, there
is a base-preserving equivalence of categories:

In(M,)(S) — [T MA(S), (T11.2.4)

where in the right hand side the disjoint union is taken over all g-admissible
data with order N. We sketch the proof of this well-known fact, by explicitly
defining the (functorial) correspondence (I11.2.4). Let us assume that a py-cover
1 : X — C is given (over a base S). Over each point s € S, the branch divisor
D, of the cover X, — (s can be split according to local monodromy in smooth
effective divisors D g, ..., Dn_1 s, having pairwise disjoint support. Identifying
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these divisors with sections of the appropriate symmetric product of C' — S gives
the D;. Each D; defines a codimension 1 subscheme of C' which does not contain
any fibre of C' — S, hence they give rise to effective Cartier divisors on C'. At this
point, we only need to construct the line bundle L together with the isomorphism
o L®N — Oc(Y,4D;). Since the cover is nontrivial, the action of yy on the
push-forward sheaf 1, (Ox) defines a splitting as a direct sum of line bundles:

w*OX:Lo@@LN,1

where L; is the subsheaf of ¥,(Ox) of sections where uy acts with weight i.
The line bundle L is then defined as Ly. By viewing the sections of L = L as
functions on the total space of the line bundle L, and hence also as functions on
its trivial section C, we obtain an identification

o: LV ® OC(Z iD;) — Oc.

1

The correspondence just defined is essentially surjective. Indeed, if the line

bundle L is given over C’, we set L, := LY. The line bundles L, can then be
defined as:
N-1 _
L= L{" @) Oc(Di) ¥l a=0,....N-1 (I11.2.5)
i=1
Now the number [%] + [%] — [(aLNb)Z] can either be 0 or 1. In both cases, the

canonical sections of the line bundles:

O (D) R
permit the definition of a ring structure over R := @?:01 L;. Now the normaliza-
tion of the spectrum of R reconstructs the smooth py-cover of C’ up to isomor-
phism of px-cover. If one considers the definition of morphisms in the groupoid
M, (S) given in Remark I11.2.9, one can also check that the correspondence is
fully faithful, hence an equivalence of categories. O

Recently, Catanese proved that the moduli spaces M’, are indeed connected:

Theorem I11.2.13. ([Cal0, Theorem 2.4]) Let A be a g-admissible datum. Then
the stack M’ is connected (although possibly empty).

In particular, as a consequence of Catanese’s connectedness result (Theo-
rem I11.2.13), the nonempty moduli stacks M’, give all the twisted sectors of the
inertia stack of M,.

Remark 111.2.14. (see Remark I11.2.9) Working with the second definition of mor-
phism in the definition of the stack M, one obtains a decomposition of the
rigidified inertia stack (see Remark I11.2.5) of M.
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A Xfrag(Ma) Xfiag(Ma) a(May)
(2;8) L? LP + 3L+ 6L +6L%+3L+1 :
(3:4,1) L? L?+2L+1 2
(3;1,4) L? L*+2L+1 z
(4;4,0,0) L L+1 2
(4;0,0,4) L L+1 3
(4;2,3,0) L? - L L?+2L+1 !
(4;0,3,2) L*—L L*+2L+1 2
(4;2,0,2) L—1 L+1 2
6;1,0,2,0,1 L—1 L+1 3
2
6;1,0,1,2,0 L—1 L+1 8
3
6;0,2,1,0,1 L—1 L+1 u
3

Table III.1: Positive-dimensional twisted sectors. For the sake of brevity we omit
¢’ = 0 from the notation of the admissible datum.

I11.3 The inertia stack of M;

In this section, we study the geometry of the twisted sectors of the inertia stack
of the moduli space of smooth, genus 3 curves. We determine the cohomology
of all these twisted sectors as a graded vector space with Hodge structures. We
shall state these results in the form of polynomials with coefficients in Ky(HSq)
(see Section II1.1.2).

Our approach is based on the correspondence between twisted sectors and
g-admissible data introduced in the previous section. Of course, in the case of
genus 3 also a direct approach is possible by classifying all automorphisms of
plane quartic curves (as in e.g. [Dol0, Lemma 6.5.1]) and of all hyperelliptic
genus 3 curves. However, our approach seems more suitable for cohomological
computations and has the advantage that it generalizes to higher genus.

If X is a twisted sector of I(M3), we have seen in the previous section that
X = My for A a certain 3-admissible datum. We start by considering the
admissible data with ¢’ = 0.

Proposition II1.3.1. There are 43 different 3-admissible data A with g = 0 that
parametrize connected covers. The complete list of these admissible data and of

the Hodge—Grothendieck characters for compact support of the associated twisted
sectors M 4 is given in Tables I11.1 and II1.2.

Proof. If A is a g-admissible datum with ¢’ = 0, then it is easy to see that
My = [Moa/Sa]. Therefore HS(My) = H3(Mgq)%4, the Sy-invariant part of

72



I11.3. THE INERTIA STACK OF M3

‘ 3-admissible with ¢’ = 0 ‘ Age H 3-admissible with ¢" = 0 ‘ Age ‘

(7:2,0,0,0,1,0)
(7:0,1,0,0,0,2)
(7:1,1,0,1,0,0)
(7:0,0,1,0,1,1)
(7:1,0,2,0,0,0)
(7;0,0,0,2,0,1)
(7:0,2,1,0,0,0)
(7:0,0,0,1,2,0)
(8;2,0,0,0,0,1,0)
(8;0,1,0,0,0,0,2)
(8:1,1,0,0,1,0,0)
(8;0,0,1,0,0,1,1)
(8:0,1,2,0,0,0,0)
(8;0,0,0,0,2,1,0)

(9:1,1,0,0,0,1,0,0)
(9:0,0,1,0,0,0,1,1)

20

N
oY

EelElamRlE wo o~

olgo[Ealmnlt wo o

(9:1,0,1,0,1,0,0,0)
(9:0,0,0,1,0,1,0,1)
(9;0,1,1,1,0,0,0,0)
(9:0,0,0,0,1,1,1,0)
(12; 10100001000)
(12;00010000101)
(12; 10001100000)
(12;00000110001)
(12;00111000000)
(12;00000011100)
(14; 1000011000000
(14; 0000001100001
(14; 0100101000000
(14; 0000001010010
(14; 0011001000000
(14; 0000001001100

— — N N

[\
(=

algwlow|So|gelBo|Rel

—_
—

RIERISRIERIER[ER[Zew|Seei00m |

Table II1.2: 0-dimensional twisted sectors. For the sake of brevity we omit ¢’ = 0
from the notation of the admissible datum.
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the cohomology with compact support of M. Hence, for every A, the coho-
mology with compact support of M4 can be computed from the description of
the cohomology of M, 4 as a representation of the symmetric group &,4, which is
known for every d > 3 by work of Getzler [Ge94, 5.6] (see also [KL02, Theorem
2.9]).

In our case, we need to work with connected covers, i.e. we restrict to 3-
admissible data with ¢’ = 0 that satisfy condition (III.2.11). We obtain their
list (which we give in Table III.1 and III.2) by finding all solutions of equa-
tions (II1.2.1), (II1.2.2) and (II1.2.11) for ¢ = 3, ¢’ = 0. Using Getzler’s for-
mulas we compute their Hodge-Grothendieck characters for compact support,
i.e. the Euler characteristic of their cohomology with compact support in the
Grothendieck group of Hodge structures. O

Remark 111.3.2. If A is an admissible datum with ¢’ = 0, the Hodge—Grothendieck
character for compact support of M, determines uniquely the cohomology of
M4, because its k-th compactly supported cohomology carries a pure Hodge
structure of weight 2 dim(M ) — k. This property holds for the space M, 4 and
follows from the structure of Mg 4 as a complement of hyperplanes in C%~3. Since

H?(M4; Q) is a subring of H?(M4; Q), it holds for M4 as well.

It is easy to see that there are exactly four 3-admissible data with ¢’ > 0.
Following Definition II1.2.8, they correspond to the four moduli stacks of cyclic
covers:

Mazay, Magziy), Maaozoe and Mag). (II1.3.1)

In view of Definition ITI.2.8, the moduli stacks My n.4,....dy_,) Parametrize ob-
jects of type (C, L, Dy,...,Dn_1,¢), where C' is a curve of genus ¢, the D; are
disjoint effective divisors of prescribed degrees d; and ¢ : L¥N — Oc(>",iD;) is
an isomorphism. Hence, it suffices to compute the cohomology of the following
four stacks:

A= {(C>D1> )| g( ) =1, deg(Dl) = 47 L®2 = OC(Dl)}’

=1,de (Dl) de (DQ) = ]_,
5= {(C D1, D>, L) L®3~Oo(zi+202) : }
C = {(C, D5, L)| g(C) = 1, deg(Ds) = 2, L = Oc(2D5)},
D ={(C,Dy,L)| g(C) =2, L** 2 Oc}.

It is easy to see that A and B are connected, while C and D are not. The stack
C has two open and closed substacks C' and C” that correspond, respectively, to
the two conditions L®? % O(D,) and L®? = O(D,). The stack D has two open
and closed substacks D’ and D” that correspond, respectively, to the conditions
L% O¢ and L = Og. Observe that C” and D" parametrize disconnected covers.

In the remainder of this section, we study the cohomology of B and D’, while
we postpone the analogous computation for A and C’ to the following section.
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In the following lemma, we let X;(3) be the closed substack in M 5 of curves
(C, p1,p2) such that ps is a point of 3-torsion for the elliptic curve (C,p;).

Lemma II1.3.3. The coarse moduli space of B is isomorphic to the coarse moduli

space of My o\ X1(3).

Proof. The moduli stack B parametrizes curves C' of genus ¢’ = 1, two distinct
points z,y € C and a line bundle L of degree 1 on C. Let C; 3 be the universal
curve over M o: it parametrizes genus 1 curves C' with three points x4, 2, ¢ such
that x1 # x5. We define B to be the irreducible codimension 1 substack of Cig
defined by the following constraint on the three points:

B = {(Ca xlaanQ)’ 3(] =x + 2372}

Now it is clear that B and B share the same coarse moduli space. This can be
checked by associating to a triple (C,x,y, L) the triple (C, 1, x9,q) where ¢ is
the point on the curve C' determined by the isomorphism class of the line bundle
L. The diagram:

B= {3q =2+ 2x2};> Cl,2 9(% Y, Q)

| ]

M ) e—— Ml,Q > (y,9)

is cartesian. Indeed, the restriction of m, to the closed locus Bc C1 2 takes values
in My, since ¢ = y,3¢ = v+ 2y = =z = y. Furthermore, the restriction of
7, to B is an isomorphism onto the image locus, i.e. the points where 3¢ # 3y.
From this the claim follows. O

From this description, we can deduce the cohomology with compact support of

B.
Corollary II1.3.4. The cohomology with compact support of B is given by

Pa(t) == > [HiB;Q)t' = L*t* + Lt* + £

1€EN

Proof. The cohomology with compact support of M, 5 is concentrated in degree
4, while the cohomology with compact support of X;(3) can be deduced from
the fact that its coarse moduli space is a P! minus two points. This classical
result can be proved directly by considering the coarse moduli space of X;(3) as
the quotient of the pointed rational curve P!\ {[0,1],[1, —3¢5|} parametrizing
the Hesse pencil )\(xg + x3 + x%) + pxorire = 0 by the action of ug generated
by [\, ] — [A Csu). Then the result follows from the long exact sequence of
compactly supported cohomology, associated to the inclusion of X;(3) in M, o
with complement isomorphic to B. O
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Now we study the stack D’. It turns out that we can describe it as a quotient of
a moduli stack of genus 0 curves with marked points, by the action of a subgroup
of the symmetric group that symmetrizes some of the points. This enables us to
compute its cohomology from Getzler’s formulas ([Ge94]).

Lemma II1.3.5. The coarse moduli space of D' is Mog/S4 X Gs.
Proof. The claim follows from the well known fact that every nontrivial square
root of the structure sheaf on a smooth genus 2 curve C' is of the form O(x; —z2)

where 1 and x5 are distinct Weierstrass points of C', and that this expression is
unique up to changing the order of x; and x,. O

Corollary I11.3.6. The cohomology with compact support of D' is given by

Pp(t) = L*° + L.

IT1.3.1 The geometry of the twisted sectors A and ('’

The aim of this section is to prove the following two results:

Proposition I11.3.7. The cohomology with compact support of A is expressed

by
Pu(t) = L' + L*t°.

Proposition I11.3.8. The cohomology with compact support of C' is given by
Per(t) = LA + Lt* + 2.

This completes our cohomological analysis of the inertia stack of Mj3. In
particular, we are now able to produce the dimension of the orbifold cohomology
as a vector space H&p(Ms3) from the Propositions 111.3.1, 111.3.7, I11.3.8 and the
Corollaries I11.3.4 and III.3.6.

Corollary II1.3.9. The orbifold cohomology of Mz has dimension 62.

In Section II1.5.2 we shall describe the Q-graded structure of this vector space in
Theorem II1.5.7.

The cohomology of the moduli space A

Recall that the moduli space A parametrizes bielliptic genus 3 curves. We de-
scribed it as the moduli stack of genus 1 curves with a set {1, xq, x3, 24} of (un-
ordered) marked points and a line bundle L such that L®? = O(z; +xo+ 13+ 24).

The divisor D := 1 + x5 + x5 + x4 defines an embedding of C' in P3; the
image is the complete intersection of two quadrics. If we consider C' as a curve
in P3, the square roots of O(D;) correspond to divisors cut by planes in P? that
are tangent to C' at two points (possibly coinciding) with multiplicity 2. For a
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fixed C' this gives four distinct line bundles. They can be constructed explicitly
as the g4 cut by the ruling of each of the four singular quadrics in P? lying in the
ideal of C.

One can see this geometrically by considering that divisors linearly equivalent
to Dy are cut by 2-planes in P3. Hence, a square root of O(D;) must correspond
to a bitangent 2-plane and the only planes of this form are the tangent planes to
the singular quadrics containing C.

From this it follows that A can be viewed as the moduli space of pairs
(C,{x1,..., z4}) where the curve C is a smooth genus 1 curve lying on a fixed
quadric cone Q C P? and the z; are 4 distinct unordered points on C' lying on
the same plane section H C ). If the hyperplane section H is reducible, it is
the union of two lines of the ruling of ). In this case, the involution of C' in-
terchanging each pair of points lying on the same line of the ruling of @ lifts to
an involution of the double cover C' — C; this involution gives C’ a hyperelliptic
structure. In particular, as shown in [Co87, Corollary 1], the composition of these
two involutions on C' gives a fixed-point-free involution on C.

Therefore, the coarse moduli space of the closed substack A;, of A correspond-
ing to bielliptic structures on genus 3 hyperelliptic curves is isomorphic to the
coarse moduli space of D’.

At this point, it only remains to calculate the cohomology of the complement

.Anh - .A \ .Ah.
Lemma I11.3.10. Py, (t) = L*® + L3t7,

Proof. First we note that there is a map A,,, — M4/, associating to (C, {z;})

the configuration {zy,..., 24} of four points on the curve H = P!. To make

explicit computations, we view @) as the weighted projective plane P(1,1,2) and

choose coordinates ug, uy, w on ) such that H is defined by the equation w = 0.
Every element of A,,;, has an equation of the form

Gavet(Ug, U, W) = w? — a(ug, ur)w + euguy (uy — ug)(uy — tug) = 0

with @ € Clug, u1], 2 C3 e € Cand [t] := {0,1,00,t} € My4/S,. This equation
is uniquely defined up the action of C* on («, €) by scaling:

s(a, €) = (s%a, s*e).
Hence, we study the incidence correspondence:

7i= {(a e i) € (€ x Mo/ | Foeslio i) D0 et L

a nonsingular curve

To compute the cohomology of Z, we apply Vassiliev—Gorinov’s method to
the complement % of Z inside (C* x Mg 4)/G4. Specifically, we use the version of
the method developed for the case of curves with marked points given in [T07],
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to which we refer for technical details on the construction. Note that the original
construction of Vassiliev-Gorinov’s methods is based on the study of Borel-Moore
homology (i.e. homology theory with compact support). For stylistic reasons,
in this chapter we will use cohomology with compact support instead of Borel—
Moore homology. All results can be easily adapted by duality.

The first step of Vassiliev—Gorinov’s method consists in classifying all possible
singular loci of elements of . This classification is then used to define a cubical
space X whose geometric realization |X'| has the same cohomology with compact
support as 3. This geometric realization has a natural stratification {F;} by
locally closed subsets that are indexed by the types of singular sets that arise in
the classification. Each stratum F; can be explicitly described as a bundle over
the space

(o, [t]) € ¥, K C @ is a singular configuration
of type ¢ containing the singular locus of (¢, [t])

Bi= { (0,10 5)

If the configurations of type i are finite sets, then F; — B, is a nonorientable

simplicial bundle; otherwise, the stratum Fj is a union of simplicial bundles.
The Gysin spectral sequence EP? = HPT(3; Q) with BV = HP(F,; Q) as-

sociated with the stratification {F;} is called the Vassiliev’s spectral sequence.

(1) One singular point on H. In this case the curve is of the form w(w +
aug + buy) = 0 and both components pass through the singular point. The
stratum F} is a C%-bundle over H X Mg 4/6,.

(2) Two singular points on H. The curve is of the form w(w + aug + buy) =0
and both components have to pass through the singular points. If we fix the
two distinct singular points sy, s, on H, then the ¢ = (a,¢) € C* giving a
curve singular at s; and sy form a 1-dimensional subspace. This yields the
following description for the stratum Fy: It is the quotient of a C-bundle
over (0,1) x (F(H,2) x My 4)/S4 by the involution (7, (s1, s2), [t], (o, €)) +—
(1 — 7, (s2,81), [t], (a,€)). From this it follows that the cohomology with
compact support of Fy is concentrated in degree 7 and carries a Tate Hodge
structure of weight 6.

(3) The curve H. The stratum F3 has trivial cohomology with compact support
because H is a smooth rational curve (see e.g. [T05, Lemma 2.19]).

(4) One point P outside H. Having a singular point outside H imposes three
conditions on the equation, hence we get that Fj is a C-bundle over the
space of configurations (P, {z1, z2, x3,24}). Note that P is not allowed to lie
on the same line of the ruling as any of the x;. Hence the configuration space
is a C*-bundle over M, 5/&,, whose cohomology with compact support is
concentrated in degree 4 by the results in [Ge94].
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Table II1.3: Spectral sequence converging to HS((C* x Mg4)/64\ Z; Q).

q
71 Q(—=4) 0 0
610 0 0
51Q(-3) Q(-3) Q(—4)
410 0 Q(-3)
1 2 3 P
type | (1) (2) (4)

(5) Two points outside H. In this case the singular curve is the union of two
irreducible plane sections Hy, Hy of ) which are different from H and not
tangent to each other. Each of the components passes through exactly
two of the z;. Up to reordering the points we may assume that H; passes
through x; and x5 and Hs passes through x3 and x4.

It is important to observe that such a curve HyU Hs is uniquely identified by
the partially ordered configuration ({{z1, 22}, {®s, x4}}, {51, 52}) of points
on H, where s1, sy denote the projections on H of the singular points of
the curve. Furthermore, a configuration (z1,...,xy4,$1,s2) comes from a
singular curve H; U H, if and only if there is an automorphism of H = P!
that interchanges the following pairs of points: xy < x3, 3 < x4 and
s1 < S3. This condition defines a codimension 1 subset N C M.

Thus, one can study the cohomology with compact support of the stratum
F5 by taking the part of the cohomology with compact support of N such
that the symmetric group &4 acts on the first two points as the representa-
tion Sy @ Sy 5 and the symmetric group &, interchanging s; and sy acts as
the alternating representation. Then a direct computation shows that the
only cohomology class with this behaviour is the trivial class. From this
it follows that this stratum contributes trivially to the Vassiliev’s spectral
sequence.

From this classification it follows that only configurations of type (1), (2) and
(4) contribute to Vassiliev’s spectral sequence. We give the Vassiliev’s spectral
sequence associated to this classification of the singularities in Table II1.3. Our
description of the singularities also shows that Y has two irreducible components:
namely, the divisor D; of curves with singularities of type (1) and the divisor Do
of curves with singularities of type (3). By the long exact sequence associated
to the inclusion ¥ — (C* x Mg,4)/S,, they give two classes d,dy in the first
cohomology group of Z.

