
An Architectural Framework for

Self-configuration and Self-improvement at Runtime

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

genehmigte Dissertation

von M.Sc. Sven Tomforde

geboren am 17. Dezember 1978 in Buchholz i.d. Nordheide

2011

1. Referent: Prof. Dr.-Ing. Christian Müller-Schloer
2. Referent: Prof. Dr. Pedro José Marrón
Tag der Promotion: 23.09.2011

“42” – Douglas Adams

i

Zusammenfassung

Schlagworte: Organic Computing, Framework, Selbstverbesserung, Selbstkonfiguration,

sicherheitsorientiertes Lernen, Machinelles Lernen, Verkehrssteuerung, Netzwerkprotokoll,

Learning Classifier Systeme

Stellen Sie sich eine Welt vor, in der Fahrzeuge ohne einen menschlichen Fahrer zu

benötigen autonom fahren können, in der Kühlschränke für die Versorgung mit Lebensmit-

teln des täglichen Bedarfs verantwortlich sind, in der sich Produktionspläne automatisch

an sich ändernde Bedürfnisse anpassen können bevor überhaupt eine Änderung des Bedarf

beobachtet wird oder in der ein Team von Fußballrobotern die menschliche Weltmeister-

mannschaft besiegen kann. Dies wäre eine Welt, in der auf der einen Seite technische Geräte

wirklich den Nutzern dienen, indem sie sich kontinuierlich an sich ändernde Gegebenheiten

anpassen. Auf der anderen Seite wären diese Geräte auf eine bestimmte Art auch ein

emanzipierter Teil unserer Gesellschaft.

Einige dieser aufgeführten Ideen sind inzwischen näher an der Marktreife angelangt als

man sich vielleicht vorstellt. Beispielsweise betreibt Google bereits jetzt autonome Fahrzeuge

im regulären Straßenverkehr, Kühlschränke können bereits von außerhalb überwacht werden

und Produktionspläne passen sich zumindest an die aktuellen Gegebenheiten an. Basis all

dieser technischen Systeme – sowohl der existierenden als auch der aufkommenden neuen

– ist einerseits eine geeignete Sensortechnologie, um die aktuelle Situation wahrnehmen zu

können, und andererseits eine Adaptionslogik, die in der Lage ist, auf die wahrgenommenen

Stimuli angemessen zu reagieren.

Dieser Aspekt der Adaption ist das Hauptthema dieser Arbeit. Klassischerweise lässt sich

Forschung in Industrie und Wissenschaft entlang von zwei Richtungen einordnen: Entweder

wird versucht, das Potential und die Fähigkeiten existierender Systeme weiterzuentwickeln,

oder es wird versucht, neue Visionen zu etablieren und Prototypen für diese aufzubauen.

Eine mindestens ebenso herausfordernde Richtung ist es, beide Optionen zu kombinieren.

Warum sollten wir darauf warten, dass neue adaptive Lösungen marktreif sind und sich

im täglichen Bedarf durchsetzen? Stattdessen ist es doch wesentlich vielversprechender,

aufkommende Visionen und neue Paradigmen in der Entwicklung von technischen Syste-

men mit existierendem Wissen und etablierten Lösungen zu kombinieren. Ein Weg, dieses

umzusetzen, wird im Rahmen dieser Arbeit beschrieben.

Daher präsentiert diese Arbeit einen grundlegenden Entwurf für Systeme sowie das

darauf aufbauende Framework, anhand dessen Eigenschaften wie Selbstkonfiguration und

Selbstverbesserung für parametrisierbare technische Systeme zur Laufzeit ermöglicht wer-

den. Ein erwartetes Ergebnis durch die Anwendung des Frameworks auf existierende Sys-

teme ist die Herbeiführung gewünschter Eigenschaften wie Adaptivität und Robustheit.

Aufbauend auf dem generellen Systementwurf werden im Rahmen dieser Arbeit Möglichkei-

ten zur Anwendung maschineller Lerntechniken in Echtweltsystemen untersucht. Dazu wer-

ii

den zwei neue Varianten von Learning Classifier Systemen und Fuzzy Classifier Systemen

entwickelt. Diese beiden modifizierten Ansätze werden in das Framework integriert und

stellen dabei einen wichtigen Mechanismus zur Realisierung der Selbstverbesserungseigen-

schaften dar.

Die wissenschaftlichen Erkenntnisse dieser Arbeit werden im Folgenden benannt. Ein-

gangs wird das bereits angesprochene Framework entwickelt und vorgestellt. Dieses Frame-

work ist in der Lage, den Selbstkonfigurationsprozess im laufenden Betrieb autonom zu

verbessern, indem Techniken des maschinellen Lernens eingesetzt werden. Daraufhin wird

das spezifische Lernproblem, das von einem Teil des Frameworks definiert wird, klassifiziert.

Aufbauend darauf wird nach passenden Techniken zu Lösung dieser Problematik gesucht.

Dazu werden dann die bereits benannten Varianten existierender maschineller Lernverfahren

entwickelt und vorgestellt. Weiterhin stellt diese Arbeit wesentliche neue Verfahren für

zwei weitere Forschungsgebiete vor, wobei beide Ansätze auf dem entwickelten Framework

beruhen. Im Bereich der Straßenverkehrsforschung wird ein System eingeführt, das die

Freigabezeiten an innerstädtischen Ampelanlagen automatisch an sich ändernde Verkehrssi-

tuationen anpasst. Das gleiche Framework dient dann im Bereich der Datenkommunikation

dazu, ein System zu entwickeln, das die Protokollkonfigurationen von Datenkommunika-

tionsprotokollen dynamisch und zur Laufzeit an beobachtete Situationen in der Umgebung

des Knotens anpassen kann. Abschließend wird ein abstrahiertes Modell zur Klassifizierung

von Echtweltsystemen eingeführt, anhand dessen die Menge an Systemen identifiziert wer-

den kann, für die das Framework einsetzbar ist.

Untersuchungen haben gezeigt, dass technische Systeme, die über das zusätzliche Frame-

work verfügen, eine erheblich bessere Systemleistung erzielen können, wie herkömmliche Sys-

teme. Als Beispiel dienen die beiden exemplarisch untersuchten Hauptanwendungen dieser

Arbeit: Einerseits kann die verfügbare Kommunikationskapazität in mobilen ad-hoc Netz-

werken um etwa 6 % erhöht werden, während andererseits die auftretenden Verlustzeiten von

Fahrzeugen in städtischen Verkehrsnetzen um signifikante 16 % reduziert werden können –

jeweils in Abhängigkeit von den untersuchten Szenarien. Weiterhin zeigen die Ergebnisse

der ebenfalls durchgeführten generalisierten Untersuchung, dass das Framework in der Lage

ist, seiner Zielsetzung auch unter Einflüssen wie Störungen und verrauschten Sensordaten

nachzukommen.

iii

Abstract

Keywords: Organic Computing, Framework, self-improvement, self-configuration, safety-

oriented learning, machine learning, traffic control, network protocols, learning classifier

systems

Imagine a world where cars drive autonomously without the need for a driver, fridges are

responsible for keeping the needed amount of food, work schedules re-organise themselves

automatically considering the correct priorities, production systems change their production

schedule before the observed demands change or even shortages occur, or a soccer team

consisting of robots beats the (human) world champion team. This would be a world where,

on the one hand, technical devices really serve their users by adapting continuously to

changing conditions and demands, and, on the other hand, become a somehow emancipated

part of the world.

Some of these ideas are closer to market maturity as one might assume. For instance,

Google already operates autonomous cars, fridges can be supervised remotely already, smart

homes are on the way to become a part of reality, and production systems adapt at least

to current conditions. Basis of all these technical systems – both, existing and upcoming

ones – is (a) an appropriate sensor technology capable of detecting the situation and (b) an

adaptation logic capable of appropriately reacting on these stimuli.

This adaptation aspect is the major topic of this thesis. Typically, research by industry

and science can be categorised among two main research directions: increase the potential

and the abilities of existing systems or establish new visions and develop prototypes. But

an equally challenging direction is to make way for a cooperation of both approaches. Why

should we wait until new adaptive solutions will be well-engineered and well-established?

A better concept is to somehow combine upcoming visions and new paradigms of system

design with existing technical knowledge and solutions. This somehow is the common theme

of this thesis.

Therefore, this thesis presents the system design and the corresponding framework to

enable capabilities like self-configuration and self-improvement for parametrisable systems at

runtime. As a result of these capabilities, systems equipped with the framework as additional

control mechanism are characterised by aspects like adaptivity and robustness. Besides the

general system design, the thesis investigates the possibility of applying machine learning

techniques to real-world applications – two novel variants of Learning Classifier Systems

and Fuzzy Classifier Systems are developed. These modified machine learning techniques

are integrated into the framework. Thereby, they take over the responsibility of the self-

improvement tasks.

The contribution to scientific knowledge presented in this thesis is given as follows. Ini-

tially, the architectural framework is developed. This framework is capable of self-improving

the reconfiguration behaviour autonomously by making use of machine learning techniques.

iv

In addition, this thesis characterises the specific learning problem and investigates which

techniques are applicable. Additionally, modified variants for the most promising tech-

niques are developed to cover the restrictions and requirements of real-world systems and

their safety-demands. Furthermore, the thesis presents two contributions to the state of the

art in traffic control systems and data communication – both based on the general design. In

traffic control, a novel decentralised system to adapt traffic control strategies at urban inter-

sections according to changes in the traffic conditions is presented. The same system design

applied to data communication results in a locally-organised system to reconfigure network

protocol parameter sets as response to observed situations. Finally, the thesis introduces a

generalised model to classify real-world systems that are controllable by the framework.

Analytical considerations of the evaluation results demonstrate the benefit of applying

the developed framework to the control of technical systems. For instance, the available

communication bandwidth in mobile ad-hoc networks can be increased by about 6 %, while

the delays of vehicles in urban road networks can be dramatically decreased by up to 16 %

depending on the investigated scenario. In addition, the results of the generalised investi-

gation show that the framework is able to fulfil its task even under challenging conditions

such as noise and disturbances.

v

List of Abbreviations

3LA Three-layered Architecture

AAA Adaptive Agent Architecture

AC Autonomic Computing

ACT Agreed Cycle Time

ADRA Adaptive Distributed Resource Allocation Scheme

AE Autonomous Element

AID Automated Incident Detection

ALARM Adaptive Location Aided Routing from Mines

AM Autonomic Manager

ANN Artificial Neural Network

AOC Autonomy Oriented Computing

AP Averaged Performance

AS Acceptance Space

BDI Belief-Desire-Intention

CA California Algorithm

CM Control Mechanism

CS Configuration Space

COUGAAR Cognitive Agent Architecture

DARPA Defense Advanced Research Projects Agency

DCT Desired Cycle Time

DE Differential Evolution

DNF Disjunctive Normal Form

DPSS Decentralised Progressive Signal System

DS Dead Space

DVR Distance Vector Routing

EA Evolutionary Algorithm

FCD Floating Car Data

FCS Fuzzy Classifier System

FIFA Federation Internationale de Football Association

FSM Finite State Machine

FTC Fixed-time Controller

GA Genetic Algorithm

GPS Global Positioning System

HM Harmony Memory

HMCR Harmony Memory Consideration Rate

HPSS Hierarchical Progressive Signal System

HS Harmony Search

IP Internet Protocol

vi

IT Information Technology

ITS Intelligent Transportation System

J2EE JAVA 2 Enterprise Edition

LCS Learning Classifier System

LOS Level of Service

LSR Link State Routing

MAC Media Access Control

MANet Mobile Ad-hoc Network

MAPE Monitor-Analyse-Plan-Execute

MARVIN MANet Relative Velocity Indicator

MAS Multi-Agent System

MASON Multi-Agent Simulator of Neighbourhoods

ML Machine Learning

MPC Model Predictive Control

MR Managed Resource

NACK Not Achknowledged

NC Number of Evaluation Function Calls

NEMA National Electrical Manufacturers Association

NTP Network Time Protocol

OAA Open Agent Architecture

OC Organic Computing

OCOM Organic Computing in Off-highway Machines

ONC Organic Network Control

OSOA Organic Service-oriented Architecture

OTC Organic Traffic Control

P2P Peer-to-Peer

PC Personal Computer

PID Proportional-Integral-Derivative

PSO Particle Swarm Optimisation

PSS Progressive Signal System

R-BCAST Reliable Broadcast

Rand Random

Repast Recursive Porous Agent Simulation Toolkit

RL Reinforcement Learning

RM Regional Manager

S System

SA Simulated Annealing

SCATS Sydney Coordinated Adaptive Traffic System

SCOOT Split, Cycle and Offset Optimisation Technique

vii

SL Supervised Learning

SLA Service Level Agreement

SOA Service-oriented Architecture

SOTL Self-organising Traffic Lights

SPA Sense-Plan-Act

SR Success Rate

SS Survival Space

SuOC System under Observation and Control

TCP Transmission Control Protocol

TD Temporal Difference (Learning)

TLC Traffic Light Controller

TMC Traffic Message Channel

TS Target Space

TTL Time to Live

TUC Traffic-responsive Urban Control

UDP User Datagram Protocol

UTC-NG Next Generation Urban Traffic Control

VMM Variable Message Sign

VSM Viable System Model

WSN Wireless Sensor Network

XCS Extended Classifier System

viii

Contents

Zusammenfassung i

Abstract iii

List of Abbreviations v

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Scientific Focus and Contribution . 6

1.4 Outline . 7

1.5 How to Read this Thesis . 7

2 State of the Art 9

2.1 Classification of Requirements . 10

2.2 Organic Computing . 12

2.2.1 The Observer/Controller Design Pattern 13

2.2.2 Design Variants of the Observer/Controller Design Pattern 16

2.2.3 Application of the Observer/Controller Concept 17

2.2.4 Characterisation of the Observer/Controller Design Pattern 19

2.3 Related Architectural Approaches . 20

2.3.1 Control Theory . 21

2.3.2 Adaptive Architectures for Robotics 24

2.3.3 Multi-Agent Systems and Adaptive Agents 27

2.3.4 Autonomic Computing . 31

2.3.5 Further Architectural Approaches . 35

2.4 Summary . 37

ix

x CONTENTS

3 System Design 39

3.1 Target Definition . 40

3.2 Scope of the System . 42

3.3 System Architecture . 44

3.3.1 Layer 0: System under Observation and Control 46

3.3.2 Layer 1: On-line Adaptation . 48

3.3.3 Layer 2: Off-line Learning . 52

3.3.4 Layer 3: Regional Cooperation . 54

3.4 Discussion of Requirements . 57

3.5 Summary . 58

4 Design Choices 61

4.1 On-line Adaptation Using Machine Learning 62

4.1.1 Term Definition: Machine Learning . 62

4.1.2 Characteristics of the Learning Problem 63

4.1.3 Machine Learning Techniques for Layer 1 65

4.1.4 A Modified Real-valued Learning Classifier System 68

4.1.5 A Modified Real-valued Fuzzy Classifier System 74

4.1.6 Comparison of Learning Techniques 77

4.1.7 Summary: Automated Learning . 80

4.2 Off-line Optimisation Component . 81

4.2.1 Term Definition: Optimisation Problem 82

4.2.2 Overview: Optimisation Heuristics . 83

4.2.3 Comparison of Optimisation Heuristics 86

4.2.4 Summary: Optimisation Heuristics . 91

4.3 Design Recommendation . 93

5 Structure of the Evaluation 95

6 Organic Traffic Control 97

6.1 Problem Description . 99

6.2 Related Work . 101

6.2.1 Centralised Systems for Traffic Control 101

6.2.2 Self-organising Approaches in Traffic Control 103

6.3 Application of the Generic Architecture . 106

6.4 Collaboration Mechanisms . 110

6.4.1 Decentralised Progressive Signal Systems 111

6.4.2 Hierarchical Progressive Signal Systems 117

6.4.3 Further Collaboration Mechanisms . 120

6.5 Evaluation . 124

6.5.1 An Inner-city Area at Hamburg, Germany 125

CONTENTS xi

6.5.2 The Stadium Area at Hannover, Germany 130

6.5.3 A Manhattan-type Test Network . 133

6.6 Summary for the Organic Traffic Control System 137

7 Organic Network Control 139

7.1 Problem Description . 140

7.2 Related Work . 141

7.2.1 Determine Protocol Parameter Configurations 141

7.2.2 Automatic Protocol Adaptation . 142

7.3 Application of the Generic Architecture . 146

7.3.1 Broadcast Algorithms in Mobile Ad-hoc Networks 146

7.3.2 Mode-selection Protocols in Wireless Sensor Networks 155

7.3.3 Peer-to-Peer Networks . 166

7.4 Collaboration in ONC . 174

7.4.1 Dynamic Load Balancing and Knowledge Sharing for ONC 175

7.4.2 Evaluation of the Collaboration Mechanism 176

7.5 Summary for the Organic Network Control System 178

8 Generalisation and Discussion 181

8.1 An Organic Production System . 182

8.2 An Error Prediction System for Mainframes 183

8.3 Abstraction of the Learning Problem . 183

8.3.1 Problem Description . 183

8.3.2 Application of the Generic Architecture 184

8.3.3 Evaluation . 188

8.3.4 Application of the Developed Classification 194

8.4 Discussion . 197

9 Conclusion 199

References 203

Appendix 235

xii CONTENTS

List of Figures

1.1 Design gap . 2

1.2 Classification of the system’s degree of freedom and the corresponding domain

knowledge . 3

2.1 Basic concept of the Observer/Controller architecture 13

2.2 Generic Observer/Controller design pattern 14

2.3 Design variants of the generic Observer/Controller design pattern 16

2.4 Detailed view of the control loop . 21

2.5 Open and closed loops in control theory . 21

2.6 The Sense-Plan-Act paradigm . 25

2.7 Brook’s subsumption architecture . 25

2.8 The Belief-Desire-Intention design model . 28

2.9 The MAPE cycle . 32

2.10 Multi-levelled learning . 36

2.11 The Anytime Learning concept . 36

3.1 Controlled system and control mechanism . 40

3.2 System architecture (single node) . 44

3.3 Network-wide view of the architecture . 46

3.4 A first control loop defined by Layers 0 and 1 48

3.5 Detailed view of Layer 1’s observer . 49

3.6 Detailed view of Layer 1’s controller . 51

4.1 Schematic overview of an XCS according to Wilson 69

4.2 Modified covering mechanism . 73

4.3 Fuzzy Sets and memberships . 75

4.4 Concept of a Fuzzy Classifier System according to Casillas et al. 76

4.5 Test scenario for the on-line learning comparison: downloads and available

bandwidth . 78

xiii

xiv LIST OF FIGURES

4.6 Comparison of LCS and FCS controlling a BitTorrent client 79

4.7 Comparison of LCS, FCS, and ANN with increasing knowledge 80

4.8 Exemplary optimisation scenario (scenario 4) 87

4.9 Averaged performance after 83 calls of the evaluation function 89

4.10 Averaged performance after 500 calls of the evaluation function 89

4.11 Averaged calls of the evaluation function to find successful candidates 91

4.12 Success rate after 83 calls of the evaluation function 92

4.13 Success rate after 500 calls of the evaluation function 92

6.1 Traffic demand of an arterial road at Karlsruhe, Germany 98

6.2 Design of the OTC system . 106

6.3 An examplary intersection with turnings and detectors 107

6.4 Exemplary intersection with signal groups . 109

6.5 Corresponding signal schedule . 110

6.6 Traffic flows in a Manhattan-type network . 117

6.7 Steps performed by the Regional Manager . 119

6.8 Investigated road network located at Hamburg, Germany 125

6.9 Traffic demand in number of vehicles passing the intersection 126

6.10 Averaged delay for three consecutive days in the Hamburg scenario 127

6.11 Number of stops per vehicle in the Hamburg scenario 127

6.12 Fuel consumption in the Hamburg scenario 128

6.13 Development of the created classifiers in the Hamburg scenario 129

6.14 Adaptations of the SuOC performed by Layer 1 in the Hamburg scenario . . 130

6.15 Averaged delays per vehicle in the simulation of the stadium area located at

Hannover, Germany . 131

6.16 Averaged number of stops per vehicle in the simulation of the stadium area

located at Hannover, Germany . 132

6.17 Averaged fuel consumption in the simulation of the stadium area located at

Hannover, Germany . 133

6.18 Simulation model and signal phases for an artificial Manhattan-type network 134

6.19 Network-wide travel times for the Manhattan-scenario 135

6.20 Network-wide number of stops for the Manhattan-scenario 135

7.1 Environment representation for MANet protocols 148

7.2 Delivery ratio of broadcast messages . 152

7.3 Overhead caused by the broadcast protocol 153

7.4 Number of messages received by the node under ONC-control 153

7.5 Number of messages sent by the node under ONC-control 153

7.6 Development of the population size at Layer 1 and the performed Layer 2

tasks during the simulation period . 155

LIST OF FIGURES xv

7.7 Encoding of the situation for ONC-controlled mode-selection protocols 158

7.8 Adapted architecture of ONC for the application in WSNs 160

7.9 Comparison of uncontrolled and ONC-controlled system performance in a

static scenario . 163

7.10 Achieved performance in the static ADRA scenario 164

7.11 Comparison of uncontrolled and ONC-controlled system performance in the

second ADRA scenario with dynamic events 165

7.12 Comparison of the resulting fitness value for uncontrolled and ONC-controlled

system performance in the second ADRA scenario with dynamic events . . . 166

7.13 Comparison of uncontrolled and ONC-controlled system performance in the

third ADRA scenario with dynamic events and random node-failures 167

7.14 Comparison of the resulting fitness value for uncontrolled and ONC-controlled

system performance in the third ADRA scenario with dynamic events and

random node-failures . 168

7.15 Assumed usage-profile of bandwidth during one day for the BitTorrent scenario172

7.16 Resulting download performance due to ONC control of the BitTorrent protocol173

7.17 Aggregated channel utilisation for all three simulated days in the BitTorrent

scenario . 173

7.18 Evaluation of the Collaboration Mechanism in ONC 177

8.1 Modified architecture for the generalised model 184

8.2 Modifications at Layer 0 . 187

8.3 Comparison of the system performance caused by all three random walker

models . 189

8.4 Comparison of the system performance taking all four different types of func-

tions into account . 190

8.5 Impact of noise on the system’s performance 191

8.6 Comparison of the achieved performance for the standard LCS-based system

and a SimpleSelector-based alternative . 192

8.7 Impact of disturbances on the system’s performance 193

8.8 Three-dimensional plot of the mapping between situations, actions, and cor-

responding evaluation values in the OTC example 196

xvi LIST OF FIGURES

List of Tables

2.1 Classification of the state of the art . 38

6.1 Simulated traffic demands in the investigated Manhattan-type network 134

6.2 Reduction of travel times and stops compared to uncoordinated operation in

the Manhattan-type network . 136

6.3 Assignment of OTC parts to project work and author’s own work 138

7.1 Variable parameters of the R-BCast protocol 147

7.2 Variable protocol parameters of the ADRA-scheme 157

7.3 Variable parameters of the BitTorrent protocol 169

8.1 Assumed traffic example for the intersection of Figure 6.3 195

8.2 Assumed phase duration for the example of Table 8.1 195

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

During the last decade, research departments of academia and several well-known companies

worldwide investigated possibilities to develop new design paradigms for systems that are

required to perform high-level management and control tasks in complex dynamic environ-

ments (e.g. IBM’s Autonomic Computing [1]). Examples for the targeted systems include

the management and control of vehicular and air traffic systems [2], data communication

and telecommunication networks [3, 4], business and production processes, unmanned aerial

vehicles [5], or health services [1]. Most of the effort has been driven by the insight that

monolithic, static solutions – which make up for the main part of today’s developments

– are not able to cope with the upcoming demands [6]. Thereby, new and adaptive so-

lutions will become of increasing commercial importance. This insight is accompanied by

disappointing experiences in applying conventional design methodologies and techniques to

the development of such novel adaptive systems. As a consequence, this insight made way

for researchers to focus on a paradigm shift: away from perfectly preplanned monolithic

solutions and towards self-organised, distributed, and autonomous entities (cf. [7]).

The high effort allocated for research on new fundamental concepts for self-organised

systems is accompanied by current trends. As one popular example, each human of (at least

the western) world is equipped with an ever growing number of devices such as handhelds,

smart phones, laptops, or music players. Furthermore, these devices are characterised by an

increase in their computational power – each of them is as powerful as a standard workstation

PC just a few years back in time. Considering just the smart phones – who would have

1

2 CHAPTER 1. INTRODUCTION

envisioned that mobile telephones are as small and powerful as they are today only ten

years ago? Apart from the basic telecommunication functionality, today’s devices are able

to perform computer games, applications (e.g. text processing), and handle movie files highly

efficiently. They can be used to take part in multi-player games and can be connected to

diverse systems via technologies like Bluetooth or WiFi.

Besides the advantages of these technical comforts, some drawbacks can be observed as

well. Years ago, nobody would have thought about malfunctions of technical devices due

to mutual influences. Nowadays, interconnectedness between devices is not the exceptional

case – instead, it is nearly standard. Even if a device is not designed to interact with

others, it is subject to their actions in terms of messages, interferences, or just emission and

radiation. One aspect of these growing environmental influences is that their impact has to

be covered within the design of the system – which leads to more complex solutions that

are prone to failures due to this complexity. The manageability of interconnected systems

decreases, as users and administrators are just not able to understand and monitor every

single aspect of the system. In addition, it is impossible to anticipate all possible situations

that a system will be exposed to during its life-time – nobody knows which new trends

might appear within the next years or even months [1]. Furthermore, it is hardly possible to

explicitly specify the entire behaviour of a complex system on a detailed level, since complex

is just meant as another word for describing the exorbitant set of theoretically occurring

situations and corresponding configurations. From another viewpoint, these systems also

become too massive and confusing to be administrable [1]. As one example to underline

this observation, Ganek and Corbi stated that 40 % of today’s computer system outages are

caused by complexity-induced operator errors [8].

„OC“ systemscurrent systems

time

today

gap

Figure 1.1: Design gap

As a consequence, research initiatives

like Organic Computing (OC, [9]), Auto-

nomic Computing [1], or Proactive Com-

puting [10] emerged and proposed to dis-

tribute computational intelligence among

several (autonomous) entities, since mono-

lithic solutions will not be feasible anymore.

The vision behind all of these initiatives is

mainly based on designing systems that are

characterised by aspects like local respon-

sibility, self-organisation, robustness, adap-

tivity, and capability of learning ; they differ in the application domain, the degree of the

autonomy, and the way to achieve the desired behaviour of the favoured systems. But, to

some extent, the previously formulated ideas can be observed among all of them.

Considering the responsibilities of these targeted systems and the mentioned key-characte-

ristics, one fundamental aspect is that they will only achieve the desired behaviour, if they

are able to adapt themselves and their behaviour to changing environmental conditions.

1.2. PROBLEM STATEMENT 3

This is accompanied by the needed ability to perceive such changes in the first place, and

simultaneously control and continuously improve their own behaviour. As a consequence,

adaptivity and self-improvement have to define the foundation of such systems. Assuming

that it will take time for industry and science to develop satisfying solutions that cover all

necessary aspects, a design-gap can be identified. Today’s systems reach their limits and

the desired solutions are not available. Figure 1.1 illustrates this gap. This thesis intervenes

at exactly this gap. The basic assumption is that the existing OC principles can already

be applied to real-world systems in order to evoke the desired effects. Besides closing the

gap, it can be desirable to enable OC characteristics after finishing the design process in

order to unburden the designer from one part of the design task. Consequently, the question

arises how existing systems can be augmented with the desired behaviour. A combination

of existing technologies and the advantages of OC’s basic principles like adaptivity and

self-improvement is needed.

1.2 Problem Statement

“It is not the question whether adaptive and self-organised systems will emerge, but how

they will be designed and controlled.”

- Prof. Dr. Hartmut Schmeck, Karlsruhe Institute of Technology [7]

F
u

ll
k
n

o
w

le
d

g
e

a
b
o
u
t

a
p

p
lic

a
ti
o

n

H
ig

h
 k

n
o
w

le
d

g
e

a
b
o
u
t

a
p

p
lic

a
ti
o

n

L
im

it
e

d
 d

o
m

a
in

k
n

o
w

le
d

g
e

N
o

d
o

m
a
in

k
n

o
w

le
d

g
e

N
o

n
-p

a
ra

m
e

tr
is

a
b

le
m

o
n

o
lit

h
ic

s
y
s
te

m

S
y
s
te

m
 w

it
h

s
ta

ti
c

p
a

ra
m

e
te

r
s
e

tt
in

g
s

R
e

s
tr

ic
te

d
le

a
rn

in
g

w
it
h

s
a

n
d

b
o

x
in

g

A
b

s
o

lu
te

 f
re

e
d

o
m

Domain
knowledge

Degree of
freedom

Figure 1.2: Classification of the system’s de-
gree of freedom and the corresponding domain
knowledge

This thesis presents a mechanism to

close the considered design gap by in-

troducing an architectural framework for

parametrisable systems. This architecture

allows for a self-configuration of the sys-

tem. It consists of a control mechanism and

a parametrisable productive system. This

results in an improvement of the adapta-

tion strategy over time without having any

insight into the system’s logic or domain

knowledge. Although the presented ap-

proach transfers a certain degree of freedom

from the designer to the system itself, this

degree of freedom is not unbounded. Fig-

ure 1.2 illustrates the possible range. Non-

parametrisable systems have a static character and a high degree of integrated domain

knowledge – provided by the developer at design time. Parametrisable systems have a

slightly higher degree of freedom, since they can be customised to specific environments. In

4 CHAPTER 1. INTRODUCTION

contrast, systems where the output is obtained by using techniques like Evolutionary Pro-

gramming have a high degree of freedom, but limited domain knowledge – the evolutionary

process needs a feedback about the quality of its found solution in order to perform a guided

search, but it decides independently of the underlying problem about its next action. The

targeted system constitutes an in-between solution by extending the system’s freedom to

a certain degree – the developer has to provide some domain knowledge, but the system

decides about its actions (here: its configuration) at runtime within given boundaries.

This corresponds to the paradigm shift supported by the OC initiative. Traditional

system design follows a top-down path from the system level to the lower implementation

levels, while OC wants to move at least a subset of design time decisions to runtime [11].

In today’s systems, all future situations affecting the system have to be anticipated and

covered at design time. Obviously, this is hardly possible in cases of highly dynamic and

non-deterministic environments typically characterising real-world systems. Increasing the

system’s degree of freedom by moving a set of configuration decisions to the runtime and

hence into the system’s own area of responsibility should be accompanied by another ef-

fect: increasing the robustness in terms of a larger range of acceptable disturbances. This

paradigm shift has some fundamental consequences on the design process of such systems:

Self-configuration: The manual configuration task typically performed by searching for

a static configuration, which works well in most simulations, is replaced by self-configuration.

Classical system design anticipates situations and defines strategies, while OC systems recon-

figure themselves at runtime in response to user directives, external stimuli, or disturbances.

Therefore, the system needs an active component performing this adaptation task, which

has previously been covered by the designer of the system. In the context of OC, systems

are assumed to consist of several interconnected subsystems collectively achieving a common

goal. Due to the vast set of possible configurations and corresponding situations, the adap-

tation cannot be assigned to centralised elements working on behalf of the group. Thus, on

the one hand each of these interconnected subsystems is responsible for reconfiguring itself,

while on the other hand the reconfiguration of the complete system is agreed upon by the

subsystems using decentralised negotiation mechanisms.

Self-improvement: In classical system design alternative solutions are discovered at

design time, followed by evaluating candidates using simulation or building of real models.

Typically, templates or best-practises exist transferring the knowledge from one designer to

another. This knowledge can be assigned to the OC system to some degree by the designer,

but a large part has to be discovered autonomously at runtime. In the considered case,

this knowledge concerns the modification strategies for configuring the system according to

changing environments. Thus, the OC system has to be able to explore possible alternatives.

In the first place, the selection of predefined possibilities is feasible. But it bears the disad-

vantage of limiting the design space to a small set of anticipated solutions. In contrast, the

system has to be allowed to discover completely new solutions at runtime – which requires

the usage of learning and optimisation techniques at runtime. These basic concepts allow

1.2. PROBLEM STATEMENT 5

for a self-improvement of the system, but also result in safety and acceptance problems.

Hence, the trial parts have to be bounded to guarantee an acceptable system behaviour.

Sandboxing: Already in current system design, model- and simulation-based approaches

are standard. These approaches are characterised by the advantage of being able to anal-

yse the system behaviour (e.g. exposing the system to extreme situations) without taking

safety-restrictions or user-centric aspects into account. Consequently, a testing within a

protected and isolated area without impact on productive parts is done – this area is called

sandbox. The term can be found in a variety of research areas, but is typically used with the

same meaning of the underlying concept – something is tested in an isolated area, where it

cannot cause any undesired effects in the real system. Examples include the sandbox as a

“flexible and expressive thinking environment” [12], to analyse native x86-code [13], and as

a dynamic environment in the grid [14].

The same concept has to be transferred from design time to runtime in order to benefit

from its advantages. For a large range of applications, a variety of simulation tools and

models exist due to the analysis process at design time. These simulators cover a wide

range from microscopic (on the lowest level) to abstracted macroscopic (on the highest

level) approaches. Using such a sandbox at runtime leads to some basic considerations.

Simulation makes only sense if conclusions can be drawn from the results. Accordingly,

an optimisation component is needed, which is capable of using the sandbox as evaluation

function. Such an optimisation component requires a certain time horizon, meaning the

on-line part of the system cannot wait for the new solutions. Additionally, the simulation

models have to resemble the environment’s actual state as closely as possible – but such a

model will probably never reflect an exact copy of the reality (already caused by perception

using sensors). Consequently, the present thesis investigates the cooperation of time-delayed

optimisation of configuration sets and on-line learning based on these off-line discovered

rules.

Application: Investigating learning in OC applications happens not just as an end in

itself – instead, the applicability of the developed concepts has to be demonstrated by means

of practise-oriented systems. Hence, practise-oriented and problem-related application do-

mains have to be identified and exemplarily investigated. These application examples have

to follow two goals. On the one hand, they can be used to demonstrate the benefit of the

developed framework in comparison to standard approaches. On the other hand, they shall

constitute major contributions to the state of the art in their particular domain by shifting

the boundaries of knowledge a bit further. Besides exemplarily investigating application

scenarios, a statement about the general applicability of the developed concepts is needed.

Hence, one part of the thesis’ challenge is to identify similarities between real-world systems,

develop a basic classification, and investigate for which of these classes an application of the

proposed framework is promising.

6 CHAPTER 1. INTRODUCTION

1.3 Scientific Focus and Contribution

Based on the previously introduced research problems, the scientific focus of this thesis and

the contribution to scientific knowledge can be summarised as follows:

• Architectural framework: This thesis presents an architectural framework, which

allows for self-adaptation and self-configuration of existing parametrisable systems.

Besides the pure adaptation aspect, wrapping existing systems into the framework

equips them with further OC characteristics like robustness against a set of distur-

bances, flexibility, and self-improvement. Thereby, the framework works as a black

box solution without interfering with the underlying system’s logic.

• Machine Learning: The self-improvement is realised using machine learning tech-

niques. Therefore, this thesis characterises the specific learning problem and investi-

gates which techniques are applicable. Additionally, modified variants for the most

promising techniques are developed to cover the restrictions and requirements of real-

world systems and their safety-demands.

• Optimisation: The learning part distinguishes between on-line learning from feed-

back and a “sandbox” solution to explore new behaviours. Thus, a major focus of

the thesis is put on investigating a separation of the learning aspects by encapsulat-

ing the exploration part. Therefore, a sandbox environment based on simulation has

been conceived and the applicability of different optimisation heuristics to the search

problem is focused.

• Traffic Control: Based on the general design, the thesis presents a new contribution

to the state of the art in traffic control systems. Considering realistic models of traffic

situations, the advantage of using the novel approach is demonstrated in comparison

to existing manually optimised traffic control strategies.

• Data communication: Data communication protocols are another application area

characterised by systems using mainly static and manually configured solutions. There-

fore, a system based on the proposed framework has been developed describing a novel

approach to enable situation-aware data communication.

• Generalisation: Finally, the applicability of the developed approach has been in-

vestigated by generalising the control problem. Considering this generalisation and

abstraction, the question is answered for which type of systems an application of the

framework is promising and where restrictions might be expected.

1.4. OUTLINE 7

1.4 Outline

This thesis is structured as follows. Chapter 2 gives an overview of related work that has

been published in the domain of architectures for adaptive systems. Apart from related

solutions, the generic Observer/Controller architecture is explained, which serves as a basis

for the presented work. Afterwards, the proposed system is introduced on an architectural

level in Chapter 3, accompanied by formally defining its scope and target. The architecture

describes a general concept, but leaves some design choices to the developer. In particular,

on-line learning and a safety-based off-line optimisation component are used – Chapter 4

discusses the characteristics of these components and determines which specific techniques

should be used to cover the corresponding tasks. Chapter 5 describes the structure of the

evaluation. Afterwards, the following three chapters demonstrate the applicability and the

potential benefit of the approach by applying it to different application domains: Chapter 6

introduces an adaptive traffic control system for urban road networks. Chapter 7 presents

a system to dynamically adapt data communication protocols to changes in their environ-

mental conditions. Chapter 8.1 discusses how the developed solution can be applied to

adaptive production control scenarios, while Chapter 8.2 demonstrates the applicability to

error prediction in enterprise mainframes. These four different applications are based on the

generic approach as discussed in the previous parts of the thesis – but they are not intended

to just serve as exemplary application scenarios. Instead, the evaluation part for all of them

demonstrates the unique characteristics of the solutions and the advantages compared to

the state of the art in their particular domains. In Chapter 8.3, the scope of the framework

is investigated by applying it to an abstracted mathematical problem. Finally, Chapter 9

contains the conclusion of this work and gives an overview of promising future research

opportunities.

1.5 How to Read this Thesis

This thesis contains several different aspects of diverse research domains. Of course, it is

conceived as a whole and intended for reading it in one piece. But – due to the variety of

covered areas – some readers might only be interested in partial aspects. Hence, the following

part aims at guiding readers to those areas they are mostly interested in. Consequently, the

guide is organised along the particular research areas covered by this thesis.

System Design: The basic idea of this thesis is to develop the system’s design and a

corresponding framework to enable self-configuration and self-improvement for parametris-

able systems. Hence, a major part focuses on system design aspects. Readers, which are

only concerned with this issue, will read Chapter 2 for a discussion of related work and

Chapter 3 for insights on the system developed in this thesis.

Machine Learning: The aforementioned aspect of enabling self-improvement capabil-

8 CHAPTER 1. INTRODUCTION

ities to fine-tune the self-configuration of adaptive systems is achieved by using machine

learning techniques. In this context, a special focus is set on learning under safety re-

strictions. Researcher concerned with machine learning topics will find their major field of

interest covered by Chapter 4.1. This chapter discusses the applicability of machine learning

techniques to the control problem defined in the framework. Afterwards, two novel variants

for rule-based on-line learning mechanisms are introduced: a modified Learning Classifier

System and a modified Fuzzy Classifier System.

Optimisation Heuristics: Besides on-line learning capabilities, the framework con-

tains a component to discover the best possible response for currently unknown situations.

Finding the best response is typically referred to as an optimisation task – hence, one part

of this thesis deals with choosing appropriate search heuristics for the corresponding opti-

misation problem. Researchers focusing on this topic will find information regarding their

research area in Chapter 4.2.

Traffic Engineering: Researchers predominately interested in traffic engineering top-

ics will focus on Chapter 6. The chapter describes the Organic Traffic Control system as

one application for the framework presented in this thesis. Hence, the chapter provides a

comprehensive analysis of decentralised traffic control including the state of the art, the cus-

tomisation of the developed framework, and an extensive evaluation of real-world scenarios.

Data Communication: A second major scope of applying the framework is set on data

communication networks. Therefore, Chapter 7 introduces the Organic Network Control

system, which adapts parameter configurations of data communication protocols automat-

ically to changing environmental conditions. Analogously to the chapter concerned with

traffic engineering aspects, Chapter 7 provides a comprehensive analysis of network pro-

tocol parameter control including the state of the art, the customisation of the developed

framework, and an extensive evaluation using three different protocol types.

Chapter 2

State of the Art

Enabling adaptivity at system level has been investigated by researchers for years. As a

result, several architectures or design patterns have been presented carrying attributes like

adaptive, self-adaptive, or dynamic response. Further systems focus on more locality-based

principles like self-organisation, self-configuration, or self-management. All of these concepts

are by no means completely new. Thus, this chapter intends to give an overview of existing

related approaches and to highlight the need of a novel system, which is able to cover the

research questions discussed in the previous chapter.

The remainder of this chapter is organised as follows. Initially, Section 2.1 defines re-

quirements for adaptive systems covering the problem statement of the previous chapter.

Afterwards, research areas investigating adaptive systems are considered following a sys-

tematic approach:

• Initially, the particular domain and the relation to the topic of this thesis is motivated.

• Afterwards, basic architectures and design principles to achieve adaptivity in this

research area are presented.

• The third step investigates to which extent these basic principles have been transferred

to applications and prototypical implementations.

• Finally, these three aspects are used to characterise the research domain with respect

to the initial requirements and analyse their applicability to the identified problem.

Thereby, the Observer/Controller design pattern as developed in Organic Computing (OC)

[15] is set apart from other work, since it will serve as input and basis for the developed

framework.

In the remainder of this thesis, the terms “design”, “architecture”, “design pattern”, and

“framework” are used as follows. Design and architecture describe a general macrostructure

9

10 CHAPTER 2. STATE OF THE ART

of systems or a systematic concept of how to construct systems, respectively. A design

pattern is a concretisation of the former two abstract system descriptions. It decomposes

abstract tasks into more specific subtasks and describes the cooperation of the resulting

elements. The following discussion of the OC domain in Section 2.2 serves as example:

Figure 2.1 describes a general architecture, while Figure 2.2 depicts a design pattern, which

is based upon the general architecture. In contrast, the term framework denotes a concrete

implementation of a group of systems that are all following the same methodology and using

the same techniques – right up to a collection of class libraries and interfaces. Following

this classification, there is only one class below the framework: the concrete system itself,

which is serving a specific purpose.

2.1 Classification of Requirements

Chapter 1.3 introduced the scope of this thesis and defined the general requirements for the

system to be developed. In order to analyse the state of the art in more detail, the necessary

classification of these requirements is introduced in the following part. The identified aspects

are then used to characterise the particular concepts: either they can deal with the identified

problem or the demand of a new solution exists. Consequently, the following aspects define

requirements that have to be fulfilled as completely as possible. Therefore, they describe

attributes of an additional control mechanism that can be applied to allow for the desired

characteristics as introduced in the previous chapter.

A) Adaptivity: As initially defined, it is assumed that augmenting productive systems

with the additional ability to adapt themselves to changing environmental conditions will

lead to a higher system performance. Thus, an external control mechanism is needed that

allows for adapting the system in response to observed changes of attributes with impact on

the system’s performance. The result of this adaptation process is an increased performance

in terms of problem-specific metrics of the productive system’s particular domain.

B) Robustness: Closely connected to the goal of achieving adaptivity is the need of

robustness against a set of disturbances in the sense of [16]. Changing parameter config-

urations according to observations is assumed to increase the system’s performance. In

this context, disturbances are not only failures and misbehaviour of components, but also

unexpected situations where the static setup of parameters leads to a dissatisfying perfor-

mance. In contrast, changing them as response to disturbances and consequently keeping

the system’s behaviour within tolerated boundaries is an even more challenging task. As a

result, the need of users’ manual intervention (and the associated cost) can be drastically

decreased.

C) No interference with the system’s logic: The previously demanded adapta-

tion has to be reached without interfering with the system’s logic – an additional control

mechanism surrounding the system has to provide a customisable black box solution and

2.1. CLASSIFICATION OF REQUIREMENTS 11

to work on the available set of accessible configuration parameters. An intervention to the

logic of the system instead of configuring accessible parameters would entail that the control

mechanism cannot be realised as black box solution anymore. Consequently, this requires

the existence of such parameters for the system to be controlled.

D) Operability: The additional control mechanism is not allowed to affect the produc-

tive system’s operability. In cases where the additional adaptation mechanism fails (e.g. due

to malfunctions of components), the underlying productive system must be able to continue

its work (remain operable) – merely with a static character.

E) Flexibility: Current systems are characterised by processing static logic or at least

following a predefined goal. In future systems, the aspect of being able to change this goal on

demand will become of increasing importance. Thus, the control mechanism has to provide

adequate concepts to incorporate flexible goals and to change them at runtime.

F) Vast situation and configuration spaces: Based on the initial motivation of

OC [17], it is assumed that systems have to cope with vast situation and configuration

spaces. Closely related to the corresponding indefinite possibilities for observations and

configurations is the need of coping with unknown and unanticipated situations. The con-

trol mechanism has to find appropriate settings, although it cannot fall back to predefined

strategies and does not know the optimal response.

G) Self-improvement: Adaptivity can be achieved by different approaches ranging

from choosing between a restricted set of predefined behaviours to allowing the system to

explore new behaviours autonomously. Due to the assumed vast situation and configuration

spaces characterising real-world systems, a predefinition of alternatives is assumed to be

inappropriate. Thus, the control mechanism has to be capable of self-improving its behaviour

by taking a feedback on its actions into account. As a result, appropriate techniques to

perform self-optimisation and self-improvement are needed.

H) Restricted exploration: Self-improvement relies on choosing between alternative

actions and autonomously identifying new behaviours in case of unanticipated situations. In

addition, a qualitative feedback is needed distinguishing between good and bad behaviour.

Although this concept has to make use of exploration mechanisms, real-world systems require

that only tested and acceptable actions are performed – otherwise it cannot be guaranteed

that the system will always behave in an acceptable manner. Thus, the system has to be

equipped with an effective mechanism to restrict the exploration parts of self-improvement

– only pretested solutions are allowed. Since such a pretesting directly before applying the

action to the system is infeasible at design time due to the vast situation spaces, a “sandbox”

solution is needed.

I) Decentralised operation and collaboration: OC assumes that a set of au-

tonomous, more simple systems will replace the existing, monolithic ones to counter the

system’s complexity [7]. Since a controlled self-organised behaviour of several cooperating

elements is desired, the system architecture has to foresee decentralised collaboration pos-

sibilities. Although collaboration is typically application- and task-specific, the possibility

12 CHAPTER 2. STATE OF THE ART

has to be covered by the architecture by means of e.g. communication capabilities.

J) Comprehensibility: In order to achieve user acceptance, the control mechanism

has to provide appropriate interfaces for monitoring. In addition, the actions performed

by the adaptation component have to be comprehensible to users. An engineer analysing

the past behaviours by comparing input situations and applied actions has to be able to

understand why the system acted in the particular way.

K) Real-world requirements: OC and related research initiatives develop novel con-

cepts for systems applied to the real world. Thus, the control mechanism enabling adaptivity

for the productive system has to be able to deal with environments that are typically noisy.

The term “noisy” summarises various influences such as measurement errors, incomplete

observations, transmission errors, or continuous values that have to be treated like random

influences.

L) Generalised approach: In addition to these criteria A to K, a generalised frame-

work is needed, which does not provide just a domain-specific solution. In particular, it has

to allow for enabling adaptivity for a variety of systems and tasks.

Based on the aforementioned aspects (the previous itemisation from A to L) that are

characterising the requirements of the desired adaptation module (the control mechanism), a

comparison to the state of the art is possible. Hence, the remainder of this chapter identifies

related research areas and discusses existing concepts to cover similar or connected problems.

Therefore, the ordering of the aspects will be kept for each considered technique from the

state of the art.

2.2 Organic Computing

This thesis falls into the context of OC [17] – hence, it seems natural to start the search for

appropriate and suitable architectures, design patterns, or frameworks in this research field.

OC has emerged recently as a challenging vision for future information processing systems

[7] and claims that a paradigm shift in system development is needed. Comparable to the

“Vision of Autonomic Computing” [1], which predicts that the increasing interconnectedness

of systems and devices will become a “nightmare” for designers and administrators of IT

infrastructure, OC postulates the need of a paradigm shift in systems engineering towards

self-organised solutions. Nowadays, more and more systems are equipped with sensors and

actuators, aware of their environment, and communicating freely. Based on these charac-

teristics, future OC systems will be able to self-manage their behaviour, and a collection

of these systems will be able to self-organise to cooperatively achieve tasks. However, the

designer of the system will be able to delegate control to populations of smaller, more au-

tonomous, and collaborating entities. In this context, autonomous means that the particular

system is able to work in its environment without external control.

2.2. ORGANIC COMPUTING 13

In contrast to domain-specific initiatives like Autonomic Computing for the IT infrastruc-

ture environment, OC covers a broader spectrum of systems. Thus, current research inves-

tigates heterogeneous applications and theoretical concepts ranging from hardware [18, 19]

over robotics [20, 21] to software [22]. An overview of the concepts and basic ideas of OC is

given in [23, 24]. Although the focus is broad, some common ideas, especially for the basic

design of systems, can be observed. The most prominent example in system design is the

“Observer/Controller design pattern”, which has been introduced in [17] and further refined

in [25, 26]. A summary of the developed approach and its applications is given in [15].

2.2.1 The Observer/Controller Design Pattern

Observer

SuOC

goals

o
b
s
e
rv

e
s

Organic system

output

: agent/robot/entity

input

Controllerreports
c
o
n
tro

ls

system status

Figure 2.1: Basic concept of the Ob-
server/Controller architecture [26]

OC systems are characterised by the need of

an adequate response to environmental or in-

ternal changes. Typically, this response results

in an adaptive behaviour and incorporates fur-

ther aspects like robustness and flexibility. In or-

der to allow for such an adaptation process, the

system’s design provides a regulatory feedback

mechanism capable of monitoring, analysing,

and reacting to changing conditions. There-

fore, OC proposes the so-called generic Ob-

server/Controller design pattern, which consti-

tutes a generalised way to achieve controlled self-

organisation in technical systems [26, 25]. This

regulatory feedback mechanism contains three major components (see Figure 2.1 and Fig-

ure 2.2 for a more detailed version):

System under Observation and Control (SuOC) The SuOC is the “productive” part

of the system that serves a specific purpose. The term corresponds to the previous

notation of the “existing parametrisable system”, which has to be controlled by the

framework. Thus, the SuOC is functional without observer and controller and it will

remain operable if higher layers fail (i.e. Observer/Controller components).

Observer The SuOC’s state and dynamics are monitored by the observer in order to give

an appropriate description of the current situation for the whole system at each point

of time. The observer also monitors the environment, either directly or through the

sensors of the SuOC.

Controller Based on the observer’s aggregated information, the controller influences the

SuOC with respect to the goals given by the user.

14 CHAPTER 2. STATE OF THE ART

system under observation and control (SuOC)

observerobserver

pre-processor

d
a
ta

 a
n
a
ly

s
e
r

d
a
ta

 a
n
a
ly

s
e
r

m
o
n
ito

r
m

o
n
ito

r

e
m

e
rg

e
n
c
e
 d

e
te

c
to

r 1

aggregatoraggregator

individual datasystem data

o
b
s
e
rv

a
tio

n
 m

o
d
e
l

o
b
s
e
rv

a
tio

n
 m

o
d
e
l

e
m

e
rg

e
n
c
e
 d

e
te

c
to

r 2

...

tim
e

-s
p

a
c
e
-p

a
tte

rn

raw data

model selection

select

select

p
re

d
ic

to
r

p
re

d
ic

to
r

s
ta

tis
tic

s

...

c
lu

s
te

r p
re

d
ic

tio
n

select

select

controllercontroller

mapping

action Ai

action
situation

parameters

situation

parameters

goal/

objective function

evaluationevaluation

h
is

to
ry

h
is

to
ry

∆t

fitness

S
itu

a
tio

n
 d

e
s
c
rip

to
r

action selector

Ci Ai

Fi

adaptation modulesimulation model

log file

Figure 2.2: Generic Observer/Controller design pattern [26]

System under Observation and Control: The lowest layer of the architecture en-

capsulates the productive part of the system. This productive system can serve various

purposes, see Section 2.2.3. Higher layers of the architecture monitor and adjust (if neces-

sary) the parameter configurations of the productive system in discrete time intervals. OC

postulates the distribution of computational intelligence among large populations of smaller

entities – thus, the SuOC in Figure 2.2 can refer to single systems or groups of autonomous

systems, respectively. In both cases, the SuOC needs to fulfil some basic, application-specific

requirements:

• The SuOC’s behaviour and its environmental conditions have to be observable.

• The performance of the SuOC according to some goal given by the designer or user

has to be measurable.

• The SuOC has to possess a set of variable parameters that can be dynamically adapted

at runtime and that have certain impact on the performance of the system.

Observer: The observation task can be split into five consecutive steps: monitoring,

preprocessing, data analysis, prediction, and aggregation. The monitoring part receives the

raw data from the SuOC and is based on an observation model that customises the ob-

server’s functionality for the specific SuOC. Thus, it selects the observable attributes of

the system, the analysis detectors, and the appropriate prediction methods. This selection

is done within constant discrete time intervals, expressed as sampling rate. The observed

system data can consist of the SuOC’s individual data and some additional more global

2.2. ORGANIC COMPUTING 15

(environmental) system attributes. All measured data is stored in a log file for every loop

of observing/controlling the SuOC, since it has to be accessed by the predictor and by the

data analyser (see Figure 2.2), e.g. for calculating time-space patterns.

The actual observation process starts with receiving the SuOC’s raw data. This raw

data can be preprocessed in order to smooth the corresponding attributes and to extract

meaningful attributes – afterwards, it is transformed into a vector describing the system’s

situation. Next, the data analyser applies a set of detectors to this preprocessed data

vector. For instance, cluster computation, detection of emergence parameters (according

to the definition in [27]), or further mathematical and statistical methods might be needed

to extract meaningful information. The result of this step is a system-wide description of

the SuOC’s current state. Since the adjustment of the SuOC’s parameters is performed

according to the sampling rate, the controller’s action has impact on the next situation.

Thus, the attributes from the situation vector can be augmented with forecasts for both

– the next raw data as well as the next system-indicators (by using specific or statistical

methods like chart analysis). Finally, the aggregator collects the processed information

into the so-called situation descriptor, and passes it to the controller, which appropriately

influences the SuOC. Further details on the observer part with a special focus on determining

emergent behaviour have been discussed by Mnif in [28].

Controller: The controller’s task is to guide and control the SuOC by choosing its

most promising parameter configuration. It receives the processed and augmented situation

descriptor from the observer and interferes only in those cases with the SuOC where an

adaptation of the current settings is necessary. The decision module that is responsible for

choosing the most appropriate parameter settings for the current situation is called action

selector. Since OC systems act in real-world environments, a fast decision is necessary.

Thus, the action selector is equipped with two important capabilities: on-line learning and

preparation. The learning part works on a fixed set of different strategies that map a given

situation onto a corresponding action – it aims at increasing the quality of this selection

process. The task is performed in real-time. In addition, the preparation component is

responsible for extending the behavioural repertoire of the action selector and has a broader

time horizon. A detailed investigation of the controller part with a special focus on the

learning component has been performed by Richter in [29].

As a conclusion, it is important to note that an organic system will continue to work,

although observer and controller might be disturbed and stop working. Thus, the main

objective of the proposed architecture is to achieve a controlled self-organised system be-

haviour. In comparison to classical system design, OC systems have the ability to adapt

and to cope with some emergent behaviour they have not been programmed for explicitly.

16 CHAPTER 2. STATE OF THE ART

2.2.2 Design Variants of the Observer/Controller Design Pattern

The generic Observer/Contoller architecture needs to be customised to different scenarios

by adapting the various components of the observer and the controller. As stated in [30]

and depicted in Figure 2.3, this customisation of design variants ranges from fully central

to fully distributed architectures. The former case describes a single Observer/Controller

that regulates various components of the SuOC and that directly intervenes into all of these

entities (see Figure 2.3(a)). In contrast, the latter example defines one Observer/Controller

for each component of a technical system (see Figure 2.3(b)). These two variants – the fully

central and the fully distributed architecture – define the two extreme points in the design

space. Nevertheless, there are also many other distribution possibilities like a multi-level

architecture (see Figure 2.3(c)).

SuOC

Observer Controller

(a) Central

SuOC

O C

SuOC

O C

SuOC

O C

SuOC

O C

SuOC

O C

SuOC

O C SuOC

O C

(b) Distributed

SuOC

Observer Controller

SuOC

O C

SuOC

O C

SuOC

O C

SuOC

O C

(c) Multi-level

Figure 2.3: Design variants of the generic Observer/Controller design pattern [30]

Based on these various possibilities to realise and customise the generic Observer/Con-

troller architecture, the designer of the system has to decide about the most promising

approach for his context. In the course of this decision process, the need for different design

variants can be classified according to increasing size, complexity, and heterogeneity of the

contained subsystems. The simplest case is an isolated system with a clearly defined purpose

and a restricted configuration space where no distribution is needed (see Figure 2.1). In

contrast, larger and more complex systems are characterised by a drastic increase of the

number of possibly occurring situations and the corresponding number of different system

configurations that cannot be handled by one single Observer/Controller component. With

growing complexity, the demand of a hierarchical and multi-levelled decomposition of the

control problem becomes more recommendable. A common analogy for such systems is the

organisational structure of large companies. Some kind of management serves as highest

instance that defines abstract global goals or strategies. Lower layers of the hierarchy convert

the abstract goals for their area of responsibility into more specific goals – hence, high level

administration units are not bothered by low level decisions [29].

OC introduces the variability of systems as a measurement for the quantification of

complexity during the design process for technical systems. The term variability is defined

as the number of possible configurations of a SuOC [31]. Obviously, the variability tends

to increase with the complexity of the SuOC. However, introducing hierarchical and multi-

2.2. ORGANIC COMPUTING 17

levelled Observer/Controller structures is a powerful instrument to reduce the externally

visible variability and consequently hide the complexity of a system.

2.2.3 Application of the Observer/Controller Concept

The generic architectural design and its distribution variants describe an architectural

blueprint. Besides the application scenarios developed in the context of this thesis, sev-

eral projects from varying application domains have developed their own systems that are

built upon this basic concept or are at least inspired by it. This section provides a survey

of various applications. The survey is structured according to the distribution of the Ob-

server/Controller components. An overview and a detailed discussion of these projects has

been presented in [15] and is summarised in the remainder of this section.

Central Observer/Controller

Technical systems that cannot be subdivided into subsystems or that consist of highly

interrelated subsystems are monitored and controlled by a centralised Observer/Controller

architecture, see Figure 2.3(a). A first example for such an application is the organic

elevator control system as presented in [32]. Elevators are typically working according to

a simple mechanism – they stop at the nearest hall call in their current running direction

and only change their direction after serving all requests for the current one. In case of a

group of elevators working in parallel according to this simple concept, a synchronisation

effect can be observed when all elevators move up and down as a parallel wave. This so-

called bunching effect results in increasing waiting times for passengers and has been proven

as inefficient [33]. In terms of OC, this is an undesired emergent effect that has to be

detected and avoided. Therefore, the organic elevator control system consists of several

autonomous elevators and one centralised Observer/Controller component. The observer

contains corresponding emergence detectors, and the controller can intervene to discontinue

the synchronisation by manipulating the behaviour of individual elevator cabins.

The project Organic Computing in Off-highway Machines (OCOM) focuses on

machine management in off-highway machines like tractors or wheel loaders [34] and serves

as second example for a centralised design variant. Each off-highway machine consists

of several subsystems (like the traction drive, the power take-off, and various auxiliary

components) that are closely interrelated. Hence, an efficient operation of the machine

(e.g. in terms of a minimal fuel consumption) can be achieved by developing an adaptive

machine-wide management of these subsystems. Therefore, OCOM relies on a centralised

Observer/Controller design. The SuOC is formed by the machines’ subsystems, while the

Observer/Controller is responsible for a reliable, adaptive, and robust machine management.

A third example for centralised Observer/Controller systems are self-organised cleaning

18 CHAPTER 2. STATE OF THE ART

robots [29]. These robots search in their local neighbourhood for dirty places and clean

them by following a local strategy. Additionally, they try to self-improve their behaviour

by learning using the success of the cleaning strategy as evaluation criterion. They are

able to indirectly communicate with each other by placing “pheromones” at places they

have already cleaned – these pheromones are observed by other robots. The goal of this

communication is to avoid double-cleaning of areas and the resulting wasting of resources.

Therefore, a centralised and a distributed variant have been investigated – the former one

uses a centralised component that generates and exchanges the robots’ behaviour strategies

[35], while the latter one analyses fully decentralised learning strategies of the autonomous

robots [36].

Distributed Observer/Controller Components

As depicted in Figure 2.3(b), a second design variant for OC systems is useful if a technical

system consists of several loosely coupled subsystems. In these cases, each subsystem can

be equipped with a separate Observer/Controller component. The predominant application

area of this type are applications where the subsystems are locally distributed or belong to

different authorities. A prominent example are Service-oriented Architectures (SOAs) that

typically consist of several distributed applications and are characterised by a high degree of

interaction among these components. Based on the general concept, the design of Organic

Service-oriented Architectures (OSOAs) [37] has been investigated where management

responsibility at runtime is distributed to each component. Therefore, each SOA entity

is equipped with an Observer/Controller component to achieve controlled self-organisation

[38]. The observer monitors its SOA component and determines the current operational

state. Based on this information, the controller adapts the behaviour of the underlying

SOA component according to given objectives specified in service-level agreements (SLA).

Furthermore, automatically negotiated SLAs are used to coordinate the runtime behaviour

of service components according to given business objectives [39].

Multi-levelled Observer/Controller Components

The third type of OC systems is designed according to the variant depicted in Figure 2.3(c).

A set of distributed Observer/Controller components is hierarchically organised with those

on a higher level influencing subsystems on lower levels. Such a design can be found

in systems where several subsystems are sufficiently complex to require their own Ob-

server/Controller. One example for such a system has been developed in the context of

the project MeRegioMobil that investigates a smart home environment equipped with sev-

eral household appliances and an electric vehicle [40]. Within this smart home environment,

charging periods of the vehicle and the operation of various appliances (like freezer or wash-

ing machine) are automatically rescheduled in order to adapt the consumers’ energy demand

2.2. ORGANIC COMPUTING 19

to the power generation in the grid. This rescheduling is done by taking price signals into

account, which reflect a load-prediction of the energy grid, and considering constraints given

by the user. Therefore, a multi-levelled Observer/Controller framework is used. Each ap-

pliance is equipped with a local Observer/Controller component responsible for observing

the appliance’s current state and turning it on or off according to current conditions. Ad-

ditionally, these local Observer/Controller components communicate their data (e.g. power

consumption profiles) to a higher-level smart home management device that centrally derives

timing strategies for the smart home.

2.2.4 Characterisation of the Observer/Controller Design Pattern

Considering the list of requirements as introduced in Section 2.1, the generic Observer/Con-

troller design pattern can be characterised as follows:

A) Adaptivity: By dynamically adapting the SuOC’s parameters, the general design

of OC systems aims at enabling adaptivity.

B) Robustness: The approach is designed to provide robustness against distur-

bances, in particular those induced by emergent phenomena.

C) No interference with the system’s logic: Although the main focus of the concept

is to control emergent behaviour [27], the application of parametrisable systems without

interfering with their logic is possible.

D) Operability: Due to the clear separation and the non-intrusive concept, the SuOC

remains operable (with static configurations) in cases where the Observer/Controller

component fails (the principle of non-critical complexity [11]).

E) Flexibility: The design pattern includes an interface for the user to define the

system’s goal. Thus, the design covers flexible goals. However, this feature has not been

investigated at a technical level, yet.

F) Vast situation and configuration spaces: The generic Observer/Controller de-

sign pattern aims at dealing with vast situation and configuration spaces. The partic-

ular realisation of observer and controller part decides whether unanticipated situations

are managed appropriately or not.

G) Self-improvement: The controller part of the concept contains a rule-based action

selector and an evaluation approach. Although not explicitly named in Figure 2.2, the

corresponding tasks can be covered by a self-improvement component.

H) Restricted exploration: The controller part contains a simulation model, which

can be used to restrict the exploration mechanism of the learning component – it

defines an abstract concept rather than a detailed classification of tasks.

I) Decentralised operation and collaboration: The design pattern does not in-

clude provisions for a decentralised collaboration. However, extensions are possible and

subject to ongoing investigations [11].

20 CHAPTER 2. STATE OF THE ART

J) Comprehensibility: Due to a rule-based approach, the behaviour of the system is

comprehensible to users – but this depends on the realisation of the learning part and

the freedom granted to this component.

K) Real-world requirements: The architectural concept has been designed to deal

with real-world requirements – in particular, continuous and noisy sensor information

can be used and disturbances are covered by the adaptation component.

L) Generalised approach: The Observer/Controller design pattern proposes a gener-

alised approach to allow for adaptivity in technical systems, but it lacks steps to substantiate

the abstract ideas.

In general, the generic Observer/Controller architecture postulates a design paradigm,

rather than defining a detailed concept and an applicable framework. Currently, the ar-

chitectural design and its components are not completely investigated. For instance, the

project Observation and Control of Collaborative Systems (OCCS) [41] covers certain as-

pects only, like the observation model of the observer or the quantification of robustness and

flexibility. Only scenario-specific prototype implementations are available, rather than a ref-

erence implementation. Furthermore, a major focus has been set on determining emergent

behaviour [27, 28, 29] – other detectors are mostly neglected. Due to the abstract character

of the concept, it does not provide a black box solution and therefore has to be customised

by defining distribution variants, models, and components like the action selector.

Summarising, the Observer/Controller design pattern tackles a large set of the initial

requirements. Due to its generic approach and the abstract design, it leaves some questions

open that are covered by this thesis: how can restricted and safety-oriented self-improvement

be enabled, how can collaboration and rule generation be realised? Furthermore, the way

towards an adjustable black box solution is pursued. Thus, the generic concept serves as

input and basic model for the framework as developed systematically in this thesis.

2.3 Related Architectural Approaches

Obviously, OC is not the only community addressing complexity by introducing controlled

self-organisation and learning or developing adaptive, flexible, and robust systems. Several

other software and hardware domains have to operate systems autonomously in unknown

environments – again, a certain degree of freedom needs to be granted to these systems

while they are simultaneously kept within controlled boundaries. A related survey of design

methodologies compared to OC’s generic Observer/Controller pattern is given by Richter

in [29].

2.3. RELATED ARCHITECTURAL APPROACHES 21

2.3.1 Control Theory

Controller System S
S

y
s
te

m
in

p
u

t
(I
)

System
Output (O)

Sensor
Measured

output

Reference

+

-

M
e

a
s
u
re

d
e

rr
o

r

Figure 2.4: Control loop (detailed)

Control theory is an interdisciplinary field of

mathematics and engineering and relevant for

the control of various physical processes [42].

Some principles can already be found in antiq-

uity, but it has not been established as a distinct

discipline until the late 1950s. Based on a math-

ematical background, it defines control loops to

cope with the behaviour of dynamics in technical

systems [42]. In this context, a dynamic system

means that its behaviour changes over time –

mostly in response to external stimuli or forces [43]. In the simplest case, a system S pro-

duces some kind of output O for an input I. This output O is continuously compared to

a predefined reference value R. If O deviates from R, a controller will automatically adapt

the input value I in order to satisfy the goal O = R. Figure 2.4 illustrates this concept by

describing a feedback loop.

Typically, open and closed loop systems are distinguished. A system is called closed

loop system if its subsystems S1 and S2 are interconnected as a cycle (see Figure 2.5(b)).

Non-cyclic variants are referred to as open loop systems (see Figure 2.5(a)). The main

purpose of each control system is to guarantee the stability of the control loop’s behaviour.

In case of a linear system, this can be achieved by defining lower and upper boundaries. In

contrast, specific theories are needed for non-linear systems. Thus, the control model and the

control strategy are responsible for providing the desired behaviour. Three main categories

of control models are known in literature: adaptive control, proportional-integral-derivative

control and model-predictive control [44].

System 1 System 2

(a) Open loop

System 1 System 2

(b) Closed loop

Figure 2.5: Open and closed loops in control theory

Adaptive Control

In order to cope with time-varying and disturbed sensor data, adaptive control [45] modifies

the control model used by the controller. A frequently discussed example to motivate the

concept is the control of an aeroplane whose mass decreases due to fuel consumption. Thus,

22 CHAPTER 2. STATE OF THE ART

the controller needs a control model that adapts itself according to these changes. The

main subject of adaptive control is to dynamically change the respective control law in that

sense that it does not need a-priori information about the bounds on these uncertain or

time-varying parameters.

Proportional-Integral-Derivative Control

The Proportional-Integral-Derivative (PID) controller is the most commonly used variant

of a feedback controller. It is the most promising approach in the absence of knowledge

about the underlying process [46]. It defines a generalised feedback mechanism that can

be found in a wide range of industrial installations, although the particular organisation

is application-specific. The concept is based on calculating the deviation of the desired

behaviour by comparing the measured value to the desired one – this difference is going to

be minimised by adjusting the process control inputs. The calculation is based on three

separate parameters: the proportional, the integral and the derivative values, denoted P ,

I, and D. P is used to determine the reaction to the current error, I refers to the sum of

recent errors, and D relies on the rate at which the error has been changing. The process is

adjusted using the weighted sum of P , I, and D [47].

Model Predictive Control

One major problem in control theory is to guarantee stability for closed-loop control systems.

Introduced in the 1980s, Model Predictive Control (MPC) [48] has been successfully applied

to industrial installations such as oil refineries and chemical factories. Today, it is one of the

most widely used control techniques in process control. A driving car serves as prominent

example. Within a given control horizon the driver knows the desired trajectory. Based on

the characteristics of the particular car, he decides on the best control actions (accelerator,

braking, steering) in order to follow this trajectory. Thus, only the first control actions

are chosen at each instant – this procedure is followed repeatedly. In contrast, the decision

process is based on previous errors [48] in other strategies like PID.

The example illustrates that MPC controllers are based on dynamic models of the pro-

cess. The controller itself consists of a multi-variable control algorithm containing a dy-

namic model of the process, knowledge about past control actions, and an optimisation

cost function for the considered prediction horizon. Based on the model and the current

measurements, the MPC controller calculates the next actions for the independent variables

of the process. The operational part takes independent and dependent variable constraints

into account; afterwards, the determined set of actions is transferred to the corresponding

desired value of the regulatory controller. Most of the installations are based on linear mod-

els (they are approximately linear within a restricted prediction horizon [49, 50]), but also

non-linear models are known [51].

2.3. RELATED ARCHITECTURAL APPROACHES 23

Application of the Concept

Applications of control loops and their design variants are manifold and can be found in

different installations. Especially modelling is ubiquitous in science and engineering with a

strong connection to applied mathematics [44]. Thus, most of the literature about control

theory includes parts concerned with models using differential and difference equations [52].

The most prominent examples come from physical systems, especially mechanical, electrical,

and thermofluid systems [53]. Corresponding representatives of the problems are given as

follows. Arnold discusses mathematical methods applied to control problems of classical

mechanics [54], Kundur describes methods and control strategies for power system stability

[55], and fundamentals of fluid power control are given by Watson [56]. An overview of

further examples has been presented by Aström and Murray [44].

Characterisation of Control Theory

Considering the list of requirements as introduced in Section 2.1, control theory concepts

can be characterised as follows:

A) Adaptivity: The approach enables adaptivity within the given boundaries pro-

vided by the logic of the control model.

B) Robustness: Control theory provides some kind of robustness against distur-

bances if these disturbances do not affect the controller or the functional process of the

system and have been considered by the designer.

C) No interference with the system’s logic: If appropriate models of the system’s

behaviour exist and the dependencies of parameter and system performance can be defined,

control theory might be adopted to deal with existing systems without interfering with

their logic.

D) Operability: Due to the strong interconnection between control mechanism and

element under control, the underlying process might not remain operable in cases where

the control mechanism fails.

E) Flexibility: The goal of the control loop is hard-coded – thus, it cannot handle

flexible goals.

F) Vast situation and configuration spaces: Vast situation and configuration

spaces have to be covered at design time by taking them into account when developing

the control model. Unanticipated situations are typically problematic and might lead to

failures.

G) Self-improvement: Current approaches do not consider self-improvement.

H) Restricted exploration: Due to the predefined logic, the system does not rely on

exploration mechanisms to cover unanticipated situations and therefore does not need

concepts to control the impact of such a mechanism.

24 CHAPTER 2. STATE OF THE ART

I) Decentralised operation and collaboration: Although systems can be intercon-

nected, collaboration to achieve goals cooperatively is not part of the design.

J) Comprehensibility: The comprehensibility to users depends on the complexity

of the system. Especially in large collections of integrated subsystems with interdependen-

cies, a comprehensibility is rarely given.

K) Real-world requirements: Control theory has been successfully applied to mani-

fold real-world applications – thus, the concepts are able to deal with real-world require-

ments.

L) Generalised approach: Due to the strong relation to the particular control prob-

lem, a control loop is always problem-specific. Nevertheless, the approach itself provides a

generalised concept.

Thus, control theory approaches do not match all the requirements for this thesis, since

especially unanticipated situations and the corresponding situation spaces are not applica-

ble. Consequently, the designer has to foresee all possible situations that might appear at

runtime.

2.3.2 Adaptive Architectures for Robotics

First of all, probably robot systems will come to mind when considering autonomous and

environmental-aware systems. Robots are designed to act under real-world conditions with-

out external control of human users. Thus, the robots have to cope with similar problems as

investigated in this thesis. Such a robot is defined as an entity consisting of principles from

system design and kinematics by combining sensors, actuators, and information processing

within one autonomous system [57].

Architectural Concepts

Several different approaches to design robot systems have been proposed and investigated

during the past decades [57]. Those being most closely connected to the topic of this thesis

are considered in the following. Sense-Plan-Act (SPA) was the predominant robot control

methodology until mid of the 1980s [58]. It defines a simple control loop consisting of three

phases. Phase one is used to gather all available information from the sensors (sense), in

phase two a world model is built upon the gathered information and the next move is derived

(plan). Finally, this plan is executed (act) in phase three. Figure 2.6(a) illustrates the

approach and shows that the planning phase distinguishes between five consecutive steps:

perception, modelling, planning, task execution, and motor control. During these steps,

a model-based determination of the next steps is performed and an appropriate control

strategy for the motors is calculated. SPA is used in iterations, which means that after

finishing the planning phase the next sensing phase starts immediately.

2.3. RELATED ARCHITECTURAL APPROACHES 25

Sensors

perception

modelling

planing

execution

motor control

Actuators

(a) Sense-Plan-Act [58]

model

sense

plan

act

plan generation

action selection

activation dynamics

target dynamics

world

(b) Model-based extension [59]

Figure 2.6: The Sense-Plan-Act paradigm

Using the terms of control theory as discussed before, SPA is designed as an open control

loop (see Figure 2.5(a)) – the information flow through all three phases is linear from sensing

over modelling and planning to acting. Thus, the design and the corresponding behaviour

are easy to understand. But especially for the restricted computational capabilities of mobile

robots, the computationally intensive approach has drawbacks. A first approach to cope

with these drawbacks has been a separation of reactive and planning behaviour as proposed

by Herzberg et al. [59], see Figure 2.6(b). An alternative approach spearheaded by Brooks

[60] became more prominent. It decomposes the robot control problem into sub-problems –

these smaller problems are task-specific modules (Brooks calls them “behaviours”). They are

realised as a network of finite state machines. This subsumption architecture distinguishes

between several predefined behaviours. As a result, the planning part of choosing the best

behaviour or strategy is reduced. Figure 2.7 illustrates the basic concept. The architectural

design describes a set of layers being responsible for one specific behaviour each.

Sensors Actuators

reason about behaviour of objects

plan changes to the world

identify objects

monitor changes

build maps

explore

wander

avoid objects

Figure 2.7: Brook’s subsumption architecture [60]

26 CHAPTER 2. STATE OF THE ART

Application of the Concept

Since SPA served as a reference model for years, several different systems based on the

concept can be found in literature [61]. One prominent example has been presented by

Shanahan and Witkowski and uses a Khepera robot [62]. The authors describe two applica-

tions in detail that are used for navigation and map building within an office scenario. The

navigation part results in knowledge about open and closed doors, while the map building

describes the rooms’ and doorways’ layout. A similar example is given by Stentz [63]. Both

examples are purely based on the SPA concept.

Additionally, two famous approaches have been presented applying Brook’s basic design

to real robots: Genghis [64] and Herbert [65]. An overview of the fundamental concepts is

given in [66]. The first example, Genghis, is a six-legged walking-machine with decentralised

control. The overall movement of the system is based on the reactions of the legs. Each leg is

controlled by two motors (one for up-down and one for back-forth movements). The system

consists of augmented finite state machines (FSM) for each behaviour. The behaviours are

built incrementally and can be run by selectively deactivating later FSMs. Furthermore,

Connell presented the autonomous and mobile robot Herbert, which is able to wander around

in a closed office environment [65]. In this context, Herbert’s task is to get into peoples’

offices and pick empty soda cans from their desks. Herbert is able to avoid obstacles, to

follow walls, and to recognise objects looking like soda cans or desks in real-time. In total,

the behavioural repertoire consists of 15 different abilities that are ordered using Brook’s

layered approach.

Characterisation of the Approaches

Although the discussed architectural approaches and design patterns have differences, they

are built upon each other and can be considered as one major solution framework. Thus,

the list of requirements can be considered as follows:

A) Adaptivity: The approach allows for a restricted adaptivity – it takes the envi-

ronmental conditions into account.

B) Robustness: The approach is robust against disturbances that have been fore-

seen at design time and taken into account when designing the finite state machines; unan-

ticipated situations might lead to failures.

C) No interference with the system’s logic: The design of the system relies on

defining explicit behaviours realised as finite state machines. Hence, integrating existing

systems without interfering with the system’s logic is not feasible.

D) Operability: Due to the strong interconnection between control mechanism and

element under control, the underlying process might not remain operable in cases where

the control mechanism fails.

E) Flexibility: The concept does not cover flexible goals.

2.3. RELATED ARCHITECTURAL APPROACHES 27

F) Vast situation and configuration spaces: Perceiving real-world environments

using sensors leads to vast situation spaces. In contrast, the configuration space in

traditional robotics is very restricted. As a result, unanticipated situations lead to

failures in most cases.

G) Self-improvement: Current research addresses questions of self-improvement

within the domain of robotics (see e.g. [67]), but the topic is neglected within the design

pattern.

H) Restricted exploration: Since all behaviours are predefined, the approach does

not make use of automated exploration mechanisms to identify better behaviours –

consequently, no controlled and restricted usage of such mechanisms is considered.

I) Decentralised operation and collaboration: Decentralised collaboration is

not explicitly covered by the design.

J) Comprehensibility: The comprehensibility to users depends highly on the

purpose of the system, the particular model (SPA), or the number of possible behaviours –

in complex systems, comprehensibility can be considered as problematic.

K) Real-world requirements: Since robots are designed to take part in daily life and

to fulfil specific tasks in this context, the corresponding architectures have to cope with

real-world requirements.

L) Generalised approach: State machines are designed to cover just one task. Hence,

the basic approach is not a generalised concept – it requires high effort to customise a certain

solution.

In general, SPA has a further disadvantage: the model-based concept is very slow. In

particular, the system can almost never plan at the same rate as the environmental condi-

tions are changing. In addition, all modules depend on each other and failures affect the

whole system. Furthermore, the open loop plan execution has been identified as inadequate

due to uncertainty and unpredictability [68] – changing environments require an adaptation

of the system’s world model. The behavioural approach does not take such a world model

into account – consequently, the realisation of behaviour is easier to develop than standard

SPA. But in this concept, planning and optimisation are more difficult to be taken into

account.

2.3.3 Multi-Agent Systems and Adaptive Agents

A multi-agent system (MAS) is a technical system composed of multiple interacting, in-

telligent entities – the so-called agents [69]. Typically, the term MAS is used for software

agents, but it can also refer to robots, humans, or teams containing a mixture of both. These

agents are used to model or solve problems that cannot be handled in a standard monolithic

way due to high complexity. Usually, a MAS builds some kind of heuristic approach for an

insolvable or very complex problem [70]. In literature, the concept has been successfully

28 CHAPTER 2. STATE OF THE ART

applied to several well-known tasks, e.g. modelling social structures [71], disaster response

[72], or on-line trading [73].

Based on the terms given by Wooldridge [69], agents in a MAS can be characterised using

three main attributes: a) autonomy – each contained agent is at least partially autonomous,

b) local view – none of the agents has a global view of the system (e.g. due to the system’s

complexity), and c) decentralisation – all agents are equal, especially no designated control-

ling agent exists (otherwise the system can effectively be reduced to a monolithic system

[74]). Although these characteristics define restricted behaviours based on simple rules, a

collection of collaborating agents (the multi-agent system) can manifest self-organisation

and complex behaviours.

Since research has investigated MAS for several years, a wide variety of architectures and

approaches to design adaptive and self-organised behaviour has been proposed [69, 6]. First

attempts of deductive reasoning agents were based on logics [75, 76], but their popularity

decreased quickly due to several restrictions and limitations of the concept [77]. Afterwards,

the so-called mental aspects of the agents have moved into the focus [78, 79, 80]. As a result,

decision making does not completely found on pure logics. Among these approaches, the

Belief-Desire-Intention (BDI) model [78] has been established and widely accepted as basis

for further research in this domain.

The Belief-Desire-Intention Model

BDI implements the principal aspects of Bratman’s human practical reasoning theory [81]

and is characterised by the eponymous three attributes: the agent’s beliefs, desires and

intentions. An agent uses these basic concepts to solve a particular problem. The process

of developing or choosing a plan or strategy is separated from the execution of the currently

active plan or strategy. Due to this differentiation, the agent is able to react on observed

changes in the environment immediately – usually, deliberating plans takes time (choosing

what to do is often referred to as optimisation problem).

Beliefs

Desires Intentions

Possible
actions

Agent

Environment

EffectorsDetectors

Figure 2.8: The BDI design model [78]

Based on the general model of the ar-

chitecture (see Figure 2.8), the designer of

an agent has to define the particular mental

attitudes. The beliefs are used to represent

the current status of the system as the agent

observed it – including the environment and

other agents in the neighbourhood. In addi-

tion, beliefs can also contain inference rules

– this attribute allows for forward-chaining

and leads to new beliefs. The term belief is

used on purpose instead of knowledge, be-

cause the belief of the agent is based on its

2.3. RELATED ARCHITECTURAL APPROACHES 29

perception, which is not necessarily correct. The local view in combination with incomplete

or possibly disturbed sensor information leads to uncertainties in modelling the world’s

status.

The desires represent the agent’s motivation – in particular, each agent has personal

goals which are tried to be fulfilled at runtime. Typically, agents are not designed to cover

just one goal – the desire is a trade-off between several different (and possibly conflicting

or inconsistent) goals. Thirdly, the architecture defines an intentions entity. Intentions are

the result of desires and the current observation – the agent has chosen to achieve a specific

desire. Within the implementation of the BDI model, intentions are defined as effectively

started actions from a selected plan. In this context, plans are actions or sequences of

actions agents can perform to achieve their intentions. Bratman defined plans as only being

partially conceived, with details being filled in as they progress [81]. In order to trigger

the agent’s reactive activities, events are used. Such an event can be applied externally via

sensors or embedded systems, or internally to activate updates or activity plans. Usually,

they are used to update beliefs, trigger plans, or modify goals.

Application of the BDI-concept

Several representatives for architectures using BDI concepts are known in literature. As one

popular example, Martin et al. introduced the Open Agent Architecture (OAA) [82], which

aims at enabling the allocation of software services through a distributed set of autonomous

agents. Communication between and cooperative effort of the agents are organised by one

or more brokers. These brokers have knowledge about the capabilities of other agents and

are responsible for the matching of requests from users and agents. The goal of the concept

is to enable a transparent view on the system. For a particular request, a user or agent

does not have to know the identities, locations, or number of involved entities. The OAA

is used as a framework to minimise the effort needed for achieving interoperability between

various platforms, or the consequences of dynamic environments. Although it aims at being

a generalised approach to agent architectures, the main concerns are software services and

collective task performing.

The Adaptive Agent Architecture (AAA) approach presented by Kumar et al. [83] has

similarities to the previous example. The main difference is the focus, which has been set on

teamwork. Based on theoretic analysis, the authors developed a brokered architecture, which

allows for the automatic recovery from failures (of the broker). This broker is responsible

for forming groups based on the tasks and requests he receives. The self-organisation of

the agents aims at providing self-healing capabilities. In contrast to the system targeted by

this thesis, both systems lack properties like self-optimising behaviour, learning capabilities,

architectural design, and a re-usability of other systems.

The Cognitive Agent Architecture (COUGAAR) is an open source, distributed agent

architecture [84, 85, 86]. Due to the financial support of the Defense Advanced Research

30 CHAPTER 2. STATE OF THE ART

Projects Agency (DARPA), the focus has been set on developing distributed systems with

a large number of involved agents. Hence, these systems are characterised by military needs

like hierarchical task decomposition. Additionally, recent extensions of the approach in-

vestigated fault tolerance, scalability, and security aspects. Based on the vision of MAS,

the agents are supposed to achieve a common goal by arranging themselves into a society,

which collectively solves the tasks. The COUGAAR framework contains an adaptive control

mechanism using an Adaptivity Engine that makes use of the agent’s cognition and aggre-

gates the observed attributes by the integrated metrics service. Each agent has different

operational modes that can be exchanged depending on the situation.

Characterisation of the BDI Approach

Considering the list of requirements as introduced before, the MAS frameworks and the

corresponding BDI concept can be characterised as follows:

A) Adaptivity: For the agent itself, the BDI concept enables adaptivity according

to some predefined characteristics.

B) Robustness: According to the specific agent model, the system is characterised

by a restricted degree of robustness against disturbances – to cover disturbances that

occur according to unforeseen situations, concepts like self-improvement are missing.

C) No interference with the system’s logic: The concept relies on building inte-

grated agent-oriented systems – thus, it is not able to control existing solutions without

interfering with the system’s logic.

D) Operability: Since the agent covers both, the logic and the adaptation, the basic

purpose of the system will not remain operable in case of failures of the control mechanism.

E) Flexibility: As the desires are predefined for each autonomous agent, the approach

does not cover flexible goals.

F) Vast situation and configuration spaces: In most agent systems, vast situation

and configuration spaces are not considered; the same observation can be made for

unanticipated situations. But – in principle – (especially if an appropriate model exists)

both can be handled in the context of the design.

G) Self-improvement: Although some work has been done on learning in MAS (cf.

[87, 74]), the basic concept does not cover self-improvement.

H) Restricted exploration: Due to using predefined desires and behaviours, agents

have no exploration mechanism to identify new behaviours – consequently, such a mech-

anism is not subject to restrictions in its usage.

I) Decentralised operation and collaboration: Agent systems are typically de-

signed to enable decentralised collaboration, especially variants like AAA [83] have

their main focus on this topic.

J) Comprehensibility: The comprehensibility to users depends on the complexity

of the system. Since the motivation of this thesis is founded on the observation that systems

2.3. RELATED ARCHITECTURAL APPROACHES 31

become too complex for standard design techniques, BDI is assumed to be not applicable

to the corresponding systems.

K) Real-world requirements: Typically, agent systems are simulation-based abstrac-

tions of real problems [70] – thus, they can cope with abstracted real-world requirements.

L) Generalised approach: The BDI design pattern formulates a generalised approach

for a certain category of systems. Additionally, it integrates large parts of the system’s

functionality and is therefore not generally applicable.

Due to the abstract focus, the concepts developed for MAS are adapted in other research

initiatives like AC or OC in order to solve real-world problems, rather than just artificial or

scientific questions [88]. The BDI approach relies on the existence of goals, but an explicit

representation of these goals is missing in most cases [89]. In contrast to the system presented

in this thesis, BDI lacks mechanisms to learn from past actions, decisions, and observations

or to react on unforeseen situations. In particular, the architecture does not possess an

explicit component to cover self-optimising behaviour [90, 91]. Generally, it is difficult

to couple learning and the BDI architecture, since the model does not cover interaction

principles among agents of the population [92]. Besides learning questions, the approach

has weaknesses when being applied to real-world problems: the decisions are inferred using

multi-modal logics, which can hardly be applied to this problem domain due to incomplete

axiomatisations and inefficient computability [6, 93]. Furthermore, these inference rules

have to be developed in advance – here, a more autonomous solution would be useful. In

turn, scientists have not agreed on the necessity of the three BDI attitudes. In traditional

decision theory the distribution of responsibilities is questioned, while in artificial intelligence

researchers argue that three attitudes are insufficient [90].

2.3.4 Autonomic Computing

Based on the ideas of Autonomy Oriented Computing (AOC) [94], IBM developed the “Vi-

sion of Autonomic Computing (AC)” [1]. AOC focused on the development of artificial

technical systems capable of imitating behaviour observed in nature (e.g. ants) in order to

cope with computational-intensive problems. Jin and Liu defined four key aspects for a

new type of autonomy-oriented systems: autonomous entities, emergent behaviour, adap-

tive solutions, and self-organised behaviour. The basic ideas of AOC served as input for the

vision of AC. The AC Initiative by IBM adapted the concept and applied it to the domain

of computer infrastructures and large server farms.

Like OC, the AC initiative is motivated by the observation of rapidly growing complexity

of computing systems and the insight that their management needs new visions for design-

ing systems. In particular, systems capable of self-management are desired. Driven by the

economical motivation to reduce cost and effort, the reduction of complexity is realised by in-

creasing the freedom for self-managed entities. In this context, self-management is achieved

32 CHAPTER 2. STATE OF THE ART

by four basic attributes [3]: AC systems have to be self-configuring (be able to automat-

ically configure their components), self-healing (faults and misbehaviour is automatically

detected and corrected), self-optimising (capable of monitoring the own performance and

adapting to the measured values), and self-protecting (able to pro-actively identify and

protect against arbitrary attacks). Following Sterrit’s approach [3], these four attributes are

achieved by self- and environmental-awareness in combination with a control loop defined

by self-monitoring and self-adjusting components of the system. The common architectural

pattern for AC systems enabling these attributes is the so-called MAPE cycle, which is

presented in the following part.

The MAPE Cycle

Autonomic Manager (AM)

Managed Resource (MR)

Knowledge

EffectorsSensors

Figure 2.9: The MAPE cycle [1]

With the MAPE cycle, IBM introduced a

basic architectural concept for autonomic

systems [1, 95]. Within this abstract in-

formation framework for self-managing IT

systems, an autonomic system is defined

as a set of autonomic elements (AE) with

each AE consisting of an autonomic man-

ager (AM) and the managed resource (MR).

The MR has to provide a management in-

terface (defining the two attributes sensors

and effectors), which is used to perform

the communication between the AM and its

MR. In order to allow for an adaptation of the MR to changing environmental conditions

and reacting on failures, it has to be observable via these sensors. Additionally, it has to be

adaptable using the effectors to allow for changing the MR’s behaviour. The AM itself is

designed as a control loop, providing capabilities to perform the four tasks monitor, analyse,

plan, and execute (the MAPE cycle, see Figure 2.9). Additionally, the MAPE cycle takes

supporting knowledge of the environment and management policies into consideration. Com-

pared to the OC approach as presented in Section 2.2, the MR represents the System under

Observation and Control, while the MAPE cycle covers the tasks of the Observer/Controller

component. In addition, AC systems following the MAPE concept are closed control loops

(cf. Figure 2.5(b)) in terms of control theory (see Section 2.3.1). The self-managing system

observes the status of some resources (software or hardware components) and autonomously

controls their parameters in order to keep them within a predefined range.

Similar to OC, the desired behaviour of the AM component relies on high-level busi-

ness goals given by the system’s user in form of policies. Examples for such goals include

maximising a given utility function or keeping the system’s performance within certain

boundaries [1]. In addition, these abstract goals can be split into more specific simpler

2.3. RELATED ARCHITECTURAL APPROACHES 33

ones by forming a hierarchy of control loops: some autonomic managers can manage others

and these can directly manage resources. As a result, a management hierarchy similar to

business organisations can be built. Summarising, the approach proposes a design of inter-

active collections of autonomic elements. Individual entities are responsible for managing

resources (e.g. devices or groups of other autonomic elements) in order to cover parts of

the management process automatically without the need of a user. Instead, the systems

self-configure and adapt themselves in accordance with given policies from humans or other

higher-level elements.

Application and Extensions of the Concept

Since 2003, a variety of architectural frameworks based on the MAPE cycle and consisting

of self-organised autonomic components has been proposed. Besides theoretical considera-

tions (e.g. White et al. defined general requirements for AC architectures [96] and Koehler

et al. searched for a computational model that allows for guaranteeing behaviours [97]), the

most important representatives of AC focused on investigating the design and the process

of the autonomous control cycle. As one example, Fuad and Oudshoorn presented a sys-

tem architecture for such an autonomic element [98]. Based on the initial MAPE cycle,

they describe the structural operation, since this is the fundamental building block of any

autonomic system.

The basic MAPE cycle is widely accepted in the AC community at design level. It

serves as basis for several installations and prototypes in research ranging from a uniform

framework for automated management of Internet services and their underlying network re-

sources (the Autonomic Service Architecture [99]) over a J2EE-based software architecture

for adaptive webserver applications [100] to systems for autonomic grid applications (Auto-

Mate [101]). Furthermore, Liu and Parashar presented Accord, a programming framework

for autonomic applications [102]. A prototype installation in the context of large server

farms has been presented with Unity [103]. The autonomous behaviour of AC systems is

based on high level goals in terms of policies. Calinesu worked on the definition and descrip-

tion of these policies [104] and presented a model-driven autonomic architecture [105, 106].

The framework for the formal specification of autonomic computing policies has the disad-

vantage that the developed approach is very specific and consequently hardly transferable

to other domains.

Characterisation of the MAPE Concept

Considering the list of requirements as introduced before, the MAPE concept and its current

applications can be characterised as follows:

A) Adaptivity: Obviously, the whole approach is based on the goal to enable adap-

tivity.

34 CHAPTER 2. STATE OF THE ART

B) Robustness: Since the particular solutions of the general concept are based on

predefined behaviours, the robustness against disturbances is restricted. In particular,

it depends on which policies are foreseen by the developer as a discovery component is

missing.

C) No interference with the system’s logic: In general, the MAPE control loop is

able to control existing systems without interfering with their logic, but an investigation

of how this application can be conducted is missing. Thus, the idea has been formulated

but not yet sufficiently realised.

D) Operability: The MAPE cycle postulates an additional control loop – thus, it

should be possible that the managed device remains operable in cases where the control

mechanism fails.

E) Flexibility: Whenever goals are discussed in the context of AC, they are referred

to as static policies (e.g. [1]). Hence, flexible goals are not considered, but – in general –

they are consistent with the concept.

F) Vast situation and configuration spaces: AC’s predefined strategies are hardly

applicable to vast situation and configuration spaces. In addition, completely unan-

ticipated situations cannot be covered.

G) Self-improvement: The need for self-improvement and the corresponding au-

tonomous learning capabilities within the architectural concept is not emphasised.

H) Restricted exploration: MAPE’s degree of freedom does not include exploration

phases – consequently, there is no need of restricting the trial parts due to the usage of

predefined logic and policies.

I) Decentralised operation and collaboration: Initially, Kephard and Chess wrote

that an autonomous element “may require assistance from other elements to achieve its

goals” [1], but a systematic investigation of patterns for decentralised collaborative

behaviour is missing to the author’s knowledge.

J) Comprehensibility: The comprehensibility to users depends on the complexity

of the autonomic system. Especially in large systems, it might suffer if the required policies

have to take complex interdependencies into account.

K) Real-world requirements: AC systems are mainly applied to infrastructure –

thus, they fulfil real-world requirements.

L) Generalised approach: At an abstract level, the MAPE design is generally applica-

ble. Due to the strong focus on IT infrastructure and mainframes, proof for a transferability

to other domains is missing and concepts for other technical systems have not been devel-

oped, yet.

Comparing the focused goal of this thesis’ system (and its context OC) with the one of

AC shows the main difference between both approaches: the application field. AC deals

with an increased heterogeneity, interconnectedness and complexity of IT-systems (namely

large-scale enterprise server systems [8]), while OC covers a variety of technical systems.

Main purpose of AC has been to build market-ready solutions used to decrease the effort for

2.3. RELATED ARCHITECTURAL APPROACHES 35

managing IT-infrastructure, rather than developing a generalised approach to controlled self-

organisation in technical systems. In addition, learning and exploration of new behaviours

automatically has not been explicitly investigated by the AC community.

2.3.5 Further Architectural Approaches

The above presented examples cover the major part of research focused on designing adap-

tive systems. Of course, these are not the only domains dealing with aspects relevant for

this thesis. The following part gives a short insight into other related research domains and

loosely connected concepts. Considering the motivation to enable context-awareness, adap-

tivity, and self-organisation, further research areas have strong connections to these topics.

As one example, the Autonomic Communication [107] initiative has emerged recently cover-

ing similar goals compared to IBM’s Autonomic Computing proposal. The most significant

differences are that it focuses on individual network elements, studies how the desired ele-

ment’s behaviour is learned, influenced or changed, and how it affects other elements within

this network. Thus, it has a strong connection to the Organic Network Control system as

presented in Chapter 7.

Furthermore, proactive computing [10] has to be named that served as foundation and

pool of ideas for current initiatives like OC or AC. Considering the aspect of highly intercon-

nected devices surrounding everybody, ubiquitous computing [108] and pervasive computing

[109] share parts of the same motivation and vision. But since they follow a different target

definition, the architectural context of this thesis is not matched.

In the context of distinguishing between appropriate on-line reactions based on a fixed

set of policies and a separated planning component, further contributions from software en-

gineering, mechanical engineering, and agent systems have to be mentioned: a three-layered

architecture for self-management [110], the Operator-Controller Module [111], and the Any-

time learning concept [112]. The former one – the Three Layer Architecture Model for Self-

Management (3LA) – has been presented by Kramer and Magee in [110]. Figure 2.10(a)

illustrates the basic design. The system consists of a given goal and a set of software compo-

nents providing the required logic. The target of the self-management process is that these

components configure themselves according to given goals – if this is not possible, they have

to be capable of reporting the problem. On the lowest layer (the component control), the

system’s components are interconnected and provide the static operational functionality. In

case of malfunctions or changes in the bottom layer’s status, the middle layer is responsible

for executing a predefined sequence of actions in order to adjust the bottom layer’s system

to the new conditions. Due to these predefinitions, a fast reaction is guaranteed. In cases

where no adequate plan exists or the goals are changed, the highest layer is responsible for

planning new strategies. Current research focuses on deriving local strategies for given con-

ditions from more abstract global goals. The main problems of this concept are described as

36 CHAPTER 2. STATE OF THE ART

finding a formal description for each situation, a powerful deriving engine, and a possibility

to derive specific goals from abstract directives. In addition, feedback on how the on-line

system performed is not used to self-improve the behaviour.

Goal
Management

Change
Management

Component
Control Component 1 Component 2

Status

Plan Request Change Plans

Change Actions

Goal

Goal‘‘Goal‘

Plan A Plan B

(a) Three layered architecture model for self-
managed systems [110]

plant

Cognitive operator

Reflective operator

Controller

P
la

n
n
in

g
le

v
e
l

A
c
ti
o
n
 l
e
v
e
l

Control A
Control C

Control B

reflective loop

cognitive loop

Configuration control Sequencer

Emergency

Model-based self-optimisation

Behaviour-based self-optimisation

(b) The Operator-Controller Module [111]

Figure 2.10: Multi-levelled learning

Execution System Learning System

Active
Knowledge

Base
Learning
Method

Test
Knowledge

Base

Simulation
Model

Decision Maker
Model

Decision
Maker

Environment

Monitor

Figure 2.11: Anytime Learning [112]

In mechanical engineering, the Operator-

Controller Module has been investigated as

one approach to realise self-optimising sys-

tems [113]. Motivated by the increasing

number of errors caused by the growing

functional repertoire of mechanic systems

[111], a highly integrated self-improving

system has been developed. On the lowest

level, the operational controller is responsi-

ble for processing the productive system in

hardware. Based on a closed control loop

concept, the middle layer contains a reflec-

tive operator in software that can adapt the

operational controller based on a given set of policies. Finally, the highest level contains

a cognitive operator monitoring the level beneath. It is responsible for gathering infor-

mation on itself and its environment. Therefore, various methods such as learning, use

of knowledge-based systems, or model-based optimisation in order to self-improve the be-

haviour are used. Due to the fully integrated control-loop-based system design, failures of

the learning module affect the whole system. In addition, the approach is highly domain-

specific and considers learning only as determining new policies. Thus, it is assumed that

each of these policies is optimal (which makes the simulation model absolutely reliable) –

consequently, self-improvement by taking feedback on the applied policies into account is

not considered.

Finally, the Anytime learning concept by Greffenstette and Ramsey [112] can be consid-

ered as inspiration for two-layered learning. In the context of investigating machine learning

2.4. SUMMARY 37

techniques for sequential decision problems, the authors developed their SAMUEL learning

system [114, 115]. SAMUEL is designed to learn adequate reactive policies, described as

condition/action pairs, based on a given simulation model of the environment [112]. The

purpose of this simulated environment is to evolve new rules that are optimised using an

Evolutionary Algorithm [116]. This coupled learning module is integrated into the produc-

tive system as illustrated in Figure 2.11. The learning module is continuously executed. It

controls the interaction of the productive system with the environment, adapts its simu-

lation model, and explores new policies. Such new policies are provided to the execution

module. The process assumes that the model-based simulation will always lead to appro-

priate solutions and does not cover an on-line improvement of the action-selection policies.

A similar approach has been proposed by Oreizy et al. in [117]. Additionally, hierarchically

organised LCS variants like ALECSYS [118] and MonaLysa [119] are known – in contrast to

the framework investigated in this thesis, they solely focus on increasing the learning speed,

rather than incorporating safety restrictions.

2.4 Summary

Based on the initial requirement analysis for the targeted system, this chapter discussed the

applicability of existing design patterns, their corresponding frameworks, and their promi-

nent representatives to these requirements. In the first step, OC’s generic Observer/Con-

troller design pattern has been identified as a basic platform for the developed framework.

The concept’s main control loop and its major components have been explained as well as

possible distribution variants and current applications. Afterwards, related architectural

approaches have been discussed and compared to the initially formulated requirements.

The analysis of the state of the art shows that none of the discussed concepts is applicable

to close the identified gap. In particular, no alternative approach fulfils all the requirements

sufficiently. Especially, a solution for restricted on-line learning in safety-critical environ-

ments is missing. Although different approaches to distinguish between learning tasks exist,

no explicit investigation of automatically improving the system’s behaviour while simulta-

neously guaranteeing an appropriate system performance has been identified. It is the goal

of this thesis to present a solution that is capable of both: fulfilling the requirements and

presenting an exemplary on-line learning concept for safety-critical systems. The following

Table 2.1 summarises the discussed results. The table distinguishes between five different

classifications: “XX”, “X”, “0”, “−”, and “−−”. The first one denotes a full match of the

requirement by the particular technique, “0” states that the requirement might be satisfiable

(but – to the author’s knowledge – has not been appropriately investigated, yet), and “−−”

states that the requirement is not fulfilled. The remaining two classifications are nuances

within this scale. Within the next chapter the developed framework is presented, which is

characterised by fulfilling the initially defined requirements.

38 CHAPTER 2. STATE OF THE ART

ID Criterion OC CT Robotics MAS AC
A) Adaptivity XX X X X XX
B) Robustness XX X X X X
C) No logic-interference X −− −− −− X
D) Operability XX −− − −− XX
E) Flexibility 0 −− −− −− 0
F) Vast spaces XX 0 0 0 0
G) Self-improvement X − 0 0 0
H) Restricted exploration X −− −− −− −−
I) Decentralised collaboration − −− −− XX 0
J) Comprehensibility X − 0 − 0
K) Real-world requirements XX XX XX 0 XX
L) Generalised approach 0 X − 0 0

Table 2.1: Classification of the state of the art

Chapter 3

System Design

This chapter presents the developed framework and the corresponding design of the system.

Thus, the main focus is set on the functional concept and the contained main components,

their co-operation, and their responsibilities. The investigation, which particular techniques

are used to fill out the needs described by these components, is subject of Chapter 4. The

chapter is divided into four basic parts. Initially, the system’s objective is defined. The

desired behaviour of the system is designed using an adapted variant of a classification from

the OC domain (see Schmeck and Müller-Schloer [120]). Based on this definition of what

the system has to be able to do and how it is supposed to behave, the scope of the system is

discussed. Here, the question is for which existing technical solutions the architecture and

the resulting framework are applicable. Therefore, requirements for systems to be controlled

by the framework are introduced.

Furthermore, the architecture itself is presented. Based on an abstract overview of the

design, the particular layers and their functionalities are presented. Thereby, a special focus

is set on the necessary adjustments needed to enable the observation and control of a new

system - in particular, the question “What has to be done in order to wrap a system with

the developed framework?” is brought up. This is of special interest, since the solution

presented within this thesis aims at providing a generalised approach for varying types of

systems. Consequently, the tasks for the adjustment process have to come with low effort

and considerable knowledge about the underlying problem.

39

40 CHAPTER 3. SYSTEM DESIGN

3.1 Target Definition

S

CM
S‘

Figure 3.1: Controlled sys-
tem and control mechanism

Based on the terminology given by Schmeck and Müller-

Schloer in [120], the target of the framework is defined in the

following section, which is based on previous work presented in

[121]. Let S be a parametrisable productive system controlled

by the framework (the control mechanism CM). Figure 3.1

illustrates the context. S is the productive system and the

combination of S and its CM is denoted as S′. The com-

bined system S′ operates in an environment, which is subject

to changing conditions.

Definition 1 (Environment) The environment aggregates

all entities outside of S and its control mechanism CM . It consists of four types of at-

tributes: local, receivable, global, and inaccessible. Local attributes are completely accessible

by CM , while global attributes need some higher instance with a broader focus (e.g. a hi-

erarchical element). Receivable attributes are observed locally by a neighbouring system N

and communicated to the CM of S. In contrast, inaccessible attributes are hidden and

neither observable by CM , nor by higher entities.

The system S is continuously performing its productive tasks considering its configura-

tion defined by the set of parameters. Typically, these parameter configurations are static –

the CM ’s goal is to adapt these parameters dynamically. One parameter set describes one

possible configuration of the SuOC. Consequently, the configuration space can be defined as

follows:

Definition 2 (Configuration space) All possible parameter configurations of the SuOC

define the configuration space CS (also called parameter space). Two types of param-

eters are distinguished: accessible and non-accessible (with respect to an external CM). In

the remainder, all relevant parameters are assumed to be accessible. The current configura-

tion of the SuOC at time t can be expressed as c(t) ∈ CS with c being one possible instance

of C.

The dynamic adaptation of S has to be performed according to changes of the envi-

ronmental conditions: the situation. CM is responsible for monitoring all attributes of S

and all attributes of the environment affecting the performance of S, which results in a

description of the current situation.

Definition 3 (Situation and state space) The SuOC’s state can be observed using in-

ternal and external variables defining the state space Z. All environmental attributes with

impact on the SuOC’s performance define the situation space Y , with the current status of

3.1. TARGET DEFINITION 41

these environmental attributes being expressed as y(t) (also denoted as the SuOC’s situa-

tion). The current state z(t) of the SuOC consists of the status of the internal parameters

c(t) and the status of the external environmental attributes y(t). This can be expressed as

Z = CS × Y .

According to Definition 3, the configuration of S at time t can be defined as a function

z(t) – for instance, if n attributes are used to describe the state of S, z(t) is a vector in some

n-dimensional state space Z. Some of these parameters are used as evaluation criteria (also

called objectives) η1 . . . ηk, which are provided by a higher-level external entity (the user).

The CM depends on a user-specified goal g, which is expressed by the objective function f .

The system can incorporate a set of different goals G such that the user can choose a goal

g ∈ G. At runtime, the CM searches for the best mapping between an observed situation

y(t) (or z(t)) and a parameter configuration c(t): y(t) → c(t). Thus, it has to maximise

performance of S according to the current goal: fg(z(t))→ max.1 The function f uses the

evaluation criteria η1 . . . ηk and maps the aggregated system state z(t) into the set of real

numbers by estimating the current system performance. Typically, the functional space of

f is known in advance, including its maximum and minimum boundaries (e.g. if S is a Peer-

to-Peer protocol instance and the evaluation function refers to maximising the download

rate, the minimum of the functional space is equal to zero and the maximum is given by

physical characteristics of the channel). Based on the objective function f , a hierarchy of

subspaces of the space Z can be built characterising the system’s performance:

1. Target Space (TS): If the goal g of the CM is fulfilled, e.g. the performance quantified

by f(z(t)) is above a given threshold θt, the corresponding state z(t) is part of TS.

Thus, TS is the set of states where no control actions of CM are needed.

2. Acceptance Space (AS): The system state z(t) is called acceptable, if an acceptance

criterion or threshold θa is satisfied: θa < θt if the fitness function is to be maximised,

θa > θt otherwise. The set of all acceptable states satisfying the threshold θa is called

acceptance space (AS). Obviously, TS is a subset of AS. Typically, the standard static

configuration of S (without additional CM) will lead to acceptable states on average.

Although the system’s state is acceptable, the CM will try to find a better solution

and consequently reach TS.

3. Survival Space (SS): If S is in an unacceptable state, but it is still possible to mod-

ify the system state z(t) such that at some later time t′ the resulting state z(t′) is

acceptable, the system state belongs to SS. For example, let S be an instance of a

data communication protocol – CM could have changed its queue sizes to zero and

no packages are stored anymore (and consequently none are processed). As a conse-

quence, the system performance will be low – but it can return to AS by increasing

this value.
1This is equivalent to a goal specifying a minimisation of f , which can be solved by maximising −f(z(t))

42 CHAPTER 3. SYSTEM DESIGN

4. Dead Space (DS): If S cannot return into an at least acceptable state by itself, it is

not part of one of the previous sets and therefore belongs to the Dead Space. For

instance, a system running out of energy (battery-mode) is in DS until an external

authority tackles the problem.

Based on this enumeration, the target of the CM is to adjust c(t) depending on the

observed state z(t) in such a way, that at the next evaluation time t′ the corresponding

system state z(t′) will be part of TS. The remainder of this chapter explains, how this is

achieved in detail by explaining the architecture and its components.

3.2 Scope of the System

The following part of this chapter defines which systems can be controlled by the CM .

Since a real-world applicability is of major focus, the typical key-characteristics of real-

world technical systems are discussed initially, based on the definition given by Rao and

Georgeff [6]. Afterwards, the effect of these characteristics on the CM ’s scope is explained.

The aspects given by Rao and Georgeff are used as a rough guide for the purpose of the

proposed framework:

• Environment: The environment is non-deterministic. It changes at each instant of

time and can evolve into potentially many different ways.

• System: Besides the environment, the technical system (the combination of S and

CM) itself is non-deterministic. At any instant of time, the system can be instructed

to accomplish potentially many different objectives.

• Actions: The CM ’s best action depends on both, external stimuli (context-aware)

and the internal status of system S.

• Horizon: The system’s horizon is restricted to locally available sensor data, no global

information can be used to decide on which is the best action to be taken.

• Cycle: The processing of CM and its actions are performed in cycles that correspond

to the rate at which the environment evolves.

These real-world aspects affect both: the system S and its control mechanism CM pro-

vided by the proposed framework. Thus, only those systems are of interest that are situated

and processed in dynamic environments. This aspect corresponds to the requirement of

performing an adaptation according to changes of the environmental conditions and not

only according to internal changes. Furthermore, a possibility to access this environment

through sensors has to exist in order to allow for a suitable monitoring of the situation.

This monitoring is the basis for the decision about adapting S to observed changes – the

context-awareness. Hence, the effects of changes in the environmental conditions have to

3.2. SCOPE OF THE SYSTEM 43

appear in such a form that the CM can adequately react on them – which means that effects

and actions of CM have to be within similar time-boundaries.

The CM has to work on locally available information only. Based on this locality aspect,

some restrictions regarding the applicability of the framework to technical systems can be

derived. On the one hand, the performance of a technical system S to be controlled by

CM has to be measured locally without additional global knowledge. On the other hand, S

has to be configurable on-line (at runtime) using a set of parameters from the configuration

space CS. The configuration of the variable parameters under control of the CM needs to

have impact on the performance of S – otherwise, such a situation-dependent adaptation

would be of no avail. In addition, this impact of the parameters on the performance has to

be deterministic (at least to a certain degree). The approach relies on drawing conclusions

about the past actions and the corresponding change in the objective function’s payoff.

If the impact is more random than deterministic, deriving such kind of knowledge is not

possible. Furthermore, the objective function f itself has to be deterministic, otherwise

deriving knowledge is again not possible. In addition, f has to work on locally observed or

received attributes of the environment and of S (the state z(t)). Other global or inaccessible

attributes cannot be taken into account in a distributed system (cf. Definition 1).

In addition, the quality analysis using the objective function f is continuously performed

by the CM . Thus, f has to possess characteristics like being continuously differentiable,

having a simple computability, and low structural change over time. The requirement that

the function has to be continuously differentiable is formulated due to the safety-based learn-

ing concept, which is realised by considering actions of “nearby” situations as appropriate.

Details on this assumption are given in the remainder of this chapter. The function f will

be frequently computed with the necessity of an immediate reaction – which restricts the set

of possible functions for f to those with relatively simple computability. In order to enable

learning within the CM , an automated acquisition and storage of knowledge is needed. The

learning relies on finding appropriate mappings between situations and the corresponding

actions. This implies that appropriate actions for a given situation exist and these actions

will also be correct, if the corresponding situation occurs again. A time-dependence of the

basic fitness landscape modelled by f can be covered if it is quasi static, i.e. it does not

completely change the landscape (only slightly changing landscapes are manageable since

the learning takes time).

The aspects discussed before serve as indicators to decide whether an existing technical

system S can be controlled by the proposed framework or not. If S fulfils all requirements

and is characterised by the discussed attributes, it can be equipped with the additional CM

and therefore adapted on-line to changing environmental conditions.

44 CHAPTER 3. SYSTEM DESIGN

3.3 System Architecture

Based on the goal and the scope of the system, an architectural design of the framework

has been developed that serves as basis for answering the research questions as brought up

at the beginning of this thesis. In the remainder of this chapter, the general architecture

defined by the framework is discussed. In the further course of this thesis, the framework is

applied to different application scenarios, which requires a customisation and corresponding

application-specific modifications of both – the framework and its architecture.

Layer 3

Layer 0

Detector

data
Control

signals

User

System under Observation
and Control

Layer 1
Parameter selection

Observer

Controller

Learning
Component

Layer 2
Offline learning

Observer

Controller

Simulator

EA

C
o

lla
b

o
ra

ti
o

n
 m

ec
h

an
is

m
s

Monitoring Goal Mgmt.

Figure 3.2: System architecture (single node)

Figure 3.2 depicts the general architecture of the proposed framework which is based on

the generic Observer/Controller design pattern as introduced in Chapter 2.2.1. The design

distinguishes between four consecutive layers. The bottom layer (Layer 0) encapsulates an

existing technical system S, e.g. the before mentioned traffic control system. In terms of OC,

S is called System under Observation and Control (SuOC) [25]. The particular internals

of the system’s logic and insights on the corresponding domain are not needed. However,

it is required that the parameters of the encapsulated SuOC can be altered by the Layer 1

component and the status of the system and its environment are accessible to higher layers.

In combination with the component situated at Layer 1 of the architecture, Layer 0 forms

a control loop. The Observer of Layer 1 collects local information and current settings of the

SuOC and aggregates them into a vector describing the current situation. This situation

vector then serves as input to the learning component of the controller, which is responsible

for deciding on necessary actions to be applied to the SuOC and for increasing the quality of

3.3. SYSTEM ARCHITECTURE 45

this selection process over time. The learning component works on a defined set of possible

actions and is not allowed to modify them or to generate new ones. In case there is no

parameter set available suiting the current needs, an alternative strategy is needed. The

architecture does not allow new rules (pairs of situation/conditions and parameters/actions)

to be created randomly by e.g. Genetic Algorithms [122]. Instead, control is transferred to

Layer 2 of the architecture.

Layer 2 of the architecture consists of a simulation tool and an optimisation technique and

constitutes the “creative” component of the system. Based on observing current demands

at Layer 1 (in cases of unknown situations or sub-optimal existing rules), the component

has to find the best available parameter setting for the particular situation. If the action-

selection process of Layer 1 has no matching knowledge or the existing actions have not

been performant enough, the question “What would you do in this situation?” is given

to Layer 2. Based on an optimisation heuristic, Layer 2 evolves parameter settings and

repeatedly analyses them using a simulation tool. This bears the advantage that newly

created parameter sets are not directly used in the live system, as this could cause the

system to perform badly or even malfunction. Only those parameter sets qualifying in the

simulator of Layer 2 are passed back to Layer 1, and may then be applied in the real world.

Therefore, Layer 2 allows for a kind of “sandbox”-learning without the risk of applying

arbitrary parameter sets to the live system.

On the highest (or all-embracing) level, the Layer 3 component is responsible for com-

munication and collaboration among distributed autonomous elements – each system being

equipped with an additional CM is able to communicate with others. Furthermore, this

layer provides the interface to the user or administrator of the system. Hence, the user has

access to current system measurements in order to monitor the system’s performance. Addi-

tionally, he can change or adjust the goal of the system by adapting the objective function.

Figure 3.3 depicts a network-wide view of the system. Several systems are equally wrapped

into the proposed architecture. They act within the same environment and communicate

via Layer 3. In addition, the user of the system can use the interfaces provided at Layer 3

of the particular autonomous elements to gain access to measurements, analysis, and the

objective function.

The architectural design has some similarity with the Viable System Model (VSM) as

introduced by Stafford Beer [123] as a recursively applicable template for structuring the

management of large enterprises. Beer distinguishes between five functional types of sub-

systems:

• the productive (value-adding) type

• the coordinating (of type 1 subsystems) type

• the optimising type (w.r.t. the current resource utilisation)

• the planning type

46 CHAPTER 3. SYSTEM DESIGN

Layer 3

Layer 0

Detector

data
Control

signals

User

System under Observation
and Control

Layer 1
Parameter selection

Observer

Controller

Learning
Component

Layer 2
Offline learning

Observer

Controller

Simulator

EA

C
o

lla
b

o
ra

ti
o

n
 m

ec
h

an
is

m
s

Monitoring Goal Mgmt.