Consider the Leray spectral sequence associated to the quotient map ¢ : Z —
Apn. The action of C* on Z can be extended to an action of C on (C*x M, 4)/S,.
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In this extended action, one can see that 0 € C maps surjectively to the locus
0 x M4, which is contained in the intersection of D; and D,. If we denote
by h a generator of H'(C*;Q), this shows that the image of h in the pull-back
of the orbit map C* — (C* X M;4)/S, is a linear combination of the classes
81,02 € H(Z; Q). This can be used to prove that the Leray spectral sequence in
cohomology associated to ¢ degenerates at Es, i.e., by Poincaré duality, we have
HZ;Q) = H(C* Q) ® H(Anp; Q) for cohomology with compact support.

Now let us go back to the spectral sequence in Table II1.3. Since (C* x
Mo 4)/S4 has cohomology with compact support concentrated in degree 10, the
Gysin long exact sequence associated to the inclusion X < (C*x Mg 4)/&, yields
isomorphisms

HFY(S;Q) = HA YT Q)

for all £ < 9. In view of the structure of H?(Z;Q) as a tensor product, we
have that the d'-differential £}, — Ej, must be an isomorphism. All other
differentials are necessarily 0 by Hodge-theoretic reasons, since they are maps
between pure Hodge structures with different weights. This implies that the
cohomology of Z is isomorphic (as a graded vector space with mixed Hodge
structures) to the cohomology of C* x C* x C* and that the cohomology of A,
is isomorphic to that of C? x C*. O

Proof of Proposition II1.3.7. We want to compute the cohomology with compact
support of A by using the Gysin long exact sequence

HF(A; Q) — H (A Q) 25 HM (A Q) — HY(4; Q)

associated to the inclusion A;, — A. Since the cohomology with compact support
of A (resp. A,;) is nontrivial only in degree 5 and 6 (resp. 7 and 8) the only
differential which may be nontrivial is dg. To prove the claim, we need to show
that dg is an isomorphism or, equivalently, that the cohomology with compact
support of A vanishes in degree 7. To prove this, we are allowed to discard in
our configurations all subvarieties of A of codimension larger than 1, since they
cannot possibly contribute to the cohomology with compact support in such a
high degree.

Recall that A is the moduli space of pairs (C, H) where C' is a smooth genus
1 curve lying on a fixed quadric cone ) and H is a reduced plane section of @)
that intersects C' in four distinct points. In particular, the fact that C' lies on @)
endows C with a natural structure as double cover of P! ramified at 4 points,
giving rise to a natural map A — M4/64. Note that, once a configuration
(0,00,1,t) € Mg, is chosen, there is a canonical form for the genus 1 curve in @
lying over {0, 00,1,t}, by taking the equation w? — uguy(ug — uy)(tug — uy) = 0.
Therefore, it only remains to describe which reduced plane sections of ) are not
tangent to a fixed smooth curve C' C (). Planes in projective three-space are
parametrized by a P3; reduced plane sections H come from a rational curve in
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this P, which we can discard since it has codimension > 1. The condition that
H is not tangent to the fixed C' defines an irreducible hypersurface in the P?
parametrizing plane sections. Here we only need to deal with irreducible plane
sections because the locus of reducible plane sections has already codimension 1
in P? and any special sublocus of it we could have to discard would not influence
HI(A; Q).

From this description, it follows that the cohomology with compact support
of A in degree > 7 coincides with that of the &4-quotient of a fibration over M 4
having the complement of a & -invariant hypersurface in P? as fibre. Then the
claim follows from the fact that the cohomology with compact support of the
complement of an irreducible hypersurfaces is 0 in degree 6. O

The cohomology of the moduli space C’

The space C' is the moduli space of genus 1 curves C' with a set {x;, x5} of
(unordered) marked points and a line bundle L such that L®* = O(z; +x4)®? but
L®? £ O(xy + x2). In this section, we give a more explicit geometric description
of C’' that enables one to compute its cohomology.

First we observe that the line bundle L®* defines an embedding of C' into
P3; in the following, we shall identify C' with its image in P3. Then all divisors
linearly equivalent to L®* are cut by plane sections of C. In particular, the line
bundle L itself has to be cut by a plane in P? tangent to C' with multiplicity 4
at one point ¢. This means that there is a quadric cone Q@ C P? containing C,
whose ruling cuts the divisor L®? on C. Then g is one of the ramification points
of this g;. Equivalently, the pair (Q, q) identifies the divisor L. The points 1, Ts
are contact points of a bitangent plane to C. In other words, we can describe C’
as the moduli space of triples (C, ¢, II) where C' is a smooth genus 1 curve lying
on a fixed quadric cone @, the point ¢ is a ramification point of the g3 cut by the
ruling of @ and II C P? is a plane tangent to C' at two distinct points.

Instead than working directly with C’, we work with the moduli space C of
sequences (C,p1, pa, p3,q, 1) with C' and II are as above and py, pa, p3, ¢ are the
ramification points of the gi. The forgetful map C — C' can be interpreted as
the quotient by the action of the symmetric group permuting the three points
p1, D2, ps. There is also a natural map ¢ : C — M 4 that maps (C, py, p2, ps, ¢, 11)
to the moduli of the ordered branch locus of the ga.

Proof of Proposition II1.8.8. The structure of C as an S3-cover of C’ ensures that
the rational cohomology of the latter space coincides with the Gs-invariant part
of the cohomology of C. We want to compute it by exploiting the Leray spectral
sequence associated to the forgetful map ¢ : C — M, 4. To this end, we need to
describe the fibers of ¢ and to calculate their cohomology.

The fibre of ¢ over a 4-tuple (p1, pa, ps3, ¢) is the space of all bitangents to the
curve C obtained as a double cover of P! ramified at pi, ps, p3 and ¢. We need to

81



CHAPTER I11I. ORBIFOLD COHOMOLOGY

parametrize all bitangent planes of the curve C' that give rise to reduced plane
sections. Since we are studying rational cohomology, which only depends on the
coarse moduli space of the stack considered, it is enough to describe all reduced
bitangents up to the action of the elliptic involution of (C,q).

Then an explicit computation yields that the space of all reduced bitangents
to C has three distinct irreducible components, isomorphic to P! and depending
on the choice of one of the points p;. In particular, the three components are
permuted by the G3-action. In the description of the components, we shall denote
the line of the ruling of @) passing through ¢ (respectively, through p; for 1 <i <
3) by ¢, respectively, ¢;.

Then the point ps corresponds to the family of bitangents containing the
reducible bitangent ¢; U ¢, and ¢35 U ¢. This family contains exactly two flex
bitangents, i.e. planes tangent to C' at one point with multiplicity 4. The contact
points on these flex bitangents are the points of C' lying over the points of C' lying
in the fixed locus of the involution ¢; < {5, {3 < ¢ on the ruling of ). In our
description, we have to take only the bitangents with two distinct tangency points
x1, Xy, i.e. only proper bitangents, hence we need to discard these two points of
the family. Hence each irreducible component of the fibre of ¢ over (p1, ps, p3, q)
is isomorphic to C*. If we consider the action of the involution p; <+ ps on the
cohomology of this component of the fibre, we get that it acts trivially in degree
0 and as the sign representation in degree 1.

We obtain the other two components by taking the action of the symmetric
group &3 into account. Then the cohomology of =1 (p1, p2, p3, ), with its struc-
ture as G3-representation and its mixed Hodge structures, is given by S3 + Sq
in degree 0 and Sy; + S;s in degree 1.

At this point, recall that M, 4 is isomorphic to P! minus 3 points, and in
particular, that its cohomology with the action of &3 permuting the first three
marked points is given by S3 in degree 0 and Sg; in degree 1. The map ¢ is
G3-equivariant, hence the G3-invariant part of the E,. terms of the Leray spectral
sequence associated to ¢ converges to the cohomology of C’. From the description
the G3-action on the basis and the fibre of ¢, one gets that the only nontrivial
E, terms of this Leray spectral sequence are (Ey”")% = Q, (E}°)% = Q(—1)
and (Ey")® = Q(—2). Then the claim follows by Poincaré duality. O

III.4 The compactification of the inertia stack
of M,

In Section III.2.2 we studied the twisted sectors of M, as moduli stacks of cyclic
covers. In the present section we consider the compactification of these twisted
sectors inside the inertia stack of ﬂg. After developing the general theory, we
study in detail the compactification of the moduli stacks of admissible covers that
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correspond to twisted sectors of M.

Recall that in Section I11.2.2 we defined the concept of g-admissible datum and
saw that a g-admissible datum (¢, N, dy, ..., dy,) always singles out a connected
component of the inertia stack, described as a moduli stack of py-ramified covers
of curves of genus ¢’. To compactify such moduli stacks of uy-covers, we rely
on the general theory of twisted stable map, developed by Abramovich—Vistoli
([AV02]), which in our case specializes to the theory of admissible covers, as
developed in [ACVO03]. In the language of twisted stable maps, we are studying
balanced twisted stable maps with value in the trivial gerbe Buy. Equivalently,
we are studying py-admissible covers ([ACV03, Theorem 4.3.2]).

Definition ITI1.4.1. Let A be a g-admissible datum and let us denote as usual the
associated moduli stack by My, the component consisting of connected covers
by M’, and the corresponding subgroup of the symmetric group &, by S4. We
define M (respectively, M) as the closure of M (respectively, M) inside
Ky a(Bpn)/Sa), where Ky 4(Bpun) is the proper moduli stack of twisted stable
d-pointed maps of genus ¢’ to Buy defined in [AV02, Definition 4.3.1] (see also
[ACV03, Section 2] for the specific case of Buy).

The stacks M, give connected components of the inertia stack of Mg by
associating to each admissible cover in M, the pair (C%%P, o) where C*%" is
obtained by stabilizing the source curve C' of the cover, and ¢ is the automorphism
on C*** induced by the action of jiy on C. Conversely, since the moduli space of
admissible covers is proper and contains the smooth ones, each smoothable cyclic
cover X — C where X is a stable curve has an associated admissible cover by
repeatingly blowing up the two curves X and C.

Proposition II1.4.2. Let us fix g, N > 1. Then the compactified inertia stack
In(My) of Definition I11.2.4 is isomorphic to the disjoint union of all nonempty

stacks ﬂ;l for all g-admissible data A = (g',m;dy, . .., dyn_1) with order m equal
to N.

Proof. The proof of the proposition follows by adapting the proof of Proposition
I11.2.12. In the case when the covering curve C’ turns out to be unstable, one
applies the usual stabilization procedure ([Kn83]). O

In other words, in Definition II1.4.1, we have described all the twisted sectors of
I(M,) that do not come from the boundary.

Remark 111.4.3. Tt is clear that T(M,) # I(M,), i.e. that there are twisted
sectors of M, that do not contain any smooth curves. To see this, take two
smooth, 1-pointed curves, one of genus ¢’ > 1 and the other of genus g — ¢/,
each admitting an automorphism of different order that fixes the marked point.
Now the curve C' obtained gluing the two curves at the marked points, with the
automorphism induced by the two automorphisms, is a point in the inertia stack

of M, that is not in 1(M,).
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Next, we turn our attention to the cohomology of the moduli stacks M4
and, more specifically, to the compactified twisted sectors of M, whose general
object is a curve that is described as the cyclic cover of a genus 0 curve. For
combinatorial reasons, the large majority of cases fall into this class. We can
reduce the problem of computing the cohomology groups of the M 4 with ¢’ = 0
to the problem of computing the part of the cohomology of Mg, under the
action of the subgroup Sy C &, which is then known (see [Ge94, 5.8]). This
relies on the construction of the M, as stack quotients of a connected substack
of ’Cg/7d(B/LN).

If X is a scheme, D is an effective Cartier divisor, and r is a natural number,
then [Ca07] and [AGVO0S| introduced the stack Xp,, called the root of a line
bundle with a section. The following result is essential for our application:

Proposition I11.4.4. ([Ca07, Corollary 2.3.7]) Let X be a scheme. If Xp, is
obtained from X by applying the root construction, the canonical map Xp, — X
exhibits X as the coarse moduli space of Xp,.

Theorem I11.4.5. (/BC07, p.2]) Let A be a g-admissible datum (see Definition
I1.2.7), with ¢ equal to 0. The space M, is then a ux-gerbe over the quotient
stack [X/S4], where X is a stack constructed starting from Mo s~ q; by successively
applying the root construction (see [BCO7, Section 2]).

By combining these two results, we obtain a simple description of the cohomology
of the twisted sectors of I(M,) whose general element is a cyclic cover of a genus
0 curve:

Corollary II1.4.6. If A is a g-admissible datum with base genus g equal to 0,
then the stack Ma has the same rational Chow groups and rational cohomology
groups as Mg s di/SA.

Using the results of [Ge94, 5.8], we can now determine the rational cohomology
of the positive-dimensional twisted sectors M;l whose general object covers a
genus 0 curve. The Hodge-Grothendieck characters of these spaces is listed in
the third column of tables III.1 and III.2. The twisted sectors are proper smooth
stacks, hence their k-cohomology group carries a pure Hodge structure of weight
k. For this reason, the Hodge-Grothendieck characters determine the rational
cohomology as vector space with Hodge structures.

I11.4.1 The compactification of the inertia stack of Mj

There are only four twisted sectors in M3 whose general object covers curves of
genus 1 or 2. They are the spaces that we called A, B,C’ and D’ in section III.3.
The remainder of the present section is thus devoted to investigating the geometry
of their compactifications, in order to compute their rational cohomology.
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The general strategy here is the following. Since we deal with proper smooth
stacks, their cohomology is determined uniquely by the Hodge-Grothendieck
character. To compute this, we exploit the additivity of Hodge-Grothendieck
characters for compact support.

As we already know the Hodge—-Grothendieck characters for compact support
of the open parts as a consequence of the Propositions I11.3.1, I11.3.7, II1.3.8 and
the Corollaries I11.3.4 and II1.3.6, we need to study the irreducible components
of

A\ A, B\B, C'\C', D'\D.

Furthermore, by Poincaré duality, all we need to know are the coefficients of
the Hodge—Grothendieck character with degree greater than or equal to half the
complex dimension of the stack considered.

We describe in detail the case of A (the most complicated), and we sketch
the proofs of the other cases.

Proposition I11.4.7. The Hodge-Grothendieck character of A is
Xfrag(A) = L+ 6L% + 9L* + 6L + 1.

Proof. We have seen in 111.3.7 that the Hodge—Grothendieck character for com-
pact support of A is L* — L?. The moduli stack A admits a finite étale map onto
[M.4/6,4]. This map extends to a finite map ¢ : A — [M;4/64] (see [ACV03,
3.0.5]) on the compactification A by means of admissible covers.

The stratification of M 4 by topological type induces a stratification on A.
We need to study its strata of codimension 1 and 2. The quotient stack [mm/ S
has four boundary divisors, and their general element is as in Figure II1.1. We
denote by Dy, ..., D4 the associated locally closed codimension 1 strata, obtained
by removing all curves with more than one node.

0
0 0 0
1 1 1
D1y Do D3 Dy

Figure III.1: The four boundary strata of codimension 1 in [ﬂm / 64}

Now we describe one by one the irreducible components of A that map onto
the four codimension 1 boundary strata we have just pictured:

1. There are two irreducible components D}, D lying over D;. They param-
etrize admissible double covers C' — C' such that the restriction to the
preimage of the genus 1 component is, respectively, a trivial ps-cover in
the case of D] and a nontrivial ps-cover in the case of Df. The coarse
moduli space of D) is isomorphic to My, x M5/, and its Hodge-
Grothendieck character for compact support is then L?. The moduli space
of Dy is isomorphic to X1(2) x Mos/&4 and xfa, (DY) = L? — L*.

85



CHAPTER I11I. ORBIFOLD COHOMOLOGY

2. Over Dy there is one irreducible component D), whose moduli space is
isomorphic to Iy x My4/Ss. Here I is the moduli space of bielliptic
curves with a choice of a distinguished bielliptic involution, and an order-
ing of the ramification points (see [PaglOa, Proposition 2.25]). As shown
there, the stack II; has Mg ;5/S3 as coarse moduli space. Hence, one has
Xiuag(D2) = L7 = L* + L;

3. Over Dj3 there is one component Dj. Tts moduli space is I1'/S,, where
IT' is the moduli space of bielliptic curves C' with a distinguished biel-
liptic involution a and a point p not fixed by «, and the involution on
IT" is defined by sending (C,p,«) to (C,a(p),«). Using the construc-
tion of [PaglOa, Proposition 2.22], it is easy to show that the coarse mod-
uli space of IT'/&, is a C*-bundle over Mg 5/S3. In particular, one has
Xfag(D3) = Xf{dg(lll/e)g) =13 -2L%242L —1;

4. Finally, over D, there are two components, one whose general element is a
cover unramified over the node, and the other one whose general element
is totally ramified over the node. Both these moduli spaces are isomorphic
to Mos/G4 X Gy, and their Hodge-Grothendieck character for compact
support is then L3 — L2,

The second step is to study the number of irreducible components of the
preimages in M, of each of the codimension 2 strata of [ﬂm/ S4). There are
exactly nine codimension 2 strata Fy,. .., Fy in [M;4/&,]. We describe them in
Figure III.2 by drawing their general element.

0

0
0 0
0
1 1
Fy F3
0O 0 0O o0
Fs Fg
0 0 0 0 0
Fr Fg Fy

Figure II1.2: The nine strata of codimension 2 in [ﬂm / 64]

e The strata Fi, F5 and Fj lie in the closure of the codimension 1 stratum
D;. Again, the preimage of each of them under ¢ has two components, cor-
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responding respectively to trivial and nontrivial ps-covers of the irreducible
component of genus 1;

e The stratum Fj is contained in the closure of Dy and its preimage under ¢
is irreducible;

e The preimage t~!(Fs) has two components, corresponding to whether the
two nodes are contained or not in the branch locus;

e The preimage t~!(Fy) is irreducible;

e The strata F%, Fg and Fy lie in the closure of D, and the preimage of each
of them has 2 irreducible components. Indeed, while the fact that the
separating node is or not part of the branch locus depends on the disposition
of the other branch points, the irreducible node can be either a branch point
or a regular point, which gives rise to two different components, exactly as
it was the case for Dy.

So, putting everything together, we have:

Xf{dg(z) = Xf{dg(A) + Xf{dg(COdim 1)+ Xf{dg(COdim 2)+ ...
= L'~ L*+ (6L° — 6L%) + (16L*) + ... (I11.4.1)

and now, using the fact that Poincaré duality holds, we get to the conclusion:
Xfiag(A) = L* + 6L + 9L* + 6L + 1. (I11.4.2)
O

Remark 111.4.8. In the proof of the above result we have used Poincaré duality.
It is possible to reach the same conclusion by means of a more refined analysis of
the boundary strata. This gives a non-trivial check on the whole result.

More precisely, the quantity L* + 6L + 9L? + 6L + 1 is obtained as the sum
of the following contributions:

(L* — L*) 4 (6L — 6L* + 3L — 1) + (16L? — 15L + 5) + (18L — 13) + 10,

where we have collected the terms according to the codimension of the corre-
sponding stratum (from codimension 0 to codimension 4).

Proposition II1.4.9. The Hodge-Grothendieck character of B is L? + 3L + 1.
Sketch of proof. We have seen in Corollary II1.3.4 that xf,,(B) equals L?—L+1.
The moduli stack B admits a finite étale map onto M 5. On its compactification

B by means of admissible covers this map extends to a finite map ¢ : B — MLQ.
The boundary OM; s has two irreducible components: namely, a component
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01 whose general element is of compact type, and another component d§, whose
general element is an irreducible curve of geometric genus 0 with one node. It
is easy to see that the preimage of both dy and ¢; under t has two irreducible
components. By the additivity of Hodge-Grothendieck characters for compact
support this ensures that the coefficients of L and L? in the Hodge-Grothendieck
character of B are as in the claim. The constant coefficient is equal to the degree
2 coefficient by Poincaré duality. O

Proposition I11.4.10. The Hodge—Grothendieck character of C s L2 +3L+1.

Sketch of proof. We have seen in I11.3.8 that Xf4,(C’) equals L?* — L+ 1. The
moduli stack C" admits a finite étale map onto [M; 5/Ss]. This map extends to a
finite map ¢ : C' — [M2/G,] on the compactification C’ by means of admissible
covers. There are two irreducible components of codimension 1 in [OM;2/G,],
one whose general element is of compact type, and the other one whose general
element is an irreducible curve of geometric genus 0 with one node. We call
them respectively §; and dyg. Now the fiber of ¢ over d; is made of one irreducible
component, while the fiber of ¢ over dy is made of three irreducible components,
one for each possible way of prescribing a balanced ramification over the node. [

Proposition I11.4.11. The stack D’ has Hodge-Grothendieck character for com-
pact support L? +4L? + 4L + 1.