P2P-
based

commu-
nication

Figure 3.3: Network-wide view of the architecture

• the decision level type (defining the goal for lower types)

As depicted in Figure 3.2, the task assignments of the introduced Layers 0 to 2 are

similar to those given by Beer with types 1 to 3. Type 4 is covered in a distributed manner

by collaboration (Layer 3) among equal elements. Only type 5 is not explicitly foreseen and

assumed to be situated in the user’s area of responsibility. Although the VSM is explicitly

non-technical2, it can also be applied to various domains where autonomous entities form a

collective organisation.

The remainder of this chapter will introduce the particular layers in more detail.

3.3.1 Layer 0: System under Observation and Control

On the lowest level of the architecture, the “productive” part (the SuOC) of the system is

integrated into the proposed framework. Due to the targeted generic concept, the SuOC is

not restricted to a particular application domain. Therefore, existing technical systems from

varying domains can be controlled in the same way. Examples include urban traffic control

systems (see Chapter 6), data communication protocols (see Chapter 7), or production

systems (see Chapter 8.1).

Layer 0 encapsulates an existing technical system – consequently, both systems have to

cooperate at runtime. In order to keep the effort for manually customising the existing

system low, the Layer 0 component provides two basic interfaces: one for the observation

of the SuOC and its surroundings and one for accessing the variable parameters. During

2Beer’s intention has been to model business organisations – thus, the original model belongs to the
domain of economic sciences.

3.3. SYSTEM ARCHITECTURE 47

the integration process of the system S into the framework, the only part affecting the logic

and internal structure of S is to provide access for these two interfaces.

Although the approach of the proposed architecture aims at providing a generic solution,

an engineer applying the framework to his specific technical system S has to adjust it in a few

points and to supply additional information needed for the further process. For the bottom

level (Layer 0), these tasks are closely connected to the two basic interfaces as introduced

before. The first task corresponds to the observation interface of the Layer 0 component.

This interface has to provide access to all attributes representing the current status of S,

attributes quantifying the current performance of the system, and variables representing

the perceived environment. The information obtained by these attributes serves as basis for

the adaptation and optimisation processes at the higher layers of the architecture. Hence,

a complete description of the particular situation is needed, which is done by defining the

observation model. This observation model represents the decision which attributes are

observed.

Typically, the attributes of the observation model represent measurements for the cur-

rent status of S (e.g. system attributes, parameter configurations, disturbed sensors, etc.),

but also environmental data like the distribution of neighbours has to be taken into ac-

count. The environmental data to be observed depends highly on the particular system S

and its application domain. Considering as example urban traffic control systems, the most

important attributes of the current situation are the traffic flows over the intersections on a

turning basis – which can also be used as part of the performance metric on Layer 1. Con-

sidering data communication protocols, such a general statement is even more difficult, since

network protocols vary in their purpose and application domain. Controlling mobile ad-hoc

networks will typically adapt the parameter sets according to changes in the neighbourhood

formed by other nodes – in contrast, Internet-based routers running the TCP/IP protocol

stack will more likely be adapted according to observed latencies, delays, or traffic loads on

specific links. Besides the pure information serving as condition for the adaptation process,

the situation description has to provide all relevant information to analyse the performance

of the adaptation process locally.

The second task considers the particular system and its adaptation at runtime – which

parameters have to be changed according to the observations? A system to be controlled by

the framework has to possess runtime-adaptable parameters with influence on the system’s

performance. The second task for an engineer applying the framework to a system S is

to define the variable parameters of S that will be subject of control interactions by the

Layer 1 component. Although these parameters are application-specific, they are typically

similar within a domain of applications. For instance, these parameters might be durations

of green times in traffic control systems; in data communication networks, such parameters

are buffer sizes, interval lengths, counters, or delay times.

The lowest layer of the proposed architecture is characterised by the encapsulated “pro-

ductive system”. Based on the assumption of OC that a system has to remain fully operable

48 CHAPTER 3. SYSTEM DESIGN

although disturbances might lead to failures of single components, the proposed layers of

the architecture are strictly separated and operating autonomously. For instance, if the

Layer 1 component fails, Layer 0 and its SuOC are not affected. As a consequence, they

continue working on a static basis with the last parameter configuration – this will lead to

a sub-optimal performance until Layer 1 is operable again, but at least the system works.

Besides these general characteristics of OC systems, Layer 0 incorporates further at-

tributes regarding real-world applications. It is designed to be performed in real environ-

ments leading to possible influences that do not occur in systems sealed off from environmen-

tal impact. Following again the considerations by Rao and Georgeff [6] (cf. Chapter 3.2),

Layer 0 is mostly characterised by noisy sensor values, possibly disturbed components, con-

tinuously changing conditions, and non-deterministic or non-predictable behaviour.

3.3.2 Layer 1: On-line Adaptation

Layer 0
Detector

data

Control

signalsSystem under Observation
and Control

Layer 1
Parameter selection

Observer

Controller

Learning
Component

Figure 3.4: A first control loop de-
fined by Layers 0 and 1

Layer 1 of the framework provides the functional-

ity to adapt the SuOC by actively changing its acces-

sible parameters. Therefore, it contains two compo-

nents to achieve the best possible adaptation strat-

egy: an observer and a controller (see Figure 3.2).

Figure 3.4 depicts the formation of a control loop

consisting of these two components in combination

with the SuOC at Layer 0. The control loop and

thereby Layer 1 is processed in a discrete time inter-

val, typically referred to as sampling rate.

The observer is responsible for monitoring the SuOC and its surrounding environment.

It receives a description of the current situation by querying the observation-interface of

Layer 0. This situation description (cf. y(t) in Chapter 3.1) contains data about the SuOC’s

settings, the status of the environment (if needed and accessible), and attributes to quantify

the SuOC’s performance. All of these values are based on sensor-data – thus, they might

be noisy or subject to disturbances (i.e. malfunctions of sensors). Therefore, the observer

serves as preprocessor: if possible, it filters bad values. Furthermore, it might contain a

prediction component calculating a forecast for some attributes based on historical observa-

tions or existing knowledge (depending on the underlying technical domain, approximation

functions might exist). Besides predicted and observed values, a sophisticated view on the

measured attributes might need additional information about historical data. As a result,

this processed and augmented data is transferred to the controller. Figure 3.5 depicts a

detailed view of the observer component.

Based on the preprocessed data provided by the observer, the controller has to decide

about necessary actions to be applied to the SuOC. This action-selection represents the

3.3. SYSTEM ARCHITECTURE 49

Observer

C
o

n
tr

o
lle

r

Layer 0 / SuOC

HistoryLa
ye

r
3

raw data

M
o
n
it
o
r

System
data

SuOC
data

Situation
descriptor

P
e
rf

o
rm

a
n
c
e

A
n

a
ly

s
is

K
e
y
 f
ig

u
re

1

K
e
y
 f
ig

u
re

2

K
e
y
 f
ig

u
re

m

…

S
it
u
a
ti
o
n

A
n
a
ly

s
is

K
e
y
 f
ig

u
re

1

K
e
y
 f
ig

u
re

2

K
e
y
 f
ig

u
re

n

…

P
re

d
ic

ti
o

n

P
re

d
ic

to
r

1

P
re

d
ic

to
r

2

P
re

d
ic

to
r

p

…

Situation
description

Figure 3.5: Detailed view of Layer 1’s observer

problem to choose the best strategy for the current situation (select the best parameter

configuration for the SuOC: y(t) → c(t)). Thus, it is that part of the concept which

initially enables adaptivity. The Layer 1 controller contains a set K of already known

actions K ⊆ CS to choose from in combination with knowledge about for which situation

the particular actions have been chosen.

Due to safety reasons, the system is not allowed to try or use untested actions – it has to

choose from the set of existing ones. In real-world applications, boundaries for the resulting

behaviour of the technical system have to be guaranteed, since e.g. malfunctions are not

tolerated by customers. Especially systems with a high degree of self-organisation and

freedom to adjust their behaviours autonomously have to work within a tolerated corridor.

As a result, the system’s regulations have to be verifiable within given boundaries. In the

context of this thesis, two main techniques are used to ensure the desired effect:

1. Limited set of actions: The set of selectable actions is fixed for the controller of

Layer 1 – it is not able to create or modify actions. Actions are either initially inserted

to the rule-base by an engineer or evolved at runtime using the Layer 2 component.

2. Restricted choices: The system is not allowed to choose any possible action from

its rule base. Instead, it has to respect a measurement of similarity defining how

similar an observed situation is to the one the particular action is dedicated for. The

set of possible choices is then limited by a given threshold tmin defining the minimum

allowed similarity (the maximum distance).

These limitations ensure the desired behaviour of the system. It is allowed to au-

tonomously adjust the SuOC bounded by policies of the user. In addition to the automated

adjustment of parameter configurations, the system is designed to improve the performance

50 CHAPTER 3. SYSTEM DESIGN

of its selection process over time. In order to enable such a self-improving behaviour, the

controller contains a learning component. The task of this component is to draw conclusions

from the measured system performance and the recently performed control decisions. More

formally, the system has to learn the mapping from situations y(t) to actions c(t) aided by

an observable fitness measurement (quantified by f): f(z(t))→ R.

The situation descriptions as measured and provided by Layer 0 are based on attributes

from a real-world environment. They are defined on a subset of those variables describing

the system’s particular surroundings. These attributes are characterised by typical charac-

teristics of the real-world, the most prominent in this context is that they are continuous

values in most cases. Due to the usage of continuous data to describe the current situation,

the action-selection mechanism has to incorporate continuous values, too. This leads to the

following problem. A situation will hardly appear again – expressed by exactly the same

attributes contained in y(t). The specificity of this statement depends on the size and the

nature of the underlying search space and is therefore a question of the specific scenario

the system has to work in. Consequently, the action-selection component is not able to

store an exact mapping between all situations and actions. In contrast, it has to decide

which from the known actions promises the highest benefit. This highest benefit cannot be

pre-estimated or determined via deterministic techniques (like using always actions whose

corresponding situation is most similar to the observed one in terms of a similarity metric),

since the actual shape of the underlying fitness landscape is unknown. Thus, the system

needs the possibility to determine the best match between situations and actions automat-

ically at runtime. In other words, the system has to be able to learn this match – which is

the task of the learning component.

Learning necessarily relies on the possibility to try different solutions and then determine

which has been the best one based on a certain reward or feedback. This means that the

learning mechanism takes over the responsibilities of the action-selection mechanism. Thus,

the same restrictions have to be respected as defined for the action-selection. The learning

component is not allowed to create actions on its own and it has to consider the similarity

metric in combination with a predefined minimum of similarity. Chapter 4.1 discusses how

automated learning under these restrictions can be realised.

After performing the necessary process, the controller might have chosen to adapt the

SuOC. Therefore, it calls the adaptation-interface of Layer 0 and provides the new param-

eter configuration. Alternatively, it might keep the current configuration of the SuOC and

abandon an adjustment. Furthermore, if the current situation is unknown or the learning

component contains only rules with bad rating, it can trigger Layer 2 to find a new pa-

rameter setting for exactly the observed situation. Figure 3.6 depicts a detailed view of the

controller component.

Although the Layer 1 component of the proposed architecture provides a generic ap-

proach, three main customisation tasks have to be fulfilled. Similar to the tasks at Layer 0,

these tasks are needed to cover the specific character of the SuOC.

3.3. SYSTEM ARCHITECTURE 51

Controller

O
b

se
rv

er

Layer 0 / SuOC

History La
ye

r
3

action

E
ff
e
c
to

r

SuOC
data

System
data

Evaluator

Rule Base

Situation Action Evaluation

s1 a1 e1
…
…

Action
Selector

La
ye

r
2

Pre-
Processor

Situation
description

Figure 3.6: Detailed view of Layer 1’s controller

(1) The first task is related to the automated learning. In order to equip the system

with the possibility to analyse its own behaviour and improve it over time, an evaluation

measurement is needed. An engineer customising the framework for the control of a

new system has to assure the availability of necessary performance indicators when initially

defining the situation description at Layer 0. Based on this data, a quantification method

is needed that allows for a fast computation of a measurement for the system’s performance

within the last cycle. This evaluation measurement is also subject to control interactions

of the user via the application interface provided at Layer 3. An external change of the

evaluation incorporates the possible flexible character of technical systems (i.e. the setting

of new goals).

(2) Besides the evaluation measurement, a quantification of the similarity between

situation descriptions provided by the observer is needed. Due to the divergence induced

by continuous values, the system needs a possibility to compare situations and compute

their similarity. Therefore, the engineer has to define a formula to compare these situation

objects.

(3) Finally, the observer can take prediction values into consideration when processing

and augmenting the observed attributes in order to provide a complete situation description

for the controller. Thus, an optional prediction model has to be defined. For some attributes,

prediction models exist (e.g. for the prediction of movements of neighbouring nodes [124]) –

they can be adapted for the corresponding attributes. Alternatively, these models have to

be developed and integrated into the framework.

Similar to the encapsulation of the SuOC and its Layer 0, Layer 1 remains fully operable

if higher layers fail. In this case, the adaptive control loop defined by the Layers 0 and 1

will still work as designed; but the absence of Layer 2 will lead to a static set of possible

52 CHAPTER 3. SYSTEM DESIGN

actions, which restricts the behavioural repertoire. Furthermore, Layer 1 is characterised

by its response time. Since the system has to work under real-world conditions, it has to

be able to react immediately on observations. Thus, both – the observer and the controller

part – cannot perform complex and time-consuming calculations. Especially a validation of

possible actions cannot be performed within feasible boundaries. Due to these restrictions,

the controller acts on pre-evaluated solutions – the safety consideration affects the set of

possible actions by only allowing tested solutions.

Finally, the system’s Layer 1 has to perform real-world learning. Thus, it is able to

self-improve over the complete operation period. This learning affects the quality of the

action-selection and results in a better system performance. Due to safety reasons, the

learning mechanism works on a defined set of possible actions at the beginning. Afterwards,

the behavioural repertoire is extended using the Layer 2 component and its sandbox-learning

mechanism.

3.3.3 Layer 2: Off-line Learning

The Layer 2 component of the architecture is responsible for extending the behavioural

repertoire of Layer 1 in case of unknown situations or insufficient knowledge. Thus, the

component realises the creative part of the system by implementing the sandbox-learning

principle. Such an off-line exploration allows to find appropriate actions without actually

having to test different alternatives in the real world. The latter could be detrimental,

as testing out potentially bad strategies in the real world can cause tremendous cost and

cause the system to fail permanently. Hence, it is guaranteed that the trial-and-error part

(which is necessary for unsupervised automated learning, see e.g. [125]) does not affect the

performance of the SuOC.

The Layer 2 component works on-demand – every time the Layer 1 component does not

know an adequate response to observed situations (e.g. no actions are known or only actions

which proved to be unqualified), it creates an optimisation task for Layer 2. The observer

of Layer 2 utilises the same pattern as discussed for the control loop at Layers 0 and 1 by

monitoring the adaptation component of Layer 1. If an optimisation task occurs, it is passed

to the controller, which is responsible for generating a new rule. In addition, the Layer 2

observer has to monitor the system resources and their utilisation by other tasks. Consider,

for instance, a standard PC performing an additional Peer-to-Peer client to download large

files from the overlay network (see Chapter 7.3.3). The generation of a new rule relies on an

optimisation task, which is performed using simulations as metric. Both – optimisation (a

large set of trials) and simulation – require high effort in terms of resource usage (CPU and

RAM). During such a rule-generation process, load situations might appear where a PC will

react slowly and does not provide the normal convenience for the user. Consequently, the

protocol adaptation has impact on the user and is not transparent anymore – this impact

3.3. SYSTEM ARCHITECTURE 53

has to be avoided, otherwise acceptance problems will occur. Thus, the Layer 2 observer

monitors (and maybe predicts) the resource utilisation – the controller is only activated

during idle times.

The controller of Layer 2 is responsible for generating new rules. It receives the opti-

misation tasks and has to find the best possible action for these conditions. Therefore, it

combines an optimisation heuristic [126] with a simulation component. The optimisation

heuristic generates the particular candidate settings for the SuOC based on a target-oriented

approach. The performance of the candidate within the simulator serves as measurement

for its quality. Based on a “survival of the fittest” concept, the best setting is found after

several iterations of the optimisation cycle. The architecture defines the need of such a

technique, while Chapter 4.2 presents an investigation on which particular technique should

be used. A model-based planning is always limited by the necessary simplifications made

in the model. Thus, the best action with respect to the model is not necessarily the best

action with respect to the real world. Therefore, Layer 1 is allowed to fine-tune the selection

process by choosing between closely-situated conditions.

The second part of the controller is the simulation tool. Since nowadays many technical

systems are tested and developed based on simulations before building them or applying

them to the real world, simulation tools for nearly all significant technical solutions are

available. For those cases where no professional tool exists, an abstract implementation

of the problem and the system’s behaviour using Multi-Agent Toolkits like Repast [127] or

Mason [128] might be possible. Apart from the specific simulator, the purpose is to test

the behaviour of the SuOC with the parameter set generated by the optimisation heuristic

without applying it to the productive system S and the real environment.

The simulation tool itself has to be configured using a simulation model. This model

defines what exactly has to be simulated. It specifies the simulated SuOC’s status (e.g.

topology, abilities, disturbed components, etc.) and the environmental conditions (e.g.

neighbours, measured conditions). The situation description received from the observer has

to be turned into such a model by considering the internal values. In addition, the simulated

SuOC is configured using the parameter setting to be tested. For instance, the previously

used example of urban traffic control can be considered as follows. The simulated intersection

controller is configured with the control plan to be tested. Furthermore, the situation in

urban road networks might be defined using the observed traffic flow (in vehicles
hour) for all

turning movements crossing the intersection. Most importantly, the simulation relies on a

realistic model of the intersection’s topology. The simulated traffic is generated according

to specific car-arrival-patterns from the field of traffic engineering. The amount of cars

simulated for each turning represents the measured values from the situation description.

In contrast, the control of data communication protocols relies on other simulation tools.

Their purpose is to represent real-world data communication with all possible effects (lost

packets, sending distance in wireless networks, dispersion models, etc.). For instance, a sim-

ulation of a mobile ad-hoc network mainly relies on the protocol’s state machine, a movement

54 CHAPTER 3. SYSTEM DESIGN

model for the nodes, a message model, and a distribution of nodes within the simulated area.

Thus, the situation description will cover an aggregated view of the neighbours’ positions

in order to find the best parameter setting for these conditions.

In order to enable the rule generation of Layer 2, one final task has to be fulfilled by the

engineer. He has to provide the previously discussed simulation tool and the corresponding

simulation model. The current framework has already integrated tools for traffic control

(Aimsun [129]), data communication (NS-2 [130], Omnet++ [131]), and Multi-Agent Sys-

tems (Mason [128], Repast [127]).

The Layer 2 component of the proposed framework is responsible for the off-line genera-

tion of rules (mappings of situations to actions). In comparison to the Layer 1 component,

it is characterised by a larger time horizon: no immediate answer is needed for a given

stimulus. Thus, a possibly delayed response due to model-based evaluation is possible. This

simulation-based learning represents the creative part of the whole system, since it is respon-

sible for discovering new actions. The corresponding trial-and-error part when discovering

new actions takes place in a “sandbox” – the simulation tool. Thus, the safety-critical part

of the learning process does not influence the real-world system.

Besides the safety aspect, Layer 2 has another key-characteristic – the effort. In contrast

to the relatively light-weight processes on Layers 0 and 1, simulation-based optimisation

requires high computational effort mainly provoked by the simulation tool and the large

number of simulations caused by the optimisation process. Although Layer 2 acts under a

larger time horizon, it also dictates the speed of the self-optimisation – it remains the only

possibility to extend the behavioural repertoire of Layer 1.

3.3.4 Layer 3: Regional Cooperation

The highest layer of the architecture (Layer 3) provides the basis for communication and

collaboration between neighbouring systems. In contrast to the other three layers, the

tasks and responsibilities of Layer 3 are not completely part of the focus of this thesis,

since collaboration and cooperation is highly application-specific and cannot be covered by

a generalised approach. Albeit, it provides basic key features of the system, which are

discussed in the following. Additionally, some further application-specific mechanisms are

outlined when discussing the particular applications, see Chapter 6.4 as example for the

OTC system.

As depicted in Figure 3.2, Layer 3 is not designed following the concept as used for

the three basic layers. Instead, it embraces the basic system (defined by Layers 0 to 2) by

providing collaboration and communication capabilities for possibly all contained elements.

Furthermore, it defines the interface to the user of the resulting system. User interaction

will mostly follow two main targets; the corresponding entities are explained in the following

part of this chapter:

3.3. SYSTEM ARCHITECTURE 55

• a) control and analyse the system’s status and performance, and

• b) change or manage the system’s goal, which allows for flexibility in terms of OC [16].

Connection to Layer 0: The connection between Layer 3 and Layer 0 aims at ex-

tending the perception area of the isolated entity (framework and SuOC). The basic system

(Layers 0 to 2) is designed to operate on local information only, which might not reflect the

complete available information at the particular node. To alleviate this restricted percep-

tion, the Layer 0 components of directly neighbouring systems can be allowed to exchange

their sensor information through Layer 3. Considering the initially named example of ur-

ban traffic control at intersections, an exchange of sensor information between neighbouring

intersection controllers can be used to improve the switching decisions of traffic-adaptive

controllers. For instance, so-called NEMA-controllers [132] take gaps in arriving vehicle

queues into account – closely situated intersections are able to determine the best gaps in

the approaching traffic based on sensor data of their neighbours.

Connection to Layer 1: Besides a direct exchange of sensor data at Layer 0, communi-

cation on a higher abstraction level is performed between neighbouring Layer 1 components.

This communication can affect both – the observer and the controller part of Layer 1. The

observer is responsible for aggregating and augmenting the collected data from Layer 0 in

order to provide a situation description that reflects the current status of the system and

its perceivable environment. In this context, collaboration can provide a possibility for the

observer of Layer 1 to build even more reliable situation descriptions. Considering the traffic

control example, the observer can generate an improved prediction of the traffic situation by

taking the neighbours’ current situation into account, since this traffic will probably arrive

within a given time interval at the corresponding incoming section. Such an improved pre-

diction allows for an earlier adaptation of the parameter settings and consequently allows

for further increasing the SuOC’s performance.

In contrast, the controller part directly affects the adaptation strategy for the SuOC’s

parameter settings. Collaboration mechanisms can be applied to negotiate the particular

configurations of some parameters. For instance, urban intersection controllers are typically

coordinated along large traffic streams such as main arterial roads to form so-called Pro-

gressive Signal Systems (PSS). Therefore, the begin of a cycle is adjusted in such a way that

arriving vehicles on coordinated streams do not have to wait at red traffic lights when arriv-

ing at the next intersection. This parameter defining the relative begin of a cycle is called

offset (see Chapter 6.4.1) and can only be determined appropriately among neighbours.

Connection to Layer 2: The connection between Layer 2 and Layer 3 of the archi-

tecture affects the sandboxing. Simulation-based learning has the drawback of depending

on the availability of computational power. Some scenarios will not allow for an on-demand

usage of Layer 2 as originally implied by the architecture. For instance, a population of en-

tities might contain a subset coming with less energy and computational power, e.g. nodes

in wireless sensor networks (see Chapter 7.3.2). However, a situation-aware adaptation has

56 CHAPTER 3. SYSTEM DESIGN

to be possible. Therefore, collaboration comes into play, which provides external Layer 2

capabilities by sharing those of neighbouring nodes. Beside this extreme example of a com-

pletely missing Layer 2, further even more popular possibilities are feasible. Neighbouring

nodes can share their Layer 2 resources in case of idle times or return after failures. Fur-

thermore, double creation of similar rules can be avoided by exchanging existing rules. Such

a mechanism has been exemplarily investigated for the Organic Network Control System in

Chapter 7.4.

Connection to the user: Finally, Layer 3 incorporates the flexible character of an

OC system – the user or administrator has the opportunity to change the system’s goal

at runtime. Therefore, the goal manager provides access to the current objective function,

which is considered by the learning component of Layer 1 when determining the reward for

the last evaluation cycle and by the rule-generation component of Layer 2 when rating the

performance of a candidate parameter set within the simulation tool. As example for such

a change of the objective function serves again the traffic control domain. In high traffic

periods, the predominant goal is to optimise the throughput. In contrast, the goal during

low traffic periods might be adapted to decrease the delay times caused by red traffic lights.

In addition, Layer 3 incorporates the functionality to monitor the controlled system and its

behaviour – the user interface is situated here.

Due to the application-specific character of Layer 3, there are no well-defined tasks

like for the other layers when applying the framework to a new system. But the system

has to be able to communicate with its neighbours. Therefore, two basic components are

necessary: a communication interface for physically exchanging messages between entities

and an identifier for entities to recognise others. Within this thesis, these two components

are assumed to be available.

The Layer 3 component provides a basis for on-line communication and collaboration be-

tween neighbouring systems. Since the purpose of collaboration mechanisms is application-

specific, the component is mainly characterised by the application domain of the controlled

SuOC. Correspondingly, the communication itself is characterised by the particular enti-

ties. For instance, communication in data communication networks as considered by ONC

(see Chapter 7) can be established by taking advantage of the underlying communication

channel of the SuOC. But even in such networks the communication differs: latencies and

delays, link reliabilities, or delivery ratios of transmitted packages change with the type of

the network. Similarly, each intersection controller in urban road networks is assumed to

be connected with its direct neighbours, which reduces the problem to the one of ONC.

But – in some cases – such an assumption might not be possible. Here, further technical

equipment is needed or Layer 3 has to be deactivated.

3.4. DISCUSSION OF REQUIREMENTS 57

3.4 Discussion of Requirements

Based on the previously presented architectural design of the framework, the next section

discusses how the requirements as introduced in Chapter 2.1 are fulfilled:

A) Adaptivity: The control mechanism provided by the framework enables adap-

tivity for the parametrisable system. It adjusts variable parameters to changing internal

and external conditions.

B) Robustness: The control mechanism provides robustness against a set of dis-

turbances. In cases where the standard system would suffer due to unexpected behaviour,

the adaptive version reacts and is able to find acceptable solutions within the granted degree

of freedom. In this context, disturbances are not only failures and misbehaviour of individ-

ual components, but also unexpected situations where the static setup of parameters leads

to a dissatisfying system performance.

C) No interference with the system’s logic: The architectural design of the frame-

work wraps existing parametrisable systems and provides OC-characteristics for static sys-

tems (Layer 0). The framework does not interfere with the system’s logic – the com-

munication is realised using well-defined observation and adaptation interfaces.

D) Operability: Each layer of the system encapsulates a specific part of the logic – the

underlying SuOC is able to continue its work (remain operable) in cases where Layer 1

or 2 fail. It just falls back to a static character again by keeping the last configuration.

E) Flexibility: Besides disturbed situations, interventions of the user have to be cov-

ered. A possibility of flexible goals is foreseen allowing the user to exchange goals at

runtime.

F) Vast situation and configuration spaces: The system is designed to deal with

vast situation and configuration spaces. Due to the two-layered learning concept, it

can appropriately react on unanticipated situations.

G) Self-improvement: Layer 1 contains a learning component responsible for self-

improving the action-selection process at runtime.

H) Restricted exploration: The sandbox of Layer 2 and the boundaries for the learn-

ing component of Layer 1 restrict the trial-parts of learning – only pretested solutions

are allowed. Since a pretesting at design time is infeasible due to the vast situation spaces,

a sandbox solution is foreseen. This mechanism tests and evaluates possible actions for a

given situation at runtime without interfering with the productive system.

I) Decentralised operation and collaboration: Layer 3 provides decentralised

collaboration possibilities allowing for a controlled self-organised behaviour of several co-

operating elements.

J) Comprehensibility: The system design provides interfaces for monitoring. In ad-

dition, the actions performed by the additional adaptation component can be traced and

reconstructed – thus, the system’s behaviour is comprehensible to users.

K) Real-world requirements: The control mechanism of the framework can deal with

58 CHAPTER 3. SYSTEM DESIGN

real-world requirements, i.e. all kinds of improper inputs, noise, and continuous values.

L) Generalised approach: In general, the framework is applicable to all kinds of

technical systems. Four examples are introduced in the remaining chapters. In order to

investigate the general applicability, Chapter 8.3 provides a detailed analysis of this topic.

As a summary, the control mechanism provided by the proposed framework fulfils all

defined requirements as introduced in Chapter 2.1.

3.5 Summary

This chapter discussed the target definition and the scope of the proposed system, followed

by a detailed explanation of the architecture and its components. The resulting framework

allows for on-line adaptation of an existing system S to changing environmental conditions.

The architecture distinguishes between four different layers. The lowest layer (Layer 0)

wraps an existing technical system S into the framework by providing access through two

basic interfaces: one for the observation of the SuOC’s and its environmental status and one

for altering the parameter settings. In combination with the on-line adaptation component

of Layer 1, Layer 0 forms a first control loop of the system. Based on automated learning, the

system is able to improve its performance due to an optimised parameter-selection behaviour

over time.

The developed system provides a self-optimising behaviour with respect to the param-

eter selection. Therefore, automated learning is used without the drawbacks of “normal”

learning: trial and error. In order to guarantee that the system does not lead to failures

affecting the system’s performance significantly, two main differences to standard learning

approaches have been developed. The first restriction affects the set of possible choices

for the learning component – it is only allowed to select parameter sets that have been

generated for similar situations. Secondly, the explorative part of the learning component

is encapsulated and transferred to Layer 2 – this layer incorporates the sandbox-learning

paradigm. Parameter settings are tested under simulated conditions before they are applied

to the real system.

The basic system is defined by the Layers 0 to 2 and describes an isolated autonomously

acting system. Through the additional Layer 3, communication among and collaboration

between neighbouring systems is enabled. Collaboration is application-specific and ranges

from exchanging sensor data to negotiating parameter settings. The presented framework

is designed to provide a generalised solution. However, some basic tasks have to be fulfilled

before the framework is able to control a new system S and thus adapt it to changes in the

environmental conditions. Besides typical smaller implementation issues, these are mainly

the following five tasks:

1. Situation (observation model): All internal and environmental attributes having

3.5. SUMMARY 59

impact on the selection process or the performance measurement need to be available

through the observation interface of Layer 0.

2. Similarity measurement: The selection process of the learning component needs

a measurement of similarity for the situation descriptions to be able to choose only

nearby rules.

3. Performance metric: The self-optimising behaviour of the framework is based on

the existence of a metric defining good and bad behaviour.

4. Configuration space (variable parameters): Obviously, a framework that is de-

signed to alter parameters of systems at runtime has to know which parameters have

to be changed.

5. Simulation model: If not already contained in the framework, a simulation tool and

a realistic simulation model are needed to enable Layer 2 sandboxing.

The next chapter investigates which techniques should be applied to the learning task

at Layer 1 and the optimisation task at Layer 2.

60 CHAPTER 3. SYSTEM DESIGN

Chapter 4

Design Choices

The previous chapter introduced the framework’s architecture with a special focus on dis-

cussing the particular layers and their responsibilities. In addition, the tasks of the layers

have been outlined by defining abstract responsibilities. In contrast to this abstract focus,

this chapter investigates these particular tasks in detail and determines solutions for possible

design choices. For instance, the machine learning part of the architecture’s Layer 1 compo-

nent is defined based on its responsibilities and the designated result. Therefore, a specific

technique is needed, which is capable of fulfilling the corresponding tasks. Hence, the first

part of this chapter analyses the learning task, identifies possible techniques, and discusses

the usage of these different mechanisms. Based on an additional comparative study within

one exemplary application scenario, the achieved results of using these candidate techniques

are compared.

Considering the architecture as depicted in Figure 3.2, a design choice like the one for

the learning problem is also situated at Layer 2: the rule-generation component. The

architecture defines the need of an optimisation heuristic that is capable of finding the best

possible parameter configuration for the SuOC in one particular situation. Much effort has

been spent on investigating fast and accurate techniques to optimise a given function –

thus, the problem is similar to the learning problem outlined before. Hence, the second part

of this chapter analyses the optimisation task, identifies possible techniques, and discusses

the usage of them in the context of the framework. Finally, both aspects (learning and

optimisation) are consolidated and a recommendation on which combination promises the

best results within the framework is given.

61

62 CHAPTER 4. DESIGN CHOICES

4.1 On-line Adaptation Using Machine Learning

In the first step, the question of how to realise the central learning component of Layer 1 is

investigated. Automated or machine learning has been a research area focussing on different

approaches and concepts to realise learning in technical systems for decades [133]. As a

result, a set of different techniques has been developed from which each single technique

is characterised by varying strengths and weaknesses. Thus, it is not the purpose of this

thesis to extend the existing set of different approaches, but to identify and adapt the most

promising ones according to the demands specified by the controller of Layer 1. Hence, this

section investigates the learning component of Layer 1 in detail and determines the most

promising way to realise the learning task. The investigation of the learning component

builds on previous research presented in [134].

Initially, the term “machine learning” needs to be defined to specify the context within

this thesis. Based on this definition, the special characteristics of the learning problem

are determined. Afterwards, possible techniques capable of coping with the problem are

identified and adjusted to meet the specific demands. Thereby, typical problems from the

field of machine learning are considered as reference and basis for a comparison. To validate

these analytical considerations, an empiric investigation has been performed that compares

the identified candidate techniques in an exemplary setting.

4.1.1 Term Definition: Machine Learning

Machine Learning (ML) is a well-established research area and has its origins in Artificial

Intelligence [135]. It forms a superordinate concept for all types of artificial knowledge

generation in computer systems based on experiences. Typically, an artificial system learns

by means of examples and is able to generalise them. The target is not to simply store

mappings between an input ij and an output ok in the form of ij → ok, but rather to

“recognise” the regularity within the sample data. This is necessary, since such artificial

systems aim at being capable of classifying and handling previously unknown or unforeseen

data.

ML techniques have been successfully applied to various application areas. Currently,

they are mainly used in domains like data analysis, data mining, and pattern recognition

[133]. Nowadays, an increasing distribution can be observed in all kind of “intelligent”

systems, which are able to adapt themselves according to changing conditions [136]. These

obviously heterogeneous application domains have motivated researchers from different areas

to develop definitions for the term machine learning (or the basic learning problem) suiting

perfectly to their special demands and interests. Thus, a consideration of learning within the

proposed framework has to start with determining a definition that clarifies the demands of

the particular component. Therefore, the most important term mentioned in the previous

paragraph is taken into account: experience. Scientists like Alpaydim [136] summarise ML

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 63

as meaning to program a computer in such a way that a given performance measurement

is increased by taking example data and historical experiences into account. More formally,

the definition given by Mitchell is used in the context of this thesis [125]:

Definition 4 (Learning Problem) A computer program is said to learn from experience

E with respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E.

Mapping this definition to the framework and the considered application scenarios, the

common problem becomes visible. The traffic control system has to select the duration of

green times at an intersection according to a given performance criterion (e.g. minimise de-

lays at the intersection). Based on the expected reward determined by the simulator when

generating the parameter set and experiences with the parameter set in previous cases, the

learning component can increase its selection strategy of the signal plans. Furthermore, the

control of data communication networks has to select network protocol configurations (like

buffer sizes, delays, etc.) according to a particular performance criterion (e.g. decrease the

overhead in mobile ad-hoc networks). As a summary, the problem defined by the frame-

work’s design is to increase the system’s performance by means of some kind of performance

criterion due to experiences – and accordingly an improvement of the parameter selection

strategy over time.

4.1.2 Characteristics of the Learning Problem

In literature, ML techniques are usually applied to artificial scenarios like controlling an

inverted pendulum [137], the approximation of a mathematical function [138], or choosing

the movements of an agent on a grid (the Woods-scenario [139]). Further popular applica-

tion scenarios with a more realistic background (as e.g. discussed by Mitchell [125]) include

learning to recognise spoken words [140], to drive autonomous vehicles [141], to classify

astronomical structures [142], or to play games like backgammon [143]. Although these ex-

amples represent a variety of different tasks for the responsible learning component, different

ML techniques can be used to realise the learning part – meaning they are able to improve

the behaviour of the automated system over time by taking experiences into account. In

addition, each learning problem has its own characteristics leading to the observation that

not each technique is applicable for each problem domain.

Consequently, the question arises how the learning problem of the Layer 1 component

is characterised in contrast to the already investigated problems. Although some of the

mentioned problems have a real-world background (e.g. recognise spoken words, drive au-

tonomous vehicles), most of the problems in literature are artificial, whereas the framework

of this thesis is designated to solve more complex real-world problems from different do-

mains. Hence, the first main difference to most of the already investigated problems is given

64 CHAPTER 4. DESIGN CHOICES

by the typical characteristics of real-world scenarios like insufficient information, noise,

need of fast reaction times, or disturbances.

Especially compared to the Woods-scenario or backgammon, the Layer 1 component is

confronted with highly complex and vast configuration spaces for both – input and output

variables. As a result, the system has to cover larger spaces for actions (configura-

tions) and situations. Considering e.g. the control of data communication protocols, the

situation (or condition) serving as input to the learning component can contain attributes

like available neighbours, available resources, or movements. Neighbours in mobile ad-hoc

networks can highly vary due to the context – the extreme values of the possible range are

defined 1) by no neighbours (alone in the countryside) and 2) by several thousands (during

a football match or a concert). For the control of urban traffic lights, values for delay times,

queue sizes, and traffic flows for each contained turning movement will be considered to

describe the situation – all these values are real values ranging again from zero to several

thousands. In contrast, the most important situation characteristic for backgammon is the

distribution of the gaming pieces along the 24 fields of the backgammon board. Similar

observations can be made for the action part. In comparison, the Woods-scenario consists

of 6, 561 different situations in its simplest setting and provides just four different actions

for each agent.

The third main difference is the missing final target state for Layer 1’s controller. For

backgammon or the Woods-scenario, the decision whether the agent has been successful or

not is simple: if it reached the target (Woods) or won the game (backgammon), it receives a

reward. In contrast, the continuous control of traffic lights at urban intersections or of data

communication protocols has no final target state. There is no single task to be completed

(like to find the food or keep the pendulum upright). The approach is based on a single-step

reward function, but the reward as measure for the quality of the last action is always noisy.

Closely connected to the problem of missing target states is the fourth difference: the

subsequent state is not deterministic. In literature, the function δ : S × A → S

is defined (with S the set of situations and A the set of possible actions) which results in

the state st+1. For the Woods-scenario, the mapping is deterministic: if the agent moves to

cell x, the agent will be at that cell in the next cycle. The same observation can be made

for the backgammon player – after his move, the opponent can choose from a set of valid

moves and adjust the setting of the game in a deterministic way. Considering the control of

mobile ad-hoc network protocols, the effect is not that simple – the subsequent state is also

influenced by joins/leaves of other nodes or collisions on the channel – but this information is

transparent for the system. Similarly, the urban traffic control system can predict a change

of the delays for turning movements caused by a change of the control strategy – but there

are mutual influences with the selection strategies of its direct neighbours.

Besides the subsequent state, other attributes are non-deterministic compared to stan-

dard problems – the one with the highest influence is the non-deterministic reward.

Considering again the previous examples, the contrast is clearly visible. Within the Woods-

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 65

scenario, the agent receives a fixed reward for finding the food. The same setup is used for

winning the backgammon game or keeping the pendulum upright. Although the Layer 1

component adapts the parameter configuration, the impact on the reward cannot be pre-

dicted absolutely correctly in advance, since other influential factors cannot be measured.

The action of the system might have been correct, but environmental factors can disturb

the effect in a way that the reward leads to a bad classification of the action. As example,

the Peer-to-Peer filesharing protocol “BitTorrent” can be controlled by the proposed system

with the reward defined as using the achieved download rate of the client. This download

rate is influenced by the configuration of the protocol parameters, but also by factors the

agent cannot even observe. As one example, a high load on the underlying network caused

by other applications can lead to a decrease of BitTorrent’s download rate and consequently

to a bad reward. Thus, the agent cannot assume that action a applied to situation s will re-

sult at each time ti in reward r(s, a); but rather the reward can be modelled as a randomised

variable with the expected value E[r(s, a)].

Probably all classical ML techniques are based on the existence of experiences E either

at design time or at runtime. The performance of the learning rate depends strongly on the

number of learning cycles – simplified, one can state that as more different experiences E

are available the better is the learning performance of the system. In some cases, this effect

can turn in the opposite direction (see “overfitting” problem in Neural Networks [144]).

Thus, the approach relies on a large number of learning cycles. In contrast, real-world ap-

plications have the problem that only few evaluation cycles are possible – in contrast to

simulated environments where all possible stimuli can be generated and analysed extremely

fast. Thus, the number of evaluations is restricted by the normal time of the day. Further-

more, the most prominent situations will account for the largest fraction of situations, while

other situations will only occur seldom (and hence are evaluated once in a while). A system

might be trained in advance, but the problem of on-line learning is still present, since only

a small fraction can be considered at design time.

As a conclusion, we can state that the learning problem of the Layer 1 component has its

own characteristics compared to standard learning problems. Hence, there is no commonly

agreed standard solution from literature to be obviously applied. Thus, the following part

focuses on determining candidate techniques and adapting them for an application in the

framework.

4.1.3 Machine Learning Techniques for Layer 1

Based on the preceding consideration of the learning problem’s characteristics, the next part

of this section deals with the question of how learning has been covered by research and how

these results can be applied to the particular problem defined for Layer 1. In addition, the

question arises which of the existing concepts from literature are applicable and how they

66 CHAPTER 4. DESIGN CHOICES

have to be adapted to match the initially formulated safety restrictions.

Therefore, a first step is to classify existing approaches of machine learning to create

a basis for the succeeding question of which techniques are promising candidates. Several

different classifications are known in research, one of the most popular ones is based on the

way knowledge exists in the particular learning techniques: symbolic systems (propositional

logic, predicate logic) where knowledge is represented explicitly by examples and induced

rules are distinguished from subsymbolic systems like Artificial Neural Networks (ANN),

which are trained to show a specific behaviour, but which do not provide insights into the

“learned” solution process – here, knowledge is implicitly represented.

Based on Definition 4, one more popular aspect to distinguish between different classes

of ML techniques is given by the question of how the experiences E are present. Consider,

for example, a computer program controlling a player in the game four in a row. One

possible approach might be to provide a trainer that determines the ideal moves for specific

situations. Alternatively, the experiences E can be present in a more indirect form – the

automated player receives a feedback at the end of the game. Based on the outcome, it can

analyse whether its sequence of moves has been successful or not. The two possibilities are

representatives for two more generalised learning concepts: Supervised Learning realises the

learning (or training of the system) by providing examples and Reinforcement Learning by

means of reward or punishment (reflecting a positive or negative outcome).

Supervised Learning (SL) assumes to have an appropriate set of input and (correct)

output pairs available at design time. Typically, techniques from the field of SL are applied

to classify large data sets where an expert-classified subset already exists (see e.g. LeCun

et al.’s detection of handwritten digits [145]). Thus, a prerequisite for applying SL to the

learning task of the framework is the availability of optimal actions for different kinds of

situations – ideally covering the complete situation space. What seems to be manageable

for handwritten digits, is dramatically more complex for the control of varying technical

systems. For handwritten digits, a validation is based on a configuration space of 10 different

possibilities (the digits “0” to “9”). In contrast, a validation of correct matchings within the

proposed framework depends on an optimisation component and the possibility to oversee

the complete situation space at design time. Although the former aspect is potentially

feasible, it is time-intensive and requires large computational effort. Even more limiting is

the latter aspect. Typically, the situation space is too vast. In addition, a trained SL-system

is not able to take a feedback of the environment into account and is consequently not able

to further improve at runtime (or react appropriately to unanticipated situations).

The most famous representatives of SL are Concept Learning [146], Decision Trees [125],

Bayesian Belief Networks [147], or Artificial Neural Networks [148]. Although they de-

scribe different approaches and even different types of representing knowledge (implicitly

vs. explicitly), they all are based on a pretraining at design time and a succeeding static

configuration at runtime. Thus, SL techniques are not applicable to the framework.

Reinforcement Learning (RL) differs fundamentally from SL. Although the system

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 67

also learns mappings between situations and actions, it is not supported by an external coach.

There is no training set allowing to derive a policy or generalise inherent correlations. In

contrast, the learning approach depends on receiving a feedback of the performed actions

providing the possibility to evaluate its decisions automatically. This evaluation is done

by receiving a numerical reward quantifying good or bad performance. If the initial state

has been improved by the last action (or set of actions) considering the particular task, the

system receives a high reward. In contrast, the system receives a low or even a negative

reward, if the chosen action has proven to be ineffective or bad [133]. Since the SuOC’s

performance needs to be quantifiable using numerical values, the basic concept suits the

initially defined requirements for learning in the developed framework.

Due to the on-line learning capability, RL is a widely investigated domain resulting

in various different solutions. Within this domain, three major concepts have to be distin-

guished: Temporal Difference (TD) learning [143], Q-Learning [149], and Rule-based learning

[133]. TD Learning has been introduced by Samuel in 1959 [150]. He investigated possibili-

ties to develop an automated player with learning capabilities for the board game Draughts.

The concept relies on an evaluation function for all states of the board – such a function

estimates the probability that the own player wins. The estimations for succeeding states

serve as training input for preceding states [151]. This simple concept is also the main prob-

lem for the application to the framework’s learning problem. The next situation is predicted

based on the historical ordering of situations – this assumes a strong dependency between

situations and neglects unanticipated events like disturbances.

Q-Learning is an extension of TD and has been initially described by Watkins in [149].

He adapted the concept by changing the purpose of the evaluation function – it describes

pairs of states and actions. The system learns a function Q mapping a pair of situation and

action onto a numeric reward:

Q : S x A → R (4.1)

If the system considers the expected reward as selection criterion, it has to determine

that action maximising Q for the given situation. In classic Q-Learning [149], this selection

process is done using a look-up table storing all pairs of situations and actions. Such a look-

up table is not feasible for continuous and vast situation spaces. Beyond look-up tables,

TD learning has been equipped with different update prediction functions (like function

approximation) all trying to reduce the limiting effect defined by look-up tables. But even

these variants have major drawbacks. They are not concordant with the safety-restrictions

of Layer 1’s learning component and there is no possibility to combine the approach with

Layer 2’s sandboxing.

Based on the early TD and Q-Learning approaches, Rule-based learning emerged as

a further reinforcement-based method. Early work by Holland [152, 153] served as ba-

sis for further developments, leading to one of the most active and well-documented areas

68 CHAPTER 4. DESIGN CHOICES

in genetic-based machine learning [154]. As a result, Learning Classifier Systems (LCS)

[155] and the closely connected Fuzzy Classifier Systems [156] are well-established concepts.

Classifier systems store knowledge explicitly by using rules (the so-called classifiers), which

allows for a comprehensibility of their behaviour. They learn on-line by receiving a reward

from the environment and updating the performance values assigned to the classifiers. Clas-

sifier systems fulfil most of the requirements formulated for the learning task of Layer 1; the

most significant deviation can be observed when considering the rule-creation process and

the selection-base of the system. Thus, they are modified in the remainder to fully match

the demands.

Besides the two popular concepts SL and RL, several other directions of research are

known in literature. But these concept are neglected for varying reasons. In some cases,

mathematical inference and reasoning is used, which cannot be applied to the problem due

to inappropriate information and the lack of a consistent world model. In other techniques,

knowledge about the fitness landscape defined by the learning problem is required (see e.g.

[125, 136] for the previous examples). The discussion named only a few criteria why some

concepts are not applicable and others serve as basis for further adjustments. Thus, it sum-

marises the investigation performed on the basis of the initially formulated requirements

for the learning component and the special characteristics of the learning problem as in-

troduced previously. As a result of this process, a matrix has been generated classifying

each considered learning technique according to these criteria – this matrix can be found in

Appendix A.

4.1.4 A Modified Real-valued Learning Classifier System

As stated before, the most promising candidates are rule-based systems. Since there is no

adequate rule set in advance and due to the need of an improvement over time, simple

rule systems mapping a situation to an action are not useful. Instead, learning rule-based

systems are needed. The most prominent representatives are Learning Classifier Systems

(LCS). The field of LCSs as introduced by Holland in the 1970ies [152, 153] is probably one

of the best-investigated genetic-based machine learning domains in literature [154] and is

founded on the concepts of reinforcement learning. Holland describes the basic approach as

a three-step process:

• classify the input,

• choose an appropriate action, and

• gain experience from observing the behaviour [155].

This reflects exactly the learning problem outlined by the architecture at Layer 1.

In literature, two broad categories of LCS are known: Pittsburgh and Michigan style

classifier systems. The former one is based on concepts proposed by researchers at the

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 69

University of Pittsburgh [157, 158]. This type of LCSs focuses on learning as an off-line

optimisation process. In contrast, researchers at the University of Michigan investigated

on-line learning systems. Since an on-line learning is targeted here, Pittsburgh-style is

neglected and Michigan-style is meant when discussing LCS in the following. Considering

the Michigan-direction in LCS research, the eXtended Classifier System (XCS) as proposed

by Wilson [159] is widely accepted as one of the most prominent variants and serves as basis

for several extensions. Figure 4.1 describes the typical schematic design of an XCS – the

basic concept is explained in the following, while the reader is referred to the literature for

further details and a detailed algorithmic description [160, 161, 162].

Environment

ρ ε F
#011 : 01 43 .01 99
11## : 00 32 .13 9
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92
1#01 : 10 24 .17 15

…

max

0011

#011 : 01 43 .01 99
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92

00 01 10 11
nil 42.5 nil 16.6

discount +

GA

Effectors

Detectors
Population [P]

Match Set [M]
Prediction Array

Action Set [A]action
selection

#011 : 01 43 .01 99
001# : 01 27 .24 3

Previous Action Set
[A]-1

Reward

Action: 01

Figure 4.1: Schematic overview of an XCS according to Wilson [159]

In general, an LCS is designed to learn the best action for a given situation – which

is typically defined as a vector of numerical values. In this context, best specifies that

action resulting in the highest reward. Therefore, the system contains a set of possible

actions from which it can choose the most promising one. The quality of this selection

process is improved over time by taking the reward into account – this value represents

the experience as mentioned in Definition 4. In other words, the environment provides

some kind of reinforcement (also called payoff) serving as a measure for the quality of

the last actions performed by the LCS. Considering the application within the proposed

framework, the success of the SuOC’s adaptation process is quantified by some kind of

performance measurement for the SuOC. Based on such a performance measurement, the

LCS can determine whether it is promising to choose a specific action again for a given

situation or not.

70 CHAPTER 4. DESIGN CHOICES

In order to fulfil the described task, the LCS operates on large sets of rules, so-called

classifiers. Each of these classifiers represents a mapping of a condition (the situation) to

an action (a parameter set of the SuOC). Furthermore, it contains some rating attributes

– the learning is done by updating these rating attributes according to the performance of

the classifier when it has been applied to the system. A classifier within an XCS-style LCS

consists of several more attributes (see Figure 4.1) [160, 161, 162]:

• Condition: c ∈ C specifies the condition part of the classifier – the situation for

which the classifier can be applied. C is defined as the complete situation space and

corresponds to the set Z in Chapter 3.

• Action: a ∈ A specifies what the system does, if the classifier is chosen in the partic-

ular situation. A correpsonds to the set CS as introduced in Chapter 3.

• Prediction: The prediction ρ is a forecast of the reward r, which is expected if the

proposed action ai is applied in the given situation cj .

• Error: The error ε is a measurement of the wrong predictions occurred within the

preceding evaluation cycles.

• Fitness: The fitness F reflects the reliability of the classifier’s prediction.

These five attributes define the core of a classifier. In addition, further values can be

found in different implementations, like the number of occurrences of the classifier in action

sets, the averaged size of these action sets, or the last time the classifier participated in

forming offspring. For the context of this thesis, these further attributes are irrelevant.

As depicted in Figure 4.1, the basic cycle of the XCS can be divided into two phases: the

performance and the evaluation (or learning) phase. The former one determines one action

and applies this to the live systems, while the latter one is used to learn from the achieved

experience by observing the corresponding effect in the controlled system.

Performance phase: Initially, the LCS contains a basic set of classifiers – the popu-

lation denoted as [P]. The performance phase begins with comparing the condition parts

of all contained classifiers to the stimulus as observed from the environment – the matching

classifiers become part of the match set [M]. Typically, [M] consists of several different

actions proposed by the contained classifiers, but the system needs only one. Consequently,

it has to choose the most promising one. Thus, the next step is to build a prediction ar-

ray [PA] assigning one real-valued measurement to each distinct action proposed by the

classifiers in [M]. In Wilson’s XCS, this value is calculated as fitness-weighted prediction.

As a result, each action in [M] is rated by a numerical value – based on the corresponding

distribution, the required action is chosen. Following these measurements for all actions in

[M], there are several different strategies known to choose the required action, which will be

applied to the controlled system. For instance, one can obviously always choose the most

promising one (highest-weighted prediction value), or rely on probability-based approaches.

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 71

Typically, a roulette-wheel-based determination process can be found in scenarios from lit-

erature [159], since this allows for a good trade-off between using the most promising action

and allowing others to proof their performance and consequently gain experience. All clas-

sifiers proposing the selected action form the action set [A]. The corresponding action is

performed afterwards and [A] is stored for later updating within the evaluation cycle.

Evaluation phase: The second phase – the evaluation phase – is responsible for updat-

ing the evaluation figures of the classifiers. This part of the process derives the knowledge

and stores it for further use. Since an XCS is an accuracy-based classifier system, the target

is to increase this accuracy κ over time by using Temporal Difference Learning techniques

[149]. After applying the selected action aj to the system, the performance is observed and

some amount of payoff is received. Based on this payoff, the performance values of all clas-

sifiers contained in [A] are updated according to the observation. Initially, the prediction ρ

of each classifier is altered in the direction of the payoff using a Q-Learning-like algorithm.

The approach takes the maximum figure as part of the prediction array into account and

discounts this by a factor (by multiplication).

In addition, each classifier’s (contained in [A]) prediction error ε and fitness f are updated

using the received payoff. Since the prediction ρ is a forecast of how the system will perform

using this classifier in the matching situation, the prediction error ε describes the mean error

of this prediction. In contrast, the fitness value f considers the accuracy of the classifier’s

prediction – it is computed as follows. Initially, the accuracies κ of all classifiers in [A] are

computed. Afterwards, the relative accuracy of each classifier is determined (divide κj by

the sum of all κi ∈ [A]). Finally, the fitness value f is determined based on this relative

accuracy, which makes f representing the accuracy of the particular classifier in relation to

the accuracies of those classifiers typically being part of the same action sets. Consequently,

a pressure is put onto classifiers to perform better than similar ones – according to the

principle “survival of the fittest”. More details of the update mechanisms for ρ, ε, and f

are given by Wilson [159].

Besides these two main phases of an LCS, an important question arises: where do the

classifiers come from? The answer to this question is founded on two different mechanisms:

1) the covering process and 2) the Genetic Algorithm (GA). If no matching classifier was

found during the building process of the match set, a classifier consisting of a condition

matching the current stimulus, a random action, and a default value is added to the rule base.

This process is called covering. Additionally, a reproduction cycle is started sporadically.

Within this cycle some classifiers are chosen to be “parent” individuals, and the genetic

operators crossover and/or mutation are applied to copies of these parents to form offspring,

which are inserted to the rule base [159]. Classifiers with high accuracy values are reproduced

more frequently than less accurate classifiers. In Wilson’s XCS algorithm, the generation of

offspring is performed on the action set, other variants consider the match set or the whole

population. For further details on this topic, the reader is referred to Wilson [139, 159].

72 CHAPTER 4. DESIGN CHOICES

Since the concept contains a mechanism to create new classifiers, it needs another mech-

anism to delete bad classifiers in order to keep the size of the rule-base at a manageable

level. The complexity of an LCS depends on the number of contained classifiers. In each

performance phase, the population has to be searched for matching classifiers. Afterwards,

only subsets of the population ([A] and [M]) are considered. The corresponding complexity

of the LCS is O(n) with n denoting the number of classifiers. In order to keep the search

feasible although new classifiers are created continuously, a mechanism to get rid of bad or

redundant ones operates on the population regularly. Wilson’s XCS is configured to keep the

population size at a given level. Therefore, the proposed concept selects existing classifiers

to be substituted stochastically whenever new classifiers are created.

Modifications of the original algorithm: Although LCSs are evolutionary on-line

learning systems, some modifications are necessary before using them for the control task

of the framework. The modifications described in the following part of this chapter are

based on previous work (cf. [163, 164, 2]). Existing systems like XCS (which serves as basis

for a modified version) create classifiers in a stochastic process and evaluate their quality

by applying their actions directly to the environment. For the task defined by Layer 1 of

the architecture, this is inadequate due to, for instance, the safety requirements formulated

before. In order to use an LCS within the proposed framework, both aspects of the classifier

generation have to be adapted: 1) the covering mechanism and 2) the rule generation using

GAs. The latter part is already considered within the architecture of the framework –

instead of using a GA on the action set [AS], new classifiers – or more precisely their action

parts containing the SuOC’s parameters – are evolved by an optimisation heuristic, which

uses a simulation software to evaluate the parameters’ quality with respect to a specific

situation. Due to this sandboxing, an approximate quality of a classifier is known even if

it has not been previously applied to the SuOC in the real environment. Although it is

assumed that the simulation models of Layer 2 reflect the reality, imprecisions induced by

the simulation-based evaluation are inevitable – however, the on-line learning performed

by the LCS is intended to cope with these limitations. During the overall operation time,

underperforming classifiers are sorted out – with underperform meaning that they do not

reach the best performance, but still do not behave badly.

The concept of the previous paragraph demands that Layer 2 is activated whenever the

LCS does not contain a matching or only inappropriate rules. Unfortunately, evolving good

parameters based on simulations takes time, while an LCS is expected to react on changes

in the observed environment immediately. Hence, a mechanism is needed that provides a

promising action, although the rule base does not cover the current stimulus – in Wilson’s

XCS, this is done by the covering mechanism. Again, this part has to be adapted, since a

randomised approach cannot be tolerated. Thus, covering is also customised by 1) selecting

a classifier located most “closely” to the unmatched situation and 2) widening its condition

as far as necessary to match the situation. The widening of existing classifiers located closely

to an unmatched situation enables an immediate response of the LCS while, on the other

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 73

a

bInput

A

B

x
2

x
1

q
1,B

p
1,B

p
2,A

q
2,A

Figure 4.2: Modified covering mechanism

hand, the situation-dependent quality of the parameter set remains (somewhat) predictable.

Figure 4.2 illustrates the concept of the modified covering mechanism using an example with

a two-dimensional situation space. The point marked “Input” in the two-dimensional space

describes the observed situation. In the example, the rule base contains only two classifiers:

A and B. Both classifiers cover a certain part of the search space defined by intervals in

each dimension. By copying A and B and widening their condition parts (the intervals)

as far as necessary, new classifiers are created that match the current stimulus. Based on

the discussed adaptations, the developed variant of Wilson’s XCS can be applied to the

framework and used as learning component.

Management of the rule-base: In addition, stochastically organised deletion of classi-

fiers is not useful if the generation is done using time- and resource-expensive optimisations.

Thus, the concept has been adapted as follows. Whenever new classifiers are created by

Layer 2, the mechanism searches for other classifiers covering the same condition and ex-

changes them by the new one. Typically, this happens if the covering component has copied

a nearby classifier. If no preceding classifier is found, a classifier is only exchanged when

matching the following conditions: 1) it has a given minimum experience (has been part of

action sets), 2) a relatively low fitness value (compared to the rest of the population), and

3) it has been created by covering. Layer 2-based classifiers are assumed to be optimal and

typically covering-based classifiers make up for the largest part of the population – thus,

they are preferably chosen.

Flexibility: Furthermore, XCS (like other LCS variants) does not cover flexibility is-

sues. A fixed fitness function is used considering the payoff and consequently updating the

performance values ρ, ε, and f of the classifiers. Currently, the approach has been extended

by storing such a triple (ρ, ε, and f) for each foreseen evaluation function of the system. This

allows the user to switch on-line between a set of given possibilities. Current research focuses

74 CHAPTER 4. DESIGN CHOICES

on more appropriate solutions [165]. Besides these previously explained adjustments, the

rest of the XCS algorithm as proposed by Wilson [159] remains untouched. The presented

variant has been implemented based on the reference implementation and its configuration

as presented in [161].

4.1.5 A Modified Real-valued Fuzzy Classifier System

Traditional LCSs as discussed before are designed to learn matching actions for situations

that can be represented as character strings [166, 139, 159]. This representation is not ap-

plicable to most of the real-world learning problems, because sensor data (which is the basis

of the situation) is typically characterised by continuous values and error-prone. Wilson (as

well as the adapted XCS variant presented before) deals with the problem by modelling the

condition part of the classifiers using intervals [167]. An alternative concept is formulated

by Fuzzy Classifier Systems (FCS, [168]) – it is inspired by the way humans percept their

environment. Typically, humans describe their perceptions by using qualitative expressions

like large and small or hot and cold. This classification is not based on objectively measur-

able boundaries – instead, they are subjective and fuzzy [169]. Classifiers for FCS map such

a fuzzy classification onto the condition part by introducing linguistic terms. In addition,

the continuous membership function µ(x) is needed quantifying the degree of membership

of element x in a linguistic term. Figure 4.3 illustrates such a membership function for the

example of humans describing the temperature. There are fuzzy ranges where a given tem-

perature belongs to two linguistic terms (e.g. 25◦ belongs to “cold” and “warm” with 50 %

degree of membership each). In order to enable this representation within FCS, Casillas et

al. [138] propose to use the disjunctive normal form (DNF) as follows:

IF ((X1 is Ã1) and . . . and (Xn is Ãn)) THEN (Y is B) (4.2)

where each input variable Xi represents a set of linguistic terms: Ãi = {Ai1 ∨ . . . ∨ Aij}.
The output variable Y is a single usual linguistic variable. In the original concept, the

classifiers have been encoded using the following scheme. Let (S [small], M [medium], and

L [large]) be the three linguistic terms for each input/output variable used in the example,

then the fuzzy rule

[IF (X1 is S) and (X2 is M or L)] THEN (Y1 is M) and (Y2 is L) (4.3)

is encoded as [100|011||23].

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 75

Temperature [° Cel]

µ

0 20 30 60 70

cold warm hot

Figure 4.3: Fuzzy Sets and memberships

Figure 4.4 describes the basic concept of

an FCS, which has already been applied to

various problems – like the control of au-

tonomous agents [170, 171] or cancer di-

agnosis [172]. The matching is based on

fuzzy sets and results in building the match

set [M]. Afterwards, several non-redundant

and consistent candidate subsets [CS] are

generated and the action set [A] is chosen

out of them. Finally, the fuzzy interference

is used to aggregate the actions contained

in [A] into one action ai that is applied to

the system via the effectors. Due to the fuzzy concept, some modifications of the original

XCS algorithm are required as discussed by Casillas et al. [156, 138]. The following part

describes the differences to the basic XCS algorithm:

• Match Set: The match set [M] is constructed by all classifiers with a matching degree

greater than zero for the current input.

• Prediction Array: In FCS, classifiers do not support one single action. In contrast,

they support different ones with a certain degree of membership. Therefore, the

[PA] is replaced by the computation of candidate subsets ([CS]). Each of these [CS]

is computed by grouping all classifiers matching the input into different groups of

consistent and non-redundant fuzzy rules Si with the maximum number of rules in

each group. Casillas et al. [138] use a greedy-based heuristic to generate these groups.

• Action Set: The previous step resulted in several different candidate subsets. From

this set, one candidate set is selected as Action Set: [A] is that rule subset from the

set of [CS] with the highest mean prediction.

• Effectors: In XCS, only one action is supported by [A]. In contrast, [A] in FCS

supports different actions each with a certain degree. Thus, the final action has to

be derived from [A] – the approach is based on calculating the centre-of-gravity of

the parameter space defined by the contained classifiers. As a result of this so-called

defuzzification, one action is derived, where each single parameter is calculated from

the set of supported actions. Hence, the final action of the FCS may not be contained

in the population. On the one hand, this contradicts the to safety requirements, but,

on the other hand, a similarity of nearby situated parameter configurations is assumed

to alleviate the apprehended effect.

Similarly to the XCS approach, the basic algorithm has been adapted to match the safety

demands of the learning component:

76 CHAPTER 4. DESIGN CHOICES

1. Covering mechanism: Inspired by the standard XCS algorithm, Casillas et al. pro-

pose the selection of a random action as covering mechanism [138]. This would again

lead to undesired behaviour in the proposed framework. Thus, the covering mecha-

nism is reduced to select nearby rules (based on a certain measurement of similarity)

and the usage of a given standard parameter set as discussed for the XCS.

2. Rule generation: Within the FCS concept, a GA is responsible for creating new

rules. This capability is taken over by Layer 2 in the same way as described for the

adapted XCS variant.

3. Membership functions: The fuzzy approach relies on the existence of fuzzy sets

defined for the configuration space of both – input and output variables (situation

and action part). Thus, the user has to decide about the number and the form of

their membership functions. Since the form of the fuzzy sets has typically no relevant

impact on the performance of the system [173], the adapted variant relies on easy to

compute forms in terms of determining the centre of gravity: isosceles triangles.

Environment

(S, M) -> L 43 .01 99
(SM, S) -> M 18 .02 92
(*, M) -> L 24 .17 15

Population [P]

Match Set [M]
(S, M) -> L 43 .01 99
(SM, S) -> M 18 .02 92

(SM, S) -> M 18 .02 92
(*, M) -> L 24 .17 15

Candidate Sets [CS]

(S, M) -> L 43 .01 99
(SM, S) -> M 18 .02 92

Action Set [A]

Effectors

Fuzzy
inference

8.6

ρ ε F
(S, M) -> L 43 .01 99
(L, M) -> S 32 .13 09
(S, L) -> M 14 .05 52
(L, L) -> L 27 .24 03
(SM, S) -> M 18 .02 92
(*, M) -> L 24 .17 15

…

Detectors

(3.15; 1.8)

100

S M L

1.8 3.15

Match

Figure 4.4: Concept of a Fuzzy Classifier System according to Casillas et al. [156]

Based on these adaptations, a variant of FCS to be applied to the learning task of Layer 1

has been developed. Rules are only generated by Layer 2 using the sandboxing approach

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 77

and the covering mechanism is again defined on the similarity metric, which allows only

“nearby” rules to be used. Although some modifications have been performed, the original

algorithm of FCS remains untouched.

4.1.6 Comparison of Learning Techniques

Previously, two machine learning techniques have been identified as promising candidates.

The following part of this chapter applies these techniques to a representative scenario

for the framework and compares the received performance. In order to extend the basis

of comparison, ANN have been applied to the problem, although the approach has been

sorted out due to (among other criteria) the missing concordance to the safety restrictions.

The desired effect of taking ANN into account is to demonstrate that the on-line learning

techniques outperform the off-line learning techniques. The candidates LCS and FCS are

considered based on the adapted versions introduced before. Details on the adaptation of

the ANN-variant are given in [134] as well as a further comparison taking a combined variant

of Q-Learning and ANN into account.

Chapter 8.3 investigates an abstracted model of the underlying learning problem and

analyses for which type of problems the developed framework is applicable. Therefore, a

classification according to four different types of problems is defined. The evaluation of the

abstracted model results in the insight that systems characterised by problems of type 1

or type 2 can be controlled by the developed framework. In addition, those of type 3 can

be controlled under certain restrictions. The OTC and ONC scenarios presented in the

remainder of this thesis can be classified as type 2. Since systems belonging to the same

type of learning problem are exposed to the same characteristics of learning, it is assumed

that one of them can be considered exemplarily for the complete set.

As basis for the empiric comparison serves an exemplary application of the proposed

framework: the Organic Network Control System (ONC). ONC has been developed to

automatically adapt network protocol parameters according to changes in the environmental

conditions. For details of ONC, the reader is referred to Chapter 7. As one example, ONC

has been applied to the domain of Peer-to-Peer protocols. In particular, a single instance

of the filesharing protocol BitTorrent [174] serves as SuOC that has to be adapted on-line.

The comparison has been performed using the BitTorrent implementation for the stan-

dard network simulation tool NS-2 [130] as developed by Eger et al. [175]. Four consecutive

downloads with one hour download duration each serve as basis for the simulation. Due

to comparison reasons, the characterising aspects of the downloads (especially the ordering

or the sizes) are given in advance, which makes them identically repeatable. The learning

component is triggered in discrete time steps of one simulated minute and has to decide

whether an adaptation of the protocol’s parameter configuration is necessary or not. Thus,

each simulation contains 240 discrete evaluation cycles for the learning components. The

78 CHAPTER 4. DESIGN CHOICES

presented results are averaged figures taking 50 simulations into account.

The performances of the learning components are compared under exactly the same con-

ditions to the standard configuration and to each other. Therefore, the goal of the learning

component is to increase the achieved download rate of the BitTorrent protocol. The timing

of the simulation for all peers and seeds is depicted in Figure 4.5. In addition, the figure de-

scribes the availability of download bandwidth – the utilisation of this available bandwidth

has to be maximised by the particular learning techniques. Details on the scenario and the

control of BitTorrent in general are given in Chapter 7.3.3.

Figure 4.5: Test scenario for the on-line learning comparison: downloads and available
bandwidth

The first part of the evaluation investigates the influence of available knowledge on the

performance achieved by the techniques LCS and FCS. In order to provide the initial knowl-

edge, 75 different situations occurring in the scenario have been chosen randomly and an

off-line optimisation using the Layer 2 component has been performed. Afterwards, Layer 2

has been deactivated for the simulation. This knowledge has been provided at startup as

available rules in the population of both classifier systems. In order to distinguish between

different amounts of available knowledge, the simulation scenario has been processed with

three different settings: 25, 50, and 75 available rules (the first two subsets are generated

randomly from the last one). As illustrated by Figure 4.6, both techniques benefit from addi-

tional knowledge: with increasing population size, the bandwidth utilisation becomes more

accurate. Figure 4.6(a) describes the achieved results for the modified LCS, Figure 4.6(b)

4.1. ON-LINE ADAPTATION USING MACHINE LEARNING 79

those of the FCS. The LCS resulted in an averaged performance of 92.8 KByte/s with 25

rules available (50: 93.8 KByte/s; 75: 94.8 KByte/s), which is an increase of 10.6 % (50:

11.8 %; 75: 13.0 %) compared to the performance achieved by the protocol’s standard config-

uration (89.3 KByte/s). In contrast, the FCS results in slightly worse results. The averaged

performance has been increased to 91.5 KByte/s with 25 rules available (50: 92.5 KByte/s;

75: 92.6 KByte/s), which is an increase of 9.0 % (50: 10.3 %; 75: 10.4 %).

 0

 50

 100

 150

 200

 250

 300

 350

 0 60 120 180

do
w

nl
oa

d
ra

te
 [k

B
/s

]

time [min]

25 rules
50 rules
75 rules

default parameters

(a) Performance of the LCS-controlled variant

 0

 50

 100

 150

 200

 250

 300

 350

 0 60 120 180

do
w

nl
oa

d
ra

te
 [k

B
/s

]
time [min]

25 rules
50 rules
75 rules

default parameters

(b) Performance of the FCS-controlled variant

Figure 4.6: Comparison of LCS and FCS controlling a BitTorrent client

The second part of the evaluation deals with the question of how well the targeted

bandwidth utilisation has been achieved. Therefore, Figure 4.7 depicts the averaged results

for all three techniques (LCS, FCS, and ANN) distinguishing again between 25, 50, and 75

available rules. Layer 2 has been deactivated to analyse the pure performance of the on-line

adaptation performed by the learning technique. As a comparison, the bandwidth utilisation

using the protocol’s standard configuration (the configuration is listed in Table 7.3) resulted

in an averaged download rate of 89.3 KByte/s. The figure demonstrates the advantage of

the LCS in comparison to the other two techniques. In all cases, the performance achieved

by the LCS is the best one. In addition, a continuous increase in the performance can be

observed for the rule-based techniques (LCS and FCS), while the ANN seems to run into the

“overfitting” problem [144] – its performance does not necessarily increase with more rules

(cf. values for 75 rules). Typically, the effort to achieve the results is considered besides the

pure results, but this has been identical in the presented setting: preparation and training

are done using the Layer 2 component.

A third aspect in the evaluation is the question whether the learning techniques choose

inappropriate parameter settings or not. In this context, inappropriate is defined as de-

creasing the bandwidth utilisation compared to the performance achieved when using the

protocol’s standard configuration. Again, the LCS shows the best results, since such an

inappropriate parameter set has only been chosen in 56 (55; 48) cases for 25 (50; 75) avail-

able rules. This means, providing only 75 rules leads to a better performance in about 80 %

of the 240 cases. In comparison, the FCS selects an inappropriate parameter configuration

80 CHAPTER 4. DESIGN CHOICES

89

90

91

92

93

94

95

96

25 rules 50 rules 75 rules 25 rules 50 rules 75 rules 25 rules 50 rules 75 rules

LCS FCS ANN

A
ve

ra
ge

d
 d

o
w

n
lo

ad
 r

at
e

 [
K

B
yt

e
/s

e
c]

Figure 4.7: Comparison of LCS, FCS, and ANN with increasing knowledge

in 23 % and the ANN in 28 % of the 240 situations. Selecting inappropriate parameter

settings in about 20 % of the situations sounds quite high, but this is caused by the limited

knowledge base. Therefore, the last part of the evaluation considers the improvement of the

selection quality during the operation period.

To analyse the quality of the selection process, the scenario has been processed in a

re-occurring sequence. Within this setting, a continuous decrease in selecting inappropriate

parameter settings has been observed for LCS and FCS with activated Layer 2, while the

ANN keeps the current level due to the pretraining and lack of taking on-line feedback into

account. Especially after training the populations of LCS and FCS using several iterative

runs of the scenario, the quality of the selection process has been significantly increased and

simultaneously the number of selected inappropriate parameter sets has been reduced to 0

(LCS) and 3 (FCS - about 1 %), respectively. The LCS selects always the best possible

rule after 50 runs of the scenario leading to a nearly optimal bandwidth utilisation. The

performance of the FCS is only slightly lower. In contrast, the performance of the ANN

stays constantly at the level illustrated by Figure 4.7.

4.1.7 Summary: Automated Learning

The previous part of this thesis investigated the design choice for Layer 1 of the proposed

framework: which machine learning technique provides the best results when covering the

learning part of the controller? Therefore, the specific characteristics of the learning prob-

lem (especially in comparison to prominent artificial problems from literature) have been

presented. Based on these characteristics, existing directions in machine learning have been

discussed and candidate solutions have been identified. As a result of this analytic process,

4.2. OFF-LINE OPTIMISATION COMPONENT 81

rule-based learning techniques – in particular, Learning Classifier Systems (LCS) and Fuzzy

Classifier Systems (FCS) – have been chosen for the usage within the framework. In order

to fulfil all requirements, modified variants of both approaches have been developed taking

especially the safety restrictions into account.

In order to identify the most promising technique, a comparison in an exemplary scenario

has been performed taking further techniques into account, although they are not applicable

due to e.g. safety restrictions. The scenario for the comparison is taken from the domain

of dynamic network protocol control as explained in detail in Chapter 7. Although the

presented results have been generated only for one scenario, they are meaningful since the

control problem and the corresponding learning problem are assumed to be comparable (see

Chapter 8.3).

As a result of the comparison, the modified LCS leads to the best observed performance.

In addition, the safety restrictions are not violated and the initially formulated requirements

(see Chapter 3.3.2) are fulfilled. Thus, the modified LCS will be used as on-line learning

component of Layer 1.

4.2 Off-line Optimisation Component

The automated learning performed by the proposed framework consists of two parts: the

on-line improvement of the selection strategy and an off-line generation of new actions for

previously unknown situations – the sandbox. This sandbox is characterised by a similar

design choice as previously discussed for the machine learning techniques. As depicted in

Figure 3.2, a simulation tool is combined with an optimisation heuristic. The simulation

part serves as evaluator and is application specific – in contrast, the optimisation heuristic

is application-independent.

Since the framework provides a solution for controlling different types of SuOCs and

each SuOC can be characterised by an (in principle) unique search space, a generalised

description of search space and evaluation function are hardly possible. But, typically

search spaces of real-world systems consist of a large number of dimensions leading to a

complex optimisation problem. Considering the search space as arbitrary without any a-

priori information, the No-Free-Lunch-Theorem [176] states that no better or worse search

algorithms exists: no optimisation algorithm has significant advantages or disadvantages

compared to any other algorithm, if they are applied to all possible search spaces and

evaluation functions. Typically, all possible evaluation functions and search spaces do not

reflect the particular problem to be optimised, no matter how broadly defined it is [177].

Thus, it does make sense to search for a preferably good technique for the considered class

of problems.

Application problems from the real-world domain are characterised by a correlation

between neighbouring points of the search space. More formally, two values f(−→x) and

82 CHAPTER 4. DESIGN CHOICES

f(−→x l) of the evaluation function for two nearby (in terms of the search space) elements
−→x ,−→x l are seldom deviating largely [178, 179]. Such a correlation is also assumed for the

search spaces of the particular control problem. Based on this assumption, a comparison

of search heuristics can be performed looking for the best results in an exemplary setup for

Layer 2. The remainder of this section investigates which optimisation heuristic promises

the best results when applied to the sandbox’s optimisation task.

4.2.1 Term Definition: Optimisation Problem

The optimisation problem to be solved by the Layer 2 component is based on the search

space S and a given evaluation function f(−→x) and can be defined as follows:1

f(−→x)→ max; −→x = (x1, x2, . . . , xD) ∈ S ⊆ RD;xmin,i ≤ xi ≤ xmax,i, i ∈ [1, . . . , D] (4.4)

with −→x describing the parameter vector for the SuOC, D denoting the dimensions of

the parameter vector, and xmin,i, xmax,i being the minimum and maximum boundaries

for the parameter xi. The evaluation function f(−→x) quantifies the quality of a point −→x
within the search space S. In addition, the general optimisation problem is also defined for

an aggregated evaluation function consisting of several single evaluation functions – in the

context of this thesis, only single evaluation functions f(−→x) are considered.

The global optimum −→x ∗ (the “best” solution) of the optimisation problem is defined

as:

∀ −→x ∈ S : f(−→x) ≤ f(−→x ∗) (4.5)

This means, there exists no other parameter configuration of the SuOC in S leading to a

better function value of f than −→x ∗. In contrast, a local optimum −→x l defines an optimum

in a restricted environment:

∃ε > 0 : −→x ∈ S : p(−→x ,−→x l) < ε ⇒ f(−→x) < f(−→x l) (4.6)

with p a distance measurement within the search space S. Hence, a parameter set −→x l is

the best solution within an ε environment. As summary, the target of Layer 2 is to find the

global optimum −→x ∗ for a given setting and a given function f by avoiding local optima.

1The minimisation can be solved equally by maximising −f(−→x)

4.2. OFF-LINE OPTIMISATION COMPONENT 83

4.2.2 Overview: Optimisation Heuristics

Optimisation is a well-known research domain attracting researchers mainly from mathemat-

ics and computer sciences for decades. Thus, several different concepts have been presented

and a full listing of all of them is unrewarding. In contrast, a classification of existing

techniques provides a short overview of different directions in research. According to Weise

[178], the two main categories of deterministic and probabilistic approaches can be distin-

guished. Deterministic algorithms are used, if a close connection between solution and

problem exists or a-priori information about the search space is available. In this case, the

search space can be partitioned according to schemes like Divide-and-Conquer [180] and the

optimisation problem can be solved using deterministic algorithms like Branch-and-Bound

[180]. In addition, research has developed deterministic methods to decide whether a global

optimum has been found or not [181]. The drawbacks of these algorithms are visible when-

ever the search space is too vast, when it is characterised by many dimensions, or when there

are no (or only loose) connections between the different points within the search space: the

algorithms do not scale anymore.

In contrast, probabilistic algorithms use (at least at one position) randomised values

– consequently they are heuristics that might not always lead to the best solution. But their

advantage is the handling of the drawbacks named before. In addition, they are often more

efficient and have a less complex implementation, while the solutions found are typically only

slightly deviating from the optimum. This is accompanied by the advantage of a significantly

faster delivery of the result. In most cases, probabilistic algorithms contain heuristics or

meta-heuristics providing the possibility to approximate solutions without mathematical

proof of convergence [179]. These heuristics take already derived knowledge into account to

decide about the next candidate to be tested. Furthermore, a meta-heuristic is a technique to

solve abstract problem classes more efficiently. Therefore, abstract heuristics are combined

with an evaluation function without allowing a deeper insight into the particular structure

of the evaluation functions [176].

The class of probabilistic algorithms can be further partitioned according to the way the

heuristic works. Besides several less-famous concepts, two broad categories can be distin-

guished: population- and trajectory-based approaches [126]. Population-based approaches

use a set of different self-motivated entities looking for the best solution. Due to the distri-

bution of the search problem to several entities, the approach is more robust than individual

search and typically easier to parallelise. The knowledge stored in the particular individuals

can be used to direct the search and make use of cooperative behaviour.

Evolutionary Algorithms (EA) [116] mimic the evolution of biological creatures using

the three basic concepts selection, crossover, and mutation. Based on a randomly created

population, the following loop of steps is continuously carried out by the EA until a stop

criterion is reached: 1) the EA determines the values of the objective function for each

solution candidate, (2) the EA selects the fittest individuals from the population according to

84 CHAPTER 4. DESIGN CHOICES

their fitness values for reproduction of new offspring solutions using crossover and mutation,

and (3) the EA checks whether a termination criterion is met or not (e.g. a maximum number

of function evaluations) and either returns the best solution found so far or repeats the steps

from 1 to 3. Based on this working principle, different directions of EAs can be distinguished

with GAs and Evolution Strategies the most famous ones [182]. EAs have been successfully

applied to a wide range of application domains from function optimisation [183] to image

processing [184].

Differential Evolution (DE) is another population-based optimisation algorithm, ini-

tially proposed by Storn and Price [185]. The approach is founded on a different concept to

generate new parameter vectors. Instead of genetic-based reproduction, new parameter vec-

tors are generated by adding a weighted difference vector between two population members

to the parameter vector of a third one.

Let x ∈ Rn be one individual parameter vector describing a possible solution in the

population. Then, the DE algorithm can be described as follows: 1) all candidates xi are

initialised at random positions of the search space, 2) the following loop is repeated for each

individual xi in the population until a termination criterion is met:

• Select randomly three distinct agents a, b, and c from the population

• Choose a random index R ∈ 1, . . . , n, with n equals the number of dimensions

• Compute xi’s new position y = [y1, . . . , yn] by iterating over each i ∈ 1, . . . , n:

• Choose a random number ri uniformly distributed in the range (0,1)

• If (i = R) or (ri < CR), set yi = ai + F (bi − ci); otherwise set yi = xi

• If (f(y) < f(x)), set x = y in the population (replace)

• Return the best solution found so far

Within the previous algorithm, F ∈ [0, 2] denotes the differential weight and CR ∈ [0, 1]

the crossover probability, both parameters and the population size (NP > 3) are configurable

in advance. DE has been successfully applied to several real-world applications [186].

A third population-based optimisation algorithm has been developed by Kennedy and

Eberhart : Particle Swarm Optimisation (PSO) [187]. In contrast to the evolution-driven

approaches before, this algorithm is inspired by the flocking of birds, where individual birds

spread in the environment to look for food and move around independently from the other

group members. The environment of the birds corresponds to the search space of the

optimisation heuristic, while each bird is represented as an individual. Each individual (the

particle) keeps track of the best solution it already discovered and the best global solution

found so far. In addition, it is propelled towards these positions at each optimisation step.

To choose the next position within the search space, each particle has to determine a velocity

vector according to the following formula:

V i
k+1 = ω ∗ V i

k + ϕ1 ∗ U1[0, 1) ∗ (Pid −Xid) + ϕ2 ∗ U2[0, 1) ∗ (Pgd −Xid) (4.7)

4.2. OFF-LINE OPTIMISATION COMPONENT 85

where V i
k represents the current velocity of the particle, ω stands for the inertia weight, Xid

for the current position of the particle, Pid for the personal best position of the particle, and

Pgp for the best global position found so far. ϕ1 and ϕ2 are the acceleration coefficients, while

U1[0, 1) and U2[0, 1) are uniformly distributed random numbers generated between 0 and

1 (excluding 0). PSO is a well-known technique and has already been applied to different

real-world applications [188].

Harmony Search (HS) [189] is another population-based search heuristic, which is

inspired by jazz musicians trying to find a harmonic consonance of their instruments [190].

The approach consists of five iterative steps: 1) generate random vectors (x1, . . . , xhms)

with hms defining the size of the Harmony Memory (the population size), store them in

the Harmony Memory (HM):

HM =


x11 . . . x1n | f(x1)
...

. . .
... |

...

xhms
1 . . . xhms

n | f(xhms)



In step 2, a new vector −→x l is created by choosing each contained xi as follows. With the

given probability hmcr (harmony memory considering rate), a randomly chosen entry from

column i of HM is selected – otherwise (1 − hmcr), a random value within the allowed

range is picked. Step 3 performs randomised mutations with a given probability and step 4

checks whether the performance f(−→x l) of the new vector −→x l is better than the worst one

contained in HM – in this case, the worst one is exchanged by −→x l (otherwise −→x l is neglected).

Afterwards, step 5 defines a loop by repeating steps 2 to 4 until a stop criterion is reached.

HS has been successfully used e.g. in therapeutic medical physics to optimise radiotherapy

of cancer tumours [191].

The most prominent representative of trajectory-based optimisation algorithms is Sim-

ulated Annealing (SA) [192] – also known as Monte Carlo annealing or probabilistic hill

climbing. The approach is based on an analogy taken from thermodynamics – SA uses a

temperature-based approach to escape local optima. In general, SA accepts new solutions

in two cases: 1) if they are better as the currently known best one or 2) if a bad solution

fulfils the following condition:

random[0, 1) < e
eval(vn)−eval(vc)

T (4.8)

where vn represents the new solution, vc represents the current solution and T describes

the temperature. Eval is the evaluation function. T is continuously decreased over time

leading to a corresponding decrease in the probability to accept “bad” solutions. Due to

the decreasing temperature and the correspondingly decreasing probability to accept new

86 CHAPTER 4. DESIGN CHOICES

solutions, SA converges according to the chosen cooling rate. At the end of the optimisation,

the temperature may be so low that the final stages of SA merely resemble an ordinary hill-

climbing algorithm. The concept has been successfully applied to different scenario domains

from combinatorial optimisation to machine learning [193].

Besides these most prominent algorithms, several further approaches can be found. Es-

pecially nature-inspired techniques have generated attraction within the last years. But

most of them can be reduced to population-based or trajectory-based approaches. In addi-

tion, most of them have been developed or adapted to solve special problems. Thus, the

focus of this thesis is set on comparing the standard approaches from literature.

4.2.3 Comparison of Optimisation Heuristics

In contrast to machine learning techniques, an exclusion of categories or single techniques

based on analytic considerations is hardly possible for optimisation algorithms. Only de-

terministic approaches can be excluded due to to their limitations considering vast search

spaces. Thus, the remainder of this section presents an empiric comparison of the most

famous techniques in a representative setting for the developed framework. Therefore, the

presented investigation is based on the work done by Domdey in [194] and re-uses the

scenario.

Similar to the previous part of this chapter, the second part of the learning problem

(the Layer 2-situated optimisation problem) is assumed to be comparable for all systems

applicable to the developed framework. In particular, the relation between situation and

best interrelating action corresponds to the functional model as introduced in Chapter 8.3.

Thereby, it is assumed that all investigated applications are of the same type. Thus, one of

them can be analysed as representative for the complete group. As indication for this as-

sumption to be correct, the reader is referred to Reeves [195] and Kauffman [196]. Kauffman

investigated the characteristics of real-world fitness landscapes in general and introduced the

N K-landscapes [196]. Based on these considerations, Reeves states that fitness landscapes

of real-world applications are comparable and quite similar in most cases.

Again, the environment of the Organic Network Control (ONC) system as discussed

in Chapter 7 is used as foundation for the comparison. In mobile ad-hoc networks, the

optimal parameter configuration of the protocol depends highly on the distribution of other

nodes in the direct neighbourhood. Thus, Layer 2 might receive a snap-shot of nodes in the

direct neighbourhood (as observed by the observer of Layer 1) to find the best parameter

configuration for this situation. Figure 9.2(b) depicts the setup for one scenario (Scenario 4).

The node to be optimised is situated in the centre of the sector-model, each point represents

a neighbour. The arrow describes the moving direction of the node. The evaluation is

based on simulations performed in the standard network simulation tool NS-2 [130], with

NS-2 serving as operating part of the evaluation function (the processing of the particular

4.2. OFF-LINE OPTIMISATION COMPONENT 87

Figure 4.8: Exemplary optimisation scenario (scenario 4)

search techniques makes up only a small fraction of largely less than 5% of the evaluation

duration, the rest is spent on NS-2 runs). Details on the scenario and the corresponding

control of a mobile ad-hoc network protocol are given in Chapter 7.3.1. In order to determine

appropriate test scenarios for the comparison, a set of different situations has been chosen.

Appendix B describes all scenarios in detail and lists the achieved results of all compared

techniques.

The comparison includes the previously introduced techniques EA, DE, PSO, HS, and

SA. Therefore, the algorithms have been implemented according to the basic design pre-

sented by the particular authors. All of these techniques can be customised to specific

optimisation problems by choosing a set of configuration parameters. Since the target of

the comparison is to find the best technique for the analysed scenario, the best param-

eter configuration for each algorithm has to be determined in a first step. Therefore, a

parameter study has been performed choosing that setup providing the best results for all

considered scenarios. Thereby, a similarity of the scenarios has been observed – in most

cases, one parameter configuration prevailed against all other tested configurations in each

scenario. Thus, the investigated scenarios seem to provide quite similar challenges to the

search techniques. Another supporting aspect for the setup using the configurations found

for the algorithms is that they are in conformity with those recommended in literature. The

configurations of the particular techniques are listed as follows.

The EA is realised as a GA, using a population size of 10. In each generation, five new

individuals are generated as offspring using one-point cross-over, ranking list selection, and

a continuous state model with elitist strategy. New individuals are mutated according to

[182] based on a Gaussian-distribution model. Thereby, a standard deviation of 10% of

the particular dimension is considered. The DE algorithm is realised in the DE/rand/1/bin

variant using a population size of 20, a scaling factor of 0.9, and a cross-over constant of 0.2.

These values correspond to the configuration as described in [197]. For the HS algorithm,

the size of the harmony memory has been set to 10. The harmony memory consideration

88 CHAPTER 4. DESIGN CHOICES

rate is 0.85 and the pitch adjusting rate is 0.45 with 10 % bandwidth in each dimension.

This setup corresponds to the configuration as given in [190].

The PSO technique has been initialised with 20 particles. Their inertia has been defined

with 0.73, while the constant c1 has been set to 2.8 and c2 to 1.3. Furthermore, the maximum

velocity −→v max has been defined as half of the spatial extent of each dimension. The topology

of the neighbourhood is defined as a ring-based topology with an asynchronous update of

the particles – these configurations correspond mainly to those described in [198, 179]. For

all population-based search techniques, a preferably small population size has been searched

in order to allow for finding first results quickly. In general, large population sizes do not

provide a higher benefit, since the calls of the evaluation function restricts the search [182].

The SA algorithm starts with an initial temperature of 20 degrees, with a cooling taking

place each five calls of the evaluation function. The configuration parameter α has been set

to 2 and the parameter K to 500. The selection of a point in the neighbourhood is done

using a direction cosine, the scaling factor corresponds to 10% of the spatial extend of each

dimension. These configurations can also be found in [199, 178].

The Layer 2 component has to provide solutions as good as possible and has to find them

as fast as possible. Thus, the comparison is based on evaluating these aspects. The success

rate (SR) defines the percental fraction of successful optimisations. An optimisation is called

successful, if the optimal or an approximately optimal solution (solutions approximating the

optimum to a certain degree) has been found. Since the optimal setting is typically unknown

for protocol configurations in given situations, the performance of the standard protocol

configuration is used as reference. In addition, the averaged performance (AP) is a

measurement to describe the averaged success of the algorithm. It is calculated as average

of the best candidates’ performances in all runs. Both measurements (AP and SR) quantify

the success of the algorithm; in addition, the speed of its success is needed. Therefore, the

number of fitness function calls (NC) is taken into account, which counts how often the

NS-2 simulator has been used until the best candidate (the final result) has been found.

As a further metric for the success of the techniques, a random-based search strategy

(Rand) has been implemented. Here, a randomly chosen parameter configuration is tested

using the NS-2-based evaluation function. Only the best solution found so far is stored –

which is returned when queried. The different comparison measurements (SR, AP, NC)

have been defined according to those proposed in literature when comparing optimisation

techniques [182]. All results presented in the remainder of this section have been determined

as averages of 100 different runs. The comparison has been performed on a 2.66 GHz dual-

core machine with 4 GByte RAM and openSUSE 10.3 as operating system.

Criterion 1: Averaged Performance

The first aspect covered by the evaluation is the averaged performance achieved by the

particular techniques. In order to quantify the performance in relation to the number

4.2. OFF-LINE OPTIMISATION COMPONENT 89

of calls of the evaluation function, two different measurement series have been analysed:

the achieved performance after 83 calls of the fitness function and after 500 calls. Both

values have been determined by another parameter study. The former value (83 calls of the

evaluation function) has been chosen since it describes a lower boundary for the optimisation

technique. From this point on, at least a subset of the heuristics results in stable good

solutions compared to the protocol’s standard configuration. The Layer 2 component of the

framework has to work under real-world conditions, which makes a fast reaction necessary –

thus, one aspect is to quickly find good solutions. In contrast, the latter value (500 calls of

the evaluation function) describes a trade-off for an upper boundary. Although not always

the best solution is found, the majority of the heuristics has converged to approximately

optimal solutions.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 Situation 8

A
ve

ra
ge

d
 p

e
rf

o
rm

an
ce

 (
n

o
rm

al
is

e
d

)

DE

GA

HS

PSO

Rand

SA

Default

Figure 4.9: Averaged performance after 83 calls of the evaluation function (higher values
are better)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 Situation 8

A
ve

ra
ge

d
 p

e
rf

o
rm

an
ce

 (
n

o
rm

al
is

e
d

)

DE

GA

HS

PSO

Rand

SA

Default

Figure 4.10: Averaged performance after 500 calls of the evaluation function (higher values
are better)

90 CHAPTER 4. DESIGN CHOICES

Figure 4.9 describes the results after 83 calls of the evaluation function. The y-axis

depicts the normalised achieved performance of the candidate techniques, while the x-axis

lists the different investigated scenarios. The performance has been normalised as follows.

The achieved fitness has been calculated for each scenario in relation to the best achieved

value as reference (100 %) – thus, the different scenarios become comparable. Besides the

five techniques to be compared (DE, GA, HS, PSO, and SA), the figures name two further

candidates: Rand and Default. The former one is the previously mentioned random search

strategy, while the latter one represents the performance achieved by using the protocol’s

standard configuration (the static setup as proposed by the authors of the protocol).

The results depicted in the figure show that the considered GA finds the best solutions

in all scenarios, followed by HS and PSO. Surprisingly, the random technique leads to

better results than SA, while (as expected) the protocol’s standard configuration has been

outperformed by all techniques. Similar results can be observed when increasing the number

of calls of the evaluation function to 500. Figure 4.10 depicts the results showing again that

the GA finds the best solutions. In contrast to the previous figure, the range of the best

solutions is significantly smaller: DE, HS, and PSO find nearly the same (best) parameter

configurations. Only SA declines from the rest as it results in solutions comparable to the

randomised strategy. The standard deviation observed for all 100 runs of the optimisation

per candidate technique is very small, a significant deviation is observed in scenario 8 only. A

small standard deviation means that all runs lead to comparable results. Scenario 8 differs,

since it seems to be the most complex optimisation task in this context. For instance, the

scenario contains a higher number of nodes – details are depicted in Appendix B.

Criterion 2: Calls of the Evaluation Function

The second criterion describes how many calls of the evaluation function are needed until a

successful solution has been found. Even in literature, there is no commonly agreed definition

for successful [182]. Intuitively, one could define successful as better than the reference value

(e.g. the performance achieved by using the protocol’s standard configuration), but this is

not useful since each optimisation technique results in relatively better solutions only after

a few calls of the evaluation function. The consideration of an additional factor ε to increase

the basis for comparison (default performance + ε) has proven to be not applicable due to

the variability of the different scenarios. In some scenarios only a few percent increase is

found compared to the reference value, while in others it has been largely outperformed.

Hence, a relative measurement has been chosen quantifying the performance according to

the achieved results in the particular scenario. The simulation is stopped for each technique

if it finds the first solution that is only ε% worse than the best averaged solution found for

this technique in 10 optimisation runs with 500 calls of the evaluation function (ε = 10 %).

Thus, the metric describes how fast the technique converges in relation to the best solution

it can find after 500 calls of the evaluation function.

4.2. OFF-LINE OPTIMISATION COMPONENT 91

0

50

100

150

200

250

300

350

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 Situation 8

C
al

ls
 o

f
th

e
 e

va
lu

at
io

n
 f

u
n

ct
io

n

(a
ve

ra
ge

d
)

DE

GA

HS

PSO

Rand

SA

Figure 4.11: Averaged calls of the evaluation function to find successful candidates (lower
values are better)

Figure 4.11 illustrates the results. Compared to the previous diagrams, the design is

adjusted concerning the y-axis. It depicts the averaged number of calls of the evaluation

function until a successful solution has been found. The relative measurement for successful

candidates is reflected by the results of the previous evaluations. The GA requires the

smallest number of calls, while HS, DE, and PSO result in approximately the same number

of calls. Again, SA performs at a comparative level to the randomised strategy.

Criterion 3: Success Rate

Finally, the success rate of the optimisation techniques is considered describing which frac-

tion of the 100 optimisation runs has been successful. Again, successful is defined according

to the previous evaluation criterion. Hence, it is a relative measurement for the set of inves-

tigated techniques. Figure 4.12 depicts the results after 83 calls of the evaluation function

and Figure 4.13 after 500 calls – in both cases the y-axis describes the success rate. Both

figures illustrate again that the EA is the most promising technique. Only in scenario 2

(500 calls), the EA did not lead to the best success rate. Here, DE and HS showed a slightly

better performance.

4.2.4 Summary: Optimisation Heuristics

The previous part of this thesis investigated the design choice for Layer 2 of the proposed

framework – which optimisation heuristic provides the best results when covering the op-

timisation part of the sandbox-learning component? Since this selection cannot be solved

analytically like for the on-line learning component in Chapter 4.1, an extensive comparison

in an exemplary scenario has been performed. This scenario is taken from the domain of

dynamic network protocol control as explained in detail in Chapter 7. Although the pre-

92 CHAPTER 4. DESIGN CHOICES

0

10

20

30

40

50

60

70

80

90

100

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 Situation 8

Su
cc

e
ss

 r
at

e
 (

%
)

DE

GA

HS

PSO

Random

SA

Figure 4.12: Success rate after 83 calls of the evaluation function (higher values are better)

0

10

20

30

40

50

60

70

80

90

100

Situation 1 Situation 2 Situation 3 Situation 4 Situation 5 Situation 6 Situation 7 Situation 8

Su
cc

e
ss

 r
at

e
 (

%
)

DE

GA

HS

PSO

Random

SA

Figure 4.13: Success rate after 500 calls of the evaluation function (higher values are better)

4.3. DESIGN RECOMMENDATION 93

sented results have been generated only for one scenario, they should be meaningful: they

belong to the same type of control problems and consequently the corresponding learning

and optimisation problems are assumed to be comparable.

Considering the results as presented in Chapter 4.2.3, the usage of EAs (in particular, a

GA) seems to lead to the most promising results. In nearly all investigated scenarios, this

technique has found the best results. In addition, it needed the lowest amount of evaluation

function calls. Both figures describe the special requirements for optimisation techniques

applied to the sandbox. Typically, fast results are needed to extend the behavioural reper-

toire of Layer 1 and these new behaviours have to be as good as possible. Therefore, the

previously described analysis of the achieved results is based on two different optimisation

durations: a short one (lower quality results, but very fast) and a longer one (good results,

about 6 times slower).

For the configuration of the optimisation heuristic within the framework, the question

arises of how many calls of the fitness function should be allowed. Here, a trade-off between

both aspects seems to be most promising. Initially at start-up, the system is typically

confronted with a large set of previously unanticipated situations. Thus, a fast delivery

of new behaviours by Layer 2 is needed (supporting a lower number of fitness function

calls). In contrast, the rate at which new situations appear is significantly decreased after a

certain period of operation – here, the time horizon of the optimisation task can be extended

to allow for solutions with an ever higher quality. In addition, former behaviours can be

reviewed and probably improved, which allows for a continuous self-improvement during the

complete operation period of the system. As a summary, the GA will be applied to Layer 2

of the framework.

4.3 Design Recommendation

This chapter discussed design choices for two major components of the architecture: the

on-line learning and the rule-generation component. Initially, the special characteristics of

the learning problem of Layer 1 have been discussed, followed by determining promising

candidate techniques from the set of existing machine learning techniques. From these,

LCS (in particular the XCS variant by Wilson [159]) and FCS have been identified as most

promising approaches. Based on these concepts, adapted variants have been developed

matching the requirements of restricted on-line learning in the framework. These adapted

variants have been compared in an exemplary setting to further ML techniques resulting in

different performances of all candidates. As a result, the LCS variant has been proven as

most promising approach and thus will be used in the remainder of this thesis.

In addition, the rule-generation component of Layer 2 (the “sandbox”) is composed of a

simulation tool and an optimisation heuristic. Thus, the second part of this chapter focused

on choosing the most promising optimisation heuristic to be used within the framework.

94 CHAPTER 4. DESIGN CHOICES

Therefore, the optimisation problem has been defined, followed by a short overview of exist-

ing techniques in literature. Since an analytic classification as done for the on-line learning

part is not feasible, the selection process is based on an exemplary comparison only. As

a result of this comparison, the developed variant of an EA leads to the most promising

results and will therefore be used in the framework.

Chapter 5

Structure of the Evaluation

The previous chapter introduced the design of the system and investigated which particular

techniques should be used to cover the tasks defined by the framework. The following three

chapters address the evaluation of the previously introduced framework. An analysis of

the framework’s performance requires an underlying application scenario. Therefore, the

following chapters introduce two application scenarios in detail and present an overview of

two further application scenarios. Based on the former two examples, the question of how

the system’s performance is influenced by applying the framework to the parametrisable

system will be answered. Therefore, domain-specific metrics of the particular area will be

used to analyse the behaviour.

The first application scenario is the Organic Traffic Control (OTC) system, which is

designed to control traffic lights at urban intersections without the need of network-wide

knowledge (see Chapter 6). Afterwards, the Organic Network Control (ONC) system (see

Chapter 7) is introduced, which adapts network protocol parameter configurations dynami-

cally and in response to changing environmental conditions. Besides the impact of domain-

specific metrics, a second criterion is the effort needed to achieve the adaptive behaviour.

Therefore, the number of rule-generations, the performed parameter adaptations, and the

size of Layer 1’s rule base will be analysed.

Furthermore, the question arises for which parametrisable systems the framework is

applicable – and in which cases problems might occur. This question is investigated following

two different directions. On the one hand, two further application scenarios are introduced

to generalise the approach (an Organic Production System and an error-prediction system

for mainframes). Afterwards, the framework is evaluated for an abstracted mathematical

problem. On the other hand, aspects of the OTC and ONC scenarios are used. In ONC,

wireless sensor nodes are investigated as one possibility to apply the framework to systems

95

96 CHAPTER 5. STRUCTURE OF THE EVALUATION

with hard resource constraints. Typically, applications running on a sensor node are limited

in terms of available computation, storage, and communication resources. Within this

scenario, the minimally required resources for applying the framework are analysed.

One basic concept within the design of the framework is to restrict the exploration part

of the learning technique by introducing a simulation-based sandbox component. In order

to figure out the limitations of this approach, the ONC system is applied to the control of

the Peer-to-Peer protocol BitTorrent. A BitTorrent client has only limited information

about its neighbourhood, the network’s status, the network’s design (in terms of available

links and bandwidths), and the status of the neighbours. In addition, the neighbourhood

is not locally restricted like in OTC. Hence, it consists of significantly more neighbours

and unknown interdependencies. Consequently, it is expected that the simulation-based

approach will show its drawbacks for systems with such inadequate neighbourhoods.

Another important capability of the framework is to deal with disturbances and noise.

Hence, already the first scenario (OTC in Chapter 6) distinguishes between a “normal” and

a “disturbed” scenario. This classification is also used in the second application example

(ONC in Chapter 7). Thereby, the exemplary customisation of ONC for wireless sensor

nodes has been chosen to investigate whether there are differences in the performance with

increasing dynamics or not. In addition, the impact of noise is covered since OTC works on

the basis of data obtained from (simulated) sensors. Finally, Chapter 8.3 will analyse the

framework’s behaviour at a more abstract level by applying it to a generalised mathematical

model. Within this model, both aspects – noise and disturbances – can be analysed in an

isolated manner detached from other influences of the learning behaviour.

Chapter 6

Organic Traffic Control

Due to the dynamic characteristics of urban transportation (both, individual traffic and

public transport), the control and management of traffic control systems for urban road

networks is a complex phenomenon. In particular, many varying and possibly conflicting

objectives cause this complexity – which has attracted research from different domains of

science (including civil engineering, physics, and informatics) to investigate solutions for

and characteristics of the underlying problem. Many participants (e.g. car drivers, cyclists,

or bus drivers) are constantly interacting in parallel leading to difficulties in predicting the

future state of the complete transportation system. In combination with the interdepen-

dencies resulting from the impact of one’s decision on the other’s behaviour, approaches

with standard optimisation techniques are not promising since they tend to give obsolete

solutions. Usually, the problem of which control strategy is best changes before it can be

optimised.

Traditional approaches proposed to cover control tasks in urban traffic systems (like

Scoots [200] and Scats [201]) have focused on a centralised system structure. Consequently,

they are characterised by natural limitations in terms of scalability and response times since

the central computing power necessary for these tasks grows significantly with the system

size. In addition, the amount of data to be collected in real-time and the transmission to a

centralised location are further limitations. Especially, if the target is to find a global opti-

mum for the behaviour of all contained control units within a traffic network, a centralised

approach becomes infeasible with growing size of the network [202, 203]. Even networks of

small cities are often too complex to determine a matching solution in real-time. In contrast,

decentralised solutions promise faster reaction times due to a locally restricted sensor hori-

zon and consequently a less complex optimisation problem. Research has already generated

considerable output for locally organised traffic control, but so far only small networks with

97

98 CHAPTER 6. ORGANIC TRAFFIC CONTROL

reduced functionality or proprietary solutions have been investigated [204, 205, 206]. There-

fore, the optimisation of traffic control strategies has become part of the focus of initiatives

considering decentralised approaches (like OC [207]) and serves as first application scenario

in the context of this thesis.

One example for the limitations of current traffic control systems and their installations

is given by Figure 6.1. Reoccurring patterns in traffic (as depicted in Figure 6.1(a)) can

already be handled by existing urban traffic control systems, since they are known at design

time and can be covered by responsible traffic engineers. Therefore, one possible concept is

a time-dependent switching of signal plans. In contrast, Figure 6.1(b) picks up an example

from reality [208] and illustrates the drawbacks of preplanned strategies and schedules. The

figure compares the traffic demands of an arterial road at Karlsruhe, Germany, for two

subsequent Sundays. June 20, 2010 has been a regular Sunday and the corresponding traffic

profile has been handled according to the preplanned schedule in a satisfying manner. The

irregularity occurred one week later in the afternoon of June 27, 2010. Germany played

England in the round of last sixteen of FIFA’s World Cup 2010. The game took place

at Bloemfontein, South Africa, but also affected the traffic in Karlsruhe. Until noon, the

observed traffic is similar to the previous week, which serves as standard profile. Afterwards,

a dramatic change is visible: an unanticipated peak before and a dramatic drop of traffic after

begin of the match. Such unanticipated behaviours cannot be handled with time-dependent

solutions and consequently require more context-aware and autonomous solutions.

00:15 06:00 12:00 18:00 24:00
0

500

1000

1500

2000

Time

V
eh

ic
le

s
pe

r
15

 m
in

.

Mon-Thu
Fri
Sat
Sun

(a) Regular demand

00:15 06:00 12:00 18:00 24:00
0

200

400

600

800

1000

Time

V
eh

ic
le

s
pe

r
15

 m
in

.

June 20, 2010 (Sun)
June 27, 2010 (Sun)

(b) 2010 FIFA World Cup

Figure 6.1: Traffic demand of an arterial road at Karlsruhe, Germany [208]

As a consequence of these considerations, the Organic Traffic Control (OTC)1 System

has been introduced as one approach for such a context-aware traffic control system. Based

on the general design and the corresponding framework of this thesis, the system adapts the

control strategy of traffic lights to changes in the observed traffic flows at the intersection.

The initial concept of OTC has been presented in [163] and was continuously extended

1The OTC system has been developed within the DFG project “Organic Traffic Control” of the Priority
Programme 1183 “Organic Computing”. The project is a cooperation between Leibniz Universität Hannover,
Institute for Systems Engineering and the Karlsruhe Institute of Technology, Institute AIFB. Research on
OTC has been done cooperatively with Fabian Rochner (Hannover) and Holger Prothmann (Karlsruhe).

6.1. PROBLEM DESCRIPTION 99

[164]. An overview of the concept in the context of autonomously and locally organised

traffic control at urban intersections using OTC is presented in [2, 208].

Within this chapter, the OTC system is discussed with a special focus on the architecture

and its application to the domain of traffic. Initially, the traffic control problem to be solved

by OTC is introduced. Afterwards, related work considering traffic control from different

points of view is discussed: centralised systems and locally organised approaches. Since the

framework as presented in Chapter 3.3 requires a customisation to the specific application

domain, Section 6.3 describes the necessary adaptations. In addition, collaborative exten-

sions for the Layer 3 component are presented and analysed (see Section 6.4). Based on

the resulting system, an experimental evaluation has been performed, which is presented in

Section 6.5. Finally, the chapter concludes with a summary of the achieved results.

6.1 Problem Description

Considering existing solutions in urban traffic control, two main types of control strategies

for intersections can be distinguished: fixed-time controllers (FTC) and traffic-responsive

control systems (following e.g. the American NEMA standard [132] or the Swiss VS-Plus

standard [209]). Both approaches rely on a cycle-based processing of control logic. The

traffic lights of the turning movements are grouped into signal phases, which obtain the

right of way (they are switched to show “green”) in a reoccurring sequence. Additionally,

interphases might be applied to afford the clearing of the intersection’s conflicting area

before other streams can affect this area. Thus, the cycle time is defined as the sum of all

phases and interphases to be switched before the iterative process starts over. The difference

between both approaches named before can be found by the durations of phases and their

sequences – they are fixed for FTCs. The result is a constant cycle time. In contrast,

traffic-responsive controllers can vary the phase durations and sometimes even the phase

sequences. For instance, the American NEMA standard [132] defines the decision to switch

to the next consecutive phase based on the queue length of currently detected waiting cars

and based on gaps in the approaching traffic.

The OTC system is designed to autonomously control each intersection of the network

without the need of a centralised element covering network-wide optimisations: each inter-

section controller is responsible for a limited area only. Thus, the control system for the

particular intersection can learn from its actions and optimise its behaviour more effectively

than solutions with a broader focus – especially centralised systems. Hence, the task of the

OTC controller is to choose appropriate lengths for the durations of all phases contained

by the local intersection’s signal plan and consequently for the resulting cycle time. This

selection is done according to the observed traffic situation at the particular intersection.

The control of an intersection in order to minimise waiting times has been proven to be an

NP-complete problem [210]. Since FTCs account for the major part of the installations in

100 CHAPTER 6. ORGANIC TRAFFIC CONTROL

Germany and because of a better availability of real-world data for comparison purposes, this

thesis focuses on FTCs. However, the concept itself is also applicable to traffic-responsive

installations.

Besides the pure local optimisation of the control strategy, decentralised collaborative

tasks are part of the problem. Typically, control strategies of urban traffic networks are

coordinated along main routes and during peak periods (main traffic hours in the morning

and evening, see Figure 6.1(a)) forming Progressive Signal Systems (PSS, also called green

waves). This coordination can have a beneficial effect on the traffic flows and the average

number of stops per car travelling through the network. Therefore, Layer 3 of the architec-

ture contains collaboration mechanisms being capable of e.g. establishing PSSs. Adapting

the intersection’s signalling and establishing a traffic-dependent coordination is a pure re-

active task according to observations in the current traffic patterns. In order to develop

a more integrated traffic management system, route guidance and driver information are

necessary parts to achieve an active management. Therefore, OTC contains further Layer 3

mechanisms for these purposes.

Concluding the aspects named before, the requirements of the underlying problem to

be solved by OTC have a high degree of similarity to those initially defined for the general

framework. Considering e.g. the characteristics discussed by Diakaki for the TUC system

[211], the demand of such a solution can already be found in literature:

• The system provides an efficient solution to traffic control in terms of fast reaction

times and low additional computational needs.

• The system is robust with respect to possible measurement inaccuracies and distur-

bances.

• The system is reliable in case of hardware failures (detectors, communication links,

etc.).

• The system can be easily deployed to a new installation without high adaptation effort.

• The system’s behaviour is traceable – an engineer has the possibility to understand

with reasonable effort what the system does in a given situation.

• The system is based on limited measurement requirements – ideally, it works based

on current installations.

• The system works with low computational effort and communication requirements.

Thus, OTC’s goal is the locally-organised control of traffic lights at urban intersections

in combination with collaborative elements to achieve a network-wide optimisation of traffic

flows. The system is implemented as a distributed solution and acts based on locally ob-

served knowledge and measurements only. Therefore, it provides an ideal test case for the

customisation of the general framework. The listed characteristics are provided by the OTC

system due to decentralised operation and the customisation of the proposed framework.

6.2. RELATED WORK 101

Since traffic control is an own research domain by itself and has attracted researchers and

industry for decades, OTC is by no means the only relevant approach. The following section

gives an overview of related work and compares it with the OTC solution.

6.2 Related Work

The usage of computers to improve traffic control for urban road networks has been in-

vestigated since the 1960ies. Motorised traffic has large impact on the environment and

economics which motivated both – scientific and commercial research – to develop novel

solutions. The range of applications for computer-aided or automated systems includes off-

line planning, reactive processing of control logic, and automated traffic-adaptive systems.

Considering real-world installations in cities worldwide, centralised commercial systems are

wide-spread. Centralised systems or static optimised solutions (which are quasi-standard)

are characterised by inherent limitations: small deviations from the normal traffic situa-

tion can cause major delays due to static configurations from a global perspective or slow

reaction times of central elements. Thus, self-organising approaches have been developed.

To introduce the state of the art in traffic control systems, the following part of this

section gives an overview of different research directions. Initially, centralised systems are

described accounting for the major part of the installations worldwide. Afterwards, a wrap-

up of more recent approaches with a strong focus on self-organising aspects is given, although

most of these examples have a more scientific and theoretical background.

6.2.1 Centralised Systems for Traffic Control

One of the first successful approaches towards automated traffic control is the Split, Cycle

and Offset Optimisation Technique (Scoot), which has been developed in the 1980ies

[200]. The system is installed at over 200 cities worldwide. Based on the computation of

a single cycle time for all contained intersections, Scoot determines the best configuration

of phase lengths for each intersection controller and then adjusts the offset times between

neighbouring intersections in order to minimise waiting times. To be able to perform this

adjustment, the network is split into sub-networks and a dynamic traffic model is used.

Besides Scoot, several other commercial traffic control systems have been developed. The

Sydney Coordinated Adaptive Traffic System (Scats) [201] emphasises especially the

regional character of the system. Instead of a fully centralised solution, regional entities

are responsible for the strategic control of the intersections’ traffic controllers. The local

controllers at the intersections are used to collect data and perform the tactical control

(e.g. extend phases based on arrivals). Scats itself relies on a rule base of different controls,

which are selected according to traffic conditions. The system-wide optimisation of the

102 CHAPTER 6. ORGANIC TRAFFIC CONTROL

control strategy for the urban traffic network takes the current traffic state into account.

During the night, the system might try to minimise the number of stops, while it tries to

maximise the throughput at day time.

More recently, a third popular system has been developed: the Traffic-responsive

Urban Control (TUC) system [212]. TUC focuses on the traffic-responsive control and

coordination of traffic signals within large-scale urban road networks. Based on the initial

work by Diakaki [211], the system has been extended and applied to testgrounds in Greece

[213]. The main focus of the system is to determine appropriate cycle times and to coordinate

the intersection control sequences in order to establish PSSs using centralised knowledge.

Additionally, it can consider public transport priorities. The approach distinguishes between

two main parts: 1) a centralised cycle control mechanism is responsible for adjusting the

cycle time to the maximum saturation level and 2) a decentralised offset control algorithm

coordinates the main phases of consecutive nodes. Finally, the resulting signal plans for

each intersection are adapted by a public transport priority module in order to favour

public transport vehicles.

Another popular development is Balance [214, 215], which aims at finding the best co-

ordination of intersections by simultaneously considering a prioritisation of public transport.

The system is based on a hierarchical architecture with a central component. This central

component is responsible for determining the cycle time, the maximum and minimum green

times of the traffic-responsive controllers, and the offsets between intersections by using a

heuristic approach. Furthermore, the particular green times and the phase sequences are

determined at each intersection controller using a simple microscopic model. The process

to determine the best settings for the network is based on traditional traffic objectives like

queue lengths, number of stops, and waiting times [216, 217].

Furthermore, subsequent systems have been developed which make no longer use of

variables like cycle, split, and phase sequence; these systems are therefore called acyclic.

Here, the green times of individual phases are modified directly. Several examples for such

acyclic systems can be found in literature, the most prominent are the American system

Opac [218, 219], Cronos [220, 221] from France, and the Italian Utopia/Spot system [222].