One can compute the Hodge Grothendieck character of D’ with the same
strategy used for the Propositions II1.4.7-111.4.10, but also a more geometric
proof is possible:

Remark 111.4.12. As shown by Bernstein in [Be99, Sections 2.5-2.6], the coarse
moduli space of admissible étale double covers in genus ¢ coincides with the
coarse moduli space of Prym curves, i.e. of quasistable curves together with a
line bundle which is isomorphic to O(1) on the exceptional components and to a
square root of the trivial bundle on the nonexceptional ones. Indeed the latter
coarse moduli space, usually denoted by R,, has been extensively studied. The
results of Bernstein imply that D’ has coarse moduli space Ry, and by [Kr10,
Lemma 20] the latter coincides with ﬂo,ﬁ /64 x Sy. The combination of these
results implies Proposition I11.4.11.

III.5 The Age Grading

I11.5.1 Definition of Chen—Ruan degree

To complete our computation of the orbifold cohomology of M3 we still need to
consider its structure as a Q-graded vector space. To compute the new grad-
ing, the degree of each cohomology class of the inertia stack of M3 has to be
shifted by the age of the twisted sector. We recall from the introduction that
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the motivation for the new grading is that orbifold cohomology can be endowed
with a natural product, the Chen—Ruan product, which is not compatible with
the “naive” grading of the cohomology of the inertia stack, but turns it into a
Q-graded algebra, once it is endowed with the new grading.

In the following, we denote by Rpuy the representation ring of uy, and by (y
a chosen generator for the group puy of N-roots of 1.

Definition ITI.5.1. [AGVO08, Section 7.1] Let p : uy — C* be a group homo-
morphism. It is determined by an integer 0 < k < N — 1 as p(Cy) = (k. We
define the age of p by:

age(p) = k/N.
The age extends to a unique additive homomorphism age : Ruy — Q.

Next, we define the age of a twisted sector Y. In the following definition, we let
f be the restriction to the twisted sector Y of the natural map I(X) — X.

Definition ITI.5.2. ([CR04, Section 3.2], [AGV08, Definition 7.1.1]) Let Y be
a twisted sector and g : SpecC — Y a point. Then the pull-back via f o g of
the tangent sheaf, (f o g)*(Tx), is a representation of uy on a finite-dimensional
vector space. We define:

a(Y) := age((f 0 g)"(Tx))
We are ready to define the orbifold, or Chen—Ruan, degree.

Definition IT1.5.3. ([CR04, Definition 3.2.2]) We define the dth degree orbifold
cohomology group of X as follows:

HEp(X) =@ HM(Y;Q)
Y

where the sum runs over all components sectors Y of I(X).

Definition 111.5.4. We define the orbifold Poincaré polynomial of X as:

POR(X):= ) dimH{p(X)t
1€[0,dim¢ (X)]NQ

Note that the degree of H¢., is given by the unconventional grading defined in
Definition II1.5.3.

In Definition II1.2.4 we have introduced a compactification of the inertia stack.
The connected components of T(X) can be assigned the age grading as in this
section, simply using the fact that every connected component of T(X) contains,
by its very definition, a connected component of I(X). Taking cohomology,
one obtains a linear subspace of the orbifold cohomology Hr(M,). Although
we shall not deal with this in the present work, it is actually possible to prove
that the orbifold cohomology classes coming from 7(X) form a subalgebra of the
Chen-Ruan cohomology ring.
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Definition III.5.5. We define the compactified orbifold cohomology F;R(X )

as H*(I(X)) with the grading induced from Hg(X). The additive structure of
this vector space can be recollected in the polynomial:

PRX)= Y dmHep(X)t

1€[0,dimc (X)]NQ

We call this polynomial the compactified orbifold Poincaré polynomial.

We observe that Poincaré duality holds for the orbifold cohomology of X if
X is a proper smooth stack, and for the compactified orbifold cohomology of X
with respect to the compactification X C X, if X is smooth.

I11.5.2 The orbifold Poincaré polynomials of M;

To compute the age of the twisted sectors, we will use the following Proposition,
suggested to us by Fantechi [Fan08], which builds on [Par91, Proposition 4.1].

Proposition I11.5.6. ([Fan08]) Let g > 1 and let Y be the twisted sector of
M, corresponding to the discrete datum (¢', N,dy,...,dn_1) (Definition II1.2.7,
Proposition I111.2.12). Then its age is equal to:

N-1 N-1

a(Y) = (39/_3;(N_1) 42 > d lk ({%}w(k,z)) (IIL5.1)

where o(k,i) =0 if ki + ged(i, N) =0 (mod N) and 1 otherwise.

Proof. A point of Y = ’(N7g/7d1de_1) is a puy-cover C' — (C'. By standard
infinitesimal deformation theory, the fiber of the tangent sheat TM, at C is
HY(C,T¢). Thus the cyclic group uy acts on the vector space H'(C,T¢), and
the latter splits in a direct sum of eigenspaces as

H1(07 TC) = @Hl(oa TC)Xk7

where H'(C, T¢)X* denotes the subspace where py acts with weight k. According
to Definition II1.5.2, we have:

N-1
k
1

RY(C, Te)Xx. (I11.5.2)

i

Now by stability we can substitute h!(C,T¢) with —x(C,T¢). Moreover, since
7 is finite and T is coherent, we have that all higher invariant direct images
RimiN (T¢) vanish (see [Gr57, Chapter V, Corollary p. 202]), and thus:

HY(C,To)** = H(C', (7, 1)) = H(C', (7, Tc)*), i=0,1.
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So (II1.5.2) becomes
k
N

a(Y)

X(m.Te)%). (111.5.3)

k=1

The sheaf 7,.(T¢) is studied in [Par91, Proposition 4.1,(a)]. In particular, one has

deg (m(To)*) = degTer — »  d; — deg Ly, (I11.5.4)
o(ki)=1

where the degree of the line bundles Ly can be computed via [Par91, Proposition

2.1] (see also (I11.2.5)):
ki

Now, if we combine (II1.5.4) with Riemann-Roch to compute the Euler char-
acteristic in (II1.5.3), we obtain

| V-l N1
alY) = D k|39 =3+ 3 dZ+Z{N}dZ (ITL.5.5)
k=1 o(k,i)=1 =1
and from this last equation the statement follows. O

The results we have seen so far enable us to compute the orbifold Poincaré
polynomial of M3 and its compactified orbifold Poincaré polynomial.

Theorem II1.5.7. The orbifold Poincaré polynomial (II1.5.4) of Ms is:

2 3 10 7 4 9 14 33 5 46 36

1+t 4267+ +163 412 + 47+ 262 +2t3 +t7 +51° +t9 +t7
16 38 11 50 39 17 40 52 41 6 43
+3t3 +t7 +4t2 4t +t7 +t3 +t7 +t90 +t7 + 1080 4t
56 44 19 45 58 13 46 20 48 62 51

10 4T 413 4T 40 4362 4T 428 4t 4t L7

Proof. The ordinary Poincaré polynomial of M3 is calculated in [Lo91, (4.7)].

Then the result follows from the determination of the Poincaré polynomials of

the moduli stacks M, carried out in Section III.3 for any 3-admissible datum

A. See in particular Table III.1 and III.2, Proposition II1.3.7 and III.3.8 and
Corollary II1.3.4 and II1.3.6.

Finally, the age of the twisted sectors is computed using Proposition II1.5.1.

O

Remark TI1.5.8. In our work we have computed the Hodge structures on the
twisted sectors of M3, which turned out to be always pure and of Tate type.
Therefore, if following [CR04, Def. 3.2.4] one defines

HP(Hi (M) = @) HP = (120 Q)),
Y

91



CHAPTER I11I. ORBIFOLD COHOMOLOGY

where the sum runs over all sectors Y of Msj, one can endow H¢,(M;) with a
canonical structure of direct sum of pure Hodge structures of Tate type whose
Hodge filtrations have been shifted by a rational number. Under this convention,
what we actually prove is the following result:

D dim(HPP(HEp(M)) L7t =

p,d€EQ

14 LY%t 4 208 + LIP3 + (312 + L)

+ (2L 4 3L3)t° 4 (L3 + 2L7/% 4+ 2L* + L5)t6

+ L7MT2(1 4 Lt) + LY%92(1 + Lt) + 3LM/41Y/2 4 3113/4413/2
4 [A/3410/3 L7/3t14/3(2 L)+ L8/3t16/3(3 F L)+ o ],10/3420/3
L [3B/144B3/T | [18/T436/T | [19/7,38/T | [39/14;39/T | [ 20/7,40/7
4 LAVMAGALYT | pA3/144A3/T | 1 22/T)44/T | [ AB/14445/T | 1 23/T446/7
4 LRATEA8/T [ B1/14451/T | 123/9,46/9 | 1 25/9,50/9
4 [,26/9452/9 | [28/9;56/9 | [29/9,458/9 | 531/9462/9

Theorem II1.5.9. The compactified orbifold Poincaré polynomial (see Defini-
tion I11.5.5) of M3 is:

Tt 424485 115 115 + 1665 412 £ 25 417 + 1265
46 36 16 38 1 50 39 40 52 41
S ET 44T 55 T 5 S T T 4t 4T
6 . 43 56 44 45 58 13 46 20 48 62
L3S 47 4t T T 1T A5t 1T £ 5t 4T £t
AT T 2T Lt 165t Lt 410 4 4400 1 12

Remark I11.5.10. From the description of the cohomology of the compactified
twisted sectors it also follows that the whole compactified orbifold cohomology
of M3 is additively generated by algebraic classes.

Proof. The ordinary Poincaré polynomial of M3 was first computed in [Ge98,
Prop. 16]. The proof of this theorem follows again as a recollection of the results
obtained in Section III.4, in particular the Propositions 111.4.7, 111.4.9, 111.4.10,
I11.4.11 for the Poincaré polynomials of A, B, 5,, D respectively. For the re-
maining twisted sectors, the Poincaré polynomial is computed applying Corol-
lary I11.4.6 and the results are summarized in Table III.1 and III.2.

Finally, for the degree shifting numbers, one can compute directly the age of
the twisted sectors using Proposition III.5.1. O

92



Bibliography

[ACV03]

[AGV02]

[AGV0S)]

[AV02]

[BCO7]

[Be99)]

[Ca07]

[Cal0]

[CRO4]

[Co87]

[Do10]

Dan Abramovich, Alessio Corti, Angelo Vistoli, Twisted bundles and
admissible covers, Special issue in honor of Steven L. Kleiman., Comm.
Algebra 31 (2003), no. 8, 3547-3618.

Dan Abramovich, Tom Graber, Angelo Vistoli, Algebraic orbifold quan-
tum products, Orbifolds in mathematics and physics (Madison, WI,
2001), 1-24, Contemp. Math., 310, Amer. Math. Soc., Providence, RI,
2002.

Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov—Witten theory
of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337—
1398.

Dan Abramovich, Angelo Vistoli, Compactifying the space of stable
maps, Journal of the American Mathematical Society 15, 27-75, 2002.

Arend Bayer, Charles Cadman, Quantum cohomology of [CV/u,],
arXiv:0705.2160v2.

Mira Bernstein, Moduli of curves with level structure, Phd Thesis, Har-
vard University (1999).

Charles Cadman, Using stacks to impose tangency conditions on curves,
Amer. J. Math. 129 (2007), no. 2, 405-427.

Fabrizio Catanese, Irreducibility of the space of cyclic covers of alge-
braic curves of fixed numerical type and the irreducible components of

Sing(IM,), arXiv:1011.0316v1.

Weimin Chen, Yongbin Ruan, A new cohomology theory of orbifold,
Comm. Math. Phys. 248 (2004), no. 1, 1-31.

Maurizio Cornalba, On the locus of curves with automorphisms, Ann.
Mat. Pura Appl. (4) 149 (1987), 135-151.

Igor V. Dolgachev, Topics in Classical Algebraic Geometry, available
at: http://www.math.lsa.umich.edu/~idolga/topics.pdf.

93



BIBLIOGRAPHY

[Fan08]
[Ge94]

[Ge98|

[Gr57]

[KLO2]

[Kn83]

[Kr10]

[Lo91]

[Pag08]

[Pagl0a)]

[Par91]

[PS08]

S06]

[T05]

Barbara Fantechi, private communication, 2008.

Ezra Getzler, Operads and moduli of genus 0 Riemann surfaces, The
moduli space of curves (Texel Island, 1994), 199-230, Progr. Math.,
129, Birkhauser Boston, Boston, MA, 1995.

Ezra Getzler, Topological recursion relations in genus 2, Integrable sys-
tems and algebraic geometry (Kobe/Kyoto, 1997), 73-106, World Sci.
Publ., River Edge, NJ, 1998.

Alexander Grothendieck, Sur quelques points d’algebre homologique
(French), Téhoku Math. J. (2) 9 (1957), 119-221.

Mark Kisin, Gus I. Lehrer, Equivariant Poincaré polynomials and
counting points over finite fields, J. Algebra 247 (2002), no. 2, 435—
451.

Finn F. Knudsen, Projectivity of the moduli space of stable curves II.
The stacks M, ,,, Mathematica Scandinava 52, 161-199, 1983.

Sebastian ~ Krug,  Rational cohomology of Ry (and S),
arXiv:1012.5191v1.

Eduard Looijenga, Cohomology of M3 and M2, Mapping class groups
and moduli spaces of Riemann surfaces (Gottingen, 1991 /Seattle, WA,
1991), 205-228, Contemp. Math., 150, Amer. Math. Soc., Providence,
RI, 1993.

Nicola Pagani, Chen—Ruan cohomology of M, and M,
arXiv:0810.2744v2.

Nicola Pagani, The Chen—-Ruan cohomology of moduli of curves of genus
2 with marked points, arXiv:1005.0725v2.

Rita Pardini, Abelian covers of algebraic varieties, J. Reine Angew.
Math. 417 (1991), 191-213.

C. A. M. Peters, J. H. M. Steenbrink, Mized Hodge Structures. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 52, Springer-
Verlag, Berlin, 2008.

James E. Spencer, The orbifold cohomology of the moduli of genus-two
curves, Gromov-Witten theory of spin curves and orbifolds, 167-184,
Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006.

Orsola Tommasi, Rational cohomology of the moduli space of genus 4
curves, Compos. Math., 141 (2005), no. 2, 359-384.

94



BIBLIOGRAPHY

[T07] Orsola Tommasi, Rational cohomology of Mss, Compos. Math. 143
(2007), no. 4, 986-1002.

95



BIBLIOGRAPHY

96



Chapter IV

Cohomology of the second
Voronoi compactification of Ay

IV.1 Introduction and plan

The moduli space A, of principally polarized abelian varieties of genus g are
much studied objects in algebraic geometry. Although much progress has been
made in understanding the geometry of these spaces, we still know relatively
little about the cohomology or the Chow groups of A, and its compactifications.
These are difficult questions even for low genus. Mumford in his seminal paper
[Mu2] computed the Chow ring of My, or what is the same, of the second Voronoi
compactification AJ°". It was also in this paper that he laid the foundations for
the study of the Chow ring of M, in general. Lee and Weintraub [LW] have
investigated the cohomology of certain level covers of AY*. The cohomology of
Az and the Satake compactification A5 was determined by Hain [Ha], while
the Chow group of the second Voronoi compactification Ay had earlier been
computed by van der Geer [vdG]. The authors of this paper proved in [HT] that
the Chow ring and the cohomology ring of A;’(’r are isomorphic for g = 2, 3.

Very little is known about the topology of 4, and its compactifications in
general. A positive exception is given by stable cohomology, which is defined
in terms of the natural maps Ay — A, for ¢ < ¢ given by multiplication
with a fixed abelian variety of dimension g — ¢’. The stable cohomology of A,
is known: it coincides with the stable group cohomology of Sp(2¢g,Z) and is
generated by the odd Hodge classes Ag; 11 by a classical result by Borel [Bo]. Also
the stable cohomology of the Satake compactification is known ([CL]), whereas
the corresponding result for toroidal compactifications of A, is posed as an open
problem in [Gr].

In this paper we investigate the case of genus 4 of whose cohomology very
little is known. More precisely, we investigate the cohomology of toroidal com-

Joint with Klaus Hulek (Leibniz Universitdt Hannover)
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CHAPTER IV. COHOMOLOGY OF AYOR

pactifications of A4. In general there are several meaningful compactifications of
A,. Besides the second Voronoi compactification A}]’C’r there is the perfect com-
pactification Agerf, given by the second Voronoi decomposition and the perfect
cone (or first Voronoi) decomposition respectively, as well as the Igusa compact-
ification A" It was shown by Alexeev [Al] and Olsson [Ol] that (at least up to
normalization) A;for represents a geometric functor given by stable semi-abelic
varieties. On the other hand Agerf is, as was proved by Shepherd-Barron [S-B],
a canonical model in the sense of Mori theory, i.e. its canonical bundle is ample,
if ¢ > 12. Finally, Igusa constructed .Alggu as a partial blow-up of Ag"“ and it
was shown by Namikawa [Nam] that Igusa’s model is the toroidal compactifica-
tion defined by the central cone decomposition. In genus g < 3 all of the above
toroidal compactifications coincide. In genus 4 the Igusa and the perfect cone de-
composition coincide and the second Voronoi compactification A}°" is a blow-up
of AP However, for general g all three compactifications are different.

The main result of our paper is the determination of the Betti numbers of
AP of degree less than or equal to 9 and of all Betti numbers of AY°" with the
exception of the middle Betti number by.

The starting point of our investigations is the fact that every toroidal com-
pactification A" admits a map ¢g: A" — A5 We recall that

AP = A U A, UL U A,,

which allows us to construct a stratification of Ag"r by considering the closed
loci B9 = g = @, ' (AS%) and their open parts ) = 5 \ Bi1 = ¢, ' (Agi).
Each stratum Y is itself the disjoint union of locally closed substrata that are
quotients of torus bundles over the product of a certain number of copies of the
universal family X, ; over A,_; by finite groups. The strategy is then to compute
the cohomology with compact support of each of these substrata using Leray
spectral sequences and then to glue these strata by Gysin spectral sequences to
compute the cohomology with compact support of 3.

The use of Leray spectral sequences requires to know the cohomology with
compact support of A4,_; not only with constant coefficients, but also with coef-
ficients in certain symplectic local systems of low weight. In the case of 1 = 1,2
we deduce this information from results on the cohomology of moduli spaces of
pointed curves. Passing from the moduli space of curves to the moduli space of
abelian varieties produces a small ambiguity, which does not influence our final
result, mainly because it disappears at the level of Euler characteristics. Up to
this ambiguity, we are able to obtain complete results for the cohomology with
compact support of all strata contained in the boundary as well as of the closure
J 4 of the Jacobian locus in A4 and we believe that this is of some independent
interest.

Unfortunately, we do not know the cohomology of A, itself. However, there
are two facts which help us. The first is that the complement in A, of the closure
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IV.1. INTRODUCTION AND PLAN

of the locus of jacobians has a smooth affine variety as coarse moduli space. This
implies that its cohomology with compact support is trivial if the degree is smaller
than 9 and thus that the cohomology with compact support of A, agrees with
that of 74 in degree < 9. The second is that A} is (globally) the quotient of
a smooth projective scheme by a finite group. This implies that its cohomology
satisfies Poincaré duality, and, more specifically, that its cohomology in degree k
carries a pure Hodge structure of weight k.

For A}°r, putting the cohomological information from all strata 3? together
yields Table IV.1, from which we can deduce Theorem IV.2.1 by using the Gysin
spectral sequence associated to the stratification given by the ;. We finally
obtain the Betti numbers for AP in Theorem IV.2.2 by using the fact that AY°"
is a blow-up of A2 in one point.
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Notation

A, moduli stack of principally polarized abelian varieties of
genus ¢

X, universal family over A,

Vi rational local system on 4, induced by the Sp(2g, Q)-
representation indexed by the partition (A1,..., A )

A2t Satake compactification of A,

A;lor Voronoi compactification of A,

xer universal family over AY°"

Agerf perfect cone compactification of A,

Al Igusa compactification of A,

My, moduli stack of non-singular curves of genus g with n
marked points

M g = Mg,()

Sy symmetric group in d letters

SyméO(Rg) space of real positive semidefinite quadratic forms in RY
(p1,...,¢,) convex cone generated by the half rays Rsopq, ...,
RZOQDT

99



CHAPTER IV. COHOMOLOGY OF AYOR

For every g, we denote by ¢,: AY" — A5 (respectively, ihy: APt — AZ2)
the natural map from the Voronoi (respectively, perfect cone) to the Satake com-
pactification. Let mg: X" — AY" be the universal family, g,: X" — X" /+1
the quotient map from the universal family to the universal Kummer family and
kg: XY/ £1 — AY" the universal Kummer morphism.