Since all these systems are centralised solutions, they have to use simplifications to keep

the task of finding the best solution for a network-wide control strategy and coordination

tractable. Among these, the Utopia/Spot system is the only one allowing for a network-wide

optimisation by using a macroscopic model of the network.

Centralised traffic control systems are characterised by the following inherent problems.

Although they are powerful, they are also complex and hard to configure. Besides these

configuration aspects, they have been judged to have a limited traffic-responsive behaviour

during rapidly changing conditions (see Dinopoulou et al. [213]). Especially disturbances in

normal traffic patterns like unforeseen peaks or incidents affect the impacts of the control

strategy. Furthermore, typical limitations for systems with central elements can be observed

with the single point of failure as the most prominent one. Determining the traffic situation

6.2. RELATED WORK 103

has to be done locally at the particular intersections using physical detectors (e.g. induction

loops) – this local knowledge has to be accessible from server side. With increasing network

size, the amount of collected data to be transferred to and processed by the server is get-

ting tremendously large. This requires high capacity in terms of computation power and

communication bandwidth.

Even more promising is a (at least partly) decentralised operation. Every intersection

controller can perform traffic-adaptive controls based on locally measured data only. Com-

munication is taken into account if an additional coordination with local neighbours is neces-

sary or if a centralised control element adjusts the control policy. Typically, an intersection

on the one side of a network does not need information about what is happening on the

other side. Thus, systems with locally organised subsystems have become more prominent.

6.2.2 Self-organising Approaches in Traffic Control

Since centralised solutions to traffic control have drawbacks, research shifted the focus to-

wards the investigation of locally organised solutions. Already in 1986, Barriere et al. [223]

presented a decentralised variant of the Prodyn traffic control system as introduced in

[224, 225, 226]. Prodyn is inspired by studying the on-line computation of a short sample

time optimal control of an intersection. Although the locally organised variant does not re-

quire any central components, the resulting performance describes a behaviour similar to the

hierarchical variant. The authors state that the main advantages of their system are good

scalability and enhanced reliability, but further documentation and progress of the system

or dependable results of the concept have not been published or are not well-documented.

A more recent approach to locally organised traffic control has been proposed by Helbing

et al. in [227]. They presented a fluid-dynamic model for the simulation of traffic networks

[228], which is used to develop a self-organising control principle for traffic lights. Their

switching strategy for traffic lights at intersections is based on the “pressure”, which is gen-

erated by cars waiting to be served. The more cars and the longer they are waiting, the

higher is the pressure to give the corresponding turning movement the right of way. Simul-

taneously, cars blocking subsequent road sections create a “counterpressure” when green

times cannot be used effectively in the current situation. Based on the current pressures

and counterpressures, those traffic lights to be active within the next time period are se-

lected. Furthermore, this results in a dynamic composition of turning movements for each

run of the process. The intersections are loosely coupled by monitoring their connecting

road segments, but do not perform an explicit coordination. According to Helbing et al.,

this loose coupling is sufficient to dynamically establish PSSs as some kind of emergent

effect. Lämmer compared the performance of this basic model to coordinated FTC systems

[229] and states that a positive effect in terms of decreased delay times can be observed.

Although the approach has some desired characteristics like being highly decentralised

104 CHAPTER 6. ORGANIC TRAFFIC CONTROL

and adaptive, it has also drawbacks. Helbing assumes that the existing infrastructure at

intersections will be significantly extended. In order to estimate queue lengths and delay

times per car as well as the counterpressure for outgoing sections, a large number of addi-

tional detectors is needed in combination with further computational effort to analyse and

aggregate the measured data. Furthermore, the dynamic composition of turning movements

for each time period is problematic. Users might have difficulties to accept the system’s be-

haviour (they cannot understand dynamic reassignment from their point of view) or legal

restrictions have to be considered (like preventing conflicts during phase changes). Addi-

tionally, the current system does not consider so-called qualified conflicting traffic streams

(e.g. traffic streams going straight ahead cannot be combined with left-turning traffic from

the opposite direction simultaneously).

Similar to Helbing, Gershenson developed an approach for Self-organising Traffic

Lights (SOTL) [230, 231, 232]. Both concepts have in common that their traffic-responsive

controllers are locally organised and take only figures like the number of waiting cars or the

gaps between arriving vehicles into account when determining their control decisions. In

contrast to Helbing, SOTL is more focused on traditional phase-based traffic control systems

leading to strong similarities to e.g. uncoordinated NEMA controllers [132]. Gershenson’s

control decision relies on a counter κ for the number of waiting cars in front of each traffic

light with each car weighted by its waiting time. This κ value is used to decide whether

the corresponding traffic light demands to switch to green or not (by using a predefined

threshold). Since a simple threshold-based switching decision can lead to fast switchings

and an oscillating behaviour, several restrictions are implemented in the SOTL control

method, e.g. to avoid the interruption of moving platoons or deadlocks caused by long

platoons. In addition to the purely locally organised control logic, Gershenson describes

the observation of coordination effects similar to those achieved by PSSs, although the

system has no explicit coordination mechanisms. But these effects can also be caused by

the simple network structure (Manhattan-type) and the highly artificial traffic generation

pattern (cars leaving the network are immediately relaunched at the opposite side of the

network). A comparative implementation of Gerhsenson’s approach and the OTC system

within a realistic network simulation tool has been developed in cooperation with Zechner

[233]. In this study, SOTL showed nearly the same performance as OTC-controlled FTCs,

although SOTL uses more knowledge and performs significantly more adaptations. Future

work will compare SOTL to OTC-controlled NEMA controllers, where SOTL’s advantage

of faster adaptation cycles and a more traffic-responsive behaviour should be minimised.

Hence, both approaches are expected to result in a similar performance.

An agent-oriented approach to decentralised traffic control has been presented by Baz-

zan in 2005 [234], where intersections are modelled as individually-motivated agents. These

agents define a distributed traffic signal system that has to be coordinated in a decentralised

manner. Thus, the approach is mainly related to the decentralised coordination mechanism

situated at Layer 3 (see Section 6.4.1). The intersection-control agents select their behaviour

6.2. RELATED WORK 105

from a predefined set of control strategies with each selection based on observed local events

as well as on the results of so-called coordination games that are played among neighbouring

agents. Bazzan demonstrated the approach by applying it to simplified scenarios, in particu-

lar an arterial road containing 10 intersections. Within the scenario, the intersection-agents

have to choose between just two strategies during the simulation – they have the choice to

take part in a coordination for one of the two arterial directions. This agent-based coor-

dination is compared to a centralised solution that establishes the coordination based on

detector data. From the results of the comparative simulations, Bazzan concludes that her

agent-based approach has advantages in situations where the flow of traffic in the differ-

ent directions is nearly equal, while both approaches show the same behaviour in strongly

unequal conditions. Compared to the OTC approach, Bazzan’s system is based on the ex-

istence of predefined strategies to choose from. Consequently, it is hardly flexible and has

to be configured for all possible situations at design time.

Similar to Bazzan’s work, further more artificial examples are known in literature fo-

cusing on virtual traffic lights (intersection control without physical traffic lights): Cakar

et al. presented their simulation of an “Indian junction” [30], Chaaban et al. [235] use a

trajectory-based approach and investigate dynamic replanning in the presence of distur-

bances, and Vasirani and Ossowski [236] developed a reservation-based intersection control

mechanism. Further systems are referenced e.g. in [237].

In contrast to the OTC approach and the context of this thesis, all of these approaches

are artificial and currently not applicable to realistic environments. Furthermore, most

of them require the existence of new technical solutions (both at cars and intersection

controllers) and additional infrastructure like detectors. Besides legal aspects, especially

safety reasons and problems when running in parallel with existing solutions will make a

technical realisation within a manageable time period unlikely.

Recently, a third way besides already applicable systems and more artificial scenarios

emerged. The Next Generation Urban Traffic Control (UTC-NG) project has its focus

on future solutions for urban traffic control systems and integrated traffic management

systems. The basic assumption is that upcoming systems will rely on a broader range

of information. Fixed (e.g. cameras) or mobile sensors (e.g. vehicle-mounted) as well as

communicated data from neighbouring intersection controllers are assumed to be available

at each intersection. Current installations such as SCATS [201] break down the controlled

network into subsets of intersections for which optimal strategies can be calculated. As a

result, traffic flowing into and out of areas formed by sets of intersections requires complex

interactions and is mostly neglected. Besides locally organised intersection control based on

policies, UTC-NG proposes a stigmergy model to address the complex interaction problem

between these areas. All kind of information is provided to a middleware that serves as

stigmergy communication basis. Details on how this stigmergy is realised are not given

yet. Currently, two main aspects have been focused and demonstrated using simulations of

Dublin’s inner-city road network: a collaborative learning approach [238] and a middleware

106 CHAPTER 6. ORGANIC TRAFFIC CONTROL

solution [239]. In contrast to UTC-NG, the OTC approach does not focus on sensor-fusion

approaches and works with already existing infrastructure.

Layer 3

Layer 0

Detector

data
Control

signals

User

Traffic Light Controller

Layer 1
Parameter selection

Observer

Controller

LCS

Layer 2
Offline learning

Observer

Controller

Aimsun

EA

C
o

lla
b

o
ra

ti
o

n
 m

e
ch

an
is

m
s

Monitoring Goal Mgmt.

DPSS

AID

HPSS

Routing

Figure 6.2: Design of the OTC system

6.3 Application of the Generic Architecture

The Organic Traffic Control (OTC) system is based on the general framework as presented

in Chapter 3. In order to “wrap” traffic light controllers by the framework, a customisation

of the general approach is needed – this customisation requires knowledge about aspects

of the control process. Therefore, five basic tasks have been formulated to cope with the

customisation:

• the definition of the environmental conditions and the node’s status (the situation),

• a similarity metric for situation descriptions,

• a learning feedback to distinguish between good and bad behaviour,

• the definition of controllable variable parameters, and

• a simulation model (in combination with a simulation tool) for the “sandbox” compo-

nent.

In the OTC architecture, an industry-standard traffic light controller (TLC) with fixed-

time logic serves as SuOC. Alternatively, standard traffic-responsive controllers (e.g. follow-

ing the NEMA standard [132]) can be used. This TLC is responsible for physically setting

all of the intersection’s traffic lights using a set of parameters that define its behaviour.

The task for the OTC system is to choose these TLC parameters according to observed

6.3. APPLICATION OF THE GENERIC ARCHITECTURE 107

changes in the traffic conditions at the particular intersection. The control loop consisting

of Layer 1 and Layer 2 of the architecture is defined as follows. The information gained

by the Layer 1 observer is passed to the Layer 1 controller, which is realised as an adapted

Learning Classifier System (LCS) (see Chapter 4.1.4). In case where no appropriate rule is

found, the Layer 2 component evolves a new parameter set for the specific situation. There-

fore, an Evolutionary Algorithm (EA) is combined with the standard traffic simulation tool

“Aimsun” [240]. Figure 6.2 depicts the adapted architecture for the OTC system. Details

of the customisation are given in the remainder of this chapter.

(1) Situation Description

The observer of Layer 1 is responsible for monitoring the SuOC and its environmental con-

ditions. Based on the description of the current situation at the intersection, the controller

of Layer 1 has to decide whether an adaptation of the parameter configuration is needed

or not. Thus, the situation description has to cover all information relevant to analyse the

current status. For traffic control at urban intersections, the goal is typically to decrease

delay times caused by red traffic lights and to increase the network’s throughput. Detectors

(like induction loops in the street surface or video cameras) serve as basis for determining

the current situation – typically, they are used for calculating the number of waiting cars per

traffic light, the flow (in cars
hour) for the corresponding turning movements, or the aggregated

delay times at each turning movement.

Detector

Turning

Figure 6.3: An examplary intersection with turnings and detectors

Figure 6.3 depicts an exemplary four-armed intersection. The turning movements cross-

ing the intersection are labelled from A to L. Based on detectors situated at different

points of the incoming sections, statistical data as outlined before can be determined. For

OTC, the situation at the intersection is defined in terms of the measured flow-values per

turning movement. For an intersection with n turnings, the system input consists of an

108 CHAPTER 6. ORGANIC TRAFFIC CONTROL

n-dimensional real-valued vector containing the traffic flows measured in vehicles per hour

(veh
h) for each of the intersection’s turnings. The flow-based situation description has been

chosen, since the goal of the system is to find a balanced throughput for all streams passing

the intersection. For instance, a situation description for the intersection from Figure 6.3

might look as follows:

Turning A B C D E F G H I J K L

Flow (veh
h

) 500.0 60.0 10.0 50.0 95.0 33.0 98.0 10.0 10.0 10.0 10.0 10.0

(2) Similarity Metric

Based on this situation description, a similarity metric is needed to allow for a comparison

of situations. The condition part of a classifier consists of n interval predicates forming an

n-dimensional hyper-rectangle and the input situation is an n-dimensional vector. Thus,

the Euclidian distance can be used as metric. If the value of dimension i is contained in the

corresponding interval, the distance is 0. Otherwise, it is calculated in relation to the centre

of the interval to avoid classifier conditions becoming too large.

(3) Learning Feedback

Several different metrics to quantify the performance of traffic control systems are applicable.

Typically, the goal of a traffic engineers is to minimise the travel time through a network (or

over an intersection), to reduce the number of stops per vehicle, or to avoid longs queues of

cars waiting at turnings. Nowadays, metrics considering the environmental impact become

more prominent: the vehicles’ fuel consumption and their emission of pollutants. OTC

provides a solution that can be applied to existing systems without huge additional impact

by re-using existing infrastructure – hence, emission models and similar metrics cannot

be considered as they are not observable with current technical installations. In traffic

engineering, the performance of a controlled intersection is often measured in terms of the

Level of Service (LOS) [241], which is the average delay per vehicle passing the intersection.

For illustration purposes, this value is mapped to a discrete scale of six levels labelled A (no

delay) to F (heavy congestion). Other measurements like number of stops per vehicle or

queue length are sometimes incorporated into a performance index to represent optimisation

goals. Due to its wide acceptance in traffic engineering, this LOS-value is used for the OTC

system to quantify the system’s performance. The formula is defined as follows [241]:

LOS(x) =

∑
t∈T ft · dt∑

t∈T ft
, (6.1)

6.3. APPLICATION OF THE GENERIC ARCHITECTURE 109

where x is the particular intersection and T is the set of the intersection’s turnings. The

variables ft and dt denote the flow and the averaged delay for a turning t ∈ T .

(4) Configuration Space

The target of OTC is to adapt the traffic light control strategy according to the currently

observed traffic situation at the intersection. Signalling at intersections in real-world instal-

lations has some characteristics that have to be considered when defining the configuration

space of the OTC system. Figure 6.4 depicts an exemplary four-armed intersection with the

corresponding signalling. Each incoming section has turning movements leading to the left,

to the right, and straight ahead to cross the intersection. Typically, non-conflicting turnings

are aggregated into signal groups, which receive the right of way together. The example of

Figure 6.4 demonstrates such a grouping of turnings.

Signal 1 and 3 Signal 2 and 4 Signal 5 and 6 Signal 7 and 8

Signal
group A

Signal
group B

Signal
group C

Signal
group D

Figure 6.4: Exemplary intersection with signal groups

Figure 6.5 depicts an exemplary signal plan for the intersection from Figure 6.4, which

corresponds to one possible action for the OTC system. The figure describes the green,

yellow, and red times for each contained signal group (Signal 1 to 8) of the intersection.

Within each cycle, each of these signal groups gets the right of way for a specific duration in

a static and reoccurring order. The green boxes define the durations of having the right of

way. Otherwise, the traffic light of this signal shows yellow or red (no box). The durations

are defined using the scale on top of the figure. The ordering and the corresponding grouping

of signals to signal groups is not altered by the OTC system – in contrast to the durations

of the particular green times and the corresponding cycle time. Hence, one action describes

the phase durations of each signal group (A to D).

(5) Simulation Model

Finally, the sandbox-learning principle of Layer 2 relies on using a simulation tool and a

simulation model. In traffic engineering, several different simulation tools emerged starting

in the mid 1980s with e.g. the VISSIM [242] predecessor PELOPS/DYNAMO [243]. To-

day, two of the most famous simulation tools are VISSIM [242] and Aimsun [129]. From

110 CHAPTER 6. ORGANIC TRAFFIC CONTROL

Figure 6.5: Corresponding signal schedule

these, the latter one is used within the OTC system, since it provides realistic simulations

– a comparison of tools describing their advantages and disadvantages can be found in

[244]. Aimsun is a software application for traffic engineers offering three types of transport

models: static traffic assignment tools, a mesoscopic simulator, and a microsimulation tool.

In the context of the OTC system, only the microsimulation for urban traffic networks is

used. Alternatively to traffic simulators, approximation functions from the domain of traf-

fic engineering like the one from Webster [245] can be used. Each intersection controller

possesses an Aimsun-model of its topology taking only the local intersection into account.

This model is configured with the observed traffic situation. The simulated traffic passing

the intersection is equal to the observed one (in terms of the measured value in cars
hour passing

a specific turning movement). Based on this model and its configuration, an EA is applied

to the optimisation problem. The simulator serves as a possibility to analyse the quality of

the generated traffic signal plan for the given situation. Therefore, the Level of Service as

introduced for the on-line learning component is used as fitness measurement.

6.4 Collaboration Mechanisms

The previous part of this chapter considered the OTC system as a single installation at

one isolated intersection. Thus, only local measurements and locally observed data have

been taken into account for deciding about the control strategy and the corresponding

TLC’s parameter adaptation. In contrast to such a strictly local focus, urban intersections

in real-world installations are typically coordinated and integrated into a network-wide

concept developed by traffic engineers. Consequently, initiatives in research and economy

started to investigate integrated solutions typically referred to under the term “Intelligent

Transportation System” (ITS), see e.g. [246]. Some of the responsibilities are already covered

in older systems. For instance, establishing PSSs has already been covered by SCOOTS

[200].

In order to provide the basis for such an ITS founding on the OTC system, Layer 3

6.4. COLLABORATION MECHANISMS 111

of the architecture is introduced to handle collaboration among neighbouring intersections.

In the context of the OTC project, several collaboration mechanisms have been developed

which are introduced in the following part of this chapter:

• A fully decentralised mechanism to establish PSSs (the DPSS mechanism)

• A hierarchically extended version (the HPSS mechanism)

• A decentralised incident detection mechanism

• A traffic guidance system

The particular mechanisms are also depicted in Layer 3 of Figure 6.2.

6.4.1 Decentralised Progressive Signal Systems

Traffic networks in urban regions typically consist of a large set of neighbouring intersec-

tions. Considering such real-world traffic installations, the controllers between neighbouring

intersections on main roads (like arterials) are often coordinated to form PSSs. Coordina-

tion can have a positive effect on the traffic flow, since the number of stops per car travelling

through the network can be decreased. The goal of such a PSS is given as follows. Vehicles

driving on a coordinated stream do not have to stop in front of traffic lights – they arrive

at the intersection when the corresponding phase is switched to green.

Coordination depends on several factors. A first prerequisite for establishing a PSS

is a common cycle time for all coordinated intersection controllers. Furthermore, each

participating intersection controller needs to determine a synchronised phase starting always

at a fixed point of the cycle. Since vehicles that are going to benefit from such a coordination

have to pass a given distance between the neighbouring nodes, appropriate offsets have to

be defined taking this travel time into account. This offset defines the relative start of the

synchronised phase. Due to the static character of FTCs, coordination can be established

by determining the previously mentioned variables. Although this task is more complex for

traffic-responsive controller variants, it is generally possible [247].

The following part of this chapter presents a decentralised mechanism to establish PSSs.

The mechanism has been initially presented in [247] and further discussed in [248, 208]. The

approach distinguishes between three consecutive steps.

• Initially, all nodes in the network determine partnerships for collaborating in a PSS

(Step D.1).

• Afterwards, nodes agree on a common cycle time which is a prerequisite for synchro-

nisation (Step D.2).

• Once the cycle time has been chosen, every node selects its preferred TLC parameters

with respect to the common cycle time and calculates the offset to its predecessor.

112 CHAPTER 6. ORGANIC TRAFFIC CONTROL

When the last participating node activated its new TLC, the PSS has been established

(Step D.3).

Step D.1: Determine Collaborating Nodes

The first part of the DPSS algorithm is used to determine the participating intersection

controllers. The goal is to find a sequence of intersections where coordination improves the

network’s traffic flow. A suitable heuristic approach when identifying appropriate streams

without network-wide knowledge is based on determining the strongest streams at the par-

ticular intersections locally. Therefore, each intersection controller chooses its turning move-

ment with the strongest vehicle flow. It is assumed that all intersection controllers of the

network have synchronised common clocks, such that a periodic check is feasible where all

intersection controllers perform the selection process at the same time.

In the following, the term node is considered to represent both, the intersection con-

troller and the corresponding intersection. Imagine node j’s turning movement from up-

stream node i to downstream node k is its strongest stream in terms of vehicles per hour.

A synchronisation of the signal phase serving the corresponding turning should have the

highest benefit for node j. If more than one signal phase matches this condition (serving

the particular turning), the longest one is chosen since the phase duration corresponds to the

relative flow values. After the selection and the corresponding creation of the synchronised

phase, node j informs its desired predecessor (node i) about its intention to be its successor

in a PSS. The process as described for node j is performed by all nodes of the network simul-

taneously – when all nodes informed their desired predecessor, each node performs a local

matching. Within this matching process, each node compares the received information to

its own preference. Matching predecessors are immediately acknowledged and partnerships

are established. Other nodes that registered with node j are rejected.

Nodes receiving such a reject message have a second chance to find partners for a PSS.

Therefore, these nodes select a new desired predecessor by choosing the turning with the

second highest stream. The previous process is repeated with this second-best predecessor.

Nodes with successfully established partnerships reject incoming messages, while nodes with

open successor positions consider the request analogously to the first iteration. Since typical

intersections in urban road networks are three- or four-armed, a second chance is enough

for the process to find appropriate partnerships. All nodes becoming part of a PSS received

acknowledgements, which allows for a self-organised determination whether the node is part

of a PSS and which of its neighbours are predecessor or successor in the system. Nodes at

special positions of the PSS (the begin- and the end-node) are aware about their position,

since they have no predecessor (no successor) but a successor (a predecessor). Furthermore,

isolated nodes being not part of a PSS did not receive or send acknowledgements and hence

know about their isolation. Thus, partnerships are consistently established and nodes within

a PSS can start to negotiate a common cycle time.

6.4. COLLABORATION MECHANISMS 113

Step D.2: Determine a Common Cycle Time

In order to allow for establishing a PSS, the participating nodes have to agree on a common

cycle time in the second step of the process. This common cycle time has to be chosen

carefully, since it has direct influence on the node’s capacity. On the one hand, a longer

cycle time increases the fraction of green times as part of the cycle time, since the duration

of interphases used to clear the intersection is always constant. If a smaller percentage of

the cycle time is used for interphases, the capacity of the intersection is higher. On the

other hand, longer cycles increase vehicle delays in undersaturated conditions due to the

increased waiting times resulting from longer red periods. Thus, the cycle time determined

by the intersection’s OTC system provides a trade-off between these two aspects – it provides

sufficient capacity while keeping delays short.

During step 2 of the process, a common cycle time is determined that fits these require-

ments. In order to allow for a fully decentralised determination, each node i has to keep

track of two values: its own desired cycle time (DCTi) and an agreed cycle time (ACT) for

the PSS. The desired cycle time DCTi is the currently preferred cycle time of node i if it is

not part of a PSS. It can be received using the same process as when selecting actions to be

applied to the SuOC. Furthermore, the agreed cycle time ACT is that cycle time the nodes

taking part in the PSS agreed on. Since DCTi of each node is as short as possible, ACT

can be selected as the maximum of all DCTi in the PSS. A shorter ACT could affect the

most heavily loaded node of the PSS by decreasing its capacity and consequently inducing

rising vehicle queues.

ACT := max{DCTi} (6.2)

Determining the agreed cycle time ACT for the PSS is based on the following echo

algorithm (cf. [249]). The first node in the PSS chooses its desired cycle time DCT1, sets

ACT1 := DCT1, and sends ACT1 to its successor in the PSS. The succeeding nodes i,

i = 2, . . . , n (with n the last node in the PSS), successively update their DCTi by activating

their LCS, setting

ACTi := max{DCTi, ACTi−1} (6.3)

= max{DCTi, max
j∈{1,...,i−1}

{DCTj}} (6.4)

= max
j∈{1,...,i}

{DCTj} (6.5)

and sending ACTi to the next node in the PSS. The process terminates when reaching the

last node n of the PSS. At this point, node n’s ACTn is already the sought-after one. Thus,

it has to be propagated back to the predecessors, such that each node i in the PSS can

update its ACTi:

ACTi := ACTn ; for i = 1, . . . , n− 1 (6.6)

114 CHAPTER 6. ORGANIC TRAFFIC CONTROL

The second part of this echo-algorithm terminates when node 1 is reached – all nodes taking

part in the PSS have agreed on a common cycle time.

Step D.3: Determine Offsets and Establish Synchronisation

Finally, the third step of the algorithm establishes the PSS. Therefore, each node beginning

with the first one has to select an appropriate TLC (with respect to the ACT) and to

determine the offset to its predecessor. Since the first node does not have a predecessor, no

offset restriction exists. Thus, it can directly choose and apply a TLC according to the ACT .

To cover the constraint of choosing TLCs according to a given cycle time, OTC’s learning

component situated at Layer 1 of the architecture has been equipped with an additional

procedure – details are given in Section 6.4.1. As a result, the OTC system selects a TLC

that suits both – the current traffic conditions and the ACT . For each succeeding node i,

i = 2, . . . , n, the TLC is chosen accordingly – in addition, the particular offset oi depends

• on the predecessor’s offset oi−1,

• on the start pi−1 of the synchronised phase within the predecessor’s TLC,

• on the time di−1,i vehicles need to arrive from the predecessor,

• on the start pi of the synchronised phase within the node’s own TLC, and finally

• on the time qi needed to serve queued vehicles for the synchronised phase.

In addition, node 1 has to communicate the absolute time s when activating its selected

TLC, since all successors have to know the start time of the PSS to determine their relative

start. Afterwards, a second echo algorithm is used to successively establish the PSS. The

first node communicates the start time s, its offset (which is zero for the first node), and the

start p1 of the synchronised phase in its TLC to its successor. Based on this information,

nodes i (with i = 2, . . . , n) successively select their own TLCs (according to the ACT),

determine their pi, and calculate their own offset relative to the first node in the PSS using

the formula:

oi = (oi−1 + pi−1 + di−1,i − pi − qi) mod ACT. (6.7)

The underlying assumption of time di−1,i being stored locally at each node for all its

neighbours j is reasonable, since di−1,i depends only on the fixed distance and speed limits

between neighbouring nodes. Furthermore, qi is currently chosen as a small constant, which

will reflect characteristics of the particular connection and the local traffic in the future.

After finishing the offset calculation, the values for s, oi, and pi are forwarded to the

successor until the process terminates with reaching the last node of the PSS.

6.4. COLLABORATION MECHANISMS 115

Temporary TLCs for Establishing the PSS

A further aspect has to be considered when establishing the PSS by finally changing TLCs.

Due to clearing times and safety restrictions, an abrupt change of controllers is infeasible.

Such a change might lead to undesired behaviour in terms of unbalanced green times. To

counter these effects, a temporary TLC is activated for exactly one cycle after the currently

active TLC’s cycle has ended. This temporary TLC is used to close the gap between the

currently active TLC and the desired begin of the new one. Therefore, all non-interphase

durations of the currently active TLC are proportionally adjusted (typically decreased). Its

cycle time t is given by the equation

t = s+ oi − r − c (6.8)

where r denotes the remaining duration of the active TLC’s cycle and c is the current time

at the node. In those cases where time t is not applicable because it is too short (t is

smaller than the required minimum duration for each phase plus all interphase durations),

t is adjusted by ACT :

t := t+ACT (6.9)

After finishing one run of the temporary TLC, the PSS is finally established by activating the

selected TLC. The temporary TLC process explains a lower boundary for the DPSS-update

interval. If it is performed too often, the learning process of OTC’s Layer 1 component is

disturbed, since the temporary TLC affects the performance of the OTC system and is not

considered during the evaluation phase.

Time Requirements for the Communication

The previously introduced distributed algorithm requires synchronised clocks [250] available

at all participating nodes. This assumption can be realised by using e.g. a GPS receiver or

time synchronisation protocols such as the Network Time Protocol (NTP) [251]. Further-

more, Step D.3 of the algorithm assumes bounded processing times. A known upper bound

π is required for the processing at each node. Furthermore, the communication latency

between two neighbouring nodes of the PSS is restricted by a known upper bound λ. The

necessity is caused by the need of switching new TLC configurations reasonably accurate at

a given time in the future. In the context of the investigated scenarios, the start time s for

switching to the new configuration needs to be at least

s > t0 + (n− 1) ∗ (π + λ) (6.10)

116 CHAPTER 6. ORGANIC TRAFFIC CONTROL

where t0 is defined as the time at which the first node starts establishing the PSS and n is

the number of intersections in the PSS. Typically, the time period between establishing two

consecutive PSSs is significantly larger than the latency for communication and processing.

Furthermore, the number of intersections n is assumed to be low. Consider as example

π = 0.1 s, λ = 0.2 s and n = 10; the new configuration can be established in 9∗(0.1 s+0.2 s) =

2.7 s or later after starting the third step of the algorithm. Since TLC parameters are

changed every 15 minutes on average, a time period of 2.7 s can be neglected. Hence, the

communication requirements are met even in networks with comparably high latencies.

Updating a PSS

Besides initially establishing a new PSS, a dynamic update is needed due to the time-

dynamic nature of traffic. Instead of a complete recalculation in a reoccurring sequence and

independently of the changes in the traffic conditions, the system reacts on the following

events representing relevant traffic changes:

• A node participating in a PSS changes its TLC due to a (significant) improvement of

local delays predicted by its LCS. The new TLC respects the agreed cycle time ACT

of the PSS, but the start time of its synchronised phase differs from the original TLC.

• A node i participating in a PSS (significantly) increases its desired cycle time due to

changes in traffic such that DCTi > ACT .

• A node i with DCTi = ACT (significantly) reduces its desired cycle time due to

changes in traffic.

• For a node participating in a PSS, the turning exhibiting the strongest vehicle flow

has changed.

In the first case, only the changing node i is concerned: it has to adapt its offset such

that the new offset o′i satisfies the equation

o′i = (oi + pi − p′i) mod ACT (6.11)

where p′i denotes the start of the synchronised phase in the new TLC, while oi and pi

denote the respective values for the previous TLC. The established partnerships, the agreed

cycle time ACT , and the offsets of all other nodes participating in the PSS may remain

unchanged.

In the second and third case, the agreed cycle time ACT needs to be adapted, which

is achieved as follows. The node responsible for the change announces the necessity of an

ACT update to the first node in the PSS, which as a result starts the echo algorithms for

determining a common cycle time and offset recalculation resulting in an updated PSS with

6.4. COLLABORATION MECHANISMS 117

the same collaborating nodes. Since the update temporarily reduces the performance of the

collaborating nodes again, the process should only be activated if the change in the agreed

cycle time ACT exceeds a given threshold.

Finally in the fourth case, the importance of traffic movements has changed, while in

the other cases only traffic volumes were responsible for changes. Here, the partnerships in

the PSS should be reassessed by completely recalculating new PSSs.

Integration of DPSS into the OTC Architecture

The DPSS algorithm is embedded into the OTC system at Layer 3 (see Figure 6.2) of the

architecture. In addition, the learning component of Layer 1 has to be able to handle the

additional cycle time restriction that is necessary when selecting TLCs under constraints

given by a PSS. In particular, the selection procedure of the learning component realised as

a modified LCS has to cover these cycle time constraints by restricting the set of possible

solutions to those proposing appropriate cycle times. Therefore, the initial selection pro-

cess is adopted by considering a further condition. If none of the rules matching the traffic

conditions proposes an appropriate cycle time, rules (closely) matching the traffic situation

are modified to fit the cycle time restriction by proportionally decreasing or increasing the

non-interphase durations of their actions. This modification of rules is based on copying

existing ones and including them in the rule set – similar to the presented covering mech-

anism. This extension leads to a full integration of the DPSS algorithm into the existing

OTC approach.

6.4.2 Hierarchical Progressive Signal Systems

Figure 6.6: Traffic flows in a
Manhattan-type network

The decentralised process as presented before selects

the partners for the PSS based on the locally ob-

served strongest turning movements. As a conse-

quence, the strongest streams within the network are

preferably treated – which is a good heuristic, but it

does not always establish the best possible PSS con-

figuration for the network. Figure 6.6 illustrates such

a non-optimal example.

The Manhattan-type network of the figure con-

tains six intersections and five prominent traffic

streams. Two streams are running from west to east, while three streams are running

from north to south. The width of the arrows is proportional to the corresponding traffic

flows for the depicted streams, traffic for the other directions is neglected in this example.

The strongest stream is the central one of the southbound streams, but in sum both east-

118 CHAPTER 6. ORGANIC TRAFFIC CONTROL

bound streams are larger than the three streams running from north to south. Considering

the DPSS mechanism’s algorithm as presented previously (in particular Step D.1), the ap-

proach would initially establish a PSS-coordination for the central southbound stream as

the strongest stream. Further iterations of Step D.1 would also result in a coordination of

the other southbound streams. A comparison of arrows’ widths in Figure 6.6 demonstrates

the non-optimal character of this solution. In total, the establishment of PSSs for the two

eastbound streams would lead to a higher benefit.

In order to be able to decide automatically about favouring a set of PSSs to others, the

benefit of the synchronisation has to be measurable. Less formally, the benefit of a PSS

can be defined as number of cars having the advantage of not stopping anymore due to the

coordination – a vehicle driving on a coordinated stream can pass the intersections without

having to stop at a red light. The coordination affects all intersections taking part in a

PSS except the first one, since vehicles arrive randomly. As a consequence, the sum of all

vehicle flows for the coordinated turning movements at all intersections except for the first

one represents the desired benefit. This issue is expressed by the following formula:

benefit(PSS) =

n∑
i=2

(synchStreami) (6.12)

with n being the number of all participating nodes in the PSS, i specifying the particular

node, and synchStreami the traffic flow of the synchronised stream at node i.

The following part of this chapter extends the DPSS mechanism with an additional

hierarchical component – the Regional Manager (RM) [252, 208]. The RM is capable of

dealing with special cases as discussed in the motivating example. The approach is able to

find better combinations of PSSs for the underlying network and its current traffic status

than the DPSS mechanism – if available. In particular, it replaces Step D.1 of the DPSS

mechanism, while keeping Steps D.2 and D.3 to finally establish the coordination. The

process of finding better solutions emphasises the heuristic character of the RM – although

it aims at determining the best possible combination of PSSs for the network, it does not

compare all possible solutions. Thus, the optimality of the solution cannot be guaranteed.

The RM works in three steps:

• RM.1: Collect local information about the traffic situation and build a weighted

graph representation of the network.

• RM.2: Identify possible streams to be coordinated by PSSs.

• RM.3: Combine non-conflicting streams to stream systems and select the most

promising stream system.

Figure 6.7 illustrates the concept. All three steps are discussed in more detail in the

remainder of this section.

6.4. COLLABORATION MECHANISMS 119

... ...

(a) Step RM.1: Build network
graph

... ...

(b) Step RM.2: Determine traf-
fic streams

... ...

(c) Step RM.3: Determine
stream systems

Figure 6.7: Steps performed by the Regional Manager

In the following, a centralised element (the RM) is assumed to perform the computational

tasks. Since no further system-wide information is needed besides communicated data of the

participating nodes, the mechanism can also be realised in a distributed manner. Therefore,

concepts from the domain of distributed systems like Leader Election [253] provide the

possibility to select one node as responsible for the task. Such distribution variants do not

have any influence on the mechanism itself and can therefore be neglected.

Step RM.1: Build Network Graph

Step RM.1 of the process derives a graph representation of the current traffic flows within

the network as basis for the calculation of the succeeding steps. Therefore, each node creates

a subgraph representing its topology and the local traffic flows. This subgraph contains one

vertex for each outgoing section, one vertex for each incoming section, and one edge for

each turning movement. Edges are directed and weighted, with the weight corresponding

to the currently observed traffic flow of the turning. The RM receives the subgraphs from

all nodes of the network, connects them, and consequently obtains a graph representation

of the network augmented with the current traffic situation. Figure 6.7(a) depicts the result

of Step RM.1 for an exemplary Manhattan-type network of six nodes (similar to the one

from Figure 6.6).

Step RM.2: Determine Traffic Streams

Step RM.2 identifies promising streams where establishing a PSS can be beneficial for the

network. Based on the graph G = (V,E) created in Step RM.1, the RM iteratively builds

streams by connecting edges e ∈ E to candidate streams until all edges have been removed

from E or the remaining edges’ weights are below a predefined threshold. Therefore, it selects

the edge ei with the highest weight and iteratively determines the best predecessors and

successors by selecting the edges with highest weights from the particular candidates. When

continuing in both directions, the process of adding a new edge to the stream terminates

120 CHAPTER 6. ORGANIC TRAFFIC CONTROL

as soon as there are no further candidates or the next candidate has a conflicting higher

stream within the current subgraph. The latter case avoids choosing streams according to

the example in Figure 6.6: lower streams will not cut larger ones. Figure 6.7(b) depicts

some of the resulting traffic streams obtained for the examplary network (Figure 6.6), each

stream is visualised as a connected sequence of thick edges within the figure.

Step RM.3: Choose the Best Stream System

Finally, Step RM.3 is used to find the most-promising combination of streams. Thus, the

selected streams need to be non-conflicting – in particular, they must not intersect each

other or run in different directions on the same roads. As a consequence, each node can

participate in one PSS only. The selection is based on the metric as initially presented,

i.e. the combination of streams maximising the number of benefiting vehicles is searched.

Therefore, the RM uses a greedy-approach to create promising stream systems without

generating the power set of streams. Initially, potentially conflicting streams are identified

and cached. Afterwards, the streams are ordered according to their potential benefit. Based

on this ordering, stream systems are iteratively built by adding the next beneficial and non-

conflicting stream. Furthermore, the process ensures that each stream is part of at least

one stream system. Figure 6.7(c) depicts several systems of non-conflicting streams for the

examplary network. Streams are again visualised as connected sequences of thick edges.

The resulting set of different stream systems can be rated by summing up the benefit of the

contained PSSs. Finally, the system with the highest benefit is applied to the network.

All steps performed by the RM can be efficiently implemented, details about the partic-

ular algorithms can be found in a previous publication [252]. With replacing Step D.1 of the

DPSS mechanism by Steps RM.1 to RM.3, a hierarchical system architecture is obtained

having similarities with the design of e.g. BALANCE [215]. The main difference to these

approaches from literature is the locally organised selection and optimisation of signal plans.

6.4.3 Further Collaboration Mechanisms

Establishing coordination between neighbouring intersections using PSSs is a reaction on

the observed status of the traffic network. In contrast, the objectives of upcoming integrated

traffic management systems are broader. Traffic through the network has to be optimised by

an active management of traffic flows. One aspect of such a broader view is an infrastructure

which is actively guiding drivers to prominent directions. Such a concept relies on the

availability of further knowledge about the network’s status. Examples are an automated

incident detection and the prediction of traffic flows’ states for the upcoming time period.

Thus, the following part of this chapter outlines two further collaborative mechanisms, which

have been integrated into the OTC system: incident detection and route guidance. Traffic

6.4. COLLABORATION MECHANISMS 121

prediction for OTC has been investigated in cooperation with Volhard and presented in

[254].

Distributed Incident Detection

Automated Incident Detection (AID) is a prerequisite if the distributed routing protocol has

to be capable of dealing with disturbances. In literature, incidents are defined as “events

which cause a need for assistance of involved drivers and/or warning of oncoming traffic

in order to maintain safe driving conditions” [255] meaning it is not only restricted to car

accidents. In contrast, road blockades, unscheduled maintenance, and construction activities

or breakdowns and spilled loads are also considered [256]. Typically, incidents are claimed

to be a major reason for undesired effects like decrease of road capacity, increase of delays

and pollution, congestion, and increasing cost [256, 257]. To counter these effects, a research

area has been established investigating solutions to detect such events fully automated or at

least machine aided. Existing approaches analyse data obtained from regularly distributed

road sensors (like induction loops) and try to characterise the observed traffic conditions as

incident-free or -bound. Hence, AID systems are not able to directly detect incidents (like

it might be possible one day by computer vision), but indirectly through classifying traffic

conditions according to known patterns. These patterns describe incidents as temporal

and spatial road obstacles creating changes in the traffic flow. Besides the pure pattern

recognition approach, several other techniques have been developed – a classification and

survey of these approaches is given by Martin et al. in [258].

Currently, AID mechanisms are only applied to outer-city main routes like highways.

A famous example in Germany is the “Autobahn NRW” approach [259] where the status

of the motorway network in the Ruhr-area is observed and classified in terms of capacity

utilisation and corresponding traffic jams. An application of AID algorithms to urban

areas is significantly more complex, since incident-like traffic patterns can also be caused by

normal activities. For instance, waiting queues in front of red traffic lights will cause the

same pattern like stop-and-go traffic on highways. Furthermore, waiting vehicles dropping

off a passenger or quickly delivering goods cannot be distinguished from real incidents when

using existing techniques. The problem becomes even more complex as OTC builds upon

existing infrastructure – consequently, an AID approach for Layer 3 has to work on induction

loops only.

Thus, a modified variant of the California algorithm (CA) [260, 261] has been devel-

oped by Klejnowski [262], which is explicitly designed for urban areas and copes with the

previously mentioned restrictions. The CA has been chosen as basis since it works on the

currently available infrastructure conditions and is referred to as quasi-standard solution

in literature. The algorithm detects incidents by continuously comparing detector values of

two consecutive sensors. Thereby, one sensor represents two induction loops installed in the

street surface together. The most significant difference to the initial application domain of

122 CHAPTER 6. ORGANIC TRAFFIC CONTROL

the CA is given by the signalised intersections. Comparing the measured flow values of the

corresponding traffic flows passing these detectors would constantly result in false-alarms.

In contrast to detectors on highways or non-interrupted roads, the problem might be han-

dled by a cumulative strategy: an alarm is only given after a certain number of consecutive

incident detections. But this strategy results in a significantly increased rate of non-detected

incidents and still has a high false-alarm ratio. The modified CA addresses these problems

by introducing a collaborative solution between neighbouring intersection controllers. In

this context, neighbouring means that a direct connection between two intersections (both

sharing the same road) is needed. In addition, the distance between these intersections is

not allowed to exceed a certain length. The collaboration is based on a plausibility check

for the detected alarms taking the incoming and outgoing traffic of the connecting road into

account. Since an intersection receives the outgoing traffic from its predecessor, it can verify

the predecessor’s alarms. Such a verification is only applicable, if the traffic patterns are

comparable – this leads to a maximum distance between nodes. In the conducted experi-

ments, neighbouring intersections with a distance of about 250m had a good performance

(about 100 % detection rate and below 5 % false alarm rate depending on the scenario),

while distances larger than 1 km showed substancially worse results. In contrast, the stan-

dard CA leads to significantly worse results – in some cases, more than 50 % false alarms

by only 75 % detection rate. Details on the algorithm and further results can be found in

[262].

Distributed Traffic Guidance

In contrast to investigating traffic signalling and coordination mechanisms, traffic-responsive

route guidance is a relatively young research area. Most of the installations in real-world

traffic systems rely on the usage of Variable Message Signs (VMS). These VMS are used

to communicate route recommendations to drivers and are typically controlled by human-

operated traffic control centres. Besides these often motorway-bound VMS, a more fine-

grained routing recommendation system is known by navigation systems. Early navigation

systems have performed the route guidance task based on static information about the road

network, while nowadays the market share of more traffic-responsive systems is increasing.

These systems take additional data into account received by the radio’s Traffic Message

Channel (TMC, available mostly for highways) or on-line travel time databases provided

by system manufacturers. These databases contain information about travel times recently

observed by other drivers using the particular navigation system. In addition, a novel

approach emerged previously introducing floating car data (FCD). This FCD can be used

to analyse the current traffic situation within the road network. One example is the honey-

bee-inspired BeeJamA approach as introduced by Wedde et al. [263].

The OTC system has been extended with a VMS-based approach [208]. Signalised

intersections are assumed to be equipped with VMS at their approaching sections. These

6.4. COLLABORATION MECHANISMS 123

VMS provide the possibility to communicate information about the currently best route

choice taking some prominent destinations into account. The recommendation is based

on informing about which turning to take and how long it will approximately take to the

destination. Therefore, each intersection controller contains a routing component, which is

responsible for determining route recommendations to these prominent destinations. These

recommendations are stored in routing tables for each incoming section. One aggregated

routing table for the intersection controller is not feasible, since the recommendations of

incoming sections differ. Drivers are not allowed to turn on the intersection and come

back on the same road as they approached the intersection. Figure 6.2 illustrates the

integration of the mechanism into the architecture of the OTC system. In principle, this

routing component can incorporate varying routing protocols – the variant presented in

the following is inspired by the Distance-Vector Routing (DVR) [264] as known from the

Internet.

Routing of vehicles in road networks differs fundamentally from routing in data commu-

nication networks. Besides missing acceptance of high delays, mechanisms like buffering of

elements, resorting, or discarding elements (in data communication an element is a packet,

in traffic a vehicle) are not feasible. Hence, the original DVR protocol has to be adapted to

match the requirements of traffic control. The modified approach works as follows. At the

beginning, each intersection controller checks whether it has direct access to a prominent

destination by a connecting section. In this case, the controller generates an entry for the

routing table of each incoming section that has a turning movement to the corresponding

outgoing section leading to this direction. These entries store the destination, the recom-

mended turning, and the currently predicted time to reach the destination. The latter value

can be determined by receiving the current delay at the corresponding turning movement

and adding the (static) travel time for the outgoing link. The delay is calculated based on

the current traffic flows at the intersection and the turning’s green time fraction using a

standard formula from the field of traffic engineering (the Webster formula [245]).

As soon as a routing table entry is created or updated, the contained information is

submitted to the corresponding upstream neighbour. The receiving neighbour adds the

travel time needed to reach the sender to the submitted value of the message. Afterwards,

the routing tables of all incoming sections with a turning connection to the sending neighbour

are checked. A new routing entry is generated from the received information for previously

unknown destinations. Otherwise, the existing routing entry is checked. In case this routing

entry recommends the same turning to the sender, the entry’s travel time is updated with

the new one. In case of the existing entry recommending a different turning movement, the

travel times are compared and only the entry predicting a shorter travel time is kept.

The previously described steps are processed by all intersection controllers similarly. As

a result, routes to the initially determined destinations are iteratively propagated through

the network. By performing the DVR-inspired routing protocol, a decentralised mechanism

to guide traffic through the underlying traffic network without the need of a centralised

124 CHAPTER 6. ORGANIC TRAFFIC CONTROL

element is performed. In combination with mechanisms to detect incidents in urban road

networks, the approach allows for a traffic-responsive routing in the presence of disturbances

and enables robustness in traffic control. The protocol can be augmented by supporting an

intra- and inter-regional routing, which reduces the effort in terms of computation and

communication and consequently increases the scalability (see [265]).

In comparison to the previously mentioned state of the art, the approach has significant

advantages. In contrast to the FCD technique, it does not require equipped vehicles. Radio’s

TMC has the disadvantage of communicating all known traffic information (or disturbances),

while the VMS approach can be organised using a hierarchical indication. Destinations far

away are aggregated into regions (“to district A turn left, duration 15 to 20 minutes”),

while nearby destinations are explicitly mentioned. Furthermore, the direct access to the

observed traffic situation leads to more up-to-date information and thus a better description

of the network’s current status. This effect is even stronger supported by the reduction of

communication to and aggregation by a third entity (e.g. the manufacturer of navigation

systems). In the standard DVR protocol, some major problems are known – the count-

to-infinity problem [266] is probably the most famous one. In the modified variant, this

problem does not occur due to two reasons: a) typically, traffic situations do not change

abruptly and therefore link cost are only slightly changing over time, and b) the approach

relies on recalculations of the network’s complete list of routing tables, which avoids using

outdated information.

Similar to the DVR-inspired approach, Lyda developed three further routing mechanisms

and integrated them into the OTC system [265]: a greedy-based approach, an approach

founding on the A-star algorithm [267], and a mechanism inspired by the Link-State Routing

(LSR) protocol [268] as known from the Internet. In addition, a region-based extension

similar to the Internet’s BorderGateway protocol [269] has been developed for the DVR and

LSR algorithms resulting in a better scalability of the approaches.

6.5 Evaluation

The experimental evaluation of the OTC system distinguishes between three scenarios: an

artificial Manhattan-type road network, a model of the stadium environment situated at

Hannover, Germany, and a model of an intersection of an inner-city suburb situated at

Hamburg, Germany. The first example is based on an artificial road network with man-

ually optimised and configured reference values, while the latter two examples represent

the current installations as developed by traffic engineers. In addition, both networks from

Hannover and Hamburg are configured using realistic traffic data from a census and the

actual signallings. All experiments have been performed on a Dual Core PC running at

1.66 GHz each and 4 GByte RAM. The Aimsun simulator has been used in version AIM-

SUN NG Professional Edition 5.1.11 based on a Windows 7 Professional 64-bit operating

6.5. EVALUATION 125

system.

The evaluation demonstrates the benefit of using OTC in disturbed and undisturbed

situations. For comparison purposes based on taking the performance obtained by the

current installations into account, representative metrics are needed. As discussed when

defining the local evaluation function of the learning mechanism, OTC’s goal is to reduce

waiting times occurring locally at the intersections. These are measured as averages based on

the queues of all incoming sections. The simulation-based evaluation allows for calculating

a mapping between driving behaviour (driving, waiting, stopping, and accelerating) and

the corresponding fuel consumption by taking realistic models into account [270, 271]. In

addition, the network-wide view allows for evaluating the averaged number of stops per

vehicle – which are going to be reduced by mechanisms like PSSs. Thus, the traffic-based

analysis of OTC’s performance is based on these basic metrics (delays, fuel consumption,

number of stops) in the remainder of this chapter.

6.5.1 An Inner-city Area at Hamburg, Germany

OTC has been developed as a novel approach in traffic control. Thus, its inherent goal is

to provide a substantially better solution than existing approaches in traffic engineering.

Since a comparison to industry-standard solutions is not feasible at urban installations

due to proprietary, monetary, legal, and safety-based reasons, a simulative evaluation has

been performed. The system provides an applicable solution for real-world traffic control –

hence, a comparison to existing control strategies according to the actual traffic conditions

is needed. Therefore, the topology of inner-city regions has been modelled in the Aimsun

traffic simulator taking realistic traffic data from a census and the actual control strategies

of the particular intersection controllers into account. Figure 6.8(a) depicts the investigated

road network situated at Hamburg, Germany.

(a) The road network at Hamburg (b) Model of the intersection

Figure 6.8: Investigated road network located at Hamburg, Germany

The traffic data and the signal schedules are provided by the Schmeck Ingenieurge-

126 CHAPTER 6. ORGANIC TRAFFIC CONTROL

sellschaft mbH, Hamburg, based on a manual optimisation performed by order of the Freie

und Hansestadt Hamburg. The corresponding traffic data has been obtained by a census

processed at Tuesday, May 4, 2004 and illustrates the typical course of a day without further

irregularities. In this census, cars and trucks passing the intersections were counted and doc-

umented for each turning with a time resolution of 15 minutes. Fixed-time signal programs

for all nodes of the network have been developed by traffic engineers. These programs are

used in reality and serve as reference controllers in the evaluation.

Without activating collaboration mechanisms of the architecture’s Layer 3, the OTC

system is an isolated installation at each intersection. Thus, the first part of the evaluation

focuses on an exemplary single intersection to demonstrate the potential benefit of the

OTC system. Figure 6.8(b) depicts the topology of the intersection.2 The corresponding

Aimsun model has been configured with the traffic data obtained by the census and the

fixed-time signal program used in reality. The OTC system is assumed to start without

further knowledge. The initial population is empty, only the standard signal program is

known in advance. Figure 6.9 depicts the traffic demand during the day. The y-axis depicts

the number of vehicles (cars and trucks) passing the intersection. The following results

are obtained as averages from five runs of the particular simulations with different random

seeds.

0

500

1000

1500

2000

2500

3000

3500

4000

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

Tr
af

fi
c

d
e

m
an

d
 in

 v
e

h
ic

le
s/

h
o

u
r

time
Cars Trucks

Figure 6.9: Traffic demand in number of vehicles passing the intersection

The main goal of the OTC system is to decrease the occurring delays at the intersection.

Figure 6.10 illustrates the achieved results for three consecutive days in comparison to the

reference solution. The x-axis depicts the simulated time of the day (6 am to 7 pm: 13

hours), while the y-axis shows the measured averaged delays for all turning movements.

The lower the delays are, the better is the corresponding control strategy. Obviously, the

reference solution has been outperformed at all three days. Compared to the reference

solution, OTC reduced the occurring delays at the intersection by 14.1 % at day 1. Day 2

2The intersection as depicted in Figure 6.8(b) is located in Hamburg-Eppendorf and consists of the streets
Alsterkrugchaussee, Deelböge, and Borsteler Chaussee; the figure shows the Aimsun model.

6.5. EVALUATION 127

has been slightly better with a decrease of 15.6 % and day 3 stayed almost at the level of

day 2 (15.9 % reduction).

0

20

40

60

80

100

120

140

A
ve

ra
ge

d
 d

e
la

y

time
Reference OTC Day 1 OTC Day 2 OTC Day 3

Figure 6.10: Averaged delay for three consecutive days (lower values are better)

Besides the pure delays occurring at an intersection, traffic engineers try to decrease

the number of stops per vehicle. Typically, this metric is obtained at network level since it

describes the coordination effect achieved by e.g. establishing PSSs. Besides the coordination

effects, the metric is influenced by the control strategy since a balanced configuration of

the phase durations will tend to increase the probability to cross the intersection without

stopping. Figure 6.11 depicts the obtained results. The reference solution resulted in an

averaged number of stops per vehicle of 2.41 stops, which is caused by the high traffic

demands. This value has been reduced by the OTC system to 2.32 stops at day 1 (3.67 %).

The following two days underline the results of day 1 (day 2: 5.09 %, day 3: 4.51 %). The

increase at day 3 is within tolerated simulative deviations.

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

3,1

3,3

N
u

m
b

e
r

o
f

st
o

p
s

p
e

r
ve

h
ic

le

time
Reference OTC Day 1 OTC Day 2 OTC Day 3

Figure 6.11: Number of stops per vehicle (lower values are better)

The reduction of delays and the number of stops are the most visible aspects for drivers

passing the intersection regularly. A more indirect measurement is the fuel consumption,

128 CHAPTER 6. ORGANIC TRAFFIC CONTROL

which is significantly influenced by waiting and stopping at traffic lights. Especially in

the context of current debates about the environmental impact of traffic, the reduction of

fuel consumption is an important issue. Therefore, the environmental models integrated in

Aimsun have been used to evaluate the vehicles’ fuel consumption. The models consider

idling, accelerating, and decelerating periods of the simulated vehicles as well as different

cruising speeds. Their configuration is according to AIMSUN’s manual using data from

1992 and 1994, respectively [270]. In general, more current figures might affect the overall

consumption figures, but they would not change the proportional reductions. Figure 6.12

depicts the results obtained from the simulations. The reference solution results in an aver-

aged fuel consumption of 15.23 litre
km . Due to the OTC control, this value can be decreased

significantly. During day 1, the fuel consumption is reduced by 5.18 % to 14.44 litre
km (day 2:

reduced by 5.84 % to 14.34 litre
km and day 3: reduced by 5.77 % to 14.35 litre

km). The positive

effect is already visible at day 1, while day 2 and day 3 lead to nearly the same results. In

general, an overall reduction of nearly 6 % just due to the organic control of one isolated

intersection at normal traffic conditions is an auspicious result.

10

11

12

13

14

15

16

17

18

19

Fu
e

l c
o

n
su

m
p

ti
o

n
 (

l/
1

0
0

km
)

time
Reference OTC Day 1 OTC Day 2 OTC Day 3

Figure 6.12: Fuel consumption (lower values are better)

Adaptation Effort of the Framework

The previous results demonstrated the benefit of using OTC in terms of traffic-based met-

rics. Another important aspect to be analysed is the performance of the framework itself

– in particular, the adaptation and rule generation effort needed to achieve these results is

a major criterion in the analysis. Therefore, Figure 6.13 depicts the progress of classifier

generation using the Layer 2 component with ongoing simulation duration. Since the sys-

tem starts with an empty population at day 1, no knowledge is available and the Layer 2

component is triggered constantly. This effect decreases significantly after the first day.

During the first day, an averaged number of 90 new classifiers has been evolved. At day 2,

Layer 2 evolved only 22 new classifiers on average and at day 3 only 15.3. This trend is

6.5. EVALUATION 129

continued afterwards. Starting at day 4, maximally one new classifier is generated per hour.

In addition, the probability of needing a new classifier decreases to nearly zero from day 10

on. Here, the rule base is almost static. The randomised traffic generation can lead to

seldom deviations in demanding new classifiers. Thus, the rule generation converges after

only a few days. In case of the occurrence of unknown situations, the population size could

be further increased – but the normal classifier demand is covered with this population.

0

2

4

6

8

10

12

14

06:00 – 07:00 07:00 – 08:00 08:00 – 09:00 09:00 – 10:00 10:00 – 11:00 11:00 – 12:00 12:00 – 13:00 13:00 – 14:00 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 18:00 – 19:00

C
re

a
te

d
 c

la
s
s
if
ie

rs
 p

e
r

h
o

u
r

Time

OTC Day 1 OTC Day 2 OTC Day 3

Figure 6.13: Development of the created classifiers in the Hamburg scenario

Besides the rule creation, the usage of classifiers is of interest, since it quantifies the

adaptation demand identified by Layer 1. Figure 6.14 depicts the required number of clas-

sifiers at the first three simulated days. On average, 13.8 classifiers have been used per

hour: maximally 18.7 and minimally 5.8. The profile during the day corresponds to the

occurring traffic flows – a higher necessity of adaptation occurs in more dynamic situations.

The number of possible adaptations is bounded by the sampling rate of Layer 1. Each

parameter set has to be processed for at least two complete cycles to enable a qualified

feedback. The cycle time of the created classifiers changes according to the particular traffic

situation. In case of high demands (e.g. morning peaks), they tend to be longer while they

are significantly shorter in case of low traffic demand (e.g. between 6 and 7 o’clock). For this

intersection, the created classifiers recommend a cycle time of 91 s on average. Thus, the

maximal number of adaptations per hour is given by: 3.600 s/(91 s ∗ 2) = 19.8 adaptations.

As depicted in Figure 6.14, Layer 1 took advantage of most of the possibilities to adapt the

SuOC’s parameter set. This observation is caused by the highly dynamic traffic profile and

will be different in cases of static or only slightly changing profiles. Thus, the effort spent

on achieving OTC’s adaptive behaviour is within an acceptable range – especially after the

system’s startup period, the rule generation effort decreases dramatically. In contrast, the

adaptation process of Layer 1 is performed continuously – but performing the control loop

every 3min does not lead to unacceptably high computational effort.

130 CHAPTER 6. ORGANIC TRAFFIC CONTROL

0

2

4

6

8

10

12

14

16

18

20

06:00 – 07:00 07:00 – 08:00 08:00 – 09:00 09:00 – 10:00 10:00 – 11:00 11:00 – 12:00 12:00 – 13:00 13:00 – 14:00 14:00 – 15:00 15:00 – 16:00 16:00 – 17:00 17:00 – 18:00 18:00 – 19:00

U
s
e

d
 c

la
s
s
if
e
rs

 p
e

r
h
o

u
r

TIME

OTC Day 1 OTC Day 2 OTC Day 3

Figure 6.14: Adaptations of the SuOC performed by Layer 1 in the Hamburg scenario

6.5.2 The Stadium Area at Hannover, Germany

The previous example compared OTC to current installations in urban environments by

taking typical situations into account, which have been (approximately) foreseen by traffic

engineers at design time. This design time process is performed using the following classifi-

cation: Mondays, Fridays (equal to last day before a bank holiday), Saturdays and Sundays

have their own characteristics, while Tuesdays to Thursdays can be handled in the same way.

Although the traffic profile during the course of the day is not exactly the same at each day,

these five categories can be used to handle normal traffic patterns sufficiently. Consequently,

traffic engineers define different time-dependent strategies for each of these categories. One

crucial aspect not considered in either of these categories is given by non-regular events

affecting the normal traffic situation. One of these examples has been introduced in Fig-

ure 6.1 when describing the effect of a worldcup football match on the traffic situation at

Karlsruhe.

The second scenario is used to evaluate OTC’s behaviour in the presence of such non-

regular events where the situation is hardly controllable with predefined static solutions

developed at design time. An event at the stadium takes place generating abnormally high

approaching and departing traffic. In terms of OC, this event can be seen as disturbance.

Consider the current football season in Germany as example to motivate the stadium sce-

nario: November 20, 2010 the local football team Hannover 96 played Hamburger SV in

a regular season match (a Saturday, match start at 3:30 p.m.), while one week later on

November 27, 2010 Hannover 96 played SC Freiburg again in a regular season match (a

Saturday, match start at 3:30 p.m.). The former match is a “derby” against local rivals,

which resulted in an attendance of 49.000 people (booked out). In contrast, SC Freiburg

seems to be less attractive resulting in a significantly lower attendance of 34.100 people.3

The former match has attracted about 44 % more people attending the match compared

to the Freiburg match, entailing a comparable difference in traffic at the surrounding road

network. However, the signal plans of this inner-city road network surrounding the stadium

3All attendance figures are taken from http://www.fussballdaten.de at December 20, 2010.

6.5. EVALUATION 131

area are following the same strategy in both cases – a strategy already developed for such

cases and thereby differing from standard signal plans.

Similar to the previous example, the signal plans and the traffic data are modelling

a realistic setup.4 A complete description of the simulation considering traffic data and

signalling can be found in Appendix C. The signalling of the traffic network surrounding

the stadium is part of the overall traffic strategy for the urban area of Hannover. The

intersection controllers are operated by seven different daytime-depending strategies: five

according to the initially mentioned classification and two especially designed for stadium

events. The latter two control strategies cover the approaching and departing traffic – in

general, the former one optimises the network’s throughput on the main streets approaching

the stadium, while the latter one provides traffic’s fast departure of the inner-city region.

Figure 6.15: Averaged delays per vehicle in the simulation of the stadium area located at
Hannover, Germany (lower values are better)

The first part of the simulation-based evaluation covers typical metrics from the domain

of traffic engineering again. Intuitively, the goal for control strategies responsible for arriving

and departing traffic in the presence of such stadium events is to maximise the throughput of

the network. The corresponding local effect at each intersection controller is to minimise the

waiting queues and consequently to decrease the occurring averaged delays per vehicle. The

following results are obtained as averages from five runs of the particular simulations with

different random seeds. Figure 6.15 depicts the achieved results at network-level. The abrupt

drop after 3hours of simulation time is caused by the setup of the simulation. The provided

traffic data did not contain figures for the time interval between arrival and departure for the

stadium event. Thus, only the arrival and the departure parts are simulated, which leads to

4All traffic data and signal strategies have been provided by the Landeshauptstadt Hannover, Fachbereich
Tiefbau (Bereich Koordinierung und Verkehr) and the Verkehrsmanagementzentrale Niedersachsen (Region
Hannover). The traffic data has been obtained from a census performed on May 09, 2009. The Aimsun
models have been built in cooperation with Weinreich [272].

132 CHAPTER 6. ORGANIC TRAFFIC CONTROL

an abrupt change in the traffic situation. The figure shows four curves for simulations with

the same data. The reference solution leads to an averaged delay of 174 s per vehicle. The

“OTC Day 1” line represents a simulation of the OTC system starting with an empty rule

base. Obviously, the adaptive control strategy of OTC outperforms the reference solution

already with limited knowledge. The simulation of the first day resulted in an averaged delay

of 97.1 s per vehicle, which corresponds to a decrease of 44.2 % compared to the reference

solution. In the following days, the same event is repeated and the OTC system recognises

the learned traffic situations. Consequently, an additional benefit is visible. The “OTC Day

2” simulation resulted in a decrease of 45.6 % (delay of 94.7 s per vehicle) and “OTC Day

3” in a decrease of 46.1 % (delay of 93.8 s per vehicle) – both compared to the reference

solution.

Figure 6.16: Averaged number of stops per vehicle in the simulation of the stadium area
located at Hannover, Germany (lower values are better)

Besides the pure delays occurring when crossing the underlying network, the number of

stops at red traffic lights is a second major aspect. Figure 6.16 depicts the corresponding

results. The simulation of the reference solution results in 3.33 stops per vehicle on average,

which is reduced by 23.3 % at day 1 to 2.56 stops (day 2: 24.5 % to 2.51 stops; day 3: 25.0 %

to 2.49 stops) due to OTC control. Closely connected to delays and stops is the averaged

fuel consumption. Figure 6.17 depicts the achieved result. Again, a significant reduction can

be observed compared to the reference solution (21.4 l
100 km). During day 1, OTC reduced

the fuel consumption by 14.0 % to 18.4 l
100 km , while day 2 (19.6 % to 17.2 l

100 km) and 3

(19.9 % to 17.1 l
100 km) resulted in an even better performance.

Especially compared to the previous Hamburg-based example, the stadium scenario

demonstrates the benefit of using OTC. Disturbed and unanticipated situations are han-

dled significantly better than static existing installations. Thus, the scenario supports the

6.5. EVALUATION 133

Figure 6.17: Averaged fuel consumption per 100 km in the simulation of the stadium area
located at Hannover, Germany (lower values are better)

initially described motivation why adaptive solutions are desirable. The classifier usage

and generation analysis showed similar results as in the previous example and is therefore

neglected in this context.

6.5.3 A Manhattan-type Test Network

In contrast to the former two scenarios, the third scenario is artificial by means of the inves-

tigated traffic network and its configuration. Due to the realistic models and the inherent

characteristics of the former two examples, the potential benefit of the coordination mech-

anisms is not clearly visible or separable enough from the effects caused by the pure OTC

control. Thus, the artificial environment provides a possibility to compare the coordination

effects achieved by the DPSS and HPSS mechanisms. Since no reference solution exists for

such an artificial network, the pure uncoordinated OTC system serves as reference.

The investigated Manhattan-type network consists of six intersections with identical

topology (see Figure 6.18). Each road is defined as single-laned road with a length of 250m

and provides an extra side-lane for left-turning traffic in front of signal lights. The setup

of the traffic demand has been chosen according to the motivating example as depicted

in Figure 6.6. In particular, the expected effect is a sub-optimal coordination when using

the DPSS mechanism and an optimal coordination when using the HPSS approach. The

corresponding traffic demands are listed in Table 6.1. During the first two simulated hours,

the most prominent traffic stream is the stream running from intersection G to intersection

H (see Figure 6.18 for labels). Consequently, the DPSS mechanism will establish PSSs for

the north-south streams. This is less efficient than creating PSSs for the west-east streams

134 CHAPTER 6. ORGANIC TRAFFIC CONTROL

A B

C D

E

F

G

H

I

J

Phase I Phase II Phase III Phase IV

Figure 6.18: Simulation model and signal phases for an artificial Manhattan-type network

O/D pair 1st half 2nd half
→ ← → ←

A↔ B 450 200 200 450
C ↔ D 450 200 200 450
E ↔ F 200 100 100 200
G↔ H 575 200 200 575
I ↔ J 200 100 100 200
Others 10 10 10 10
Total 3475 3475

Table 6.1: Simulated traffic demands (in vehicles
hour) for the investigated Manhattan-type net-

work

from A and C to B and D, respectively. The latter coordinations are preferred by the HPSS

mechanism using aggregated network-wide data and therefore detecting a higher potential

in terms of benefiting vehicles. For the second half of the simulation, the traffic demands

change their directions – as a result, the coordination mechanisms have to detect the new

demands and adapt the PSSs. The simulation starts with empty rule bases in all cases.

The PSSs are checked and potentially updated every ten simulated minutes. The following

results are obtained as averages from three runs of the particular simulations with different

random seeds.

The first part of the experimental evaluation considers the travel times needed to pass the

network. Figure 6.19 depicts the results. The uncoordinated OTC system (running neither

the DPSS nor the HPSS mechanism) leads to an averaged travel time of 181.3 s for passing

the network. This value has been slightly reduced by both mechanisms. Using the DPSS

mechanism in addition to the pure OTC control resulted in a decrease of 3.02 % (175.8 s)

and HPSS in a decrease of 3.92 % (174.2 s). The goal of the coordination is to reduce stops in

front of red traffic lights – the corresponding values are depicted in Figure 6.20. Considering

the figure, a significant reduction of stops caused by both mechanisms can be observed. For

6.5. EVALUATION 135

the complete simulation period, an average reduction of 3.9 % for the DPSS and 9.4 % for

the HPSS mechanism is obtained. These results reflect the initial expectation – the HPSS

mechanism achieves higher reductions in terms of stops, but even the performance of the

DPSS mechanism results in a significant improvement in comparison to the uncoordinated

system. Due to the abrupt change in the traffic conditions after two hours of simulation

time, the scenario does not provide ideal conditions for the coordination mechanisms – the

change causes temporarily increased travel times and stops for both approaches. However,

the benefit of the two coordination mechanisms is visible.

125

135

145

155

165

175

185

195

205

215

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

Tr
av

e
l t

im
e

 (
s/

km
)

time
OTC DPSS HPSS

Figure 6.19: Network-wide travel times for the Manhattan-scenario (lower values are better)

1,4

1,5

1,6

1,7

1,8

1,9

2

2,1

2,2

2,3

2,4

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

N
u

m
b

e
r

o
f

st
o

p
s

[#
/k

m
]

time
OTC DPSS HPSS

Figure 6.20: Network-wide number of stops for the Manhattan-scenario (lower values are
better)

The previous results illustrated the network-wide benefit of establishing PSSs. To illus-

trate the differences between both approaches and to demonstrate the effect of coordination

136 CHAPTER 6. ORGANIC TRAFFIC CONTROL

at stream-level, two prominent streams have been investigated in detail. The Stream G→ H

is the most heavily used one during the first two simulated hours – consequently, this stream

is chosen by the DPSS mechanism to establish a coordination for this period. After the

abrupt change, it is no longer coordinated and as a result travel times and stops re-increase

to the level of the uncoordinated operation. During the complete simulation period of four

hours, a reduction of 11.5 % with respect to travel times and 19.8 % with respect to stops is

obtained for this traffic stream by the DPSS mechanism.

As intended by the initial setup, the west-east Stream A → B is coordinated by the

HPSS approach during the first half of the simulation due to the higher potential benefit.

After the change in the traffic situation, the stream is no longer coordinated. For the whole

simulated period, the expected effect can be observed. The travel time has been reduced

by 11.9 % for all vehicles following the stream from A to B. Even more significant is the

averaged number of stops: it has been decreased by 36.9 %. Table 6.2 lists the improvements

of both approaches compared to the reference solution.

DPSS RM
Travel time Stops Travel time Stops

Network 3.0 % 3.9 % 3.9 % 9.3 %
Stream A→ B −0.6 % 3.1 % 11.9 % 36.9 %
Stream G→ H 11.5 % 19.8 % 3.7 % 4.0 %

Table 6.2: Reduction of travel times and stops compared to uncoordinated operation in the
Manhattan-type network (higher values are better)

A major goal of coordinating the control strategies of intersections is to reduce the envi-

ronmental impact of traffic. To analyse the effects caused by both mechanisms, AIMSUN’s

environmental models have been used to evaluate the vehicles’ fuel consumption and their

emission of pollutants. During the complete simulation period, the uncoordinated OTC

system serving as reference resulted in an averaged fuel consumption of 14.1 l
100 km . This

value has been reduced by the DPSS mechanism by 4.5 % to 13.4 l
100 km . Even better is the

performance of the HPSS mechanism, which reduced the fuel consumption by approximately

9.8 % to 12.7 l
100 km . According to the models from [271], the presented reductions for fuel

consumption can be directly mapped to e.g. the emission of Carbon Dioxide (CO2). For

a given type of fuel, a vehicle’s CO2 emissions are directly proportional to the quantity of

fuel consumed. Consequently, the coordination using DPSS reduced the CO2 emissions by

approximately 3.5 % and using HPSS by approximately 6.6 %. Thus, the coordination using

both approaches has a significantly positive effect on the environment.

In summary, both presented traffic-adaptive coordination mechanisms have a beneficial

impact on the network’s traffic conditions. All relevant values for travel times, number

of stops, and emissions have been significantly decreased. The investigated test scenario

has been designed to exploit a weakness of the DPSS mechanism – in most other cases,

both approaches will establish the same PSS systems. Although the HPSS mechanism

6.6. SUMMARY FOR THE ORGANIC TRAFFIC CONTROL SYSTEM 137

outperformed the DPSS mechanism in the investigated scenario, both approaches provide a

significantly better solution than the uncoordinated system.

6.6 Summary for the Organic Traffic Control System

This chapter presented the Organic Traffic Control (OTC) system, which is based on the pre-

sented framework. OTC has been developed to enable a traffic-responsive adaptation of the

control strategies at urban intersections. In addition, the system incorporates decentralised

coordination mechanisms for establishing Progressive Signal Systems (PSS), to automat-

ically detect incidents in the underlying road network and for traffic-adaptive routing of

traffic participants. The chapter introduced the general control problem and described the

necessary customisation of the general framework to match the demands of traffic control.

In addition, the current state of the art in traffic control has been presented.

The experimental evaluation introduced three test scenarios:

• a model of an intersection situated at Hamburg, Germany,

• a complete model of the road network surrounding the stadium at Hannover, Germany,

and

• an artificial Manhattan-type road network.

The former two scenarios represent real conditions at the modelled installations including the

corresponding traffic demands and signal plans. The latter scenario uses artificial values and

a regular network configuration in order to investigate the benefit of additional coordination

mechanisms. Therefore, typical metrics from the domain of traffic engineering have been

used: travel times, delays occurring at intersections, Level of Service, number of stops, and

emissions.

The first scenario at Hamburg showed that the OTC solution outperforms the existing

installation taking the actual signal strategy and traffic data from a census into account.

Within the simulations, the delays caused by waiting cars in front of red traffic lights have

been reduced by 16 % compared to the reference solution. In combination with a 5 % reduc-

tion of the number of stops, the negative environmental impact of traffic has been decreased

by 5.1 % in terms of fuel consumption. In addition, the evaluation analysed the generation

and usage of rules for the on-line learning component of Layer 1. The second scenario in-

vestigated an atypical traffic event. Based on real-world traffic data and signallings again,

the traffic control strategy of OTC has been compared to a reference solution in case of a

stadium event taking place. The evaluation showed that such a special situation is handled

with even higher benefit as the previous undisturbed example. For instance, the delays have

been reduced by 46.1 %.

The third experiment introduced an artificial Manhattan-type network to analyse the

impact of the two developed mechanisms to establish PSSs: DPSS and HPSS. Since no

138 CHAPTER 6. ORGANIC TRAFFIC CONTROL

reference solution from the real world is available, an artificial setup has been chosen, which

prefers the HPSS approach. In general, the benefit of using both approaches has been

demonstrated, since the values of all relevant metrics have been significantly reduced. In

summary, the chapter demonstrated the benefit of using OTC and therefore the developed

framework in the domain of traffic control.

Since the OTC system is based on joint work with other project partners, the following

Table 6.3 intends to distinguish the author’s own work from the project’s general results.

Content Project work Author’s work
Analysis of the state of the art - X
General system X -
Customisation of architecture - X
DPSS X -
HPSS X -
DVR Routing X -
LSR Routing - X
AID - X
Evaluation - X
Hamburg Scenario X -
Hannover Scenario - X

Table 6.3: Assignment of OTC parts to project work and author’s own work

Chapter 7

Organic Network Control

The development of networking during the past decades is characterised by an increasing

number of protocols proposed for different applications at all layers of the protocol stack.

This is partly due to the ubiquitous availability of networked devices for a wide spectrum

of applications, and ranges from classical desktops and servers in wired networks to small

handheld and embedded devices in wireless networks, such as mobile phones and sensor

nodes. This development is accompanied by the users’ requirements of a better convergence

of all these networks and applications.

Most protocols offer a large number of parameters that allow for customising them

to different usage scenarios, e.g. they allow for changing settings for timeouts, number of

nodes to connect with, and retransmission counters. However, these parameters are seldom

changed at runtime. Instead, they are mostly investigated and set at design time or – at

best – changed manually at runtime. This leads to a rather static configuration even though

the situation in the network is constantly changing. These arising dynamics are not only

characterised by changes in – for instance – available bandwidth, network topology, and

channel quality over time. Additionally, new applications (and protocols respectively) are

introduced. As one example, the class of Peer-to-Peer applications is probably one of the

most dynamic classes of applications contributing to the changes in the protocol landscape

during the past years. In essence, well-established protocols (e.g. for web traffic) have to

co-exist with protocols that no one would have thought of some years back in the first place.

Considering the developments in data communication and the provoked upcoming de-

mands, research initiatives predicted new challenges and correspondingly the need of new

technologies [273]. As one example, Hummel et al. describe their prediction that especially

protocols for the Internet will be subject to adaptations, since the increasing mobility caused

by handhelds and smartphones leads to new requirements for current protocols [274]. Other

139

140 CHAPTER 7. ORGANIC NETWORK CONTROL

researchers state that completely different basic technologies are needed to tackle the up-

coming demands [275]. Since some networks are already reaching their load limits, fast

solutions are needed, which are compatible with existing technologies – the parametrisable

character of network protocols constitutes a promising application domain for the devel-

oped framework. The special properties of network protocols makes them an ideal testcase.

Protocols have to cope with long-term trends (increasing data volume), short-term changes

(peaks in the transfer loads), or temporary malfunctions (node failures).

This chapter introduces the Organic Network Control (ONC) system as one im-

plementation of the thesis’ general architecture. The ONC system allows for “wrapping”

existing data communication protocols into the general framework, which enables a large

degree of adaptivity based on self-organisation in existing networks. Initial research for

the ONC system focused on the question, whether there is a significant benefit due to

scenario-dependent reconfiguration of the protocol parameters or not. Using the examples

of a mobile ad-hoc network (MANet)-based broadcast algorithm (the R-BCast protocol by

Kunz [276]) and a smart-camera protocol (the ROCAS protocol by Hoffmann et al. [277]),

a standardised system to optimise network parameter configurations for given scenarios has

been developed [278].

Further on, the concept of adaptive protocol control using ONC has been outlined in

2009 [4] and since applied to different protocols ranging from reliable broadcast protocols

for MANets [279, 280] over wireless sensor network (WSN) protocols [281] to Peer-to-Peer

(P2P) protocols [282]. A summary of ONC in the context of biologically inspired networking

and sensing can be found in [121], a current status description and an outlook on future

activities is given in [283].

The chapter is organised as follows. Initially, the problem to be covered by the ONC

system is defined. Afterwards, related work in the field of adapting network protocols to

dynamic changes in the environmental conditions is discussed. Afterwards, the application of

ONC to the previously mentioned protocols is explained by introducing examples for MANet,

WSN, and P2P protocols. All three examples are evaluated in simulation-based settings.

Using the achieved results, the benefit of the additional ONC-control is demonstrated in

comparison to the existing static protocol solutions. Finally, a collaboration mechanism is

introduced, which allows for the exchange of knowledge and a dynamic load balancing of

Layer 2 tasks. The chapter closes with a summary for the ONC system.

7.1 Problem Description

The performance of a network protocol depends strongly on the configuration of its parame-

ter set. These parameters are highly protocol-dependent. Although there is no complete list,

some classes of protocols share the same functionalities and therefore similar parameters.

For instance, protocols for MANets typically have intervals to send “hello”-messages and a

7.2. RELATED WORK 141

counter indicating after which number of not-answered “hellos” a neighbouring node is as-

sumed to be outside the sending distance due to mobility. Even more popular are protocols

from the Internet, especially the TCP (parameter: delays, timeout, size of receiver window,

etc.) or the IP protocol (TimeToLive, etc.). Hence, researchers and engineers developing

new protocols or adapting existing ones try to find a standard configuration, which works

best on average in all considered situations. The underlying situation space is assumed to

be indefinite due to unforeseen interdependencies and mutual influences – thus, only a small

fraction of these situations can be considered during the design process. Consequently, the

task of ONC is to provide an adaptation mechanism that chooses the best parameter con-

figuration according to the observed environmental conditions and the corresponding node’s

status.

Not only the parameters differ when considering varying protocols, but also the impor-

tant characteristics of the observed situations. Consequently, the control problem of ONC

cannot be defined straightforward as done for OTC in the previous chapter. Thus, not

a single controller – which is a network protocol instance in this case – is investigated in

different settings, but a set of different protocols. Correspondingly, varying requirements

appear that have to be covered by protocol specific engineering solutions that are discussed

in accordance with the particular protocol scenarios.

7.2 Related Work

Adaptive control of data communication networks is a research domain focused from several

points of view. The amount of literature covering aspects of the topic is growing larger

every year. The following section gives an overview of how network protocols are configured,

introduces related approaches, and describes the differences to the ONC system.

7.2.1 Determine Protocol Parameter Configurations

As outlined before, the performance of a network protocol depends highly on the configura-

tion of its parameter set. Thus, a main task for engineers is to configure protocols and find

the best settings. This configuration process is usually performed at design time when new

protocols are developed or existing ones are adapted. In order to determine the best-fitting

set of parameters, a network engineer can try to choose parameters manually and continue

using a directed trial-and-error approach. Alternatively, he can rely on an automated sys-

tem since the effort for manual optimisations increases exponentially with the number of

parameters and the size of the configuration space.

Due to monetary and safety reasons, the testing of network protocols can hardly be

performed in real environments. Consequently, simulation tools are used to model the

142 CHAPTER 7. ORGANIC NETWORK CONTROL

reality and analyse the protocol’s behaviour. Currently, the most popular tools to simulate

data communication networks in research and industry are NS-2 [130] and Omnet [131] –

an overview and comparison of current simulation tools is given by Weingärtner et al. in

[284].

In contrast to manual parameter configurations, ONC chooses and adapts parameter

settings automatically at runtime. The process of automatic parameter configuration to fine-

tune the settings at design time has been investigated depending on specific protocols, which

resulted in scenario-dependent solutions. One approach has been presented by Montana and

Redi in 2005 [285] – they use an EA to optimise a protocol for military MANets. Another

example using an EA is the optimisation of parameter settings as described by Sözer et al.

[286] for an underwater communication protocol. Thirdly, Turgut et al. [287] discuss the

usage of a Genetic Algorithm to optimise their MANet-based clustering protocol. They all

compare their achieved results to a manual optimisation. All three systems are used as

representatives for network engineers developing solutions to automatically fine-tune their

protocols at design time – the authors’ intention in these cases has been to optimise a specific

protocol and not to create a generic system. The following part of this section discusses

possibilities to adapt parameter settings automatically at runtime.

7.2.2 Automatic Protocol Adaptation

In recent years, automatically performed on-line adaptation of network protocols has be-

come a highly dynamic field of research. A broader community has been generated in

the course of IBM’s Autonomic Computing (AC) initiative [1] and the subsequent Auto-

nomic Communications initiative [107]. Compared to the off-line configuration as described

previously, on-line adaptation is a significantly more complex task – due to time and com-

putational restrictions. Besides ONC, different directions of research are known to cope

with the problem: adaptive protocols, composition of protocol stacks, centralised solutions to

adapt protocol configurations, or self-parametrising systems.

Adaptive Protocols

The most obvious way of adapting network protocols to changing environments is to con-

sider adaptivity aspects within the protocol logic. Thus, several examples can be found in

literature ranging from the Media Access Control (MAC) up to the application layer. As one

MAC-based example serves the work presented by van Dam and Langendoen [288]. They

focus on contention-based media access. To handle load variations in time and location, an

adaptive duty cycle is used by ending the active part of it dynamically. Similar examples

for the MAC layer are e.g. given by Huang et al. [289], or Farago et al. [290, 291].

One layer upon the MAC layer, Goyal et al. presented an adaptive network layer protocol

7.2. RELATED WORK 143

that aims at minimising buffer requirements within the network without losing packets.

Simultaneously, it tries to minimise end-to-end delays and jitter of frames [292]. The authors

introduced a receiver-oriented, adaptive, and credit-based flow control algorithm capable of

adapting the settings of the protocol according to observed attributes. On the same layer,

Whiteson and Stone introduced an on-line learning mechanism to increase the performance

of a routing protocol [293]. Based on the Q-routing techniques presented in [294], they learn

the best routes by receiving immediate answers from the next hop. Enlarging the focus,

congestion avoidance in TCP [295] and collision detection for Ethernet-protocols [296] can

also be seen as adaptive protocols, since they react on observed stimuli.

All these protocols provide specific solutions – they are designed to enable adaptive

behaviour just for one task, mainly situated at the MAC layer. These are reactive approaches

and rely on pre-estimated configurations and actions. Thus, they cannot be applied to other

protocols, layers, or tasks.

Protocol Composition

Since developing protocols with adaptive logic for all purposes is infeasible and the set of

systems requiring adaptive communication services (e.g. services adapting their behaviour

according to changes in the environment) is increasing simultaneously, a research field called

protocol stack composition emerged, covering the upcoming tasks by exchanging protocols

and stacks dynamically [297]. In contrast to ONC, which keeps the existing and currently

used techniques and optimises their behaviour, a re-combination of protocols is performed.

Although the goal deviates from the ONC approach (i.e. the protocol stack exchange has

impact on all involved systems and can hardly be done locally), the approach enables adap-

tivity aspects at protocol-level.

As a first basic aspect, protocol composition and execution frameworks aim at simpli-

fying the usage, design, and configuration of data communication protocols. The more

complicated a protocol is, the harder it can be exchanged against another comparable or

(depending on the situation) more suitable one. This leads to the insight that protocols

should be designed in a more modular way. Hence, the goal of protocol composition is to

provide the opportunity of composing protocol stacks according to the application needs.

At runtime, the framework covers the necessary monitoring and data exchange tasks to pro-

vide knowledge for deciding on the best available protocol composition. The most important

frameworks covering these tasks are Appia [298], Cactus [299], Consul [300], Ensemble [301],

Horus [302], and the system presented by Mena et al. [303]. Besides the locality aspect, some

characteristics of the approaches separate them from the requirements of the ONC frame-

work. For instance, the protocols and their configurations have to be known in advance and

further automated extensions with new behavioural repertoires are not intended.

Furthermore, Schöler and Müller-Schloer presented an adaptive monitoring architecture

for protocol stack configuration which already focuses on the techniques used within the

144 CHAPTER 7. ORGANIC NETWORK CONTROL

ONC system [304, 305]. In particular, it makes use of OC’s Observer/Controller pattern

(see Chapter 2.2). Similar to ONC, the authors’ approach relies on self-optimisation based

on learning at runtime – thus, they describe the application of a Fuzzy Learning Classifier

System [168] to cover the protocol exchange decisions and to learn from the feedback pre-

pared by the observer. But, unlike the ONC framework, the system is again built without

offering the opportunity of handling different protocols and extending the set of possible

solutions autonomously and on demand.

Centralised Systems for Protocol Adaptation

The previously discussed approaches have drawbacks, especially in the limited repertoire

of possible actions. As mentioned for protocol stack composition, researchers focused on

finding network-wide solutions to adapt protocols to current demands. Besides choosing

matching protocols, another option is to change their configuration. First attempts proposed

centralised systems capable of adapting the protocol’s configuration dynamically at runtime.

In 2001, Sudame and Badrinath [306] presented a first example. They introduced a first

TCP- and UDP-based study and defined the need of dynamic adaptation, but detailed

examination and a demonstration of the re-usability for other protocols have not been

addressed.

In the same year, Ye et al. presented their system, which is based on a centralised adap-

tive random search algorithm that tries to combine the stochastic advantages of pure random

search algorithms with threshold-based knowledge [307, 308]. This search heuristic is used

to determine the best-fitting parameter settings for the entire network – all contained nodes

are configured centrally with the same settings. Recently, they extended their approach

towards a back-end support tool for large-scale parameter configuration that is based on

efficient parameter state space search techniques and on-line simulation [309].

Another related approach is introduced by Georganopoulos and Lewis in [310]. They

describe a dynamic optimisation framework for the reconfiguration of network protocols at

all layers of the protocol stack. The approach is based on previous work done for adapting

configurations of mobile terminals in a TCP/IP setting [311, 312]. Their system tries to

optimise its performance according to given goals by adjusting or replacing different entities

(applications, protocols, etc.). All these approaches rely on a centralised element and adapt

protocol settings for all affected nodes in the whole network. To allow for such a division of

work between a central server and the particular nodes, problems like bandwidth usage, single

point of failure, or local knowledge accessible from server-side have to be covered. Besides

these three systems, further approaches (especially protocol-specific ones) are known, but

the presented ones are those most similar to the scope of ONC.

7.2. RELATED WORK 145

Self-parametrising Systems

Since all solutions presented before have several drawbacks due to the need of a central

element, research focused on developing self-organising approaches – like ONC. As one ex-

ample, Su et al. [313] presented their approach for a mobility-adaptive self-parametrisation

of different unicast and multicast routing protocols in the MANet-domain. The approach

assumes that each node can determine its position by a positioning system (e.g. GPS). By

periodic position measurements, a node can additionally determine its velocity and its mov-

ing direction. This information is included in the control messages of the routing protocols.

Thereby, mobile nodes get informed about the position, speed, and moving direction of

other nodes. Based on this information, link expiration times and route expiration times

are computed as a basis for configuring routing parameters like update intervals, or to select

stable routes.

In contrast, Ahn et al. [314] do not depend on the existence of a positioning system.

Instead, they use the observed number of changes in the single-hop neighbourhood of the

nodes as mobility metric. The nodes exchange lists of new and lost neighbours in the last

interval and calculate a metric describing the dynamics in the neighbourhood. Following

this metric, a dynamic adaptation of the protocol is achieved. In comparison to the ONC

approach, the authors rely on a protocol extension that is responsible for updating and

exchanging these lists. Furthermore, the approach is only feasible for the MANet-domain.

Similar to Ahn et al. [314], Boleng [315] determines the mobility by analysing the ob-

served neighbourhood locally. Considering the average link duration as mobility metric, the

author uses the received values to control the data forwarding of his Adaptive Location Aided

Routing from Mines (ALARM) routing protocol (an extension of [316]). If the average link

duration exceeds a given threshold, low mobility is assumed and the packets are forwarded

by normal routing. In contrast, high mobility is assumed and the data packets are flooded

if the average link duration falls below this threshold. Again, this approach is a specific

solution just for one protocol.

The most recent development has been presented by Stanze et al. in 2006 [317]. They de-

scribe a system for mobility-adaptive self-parametrisation of a routing protocol in MANets.

Therefore, they measure the mobility by using their MANET Relative Velocity Indicator

(MARVIN) protocol. Based on continuously measuring MARVIN and the corresponding

observed situation, the authors adapt the parameters of their routing protocol. All ap-

proaches named before are restricted to specific routing protocols in MANets. They are

application-specific and cannot be transferred to enable self-parametrisation of protocols

from other domains, since they focus on determining the mobility aspect in MANets and

use predefined actions for observed situations.

146 CHAPTER 7. ORGANIC NETWORK CONTROL

7.3 Application of the Generic Architecture

Since the ONC system is designed to control several different network protocols, a general

adaptation to a specific application is not possible. Thus, a protocol-specific solution is

needed, which is described in the remainder of this section. Initially, a broadcast protocol

for MANets is investigated, which is situated at lower layers of the OSI protocol stack

[318]. Afterwards, the application layer is focused in the context of wireless sensor networks

and Peer-to-Peer networks. On the one hand, these three scenarios have been chosen to

demonstrate the generic character of the ONC system. On the other hand, different aspects

of ONC can be explained using the particular characteristics of the protocols.

7.3.1 Broadcast Algorithms in Mobile Ad-hoc Networks

A demanding challenge for the ONC system is investigated in the context of the first scenario:

the control and adaptation of MANet protocols. The possible movements of nodes lead to

continuously changing situations: neighbours are getting out of reach or joining the sending

distance. Hence, highly dynamic environments and vast situation spaces occur making

MANets a promising application area. An important mechanism to distribute messages in

MANets is broadcasting – these algorithms are used as a basic technique in further protocols

on higher layers of the protocol stack (e.g. routing).

In order to apply ONC to MANet-based broadcast protocols, the exemplary R-BCast

protocol as introduced by Kunz [276] has been selected. In the following section, the proto-

col and its parameters are explained. Afterwards, the adjustments of the general framework

as introduced in Chapter 3 are discussed. Therefore, the basic tasks as formulated for wrap-

ping a new system into the framework are fulfilled. Based on an experimental simulation

environment, the achieved results of the evaluation are analysed and explained. The sce-

nario as discussed in this section has been initially published in [279]; an extended approach

can be found in [280].

Protocol

The Reliable Broadcast Protocol (R-BCast) as introduced by Kunz in [276, 319] has been

chosen, since it is representative for the domain. The goal of the protocol’s development

has been to achieve reliability when delivering messages in ad-hoc networks and to increase

the packet delivery ratio compared to other protocols. Therefore, the author designed tech-

niques like equipping the nodes with extra buffers to retain messages in temporary storage.

These round-robin-based buffers are used to store the last p received unique packets. In

contrast to other protocols, the R-BCast protocol has significantly more variable parame-

ters. Consequently, the task of controlling the protocol is more complex, but – in turn – it

also offers a higher potential benefit to be gained from a dynamic adaptation.

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 147

Parameter Standard configuration
Delay 0.1 s
AllowedHelloLoss 3 messages
HelloInterval 2.0 s
δHelloInterval 0.5 s
Packet count 30 messages
Minimum difference 0.7 s
NACK timeout 0.2 s
NACK retries 3 retries

Table 7.1: Variable parameters of the R-BCast protocol

Parameters

The R-BCast protocol has several variable parameters, a detailed discussion of the purpose

and the functionality of each of these parameters is given in [276]. Table 7.1 lists them

with their particular standard configuration. In order to understand what the purpose of

each parameter is and what effect an adaptation can have, they are briefly discussed in the

following.

The delay variable is used to define the maximum deceleration time between receiving

and forwarding a message. Due to the mobility in MANets, many protocols are built on

exchanging “hello”-messages to keep track of their neighbours’ availability. Therefore, the R-

BCast protocol has an AllowedHelloLoss variable defining the maximum of “hello”-messages,

which may be lost until a neighbouring node is assumed to be out of transmission range.

Furthermore, the HelloInterval defines the duration between sending “hello”-messages, and

the δ-HelloInterval randomises this interval to avoid collisions. Besides managing a list of

available neighbours, the protocol has a mechanism to hold broadcast messages in temporary

storage – if a new node joins the sending distance, lists of the last n broadcasts (and not-

acknowledged messages) are exchanged and missed messages are updated. Therefore, the

Packet count parameter defines the number of messages in the temporary storage – the Min-

imum Difference defines the lowest border of the duration between two not-acknowledged

messages to be handled as different broadcasts. The last two variable parameters are also

part of this not-acknowledged (NACK) mechanism. These NACK messages are used to get

missed broadcast messages. If a node has a broadcast message from Sender S1 with ID4

in its queue and receives a new one with ID6, it asks for the one with ID5 using a NACK

message. In the process, NACK timeout defines how long the node waits for an answer

for the NACK message until it repeats the process. NACK retries specifies how often the

process is repeated.

148 CHAPTER 7. ORGANIC NETWORK CONTROL

Customisation of ONC

The application of ONC to a new protocols requires the completion of the five basic cus-

tomisation tasks as introduced for the general system in Chapter 3. Since the approach aims

at providing a re-usable framework, an out-of-the-box solution is hardly possible. Thus, the

framework provides the general mechanism and functionality, which has to be extended at

only a few points to be able to control a new system. The customisation according to the

five steps is explained as follows.

(1) Situation Description The first task when applying ONC to the control of a new

protocol is to define what is relevant for the adaptation process and has influence on the

protocol’s performance – the situation of the SuOC. Considering MANet protocols, the

most important dynamic factor is the distribution of other nodes within sending and sensing

range. The goal for reliable broadcast algorithms is to deliver messages to all receivers. This

has to be reached with minimal effort (in terms of forwarding messages), since forwarding

increases the load of the network. The more nodes are within sending distance, the higher

is the probability that forwarding the message is not required, since the neighbours have

already received this message by another forward.

Assuming that nodes are able to determine the current positions of their neighbours

within the sensing range relative to their own position (e.g. based on GPS, see [320]), the

situation of the nodes’ environment can be described. But when considering exact positions

of neighbours based on GPS coordinates, current and previous situations will hardly be

identical. In addition, the learning component relies on a classification of situations to keep

the set of possible rules manageable. As a result of these considerations, a sector-based

approach as depicted in Figure 7.1 has been developed [279], which discretises the search

space. For each of the sectors depicted in the figure, the situation description stores the

number of neighbouring nodes within the covered area.

Figure 7.1: Environment representation for MANet protocols

The radius of the outer circle is equal to the sensing distance (sensDist) of the node,

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 149

as this is the most remote point where messages of this node can interfere with other ones.

Typically, the transmission range for Wireless-LAN-based MANets is about 250m and the

sensing distance is twice the sending distance (500m). The radii of the inner circles have

been chosen empirically. Since nodes within the first circle are really close (50m), their

exact positions have only minor influence on the best parameter configuration – probably

all neighbouring nodes within this circle receive the same messages. The second circle

(125m) has been partitioned into 4 sectors, the third circle (200m) into 8 sectors, and

the forth circle (250m, maximum transmission range) into 16 sectors. This corresponds to

a trade-off between a classification of the nodes’ distribution and keeping the information

where the nodes are. The next two circles (375m and 500m) are representing the area

within sensing range – both circles are divided into 32 sectors each. Besides storing the

number of neighbours for each sector, the situation description contains the node’s speed (if

available) and its direction of movement, since it has high influence on the best parameter

set (e.g. moving towards/away from a set of nodes may influence the best delay value).

(2) Similarity Metric Based on the aforementioned description, a metric to quantify

the similarity of two situations is needed, since the learning component of Layer 1 is only

allowed to choose from the set of “nearby” rules. Therefore, the distance function δ(A,B)

is defined as follows. The more similar two situation descriptions A and B are, the lower

is the distance value determined by the δ-function. Before applying this distance function,

the possible influences of rotation and reflection are deducted. Afterwards, the formula for

the distance can be defined with r ∈ RADII and s ∈ SECTORS as follows:

δ(A,B) =
∑
r

∑
s

(Ar,s −Br,s)
2/r.distance (7.1)

The function r.distance defines the radius size as introduced before (50m, 125m, . . .).

Ar,s refers to the number of neighbours within the sector s of radius r for the situation

description A. Consequently, the importance of a neighbour decreases with increasing dis-

tance.

(3) Learning Feedback Besides the situation description and a distance measurement

between situations, the learning component needs a learning feedback to draw conclusions

from its past actions. Several metrics have been proposed for MANet protocols – in the

context of broadcast algorithms, the most prominent ones are Packet Delivery Ratio and

Packet Latency. Although both cannot be measured locally at each node (they are global

figures in the context of Definition 1), they give a hint on what the overall goal is – the

system shall reduce the number of forwarded broadcasts and assure the delivery of the

broadcast to each node at the same time. To achieve this, the following fitness function

(Fit(x)) has been developed:

150 CHAPTER 7. ORGANIC NETWORK CONTROL

Fit(x) =
#RecMess

#FwMess
(7.2)

In Equation 7.2, x represents the currently observed network protocol instance. Since

a new parameter set has to be applied for a minimum duration to show its performance,

evaluation cycles are used defining discrete time slots – the control loop consisting of Layers 0

and 1 is performed once every evaluation cycle. The duration of these cycles depends on how

dynamic an environment is. The faster the environment changes, the shorter is the cycle

(and the more often is the SuOC adapted). Thus, the formula above takes all messages sent

and received within the last cycle into account. It divides the sum of all received messages

(#RecMess) by the sum of all forwarded messages (#FwMess). As a result, high effort

(unnecessary forwards) and low delivery rates (not successful broadcasts) are penalised.

(4) Configuration Space Furthermore, the variable parameters to be controlled by ONC

have to be defined as the fourth task of the adaptation process. Here, all variable parameters

as introduced by Kunz are covered by ONC (see Table 7.1). ONC aims at providing a black

box solution and does not interfere with the SuOC’s logic – thus, only those parameters

accessible by the configuration interface are considered.

(5) Simulation Model Finally, Layer 2 has to build adequate simulation scenarios from

the information obtained by Layer 1. Therefore, the network simulation tool NS-2 [130]

is used to perform the simulation tasks. Kunz provides a standard implementation of the

R-BCast protocol for NS-2, which has been applied to ONC. The situation description is

converted into a simulation scenario for NS-2 by creating a randomised instance of the sector-

model. The resulting distribution of the neighbouring nodes stays at the given position

during the simulation time and the investigated node moves according to the observed

speed and movement direction. During the simulations, BCast messages are introduced

from outside the simulated network. The fitness calculation is again based on the Fit(x)

function as discussed before. The simulation duration depends on the desired effects: in

MANets, the movements of the agents are the most important factor. Assuming a maximum

pedestrian speed of 6 km
h , a node moves about 100m in 60 s. This distance is a good trade-

off between keeping the simulation duration low and providing a basis for effects like closing

the gap between two nodes by movements. In general, the simulation duration depends on

the particular scenario and has to be determined when setting up the simulation model.

Experimental Setup

The experimental setup consists of two parts: the simulation environment and the particular

scenarios. The simulation environment is implemented in JAVA using the Multi-Agent

Simulation Toolkit MASON [128]. Within this simulator, the R-BCast protocol has been

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 151

implemented according to the NS-2 based solution provided by the author of the protocol.

Within the simulated area of 1000 x 1000 meters, ten agents are created at random positions

and move according to a random-waypoint-model (see e.g. [321]). From these agents, only

one is equipped with the ONC system – the other nine agents perform the standard protocol

configuration. The sampling rate of ONC’s Layer 1 is set to 1 s. The simulation relies on

pseudo-randomised movements by taking seeds into account – which makes them repeatable

and comparable to the usage of the protocol’s standard configuration. The investigated

simulation period covers seven hours.

The analysis of the ONC system in this setting investigates several different aspects.

First of all, the question has to be answered, whether there is a benefit due to additional

ONC-control or not. A special focus in this context is set on the development of ONC-control

over time. The system starts with a completely empty rule-base and has to use its Layer 2

component to learn new rules. Based on this start from scratch, the performance has to

improve with each simulated day. To quantify this desired effect, the following figures have

been recorded during the simulation: 1) the number of successfully delivered broadcasts,

2) the averaged latencies of this delivery process, 3) the number of network-wide messages

sent, 4) the number of network-wide messages received, and 5) the rule-generation and

SuOC-adaptation effort performed by Layer 1 of the controlled node.

The second part of the evaluation focuses on the required effort for the achieved adapt-

ability caused by ONC. Therefore, the developments in terms of a) the rule-generation part

and b) the population size are determined.

Results of the Evaluation

The first part of the evaluation analyses the general impact of the additional ONC control

in this scenario. ONC’s goal contains two aspects: assure the delivery of broadcasts and

decrease the overhead needed to achieve this delivery. Since deliveries of broadcasts can only

be considered at network-level, this analysis demonstrates the results from a more global

perspective. Figure 7.2 illustrates the delivery ratio of broadcast messages. Therefore, the

number of received distinct broadcasts has been divided by the number of sent broadcasts.

The figure illustrates the desired effect. The reference solution reported a delivery ratio of

4.63 on average, which is clearly improved by the ONC-control. Day 1 resulted in an increase

of 7.38 % (delivery ratio of 4.99), day 2 in an increase of 6.93 % (delivery ratio of 4.97), and

day 3 in an increase of 6.42 % (delivery ratio of 4.94). Although the results decrease slightly

for the three ONC days (which can only be explained by statistical effects), the increase of

the delivery ratio is significant. The second aspect in this context is the latency needed to

achieve this delivery ratio. The latency values have been determined as the averaged time

to deliver a unique broadcast to a receiver. All four values (reference and ONC days 1 to

3) are within a similar range – the maximum deviation between two values is 0.95 %. Thus,

the impact of ONC on the latencies can be neglected.

152 CHAPTER 7. ORGANIC NETWORK CONTROL

The second part of Layer 1’s objective function aims at minimising the overhead needed

to deliver the broadcasts successfully. In this context, overhead is defined as all non-

broadcast messages – in particular, this includes NACK messages, “hello”-messages, and

re-transmissions. Figure 7.3 depicts the results for all four simulations. The reference solu-

tion (all nodes performing R-BCast’s standard configuration) resulted in an average number

of 9, 109.9 overhead messages. This value has been decreased in case of an activated ONC

for one agent. Day 1 resulted in 8, 549.3 overhead messages (decrease of 6.15 %), day 2

resulted in 8, 757.0 overhead messages (decrease of 3.87 %), and day 3 resulted in 8, 647.0

overhead messages (decrease of 5.08 %). This means, that the capacity of the network has

been increased between 3.87 and up to 6.15 % due to ONC control – which is a significant

improvement. Considering the figure, one can observe that the graph for the reference solu-

tion is above the ONC lines, except for the fifth simulation hour. In this case, the standard

configuration of the protocol leads to better results than the ONC-controlled version. But

this effect decreases with longer learning duration. The third day leads to nearly the same

results as the reference solution in these situations.

3

3,5

4

4,5

5

5,5

6

1 2 3 4 5 6 7

D
e

liv
e

ry
 r

at
io

simulation time (hour)

Reference ONC (day 1) ONC (day 2) ONC (day 3)

Figure 7.2: Delivery ratio of broadcast messages (higher values are better)

As mentioned for the scenario’s setup, only one node is equipped with the ONC sys-

tem. The advantage of this limitation is that ONC’s behaviour can be considered without

interferences between mutual learning and adaptation effects – it is traceable which node

has been responsible for the changes in comparison to the reference solution. Thus, the

following part of the evaluation considers the local results of the adaptive node equipped

with ONC. Due to the local focus, network-wide figures like latencies and delivery ratios are

not measurable. Therefore, the analysis covers the same figures as observed for the on-line

learning component when deciding about necessary adaptations. It is founded on measuring

the received and sent messages by taking three ONC days and the reference solution into

account. As reference, the node’s ONC system has been deactivated and the protocol’s

standard configuration has been performed. Figure 7.4 depicts the results for the received

messages and Figure 7.5 depicts the results for the sent messages.

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 153

7000

7500

8000

8500

9000

9500

10000

1 2 3 4 5 6 7

O
ve

rh
e

ad
 (

m
e

ss
ag

e
s

se
n

t)

simulation time (hour)

Reference ONC (day 1) ONC (day 2) ONC (day 3)

Figure 7.3: Overhead caused by the broadcast protocol (lower values are better)

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

re
ce

iv
e

d
 m

e
ss

ag
e

s

simulation time (hour)

Reference ONC (day 1) ONC (day 2) ONC (day 3)

Figure 7.4: Number of messages received by the node under ONC-control (higher values are
better)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

N
u

m
b

e
r

o
f

se
n

t
m

e
ss

ag
e

s

simulation time (hour)

Reference ONC (day 1) ONC (day 2) ONC (day 3)

Figure 7.5: Number of messages sent by the node under ONC-control (lower values are
better)

154 CHAPTER 7. ORGANIC NETWORK CONTROL

As illustrated by Figure 7.4, the reference solution resulted in an averaged number of

5, 109.3 received messages. This has been increased by ONC to 5, 167.7 (corresponds to an

increase of 1.13 %) at day 1, to 5, 460.3 (corresponds to an increase of 6.43 %) at day 2, and

to 5, 265.3 (corresponds to an increase of 2.96 %) at day 3. Considering the averaged results

and the different graphs for the four simulations, all of them behave comparably. This

observation conforms with the expected effect that a parameter adaptation will probably

have a higher impact on sending messages than on receiving them – in case of considering

the node’s local view.

Hence, the decision about sending messages is in the node’s area of responsibility. Con-

sequently, the figure for the sent messages is more important for the local view. Figure 7.5

depicts the results. The reference solution sent and forwarded 924.14 messages. This has

been decreased drastically by ONC. During day 1, only 680.85 messages have been sent (de-

crease of 26.33 %), while day 2 resulted in a slightly worse performance by sending 868.85

messages (decrease of 5.98 %). The final day 3 of the simulation showed the best performance

with only 533.71 messages sent (decrease of 42.25 % compared to the reference). Thus, the

aspect of minimising the sending effort of Layer 1’s target function has been achieved suc-

cessfully – this reduction of the sending effort is caused by reducing “overhead” messages

only.

Effort caused by ONC The second major aspect of analysing ONC-control in the sce-

nario is to determine the required effort caused to achieve this behaviour. This aspect is

concerned with the rule-generation and the SuOC-adaptation behaviour of ONC. There-

fore, the following part investigates: a) the development of the rule base over time, b) the

closely-connected number of Layer 2 optimisations during the simulation period, and c) the

adaptation-demand realised by ONC.

The former two aspects (a and b) are covered by Figure 7.6. The y-axis depicts the

number of classifiers, while the x-axis depicts the simulation time in hours. In order to

visualise the development through all simulated runs, the x-axis has been defined on an hour-

basis showing all three consecutive runs. The figure lists the Layer 2 runs (left bars) and the

corresponding population size (right bars) at the end of the particular simulation hour. Since

the population contains “covering”-based rules in addition to the Layer 2-generated ones,

the population size is not equal to the aggregated number of Layer 2 runs. As depicted in

the figure, the population size increases drastically at the begin of the simulation. Starting

from hour 14 on, the convergence process begins. Further simulations showed that the

number of new rules decreases continuously and the size of the rule base converges to about

3, 000 rules. At the end of ONC’s day 3, the population contains 2, 570 rules that have to be

compared to the input stimulus. Due to the convergence, the effort stays manageable. This

effect is supported by the observation regarding the utilisation of Layer 2. Obviously, the

first day demanded the highest number of Layer 2 runs. The corresponding effort decreases

afterwards. In total, 2, 170 rule-generations have been performed during the simulated period

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 155

(day 1: 1, 066 rules; day 2: 925 rules; day 3: 139 rules). Especially by considering the number

of Layer 2 runs for all three days, the decreasing behaviour is visible.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
u
m

b
e

r
o
f
c
la

s
s
if
ie

rs

simulation time (hour)
Layer 2 runs Population size

Figure 7.6: Development of the population size at Layer 1 and the performed Layer 2 tasks
during the simulation period

Finally, the effort to achieve the ONC-based results has been analysed. The sampling

interval has been chosen as 1 s, which means that the ONC-controlled agent had the op-

portunity to adapt its SuOC 3, 600 times per simulated hour. Analysis of the data showed

that the Layer 1 component constantly took advantage of this possibility to about 90 %

each hour. Thus, every 10th chance to adapt the SuOC has not been used. In general,

the number of adaptations corresponds to the speed at which the neighbourhood changes

(and consequently to the nodes’ movement speeds). Choosing lower movement speeds would

decrease the number of adaptations significantly. But as choosing an appropriate rule de-

pends on a linear search of the rule base and the size of the rule base converges to about

3, 000 rules, the effort is manageable. Summarisingly, an application of ONC to the con-

trol of a MANet-based broadcast algorithm has been successful. The overhead caused by

retransmissions and “hello”-messages has been significantly decreased, while the delivery of

broadcasts has been improved.

7.3.2 Mode-selection Protocols in Wireless Sensor Networks

The first scenario has been used to investigate the general functionality of ONC and the

applicability to MANets. In contrast, the second scenario focuses on further aspects of

applying ONC to data communication protocols. So far, it has been assumed that the

particular entities performing the protocol are equipped with sufficient resources to cover all

aspects of the proposed system. This assumption is not necessarily fulfilled for each protocol

or class of protocols that can be controlled by ONC. For instance, research in wireless sensor

networks (WSN, see [322]) has to cope with limited resources in terms of computational

power, storage, and available energy. Consequently, effort has been spent on providing

156 CHAPTER 7. ORGANIC NETWORK CONTROL

highly efficient algorithms and communication. Considering the basic design as depicted in

Figure 3.2, simulation-based optimisations as performed by Layer 2 are contradicted for the

application to wireless sensor nodes. Nevertheless, there is a potential benefit of applying

ONC to such restrictive scenarios. Therefore, the scenario is used to investigate cases where

a trade-off between adaptivity and resource-usage is needed. The work presented in the

following section has been published initially in [281] and is based on the implementation

as presented by Zgeras in [323].

As mentioned before, one major problem in WSNs is the efficient usage of resources.

Hence, the following scenario has its major focus on the question of how ONC can be adapted

to cope with these restrictive circumstances. To address reasonable energy consumption in

general, mode-selection protocols (see e.g. [322]) have been developed. Mode-selection means

to determine whether a node can be switched to standby mode for the next cycle or not.

By temporarily deactivating nodes, redundancy is reduced when covering the area with the

WSN. Consequently, this leads to an enlarged operation time of once-supplied WSNs due

to saving energy. Considering the protocol stack, this protocol class can be assigned to the

application layer.

This section is organised as follows. Initially, the exemplarily chosen mode-selection pro-

tocol is introduced, followed by discussing the variable parameters to be controlled by ONC

and their influence on the protocol’s performance. Afterwards, the necessary customisation

of ONC and the corresponding adaptation of the basic framework are explained. The ap-

proach is analysed using a simulation-based evaluation. The setup and the achieved results

are presented in the last part of this section.

Mode Selection Protocol

The exemplary mode-selection protocol Adaptive Distributed Resource Allocation Scheme

(ADRA) as presented by Lim et al. [324, 325] has been chosen to demonstrate the benefit of

ONC-control under hard restrictions. The ADRA protocol has a relative simple logic and

offers just a few parameters to be adapted when deciding whether a node will be switched to

standby mode for the next cycle or not. Its mode of operation makes it a representative for

the whole domain, and its relative simplicity provides a possibility to analyse the behaviour

of ONC. Furthermore, focusing on just a few parameters allows for a processing on sensor

nodes, although the investigation presented here is performed using simulation.

The ADRA algorithm distinguishes between three consecutive phases: 1) initialisation,

2) processing, and 3) decision. Following the protocol, each node is able to decide au-

tonomously at the end of the third phase whether it will be in standby mode for the upcom-

ing cycle or not. During the first phase, the node queries the neighbours’ mode status, gets

information about detected events (if any), updates its local variables (e.g. battery life),

and sends information on detected targets to its neighbours. Afterwards, the information

is processed in phase 2. The node receives the queried information on events, compares

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 157

Parameter Standard configuration
LocPrio 0.4
CovPrio 0.5
BatPrio 0.5
Thsd 10.0

Table 7.2: Variable protocol parameters of the ADRA-scheme

its own information about events with the received ones, computes its mode-scheme, and

sends this to its neighbours. Finally, the decision about the mode-selection is done in phase

3 by receiving the neighbours’ planned schemes, resolving the own plan according to the

neighbours’ data, and executing the plan (e.g. select standby or active mode).

Parameters

Following ADRA’s three-phased algorithm, the mode-selection is determined by calculating

a so-called potential value (pot). The process starts with initialising pot for the next cycle.

Afterwards, the three priority values for influencing aspects are considered: localisation,

coverage, and battery. The localisation priority (LocPrio) is used, if the node has to locate

an event (e.g. triangulation using different nearby nodes). In contrast, the coverage priority

(CovPrio) is needed to ensure a complete sensing of the environment (the less nodes in the

neighbourhood, the higher is CovPrio). Additionally, the battery priority (BatPrio) covers

the aspect of different energy levels among neighbouring nodes. Finally, a threshold (Thsd)

is needed defining whether the node will be in active or standby mode within the next

cycle. For the standard ADRA protocol, all four values (LocPrio, CovPrio, BatPrio, and

Thsd) are predefined and constant. In this scenario, they will be subject to ONC control and

therefore altered at runtime. Table 7.2 lists all parameters and their standard configuration.

Since Lim et al. do not discuss the settings of the parameters, this configuration is the result

of a manual simulation-based optimisation process.

Customisation of ONC

The adaptation of the framework is done by following the five basic tasks as introduced in

Chapter 3.Due to the resource questions, the definition of the simulation model is accom-

panied by a discussion of task distributions for the particular layers of the architecture.

(1) Situation Description Initially, a description covering the current situation of the

sensor node and its environment is needed. For WSNs, this environment is mainly char-

acterised by the distribution of neighbours within the node’s sending and sensing range

in combination with their energy levels. Similar to the MANet-based scenario before, an

abstract classification of the neighbourhood is needed. Due to the restricted resources for

158 CHAPTER 7. ORGANIC NETWORK CONTROL

wireless sensor nodes, a detailed representation as introduced for the MANet-based scenario

is not feasible. Hence, a further abstraction is chosen, which aggregates more situations

into one class of situations. In addition, an expensive calculation based on distinguishing

between different radii and sectors is not feasible. The result of these considerations is a

modified sector-based approach with a simplified partitioning according to the direction of

the particular neighbour (Figure 7.7). The figure describes the classification of an observed

neighbourhood and its representation as done by each node. For each of these sectors (see

Sector 1 to Sector 8 as depicted in Figure 7.7), four different values are stored in the situation

description: the number of neighbours in active or passive (standby) mode with more/equal

or less energy than the current node. In total, 32 values are stored representing a counter

of nodes (four types of nodes, eight sectors – 32 different entries).

Active node (more/equal energy)

Passive node (more/equal energy)

Active node (less energy)

Passive node (less energy)

Figure 7.7: Encoding of the situation for ONC-controlled mode-selection protocols

(2) Similarity Metric Besides the pure representation of the current situation, the ONC

system needs a possibility to compare situations and to determine their similarity. Consider-

ing the representation as depicted in Figure 7.7, the situation for ONC’s learning component

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 159

is identical, if the sectors are e.g. shifted clockwise. More formally, this means that the possi-

ble influence of rotation and reflection have to be deducted before determining the distance

by searching for the most similar match – similar to the MANet-based scenario before.

Based on the most similar match, the absolute difference between all corresponding values

of the situation description is added up and used as distance measurement. As a result, the

distance value is lower for more similar situations. Consider as example that two situation

descriptions are only differing in the representation of one sector: SectorSit(A) is 1000 and

SectorSit(B) is 0000 – the distance measurement is 1.