For 0 <i < g, we set ) = ¢, (Ag—i) C AJ", B; = ¢, ' (A3™) € AY" and
B =y (AT C Apert

We denote the Torelli map in genus g by 7,: M, — A, its image, the Jacobian
locus, by J, = 7,(M,) and closure of the image in A, by J,.

Throughout the paper, we work over the field C of complex numbers. All
cohomology groups we consider will have rational coefficients. Since the rational
cohomology of a Deligne-Mumford stack coincides with the rational cohomology
of its coarse moduli space, we will sometimes abuse notation and denote stack
and coarse moduli space with the same symbol.

In this paper, we make extensive use of mixed Hodge structures, focussing
mainly on their weight filtration. We will denote by Q(—k) the Hodge structure
of Tate of weight 2k. For two mixed Hodge structures A, B we will denote by
A @ B their direct sum and by A + B any extension

0—B—FEF—A—D0.
Furthermore, we will denote Tate twists of mixed Hodge structures by A(—k) =

A® Q(—k).

IV.2 Main theorem

Theorem IV.2.1. The cohomology of Ay vanishes in odd degree and is alge-
braic in all even degrees, with the only possible exception of degree 10. The Betti
numbers are given by

ilo24 6 8 10 12 14 16 18 20
b |1 3 5 11 17 (not known) 17 11 5 3 1

Theorem IV.2.2. The Betti numbers of AX™ in degree <9 are given by

i|]001 234567 89
bi‘10203080130
Moreover, all cohomology classes of degree < 9 are algebraic.

The only missing information needed to compute all Betti numbers of A)°*
is the Euler number. As we shall see, we are able to compute the Euler numbers
of all strata 3? for ¢ > 1, and thus it would suffice to compute the Euler number
of the space Ay itself. Indeed, one can compute the Euler number of level covers
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Ay(n) for n > 3 by Hirzebruch-Mumford proportionality. From this one could
compute e(Ay) if one had a complete classification of torsion elements in the
group Sp(8,Z). Although this is not known, it does not seem an impossible task
to obtain such a classification. We will, however, not approach this problem in
this paper.

Proof of Theorem IV.2.1. To compute the cohomology of AY°", we study the
Gysin spectral sequence EP? = HPTI(AY"; Q) associated with the filtration
{E}izl,...,ﬁ such that

hd E:ﬁ5—i7i:17"'74;
o Ty =T UTy;
® TGZAXOI“.

The E; term of this spectral sequence has the form EV? = HPY(T,\T,_1; Q).
For p = 1,...,4 the strata T, \ T,_; coincide with the strata of A}°" of semi-
abelic varieties of torus rank 5 — p; their cohomology with compact support is
computed in the next sections by combining combinatorial information on the
toroidal compactification with the geometry of fibrations on moduli spaces of
abelian varieties (see Propositions IV.4.1, IV.5.1, IV.6.11 and Theorem IV.7.2).
The stratum T3 \ T} is the closure inside A, of the locus of jacobians. Its coho-
mology with compact support is computed in Lemma IV.3.1.

The only remaining stratum is the open stratum Ty \ T5. Let J7* be the
closure of J; in A%, Since this contains the entire boundary of A it follows
that

Ts\Ts = As\ Ta = AJ\ TP

The latter set is affine since it is the complement of an ample hypersurface on
A (see [HaHul). In particular, its cohomology with compact support can be
non-trivial only if the degree lies between 10 and 20.

From this it follows that the F; term of the Gysin spectral sequence associated
with the filtration {7;} is as given in Table IV.1. For the sake of simplicity, in
that table we have denoted H2(Ajg; Va2) and H2(Ag; Va5) with the same symbol
H, even though a priori they are only isomorphic after passing to the associated
graded piece with respect to the weight filtration.

Since the terms in the sixth column are only known for ¢ < 3, in the following
we will only deal with the terms of the spectral sequence that are independent of
them, that is, the EP? terms with p 4+ ¢ < 8.

Let us recall that AY°" is a smooth Deligne-Mumford stack which is globally
the quotient of a smooth proper variety by a finite group. From this it follows
that the cohomology groups of AY°" carry pure Hodge structures of weight equal
to the degree. Therefore, the Hodge structures on E?? have to be pure of weight
p + q. This means that for all p, g, the graded pieces of ET? of weight different
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Table IV.1: E; term of the Gysin spectral sequence associated with the filtration
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IV.2. MAIN THEOREM

Table IV.2: EPY in the range p 4+ ¢ < 9.

q

8 0

71Q(=4)% 0

6 0 Q(—4)%4 0

5|1 Q(—3)%° 0 Q(—4)% 0

4 0 Q(—3)%? 0 Q(—4)** 0

31Q(-2)%° 0 Q(—3)%* 0 Q(—4) 0

2 0 Q(—2) 0 Q(-3) 0 0

1| Q(—1)®2 0 Q(—2) 0 0 0

0 0 Q(—1) 0 0 0 0
~1 Q 0 0 0 0 0

1 2 3 4 5 6 p

from p 4 ¢ are killed by differentials. In particular, if we restrict to the range
p+ q <9, this gives that the F, terms are as given in Table IV.2. Of course,
this does not describe precisely at which E,. the spectral sequence degenerates, or
what exactly is the rank of the differentials. For instance, if one assumes H = 0,
a natural thing to expect is that the d;-differentials E° — E>° E¥° — E®,
EX — Bt and B — E)? ) as well as the dy-differential Ey® — Ey” have rank
1, but this is not the only possibility. The claim on the cohomology of A} in
degree < 9 follows from the E, term in Table IV.2. The claim on the cohomology
in degree > 11 follows by Poincaré duality.

O

Proof of Theorem IV.2.2. The proof is analogous to that of Theorem IV.2.1.
Rather than working with the filtration {7}}, we will consider the stratification
{TP} defined analogously by TP = g2 for 1 < < 4 and TF™ = T, UTPF™,
TP = AP The closed stratum T} is the the locus 2 of torus rank 4 inside
AP Hence B = HT (. Q) can be obtained from Theorem IV.7.1.

Since the exceptional divisor of the blow-up map ¢: AY°" — AP is contained
in 71, we have (A3 \ ¢(T1)) = (AY" \ T1). In particular, the Gysin spectral
sequence associated with the stratification of Aierf has EV? terms that coincide
with those of Table IV.1 for p > 2. Moreover, also the rank of all differentials
EP4 — EPTra=Tt1 coincide with those for the filtration {7}} as long as no E9-
terms are involved. This already implies the claim for all degrees different from
6. In degree 6, it is necessary to decide whether the class of Hodge weight 2 in
Ef 1 is killed by differentials of the spectral sequence or not. If we consider the
map AV D 8y — B © AP we have that the weight 2 class on B2 lies
in the image of the weight 2 class in the cohomology of (3;, which was killed by
differentials for purity reasons on AY°*. This implies that this must be the case
also on A", From this the claim follows. O
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Remark TV.2.3. Comparing Table IV.1 with the cohomology of A}Y°" of degree
> 11 suggests that the cohomology of the open stratum A4 \ J4 could vanish in
all positive degrees, with the exception of degree 10 on which Poincaré duality
yields no information. Note that the vanishing of the cohomology of A \ J4
would imply that the cohomology of A4 coincides with the stable cohomology
(i.e. the subring generated by the chern classes A, A3 of the Euler bundle) in
degree < 10, while a priori this is known only in degree < g — 2 = 2.

To use Table IV.1 to prove the vanishing of H*(A4\ J4; Q), one needs to prove
that all (algebraic) classes of weight 10 — k that occur in E}"? with p+¢ = 10—k
give rise to cohomology classes in H!*~*(AY°": Q) that are linearly independent.
This is known for divisors (ensuring the vanishing of H*( A4\ J4; Q) for k = 1,2).
It would be interesting to investigate it for classes of higher codimension.

Note that, if one knew that H*( A, \ J4; Q) vanishes for all 1 < k < 9, then
this would yields the following result for the Betti numbers of AP in degree
> 11:

i |12 14 16 18 20
bi|14 9 4 2 1

as well as the vanishing of all odd Betti numbers of A2

IV.3 Torus rank 0

We start by considering Ty \ Ty, which is the Zariski closure J4 of the locus of
jacobians Jy = 74(My) inside Ajy.

Lemma IV.3.1. The only non-zero Betti numbers with compact support of J4
are as follows:

i[18 16 14 12 10 8
b1 1 2 1 1 2

In particular, all odd Betti numbers vanish.
Furthermore, all cohomology groups with compact support are generated by
algebraic classes, with the only exception of H3(J4; Q), which is an extension of

Q(—4) by Q(-1).

Proof. We compute the cohomology with compact support of J, by recalling
that the Zariski closure of the locus of jacobians in A, is the union of the image
of the Torelli map and the locus of abelian fourfolds that are products of abelian
varieties of dimension < 3. This allows to cover J; by the following locally closed
disjoint strata:

S; = Sym* A;, Sy = 7(Ms) x Sym? Ay, S5 = Sym* 7(My),
S4 = Tg(Mg) X Al, 55 = T4(M4).
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Table IV.3: E; term of the Gysin spectral sequence converging to the cohomology
with compact support of the closure of the locus of jacobians in Ay

q
13| 0 0 0 0 Q(-9)
12| 0 0 0 0 0
11| 0 0 0 0 Q(-8)
10/ 0 0 0 Q-7 0
9| 0 0 Q(-6) 0 Q(-7)
8 0 Q(-5) 0  Q(-6) Q(-6)
71Q(=4) 0 0 0 0
6] 0 0 0 0 0
5/ 0 0 0 0 0
4] 0 0 0 Q1) 0
1 2 3 4 5  p

Furthermore, the Torelli map in all genera induces an isomorphism in coho-
mology with rational coefficients between M, and its image 7,(M,). This allows
to compute the cohomology with compact support of all strata from previously
known results on the cohomology of M, with ¢ < 4 ([Mu2],[Lo],[T1]). These
yield that the E; term EY? = HP'(S,; Q) of the Gysin exact sequence of the
filtration associated with the stratification S; is as in Table IV.3.

In view of Table IV.3, to calculate the cohomology with compact support of
J, it is sufficient to know the rank of the differential

—red

d: H2(T,Q) = Q(—6)"* — H®(J1;Q) = Q(—6)

in the Gysin long exact sequence associated with the closed inclusion of the locus
—red

J, = T4 \Jy = Ss U Sy C Ay of reducible abelian fourfolds in the Zariski

closure in A4, of the locus of jacobians Jy = 74(My).
—red

We observe that H!?(7, ;Q) is generated by two 6-dimensional algebraic
cycles O and Cs, where C is the fundamental class of S5 and C5 the fundamental
class of 7(H3) x A1, where H3 is the hyperelliptic locus. Therefore, the surjectivity
of d is equivalent to the existence of a relation between C; and (5 viewed as
elements of the Chow group of J4.

Let us denote by M¢$' the moduli space of stable genus 4 curves of compact
type, i.e. such that that their generalized Jacobian is compact. Then the Torelli
map extends to a proper morphism

Tt ./\/lflt — J4.

From the geometric description of the map 7 it follows that the image under 7
of the Chow group of dimension 6 cycles supported on the boundary M$§'\ M,
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coincides with (C7, Cy). Indeed, let Dy be the closure of the locus of stable curves
consisting of two genus 2 curves intersecting in a Weierstrass point and let Dy be
the closure of the locus of stable curves consisting of elliptic curves intersecting
a hyperelliptic genus 3 curve in a Weierstrass point. Then D; and Dy map to
C; and Cjy respectively. It is known that the dimension 6 classes in M$' fulfill
a relation, given by the restriction of the relation on M, of [Y, Prop. 2]. When
pushed forward via 7¢, this relation gives a non-trivial relation between C; and
C5. Thus the differential d has to be surjective and the claim follows. O

IV.4 Torus rank 1

Next, we deal with the locus ] of semi-abelic varieties of torus rank 1.

Proposition IV.4.1. The rational cohomology with compact support of 3} is as
follows: the non-zero Betti numbers are

i‘6789 10 11 12 13 14 16 18
b; 12 1 3 1 44€¢ € 54+¢ ¢ 3 2 1

where € = rank H)(A3; Vi19). The cohomology groups of even degree 2k are
algebraic for k > 7; for k < 6 they are extensions of pure Hodge structures of the
form H?(59; Q) = Q(—k)®®=Y + Q(k—3). The Hodge structures in odd degree
are given by H2+1(89: Q) = Q(2— k) for k = 7,9 and H**1(3%; Q) = Q(—Fk)°*
for k=11,13.

Proof. To compute the cohomology with compact support of 3{ we will use the
map kz: 3) — Aj realizing Y as the universal Kummer variety over As. The
fibre of 3) over a point parametrizing an abelian surface S is K := S/ + 1.

Note that the cohomology of K vanishes in odd degree because of the Kummer
involution. The cohomology of K is one-dimensional in degree 0 and 6 and induces
trivial local systems on Ajz. The cohomology group H2(K: Q) = A* H'(S; Q) is
15-dimensional and induces the local system Vi ;@ Q(—1) on A3. By Poincaré
duality we have H*(K;Q) = H*(K;Q) ® Q(-1), inducing the local system
VLLO(_]') D Q(—Z) on ./43.

The cohomology with compact support of Az in the local system Vi is
calculated in Lemma IV.8.6. We refer to Theorem IV.8.2 for the cohomology
with compact support of Az with constant coefficients, which was calculated by
Hain in [Ha]. These results allow to compute FY? = HP(As; Rl'k3,(Q)) for the
Leray spectral sequence EP4 = HP'([3): Q) associated with k3: Y — Aj. This
E5 term is given in Table IV.4. Note that all differentials of this Leray spectral
sequence vanish for Hodge-theoretic reasons, so that Fy = E,,. Specifically, all
differentials must involve one E5? term with p + ¢ odd, but there are only two
such terms, namely E5* and ES?. Tt follows from Table IV.4 that for both these
terms, any differential d; with & > 2 which involves one of them will map either
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Table IV.4: E, term of the Leray spectral sequence converging to H?(5{; Q).

q

6] 0 Q(-6+Q(-3) 0 Q(-7) 0 Q=8 0 Q(=9)

) 0 0 0 0 0 0 0 0
11Q(=2) Q(-5+Q(-2) 0 Q(-6)*™9) Q(-6)* Q(-7) 0 Q(-8)

3 0 0 0 0 0 0 0 0
21Q(-1) Q(-9)+Q(-1) 0 Q(=5H)*™I) Q(=5)* Q(-6) 0 Q(-7)

1 0 0 0 0 0 0 0 0

0] 0 Q=3)+Q 0 Q=4 0 Q(=5) 0 Q(=6)

5 6 7 8 9 0 11 12
e = rank H)(As3; Vi10) € {0,1}.

to 0 or to a Fy term that carries a pure Hodge structure of different weight. In
both cases the differential has to be 0. U

IV.5 Torus rank 2

In this section we compute the cohomology with compact support of the stratum
B9 of AY°" of rank 2 degenerations of abelian fourfolds. For this purpose we recall
first the known global construction of 32 as the quotient of a P!-bundle of a fibre
product of the universal family over A,.

Furthermore, let us recall that the restriction of the Voronoi fan in genus
g to Sym2,(R?) for genus g > ¢’ coincides with the Voronoi fan in genus ¢'.
This implies that the geometric constructions of the fibrations B — A, and
B9 — A; we give in this section and in the following one, respectively, are actually
independent of the choice of g = 4 but extend to analogous descriptions of the
fibres of fibrations 35 — A, o and 3 — A, 3 that exist for 39,3 C A;/"r
independently of g. In particular, the geometric construction of 39 explained
in this section coincides with the construction used in [HT, §4] to compute the
cohomology with compact support of the corresponding locus in Ay,

Proposition IV.5.1. The rational cohomology with compact support of 33 is as
follows: the non-zero Betti numbers are

il46 7 8 9 10 11 12 14 16
bi|1 2 1+r 4+4r 147 5+7r 1 5 3 1

~

where r = rank H3(Ay; Vo). If we assume r = 0, then all cohomology groups of
even degree are algebraic, with the exception of H3(33; Q) = Q(—4)%% + Q(—2)
which is an extension of Hodge structures of Tate type. The Hodge structure in
odd degree 2k + 1 with k = 3,4,5 s pure of Tate type of weight 2k — 4.
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In the previous section, we calculated the cohomology with compact support
of 3) using the map k3: 3Y — Az given by the universal Kummer variety. This
map extends to the stratum 33 of degenerations of abelian fourfolds of torus rank
2, giving a map kz: (61 \ B3) — AY°". Under this map, the elements of A)°" with
torus rank 2 are mapped to elements of Ay of torus rank 1. If we denote by

/0 the stratum of AY" of semi-abelian varieties of torus rank exactly ¢, we get a
commutative diagram

AXor Az\))/or A;/or

b t
R ,42

T A

5 (30 X

The map 73 is the restriction of the universal family over AY°". In particular,
the fibres of 73 over points of B{O are rank 1 degenerations of abelian threefolds,
i.e. compactified C*-bundles over abelian surfaces. A geometric description of
these compactified C*-bundles is given in [Mul]. They are obtained by taking the
P!-bundle associated to the C*-bundle and then gluing the 0- and the co-section
with a shift, defined by a point of the underlying abelian surface that is uniquely
determined by the line bundle associated to the C*-bundle. In particular, this
shift is 0 for the fibres of the w3 over the O-section of the Kummer fibration

10> (X, £1) 22, Ay, which are thus products of a nodal curve and an abelian
surface.

We want to describe the situation in more detail. For this, consider the
universal Pomcare bundle P — X2 X Ay Xg, normalized so that the restriction to
the zero section Xy — Xy X 4, Xy is trivial. Let U = P(P @ Oy, %,) be the

associated P!-bundle. Using the principal polarization we can naturally identify
2\?2 and X5, which we will do from now on. We denote by A the union of the
0-section and the oo-section of this bundle. Set U = U\ A, which is simply the C*-
bundle given by the universal Poincaré bundle P with the 0-section removed and
denote the bundle map by f: U — X, X4, X>. Then there is a map p: U — (39
with finite fibres. Note that the two components of A are identified under the
map p. The restriction of p to both U and to A is given by a finite group action,
although the group is not the same in the two cases (see the discussion below).

IV.5.1 Geometry of the C*-bundle

We now consider the situation over a fixed point [S] € A,. For a fixed degree
0 line bundle £y on S the preimage f~1(S x {L£y}) is a semi-abelian threefold,
namely the C*-bundle given by the extension corresponding to Ly € S. This
semi-abelian threefold admits a Kummer involution ¢ which acts as x +— —x on
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the base S and by ¢ — 1/t on the fibre over the zero section. The Kummer
involution ¢ is defined universally on U.
Consider the two involutions 41,45 on X5 X 4, X5 defined by

i1(S,p,q) = (S, —p, —q) and i5(S, p,q) = (5, q,p)

for every abelian surface S and every p,q € S. These two involutions lift to
involutions j; and j, on U that act trivially on the fibre of f: U — A5 X 4, Xy
over the zero section.

The following lemma can also be proved directly from the toroidal construc-
tion of AY°" using the approach of [S-B, Lemma 2.4].

Lemma IV.5.2. The diagram

g

/’/\
U 7 Xy X 4, X Ay (IV51)
lP|U lp’ /

B3\ p(A) —= SymZ, (Xp/ + 1)

where p't Xy X 4, Xo — Sym’ (Xo/ £1) is the natural map, is commulative.
Moreover ply: U — p(U) = B\ p(A) is the quotient of U by the subgroup of the
automorphism group of U generated by ¢, 71 and js.

Proof. Since the map p in the diagram (IV.5.1) has degree 8 and ¢, ji, jo generate
a subgroup of order 8 of the automorphism group of U, it suffices to show that
the map p|y factors through each of the involutions ¢ and j1, jo.

Recall that the elements of 35 correspond to rank 2 degenerations of abelian
fourfolds. More precisely, every point of p(U) corresponds to a degenerate abelian
fourfold X whose normalization is a P! x P!-bundle, namely the compactification
of a product of two C*-bundles on the abelian surface S given by ki o ko([X]).
The degenerate abelian threefold itself is given by identifying the 0-sections and
the oo-sections of the P! x Pl-bundle. This identification is determined by a
complex parameter, namely the point on a fibre of f: U — &5 x4, Xs.