(3) Learning Feedback As third step, the learning feedback is needed to enable au-

tomated learning. As mentioned initially, the main goal for mode-selection in WSNs is

to reduce the energy consumption while simultaneously keeping the coverage of the area.

Hence, the fitness function has to take three main aspects into account: 1) the distribution of

neighbours within sending distance (goal: minimise number of active nodes), 2) the overlap

rate of the environment (ensure complete coverage of the environment), and 3) the energy

status (minimise energy consumption). All three aspects are measured locally at each node

by taking the neighbours’ status into account (available due to ADRA’s mode-selection

process). The heuristic formula is given as:

Fit(n) =
x+ y + z

3
(7.3)

with n identifying the currently observed network protocol instance, x representing the

node availability part, y evaluating the degree of environmental coverage, and z determining

the energy levels. This fitness value is calculated for each node locally, taking the covered

area into account. The corresponding formulas for the three aspects are given as follows:

I.) x = e−(xi−a)2+b; II.) y = e−(yi−c)2 ; III.) z = d+ e ∗ zi − f ∗ z2i (7.4)

a, b, . . . , f are constants and have been configured empirically, whereas the resulting

curves are chosen to achieve a specific behaviour. The x value as defined in part I.) of

Formula 7.4 provides a Gaussian distribution for the interval between 0 and 100 % of active

nodes within the node’s sensing range. The goal of this aspect is to penelise situations

where only a few nodes or nearly all nodes are active. Furthermore, the y value (see part II.

of the previous formula) is defined between 0 and 100 % coverage rate of the environment.

The resulting curve describes a normal distribution with a maximum at 100 % and drops

strongly towards 0 when reducing the fraction of the actively covered environment. Here,

the assumption is that uncovered parts of the environment lead to a decreasing detection

rate. Finally, the z value defines the influence of the energy consumption of all nodes within

sensing range on the fitness value. Based on the theoretical minimum and maximum values

for the energy consumption and the number of nodes in sensing range, a ratio between

160 CHAPTER 7. ORGANIC NETWORK CONTROL

the determined energy consumption and the desired one can be determined. Therefore, a

parabolic curve of the ratio is used, which penalises again the extreme values (all nodes

being active or in standby mode) but favours low consumption values.

(4) Configuration Space As fourth task, ONC’s control-interface has to be connected to

the adaptable parameters of the ADRA-scheme. As discussed in Section 7.3.2, the authors

of the protocol defined four basic parameter (LocPrio, CovPrio, BatPrio, and Thsd) that

can be customised without interfering with the protocol’s logic – these parameters will be

subject to ONC control.

(5) Simulation Model Finally, a simulation model for Layer 2 of the architecture has to

be provided. Since an optimisation of new parameter sets using a Layer 2-based simulation

tool is not feasible for sensor nodes due to resource restrictions, Layers 1 and 2 are assigned

to different locations (see Figure 7.8): Layer 1 remains on the sensor node, but Layer 2 is

removed and transferred to a) the sink node and b) the design time for preconfiguration of

the node’s learning component. Since all nodes are identical, they can share the same rules:

a rule that works for NodeA will show the same performance for NodeB in the same setting.

For part a), it can be assumed that long-lasting WSNs will have the possibility to distribute

updates from the sink node to all sensor nodes using broadcast messages. Since rules for

the learning component are simple pairs of situation/action and both can be serialised using

only a few Byte and floating-point values with separators, the effort for communicating these

new rules is low. Backwards, the communication of new needs as observed by single nodes

can be performed by extending the already existing status and event messages by adding

data about needed rules. In total, this means that an active management of the nodes’ rule

bases can be achieved without significant new overhead.

Layer 3

Layer 0

Detector

data
Control

signals

User

ADRA scheme

Layer 1
Parameter selection

Observer

Controller

Learning
Component

Layer 2
Offline learning

Observer

Controller

Simulator

EA

Monitoring Goal Mgmt.

s
e

n
s
o

r
n
o
d
e

s
in

k
 n

o
d
e

Figure 7.8: Adapted architecture of ONC for the application in WSNs

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 161

Alternatively and in addition to a sink-based update mechanism, the ONC system can

be configured in advance to cope with arising situations at runtime (part b). Therefore,

the simulation-coupled optimisation of rules is processed at design time. Hence, a trade-off

between two extreme points is needed. On the one hand, a rule base can cover each possibly

occurring situation using the sector-model. On the other hand, the computational effort and

the needed storage increase linearily with the population size. Consequently, an appropriate

size of the rule base has been determined incorporating as few rules as possible while still

increasing the protocol’s performance significantly.

This trade-off corresponds to the more general problem of finding a balanced solution

between adaptivity aspects and effort due to resource needs. In current OC systems, it is

usually assumed to have enough resources such that no trade-off is needed. But, especially

in case of wireless sensor networks, hard restrictions for energy resources and computation

power exist – the adaptivity is decreased for the benefit of making it easier to compute. In

contrast, e.g. high-loaded routers in the Internet can be equipped with additional compu-

tation power in order to achieve a higher adaptivity and consequently increase the perfor-

mance. Typically, the desired solution will be found between these two extreme positions –

but again, this is application-specific and cannot be answered in general.

Experimental Setup

The experiments have been conducted using simulations. Therefore, the WSN environment

has been implemented in JAVA using the Recursive Porous Agent Simulation Toolkit (Repast

Simphony) [127]. The simulated area consists of 100 x 100 cells, which corresponds to

2,500 x 2,500 meters. In total, 150 nodes (149 sensor nodes and one sink node) have been

created and equally distributed on this area. In order to imitate real-world installations,

the distribution is chosen automatically at the begin of a simulation in a randomised way.

The Physical/MAC layer is assumed to be an IEEE 802.11 in ad-hoc mode. Therefore, the

sending distance is ten cells (corresponds to 250m). As discussed before, the application

to WSNs limits the available resources. Thus, the node’s rule base has been restricted

to 48 different classifiers, which corresponds to the best trade-off found in simulations.

Especially compared to standard LCS-populations, this is an extremely small population

size. The classifiers are the result of the off-line optimisation and selection process as

mentioned previously – Layer 2 has been used to evolve matching parameter sets covering

the space of possible situations. From this set, the best 48 classifiers have been selected.

By increasing the population size, more specialised classifiers can be created leading to a

potentially increasing system performance.

Like the authors of the ADRA protocol, an abstract representation of energy (the energy

unit e) and its consumption has been used. Additionally, the Repast-based simulation relies

on its own abstract unit of time, called ticks. A tick is equal to one step of the simulation.

All nodes start with an initial energy level of 20, 000 e. At each tick, all nodes consume

162 CHAPTER 7. ORGANIC NETWORK CONTROL

a defined amount of energy depending on their current mode: 5 e in active and 0.5 e in

standby mode. Neglecting communication cost does not influence the results, as the effort

is constant for all compared scenarios. The mode-selection algorithm is processed every

50 ticks.

Results of the Evaluation

In order to analyse the impact of ONC’s dynamic adaptation process, a comparison between

the static protocol version and the ONC-based version has been performed. In the following,

three basic experiments are discussed: 1) a static distribution of nodes with periodically

repeating events, 2) a static distribution of nodes with varying events, and 3) a dynamic

distribution of nodes with varying events. The first experiment shows that the ONC system

leads to a significant increase in terms of the performance metric, although the advantages

of the approach compared to static versions are expected in more disturbed or dynamic

settings. Thus, the second and third scenario are used to increase the degree of dynamics.

In the second scenario, no pattern of repeating events can be learned anymore. Finally, the

nodes have to deal with changing neighbourhoods of nodes in the third scenario – some will

be disturbed during the simulation. The analysis is based on the same metrics as used by the

authors of the protocol: the network operation time until the last node dies (no energy left)

and the observed events. The goal of the system is to increase the network’s operation time

while simultaneously observing all occurred events. In addition, an aggregated fitness value

is determined, which is based on the formula for the local learning feedback as introduced

in Section 7.3.2. All figures depict the results obtained by 480 consecutive simulations

using the same configurations – thus, the effect of the learning process is visualised. In this

context, consecutive means that a run of the simulation is started with the rule-set of the

previous run. Hence, the knowledge obtained by the learning component is transferred to

the succeeding simulations.

In the first scenario, a static distribution of nodes and periodically repeating events

(every 500 ticks) are simulated. Figure 7.9 illustrates the achieved results. The standard

protocol version reported ten events (of 14 in total during the simulation time), correspond-

ing to 7, 241 ticks until the last node of the network died. As depicted in Figure 7.9, the

standard protocol version shows constant results for all 480 consecutive runs of the simula-

tion. In contrast, the ONC-controlled version changes steadily due to the trial and update

effects of the learning component – the network’s operation time is increased by 4.4 % on

average (corresponds to 7, 556 ticks). At each of the 480 consecutive simulations, the graph

representing the ONC version is above the graph representing the reference version.

The learning effect is even more visible for the number of reported events. The ONC

systems starts with a predefined set of classifiers, but it has to learn which one fits the current

situation better. Until simulation run 285, the graph for the ONC-controlled version remains

below the one for the uncontrolled version or oscillates around it. Afterwards, the number of

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 163

 7

 8

 9

 10

 11

 12

 13

 14

30 90 150 210 270 330 390 450
 7000

 7500

 8000

 8500

 9000

 9500

 10000

N
um

be
r

of
 o

bs
er

ve
d

ev
en

ts

N
et

w
or

k’
s

op
er

at
in

g
tim

e
(t

ic
ks

)

Number of Simulations

Observed events (ONC-controlled)
Operating time (ONC-controlled)
Observed events (uncontrolled)
Operating time (uncontrolled)

Figure 7.9: Comparison of uncontrolled and ONC-controlled system performance in a static
scenario (higher values are better, zero is suppressed for both vertical axes)

successfully reported events is constantly higher. On average, the ONC-controlled version

reported 10.3 events, which is an increase of 3 % – although, the initial learning period

reduces the benefit for the complete simulation. Neglecting the influence of this intial

learning period leads to a more significant increase. The network’s operating time stays the

same, but the number of detected events increases to 10.6 events.

The fitness function of the on-line learning component takes both previously discussed

aspects into consideration. Figure 7.10 depicts the normalised fitness values. Since the

fitness value of the standard configuration (uncontrolled ADRA scheme) stays the same

for all 480 experiments, it is defined to be one in all cases – ONC’s fitness value is then

calculated in relation to this reference value. For the first static scenario, the fitness value of

the ONC-controlled protocol instance has been increased by 3.7 % compared to the standard

protocol configuration.

The results of the first, static scenario demonstrate the benefit of the additional ONC-

control. The performance has been increased compared to the reference solution. In general,

adaptivity as provided by ONC has its advantages in more dynamic environments. There-

fore, the second scenario increases the level of dynamics. It keeps the setup of the previous

one, but changes the event occurrence (randomised interval). Considering the results as

depicted in Figure 7.11, the expected impact of the increased dynamics is clearly visible.

Although there is only a small benefit of 4.6 % in terms of the network’s operation time – the

ONC-controlled version lasts 7, 575 ticks compared to 7, 241 ticks of the reference version,

164 CHAPTER 7. ORGANIC NETWORK CONTROL

 0.8

 0.9

 1

 1.1

 1.2

 1.3

30 90 150 210 270 330 390 450

F
itn

es
s

Number of Simulations

Fitness (ONC-controlled) Fitness (uncontrolled)

Figure 7.10: Achieved performance in the static ADRA scenario (higher values are better,
zero suppressed for y-axis)

the number of reported events has been increased significantly. The ONC-controlled version

reported 11.2 events on average, which is an increase of 22.2 % compared to the reference

(nine events on average). Furthermore, the normalised fitness function shows similar results:

15 % (1.15 compared to 1 – see Figure 7.12) better than the reference.

The dynamics of the previous scenario have been modelled by randomly generated events.

Considering real-world installations of WSNs, another dynamic factor is the distribution of

wireless sensor nodes. Due to disturbances (e.g. caused by the weather), some nodes may fail

during the network’s operation time and other nodes may have short-term malfunctions. To

simulate this behaviour, the third scenario provides an even more dynamic setting. In each

run of the simulation, a set of nodes is randomly selected and disabled for a certain period.

For this experiment, the following setup has been chosen: 18 nodes are selected randomly

and disabled for 2, 000 ticks. An undesired side-effect of disabling nodes is that they do not

consume energy in this period and consequently increase the network’s operation time. To

counter this effect, disabled nodes consume the same amount of energy as defined for the

standby mode. As depicted in Figure 7.13, the number of observed events can be increased

by using ONC from 8 events to 9.3 events on average (16.3 % more). Simultaneously, the

network’s operating time is increased from 7, 982 ticks to 8, 321 ticks on average, which is a

benefit of 4.2 %. The corresponding normalised fitness value results in an increase of 10.2 %

(see Figure 7.14).

The achieved results for all three scenarios of the evaluation demonstrate the benefit

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 165

 7

 8

 9

 10

 11

 12

 13

 14

30 90 150 210 270 330 390 450
 7000

 7500

 8000

 8500

 9000

 9500

 10000

N
um

be
r

of
 o

bs
er

ve
d

ev
en

ts

N
et

w
or

k’
s

op
er

at
in

g
tim

e
(t

ic
ks

)

Number of Simulations

Observed events (ONC-controlled)
Operating time (ONC-controlled)
Observed events (uncontrolled)
Operating time (uncontrolled)

Figure 7.11: Comparison of uncontrolled and ONC-controlled system performance in the
second ADRA scenario with dynamic events (higher values are better, zero suppressed for
y-axis)

of using ONC for sensor nodes. The system’s performance has been increased significantly

in dynamic environments, but there is also a noticeable positive effect for static solutions.

Especially when considering the hard restrictions applied to the ONC system, the results

have been obtained with low additional effort. An LCS with just 48 classifiers is a very

restricted variant of the learning part. Simulations with a rule-base of 250 trained classifiers

applied to the first static scenario showed that the performance can be increased easily. Here,

the network’s operation time has been extended by about 25 % to 9, 043 ticks on average.

Thereby, the ONC-controlled version reported 14.1 events on average, which is an increase

of 38.8 %. Considering the achieved results, the expected trade-off between adaptivity and

resource usage has been observed.

Finally, the question arises whether the setup as described before can be applied to

wireless sensor nodes. Considering the initially discussed representation of the situation, the

condition part of a classifier contains eight sectors with four values encoded in Byte-format.

In combination with four values encoding the action in floating-point-format, 48Bytes are

needed for one classifier. The LCS at Layer 1 contains 48 classifiers, which means that a

maximum of 2.5KBytes of RAM is needed. The system does not rely on having the whole

rule base in RAM – instead, it can be stored in the node’s flash-memory. The selection of a

rule, based on the set of classifiers and the distance measurement as presented before, relies

on 48 comparisons (number of classifiers) of 32 values in Byte-format (situation description)

166 CHAPTER 7. ORGANIC NETWORK CONTROL

 0.8

 0.9

 1

 1.1

 1.2

 1.3

30 90 150 210 270 330 390 450

F
itn

es
s

Number of Simulations

Fitness (ONC-controlled) Fitness (uncontrolled)

Figure 7.12: Comparison of the resulting fitness value for uncontrolled and ONC-controlled
system performance in the second ADRA scenario with dynamic events (higher values are
better, zero suppressed for y-axis)

– in total, about 1, 536 simple Byte-comparisons have to be processed in each cycle. This

is feasible for nearly all types of sensor nodes. Furthermore, an algorithmic solution of

an adapted variant of Wilson’s XCS has already been realised in hardware (see e.g. [19])

– which makes the application of ONC’s Layer 0 and Layer 1 possible for wireless sensor

nodes.

7.3.3 Peer-to-Peer Networks

The previous two examples have been used to prove the overall benefit of applying ONC to

the control of a data communication protocol and to demonstrate the feasible application

even under hard restrictions in terms of resource usage. Beyond these basic parts, the

third scenario shows the limitations of ONC. Therefore, the Peer-to-Peer (P2P) protocol

BitTorrent [174] is investigated which is widely-used and has been responsible for up to 53 %

of all P2P traffic on the Internet [326] (based on measurements in June 2004). Recent studies

estimate that P2P traffic comprises 40−70 % of today’s Internet traffic [327]. P2P protocols

build an overlay layer on top of the physical network – therefore, the neighbourhood differs

largely from the previous two scenarios. Since there are no physical neighbours having

impact on the decisions of the particular node, all nodes currently known as provider of files

(possessing the sought-after file) or as consumer (asking for files) form the neighbourhood. In

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 167

 7

 8

 9

 10

 11

 12

 13

 14

30 90 150 210 270 330 390 450
 7000

 7500

 8000

 8500

 9000

 9500

 10000

N
um

be
r

of
 o

bs
er

ve
d

ev
en

ts

N
et

w
or

k’
s

op
er

at
in

g
tim

e
(t

ic
ks

)

Number of Simulations

Observed events (ONC-controlled)
Operating time (ONC-controlled)
Observed events (uncontrolled)
Operating time (uncontrolled)

Figure 7.13: Comparison of uncontrolled and ONC-controlled system performance in the
third ADRA scenario with dynamic events and random node-failures (higher values are
better, zero suppressed for y-axis)

contrast to the scenarios before, a node has no knowledge about interdependencies between

its neighbours – every node manages its own lists of peers. The local selection process for

parameter settings can tackle this problem as it learns directly from the feedback and relies

on existing rules. In contrast, the Layer 2 component needs a realistic simulation model,

which is problematic due to the interdependencies between other nodes and the insufficient

knowledge about the neighbours’ status.

The investigation of this section is based on results already published in [282]. The

section is organised as follows. Similar to the scenarios before, the presentation of the

investigated protocol is followed by an introduction of the variable parameters controlled by

ONC. Afterwards, the customisation of ONC is discussed in order to allow for a dynamic

control of BitTorrent. Furthermore, the experimental setup is explained, which serves as

basis for the achieved results presented afterwards. Finally, the limitations of applying ONC

to P2P protocols are discussed.

Protocol

BitTorrent is a very popular and commonly used P2P protocol for distributing large files to

a large group of users. Previous P2P protocols had problems regarding fairness or efficiency

(like Gnutella and its relatives [328]). Thus, the developers focused on a fairness-based

168 CHAPTER 7. ORGANIC NETWORK CONTROL

 0.8

 0.9

 1

 1.1

 1.2

 1.3

30 90 150 210 270 330 390 450

F
itn

es
s

Number of Simulations

Fitness (ONC-controlled) Fitness (uncontrolled)

Figure 7.14: Comparison of the resulting fitness value for uncontrolled and ONC-controlled
system performance in the third ADRA scenario with dynamic events and random node-
failures (higher values are better, zero suppressed for y-axis)

distribution of data when developing the initial BitTorrent concept [174]. Therefore, the

typically large files are split into small parts (so-called chunks). Besides the standard P2P

client, the protocol contains an additional centralised web server (the tracker). This tracker

is responsible for the bootstrapping and provides a search mechanism to find data files within

the P2P overlay-network. A new client needs the address of such a tracker to become a

member of the system, since this tracker manages lists of available parts for all files. When

searching for a file, the peer receives a list of other peers providing chunks of the sought-after

file. Furthermore, it can ask for more if the received set did not contain enough active peers.

Individual chunks are exchanged following a tit-for-tat approach to achieve fairness and to

avoid free-riding. A peer is only uploading data to those peers from which it receives the

highest download rate; all other peers are said to be choked.

The process itself is organised by defining several parameters, which can be controlled

by the peer (some only when setting up a new file for the overlay network, like the chunk

size). Besides the choking mechanism, BitTorrent has another unique feature: the optimistic

unchoking technique. Here, the client reserves a minor part of its available bandwidth for

sending pieces to randomly selected peers with the intention of discovering even better

partners and to ensure newcomers getting a chance to join the group. Further details on

the protocol are given by Cohen [174].

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 169

Variable Standard value
NumberPeersPerTracker 50 peers
MinPeers 20 peers
MaxInitiate 40 peers
NumberOfUnchokes 4 conn.
ChokingInterval 10 sec.
RequestP ipe 5 req.
MaxConnections 1000 conn.

Table 7.3: Variable parameters of the BitTorrent protocol

Parameters

The process of the protocol is organised by defining several parameters, which can be con-

trolled by the peer. One part of the parameter set refers to the tracker-based process when

searching for files (NumberPeersPerTracker, MinPeers, and MaxInitiate), one part to

the choking process (NumberOfUnchokes and ChokingInterval), and one part to local

request and connection settings of the client (RequestP ipe and MaxConnections). Besides

these seven basic parameters, the protocol consists of more configuration possibilities. Since

these further parameters are not accessible through the configuration interface of standard

clients (like Vuze [329]) and ONC provides a black box solution, which does not interfere

with the protocol’s logic (other parameters are hidden within the protocol logic), they are

neglected for the context of this thesis.

Table 7.3 lists the variable parameters of the BitTorrent protocol with their standard

value as proposed by Cohen. The NumberPeersPerTracker parameter defines the num-

ber of requested peers from the tracker, while MinPeers specifies the minimum number of

peers before asking the tracker for further peers. Additionally, MaxInitiate defines how

many peers are requested initially. Besides the request part, two parameters are used to

configure the unchoking process. NumberOfUnchokes defines the number of simultane-

ously unchoked connections and the ChokingInterval specifies the time period between

two verifications of the current choking status. Furthermore, the RequestP ipe defines how

many requests of parts are sent to other peers simultaneously and MaxConnections spec-

ifies the maximum allowable number of open connections to other peers (both, providers

and requesters).

Customisation of ONC

Based on the same process as discussed for the previous two scenarios, the ONC framework

is customised to the control of BitTorrent. Hence, the five basic tasks are discussed in the

following part.

170 CHAPTER 7. ORGANIC NETWORK CONTROL

(1) Situation Description Again, the first task is to define a situation, which serves

as input for the Layer 1 adaptation mechanism. Since the local BitTorrent client has no

influence on other file-providing peers joining or leaving the network, an adaptation of the

parameter settings according to the observed availability of other nodes is not feasible.

Furthermore, the list of waiting peers to access files is managed locally by each peer – thus,

nodes have no possibility to speed-up their waiting time. Considering these characteristics,

the available influencing factors regarding download and upload of the BitTorrent client

are the utilisations of local resources. For instance, visiting web-sites, streaming videos, or

just using CPU- and RAM-resources for standard computational tasks have impact on the

protocol’s performance.

Typically, performing a network protocol is only affected by limited resources if the

system is completely busy with other tasks. Within the following evaluation scenario, a

normal course of day is simulated for a standard PC running an additional BitTorrent client.

Thus, the resources to be monitored for the situation description are the available up- and

download bandwidth. The corresponding goal for ONC is to utilise the free resources as

well as possible by increasing the download rate. Hence, the situation description contains

only the two values for the observed utilisation of up- and download capacity (without the

fraction used by the BitTorrent client). Considering this situation description, insights on

the limitations of ONC are visible already; all factors having impact on the node’s current

situation have to be fully accessible locally. Especially for protocols that are not based on

physical connections, neighbourhood information can be transparent to the particular node.

(2) Similarity Metric For Layer 1, a measurement to compare the similarity of two situ-

ations is needed. The distance measurement can be formulated by calculating the Euclidian

distance for a two-dimensional space. The two axes for the space defining the basis for the

Euclidian calculation are given by the values for up- and down speed. For instance, the

comparison of SituationA (upstream: 25KByte, downstream 100KByte) and SituationB

(upstream: 20KByte, downstream 80KByte) leads to a value of 20.6.

(3) Learning Feedback As third aspect, a metric defining good and bad system be-

haviour is needed. As mentioned before, the goal of using a P2P client like BitTorrent is

to download large files as fast as possible. Thus, the metric for the learning component is

based on the achieved download speed of the BitTorrent client. Since the available band-

width changes dynamically due to other tasks performed by the user, the relative accessible

download speed is considered with dlBit defining the download speed of the BitTorrent

client, dlCap the available download speed, and dlUser the fraction required by the user:

Fit(x) =
dlBit

dlCap− dlUser
(7.5)

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 171

(4) Configuration Space Additionally, the variable parameters to be controlled by ONC

have to be defined. As discussed in Section 7.3.3, these are the seven basic parameters that

are typically configurable using the client’s control interface (see Table 7.3).

(5) Simulation Model Finally, a simulation model for Layer 2’s sandbox learning com-

ponent has to be provided. At this step of the process, the limitations of the ONC approach

are visible again. A simulation model for P2P protocols has to take global information into

account in order to provide a reliable simulated copy of the reality.

Every node in a P2P network keeps track of its own two lists: a) files to be downloaded

and b) files to be shared. Furthermore, each link is individual due to the heterogeneity of the

Internet and the varying usage profiles of the particular computers running the P2P client.

But this information is not accessible locally – which makes a mapping from the real world

to the simulator impossible. For the simulations performed in the next section, it is assumed

that all nodes have the same characteristics. In particular, their network links (ADSL-line

with 400 Kbyte
sec for downstream and 40 Kbyte

sec for upstream), resources (CPU and RAM),

their resource usage (just the BitTorrent client), and the files (searched and provided) are

equal. For instance, these assumptions are realistic when performing a laboratory setting

with identical clients.

Based on these assumptions, a simulation model can be configured, which is applied

to the discrete network event simulation tool NS-2 [130] again. Eger et al. developed a

“BitTorrent-like” model of the protocol for NS-2 [175], which is available on-line at [330] and

used for this scenario. The implementation is called “BitTorrent-like”, because it does not

implement a specific version of BitTorrent and relies on some simplifications. Although these

simplifications lead to a decreased functionality of the whole protocol, it still behaves like

the standard protocol – most of the abstractions are concerned with the distributed usage

within the Internet. This simulation model is configured using the situation description

obtained at Layer 0. The link characteristics are adapted with the values determined for

the available up- and download bandwidth.

Experimental Setup

The evaluation shows the results of NS-2-based simulations. The considered scenario con-

tains 100 peers and one tracker. Three peers are seeds: they have the complete file available

from start on. All other peers do not have any part of the file. Each peer tries to download

the same 500 MByte file during the simulation and starts over after finishing the download.

In this scenario, one of the downloading peers is equipped with an additional ONC

system, all other peers are performing the standard BitTorrent protocol. The dynamic

utilisation of the ONC-controlled node’s network link is simulated by assuming an artificial

usage-profile of a standard PC during one day. The user fulfils tasks, which leads to a certain

utilisation of resources. Sporadic lookup of information and downloading of files blocks a

172 CHAPTER 7. ORGANIC NETWORK CONTROL

given fraction of the available up- and download capacity of the link, which is also used by

the BitTorrent client running in the background to download a high amount of data. In the

NS-2 simulation, this external usage of the link is simulated by reducing the available link

capacity for the BitTorrent client. Thus, ONC’s goal is to adapt the protocol configuration

to the changes in the observed utilisation of system resources. The assumed usage profile is

depicted in Figure 7.15.

0

50

100

150

200

250

300

350

400

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

B
an

d
w

id
th

 u
ti

lis
at

io
n

 [
K

B
yt

e
/s

e
c]

Day time [h]
Download Upload

Figure 7.15: Assumed usage-profile of bandwidth during one day for the BitTorrent scenario

Results of the Evaluation

The evaluation compares the performance of the system (ONC-controlled and uncontrolled

version) for three consecutive days. In this context, consecutive means that the simulation

is started over after finishing by transferring the achieved knowledge. The existing classifiers

from the previous simulation are available at the beginning of the next one. The results for

all three days are depicted in Figure 7.16. During the first day, the system has nearly no

knowledge available – it starts with an empty rule base and has to go back to the standard

parameter set. Based on the observations, new rules are evolved and passed over to the rule

base of Layer 1. The usage profile defines relatively static situations – only eight different

situations occur during one day. Based on the similarity measurement as discussed for the

adaptation of the ONC framework, only a few situations are similar enough to be used by the

covering process. As a consequence, the system’s performance at day 1 (average download

rate of 165.5 Kbyte
sec) is equal to using the static standard protocol parameter configuration.

Considering the next simulated day, an improved situation-aware selection of parameter

sets and the corresponding adaptation of the protocol can be observed. In comparison to

day 1, the system’s performance is increased by 7.2 % to an averaged download rate of

177.4 Kbyte
sec . Although the ONC system still does not have an appropriate rule for each

observed situation, the desired effect can be observed. ONC recognises already observed

7.3. APPLICATION OF THE GENERIC ARCHITECTURE 173

0

50

100

150

200

250

300

350

400

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C
h

an
n

e
l u

ti
lis

at
io

n
 [

K
B

yt
e

/s
e

c]

Day time [h]
Day 1 Day 2 Day 3

Figure 7.16: Resulting download performance due to ONC control of the BitTorrent protocol
(higher values are better)

situations and uses the rules evolved by Layer 2. In some cases, a similar rule (nearby in

terms of the distance measurement) is used by the covering mechanism (e.g. in the interval

between 8 to 9 o’clock). Since Layer 1’s controller is able to learn, it has to be allowed to

choose not always the best-matching rule. With a lower probability, it tries a rule situated

nearby (again in terms of the provided distance metric). This leads to the effect that the

Layer 2-generated rule has not been selected in one case, although it was already available

(see day 2, between 9 and 10 o’clock).

275

295

315

335

355

375

395

415

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

D
o

w
n

lo
ad

 s
p

e
e

d
 [

K
B

yt
e

/s
]

Day time [h]

Channel Usage Day 1 Channel Usage Day 2 Channel Usage Day 3

Figure 7.17: Aggregated channel utilisation for all three simulated days in the BitTorrent
scenario (higher values are better)

The third day demonstrates the desired behaviour of ONC. It has already evolved an

appropriate rule base that covers all occurring situations. The resulting averaged download

rate is 199.3 Kbyte
sec , which is an increase of 20.4 % compared to the reference solution. This

174 CHAPTER 7. ORGANIC NETWORK CONTROL

demonstrates the potential of controlling networks by using ONC, since the static standard

configuration does not lead to the best-possible performance. Finally, Figure 7.17 depicts

the impact on the channel utilisation. The aggregated figures for both (BitTorrent under

ONC-control and the assumed usage profile) are plotted to compare the development over

three days.

In general, the scenario demonstrates the potential benefit when applying ONC to the

control of BitTorrent and similar protocols. But it also reveals that the approach depends

highly on the local availability of all attributes having impact on defining an appropriate

simulation model and quantifying the system’s performance. In the previous scenario, this

is given only under certain restrictions. Apart from a laboratory-based setting, necessary in-

formation is missing. Alternatively, one could think about acquiring additional information

by a protocol extension. Through this extension, peers would provide necessary informa-

tion to the tracker, which in turn informs the particular peers. Besides legal and privacy

issues, such an extension would cause a dramatically increased situation description – which

would have influence on the classification of rules. A situation space covering the status

of all known peers would not allow for a significant learning success in a manageable time

frame. Thus, a control of BitTorrent by ONC seems to be only promising in cases where

the network is restricted to uniform nodes – here, a significant increase of the performance

is possible.

7.4 Collaboration in ONC

The performance of ONC depends strongly on the existence of matching rules. The learning

component of the Layer 1 controller selects a matching (or a nearby, respectively) rule from

the rule base and applies it to the SuOC. Currently, the rule base is extended using two

mechanisms: the covering process and Layer 2. The covering mechanism provides a fast

reaction by copying a nearby rule and adjusting the condition part to match the current

situation – but a classifier created by covering is not an optimised solution. This optimised

and situation-dependent classifier is generated by Layer 2 using simulations – the so-called

sandboxing. Layer 2’s most restricting limitation is the effort needed to evolve a new rule

since simulations are time-consuming. For instance, the generation of a new rule in the

first scenario (broadcast protocols in MANets, see Section 7.3.1) needs between one and

up to 15 minutes depending on the scenario. Similar values can be observed for the WSN-

based scenario of Section 7.3.2 (about 3 minutes on average) and the BitTorrent scenario of

Section 7.3.3 (about 10 minutes on average).

Considering these time-demands, a start from scratch is problematic as it takes significant

time and effort for a single node to evolve a sufficient rule base. A speed-up of the simulation

leads to shorter evaluation cycles and a decreased simulation period for each parameter set

under test – in turn, it affects the quality of the solutions. Thus, a promising approach

7.4. COLLABORATION IN ONC 175

to achieve a speed-up is collaboration. Due to the similarity of nodes in terms of topology

and characteristics, rules from one node can be re-used by another one. Furthermore, the

Layer 2 component is identical for all nodes. Hence, one node can tackle an optimisation

task for another one. Exactly these two aspects are the focus of the collaboration mechanism

explained in the remainder of this section. Nodes will have the possibility to share knowledge

with their neighbours by exchanging rules (and their experiences with these rules). In

addition, the mechanism is used to realise a load balancing of Layer 2 tasks. The presented

algorithm and the evaluation results have been published in [280] and are based on the

implementation by König [331].

7.4.1 Dynamic Load Balancing and Knowledge Sharing for ONC

Due to the goal of reducing the number of rule generations by Layer 2 and of achieving a

load balancing of rule generations among the nodes in the network, the approach intervenes

at the interface between Layer 1 and Layer 2. According to the basic approach, Layer 1

is responsible for detecting the demand of new rules and reports this to Layer 2. Instead

of immediately adding new optimisation tasks to Layer 2’s queue, the distributed algo-

rithm intervenes and takes over responsibility for an active management of this queue. The

rule generation itself remains untouched – it processes always the queue’s first entry. The

remainder of this subsection explains how the distributed algorithm performs this queue

management.

The distributed mechanism is a three-step process:

• In the first step, nodes observe the demand of a new rule and activate their collabo-

ration unit to contact their direct neighbours.

• Once the necessary information has been transferred to the recipients, these neighbours

check their local rule base and respond to the initial request.

• In the third step, the initial node analyses the answers and terminates the process.

At Layer 3 of the architecture, nodes are assumed to have the possibility of managing their

neighbourhoods and of communicating with their direct neighbours. This assumption is

extended: each node answers immediately to a received request. Hence, a short delay time

after sending the initial request is enough to ensure an accurate feedback. Furthermore,

non-collaborative or even malicious behaviour is neglected.

Part 1: Local activation Whenever Layer 1’s LCS has no adequate rule for the

currently observed situation, the collaboration mechanism is activated. So far, the basic

version of the ONC framework (Layers 0 to 2) activates Layer 2 to evolve a new rule. Instead

of directly activating its own Layer 2 component, the neighbours are involved into the rule-

finding process. Therefore, a message-based technique has been developed guaranteeing a

fast and correct exchange of knowledge. The message is composed of three parts: (a) the

176 CHAPTER 7. ORGANIC NETWORK CONTROL

situation description as basic setup information for Layer 2’s simulator, (b) the origin node’s

current queue length, and (c) a TimeToLive-value (TTL) indicating whether the message

has to be broadcasted to neighbours further away or not. The message is given as follows:

Message : ‖HEADER|SituationDesciption|QueueSize|TTL‖

After sending the request to its neighbours, the node waits a given delay time (while the

neighbours are processing part 2) and continues with part three. The delay interval can be

determined as follows: 2× (Maximum sending duration)× TTL+ (processing constant).

If no neighbours are in transmission range, the task is directly added to the queue of Layer 2.

Part 2: Process request The second part of the process is performed by all neighbours

receiving the message from part 1 of the process (directly or forwarded from another node).

As the TTL-part is handled by lower protocol layers, the main task of the nodes is to check

whether they know an adequate rule for the submitted situation or not (current tasks within

the queue are also taken into account). If a node has a matching rule, this is sent to the

inquirer. Otherwise, the node compares the received queue size with its own. For those

cases where the received queue size is higher than the own one, the next spot in the queue

is reserved for the task and the inquirer is informed. The corresponding spot in the queue is

blocked for a time period tblock. If the own queue has more tasks than the inquirer’s queue,

a reject is returned.

Part 3: Finalise mechanism Finally, the node that started the process is able to com-

plete the last part. Therefore, it analyses the received answers. The approach distinguishes

between two different possibilities: a) the node received a rule and b) it received no rule. In

the first case (a), this rule is added to the rule set of Layer 1 and the process terminates.

Otherwise (b), the received offers have to be analysed. The process accepts the best offer

and informs the respective node. If no acceptable offer is received, the task is added to the

own Layer 2 queue.

7.4.2 Evaluation of the Collaboration Mechanism

The collaboration mechanism has been evaluated using the MANet-based broadcast scenario

from Section 7.3.1. The setup of the evaluation is based on the NS-2 scenarios developed

by Kunz in [276] for the initial protocol. The first scenario contains 100 nodes and analyses

the load balancing performance. All nodes are using their ONC system, but only ten nodes

are able to evolve new rules by using their Layer 2 (they are assumed to have a better

power supply). If a node has no active node in its direct neighbourhood, it can increase the

TTL-value to consider e.g. a two-hop neighbourhood. The initial rule base for each node

is empty, which means the ten active nodes have to evolve new rules for all 100 nodes. All

results are averages of ten runs. The scenario is processed in three consecutive steps:

7.4. COLLABORATION IN ONC 177

• All 100 nodes determine their current situation (empty rule base).

• The collaboration mechanism takes place.

• The process is validated, i.e. the experiment is repeated with the newly acquired

knowledge provided by the learning mechanism.

The learning mechanism was able to respond correctly to a previously learned situation

resulting in the same performance at both occasions. Since the population of the classifier

system is initially empty, the standard parameter sets are used for the performance evalu-

ation in step 1. In step 2, the queues of all ten active nodes have been processed and the

rules have been distributed. The fitness calculation takes place after processing each step.

The overall fitness (same function as in Chapter 7.3.1) of the system is 0.882 in the first step

and increases to 0.926 in the second step (equal to step 3). On average, each active node

needs 3 hours and 42 minutes to complete the queue of optimisation tasks (the maximum

is 7 hours and 6 minutes). Due to the abstraction of situations (some situation descriptions

are similar enough to be handled in the same way), an averaged number of 94.3 jobs has

been performed in total. Each active node had to process 9.43 jobs on average (the most

heavily loaded node had to process 11.33 jobs). The different queue sizes can be explained

by the distribution of nodes – two active nodes had only a few neighbours (lowest: five),

while the other eight had to work for comparatively more nodes (up to 14).

17100

17200

17300

17400

17500

17600

17700

17800

17900

18000

1 2 3

Step

Replys

Unicasts

Broadcasts

Simulated

(a) Messages in the first evaluation scenario

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Step

Requests

Replys

Jobs

Replys/Requests

(b) Messages in the second scenario

Figure 7.18: Evaluation of the Collaboration Mechanism in ONC

The second part of the experiment determines the effort in terms of exchanged messages.

Figure 7.18(a) illustrates the results. The amount of system-wide messages changes during

the three consecutive steps: the total number of messages drops from 17, 922.6 to 17, 400

on average in step 3. An averaged number of 522.6 messages has been simulated for the

collaboration mechanism (Broadcasts 99.6, Unicasts 81.9, and replies 341.1) – which is just

a small overhead compared to the 17, 400 BCast messages (2.9 %).

Finally, the nodes’ reactions on abruptly changing situations have been investigated.

Therefore, a static setup of the scenario without node movements has been chosen and

nodes were exchanged. Nodes are not moving to avoid the occurrence of new situations and

178 CHAPTER 7. ORGANIC NETWORK CONTROL

force them to receive the particular rule from their neighbours. The exchange takes place by

randomly choosing two nodes and switching their positions. The scenario consists of 25 steps

and contains again 100 nodes, the broadcast distance is two hops. Initially, all nodes are

active nodes (they learn the matching action for their particular situation). Since nodes

are not moving, the environment is static and consequently the observed situations stay

the same. Within each of the 25 steps, ten pairs of nodes are randomly selected and their

positions are exchanged. Probably, these nodes have to receive a matching rule due to the

changed situation – although their Layer 2 is deactivated (at least the predecessor at their

position has an appropriate rule). Figure 7.18(b) demonstrates the message traffic for all

steps. The graphs for the number of jobs decreases nearly to zero, which means that almost

every exchange is followed by a transmission of the rule. In some cases, a job is performed,

which means that the exchanged pair is not available in a two-hop neighbourhood. The

number of responses (and also the reply/request ratio) increases continuously as nodes do

not delete rules. Hence, the goal of the collaboration mechanism is fulfilled, since the

exchange of rules works and a re-creation of rules is avoided.

7.5 Summary for the Organic Network Control System

This chapter discussed the Organic Network Control (ONC) system, which has been

developed to allow for a context-aware adaptation of network protocol parameters. The

system is based on the thesis’ framework and has been applied to three different protocol

domains ranging from Peer-to-Peer protocols over mobile-ad-hoc networks to wireless sensor

networks. Based on a discussion of related work, the application of ONC to these three

scenarios has been explained with a special focus on the customisation tasks identified in

Chapter 3.

In contrast to the OTC example, a unified process to enable ONC control for com-

munication protocols is not possible due to e.g. the varying neighbourhood information.

Therefore, the application has been shown exemplarily by means of three different protocol

types. The first example demonstrated the positive effect of additional ONC control for

a MANet-based broadcast algorithm. The analysis of the obtained results highlighted the

possible benefit and investigated the necessary effort to achieve these results. In general,

the scenario described a case where ONC can be applied without any restrictions and leads

to a significantly better performance.

The second example has been used to investigate the applicability of ONC to protocols

under limited availability of resources. Therefore, a mode-selection protocol from the domain

of wireless sensor networks has been chosen, since wireless sensor nodes are typically char-

acterised by the demand of energy-efficient solutions. Especially computational-intensive

tasks like simulations cannot be performed at such nodes. Thus, a separation of tasks has

been proposed: Layer 1 stays at the particular node while Layer 2 is transferred to a cen-

7.5. SUMMARY FOR THE ORGANIC NETWORK CONTROL SYSTEM 179

tralised element. The approach relies on a pretraining of rules at design time and an optional

update mechanism using communication at runtime. In addition, the LCS’s rule base has

been largely restricted to using only a few classifiers. Although this setup describes a trade-

off between adaptation and available resources, the simulation-based evaluation showed the

benefit of using ONC on sensor nodes. The two most important figures (the network’s op-

eration time and the event detection rate) have been improved significantly – especially in

disturbed and dynamic situations.

The third scenario applied ONC to the control of the Peer-to-Peer protocol BitTorrent

and has been chosen to investigate the limitations of ONC’s applicability. In comparison

to the previous two examples, BitTorrent is characterised by limited knowledge about the

neighbourhood and the current local status of the network. The simulation-based generation

of new rules depends on the availability of a realistic simulation model, which has to be

configured appropriately using the observed attributes. In case of BitTorrent, a peer has only

limited knowledge, which does not allow for building an appropriate simulation model except

in laboratory settings where peers are identical. Besides these restrictions, the evaluation

demonstrated that ONC control of BitTorrent leads to a significant increase of the system’s

performance in such a laboratory setting.

Finally, the simulation-based generation of new rules has the drawback of needing com-

putational effort and being time-consuming. Thus, a collaboration mechanism has been

developed which is capable of sharing existing knowledge and enabling load balancing of

Layer 2 tasks among neighbouring nodes. The evaluation demonstrated that the fully de-

centralised approach leads to the desired effects. Therefore, the first scenario of MANet-

based broadcast algorithms has been used. Compared to the OTC example, ONC has the

advantage that all nodes are identical – thus, they can re-use rules from their neighbours and

will probably gain the same experiences. In contrast, intersections of urban road networks

differ strongly in their particular topology (apart from artificial Manhattan-type networks)

– consequently, rules cannot be transferred to neighbouring nodes in OTC. When applying

the mechanism to OTC, only the load balancing part could be used since simulation models

might be part of the messages.

180 CHAPTER 7. ORGANIC NETWORK CONTROL

Chapter 8

Generalisation and Discussion

The previous two chapters presented systems based on the framework. Both provide a

substantial contribution to current research in their particular domain. Besides develop-

ing novel concepts for data communication and urban traffic control, this thesis focuses on

the general applicability of the developed framework. Thus, the following chapter aims at

generalising the approach and discussing the achieved results. Therefore, the applicability

of the framework is proven by considering different control problems. In contrast to the

network-based systems before, this chapter introduces two further application scenarios: an

Organic Production System (OPS) and an error-prediction system for business mainframe

systems. In the first example, the control problem differs from OTC and ONC as it dis-

cusses a task-assignment problem. In the second example, the focus of the sandbox has

been exchanged: from a simulation-coupled optimisation heuristic to a data-mining-based

prediction component.

The previously named examples make the general applicability of the developed concept

visible. In order to prove this applicability and to derive insights for which control problems

the framework leads to the desired behaviour and for which more probably not, the SuOC is

abstracted by using mathematical models. These abstractions are useful to describe different

types of control problems and their corresponding degree of complexity. In addition, the

impact of noise added to sensor data can be measured, since the undisturbed values are

known for comparison. Finally, the achieved results of all application scenarios including

the more general mathematical model are summarised and discussed.

181

182 CHAPTER 8. GENERALISATION AND DISCUSSION

8.1 An Organic Production System

Industrial production experienced a dramatic change in the last 20 years, which is char-

acterised by novel manufacturing technologies and by the rapidly growing importance of

information and communication technologies. Nowadays, production differs largely from

previous approaches. On the one hand, much effort has been spent on optimising setup

and schedule of production systems. On the other hand, flexible and adaptive solutions

become even more important. Both aspects are mainly driven by economical needs to keep

production cost at a minimum. Due to this continuous optimisation process, researchers

and industry have developed a large set of different solutions ranging from highly specific

installations to more generalised concepts with a broader focus.

The aspect of needing even more adaptive solutions makes production control a promising

application domain for OC principles and techniques. In some settings, new tasks arrive

continuously and sometimes even unpredictably, while a production without corresponding

demands leads to full warehouses and high cost. Therefore, a continuous observation and

control process is needed responsible for deciding about the best possible situation-depending

production strategy automatically. Based upon the architecture described in this thesis, a

case study for an Organic Production System (OPS) has been developed. The results

have been published in [332]. The framework has been adapted by exchanging the underlying

control problem. Instead of continuous parameter values, the system has to decide about

the currently best task assignment for the available production units. In order to restrict

the complete domain of production control to one exemplarily investigated scenario, and

to map the previously described problem to a specific application case, the following setup

has been developed. Consider a fast-food store where the food is produced on-demand as

response to customer demands. The store has a set of production places where workers

prepare the different products. Each product has a certain production time, and changing

of tasks leads to a given changeover delay. In addition to the production part, a storage for

prepared products exists where the products can be kept for a certain duration until they

are sold or disposed. Hence, products are assumed to have a relatively short shelf-life and

cannot be stored for a longer period. Simultaneously to the production process, a counter

exists where customers can drop their orders and wait to be served.

The evaluation of the scenario shows that the framework is applicable to such a scenario.

In case of taking advantage of a production forecast (enabling the prediction module of the

Layer 1 observer), the OPS system outperforms the reference solution in terms of customer

satisfaction (measured by considering the customers’ waiting times) and defected goods

(sorted out products at the end of the shelf-life). Without prediction, the system increases

the performance for one part of the goal function only. For further details on the scenario

and insights on the results, the reader is referred to [332].

8.2. AN ERROR PREDICTION SYSTEM FOR MAINFRAMES 183

8.2 An Error Prediction System for Mainframes

Based upon the architecture described in this thesis, Li developed an automated system to

predict undesired events in an IBM System Z [333] setting [334]. She adapted the framework

by exchanging the Layer 2 component. The simulation-based approach has been replaced by

a data mining mechanism, which analyses observed real-world data from customer servers.

The goal has been to find patterns like a specific sequence of events before an error occurs.

Thus, the task of Layer 1 is not to adapt a SuOC, but to serve as an early warning system at

runtime. Therefore, a Frequent Episode Mining technique as introduced by Mannila et al.

[335] has been applied to event series. The patterns found by the data mining technique are

stored as classifiers for the Layer 1-situated LCS, which is realised as the modified variant

introduced in Chapter 4.1.4.

The different types of customer data were collected on-line at the customer side and then

transmitted to a central server. Li tested the developed system using such real data from

customer servers – both error-free and error-prone. She demonstrated the reliability of the

system’s prediction for different settings and analysed the influence of the on-line learning

part on the one hand and the performance of the off-line pattern recognition on the other

hand. Since the work presents a case study and a proof-of-concept of the described approach,

further investigations are needed. Nonetheless, the approach underlines the generic character

of the architecture.

8.3 Abstraction of the Learning Problem

In the previous examples, concrete problems have been solved by applying the developed

framework to a specific application domain. Most of the investigated examples provide a

significant contribution to the state of the art in the particular domain. So far, the appli-

cation of the framework has been compared to realistic models of real-world installations

since the sizes of the underlying situation and configuration spaces do not allow for making a

statement in relation to the possible optimum. In the following, this question is investigated

using an artificial scenario based on introducing an abstracted model of the underlying prob-

lem. Due to this abstraction, it is possible to draw conclusions about the applicability of the

developed framework. The contents of the following section have been initially published in

[336] and the results are based on the implementation as done by Brameshuber [337].

8.3.1 Problem Description

The basic problem covered by the following part of the thesis is given by the question for

which types of real-world systems the developed approach is applicable – and in which situ-

ation problems might occur. The basic tasks of Layers 1 and 2 are to find adequate response

184 CHAPTER 8. GENERALISATION AND DISCUSSION

strategies for observed situations and to learn a mapping between situations and appropri-

ate actions. Thereby, the term situation describes an n-dimensional space defined by all

observed input variables defining the state of the environment, while actions correspond to

parameter settings of the SuOC. Hence, the learning component has to achieve two goals:

(1) find the best action for an observed situation and (2) increase the accuracy of predicting

a certain feedback if this action is selected (typically called reward). More formally, it has to

learn the following mapping: (−→x t,
−→z i)→ r(−→x t+1) ∈ R with the objective to choose −→z i to

maximise r. Thereby, −→x t denotes the n-dimensional situation vector at some time t, which

corresponds to the condition part of Layer 1’s action selection. −→z i ∈ Z aggregates a pa-

rameter set with Z describing the SuOC’s configuration space. Furthermore, the predicted

reward of the next evaluation time t+ 1 (if −→z i is chosen in situation −→x t) is represented as

a real value and denoted as r(−→x t+1).

8.3.2 Application of the Generic Architecture

In order to investigate the success of the developed framework, a generalised model of the

learning problem is introduced. The goal of this generalisation is to consider several types

of models to map situations to corresponding actions. Simultaneously, it must be possible

to calculate the optimal action of the learning component for each occurring situation,

which allows for quantifying the success in relation to the best possible solution. Figure 8.1

describes the adaptations at design level, which are introduced in the following part of this

section.

Layer 0

Random Walker

Layer 1
Parameter selection

Observer

Controller

Learning
Component

Layer 2
Offline learning

Observer

Controller

Model

Calculator

Situation Rule

Situation Prediction

Figure 8.1: Modified architecture for the generalised model

Modelling the Environment: The environment is modelled as an n-dimensional

space, which corresponds to the n observed attribute values obtained by sensors to de-

8.3. ABSTRACTION OF THE LEARNING PROBLEM 185

scribe the current situation. The situation at some time t is one point in this space and

defined as the vector −→x t. In dynamic environments, the situation changes constantly, i.e.

any of the n entries in the vector may vary from time t to time t + 1. These dynamics

are modelled by a randomised walker exploring the situation space. In order to reflect

the assumption that situations in real-world applications are only changing abruptly in the

presence of disturbances, the n-dimensional situation (x1, x2, . . ., xn) at time t is modified

by a random walker to create the following situation (y1, y2, . . ., yn) at time t + 1 with

−1 ≤ (yi − xi) ≤ 1:


x1
...

xn

→

y1
...

yn


The size of the allowed deviations in each dimension corresponds to the speed at which

the random walker traverses the search space. In the investigated scenario, this speed is

set to one for each dimension. Three different movement models for the random walker

have been implemented: 1) a classic random walker, 2) a random-waypoint model, and 3)

a random-direction model (see e.g. [321]). In the first model, the walker follows the current

direction within the situation space determined by the difference of the last two situation

vectors: (−→x t −−→x t−1). The walker decides about modifying its current movement direction

by considering a Gaussian-distributed probability for the interval [−180◦, 180◦]. As soon as

it reaches the boundaries of the search space, the movement direction is reflected by the

boundary of the search space. In the second model, the walker chooses a random point

within the boundaries of the investigated search space (the waypoint) as next destination.

Afterwards, it selects the next available point, which reduces the distance to this waypoint

in each step of the simulation, until it arrives at the waypoint – then, the previous process

is repeated. Finally, the last model chooses a direction of movement, which is followed until

the end of the search space is reached. In this case, a new direction is chosen randomly and

followed until the previous criterion is fulfilled again.

Layer 0 – System under Observation and Control: In the basic design, the SuOC

is the productive part of the system and adapted to the particular environmental situation.

This means that an optimal parameter setting exists for each occurring situation. This

relation is modelled by using a mathematical function mapping the situation space on the

corresponding optimal SuOC configuration. The resulting correct actions are determined

by different functions with varying characteristics. According to Cakar et al. [338], sys-

tems can be classified into three categories considering the time-dependent character of the

learning problem’s fitness landscape: static, dynamic, and self-referential. The static class

corresponds to all systems where an action −→zj in a situation −→xi results always in a repeatable

and constant reward. In contrast, this reward changes for systems in the dynamic category,

e.g. according to time-dependent patterns. Even more dynamic are the rewards of systems

186 CHAPTER 8. GENERALISATION AND DISCUSSION

in the self-referential class – here, the system adaptation to match the observed situation

influences the next situation and thereby the received reward. In the context of this thesis,

the regard is confined to systems of the static class (see Chapter 3.2). Within this class,

four different types of functions modelling the optimal action for a given situation space can

be distinguished:

• Type 1 describes a continuously differentiable function without any local maxima

mapping the situation space on the action space – this trivial type is seldom found in

reality. The following function serves as example:

f1(−→x) =
∑n

i=1 xi.

• Type 2 comprises more complex continuously differentiable functions being charac-

terised by more than one maximum. The following function serves as example:

f2(−→x) = (1 + sin(x1

4 ∗ π)) ∗
∑n

i=1 xi.

• Type 3 classifies even more complex non-continuously differentiable functions with

discontinuities (not due to time-dependent reasons), etc. – at least, these mappings

can be modelled using functions. The following function serves as example:

f3(−→x) =


∑n

i=1 xi, ∀xi : (xi 6= 5)∑n
i=1

√
|xi|, otherwise

.

• Type 4 covers all randomised mappings – if no relation between the action values of

two neighbouring situation values exists, a functional description is not possible. To

investigate such an example, a random function value for each possible situation value

has been generated and stored in a database:

f4(−→x) = RandomSeed(−→x).

Layer 1 – On-line adaptation: In contrast to the Layers 0 and 2, Layer 1 is identical

to the standard implementation – in particular, it does not have any knowledge about the

form of f . The modification affects only the purpose of the on-line adaptation, since no

parametrisable SuOC exists in the abstracted model. Therefore, the functions of type 1

to 4 are used to describe the best “configuration” in a particular situation. Hence, the

environment and the SuOC are collapsed into the function f . Figure 8.2 illustrates this

modification of Layer 0. Analogously, Layer 1 has to determine this best configuration.

Thus, the actions performed by Layer 1 are used to predict the next value of the underlying

function (as defined by type 1 to 4). Thereby, not the functional value for −→xt observed

at the current time step t is to be predicted, but the value that is going to occur at time

t+1. This corresponds to the same learning problem as in e.g. OTC where the best possible

phase durations for the next evaluation period are selected based on (averaged) traffic data

from the previous one. The Layer 1 controller is implemented as modified LCS again (see

Chapter 4.1.4).

8.3. ABSTRACTION OF THE LEARNING PROBLEM 187

Layer 0

Environment

Layer 1

Random Walker

Figure 8.2: Modifications at Layer 0

Since the covering part of the modified XCS relies on quantifying similarities between

situations (nearby), a distance metric is needed. In this example, the Euclidian distance of

two situation vectors has been used. Additionally, a learning feedback is needed to quantify

good and bad predictions - the reward. In the OTC and ONC examples, this reward is

calculated based on sensory input or internal attributes. To model such an observation,

Layer 1 is assumed to be able to observe the correct functional value in the following time

step. Based on this value, the modified LCS can update its prediction, prediction error, and

fitness values according to the original XCS algorithm by Wilson [159].

The improvement of the prediction of the next functional value is influenced by two com-

ponents: a) the rule-generation process and b) the updating of the classifiers’ performance

attributes. Therefore, a reward has to be defined quantifying good and bad performance.

The goal of the system is to decrease the deviation of the predicted functional value over

time. Therefore, the reward r(t) obtained from the SuOC at time t is modelled as follows:

r(t) = 1− |PredictedV alue−OccurredV alue|
max(|PredictedV alue|, |OccurredV alue|)

(8.1)

In case of a perfect prediction, the reward is one, while it decreases to zero in the worst

case. This feedback is calculated by the SuOC and provided together with the situation

vector in each step of the simulation.

Layer 2 – Rule generation: The framework’s basic design contains a simulator-

coupled optimisation heuristic for Layer 2, since usually no exact model exists to determine

the optimal response for a given situation. This optimisation takes time, but it is assumed

that this process results in near-to-optimal actions for the particular situation. In OTC and

ONC, new rules are usually available after 3 to 15 evaluation cycles of Layer 1 depending

on the configuration of Layer 2 (simulation time, number of evaluation function calls).

To imitate this delay, a value at the lower boundary of this range is assumed (3 ticks).

Simulations showed that choosing longer delays has only impact on the shape of the achieved

performance curve (the system converges later), but does not influence the learning effect

in general. Similar to the realistic examples, Layer 2 is only allowed to optimise one rule

188 CHAPTER 8. GENERALISATION AND DISCUSSION

per time. Since an accurate model exists and the evaluation aims at analysing the learning

behaviour of Layer 1 rather than Layer 2, the function used for the SuOC is assumed to be

available at Layer 2. Thus, no simulation-based optimisation is needed. It is consequently

replaced by a calculation of the particular function for the observed situation vector.

The following list summarises the five customisation tasks for the application of the

framework to the abstracted learning problem:

(1) Situation Description: The current position of the random walker in the search

space represents the situation description. This corresponds to the n-dimensional vector −→xt .
(2) Similarity Metric: The Euclidian distance is used as distance metric between two

situations.

(3) Learning Feedback: The learning feedback reflects the success of predicting the

correct functional value for the next time step t + 1. Therefore, the formula as defined by

Equation 8.1 has been developed.

(4) Configuration Space: In contrast to the previous application scenarios, the ab-

stract model does not contain a parametrisable system. Hence, no configuration in the

direct sense is searched. Therefore, the prediction of the functional value of f occurring in

the next evaluation cycle t+ 1 serves as replacement of this configuration task.

(5) Simulation Model: Since the correct model exist (i.e. f is known), no simulation-

based optimisation is needed. This process is modelled by determining the correct functional

value for the particular situation description and providing it with a certain delay.

8.3.3 Evaluation

The evaluation of the developed approach has been performed using a 2.66 GHz dual-core

machine with 4 GByte RAM and openSUSE 10.3 as operating system. Each result is given

as average of ten runs using varying random seeds. For all investigated scenarios, the number

of dimensions has been set to six and the boundaries of the search space for each dimension

to [0, 50]. The modified LCS has been configured according to Butz and Wilson [162].