Since a degree 0 line bundle £y and its inverse define isomorphic semi-abelian
threefolds and since the role of the two line bundles is symmetric, the map p|y
factors through ¢ and j5. Since j; is the commutator of ¢ and j, the map p|y also
factors through j;. O

We will compute the cohomology with compact support of 39 by considering
the Leray spectral sequence associated with the fibration ky o k3: 9 — As.
This requires to compute the cohomology with compact support of the fibre
(kg0 k3)~1([S]) over a point [S] € A,. To this end, we decompose (ko o k3)~1([S])
into an open part given by its intersection with p(U) and a closed part given by
its complement.
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E HF(S x S;Q)t) k-invariant k-alternating
8 Q(—4) Q(—4) 0

6 (A°A)(—2)%? (A*A)(-2) (A*A)(-2)
4 Q(-2) @ A®*(—1) @ Sym*(A’A) Q(—2) @ Sym*(A*A) A®2(—1)

2 N\’ AP2 A A A A

0 Q Q 0

Table IV.5: Cohomology of S x S/ (i1, 12)

IV.5.2 Cohomology of the open part of the fibre

The fibration g: U — A, obtained by composing the C*-bundle f: U — &5 X 4,
X, with the natural map A5 x 4, X» — A, plays an important role in the study
of the restriction of k; o k3 to p(U). Namely, the fibre of (kg o k3)| @y over
[S] € Ay coincides with the quotient of the fibre of g under the automorphism
group generated by 71, 72 and ¢. Therefore, the cohomology of the fibre of k5 o k3
restricted to p(U) is the part of the cohomology of g7([S]) that is invariant under
jl,jg and ¢.

We start by computing the actions of iy, i3 and of the involution  : (p,q) —
(—p, q) induced by the Kummer involution of semi-abelian threefolds of torus rank
1 on the cohomology of S x S. Recall that the cohomology of S is isomorphic
to the exterior algebra generated by the 6-dimensional space A = H'(S;Q)
and that H*(S x S;Q) = H*(S;Q)®? by the Kiinneth formula. Using this
description, one can calculate the part of the cohomology of S x S which is
invariant under 7; and i5. In particular, since all cohomology in odd degree is
alternating under the involution ¢y, the only non-trivial invariant cohomology
groups are in even degree. We give the description of the invariant cohomology
groups in the second column of Table IV.5. One then proceeds to investigate
their structure with respect to k. For instance one can use the isomorphism
H*(S x S; Q)izr) =2 HR(S x S/(iy,14q, k); Q), together with the fact that the
quotient of S xS by the subgroup generated by i1, 75 and « is the second symmetric
product of S/ £ 1. In this way one proves that the behaviour of the cohomology
with respect to k is as given in the last two columns of Table IV.5.

Lemma IV.5.3. The (i1, 9, t)-invariant part of the Leray spectral sequence as-
sociated with the C*-bundle g~'([S]) — S x S gives rise to a spectral sequence
EPt = HPY((ky o k3| p0)1([S]); Q) which behaves as follows:

- EYY vanishes for ¢ #0,1;

- E§’0 is the part of H*(S x S; Q) which is invariant under iy, iy and k;
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0 A*A(=1) 0 A®2(-2) 0
0 (A’A) 0 Q(=2)@Sym*(A°A) 0 (
1 2 3 4 5

o~
ol o

Table IV.6: E, term of the spectral sequence converging to H*(g~1([S]); Q)2

q

110 0 0 0 Vio(—2) 0 Vii(=3) 0 0

01Q 0 Q(-1)@Vi1 0 Q(-2)*2®Vyy 0 0 00
10 1 2 3 4 5 6 7 8 p

Table IV.7: E., term of the spectral sequence converging to H*(g=1([5]); Q)1%2)

- Eg’l is the part of H*(S x S; Q) which is invariant under iy, io and alter-
nating under k, tensored with the Tate Hodge structure Q(—1).

Furthermore, the FEo, term of this spectral sequence, together with its structure as
Sp(4, Q)-representation, is as given in Table IV.7.

Proof. Let us consider the C*-bundle fg := fl;-1sp: ¢~ ([S]) — S x S. The
Leray spectral sequence in cohomology associated with fg converges to the coho-
mology of g7!([S]) and has E, term EY? = HP(S x S; Q) ® HI(C*; Q). However,
we are only interested in the part of the cohomology of ¢g~'([S]) which is in-
variant under ji,jo and ¢. Since the actions of ji, jo and ¢ respect the map
g ([S]) — S x S, they act also on the terms of the Leray spectral sequence
associated with fg. In particular, the spectral sequence whose E, terms are the
(71, J2, t)-invariant part of the terms of the Leray spectral sequence associated
with fg converges to H*(g~([S]); Q)"*7"*".

In particular, the Fy term of this spectral sequence is given by the (ji, ja2, ¢)-
invariant part of H?(S x S; Q) ® HY(C*; Q). We have already determined the
behaviour of the projection of these involutions to S x S in Table IV.5, so it
remains only to determine their action on the fibre C*. Since j; and j, both fix
the fibre of f over the origin, they act trivially on the cohomology of C*. Instead,
the Kummer involution ¢ acts as the identity on H°(C*; Q) and as the alternating
representation on H'(C*; Q). From this the first part of the claim follows. For the
convenience of the reader, we have written the Fy term of the spectral sequence
in Table IV.6. Notice that this spectral sequence has only two non-trivial rows.
Therefore, it could be written equivalently as a long exact sequence. In particular,
the only differentials one needs to study are the do-differentials.
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These differentials are given by restriction of the differentials of the Leray
spectral sequence associated with the C*-bundle fg. Recall that fg is the C*-
bundle obtaining by subtracting the O-section from the Poincaré bundle over
S x S. Therefore (see e.g. [Hu, XVI.7.5]) the do-differentials are given by taking
the intersection product with the first Chern class of the Poincaré bundle, which
is known to be equal to [diag(S)] — [S x {0}] — [{0} x S|, where [-] denotes
the fundamental class and diag: S — S x S is the diagonal map. An explicit
computation of the intersections of this class with the x-alternating classes in
H(S x S; Q)™ yields the description of E5 = E., given in Table IV.7. Here we
have used the fact that Sym? A is the irreducible Sp(4, Q) -representation V),
whereas /\2 A decomposes into irreducible Sp(4, Q)-representations as Q(—1) &
V11 and Sym?(A\* A) decomposes as Q(—2)22@® 'V 1(—1)® V. In the notation,
Tate twists are only relevant for the Hodge structure.

O

IV.5.3 Geometry of p(A)

The map p identifies the two components of A, each of which is isomorphic to
Xa X4, Xy, In particular, the space p(A) can be realized as a finite quotient
of Xy x4, A;. This can be read off from the construction of the toroidal com-
pactification, as in [S-B, Lemma 2.4]. See also [HS1, Section I] for an outline of
this construction. Also note that the stratum A corresponds to the stratum in
the partial compactification in the direction of the 2-dimensional cusp associated
with a maximal-dimensional cone in the second Voronoi decomposition for g = 4.
A detailed description can be found in [HKW, Part I, Chapter 3].

Specifically, the stratum p(A) corresponds to the GL(2,Z)-orbit of the cone
(22,23, (1 — 12)?). Hence, the map Xy X 4, Xo — p(A) is the quotient map with
respect to the stabilizer G of the cone (22,22, (z; — 75)?) in Sym*(Z?). This is
generated by three involutions: the multiplication map by —1, the involution
interchanging x, and x5 and the involution z; +— x1, x5 — 21 — 9.

These generators of G' act on X; X 4, X> by the following three involutions: the
involution ¢; which acts by (x,y) — (—z, —y) on each fibre S x S, the involution
19 which interchanges the two factors of X5 x 4, A and finally the involution i3
which acts by (z,y) — (x + y, —vy).

From this description, it follows that there is a fibration ¢’: p(A) — A, whose
fibre over [S] € Ay is isomorphic to the quotient of S x S by the subgroup of
Aut(S x ) generated by the three involutions i1, i3 and i3 introduced above.

If we write A := H'(S x {0};Q) and A’ := H'({0} x S;Q), then the coho-
mology of S x S is the exterior algebra of H'(S x S;Q) = A @ A’. If we denote
by fi,..., fs, resp. fs,..., fs the generators of A, resp. A’, the three involutions
act of H'(S x S; Q) as follows:

fir=—fi, i=1,...,8, (IV.5.2)
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fi e fira, i=1,...,4, (IV.5.3)
fi= fi, firar fi— figa, i=1,..,4, (IV.5.4)

Then one proceeds to determine the invariant part of the exterior algebra of
A@® A’ under these involution. Moreover, to determine the local systems R/¢.(Q)
that appear in the Leray spectral sequence associated with ¢’: p(A) — Aj, one
needs to investigate the structure of the invariant subspaces as representations of
Sp(4, Q). An explicit calculation of the invariant classes yields the results which
we summarize in the following lemma.

Lemma IV.5.4. The rational cohomology groups the fibre of g': p(A) — Ay over
a point [S] € As, with their mized Hodge structures and structure as Sp(4, Q)-
representations, are given by

(Q k=0,
/\2 Vl,%ﬂ: Q(-1)® Vi, k=2,
k(o 1—1 ) Q=2) B V(1)@ Va, k=4,
IS D=19 (A v = Q-3 o Vii-2) k-
Q(—4) k=8,

0 otherwise.

\

IV.5.4 Proof of Proposition 1V.5.1

We will prove Proposition IV.5.1 by investigating the Leray spectral sequence
associated with the fibration ky o k3: 89 — As. As explained at the beginning
of this section, the fibre of ky o k3 over a point [S] € A, is the disjoint union of
an open part, which is (k2 o k3|,@)) ' ([S]), and a closed part, which is the fibre
of "+ p(A) — Ay. The cohomology of the fibre of ky o k3| ) was determined
in Lemma IV.5.3, whereas the cohomology of the fibre of ¢’ was computed in
Lemma IV.5.4. Notice that (ks o ks|,n) *([S]) = g~ ([S])/(j1, j2,¢) is the finite
quotient of a smooth quasi-projective variety, so that we can use Poincaré duality
to obtain its cohomology with compact support from its cohomology. Further-
more, since ¢~ ([S]) = S?/(i1,14s,13) is compact, its cohomology with compact
support coincides with its cohomology.

To compute the cohomology with compact support of the fibre of k5 o k3 one
can use the Gysin long exact sequence associated with the inclusion ¢'~!([S]) —

(kg 0 kz)~([S]):

s HE g ([S]); Q)7 — HE (ks 0 k) (1S)): Q) —
HE(S x 5;Q) ™™ 2 i (g1 (15]): )Y — . (1V.5.5)

Notice that all differentials ¢, in (IV.5.5) have to respect the structure of
the cohomology groups as representations of Sp(4, Q). In this specific case, this
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Ri(ks 0 k3)-(Q) ¢
Q(-5) 10 0 Q(=7) 0 Q(-8)
o 9 0 0 0 0
Q-9%26Vi,(-3) 8 Q(-3) Q(—6)% 0 Q(—7)%
o 7 0 0 0 0
Q(-3)®3aVii(-2) 6 Q(_Q) S H(_l) Q(_5)®3 S H(_l) 0 Q(_6)®3
@V 2(—1)
Vao(-1) D Q(_2) 0 0 0
Q-2®2avi (-1) 4| Q(-1)®H Q(-4)*2pH 0 Q(—5)*?
DVa 2
o 3 0 0 0 0
Q-1 2 0 Q(-3) 0 Q(—4)
o 1 0 0 0 0
Q 0 0 Q(-2) 0 Q(=3)
3 1 5 6 p

Table IV.8: E5 term of the Leray spectral sequence converging to the cohomology
with compact support of 33. We denote H = H3(Az; Vo) & H2(Az; Vasa) (up
to grading).

implies that all §; with k& # 2 vanish, whereas
(522 Q(—l) @D V171 — V171

is surjective by Lemma IV.5.5 below.

The above determines the cohomology with compact support of the fibre of
kooks. In particular, it also determines the local systems R} (k20k3).(Q) occurring
in the Leray spectral sequence in cohomology with compact support associated
with the fibration ks o k3. These local systems are given in the first column of
Table IV.8.

Recall that the E, term of the Leray spectral sequence EP? = HPT(39: Q)
associated with ks o k3 are of the form EY? = HP(Ajg; R (k2 o k3)«(Q)). From
the decomposition into symplectic local systems of the R} (ks o k3).(Q), one gets
the E5 term of the Leray spectral sequence as in Table IV.8. Here we used the
description of the cohomology with compact support of Ay with coefficients in
the local systems Vi1, Voo and V35 from Lemma IV.8.5 and IV.8.7.

To prove the claim, it remains to show that the Leray spectral sequence de-
generates at F>. From the shape of the spectral sequence, it follows that all ds
differentials, and all differentials d, with » > 4 are necessarily trivial. The only
differentials one needs to investigate are the ds-differentials E§’7q — Eg’,qq. These
are necessarily 0 by Hodge-theoretic reasons, because morphisms of Hodge struc-
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tures between pure Hodge structures of different weights are necessarily trivial.
From this the claim follows. O

Lemma IV.5.5. The differential 6, : H2(S x S; Q)™ — H3(g71(]5]); Q)"
18 surjective.

Proof. We shall prove the claim by an explicit computation on the generators of
the groups involved. Since in the proofs of Lemma IV.5.3 and Lemma IV.5.4 we
described the cohomology of the fibres of F rather than those of the cohomology
with compact support, to compute the rank of d; we shall compute the rank of
the map induced by d, on cohomology by Poincaré duality

5; . H6(S % S; Q)(i1,i2,i3) ® Q(—l) N H7(g_1([5]); (Q)(jhjg,b)7
which can be described explicitly as the composition of the map

HO(S x S:Q)" ™™ — H(g([5]:Q)
« — QR a,

where @ denotes the image of the generator of H'(C*; Q) inside the cohomology
of g71([S]), and the symmetrization with respect to the group G generated by
J1, J2 and ¢.

A direct computation yields that the classes

Vigkl = fi NFi A fisa N fipa N Qe N fi + 2fica A froa + fi N fioa + fera N fi)

with {i, 7,k 1} = {1,2,3,4} form a basis of H5(S x S; Q)™ Here fi,..., fs
denote the basis of fi,..., fs described in Section IV.5.3. Then we have

05 (Wijk1) = QX fi Nfj A fixa N fiza N (i N froa + foga N f1)

and these classes generate H'(g7'([S]); Q). From this the claim follows. O

IV.6 Torus rank 3

In this section we compute the cohomology with compact support of the stra-
tum with torus rank 3. As in the previous section, our strategy is based on a
detailed geometric analysis of the fibration 5 — A; whose toric part is actually
independent of the choice of g = 4.

IV.6.1 Description of the geometry

We first note that the spaces A" and AY°" only differ over A, and hence 32T\
pert _ g¥or\ gVor —. 30 Tn this section we want to compute H*(33; Q). For this
we first give a geometric description.
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In order to compactify A we start with the lattice Z*. The choice of a
toroidal compactification corresponds to the choice of an admissible fan >4 in the
cone of semi-positive forms in Sym?*(Z*). One possible choice for such a fan is
given by the perfect cone decomposition Eierf. A cusp of Ay corresponds to the
choice of an isotropic subspace U C Q*. In our case, for the stratum over A4,
we take U = (e, e, e3) where the ¢; (1 < i < 4) are the standard basis of Z%.
This defines an embedding Sym?(Z*) C Sym?(Z*) and, by restriction of 35,
also a fan in Sym?(Z?®) which is nothing but 5. The stratum (39 itself consists
of different strata which are in 1 : 1-correspondence with the GL(3, Z)-orbits of
the cones o in Y5 whose interior contains rank 3 matrices. Up to the action
of GL(3,Z) there is a unique minimal cone with this property, namely the cone

o® = (22 22 x2). Beyond that there are (again up to group action) 4 further

. : “4) _ .2 2 .2 2
cones. In dimension 4 there are two cones, namely o}’ = (27, 23, 23, (z2 — x3)?)

1 . :
and o' = (22, 22, (z2—x3)2, (x1—23)%). In dimensions 5 and 6 there are one cone

each, namely 0® = (22 22 22, (v5 — 3)?, (21 — 23)?) and 0 = (22 22, 22, (15 —
x3)?, (x1 — 13)2, (1 — 12)?). Note that all cones are contained in ¢®. In fact
the perfect cone decomposition in genus 3 (where it coincides with the second
Voronoi decomposition) is obtained by taking the GL(3, Z)-orbit of ¢(® and all
its faces.

To describe the various strata let X; — A; be the universal elliptic curve
and let Xy x4, X1 x4, &1 — A; be the triple product with itself over A;. Let
T = Sym?*(Z?*) ® C* be the 6-dimensional torus associated with Sym?*(Z3). Every
cone ¢ in X" is basic (i.e. the generators of the rays are part of a Z-basis of
Sym?(Z?)) and defines a subtorus 7° C T of rank dim(c). We can now give a
description of 9.

Proposition IV.6.1. The variety 39 admits a stratification into strata as follows:

(i) tizg)re are 6 strata of 33, corresponding to the cones a®), 0§4), U%), o® and
o).

(ii) Each stratum is the finite quotient of a torus bundle over Xy X 4, X1 X 4, X1 —
Ay with fibre T/T°.

Proof. See [S-B, Lemma 2.4]. O

We shall now compute the cohomology with compact support for each of these
strata and then use a spectral sequence argument to compute the cohomology
with compact support of 3. We denote the substratum of 32 associated with a
cone o by 39(c) and the total space of the torus bundle by 7 (o).

Before we state the results we have to give a brief outline of the construction
of the stratum 3%(c) with a view towards describing suitable coordinates in which
our calculations can be done. Consider a point in Siegel space of genus 4:

116



IV.6. TORUS RANK 3

11 71,2 71,3 T14
Ti2 T22 T23 T24
€ H,.
T1,3 T2,3 733 T34
Ti,a T24 T34 Ta4

Going to the cusp over A; means sending the top left hand 3 x 3 block of this ma-
trix to i00. We shall make this more precise. We consider the basis of Sym?(Z?3)
given by Uf; = (2 — d;j)ziz;. Let t;; (1 <14,j < 3) be the dual basis. Setting

ti; =™Vl (1<4,j < 3)

defines a map
H, - T x C*x H; (IV.6.1)

T — ((ti;), T1.4, T24, T34, Taa)-

This corresponds to taking the partial quotient X (U) = P'(U)\H4 with respect
to the center P'(U) of the unipotent radical of the parabolic subgroup P(U)
associated with the cusp U. We denote P"(U) = P(U)/P'(U). The partial
quotient X (U) can be considered as an open set of the trivial torus bundle X' (U)
(with fibre T) over C® x H;. Using the fan 2" one constructs ngerf(U ) by

taking a fibrewise toric embedding. Let Xxgerf(U ) be the interior of the closure
of X(U) in ngerf(U). The action of the group P”(U) on X(U) extends to an
action on Xxgerf(U ) and one obtains the partial compactification in the direction
of the cusp U by ngerf(U) = P//(U)\ngerf(U).

Every cone o € 2" defines an affine toric variety X,. Since all cones o are
basic one has X, = CF x (C*)5~* where k is the number of generators of o. Every
inclusion o C ¢’ induces an inclusion X, C X,. Note that Xy = T and, in
particular we obtain an inclusion Xy =T C X ) = CS. Let T1,...,Tg be the
coordinates on X @& = CS corresponding to the generators of ¢® which form
a basis of Sym?®(Z?3). Computing the dual basis of this basis one finds that this
inclusion is given by

Ty =tiatigtie, 1o =1laolagtia, T3 =t33t13t23,
Ty =t53, Ts = t13, Ts = t1s. (V.62)

The relation to the strata (8{(c) is then the following. The coordinate 744
defines a point in 4; and the coordinates 7y 4, T2 4, T34 define a point in the fibre
of X1 x4, X1 x4, X1 — Ay over [144] € Ay which is E,, x E,,, x E,,,, where
E., , = C/(Z + Zry,) is the elliptic curve defined by 74 4. The fibres of 53(c) —
X X 4, Xy X 4, X are isomorphic to the torus T/7°.

Finally, we have to make some comments on the structure of the parabolic
subgroup P(U). This group is generated by four types of matrices. The first type
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are block matrices of the form

S

g1 = , where S ='S € Sym?*(Z?).

OO O -
O O = O
_— o O O

0
1
0

These matrices generate the center P'(U) of the unipotent radical and act by

T, Ti2 T1,3 Ti4 1+ S11 Ti2+S812 T3+ S1,3 Ti4
T2 T22 T23 Toa | | T2 +S12 To2+ S22 To3+ S23 Tou
Ti,3 T2,3 733 T34 Ti,3+ 81,3 T23+ S23 T33+S33 T34
T1,4 T24 T34 T44 T1,4 T2,4 73,4 T4,4

giving rise to the partial quotient Hy — T x C? x H; described above.
The second set of generators is of the form

10 00
0 a 0 b a b

2=10 01 0 , where (c d) € SL(2,Z),
0 ¢c 0 d

resp.
1 M 0 N
10 1 'N 0 3

B=10 o 1 0 , where M, N € Z~.

0 0 —'M 1

Note that the elements of type g2, g3 generate a Jacobi group, which, in particular,
acts on the base C* x H; of the partial quotient by P’(U) given by the map
H, — C3 x H; giving rise to the triple product X; x 4, X; X4, Xi.

Finally we have matrices of the form

tMH—1

O

94 , where Q) € GL(3,7Z).

o o o
oo~ O
o oo
_ O O O

These matrices are of particular importance to us as they operate on the space
Sym?*(Z?) by
GL(3,Z)>g: M —"'Q'MQ".

IV.6.2 The cohomology of (3! (0(3))

In this section we will prove
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Lemma IV.6.2. The rational cohomology groups with compact support of 33(c®))
are given by

Q(—k/2) k=12,14
HYB)(0):;Q) =< Q((5-k)/2) k=9,7

0 otherwise.

We start by giving an explicit description of the torus bundle 7 (¢®®) defined
by the cone o).

Lemma IV.6.3. Let q,5: T(0®) — X x4, X1 x4, X1 be the rank 3 torus
bundle associated with c® . Then over each fibre E x E x E of X, X4y X1 X4, X1
we have

T(0)|pxmxn = P35(P°) @ pi5(P°) @ pio(P)

where P° is the Poincaré bundle over the product E x E with the 0-section re-
moved, and p; j: X Ex E — E X E s the projection to the ith and jth factor.

Proof. We first recall the following description of the Poincaré bundle over £ x E
where F = C/(Z+Z7). Consider the action of the group Z* on the trivial rank-1
bundle on C x C given by

(nlanQamlamZ): (Zl,ZQ,'LU) — (IV63)

(21 4 N1+ muT, 22 + g + T, we TTMz M2z FMIMaT) )

(where the z; are the coordinates on the base and w is the fibre coordinate).
We claim that the quotient line bundle on F x E is the Poincaré bundle. For
this it is enough to see that this line bundle is trivial on £ x {0} and {0} x FE
(which is obvious) and that it is isomorphic to Og(O — P) on E x {P}. The
latter can be checked by comparing the transformation behaviour of (IV.6.3) to
the transformation behaviour of the theta function 9J(z,7) in one variable (see
e.g. [La, 15.1.3.]).

We have to compare this to our situation. In this case we have an action of
the group generated by the matrices g3 with M, N € Z3. For N = (ny, ny, n3) we
have 7; 4 +— 7; 4+n; and for M = (my, mq, m3) we have 7; j — 7; ;+m;7; a+m;Tj 4+
m;m;Tyq for 1 <i4,7 <3 and 7,4 — 7,4 + m;744. Recall that the entries 7, 4 for
1 = 1,2,3 are coordinates on the factors of £ X E x E and that it follows from
(IV.6.2) that we can choose ¢; | with ¢;; = €™ for (i, j) = (1,2), (1,3),(2,3) as
coordinates on the torus 7 (). Comparing this to the transformation (IV.6.3)
gives the claim. O

Proof of Lemma IV.6.2. Recall that the stratum £(c®) is a finite quotient of
the rank 3 torus bundle ¢, : 7(0(3)) — X X4, X1 X4, &1. This enables us to
calculate its rational cohomology by exploiting Leray spectral sequences.
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Notice that the base of ¢, is the total space of the fibration p: &) X 4,
Xy X 4, X1 — Aj. Over a point [E] € Ay, the fibre of pis p™ ' ([E]) @ EX EX E
and the fibre of p o g, over [E] is the total space of the rank 3 torus bundle
Uo® | ExExE 7(0(3))|ExExE — E x E x E described in Lemma IV.6.3. The
cohomology of (po g, )~ ([E]) can be computed by the Leray spectral sequence
associated with this rank 3 torus bundle:

E29(q,) = H(T/T™);Q) @ HP(E x E x E; Q)
= H""((po ¢,) ' ([E]); Q). (IV.6.4)

Note that the cohomology of E x E x E (respectively, the torus T /T("(B)))
is an exterior algebra generated by H'(E x E x E;Q) (resp. H{(T /T, Q)).
We denote by @1, Q2 and ()3, respectively, the generators of Hl(T/T"(S); Q) =
H'Y((C*)3;Q) = Q? defined by integrating along the loop around 0 defined, re-
spectively, by [t535] =1, [t13] =1 or [t5] = 1.

We can write each copy of F as a quotient E' = C/(Zeg;—1 + Zes;); i = 1,2, 3.
Then ey, ..., es give rise to a basis of the first homology group of £ x E x FE.
We will denote by fi, ..., f¢ the elements of the basis of H'(E x E x E; Q) dual
to eq,...,eg. Notice that the transformation behaviour of the fs; 1 and of the
fo; for 1 < ¢ < 3 agrees with the transformation behaviour of the coordinates
{74l 1 <i <3} of C3 = (Zey+Zey+ - -+ Zeg) 0z C (and that of the differentials
dr; 4 which give rise to classes in cohomology).

As we are interested in the quotient of 7(c®) by the finite group G(c®),
we shall compute the invariant cohomology with respect to this group. This is
done in Lemma IV.6.4 for the invariant cohomology of the fibre 7 (0®)|pyxpxr =
(p o q,») ' ([E]) using a Leray spectral sequence argument. It remains to de-
termine the local systems Rj(p o ¢, )«(Q) over A; defined by the fibration
poqm: 3c®) = T(¢e®) — A;. This is quite straightforward, since the
cohomology with compact support of the fibre is constant in degrees 12 and 10,
and since Sym? H'(E; Q) induces the symplectic local system V; on A;.

Recall that the cohomology with compact support of A; with constant co-
efficients is concentrated in degree 2, and that the only non-trivial cohomology
group of A; with coefficients in Vy is H!(A;; Vo) = Q (see e.g. [G1, Thm. 5.3]).
In particular, it then follows from Lemma IV.6.4 that the Leray spectral sequence
associated with pog,@) has only two columns containing non-trivial Es terms, so
it has to degenerate at F5. From this the claim follows. O

Lemma IV.6.4. For every [E] € Ay, the rational cohomology with compact
support of the fibre of B(c®) — Ay, with its Hodge structures, coincides with
the G(a®)-invariant part of the cohomology with compact support of the rank 3
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torus bundle T (0®))|pxpxe and is given by

Q(—6) k=12,
5 Q(-5) k = 10,
(HET (0 pepnrs Q) =4 Sym*(HY(E; Q) © Q(=2) k=8,
Sym*(HY(E; Q) ® Q(-1) k=6,
0 otherwise.

Proof. The stabilizer G(o®) of ¢® in GL(3,Z) is an extension of the symmetric
group &3 (permuting the coordinates x1, x2, 23) by (Z/2Z)? (acting by involutions
(21, T2, 3, x4) > (21, X0, LT3, 14)).

The interchange of two coordinates (say, x; and z;) acts on H'(E x E x E; Q)
by interchanging fo;_1 with fo;_1, fo; with f5; and leaving all other generators
invariant. The action on H'(T/ T, Q) interchanges @); and @; and leaves the
third generator invariant.

The automorphism mapping x; to —z; acts on H*(E x E x E; Q) as multiplica-
tion by —1 on the generators fy;_1, fo; and on HI(T/T("(S)); Q) as multiplication
by —1 on @ with k # 7. All other generators are invariant.

We can compute the G(c®)-invariant part of the rational cohomology of the
rank 3 torus bundle 7 (0®)|pxpxg by restricting to the G(c®)-invariant part
of the Leray spectral sequence (IV.6.4) associated with ¢,s). This yields a spectral
sequence £5? converging to the G(o®)-invariant part of H?+*4(7T (6))|pxpxr; Q).

A computation of the part of the tensor product A* HY(E x E x E;Q) ®
A° HYT/T@™); Q) which is invariant under G(0®) yields that E£ is non-zero
only for (p,q) € {(2,0),(2,1),(4,0),((2,2),(4,1),(6,0)}. A precise description of
the generators of the non-trivial E5 terms is given in Table IV.9. Note that the
spaces for p = ¢ = 2 and p = 4, ¢ = 2 are both isomorphic to Sym? H'(E; Q) as
Sp(2, Q)-representations.

Next, one investigates the differentials of the spectral sequence. As differen-
tials have to occur between FEF? terms such that the two p + ¢ have different
parity, an inspection of the spectral sequence quickly reveals that all differentials
have to be trivial, with the possible exception of

dyt: Byt — Ey° (IV.6.5)

and
dyt: Byt — ES°. (IV.6.6)

We can determine their rank by exploiting the description of the restriction
to F x E x E of the torus bundle 7 (c®®) given in Lemma IV.6.3 as a direct sum
of pull-backs of the Poincaré bundle with the O-section removed. This description
implies that one can employ the usual description of dy differentials of C*-bundles
to investigate d%’l and d;l’l. In particular, each of these differentials is given by
formally replacing each generator Qy of H'(T/ T, Q) by the first Chern class of
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p ¢ dim. generators
00 1 1
2.0 1 X fai A fa
21 1 Y Qr® (faici A foj — fa N faj-1)
i< kting
2 3 SOQAQ W™, m=1,23
i<j ki

40 1 Ylifaa Afa AN foyo1 A oy
4 1 1 Yo Qk® (faic1 A foj — fai N faj—1) A for—1 A for
i< k#inj
42 3 Y QAQEWI A fu i A fa, m=1,2,3
i<j ki
6 0 1 fiNHRA[BNLAA S
All indices 4, j, k are between 1 and 3. For indices i < j we set
W,ﬁl) = faic1 A foj + fai N foj-1, W;EQ) = foi—1 A f2j—1 and W;£3) =
foi N fgj for k& 75 1, 7.

Table IV.9: Description of the generators of the Ey terms of the G(¢®))-invariant
part of the spectral sequence associated with ¢, ).

the bundle p; ;(P), where 1 <14 < j < 3 are chosen such that {7, j, k} = {1,2,3}.
Recall that on the product F x E the Poincaré bundle P = Ogyp(FE x {0} +
{0} x E — A), where A is the diagonal. From this one concludes that ¢;(P) =

N fot fsAfa—=(fi+ f3)A(fat f1) = faA fs— fi A fs. Tt is then a straightforward
calculation to prove that both differentials are isomorphisms.

It remains to pass from cohomology to cohomology with compact support,
which we can do by Poincaré duality, using the fact that 7 (¢®)| gy gx g is smooth
of complex dimension 6. Finally, we can identify the G(c®)-invariant part of the
cohomology with compact support of 7(¢®)|gxpxr With the cohomology with
compact support of its finite quotient (7(0(3))\ ExEx E) /G(c®), which coincides
with the fibre of 33(c®) — A, over [E]. O

IV.6.3 The cohomology of /3! (0§4) )

In this section we will prove

Lemma IV.6.5. The rational cohomology groups with compact support ofﬁ§(0§4))
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are given by

Q(—6) k=12
W Q(—5)*? k=10
HEB0M) Q) =4 Q(—4) +Q(—=2) k=8
Q k=5
0 otherwise.

Proof. We shall make again use of the twofold fibre structure of this stratum. The
stratum ﬁg(a§4)) is a finite quotient of a rank 2 torus bundle q ) : 7 (a§4)) —
I

Xy X4, Xy x4, Xy with fibres isomorphic to 7'/ T@"). Note that the generators
of a§4) correspond to the first four generators of the cone ¢(®. Comparing this

to the embedding described in (IV.6.2) we find that we can choose t;3,t;5 as

coordinates on T/T("Yl)). As before we denote p: X} x4, X1 X4, &1 — A;.

As we are interested in the quotient of 7 (a§4)) by the finite group G(a§4)),
we shall compute the invariant cohomology with respect to this group. Thus
we first have to describe the automorphism group G(affl)) of the cone 0§4), ie.
all elements of the form g3 € GL(3,Z) which fix this cone. We have already
discussed this in [HT, Section 3]. The result is that the automorphism group is

generated by the following four transformations:

X1+ Ty, Totr> Tog— T3, T3> —T3 (IV.6.7)
T — —Iq, T2, T3+ To,T3 (IV68)

Ty — 21, To < I3. (IV69)

x;— —x; 1=1,2,3. (IV.6.10)

Note that these automorphisms act trivially on the base of the fibration X x 4,
Xl X Ay Xl — Al.
Again we shall determine the invariant cohomology of the fibre (¢_w op) ' ([E])
I
using the Leray spectral sequence with terms F¥? = Hq(T/T("EM), Q) ® HP(E x
E x E,Q). The result is given by:

Lemma IV.6.6. For every [E] € Ay, the rational cohomology with compact
support of the fibre of ﬁg(a§4)) — Ay, with its Hodge structures, is given by

Q(-5) k=10,
|ty k=3
Got") 2(HY(E: —9) k=
<H§(T(O§4))‘EXE><E; Q)) = %y(rig()H (E, Q)) ® Q( 2) L Z;,
Sym*(H'(E;Q)) k=4,
0 otherwise.

\
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Proof. We denote the generators of HI(T/T("YD); Q) = HY((C"* Q) = Q? cor-
responding to tié, tf% by (02, Q3. The f;,7 =1,...,6 are, as before, a basis of the
cohomology of the triple product £ x F x F.

We must now compute the action on (co)homology of the automorphisms of
0§4). As a non-trivial example we shall do this in detail in the case of the trans-
formation given in (IV.6.7), the computations in the other cases are analogous.

The action of this transformation on Siegel space is given by:

1 0 0 0 11 T2 T1.3 Ti4 1 0 0 0
0 1 0 0 Ti2 T22 T23 T24 01 -1 0 .
0 -1 -1 0 71,3 T2,3 T33 T34 00 -1 0 -
0 0 0 1 T1,4 T24 T34 T44 0 0 0 1
Ti,1 71,2 —T1,2 — T1,3 T1,4
_ 71,2 72,2 —T22 —T23 T2,4
—Ti2— T3 —To2—To3 To2+2To3+T33 —Tou— T34
T1,4 T2,4 —T24 — T34 T4,4

From this we conclude that under this transformation:
Q2 — —Q2 — Q3; Q31— Qs; (IV'6'11)

fir=fi, i=1,...,4 fir——fi_o— fi; i=5,6,

Note that the latter coincides with the transformation behaviour of the differ-
entials d7; 4,7 = 1,2,3, and the former with the transformation behaviour of
—T71,3, —T1,2-

An analogous computation for the other automorphisms gives the following
results:

@2, Q3 — —Qa, —Qs; (IV.6.12)
fi,fa= =fi,—fe, firm fi, 1=3,...,6.
Q2, Q3 — @3, Q2; (IV.6.13)
fifar= fifo, s fs0 fae e,
Q2, Q3 — Q2, Qs; (IV.6.14)

fii—>—fi, Z:L,6

Now we must compute the invariant cohomology with respect to GG (O’§4)). This
can either be done by a (lengthy) computation by hand or a standard computer
algebra system.

The Eg’o terms of the spectral sequence can be computed as follows. The
invariant part E2° of the cohomology group HO(T/T”YD; Q) ®H*(ExEXE;Q)
is two-dimensional and generated by the tensors

ILi=finfo, =2(fs AN fa+ fs AN fo) + (fsA fe+ [5 A fa).
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Tabl((e )IV.lO: E5 term of the spectral sequence converging to the cohomology of
5:(3)(014 )

q
210 0 Vy(—2) 0 V,(—3) 0 0
110 0 Vo(-1)@Q(=2) 0 Vo(=2)dQ(=3) 0 0
0/Q 0 Q(—-1)* 0 Q(-2)® 0 Q(=3)

0 1 2 3 1 5 6 p

The term E;l’o is also two-dimensional, with generators I; A Iy and Iy A I5. The
0,0 ~v 770 o(P 0 6,0 ~v 770 o
terms Ey” = HY(T/T°1 ;Q)® HY(E X E x E;Q) and E;” = H(T/T°1 ; Q) ®
HS(E x E x E;Q) are one-dimensional and generated by fundamental classes.
The term E>', which is the invariant part of HI(T/T"YU; Q) ® H*(E x E x
FE; Q) is 4-dimensional, with generators

9ij = ((QQ + 2Q3) ® fj+2 + (ZQQ + Q3) ® fj+4) A fi> 27] = 17 2.

In particular, it is isomorphic to HY(E; Q) ® H'Y(E; Q) = Sym*(H'(E;Q)) @
A\° H'(E; Q). The term Ej" is also four-dimensional and generated by (g ; A L)
All other E?' vanish.

Finally, the only non-trivial terms of the form E§’2 are those with p = 2 and
p = 4. The subspace E3”° C HQ(T/T"§4); Q) ® H*(E x E x E;Q) is isomorphic
to Sym?(H'(E;Q)) and is generated by the invariant tensors

Q2 NQ3® fsNfs, QaNQ3® (faN fo+ faNfs), Qe NQ3® [y fe.

Finally, the subspace E§’2 is 4-dimensional and equal to E22’2 A

In terms of local systems this gives rise to the Table IV.10. We claim that
that the differentials dy? : EP? — EP*>9! for (p,q) = (2,1),(2,2) and (4,1) are
of maximal rank. Indeed, by Schur’s lemma it is enough to prove that they are
non-zero. To check this it is enough to recall that the torus bundle is isomorphic
to p} 5(P°) @ pji,(PP). In particular, for every class o € E5' we obtain 5 (a) by
replacing Qq with ¢;(py3(P)) = —(fi A fo + f5 A f2) and Q3 with ¢;(p] 3(P)) =
—(fi N fa+ f3 A f2) in the expression of a. Analogously, for every class 5 € E§’2
we get dy?(3) by replacing Q2 A Q3 with Q2 ® c1(p}4(P)) — Qs ® c1(p}5(P)).
Then the claim follows from a straightforward calculation. O

To complete the proof of Lemma IV.6.5 is now an easy consequence of the
Leray spectral sequence of the fibration poq_u) : T(affl)) — A;. Looking at the
I

weights of the Hodge structures, we see immediately that all differentials must
vanish and thus the result follows. 0
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IV.6.4 The cohomology of 3! (J%) )

Before we can describe the cohomology of this stratum we must identify the toric
bundle T (o4},

Lemma IV.6.7. Let p1o: EXEXE — EXE be the projection onto the first two
factors and let ¢ : ExEXE — EXE be the map given by q(x,y, z) = (x+y+2z, 2).
Then

T(05)) | pxpxe = 0o (P°) ® ¢ (P1)°).

where P° is the Poincaré bundle over the product E x E with the 0-section re-
moved.

Proof. Since the generators of the cone U}? correspond to 11,75, Ty, Ts we can

take Ty = tf% and T3 = 133t 3ta3 as coordinates on the torus T/T("%)). In
Lemma IV.6.4 we had seen that the action of the group generated by the matrices
gs with M, N € Z? is as follows. For N = (ny,ny,n3) we have 7,4 — 7,4 + n;
and for M = (my,mg, m3) we have 7,; — 7;; + m;T; 4 + m;Tjs + mym;7y4 for
1<4,5<3and 74+ 74+ m;Ts4. In particular

Ti2 P> T2 + MaTi g4 + M1Tog + M1MoTa 4

whereas
(71,3 + 723+ T33) — (T13 + o3+ T33)+

m3(7_1,4 + T2,4 + ’7'3,4) + (m1 + mo + m3)7374 + mg(ml +mo + m3)7474.

A comparison with the transformation behaviour for the Poincaré bundle de-
scribed in Lemma IV.6.4 gives the claim. O

Lemma IV.6.8. The rational cohomology groups with compact support ofﬁg(a%))
are given by
4
HE(B)(017): Q) = Q(=k/2), k =10,12.

Proof. As in the previous case we first have to describe the automorphism G (aﬁ))
of the cone ag). This group is the symmetric group S, permuting the generators
of the cone together with the map x; — —x;. Hence we can work with the

following generators:

x;— —x;, i=1,...,6 (IV.6.15)

Ty <> T, T3+ T+ Tg — T3 (IV.6.16)

Ty T — X3, Tg > —Tg, Xzt —T3 (IV.6.17)
T > X3 — Xo, Tor> —To, T3> T1— To. (IV.6.18)

We now have to compute the induced action of these automorphisms on the
cohomology groups H*® (T/T("%)); Q)® H*(E x Ex E;Q). To this end, we denote
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by Q3 (respectively, R) the generator of H(T/ T("%)); Q) corresponding to the
parameter Ty = tf% (respectively, to T5 = t; sta3ts3).
It is immediately clear that in the case of (IV.6.15) the action is given by

Qg,R — Q3,R; (IV619)

fi'_)_fh Z:1776

We note that this implies that there can be no non-trivial invariant cohomology
classes involving terms of odd degree in H*(E x E x E). Next we claim that the
action on cohomology of (IV.6.16) is given by

Ji= figo+ fiva, 1=1,2; fir fico+ fiye, =34 fi—>—fi, i=5,6.

To see this we compute

01 1 0 11 T12 T1,3 Ti4 01 0 0
1 0 1 0 Ti2 T22 T23 T24 1 0 0 0 .
00 -1 0 T1,3 72,3 73,3 T34 11 -1 0 -
0 0 0 1 T1,4 T24 T34 T44 00 0 1
* T2+ T3+ T13+ 733 —T23 — 733 Toat T34
e * —T1,3 — 733 Ti4+ T34
I * T33 —T34
* * * Ta,4

This immediately gives the claim for the f;. For ()3, R we observe that the action
induced on the homology is dual to the action on the subspace (—71 2,713+ 723+
73,3. oince cohomology is dual to homology, the action on ()3, R agrees with that
on —Ty2,7T13+ To3 + 733.

A similar calculation gives the following results in the remaining cases:

Qs —Q3, R— Qs + I (IV.6.21)
Qs — R; (IV.6.22)

Jir= fiva, =12 fir=—fio—[fi— fiye, 1=3,4; [fir fiia, 1=15,6.

It is now straightforward to compute the invariants under G(aﬁ)). In the coho-

mology group HO(T/T("%)); Q) ® H*(E x E x F; Q) we find one invariant tensor,
namely

L=3(finfot+ 3N fa) +20+,
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Tabl((e )IV.ll: E5 term of the spectral sequence converging to the cohomology of
(o I? )

q

2100 0 0 0 0 0

110 0 Q(=2) 0 Q(=3) 0 0

0/Q 0 Q(-1) 0 Q(=2) 0 Q(-3)
01 2 3 4 5 6 p

where we denoted ¢ = (fi+f3+f5) A fo+ fs A(fot+fat+fo) and ¥ = fih fat fsA fo.
In Hl(T/T("%)); Q) ® H*(E x E x F;Q) we also obtain one invariant tensor,
namely

ILy=-R® 20 +v)+ Q& (¢ +2¢).

The invariant class in HO(T/T("%)); Q) ® HY(E x E x E;Q) is I} A I, and in
HY(T/T); Q)@ HY(E x E x E; Q) it is Io A I,. This together with the funda-
mental classes in HO(T/T@i1);Q) ® HY(E x E x E;Q) and H*(T/T“11); Q) ®
HS(E x E x E;Q) are the only invariants.

As before we now look at the Leray spectral sequence in cohomology associ-

ated with poq w: T (aﬁ)) — A;. Since all representations are trivial we thus
I1

obtain Table IV.11. Hence, we have two differentials which could be non-zero,
namely

' HYT/TCD), QeHA(EXEXE; Q) — HY(T/TC); Q@HY(ExEXE; Q),
resp.
AoV HNT/TOD), QueHYEXEXE; Q) — HY(T/TCH): QoHY(ExEXE; Q).

Indeed we claim that they do not vanish. For this we use the description of
T (affj-))| exExke given in Lemma IV.6.7. It follows from this description that this
bundle splits into the product of two factors with Euler classes —p and 1. The
claim that the first differential is non-zero is now equivalent to

PAQ2p+ 1Y)+ A (p+2¢) #0.
For the second differential we must check that
(A Qe+v)+A(p+2¢) AL #0.

This can be checked by direct calculation. At the same time this proves that the
first differential does not vanish. The claim of the lemma now follows immediately
after converting to cohomology with compact support. O
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IV.6.5 The cohomology of /3! (0(5))

Lemma IV.6.9. The rational cohomology groups with compact support ofﬁ§(0(5))
are given by
Q(—k/2) k=6,10
H(B3(0);Q) = § Q(=k/2)%* k=8

0 otherwise.

Proof. We first have to compute the automorphism group G(c®®). It is not hard
to see that this group is generated by the transformations

v —z, i=1,23 (1V.6.23)

Ty > Ty, T3> T (IV.6.24)

Ty > Xy — X3, Tor> Tg— T3, T3> —T3 (IV.6.25)
T1 > X1 — X3, Tor> —T9, Xz —I3. (IV.6.26)

A computation analogous to that in Lemma IV.6.5 shows that this results in the
following action on cohomology, where again we denoted by f; the generators of
the cohomology of £ x E x E and by ()3 the generator of the cohomology of the
fibre of the torus bundle:

fie firi =120 fi— [;,7 =561 Qs Q3 (IV.6.28)
fir fii=1,..,4; fir—= —fica— fia— [,k =5,6; Q3— Q5 (IV.6.29)

fir Jii=12; fi——fi0=34 Jfer> —fe-a— Jr, k=5,6; @Q3— —Qs.
(IV.6.30)
Next, we compute the invariant cohomology in H(C*; Q)@ H*(Ex Ex E; Q).
Clearly this is 1-dimensional for £ = 0,6. By duality it is enough to do the
computation for k£ = 2. Here we find a 2-dimensional invariant subspace generated
by i1 == fiNfo+ faA faand iy := fi A fa+ fs AN fa+2(f1 + fs+ f5) A fo +2f5 A
(fo+ fa+ fo).
In this situation we also have invariant cohomology in H*(C*; Q)@ H*(E x E'x
E; Q). This is 1-dimensional and generated by Qs ® (fi1 A fa+ f3 A f2). By duality
we also have a 1-dimensional invariant subspace in H'(C*) @ H*(E x E x E). A
standard calculation shows that this is generated by Q3 A (f1 A fa+ fs A fo) Ads.
In this case the differentials in the Leray spectral sequence are not automat-
ically 0. The situation is described in Table IV.12. here are two differentials
which we have to consider. These are:

' H(C*: Q) @ H*(Ex EXFE;Q) — H(C*;Q)® HYE x E x E;Q),
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Table IV.12: E, term of the spectral sequence converging to the cohomology of
33(0®)

resp.
dy' - H(C* Q)@ H(E x EX E;Q) — H°(C*;Q)® H(E x E x E; Q).

We claim that both differentials are non-zero, i.e. they have rank 1. We
first treat dé’Q. The differential is given by taking the cup-product with the first
Chern class of the vector bundle spanned by the torus bundle 7 (6)| gy pxp. As
in previous cases on can see that 7 (0®)|gyxpxr = piy(P°). This shows that

dy?: Qs @ (fiNfat fs A fo)

(FANfa+fsN)NALNfa+ fs N fo) =2fi N fa N fa N fa# 0.

The argument for dy* is analogous. Finally we use the duality H*(63(¢®); Q) =
HY#(39(c®)); Q)* ® Q(—5) (which holds on finite smooth covers) to obtain the
claim.

O

IV.6.6 The cohomology of 33(c(%)

Lemma IV.6.10. The rational cohomology groups with compact support ofﬁg(a(ﬁ))

are given by
—k/2) k=2,4,6,8
Hf(ﬁg(a(ﬁ)); Q) = { (?( 2 otherwise.

Proof. The proof of this lemma is analogous to the other cases. We first note
that the automorphism group of G(c®) is generated by the symmetric group in
three variables permuting the coordinates z; (i = 1,2, 3) and the transformations
(IV.6.23) and (IV.6.25) already considered in the previous section. In this case
the torus rank is 0 and hence it suffices to compute the action on the cohomology
of the triple product E x E x E. In view of the transformation (IV.6.23) there
is no invariant in odd degree. By duality it is enough to compute the invariant
cohomology in H*(E x E x E; Q). A straightforward calculation shows that this
is 1-dimensional with generator 2vy + vy +vs, with v1 = fi A fo+ fs A fa+ f5 A fe,
vo=fiNfa+fsANfet+ s A faand vz = fi A fo+ [3NAfat 5 A fa 0
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Table IV.13: Gysin spectral sequence converging to the cohomology with compact
support of 39

q
10| 0 0 0 Q(-7)
9| 0 0 Q(—6)%2 0
8| 0 Q(-5) 0 Q(—6)
7| Q(—4) 0 Q(—5)%" 0
6] 0  Q(—4)%2 0 0
5| Q(-3) 0 Q(—4) +Q(-2) Q(-2)
41 0 Q(—3) 0 0
31 Q(-2) 0 0 Q(-1)
21 0 0 Q 0
1] Q(~1) 0 0 0
1 2 3 i p

IV.6.7 The cohomology of B??

In this section, we will use the computations on the strata of 37 to prove the
following result.

Proposition IV.6.11. The rational cohomology with compact support of 39 is
as follows: the non-zero Betti numbers are

i|2 4567810 12 14
b1 11214 4 3 1

One has H'(32; Q) = Q(—1) and H2(5Y; Q) = Q. Furthermore all cohomology

groups of even degree are algebraic.

Proof. We consider the Gysin spectral sequence associated with the stratifica-
tion of (39 given by the locally closed strata W, = B3(c)), Wy, = B9(c®),
W = 890\ uB(0l)) and Wy = 89(c®). We set Y, = W,. This is the spectral
sequence E2Y = HP(5; Q) with B} = HPM(Y,\ Y, 1 Q) = HIM(W,; Q).
The cohomology with compact support of the strata W; was computed in the
Lemmas IV.6.2, IV.6.5, IV.6.8, IV.6.9 and IV.6.10. In view of these results, the
E; term of the Gysin spectral sequence is as given in Table IV.13. We consider
the differentials d?¢: EP4 — EPT74~"+1 Ingpection of Table IV.13 shows that
the only possible non-zero differential is d>°: E>® = H3(33(c\"); Q) — E® =
H(B9(0®); Q). We can interpret this differential as arising from the Gysin long
exact sequence associated with the inclusion of 39 (0§4) in the partial compact-
ification 32(c®) U (') of B2(c®)). Let us denote by Uy the fibre of the
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fibration 39(c®) U 89(c'") — A, over a point [E] € A;. Thanks to the Leray
spectral sequence associated with that fibration, all we need to know is that the
cohomology with compact support of Wy vanishes in degree 7. This requires to
prove that the differential

dr: Hl((pog,m)  ([E]): Q) = HX((po ,0)  ([E]); Q)

in the Gysin long exact sequence associated with (p o ¢ @) '([E]) C ¥g is an
isomorphism. '

Since in the proofs of Lemma IV.6.4 and Lemma IV.6.6 we described the gen-
erators of the cohomology of the fibres of E rather than those of the cohomology
with compact support, we shall analyze the map induced by d; on cohomology
by Poincaré duality, whose rank coincides with that of d;. Let us recall that the
inclusion of {0} x (C*)? in C x (C*)? induces a Gysin long exact sequence whose
differentials define the maps

H*((C)% Q) ®Q(-1) — H((C)*Q)
T, — T, AT} i=2,3.

As a consequence, the differential H*((poq_ )" ([E]); Q)@Q(-1) — H*((po
I

7, ) ([E]); Q) maps each of the generators g; ; described in the proof of Lemma IV.6.6
to the class obtained by replacing T, by 75 AT in the expression, and then sym-
metrizing for the action of the group G(c®). This yields:

2
Gij — 3 Z Qi1 N Qi1 @ forgi A fartjs

0<k,1<2

hence in particular the differential is surjective. From this the claim follows.
O

IV.7 Torus rank 4

In this section we compute the cohomology of the closed strata 3, C AY*" and
pert = AP of torus rank 4 in the second Voronoi and the perfect cone com-
pactification, respectively.
We shall first state the main results:
Theorem IV.7.1. The cohomology groups with rational coefficients of the closed
stratum B2 AP of the perfect cone compactification of the moduli space
of abelian varieties of dimension 4 are non-zero only in even degree. The only
non-zero Betti numbers are by = by = by =1, bg = bg = 4, big = 3 and by = 1f
perf ,

The cohomology is algebraic in all degrees different from 6, whereas HS (57" ; Q)
is an extension of Q(—3)% by Q(—1).
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The closed stratum (5 C AY°" has two irreducible components: a nine-dimen-
sional component E, which is the exceptional divisor of the blow-up ¢: A}Y°" —
AP and a six-dimensional component, which is the proper transform of g2

under q.

Theorem IV.7.2. 1. The rational cohomology of E is all algebraic. The only
non-zero Betti numbers are by = by = big = big = 1, by = biy = 2 and

b6:b8:b10:b12:3.

2. The rational cohomology of B4 is non-trivial only in even degree. The non-
zero Betti numbers are

i]0 2 46 8 10 12 14 16 18
bi|1 23776 4 2 1 1

=%

All cohomology groups are algebraic, with the exception of HO(84; Q), which
is an extension of Q(—3)% by Q(—1).

IV.7.1 Cone decompositions

It is in this section that we require full information about the perfect cone or
first Voronoi and the second Voronoi decomposition in Sym?2,(R*). Details con-
cerning these decompositions can be found in [ER1], [ER2], [Val] and [Vor]. We
start by recalling the perfect cone decomposition. The starting point is two 10-
dimensional cones, namely the principal cone II;(4) and the second perfect cone

I15(4). These cones are given by

H1(4) = < %7 ‘I%v ‘I%?x?l? (‘Tl - I2)27 (‘Il - I3)27 (‘Il - ZE4)2, (‘TQ - ZE3)2,
(22 — 24)%, (23 — 24)°)

and

5(4) = (2f, 23, 23, 23, (w1 — 23)%, (21 — 24)?, (22 — 23)7, (22 — 24)?,
(1'3 — 1'4)2, (ZEl + To — 1'3)2, (1'1 + To — ZL‘4)2, (1'1 + To — T3 — 1'4)2)

respectively. The perfect cone decomposition consists of all GL(4, Z)-translates of
these cones and their faces. While the cone I1;(4) is basic, the cone II5(4) is not,
hence it defines a singular point Py, € AP Nevertheless, all 9-dimensional
faces of [I5(4) are basic. Modulo the action of GL(4,Z) these 9-dimensional faces
define two orbits. Traditionally these are called RT (red triangle) and BF (black
face) respectively (see [ER2]).

In genus 4 and 5 (but not in general) the second Voronoi decomposition is a
subdivision of the perfect cone decomposition. In our case it is the refinement of
the perfect cone decomposition obtained by adding all cones that arise as spans
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of the 9-dimensional faces of II5(4) with the central ray generated by

1
e = g [.I% +1’§ +$§+$Z+ (.Tl —1‘3)2+ (1’1 —.T4)2 + (.TQ —1‘3)2+ (1’2 —.T4)2

+(ZE3 — 1'4)2 + (1'1 + To — 1'3)2 + (1'1 + To — 1'4)2 + (1'1 -+ T9 — T3 — ZL‘4)2} .
(IV.7.1)

In particular, all perfect cones, with the exception of II5(4), belong to the second
Voronoi decomposition. Geometrically this means that A)° is a blow-up of
AP — AE" in the singular point Py, Since all cones on the second Voronoi
decomposition are basic A)°" is smooth (as a stack). Moreover, the exceptional
divisor E is irreducible and smooth (again as a stack). (For a discussion of this
see also [HS2].

A description of representatives of all GL(4, Z)-orbits of cones in the second
Voronoi, and hence also the perfect cone decomposition, can be found in [Val,
Chapter 4]. For cones with extremal rays spanned by quadratic forms of rank 1
the list is given in [Val, S.4.4.4]. Note that in this list K5 denotes the cone I15(4),
and the 9-dimensional cones K5 —1 and K3 3 correspond to the equivalence classes
BF, respectively, RT of [ER2]. The remaining cones are listed in [Val, S.4.4.5].
The following list gives the number of GL(4, Z)-orbits of cones in each dimension
for the two decompositions.

dimension 12345 6 7 8 9 10
# perfect cones 11234 5 4 2 2 2
# second Voronoicones |2 2 4 7 9 11 11 7 4 3

From this we see that the perfect cone decomposition has 26 different cones,
whereas the second Voronoi decomposition has 60 different cones. The lists in
[Val] also allow us to write down generators for the extremal rays of representa-
tives in all cases.

IV.7.2 Plan for computation

We briefly recall the structure of §; and S which comes from the toroidal
construction. More generally, let 37 be the stratum of any admissible fan 2
(in our case either the perfect cone or the second Voronoi fan), then each cone
o € X defines a torus orbit T, of dimension 10 — k where k is the dimension of
o. Let G, C GL(4,Z) be the stabilizer of o with respect to the natural action
of GL(4,Z) on Sym%,(R*). Then G, acts on T, and 7 is the disjoint union
of the quotients Z, = T, /G, where o runs through a set of representatives of
all cones in ¥ which contain a form of rank 4 in their interior. We then define
a stratification by defining S, as the union of all Z, where dimo > 10 — p. In
particular, S, \ S, is the union of all Z, with dimo = 10 — p.

134



IV.7. TORUS RANK 4

The Gysin spectral sequence EP4 = HPHa(pP. Q) = HPHe(3: Q) associ-
ated with the filtration S, has E; term given by

EP? = HIM(S)\ Sp-1; Q).

Since S, \ Sp—1 is the disjoint union of the Z, with dimo = 10 — p it follows that

H(S,\ S,-1:Q) = P H:(Z:; Q).

dim o

In our situation we have considerably more information. In particular we
know that, with the exception of II3(4), all cones in both the perfect cone and
the second Voronoi decomposition, are basic. In particular all strata S, with
p < 9 are locally quotients of a smooth variety by a finite group. Moreover
T, = (C*)10-dimo and 7, = (C*)10-dime /G . The torus orbit of I1(4) is a point.
Thus we have to compute for each cone ¢ the cohomology of the torus T, with
respect to G,. Recall that H*((C*)*; Q) is the exterior algebra generated by
the k-dimensional vector space H'((C*)*; Q). Moreover, a basis of the vector
space H((C*)*; Q) can be obtained by taking the Alexander dual classes of the
fundamental classes of the components

{(ybayk)‘yzzo}, Z:].,,k

of the complement of (C*)* in C*. This means that, once the generators of
the cone o and of the group G, are known, the computation of the cohomology
of Z, reduces to a linear algebra problem, which can be solved using compu-
tational tools. In our case, the generators of the stabilizers GG, were calculated
with Magma ([BCP]) and the invariant part of the algebra A®* H((C*)¥; Q) with
Singular ([GPS]).

IV.7.3 Perfect cones

We shall now perform the programme outlined above for the perfect cone com-
pactification, which coincides with the Igusa compactification in genus 4. We
have already mentioned that a list of representatives of all cones in the perfect
cone decomposition, together with their generators, can be found in [Val, Ch. 4].
This enables us to compute the stabilizer groups G, as well as the invariant co-
homology of the torus orbits 7, = (C*)*¥ where k = 10 — dimo. The results so
obtained are listed in Table V.14, where the notation for the cones is the one of
[Val, §4]. The information on the cohomology of the strata is given in the form
of Hodge Euler characteristics, i.e. what is given is the Euler characteristic of
H?(Z,; Q) in the Grothendieck group of Hodge structures. The symbol L denotes
the class of the weight 2 Tate Hodge structure Q(—1) in the Grothendieck group.
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Table IV.14: GL(4, Z)-orbits of perfect cones

b dim X eHdg(Zg) b dim X2 eHdg(Zz)
Ks=1I,(4) 10 1 Ky+1 7 L3

I, (4) 0 1 Clzo 6 L*-L3
Ks—1 9 L Cio1 6 Li+1
Kss 9 L-1 Cogy + 1 6 L

Ky —2 8 L2 Cs + C; 6 L*
Ki—1—-1 8 I12-1L Cs 5 L-1
Ky—2-1 7 L3 - L? Cy+1 ) L5
Ca9a1 7 L3 Cs+1+1 5 L°+L
Ks—3 7 L3 1+1+1+1 4 LS

Table IV.15: E; term of the spectral sequence converging to H*(62"; Q).

q

6| 0 0 0 0 0 0  Q(—6)
50 0 0 0 0 Q=53 0
410 0 0 0 Q(-4* 0 0
310 0 0 Q-3 Q(-3) 0 0

2| 0 0 Q=22 Q(-2) 0 0 0
110 Q(=1)* Q(-1) 0 0 Q-1 0
0/1Q* Q 0 0 Q Q 0

0 1 2 3 4 5 6 p

The relationship between cohomology and cohomology with compact support is
given by Poincaré duality:

HY(Z,; Q) = Hom(H*7(Z,; Q), Q(—k)),

which holds since the Z, are finite quotients of the smooth varieties T,.

In view of the information on the cohomology of the Z, given in Table IV.14,
this yields that the E; terms of the spectral sequence EP4 = HPT4 (ﬂ}ferf; Q) are
as shown in Table IV.15.

To establish Theorem IV.7.1, we need to determine the rank of all differen-
tials in the spectral sequence. As morphisms between pure Hodge structures
of different weights are necessarily trivial, one remains with five differentials to
investigate, all of the form d?¢: EP? — EP*H We will denote them by

0,0 1,0 4,0 5,0

60: El’ — El’ 9 6(/): El’ — El’ 9
ool 2,1 2,2 3,2 . 3.3 4,3
61 . El — El 3 62 . El — El 9 63 . El — El .

Lemma IV.7.3. All the differentials dy, 0y, 61,92 and 03 have rank 1.
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Proof. Since 8* is connected, one has H°(3?*": Q) = Q. This implies that d,
has rank 1.

Next, we consider the differential Jj: Ef’o ~2Q — Ef’o =~ Q. From the
description of the strata given in Table IV.14, we have E}° = H4(Z¢,,: Q) and
E’ = H>(Ze,; Q) for the cones

Cs = (o7, 25.(x1 — 24)?, (22 — x3)°, (13 — 24)7),
CV321 = <.T%, 1‘%, .Ti, (xl - $4)2, (1’2 - 1‘3)2, (1‘3 - 1‘4)2>-

The cone Cj is contained in Csg;, hence Zg,,, is contained in the closure of
Zc,. Furthermore, the rank of ¢ must coincide with the rank of the differential
no: HYZcy,; Q) — H2(Zc,; Q) of the Gysin long exact sequence associated with
the inclusion of Zc,,, in the partial compactification Z¢, U Z¢,,, of Zc;.

If one considers the stabilizers, one observes that G¢,,, is a subgroup of G¢,.
Therefore, one can view 7y as a map from the cohomology of (C*)* to the coho-
mology of (C*)® in the following way:

Hg(Zle; Q) = Hf}((C*)“, Q)GC321
\[/70 &
HE(ZCF’; Q) - HE((C*)‘:” Q)GC5 - Hf((C*)5, Q)GC3217

where we used the fact that the Gg,,,-invariant part of H>((C*)®; Q) coincides
with the G¢,-invariant part. This new interpretation relates the map 7y to the
differential

H((C)%Q)=Q — HJ((C):Q)=Q (IV.7.2)
of the Gysin exact sequence of an inclusion (C*)* — C x (C*)?, with complement
isomorphic to (C*)®. In particular, since H*(C x (C*)*; Q) vanishes for k < 5,
the differential (IV.7.2) is an isomorphism, and the same holds for 7.

Let us consider the differential

010 By 2 HX(Ziyo1;Q) © H2(Zi, Q) — BV = H (Ziy—1-1: Q).

Note that both Zx, 1 and Zg,, are contained in the closure of Zx, -1 C ﬂfferf.
We choose to investigate the inclusion i3 3 of Zk, , in the partial compactification
Zgy,UZgs—1-1 of Zg;_1_1. Then the rank of §; cannot be smaller than the rank

of the differential

771 : HS(ZKg,g; Q) B HS(ZKg,flfl; Q)

in the Gysin long exact sequence associated with 733, even though there is no
canonical isomorphism between the kernel of n; and that of 9;.

In Vallentin’s notation, the cone K33 is given by
K3,3 = <.T%, x%a 1’%, xi? (xl - .T3)2, (1’1 - 1‘4)2, (1’2 - 1‘3)2, (xQ - .T4)2,
(1 + 29 — 13 — 14)?).
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In particular, its subcone
KS —1-1b= <.T%, 1’%, 1‘%, .Ti, (xl - 1’3)2, (1’1 - 1‘4)2, (1’2 - .T3)2, (xQ - .T4)2>

belongs to the same GL(4, Z)-orbit as K5—1—1, so that Z,_1_1, C 2 coincides
with Zk,_1-1. The stabilizer Gk, 11, of the cone K5 — 1 — 1b is generated by
—Idzs and by the two automorphisms

and
Ty — 1 Ty x3

In particular, one can check that the group Gg._1-15 is contained in the
stabilizer G, , of the cone Kj33.

Analogously to the case of 1y, we can reduce the study of n; to the study of the
long exact sequence of an inclusion C* — C x C* with complement isomorphic
to (C*)?, by exploiting the diagram

HCQ(ZK3,3; Q) == 1'—’[3(0*7 Q)GK3,3 — ]{62((3*7 Q)GK5—1—1b
fm Jm

HE(ZK5—1—1b§ Q) Hg((c*)27 Q)GK5—1711>.

Then the claim follows from the fact that the differential H*(C*; Q) = Q(—1) —
H3((C*)?% Q) in the Gysin long exact sequence associated with the inclusion
C* — C x C* has rank 1.

The proof for §, and d3 is completely analogous to that for ;. In the case
of J, one considers the inclusion of the 2-dimensional stratum Zg, o in the 3-
dimensional stratum Zg,_o_1, given by the inclusion of the cone

K5 — 2 —1b = (o}, 25, 23, (21 — 24)*, (w2 — 23)%, (22 — 7)?, (w3 — 24)*),

which lies in the same GL(4, Z)-orbit as K5 —2 — 1, in

Ks -2 = <$i 9537 x?y %21, (z1 — 374)2, (22 — $3)27 (29 — $4)27 (23 — 954)2).

In this case, the stabilizers of K5 — 2 and of K5 — 2 — 1b coincide as subgroups of
GL(4,7Z).

In the case of 93, one considers the inclusion of the 3-dimensional stratum
Ly 10 the 4-dimensional stratum Ze,,,, given by the inclusion of the cone

Cax = <$%, 9537 9537 (xl - $4)2, ($2 - 954)2, ($3 - 954)2)

in
2 .2 .2 2 2 2 2
Cazo1 = <$1, Lo, Xy, Ly, (951 - 954) ) ($2 - $4) ) ($3 - $4) >
Again, the stabilizers of Cygs and Csg91 coincide. O
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IV.7.4 Cones containing ¢

We shall now prove Theorem IV.7.2.

Proof of (1)=(2) in Theorem IV.7.2. Assume that the cohomology with com-
pact support of the exceptional divisor E of the blow-up AYr — A2 is as
stated in (1). The Gysin long exact sequence associated with the closed inclusion

E C 4 is as follows:

o HEYE;Q) ™ HE(B\ B; Q) — HE(Bi:Q) — HYE; Q) — -+ (IV.7.3)

Similarly the Gysin sequence of the pair { Pyng} C 32 reads

T Htlzcil(Psing? Q) - HZ;C( Eerf \ {Psing}§ Q) -

N Hf(@;perf; Q) _ Hf(PsingS Q) s

Since AY°" — AP*" is an isomorphism outside E, the complement 34 \ E is iso-
morphic to B\ { Pyng}. By Theorem IV.7.1 the odd cohomology with compact
support of 32" vanishes and hence H*(32" \ {Pine}; Q) = HF(B4\ E; Q) = 0
for odd k > 3. Moreover, H}( fferf \ {Ping}; Q) = H (81 \ E; Q) = 0 since Pring
is a point and ﬂ}ferf is compact (which implies that cohomology with compact
support and ordinary cohomology coincide).

Furthermore by the description of H?(F; Q) from (1) we know that all odd
cohomology of E vanishes. This ensures that all differentials dj, k& > 1 are zero.
This implies that the Betti numbers b, of 5, with £ > 1 are as stated in The-
orem IV.7.2. Also the description of the Hodge structures follows from Theo-
rem IV.7.1 and from part (1) in view of the long exact sequence (IV.7.3). Finally,
the fact that H°(3,; Q) is one-dimensional follow from the connectedness of (3.
To complete the proof, recall that (3, is compact, so that cohomology and coho-
mology with compact support agree. O

Lemma IV.7.4. For every k, the cohomology group H*(E;Q) carries a pure
Hodge structure of weight k.

Proof. To prove the claim, we consider the second Voronoi compactification
AY*(n) of the moduli space of principally polarized abelian fourfolds with a
level-n structure (n > 3). Recall that A}°"(n) is a smooth projective scheme and
that the map w(n): AY°(n) — A}Y°" is a finite group quotient. The preimage
7(n)~Y(E) of E is the union of finitely many irreducible components, all of which
are smooth and pairwise disjoint. This follows from the toric description, since
these components are themselves toric varieties given by the star Star((e)) in the
lattice Sym?*(Z*)/Ze.
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Table IV.16: GL(4, Z)-orbits of cones of dimension > 6 containing e

o dimo epge(Zs) o dimo epge(Zs)

111+ 10 1 321— 7 L3—-2L2+L
111— 10 1 222" 7 L3-1L2

211+ 9 L-—-1 229" 7 L3

211- 9 L 2224+ 7 L3

311+ 8 L?2-L 222— 7 L3

311—- 8 L2 421 6 LA-L*+L2-L
221 8 L?’-L 331+ 6 L*+1

221+ 8 L2 331- 6 L*—L3—-L+1
221— 8 L®2+L 322+ 6 L*-1L3

411 7 L3 -1L2 322— 6 L*-L3

321+ 7 L3-L?’+L-1 322 6 L*—2L3+2L2—-2L+1

In particular, this implies that the Hodge structures on the cohomology groups
of m(n)~1(E) are pure of weight equal to the degree. As w(n) is finite, the pull-
back map

() [smy-1(y: HY(E; Q) — H"(m(n)"Y(E); Q)

is injective. This implies that each cohomology group H*(FE;Q) is a Hodge
substructure of H*(w(n)"1(E); Q), thus yielding the claim. O

Proof of (1) in Theorem IV.7.2. In view of Lemma IV.7.4, determining the co-
homology of E is equivalent to computing its Hodge Euler characteristics, i.e.

enag(E) = ) (~1)'HE(E; Q)],

keZ

where [-] denotes the class in the Grothendieck group Ky(HSq) of Hodge struc-
tures. Hodge Euler characteristics are additive, so we are going to work with a
locally closed stratification of £ and add up the Hodge Euler characteristics to
get the result.

The toroidal construction of AY* yields that E is the union of toric strata
Z, for all cones o belonging to the second Voronoi decomposition but not to the
perfect cone decomposition. Note that for such o the variety Z, automatically
maps to A under the map A}y — AJ*. Furthermore, up to the action of
GL(4,Z), one can assume that these cones contain the extremal ray (e) defined
in (IV.7.1) as extremal ray.

Since cones that lie in the same GL(4, Z)-orbit give the same variety Z,, we
have to work with a list of representatives of all GL(4, Z)-orbits of cones fulfilling
our conditions. Such a list is given in [Val, §4.4.5]. As in the proof of Theo-
rem [V.14, we compute for each cone o in Vallentin’s list the generators of its
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Table IV.17: GL(4, Z)-orbits of cones of dimension < 5 containing e
b dim X eHdg(ZU)
422 5 L+L)-L*+L
332— 5 LP—-L*+L°-3L?+2L

431 5 LP—L44+ L2 —12+L-1

422 5 LP—14

332+ 5 LS —2L*+ 13 —L2+2L—1
432 4 LS — 215 + 2L* — 412 + 512 — 2L
333— 4 LS4 2L2

441 4 L6+ L2

333+ 4 LS —L°—-—L3+2L2-L

433 3 L7 — LS+ L° — L* + 4L — 412
442 3 L7+2L3-1L12

443 2 L8 +2L* — 3L3

444 1 LP-—1L14

TOT. L+ 18 +2L7 + 3L +3L° +3L* + 3L3 + 2L2 + L + 1

stabilizer G, in GL(4, Z), as well as their action on H!((C*)!*~dme. Q). Then we
use the computer algebra program Singular [GPS] to calculate all positive Betti
numbers of the quotient Z, = (C*)197dme/G - The results are given in Ta-
bles IV.16 and IV.17, where we list all cones and the Hodge Euler characteristics
of the corresponding strata of E.

As already explained, the Hodge Euler characteristic of F is the sum for
the Euler characteristics of all strata Z, and is computed at the bottom of Ta-
ble IV.17. In view of Lemma IV.7.4, and recalling that L is the notation of
the weight 2 Tate Hodge structure Q(—1) in the Grothendieck group of rational
Hodge structures, we can conclude that the Betti numbers of E agree with those
given in the statement of Theorem 1V.7.2. O

Remark IV.7.5. Note that the Betti numbers of E satisfy Poincaré duality. In-
deed, this must be the case as E is smooth up to finite group action.

IV.8 Cohomology of A3 with coefficients in sym-
plectic local systems

In this section, we recollect the information on the cohomology of local systems
on A, and Az that we used in the course of the paper. Let us recall that the
cohomology of local systems of odd weight on .4, vanishes because it is killed
by the abelian involution. Therefore, we only need to deal with local systems of
even rank.
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The cohomology of A, and A3 with constant coefficients is known. The moduli
space A, is the disjoint union of the moduli space M of genus 2 curves and the
locus Sym? A; of products. Since it is known that the rational cohomology of
both these spaces vanishes in positive degree, we have

Lemma IV.8.1. The only non-trivial rational cohomology groups with compact

support of Ay are HI(A5; Q) = Q(—2) and H2(As; Q) = Q(—1).

The rational cohomology of A3 was computed by Hain ([Ha]). We state below
his result in terms of cohomology with compact support.

Theorem IV.8.2 (Hain). The non-trivial Betti numbers with compact support
of A3 are

i[12 10 8 6

b 1 1 1 2

Furthermore, all cohomology groups are algebraic with the exception of HS(As; Q),
which is an extension of Q(—3) by Q.

We deduce the results we need on non-trivial symplectic local systems with
weight < 2 from results on moduli spaces of curves ([BT],[T3]). Note that the
result for Vi ; was already proven in [HT, Lemma 3.1].

Lemma IV.8.3. The cohomology groups with compact support of the weight 2
symplectic local systems on My are as follows: the cohomology of Voo vanishes
i all degrees, whereas the only non-zero cohomology group with compact support
of Vi1 is H3(Mo; Vi) = Q.

Lemma IV.8.4. The rational cohomology of Mg with coefficients in Vi and
Vo0 s 0 in all degrees. The only non-trivial cohomology group with compact

support of M3 with coefficients in V1 is H?(Msz; Vi10) = Q(-5).

Proof of Lemma 1V.8.4. Following the approach of [G2|, we use the forgetful
maps p;: Mgz — Mgz and py: Mz — Ms to obtain information. Note that p;
is the universal curve over M3 and that the fibre of py is the configuration space
of 2 distinct points on a genus 3 curve.

According to [BT, Cor. 1], there is an isomorphism H*(M31; Q) = H*(Mj3; Q)®
H*(P!; Q) as vector spaces with mixed Hodge structures. If we compare this with
the Leray spectral sequence in cohomology associated with p;, we get that the
cohomology of M3 with coefficients in Vg must vanish.

Next, we analyze the Leray spectral sequence in cohomology associated with
po. Taking the Gy-action into account, the cohomology of the fibre of py induces
the following local systems on Msj:
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local system: local system:
deg. | invariant part | alternating part
0 Q 0
1 Vio0 Vio0
2 Q(—=1)® Vi1 | Q(—1) ® Vaop

This implies that the cohomology of M3 with coefficients in Va0 (respec-
tively, in V1) is strictly related to the Ga-alternating (resp. Gy-invariant) part
of the cohomology of M3 5. The rational cohomology of M3 5 is described with its
mixed Hodge structures and the action of the symmetric group in [T3, Thm 1.1].
By comparing this with the Fs-term of the Leray spectral sequence associated
with pe, one obtains that the cohomology of V5o vanishes and that the only
non-trivial cohomology group of Vg is H3(Ms3;Vi10) = Q(—3). Then the
claim follows from Poincaré duality. O

Proof of Lemma IV.8.3. The proof is analogous to that of Lemma IV.8.4. In
this case, one needs to compare the Leray spectral sequence associated with
pa i Moo — Moy with the cohomology of Msy computed in [T2, I1,2.2]. Note
that in this case the cohomology of Vi, vanishes because it is killed by the
hyperelliptic involution on the universal curve over M. O

Next, we compute the cohomology of the weight 2 local systems on A, and
Az we are interested in, by using Gysin long exact sequences in cohomology
with compact support and the stratification Ay = 75(My) U Sym® A; of A,
respectively, the stratification Az = 73(M3)UTe(My) x Ay USym® A, of A3. The
result on the cohomology with compact support of V;; was already proved in
[HT, Lemma 3.1].

Lemma IV.8.5. The only non-trivial cohomology groups of Ay with coefficients
in a local system of weight 2 are H>(As; Vi) = Q and H3(Az; Vo) = Q(—1).

Proof. Using branching formulae as in [BvdG, §§7-8|, one proves that the re-
striction of Vy to Sym? A, C A, coincides with the symmetrization of Vy x V|
on A; x A;. Its cohomology with compact support is then Q(—1) in degree 3
and trivial in all other degrees by e.g. [G1, Thm. 5.3]. Analogously, one shows
that the cohomology of Sym?*.4; with coefficients in the restriction of the local
system V1 ; is trivial. Then the claim follows from the Gysin long exact sequence
associated with the inclusion Sym? A, C As,. O

Lemma IV.8.6. The cohomology with compact support of As in the local system
V10 15 non-trivial only in degree 5 and possibly in degrees 8 and 9 and is given in
these degrees by H2(Asz; Vi) = Q(—1) and H}(As; Vi) = H)(A3; Vi) =
Q(—4)%c with € € {0,1}.
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Proof. Branching formulae yield that the cohomology with compact support of
the restriction of Vi1 to 72(My) X A; is equal to Q(—5) (coming from the local
system Vi3 ® Vi on My x A;) in degree 8, to Q(—1) in degree 5 (coming from
the local system Vo ® Vg(—1)) and is trivial in all other degrees. Moreover, the
restriction of V1o to Sym?® A; is trivial, as is easy to prove if one looks at the
cohomology of the restriction of the universal abelian variety over As to Sym?® A;.
It remains to consider the Gysin long exact sequence associated with the closed
inclusion A¥? C Ajz. The only differential which can possibly be non-trivial is

Q(—5) = HE(A?C‘; V1,1,0) —_— HS(M:s; V1,1,0) = Q(_5)'

From this the claim follows. O

In the investigation of the cohomology with compact support of the locus 39 of
semi-abelic varieties of torus rank 2 we also need to consider the cohomology with
compact support of the weight 4 local system V35 on As. For our application,
we do not need a complete result in this case. The following lemma suffices:

Lemma IV.8.7. The cohomology with compact support of Ay with coefficients
in the local system Va4 is 0 in all degrees different from 3,4. Furthermore, for
every weight k there is an isomorphism

Gy (H(Ag; Vo)) = Gryl (H; (As; Vo))
between the graded pieces of the weight filtration.

Proof. First, we prove that the result holds in the Grothendieck group of ra-
tional Hodge structures. This requires to prove that the Euler characteristic of
H?(As; Vi) in the Grothendieck group of rational Hodge structures vanishes.
By branching formulae, the cohomology with compact support of the restriction
of Vy5 to Sym? A is equal to the cohomology of the local system Vo ® Vo(—2),
which is equal to Q(—4) in degree 4 and trivial otherwise. On the other hand,
the Euler characteristic of H?(Ay; Va2) was proved in [Ber, Theorem 11.6] to be
equal to —[Q(—4)]. Then the additivity of Euler characteristics ensures that the
Euler characteristic of V5 vanishes. This means that the Euler characteristic of
each graded piece of the weight filtration on H?(Asg; Vo) is 0.

More generally, the fact that M, and Sym?®A; are affine of dimension 3
and 2 respectively, combined with the Gysin long exact sequence associated to
Sym? A; — A, implies that the cohomology of A, with values in any local system
is trivial in degree greater than 3. Thus, by Poincaré duality, the cohomology
with compact support of As can be non-trivial only in degree larger than or equal
to 3. Furthermore, for non-trivial irreducible local systems H° (and hence H?)
vanishes, whereas H! (and hence H?) is always zero by the Raghunathan rigidity
theorem [R]. This means that the cohomology with compact support of Vy5 on
As can be non-zero only in degrees 3 and 4. The cohomology groups in these
degrees are then isomorphic when passing to the associated graded pieces of the
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weight filtration as a consequence of the vanishing of the Euler characteristic in
the Grothendieck group of Hodge structures. O
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