Experiment 1: Impact of the Different Walker Models

The first part of the evaluation considers how changing situations influence the learning

performance by taking the three different walker models into account. Figure 8.3 shows

the results using function type 1 and the three different walkers. The figure depicts the

simulation time (x-axis) and the achieved learning effect (the deviation between the pre-

dicted value by the modified LCS and the correct function value; y-axis). The simulation

time has been measured in terms of ticks, which refers to an abstract time unit used e.g.

in Multi-Agent Toolkits such as MASON [128] or Repast [127]. One tick corresponds to

one simulation step. Considering the figure, the different walker models have only limited

8.3. ABSTRACTION OF THE LEARNING PROBLEM 189

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000

de
vi

at
io

n

time

Random Waypoint Walker
Random Direction Walker
Standard Random Walker

Figure 8.3: Comparison of the system performance caused by all three random walker models
(lower values are better)

influence on the learning performance. For the complete simulation period, the Random

Waypoint Walker resulted in an averaged deviation of the predicted functional value of

43.78, the Random Direction Walker of 46.23, and the standard Random Walker of 41.94.

Besides the similar convergences of the learning effects using all three walker models, the

values after 500, 000 ticks simulation time are nearly identical – the averaged values of the

last 5, 000 ticks are: 2.22 (Random Waypoint), 2.37 (Random Direction), and 2.83 (Random

Walker). The similarity of the results obtained by the three different walker models has been

observed for the other function types (f2, f3, and f4), too. Thus, the initial assumption

has been supported: it does not matter how the situation changes as long as it changes

with a minimal similarity to the previous situation. Therefore, the remaining part of the

evaluation will be based on using only one walker model: the Random Waypoint model.

Experiment 2: Different Functions

The previous experiment compared the three walker models using only one of the four

function types. In contrast, Figure 8.4 depicts the results achieved by using one walker

model for all four types of functions. In total, function type 1 results in an averaged

deviation of the prediction of 43.78, f2 results in a deviation of 69.64, f3 in a deviation of

86.87, and f4 in a deviation of 159.96. Statistically, a randomised guessing without any

learning effect would lead to predicted values of 150 on average – this value is deduced from

the number of dimensions multiplied by the centre of the search interval:

randomDeviation : 6 ∗ 50/2 = 150 (8.2)

190 CHAPTER 8. GENERALISATION AND DISCUSSION

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000

de
vi

at
io

n

time

Function type 1
Function type 2
Function type 3
Function type 4

Figure 8.4: Comparison of the system performance taking all four different types of functions
into account (lower values are better)

Correspondingly, the maximum deviation is given by 6 ∗ 50 = 300: the number of

dimensions multiplied by the highest possible deviation per dimension. Obviously, the per-

formance of the learning system based on a situation-action mapping modelled by function

type 4 is comparable to randomised guessing. In contrast, the first three types of functions

lead to a convergence due to learning: f1 converges to values of about 2.22 on average after

500, 000 ticks simulation time. f2 (7.50) and f3 (29.11) show a similar behaviour, but result

in higher values. In general, the system is able to self-improve the selection process of the

corresponding actions in case of a possible modelling using types 1 and 2 without any re-

strictions. In case of function type 3, the self-improvement is restricted, since it leads to a

significantly higher deviation.

Experiment 3: Impact of Noise

The four types of functions f1 to f4 define basic categories – each type can be further

classified according to the observation characteristics: either it is noisy or not. Typically,

real-world applications rely on the usage of sensors to observe the environmental and the

internal states. Sensors are error-prone and to some degree unreliable. Thus, these appli-

cations usually have to cope with noisy feedbacks. Therefore, this part of the evaluation

considers artificial noise by taking a Gaussian-distributed random noise-factor into account

when determining the current functional value for the n-dimensional situation vector – this

noise is assumed to amount to at most 10 % of the absolute value. Thus, the third part of

the evaluation investigates the impact of noisy feedback according to this simplified concept.

Figure 8.5 illustrates the results. The first graph describes the behaviour of the proposed

framework again using the modified LCS and a Random Waypoint Walker dicovering the

8.3. ABSTRACTION OF THE LEARNING PROBLEM 191

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000

de
vi

at
io

n

time

Learning Classifier System without noise
Learning Classifier System with noise

Figure 8.5: Impact of noise on the system’s performance (lower values are better)

situation space. The corresponding actions are modelled using the function of type 1. The

second graph describes the results obtained for the same setup using the additional noise

model. Considering both curves, a later convergence and a slightly higher deviation after

500, 000 ticks of simulation time are visible. In general, the noisy setup resulted in an av-

eraged increase of 36.6 % for the complete simulation period (59.82 instead of 43.78). The

averaged values of the last 5, 000 ticks are: 2.22 (without noise) and 13.79 (with noise).

Thus, noise has influence on the absolute performance, but it has only a minor effect on the

convergence itself.

Experiment 4: Alternative Rule-selector

For comparison reasons, a deterministic rule-selection mechanism has been developed for

Layer 1 which does not incorporate on-line learning capabilities. This SimpleSelector re-

places the modified LCS and relies on using the same distance metric for the selection

process. It chooses always the nearest rule (by means of comparing the situation parts of

the rules). Similar to the modified LCS, it queries Layer 2 to receive new rules in case of

unknown situations. Thus, this SimpleSelector is used to distinguish between the on-line

and the off-line learning effect, since it relies only on knowledge from the latter mechanism.

Figure 8.6 depicts the obtained results for the modified LCS variant and the Simple-

Selector approach. In both cases, the Random Waypoint Walker and the action modelling

using function type 1 have been used again. Considering the figure, the SimpleSelector

leads to better results at the beginning. This can be explained by the trial-and-error parts

of the LCS system – the usage of non-optimal rules in the particular situations resulted in

a later decrease in terms of deviation of the predicted correct functional value. Considering

the complete simulation time, the LCS-based approach resulted in an averaged deviation

192 CHAPTER 8. GENERALISATION AND DISCUSSION

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000

de
vi

at
io

n

time

Learning Classifier System
SimpleSelector

Figure 8.6: Comparison of the achieved performance for the standard LCS-based system
and a SimpleSelector-based alternative (lower values are better)

of 43.78, while the SimpleSelector resulted in an averaged deviation of 37.46. In total, the

SimpleSelector showed a better performance, but this effect decreases with longer simulation

times.

Starting at tick 230, 000, the learning effect becomes visible. The performance of the

LCS-based approach is better than the SimpleSelector-based solution. The SimpleSelector

chooses always the nearest rule, since it is not able to generalise situations based on the

received feedback. As a result, it makes less mistakes at the beginning compared to the LCS.

The SimpleSelector does not converge to zero, but to a constant value of about 13.5. This

is caused by the configuration: for both techniques, a minimum similarity has been defined.

The Layer 2 component is only triggered if the rule base does not contain a rule whose

situation part is at least ten units away from the observed situation (using the Euclidian

distance). Without this limitation, the rule base would become too large, since the system

would query a new rule for each occurring situation. Hence, the SimpleSelector should

converge to this configuration value. In contrast, the LCS has the possibility to generalise

existing other rules – this part of the learning process causes the better values at the end

of the simulation period.

Experiment 5: Impact of Disturbances

The last part of the evaluation introduces disturbances to imitate severe challenges of real-

world systems. In reality, such disturbances can be malfunctions of system components (like

sensors) or just unanticipated behaviour. Mapping this concept on the model to explore the

situation space, a disturbance is defined as an unanticipated change of the walker’s position.

Therefore, two kinds of re-positioning effects are distinguished: a) only one dimension of the

8.3. ABSTRACTION OF THE LEARNING PROBLEM 193

 0

 50

 100

 150

 200

 250

 300

 0 100000 200000 300000 400000 500000

de
vi

at
io

n

time

LCS without disturbances
LCS with disturbances

Figure 8.7: Impact of disturbances on the system’s performance (lower values are better)

situation vector is affected (e.g. one sensor is disturbed) and b) all dimensions are affected

(unanticipated behaviour). In the former case, a randomly selected dimension value is

replaced by a new random value (within the given boundaries of the search space); in the

latter case, this is done for each dimension. Both types of disturbances occur several times

during the simulation leaving enough time in-between to allow the system to return to

normal system behaviour. To avoid regularity effects, an alternating occurrence has been

chosen which takes place in a Gaussian-distributed interval of ±50 ticks every 25, 000 ticks

of the simulation time.

Figure 8.7 depicts the obtained results for the disturbed and undisturbed cases. The

scenario covers again the LCS-based learning approach, the Random Waypoint Walker and

the function type 1. Considering the graph with the disturbed values, the disturbances are

visible due to the peaks every 25, 000 ticks. In one case (simulation time between 108, 000

and 150, 000 ticks), the disturbed curve shows a better performance than the undisturbed

one. Analysis of the obtained simulation data showed that in these cases the previous

disturbances resulted in earlier knowledge, which has been used within this period. In

general, such effects are expected to disappear when taking more simulations into account for

calculating the averages. The performances caused by both approaches are comparable – the

disturbances lead to isolated effects, which can be covered quickly. In addition, the averaged

influence of the disturbances on the deviation decreases, since the available knowledge covers

similar situations and therefore reduces the undesired disturbance effects relatively faster.

In total, the disturbed variant resulted in a slightly increased deviation over the complete

simulation period (46.8 instead of 43.7 – about 7.01 %). Thus, the assumed behaviour

that the developed system covers disturbances without significant effects on the overall

performance has been demonstrated.

194 CHAPTER 8. GENERALISATION AND DISCUSSION

8.3.4 Application of the Developed Classification

The previous part of this chapter introduced a novel classification for OC systems and

applied the developed framework to representatives of each class. Thereby, it has been

shown that the framework is able to control systems belonging to type 1 and 2 of the

classification, while type 3 can only be controlled under certain restrictions. Consequently,

the question arises to which of these classes the previously described applications have to be

assigned to – namely the OTC system (see Chapter 6) and the ONC system (see Chapter 7).

Hence, this question is exemplarily investigated for the former application in the remainder

of this section.

In general, some statements about the characteristics of fitness landscapes (and thereby

about the mapping function f) can be made for real-world systems. As one example,

Reeves observed that “[...] on average, local optima are very much closer to the global

optimum than are randomly chosen points, and closer to each other than random points

would be. That is, the distribution of local optima is not isotropic; rather, they tend to be

clustered in a central massif [...]” [195]. This observation is also referred to as the big valley

theorem. In the context of this thesis, the most important point in Reeves’ work is that

fitness landscapes of real-world systems are mainly characterised by the same attributes

and shapes. Furthermore, Kauffman investigated the characteristics of real-world fitness

landscapes in general and introduced the N K-landscapes [196] – they also describe the

same effects as observed by Reeves.

Hence, we can assume that the underlying fitness landscape tends to model similar func-

tional dependencies for the investigated application scenarios. This is a first indication but

does not lead to concrete results for the considered OTC scenario. Thus, the corresponding

function to map the situation to the configuration space is needed as a basic requirement to

investigate the question to which type of the classification OTC belongs. In contrast to the

other examples (like ONC or OPS), such a mapping can be modelled for OTC by using one

of the existing heuristic approaches to approximate traffic delays for traffic situations. Based

on the occurring delays, the performance of the traffic control strategy can be quantified

(cf. Chapter 6.3).

Typically, the formulas by Webster [245] and Akçelik [339] are used in traffic engineering

to estimate delays – in the context of this thesis, the former formula is focused. According

to Webster, turning delays can be derived as follows. Assuming that M corresponds to a

turning’s current traffic flow (in veh
h) and that SF denotes the turning’s saturation flow (i.e.

the maximal flow that can be served assuming permanent green), the turning delay td can

be computed as defined in Equation 8.3. Thereby, SF is a constant and typically chosen

as 1, 900 for standard urban intersections. Furthermore, tC denotes the intersection’s cycle

time, while tg represents the turning’s effective green time (both given in seconds). In

addition, g = M/(tg/tC ·SF) defines the degree of saturation of the turning for the current

traffic flow and green time.

8.3. ABSTRACTION OF THE LEARNING PROBLEM 195

td = 0.9 ·
[
tC · (1− tg/tC)2

2 · (1−M/SF)
+

1800 · g2

M · (1− g)

]
. (8.3)

Equation 8.3 calculates the delays for one turning. To estimate the average vehicular

delay for a signalised intersection, the delays for all turnings of the intersection are combined

in a flow-weighted sum. Assuming that Mi is the traffic flow for the i-th turning and that td,i

specifies the turning’s delay computed according to Webster’s formula, the average delay tD

of the intersection can be calculated as defined by Equation 8.4. This equation serves as

evaluation function and metric for the quality of a mapping from situation to action.

tD =

∑
i (Mi · td,i)∑

iMi
. (8.4)

The exemplary investigation of the OTC scenario is performed by assuming a four-armed

intersection similar to the one depicted in Figure 6.3 – although the particular topology does

not have any noticeable effect on the following example (which means that the approach

works as well for different kinds of intersections). Furthermore, the scenario assumes con-

stant traffic conditions and green durations for all turning movements except turning 1 (see

Turning A in Figure 6.3 – but which specific turning is chosen does not have any impact).

In addition, the following Table 8.1 list the assumed traffic conditions for each turning and

the assignment to the corresponding phases. Afterwards, Table 8.2 describes the assumed

green time durations for the particular phases. In addition, P1 to P3 denote the phases 1

to 3, while I1 to I3 denote the corresponding interphases in Table 8.2.

Turning A B C D E F G H I J K L

Flow (veh
h

) 300.0 50.0 200.0 50.0 300.0 50.0 50.0 300.0 200.0 50.0 300.0 50.0

Phase P2 P2 P1 P3 P3 P3 P2 P2 P1 P3 P3 P3

Table 8.1: Assumed traffic example for the intersection of Figure 6.3

Phase P1 I1 P2 I2 P3 I3
Duration 28 s 2 s 28 s 2 s 28 s 2 s

Table 8.2: Assumed phase duration for the example of Table 8.1

Based on this setup, the functional relation between different green-phase durations for

one turning, the different amount of traffic for this turning, and the corresponding evaluation

criterion as defined in Equation 8.4 can be estimated. Figure 8.8 illustrates the achieved

results.

Considering Figure 8.8, an assignment of OTC to type 2 of the classification is possible.

The figure demonstrates that the relation between an occurring situation and the possible

actions (as response from the control mechanism define by Layers 1 and 2 of the architecture)

show the characteristics as required by type 2: the mapping is continuously differentiable

and leads to a fitness landscape with one global optimum and optional local optima. The

196 CHAPTER 8. GENERALISATION AND DISCUSSION

figure illustrates the relation between situation, action, and evaluation criterion for varying

the situation and configuration space of one dimension of the corresponding vectors. This

limitation to one dimension is caused by the restrictions of visualising the results in a three-

dimensional figure. Taking more dimensions into account does not affect the observations –

it leads to more local minima and maxima, but it still results in a continuously differentiable

function without any discontinuities. Hence, OTC belongs to type 2 of the classification.

Figure 8.8: Three-dimensional plot of the mapping between situations, actions, and corre-
sponding evaluation values in the OTC example

For data communication protocols, no approximation functions to derive a measurement

for the quality of the solution exist. Hence, it is not possible to validate the type of classifica-

tion analogously to the aforementioned case. But there are some indicators and similarities

suggesting that ONC also belongs to type 2 of the classification. Similar to OTC, the pa-

rameters are continuously configurable. In addition, previous work [278] investigated the

relation between situations, actions, and the corresponding fitness evaluation of the MANet-

scenario (cf. Chapter 7.3.1). The result of this investigation is that the fitness landscape

models a continuously differentiable function with local maxima/minima. Consequently,

ONC is also assumed to belong to type 2.

In contrast to the OTC and ONC examples, OPS is characterised by a different con-

trol problem and hence by a slightly different functional mapping. Instead of adapting

continuous parameter values, the adaptation mechanism has to decide about discrete task

8.4. DISCUSSION 197

assignments. Due to these “either – or” decisions, each change of the configuration vector

causes discontinuities in the fitness landscape. This is a strong indicator that OPS belongs

to type 3 of the classification.

8.4 Discussion

Based on the initial design of the framework, several application scenarios have been pre-

sented in the previous chapters. These applications range from traffic control (see Chapter 6)

over three different implementations of network protocol control (see Chapter 7) and a case

study for production control (see Chapter 8.1) to an error prediction system in mainframe

systems (see Chapter 8.2). In addition, an abstracted model to analyse the general appli-

cability of the developed concepts has been presented. This abstracted model is based on

a proposed classification introducing four different classes of real-world applications. Appli-

cations can be assigned to a certain type by considering the relation between the situation

space and the corresponding best configuration as one point within the configuration space

(see Chapter 8.3).

Especially based on the last example, statements about the general behaviour of the

system are possible. Hence, the analysis of the general model showed that applications of

type 1 and 2 are controllable by the framework. This statement holds for type 3 applications

only with major restrictions. The approach itself is applicable and leads to a stabilising sys-

tem behaviour, which is characterised by a significant improvement compared to arbitrary

or static configurations. But for the investigated cases, a qualitatively clearly worse per-

formance has been observed compared to the types 1 and 2. In contrast, applications of

type 4 cannot be controlled by the framework. But this was to be expected, since a random

function contains no information in terms of a predictable regularity. Furthermore, the

reaction of the system has been investigated when exposed to noisy rewards. The general

behaviour of the system defined by the developed framework can cope with a certain degree

of noise (in the investigated scenario the noise made up for up to 10 % of the reward). In

addition, it is robust against these disturbances that do not cause the system’s situation

and configuration to leave the defined boundaries of the corresponding spaces.

Besides the general applicability of the framework to different types of real-world systems,

the possibilities and limitations of the proposed system have been focused when investigating

the particular application scenarios. Therefore, the wireless sensor network scenario of the

ONC system served as example for highly limited resources (see Chapter 7.3.2). Typically,

nodes in sensor networks are characterised by major restrictions considering the possible

effort for computation and communication. Here, the simulative results demonstrated the

positive effect even for small rule bases and the absence of Layer 2. In contrast, the Bit-

Torrent application of the ONC system served as example where the real-world restrictions

resulted in a less powerful application of the framework (see Chapter 7.3.3). Due to missing

198 CHAPTER 8. GENERALISATION AND DISCUSSION

knowledge about the network’s status, an appropriate simulation model cannot be derived

from current observations. Consequently, an integration of ONC into existing BitTorrent

clients had no positive effect for the protocol’s performance. In contrast, the way how situa-

tions change seems to have no influence on the system performance (cf. the different walker

models in Chapter 8.3.2) – as long as a certain similarity between consecutive situations can

be guaranteed.

In addition, some exemplary modifications of the sandbox component have been pre-

sented. On the one hand, the component has been used only at design time due to the

previously mentioned resource restrictions in wireless sensor network settings. On the other

hand, the simulation tool has been replaced by an approximation function (the Webster

formula, see Chapter 6), or the complete component has been exchanged by a data min-

ing concept (see Chapter 8.2). Although the particular realisation of Layer 2 differs, the

purpose is still untouched – it has to generate new rules based on safety restrictions and

without affecting the live system. Considering these different possibilities, several further

approaches might be promising depending on the particular scenario. As far as available for

the underlying scenario, analytic solutions might be applicable. Furthermore, an empiric

consideration of the basic search space might be possible and consequently makes the opti-

misation component redundant. Especially for real-world systems, the application of both

approaches is not realistic due to the typically vast situation and configuration spaces. The

opposite direction is to extend the system’s degree of freedom – in particular for those cases,

where only inappropriate simulation models exist or necessary knowledge is missing (i.e. the

BitTorrent scenario of ONC). In these cases, Layer 2 might be exchanged by a component

with a modified focus. Instead of finding the best-possible action for a given situation, it

might verify or guide the selection process of Layer 1. For instance, this component can

restrict the set of selectable rules for the on-line system according to previous experiences.

Simultaneously, Layer 1 receives a higher degree of freedom by e.g. using the non-modified

XCS as proposed by Wilson. For further thoughts in this direction, the reader is referred

to [340].

Another important question arises when applying automated learning to technical sys-

tems: does the mechanism converge to stable solutions within a reasonable time frame?

This issue has been investigated in cooperation with Rudolph and the results have been

presented in [341]. This work considers the convergence of the modified variant as used

in the framework as well as the original XCS algorithm. It is proved mathematically that

such a convergence can be guaranteed under certain restrictions (i.e. choosing a constantly

decreasing learning rate).

Summarising the previous discussion, the applicability of the developed framework and

the potential benefit of the resulting adaptive and self-organised solution have been demon-

strated. Based on the different application scenarios and the generalised model, the scope

of the framework has been defined and analysed. Thus, the initial goal of the framework

has been fulfilled.

Chapter 9

Conclusion

This thesis presented a framework to enable Organic Computing principles like adaptivity

and robustness for existing technical systems. Based on the general design of the framework,

design questions about techniques to be used for particular tasks have been investigated and

answered. Afterwards, the framework has been applied and customised to different domains.

In particular, the control of traffic lights at urban intersections and the dynamic reconfig-

uration of data communication protocols have been investigated and analysed in detail.

Furthermore, two case studies considering adaptive production control and the prediction

of errors in mainframe systems have been presented followed by introducing an abstracted

model of the underlying learning and control problem. Based on this model, the question

for which kind of systems the framework is applicable has been answered by considering a

classification of real-world systems.

The previously described contents of this thesis contain a set of contributions to research’s

state of the art in the following domains:

• Organic Computing / System design: A system architecture to allow for consid-

ering adaptivity aspects at design level has been developed. This architecture describes

a generalised way of equipping existing parametrisable systems with desired charac-

teristics as proposed by Organic Computing. In addition, a framework to realise the

general design has been presented, which serves as customisable black box solution for

engineers wanting their application to be characterised by additional attributes like

adaptivity, robustness, and self-improving behaviour.

• Machine learning: Two modified variants of existing machine learning techniques

have been developed and presented in the context of this thesis. Both techniques – a

modified Learning Classifier System and a modified Fuzzy Classifier System – allow

for on-line learning while simultaneously taking real-world restrictions into account.

199

200 CHAPTER 9. CONCLUSION

In addition, the behaviour of the Learning Classifier System-based approach has been

analysed using a generalised model of the underlying learning problem of real-world

applications. Accordingly, these real-world systems have been classified using the

introduced model.

• Traffic Control: The Organic Traffic Control system describes a novel approach to

traffic-responsive control of traffic lights at urban intersections. Due to its decen-

tralised installation, the demand-oriented collaboration, and the self-improvement at

runtime, it can cope with problems arising in currently used concepts.

• Adaptive network protocols: Situation-aware reconfiguration of network protocols

has gained increasing attention in the last decade. The Organic Network Control

System proposes a novel approach to achieve situation-aware networking by proposing

a fully decentralised solution based on the developed framework. The approach has

been applied to three exemplary protocols: a reliable broadcast algorithm for mobile

ad-hoc networks, a mode-selection protocol for wireless sensor networks, and a Peer-

to-Peer protocol.

Although describing a generalised approach to adapt existing systems dynamically ac-

cording to changes in the environmental conditions, the presented work leaves space for

further research. For the general framework, this concerns questions about the following

issues:

• Further Organic Computing characteristics: In the present thesis, the major

focus has been set on enabling adaptivity and robustness for systems to be controlled

by the developed framework. Besides these fundamental Organic Computing char-

acteristics, several further aspects exist. For instance, the aspect of flexibility has

been outlined at a technical level when introducing the modified Learning Classifier

System, but it has not been analysed in detail. This topic is currently investigated

by Becker in his diploma thesis [165]. In addition, the model calibration is a second

issue, which has been mostly neglected in the context of this thesis. Currently, the

simulation model of Layer 2 is configured according to the observed situation. But

what happens, when the reality changes such that the model itself becomes inappro-

priate? Further investigations could focus on developing concepts to determine these

changes and consequently adapt the simulation model.

• The purpose of Layer 2: As discussed in Chapter 8.4, the design of the sandbox

component can differ for varying application scenarios. Especially in cases where the

simulation-based solution has its limitations, alternatives are needed. One promising

approach is to increase Layer 1’s degree of freedom and to use Layer 2 for guiding the

decision process of Layer 1 (see also [340]).

• Optimisation heuristic: Recent work in the context of Organic Computing intro-

duced a novel search heuristic, which is especially designed to deal with noisy envi-

201

ronments: the Role-based Imitation Algorithm [338, 342]. Thus, it suits perfectly to

the demands for the Layer 2 component. Current work shows that the Role-based

Imitation Algorithm outperforms the chosen Evolutionary Algorithm in one Organic

Network Control-based example.

• Layer 3: In the current scenarios, Layer 3 has been investigated exemplarily by

developing ad-hoc solutions. Examples are mechanisms to establish Progressive Signal

Systems in urban traffic networks or to achieve a load balancing of Layer 2 tasks. A

detailed investigation of the layer and a generalised model of the component have not

been the subject of this thesis.

• Active learning / exploratory behaviour: Typically, Layer 2 is heavily loaded

at startup of the system due to mostly empty rule bases. Afterwards, the work load

decreases dramatically. The resulting idle times can be used to actively explore the

underlying search space in order to generate knowledge for situations that might occur

later on. Alternatively, the system can try to find better solutions for situations where

the system’s performance has shown to be imperfect.

• Undesired feedback effects: In the current version, each node equipped with the

additional framework learns autonomously and adapts its parameter configurations

according to the locally most-promising strategy. The evaluations have shown that

such an approach has positive effects on both, the single node and the complete net-

work. But uncoordinated local decision can lead to feedback effects and oscillating

behaviour caused by local decisions and learning – in Organic Computing typically

referred to as emergent effects. Currently, these effects are not considered.

• Social components: The system design takes a decentralised coordination and col-

laboration at the highest layer of the architecture into account. Especially current

trends in Organic Computing propose to extend the scope by taking normative and

social elements into consideration (see e.g. [11]). Thus, it might be useful to extend

Layer 3’s focus.

• Trust: The locally organised collaboration between neighbouring systems equipped

with the developed framework is currently assumed to work in a perfect world. In

particular, all nodes are assumed to work together, to serve the overall goal, and to

fully cooperate. Thus, misbehaviour or undesired demeanour are neglected. When

moving the systems from simulations to the real world, safety concepts have to be

considered, which makes principles like safety and trust necessary.

Besides these general considerations, an application to further technical domains can

be promising. In addition, moving individual applications like Organic Traffic Control and

Organic Network Control from simulations to the real-world could lead to novel insights on

the concept’s applicability and help to formulate ideas for upcoming demands.

202 CHAPTER 9. CONCLUSION

Organic Traffic Control For the Organic Traffic Control system, the overall goal should

be to push the development towards real-world applicability in urban traffic control. Thus,

the main topics for further work are closely connected to problems arising when moving the

application from simulation to the real world: connect the developed system with actual

sensor and control equipment, provide interfaces for current installations, and set up test

cases using traffic lights in protected environments. Probably, the less development-based

aspects of clarifying legal and liability questions are even more important.

Organic Network Control The Organic Network Control system has been analysed

using single, isolated protocols only. Typically, data communication needs a set of different

protocols for varying purposes when transmitting data from a sender to a receiver. Thus,

cross-layer or multi protocol optimisation can be seen as natural next step in the development

process. In addition, the investigated protocols are mainly characterised by a limited number

of variable parameters and a restricted application area. In general, most of today’s traffic

is processed using the UDP/TCP and IP protocols of the Internet – successfully applying

Organic Network Control to this general protocol stack would finally prove the applicability

and possible benefit of Organic Network Control.

Bibliography

[1] Jeffrey O. Kephart and David M. Chess, “The Vision of Autonomic Computing,”

IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen Branke, Christian Müller-

Schloer, and Hartmut Schmeck, “Organic control of traffic lights,” in Proceedings of

the 5th International Conference on Autonomic and Trusted Computing (ATC-08),

Chunming Rong et al., Eds. 2008, vol. 5060 of LNCS, pp. 219–233, Springer Verlag.

[3] Roy Sterritt, “Autonomic Computing,” Innovations in Systems and Software Engi-

neering, vol. 1, no. 1, pp. 79 – 88, 2005.

[4] Sven Tomforde, Emre Cakar, and Jörg Hähner, “Dynamic Control of Network Pro-

tocols - A new vision for future self-organised networks,” in Proceedings of the

6th International Conference on Informatics in Control, Automation, and Robotics

(ICINCO’09), Joaquim Filipe, Juan Andrade Cetto, and Jean-Louis Ferrier, Eds.,

Milan, July 2009, pp. 285 – 290, INSTICC.

[5] David W. Casbeer, Derek B. Kingston, Randal W. Beard, and Timothy W. McLain,

“Cooperative forest fire surveillance using a team of small unmanned air vehicles,”

International Journal of Systems Science, vol. 37, no. 6, pp. 351–360, 2006.

[6] Anand S. Rao and Michael P. Georgeff, “BDI Agents: From Theory to Practise,” in

Proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95),

San Francisco, CA, US, Berlin / Heidelberg, 1995, pp. 312–319, Springer Verlag.

[7] Hartmut Schmeck, “Organic Computing – A new vision for distributed embedded

systems,” in Proceedings of the 8th IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC’05), 2005, pp. 201–203.

[8] Alan G. Ganek and Thomas A. Corbi, “The dawning of the autonomic computing

era,” IBM Systems Journal, vol. 42, no. 1, pp. 5–18, 2003.

[9] Christian Müller-Schloer, Christoph von der Malsburg, and Rolf P. Würtz, “Organic

Computing,” Informatik Spektrum, vol. 27, no. 4, pp. 332–336, 2004.

203

204 BIBLIOGRAPHY

[10] David Tennenhouse, “Proactive computing,” Communications of the ACM, vol. 43,

no. 5, pp. 43–50, 2000.

[11] Christian Müller-Schloer and Hartmut Schmeck, “Organic Computing - Quo Vadis?,”

in Organic Computing - A Paradigm Shift for Complex Systems, Christian Müller-

Schloer, Hartmut Schmeck, and Theo Ungerer, Eds., chapter 6.2, pp. 615 – 625.

Birkhäuser Verlag, 2011.

[12] William Wright, David Schroh, Pascale Proulx, Alex Skaburskis, and Brian Cort,

“The Sandbox for Analysis: Concepts and Methods,” in Proceedings of the SIGCHI

conference on Human Factors in computing systems, New York, NY, USA, 2006, CHI

’06, pp. 801 – 810, ACM.

[13] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis

Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar, “Native Client: A

Sandbox for Portable, Untrusted x86 Native Code,” in Proceedings of the IEEE Sym-

posium on Security and Privacy, Los Alamitos, CA, USA, 2009, pp. 79 – 93, IEEE

Computer Society.

[14] Katarzyna Keahey, Karl Doering, and Ian Foster, “From Sandbox to Playground:

Dynamic Virtual Environments in the Grid,” in Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing, Washington, DC, USA, 2004, GRID’04,

pp. 34 – 42, IEEE Computer Society.

[15] Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Hähner, Moez Mnif, Chris-

tian Müller-Schloer, Urban Richter, and Hartmut Schmeck, “Observation and Control

of Organic Systems,” in Organic Computing - A Paradigm Shift for Complex Systems,

Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, Eds., chapter Chap-

ter 4.1, pp. 325–338. Birkhäuser Verlag, 2011.

[16] Hartmut Schmeck, Christian Müller-Schloer, Emre Çakar, Moez Mnif, and Urban

Richter, “Adaptivity and self-organization in organic computing systems,” ACM

Transactions on Autonomous and Adaptive Systems (TAAS), vol. 5, no. 3, pp. 1–32,

2010.

[17] Christian Müller-Schloer, “Organic Computing: On the feasibility of controlled emer-

gence,” in CODES and ISSS 2004 Proceedings, September 8-10, 2004. 2004, pp. 2–5,

ACM Press.

[18] Abdelmajid Bouajila, Johannes Zeppenfeld, Walter Stechele, Andreas Herkersdorf,

Andreas Bernauer, Oliver Bringmann, and Wolfgang Rosenstiel, “Organic Computing

at the System on Chip Level,” in Proceedings of the IFIP International Conference

on Very Large Scale Integration of System on Chip (VLSI-SoC), Berlin / Heidelberg,

DE, October 2006, Springer Verlag.

BIBLIOGRAPHY 205

[19] Andreas Bernauer, Johannes Zeppenfeld, Oliver Bringmann, Andreas Herkersdorf,

and Wolfgang Rosenstiel, “Combining software and hardware LCS for lightweight

on-chip learning,” in Proceedings of the 3rd IFIP Conference on Biologically-Inspired

Collaborative Computing (BICC 2010), Berlin / Heidelberg, September 2010, pp. 279–

290, Springer Verlag.

[20] Willi Richert, Ulrich Scheller, Markus Koch, Bernd Kleinjohann, and Claudius Stern,

“Integrating sporadic imitation in reinforcement learning robots,” in IEEE Interna-

tional Symposium on Approximate Dynamic Programming and Reinforcement Learn-

ing (ADPRL’09), Berlin / Heidelberg, DE, 2009, Springer Verlag.

[21] Adam El Sayed Auf, Marek Litza, and Erik Maehle, “Distributed fault-tolerant robot

control architecture based on organic computing principles,” in Proceedings of the

International Conference on Biologically-Inspired Collaborative Computing, Berlin /

Heidelberg, DE, 2008, pp. 115–124, Springer Verlag.

[22] Stefan Wildermann, Andreas Oetken, Jürgen Teich, and Zoran Salcic, “Self-organizing

computer vision for robust object tracking in smart cameras,” in Autonomic and

Trusted Computing, Bing Xie, Juergen Branke, S. Sadjadi, Daqing Zhang, and Xingshe

Zhou, Eds., vol. 6407 of Lecture Notes in Computer Science, pp. 1–16. Springer Berlin

/ Heidelberg, 2010.

[23] Rolf P. Würtz, Ed., Organic Computing (Understanding Complex Systems), Springer

Verlag, Berlin, DE, 2008.

[24] Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, Eds., Organic Com-

puting - A Paradigm Shift for Complex Systems, Autonomic Systems. Birkhäuser

Verlag, 2011.

[25] Jürgen Branke, Moez Mnif, Christian Müller-Schloer, Holger Prothmann, Urban

Richter, Fabian Rochner, and Hartmut Schmeck, “Organic Computing – Addressing

complexity by controlled self-organization,” in Proceedings of the 2nd International

Symposium on Leveraging Applications of Formal Methods, Verification and Valida-

tion (ISoLA 2006), Tiziana Margaria, Anna Philippou, and Bernhard Steffen, Eds.,

2006, pp. 200–206.

[26] Urban Richter, Moez Mnif, Jürgen Branke, Christian Müller-Schloer, and Hartmut

Schmeck, “Towards a Generic Observer/Controller Architecture for Organic Comput-

ing,” in Beiträge zur Jahrestagung der Gesellschaft für Informatik 2006, 2006, pp.

112–119.

[27] Moez Mnif and Christian Müller-Schloer, “Quantitative emergence,” in Proceedings

of the 2006 IEEE Mountain Workshop on Adaptive and Learning Systems (SMCals

2006), Piscataway, NJ, USA, July 2006, pp. 78–84, IEEE.

206 BIBLIOGRAPHY

[28] Moez Mnif, Quantitative Emergenz: Eine Quantifizierungsmethodik für die Entste-

hung von Ordnung in selbstorganisierenden technischen Systemen, Ph.D. thesis, Leib-

niz Universität Hannover, Institute for Systems Engineering, System and Computer

Architecture Group, Hannover, DE, 2010.

[29] Urban Maximilian Richter, Controlled Self-Organisation Using Learning Classifier

Systems, Ph.D. thesis, Universität Karlsruhe (TH), Fakultät für Wirtschaftswis-

senschaften, Karlsruhe, DE, July 2009.

[30] Emre Cakar, Jörg Hähner, and Christian Müller-Schloer, “Investigation of Generic

Observer/Controller Architectures in a Traffic Scenario,” in INFORMATIK 2008:

Beherrschbare Systeme – dank Informatik, Heinz-Gerd Hegering, Axel Lehmann,

Hans Jürgen Ohlbach, and Christian Scheideler, Eds. 2008, vol. 134 of Lecture Notes

in Computer Science, pp. 733–738, Köllen Verlag.

[31] Emre Cakar, Moez Mnif, Christian Müller-Schloer, Urban Richter, and Hartmut

Schmeck, “Towards a quantitative notion of self-organisation,” in Proceedings of

the IEEE Congress on Evolutionary Computation, CEC 2007, 25-28 September 2007,

Singapore. 2007, pp. 4222–4229, IEEE.

[32] Oliver Ribock, Urban Richter, and Hartmut Schmeck, “Using organic computing

to control bunching effects,” in Proceedings of the 21th International Conference on

Architecture of Computing Systems (ARCS 2008). Februar 2008, vol. 4934 of LNCS,

pp. 232–244, Springer.

[33] Lutfi R. Al-Sharif, “Bunching in lifts: Why does bunching in lifts increase waiting

time?,” Elevator World, vol. 11, pp. 75–77, 1996.

[34] Micaela Wünsche, Sanaz Mostaghim, Hartmut Schmeck, Timo Kautzmann, and Mar-

cus Geimer, “Organic Computing in Off-highway Machines,” in Second International

Workshop on Self-Organizing Architectures. The International Conference on Auto-

nomic Computing and Communications, Juni 2010, pp. 51–58, ACM.

[35] Daniel Pathmaperuma, “Lernende und selbstorganisierende Putzroboter,” Master

thesis, Institut AIFB, Univ. Karlsruhe (TH), Karlsruhe, DE, 2008.

[36] Clemens Lode, Urban Richter, and Hartmut Schmeck, “Adaption of XCS to Multi-

Learner Predator/Prey Scenarios,” in Proceedings of the 12th Annual Conference on

Genetic and Evolutionary Computation (GECCO 2010). 2010, pp. 1015–1022, ACM.

[37] Stefan Thanheiser, Lei Liu, and Hartmut Schmeck, “Towards Collaborative Cop-

ing with IT Complexity by Combining SOA and Organic Computing,” International

Transactions on Systems Science and Applications, vol. 5, no. 2, pp. 190–197, Septem-

ber 2009.

BIBLIOGRAPHY 207

[38] Lei Liu, Stefan Thanheiser, and Hartmut Schmeck, “A reference architecture for

self-organizing service-oriented computing,” in Architecture of Computing Systems -

ARCS 2008, 21st International Conference, Dresden, Germany, February 25-28, 2008,

Proceedings, Uwe Brinkschulte, Theo Ungerer, Christian Hochberger, and Rainer G.

Spallek, Eds., Berlin / Heidelberg, 2008, vol. 4934 of Lecture Notes in Computer

Science, pp. 205–219, Springer Verlag.

[39] Lei Liu and Hartmut Schmeck, “Enabling self-organising service level management

with automated negotiation,” Proceedings of the IEEE/WIC/ACM International Con-

ference on Web Intelligence and Intelligent Agent Technology, pp. 42–45, 2010.

[40] Birger Becker, Florian Allerding, Ulrich Reiner, Mattias Kahl, Urban Richter, Daniel

Pathmaperuma, Hartmut Schmeck, and Thomas Leibfried, “Decentralized energy-

management to control smart-home architectures,” in Architecture of Computing Sys-

tems - ARCS 2010, 23rd International Conference, Hannover, Germany, February

22-25, 2010. Proceedings, Christian Müller-Schloer, Wolfgang Karl, and Sami Yehia,

Eds., Berlin / Heidelberg, DE, 2010, vol. 5974 of Lecture Notes in Computer Science,

pp. 150–161, Springer Verlag.

[41] Web, “The OCCS Website,” http://projects.aifb.kit.edu/effalg/otcqe/qe/index.htm,

Universität Karlsruhe (AIFB) and Leibniz Universität Hannover (ISE-SRA), 2010.

[42] Rodney A. Brooks, “How to build complete creatures rather than isolated cognitive

simulators,” in Architectures for Intelligence. 1991, pp. 225–239, Erlbaum Publishers.

[43] Oliver Louis Robert Jacobs, Introduction to Control Theory, Oxford University Press,

Oxford, UK, 2nd edition, 1993.

[44] Karl Johan Astrom and Roichard M. Murray, Feedback Systems: An Introduction for

Scientists and Engineers, Princeton University Press, Princeton, NJ, US, 2008.

[45] Karl J. Astrom and Bjorn Wittenmark, Adaptive Control, Dover Publications Inc.,

Mineola, NY, US, 2nd edition, 2008.

[46] Stuart Bennett, A History of Control Engineering 1930-1955, Peter Peregrinus,

Hitchin, UK, 1st edition, 1993.

[47] Kiam Heong Ang, Gregory Chong, and Yun Li, “PID Control System Analysis, Design,

and Technology,” IEEE transactions on control system technology, vol. 13, no. 4, pp.

559–576, 2005.

[48] Eduardo F. Camacho and Carlos Bordons, Model Predictive Control, Springer Verlag,

Berlin / Heidelberg, DE, 2004.

[49] Carlos E. Garcia, David M. Prett, and Manfred Morari, “Model predictive control:

theory and practice – a survey,” Automatica, vol. 25, pp. 335–348, May 1989.

208 BIBLIOGRAPHY

[50] David Q. Mayne, James B. Rawlings, Christopher V. Rao, and P. O. M. Scokaert,

“Constrained model predictive control: Stability and optimality,” Automatica, vol.

36, no. 6, pp. 789–814, 2000.

[51] Moritz Diehl, H.Georg Bock, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and

Frank Allgöwer, “Real-time optimisation and Nonlinear Model Predictive Control of

Processes governed by differential-algebraic equations,” Journal of Process Control,

vol. 12, no. 4, pp. 577–585, 2002.

[52] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, Feedback Control of

Dynamic Systems, Prentice Hall, Upper Saddle River, NJ, US, 5th edition, 2005.

[53] Robert H. Cannon, Dynamics of Physical Systems, Dover Publications Inc., Mineola,

NY, US, 2003.

[54] Vladimir I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts

in Mathematics. Springer Verlag, Berlin, DE, 2nd edition, 1989.

[55] Prabha Kundur, Power System Stability and Control, Epri Power System Engineering

Series. Mcgraw-Hill Professional, New York, US, 1994.

[56] John Watton, Fundamentals of Fluid Power Control, Cambridge University Press,

Cambridge, UK, 1st edition, 2009.

[57] Bruno Siciliano and Luigi Villani Lorenzo Sciavicco and, Robotics: Modelling, Plan-

ning and Control, Advanced Textbooks in Control and Signal Processing. Springer

Verlag, Berlin / Heidelberg, DE, 1st edition, 2008.

[58] Howie Choset, Seth Hutchinson, and George Kantor, Principles of Robot Motion: The-

ory, Algorithms, and Implementations, Intelligent Robotics and Autonomous Agents.

The MIT Press, Cambridge, MA, US, 2005.

[59] Joachim Hertzberg, Herbert Jaeger, Uwe Zimmer, and Philippe Morignot, “A frame-

work for plan execution in behavior-based robots,” in Intelligent Control (ISIC),

1998. Held jointly with IEEE International Symposium on Computational Intelligence

in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), Pro-

ceedings, Sept. 1998, pp. 8 –13.

[60] Rodney A. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Automation, vol. 2, no. 1, pp. 14 – 23, March 1986.

[61] Erann Gat, “Integrating planning and reacting in a heterogeneous asynchronous archi-

tecture for controlling real-world mobile robots,” in Proceedings of the tenth national

conference on Artificial intelligence. 1992, AAAI’92, pp. 809–815, AAAI Press.

BIBLIOGRAPHY 209

[62] Murray Shanahan and Mark Witkowski, “High-level robot control through logic,”

in Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent

Theories Architectures and Languages, London, UK, 2001, ATAL ’00, pp. 104–121,

Springer-Verlag.

[63] Anthony Joseph Stentz, The Navlab system for mobile robot navigation, Ph.D. thesis,

Pittsburgh, PA, USA, 1990, UMI Order No. GAX90-33071.

[64] Rodney A. Brooks, “A robot that walks; emergent behaviors from a carefully evolved

network,” Neural Computation, vol. 1, pp. 253–262, June 1989.

[65] Jonathan Connell, “A colony architecture for an artificial creature,” Tech. Rep.,

Cambridge, MA, USA, 1989.

[66] Rodney A. Brooks, Jonathan H. Connell, and Peter Ning, “Herbert: A second gener-

ation mobile robot,” Tech. Rep., Cambridge, MA, USA, 1988.

[67] Bram Bakker, Viktor Zhumatiy, Gabriel Gruener, and Jürgen Schmidhuber, “Quasi-

online Reinforcement Learning for Robots,” in Proceedings of the 2006 IEEE Inter-

national Conference on Robotics and Automation (ICRA’06), 2006.

[68] Srikanta Patnaik and Kuravateppa Karibasappa, “Cognition techniques and their

applications,” in Intelligent Knowledge-Based Systems, Cornelius T. Leondes, Ed.,

pp. 1018 – 1065. Springer US, New York, US, 2005.

[69] Michael J. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons

Publishers, Hoboken, NJ, US, 2nd edition, 2009.

[70] Nicholas R. Jennings, “Building complex software systems: The case for an agent-

based approach,” Communications of the ACM, Forthcoming, vol. 44, pp. 12–23,

2000.

[71] Ron Sun and Isaac Naveh, “Simulating organizational decision-making using a cog-

nitively realistic agent model,” Journal of Artificial Societies and Social Simulation,

vol. 7, no. 3, 2004.

[72] Nathan Schurr, Janusz Marecki, John P. Lewis, Milind Tambe, and Paul Scerri, “The

defacto system: Coordinating human-agent teams for the future of disaster response,”

in Multi-Agent Programming: Languages, Platforms and Applications, Rafael H. Bor-

dini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni, Eds., pp. 197–215.

Springer Verlag, Berlin, DE, 2005.

[73] Alex Rogers, Esther David, Nicholas R. Jennings, and Jeremy Schiff, “The effects of

proxy bidding and minimum bid increments within ebay auctions,” ACM Transactions

on the Web (TWEB), vol. 1, no. 2, pp. 9, 2007.

210 BIBLIOGRAPHY

[74] Liviu Panait and Sean Luke, “Cooperative multi-agent learning: The state of the

art,” Autonomous Agents and Multi-Agent Systems, vol. 11, pp. 387–434, November

2005.

[75] Stanley J. Rosenschein and Leslie Pack Kaelbling, “The synthesis of digital machines

with provable epistemic properties,” in TARK ’86: Proceedings of the 1986 conference

on Theoretical aspects of reasoning about knowledge, San Francisco, CA, US, 1986, pp.

83–98, Morgan Kaufmann Publishers Inc.

[76] Michael E. Bratman, David Israel, and Martha Pollack, “Plans and resource – bounded

practical reasoning,” in Philosophy and AI: Essays at the Interface, Robert Cummins

and John L. Pollock, Eds., pp. 1–22. The MIT Press, Cambridge, Massachusetts, 1988.

[77] W. Brian Arthur, “Complexity in economic theory: Inductive reasoning and bounded

rationality,” The American Economic Review, vol. 84, no. 2, pp. 406–411, May 1994.

[78] Anand S. Rao and Michael P. Georgeff, “Modeling Rational Agents within a BDI-

Architecture,” in Proceedings of the 2nd International Conference on Principles of

Knowledge Representation and Reasoning, San Francisco, CA, US, 1991, pp. 201–203,

Morgan Kaufmann publishers Inc.

[79] Yoav Shoham, “Agent-oriented programming,” Artificial Intelligence, vol. 60, no. 1,

pp. 51–92, 1993.

[80] Jon Doyle, “Rationality and its roles in reasoning,” Computational Intelligence, vol.

8, pp. 376–409, 1994.

[81] Michael E. Bratman, Intention, Plans, and Practical Reason, Center for the Study of

Language and Information (CSLI) Publications, Stanford, CA, US, 1999.

[82] David L. Martin, Adam Cheyer, and Douglas B. Moran, “The open agent architecture:

A framework for building distributed software systems,” Applied Artificial Intelligence,

vol. 13, no. 1-2, pp. 91–128, 1999.

[83] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque, “The adaptive agent archi-

tecture: Achieving fault-tolerance using persistent broker teams,” in In Proceedings

of the Fourth International Conference on Multi-Agent Systems. 2000, pp. 159–166,

IEEE Computer Society.

[84] The Cougaar Open Source Website, “http://www.cougaar.org,” Web, 2009.

[85] Karl Kleinmann, Richard Lazarus, and Ray Tomlinson, “An Infrastructure for Adap-

tive Control of Multi-Agent Systems,” in Proceedings of the International Conference

on Integration of Knowledge Intensive Multi-Agent Systems, 2003.

BIBLIOGRAPHY 211

[86] Michael Jarrett and Rudolph Seviora, “Constructing an autonomic computing in-

frastructure using cougaar,” in Engineering of Autonomic and Autonomous Systems,

2006. EASe 2006. Proceedings of the Third IEEE International Workshop on, March

2006, pp. 119–128.

[87] Gerhard Weiß, “Adaptation and Learning in Multi-Agent Systems: Some Remarks

and a Bibliography,” in Proceedings of the Workshop on Adaption and Learning in

Multi-Agent Systems, London, UK, 1996, IJCAI ’95, pp. 1–21, Springer-Verlag.

[88] Giovanna Di Marzo Serugendo, Marie Pierre Gleizes, and Anthony Karageorgos, “Self-

Organisation and Emergence in MAS: An Overview,” Informatica (Slovenia), vol. 30,

no. 1, pp. 45–54, 2006.

[89] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf, “Jadex: A BDI Reason-

ing Engine,” in Multi-Agent Programming: Languages, Platforms and Applications,

Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni, Eds.,

vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations, pp.

149–174. Springer Verlag, Berlin / Heidelberg, DE, 2005.

[90] Toan Phung, Michael Winikoff, and Lin Padgham, “Learning within the bdi frame-

work: An empirical analysis,” in Knowledge-Based Intelligent Information and

Engineering Systems - 9th International Conference, KES 2005, Melbourne, Aus-

tralia, September 14-16, 2005, Proceedings, Part III, Berlin / Heidelberg, 2005, vol.

3683/2005, pp. 282–288, Springer Verlag.

[91] Alejandro Guerra-Hernandez, Amal El Fallah-Seghrouchni, and Henry Soldano,

“Learning in bdi multi-agent systems,” in Computational Logic in Multi-Agent Sys-

tems, 4th International Workshop, CLIMA IV, Fort Lauderdale, FL, USA, January

6-7, 2004, Revised Selected and Invited Papers, Jürgen Dix and João Alexandre Leite,

Eds., Berlin / Heidelberg, 2004, pp. 218–233, Springer Verlag.

[92] Michael P. Georgeff, Barney Pell, Martha E. Pollack, Milind Tambe, and Michael

Wooldridge, “The belief-desire-intention model of agency,” in ATAL ’98: Proceedings

of the 5th International Workshop on Intelligent Agents V, Agent Theories, Architec-

tures, and Languages, Berlin / Heidelberg, DE, 1999, pp. 1–10, Springer Verlag.

[93] Anand S. Rao and Michael P. Georgeff, “Formal models and decision procedures for

multi-agent systems,” Tech. Rep. 61, Australian Artificial Institute, June 1995.

[94] Jiming Liu, Autonomous agents and multi-agent systems: explorations in learning,

self-organization and adaptive computation, World Scientific Publishing Co., Inc.,

River Edge, NJ, USA, 2001.

[95] IBM Corporation, “An architectural blueprint for autonomic computing,” IBM

Whitepaper, 2004.

212 BIBLIOGRAPHY

[96] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O.

Kephart, “An Architectural Approach to Autonomic Computing,” in Proceedings of

the 1st International Conference on Autonomic Computing (ICAC 2004), 2004, pp.

2–9.

[97] Jana Koehler, Chris Giblin, Dieter Gantenbein, and Rainer Hauser, “On autonomic

computing architectures,” Tech. Rep., IBM Zurich Research Laboratory, 2003.

[98] M. Muztaba Fuad and Michael J. Oudshoorn, “System architecture of an autonomic

element,” in Proceedings of the Fourth IEEE International Workshop on Engineering

of Autonomic and Autonomous Systems (EASE’07), Washington, DC, USA, 2007, pp.

89–93, IEEE Computer Society.

[99] Yu Cheng, Ramy Farha, Myung Sup Kim, Alberto Leon-Garcia, and James Won-

Ki Hong, “A generic architecture for autonomic service and network management,”

Computer Communications, vol. 29, no. 18, pp. 3691–3709, 2006.

[100] Yan Zhang, Anna Liu, and Wei Qu, “Software architecture design of an autonomic

system,” in Proceedings of 5th Australasian Workshop on Software and System Ar-

chitectures, 2004, pp. 5–11.

[101] Manish Agarwal, Viraj Bhat, Hua Liu, Vincent Matossian, Vladimir Putty, Cristina

Schmidt, Guangsen Zhang, Liang Zhen, Manish Parashar, Bithika Khargharia, and

Salim Hariri, “AutoMate: Enabling Autonomic Applications on the Grid,” in Proceed-

ings of the 5th Annual International Workshop on Active Middleware Services (AMS

2003), 25 June 2003, Seattle, WA, USA, 2003, pp. 48 – 59.

[102] Hua Liu and Manish Parashar, “Accord: A Programming Framework For Autonomic

Applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Ap-

plications and Reviews, vol. 36, no. 3, pp. 341–352, May 2006.

[103] David M. Chess, Alla Segal, Ian Whalley, and Steve R. White, “Unity: experiences

with a prototype autonomic computing system,” in Proceedings of the International

Conference on Autonomic Computing (ICAC’04), May 2004, pp. 140–147.

[104] Radu Calinescu, “Resource-definition policies for autonomic computing,” in Pro-

ceedings of the 5th International Conference on Autonomic and Autonomous Systems

(ICAS’09). April 2009, pp. 111 – 116, IEEE Computer Society Press.

[105] Radu Calinescu, “Model-driven autonomic architecture,” in ICAC ’07: Proceedings

of the Fourth International Conference on Autonomic Computing, Washington, DC,

USA, 2007, p. 9, IEEE Computer Society.

BIBLIOGRAPHY 213

[106] Radu Calinescu, “Implementation of a generic autonomic framework,” in ICAS ’08:

Proceedings of the Fourth International Conference on Autonomic and Autonomous

Systems, Washington, DC, USA, 2008, pp. 124–129, IEEE Computer Society.

[107] Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol Gelenbe,

Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli,

“A survey of autonomic communications,” ACM Transactions on Autonomous Adap-

taptive Systems, vol. 1, no. 2, pp. 223–259, 2006.

[108] Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober, Pervasive

Computing : The Mobile World, Springer Verlag, Berlin / Heidelberg, DE, August

2003.

[109] Mark Weiser, “The computer for the 21st century,” Scientific American, vol. 265, no.

3, pp. 66–75, September 1991.

[110] Jeff Kramer and Jeff Magee, “Self-Managed Systems: an Architectural Challenge,”

Future of Software Engineering, pp. 259 – 268, 2007.

[111] Thorsten Hestermeyer, Oliver Oberschelp, and Holger Giese, “Structured Information

Processing For Self-optimizing Mechatronic Systems,” in Proceedings of the 1st Inter-

national Conference on Informatics in Control, Automation and Robotics (ICINCO

2004), Setubal, Portugal, Helder Araujo, Alves Vieira, Jose Braz, Bruno Encarnacao,

and Marina Carvalho, Eds. 8 2004, pp. 230–237, INSTICC Press.

[112] John J. Grefenstette and Connie L. Ramsey, “An Approach to Anytime Learning,”

in Proceedings of the 9th International Workshop on Machine Learning, 1992, pp.

189–195.

[113] Sven Burmester, Holger Giese, Eckehard Münch, Oliver Oberschelp, Florian Klein,

and Peter Scheideler, “Tool support for the design of self-optimizing mechatronic

multi-agent systems,” International Journal on Software Tools for Technology Trans-

fer (STTT), vol. 10, pp. 207–222, 2008.

[114] John J. Grefenstette, Connie Loggia Ramsey, and Alan C. Schultz, “Learning sequen-

tial decision rules using simulation models and competition,” Machine Learning, vol.

5, pp. 355–381, 1990.

[115] Helen G. Cobb and John J. Grefenstette, “Learning the persistence of actions in

reactive control rules,” in Proceedings of the Eighth International Machine Learning

Workshop, Evanston, Il, US, 1991, pp. 292–297, Morgan Kaufmann Publishers Inc.

[116] Thomas Bäck and Hans-Paul Schwefel, “Evolutionary Computing: An Overview,” in

Proceedings of IEEE Conference of Evolutionary Computing, 1996, pp. 20 – 29.

214 BIBLIOGRAPHY

[117] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory

Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L.

Wolf, “An architecture-based approach to self-adaptive software,” IEEE Intelligent

Systems, vol. 14, pp. 54–62, May 1999.

[118] Marco Dorigo, “ALECSYS and the AutonoMouse: Learning to Control a Real Robot

by Distributed Classifier Systems,” Machine Learning, vol. 19, pp. 209–240, June

1995.

[119] Jean-Yves Donnart and Jean-Arcady Meyer, “Learning reactive and planning rules

in a motivationally autonomous animat,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 26, no. 3, pp. 381–395, June 1996.

[120] Hartmut Schmeck and Christian Müller-Schloer, “A characterization of key properties

of environment-mediated multiagent systems,” in Engineering Environment-Mediated

Multi-Agent Systems, International Workshop, EEMMAS 2007, Dresden, Germany,

October 5, 2007, Danny Weyns, Sven A. Brueckner, and Yves Demazeau, Eds. 2007,

pp. 17–38, Springer Verlag, Berlin, Heidelberg.

[121] Sven Tomforde and Jörg Hähner, Biologically Inspired Networking and Sensing: Al-

gorithms and Architectures, chapter Organic Network Control – Turning standard

protocols into evolving systems, p. to appear, IGI, 2011.

[122] David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,

Addison-Wesley Publishing Company, Inc., Reading, MA, US, 1989.

[123] Stafford Beer, Diagnosing the System for Organizations, Managerial Cybernetics of

Organization. John Wiley & Sons Publishers, Hoboken, NJ, US, 1994.

[124] George Liu and Gerald Maguire, Jr., “A class of mobile motion prediction algorithms

for wireless mobile computing and communication,” Mobile Networks and Applica-

tions; Special issue: routing in mobile communications networks, vol. 1, no. 2, pp.

113–121, 1996.

[125] Tom M. Mitchell, Machine Learning, Computer Science Series. McGraw-Hill Compa-

nies, Inc., Singapure, 1997.

[126] Zbigniew Michalewicz and David B. Fogel, How to Solve It: Modern Heuristics,

Springer Verlag, Berlin / Heidelberg, 2004, ISBN: 3540224947.

[127] Michael J. North, Nicholson T. Collier, and Jerry R. Vos, “Experiences creating

three implementations of the repast agent modeling toolkit,” ACM Transactions on

Modeling and Computer Simulation (TOMACS), vol. 16, no. 1, pp. 1–25, 2006.

BIBLIOGRAPHY 215

[128] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan, “MASON: A New

Multi-Agent Simulation Toolkit,” in Proceedings of the 2004 Swarmfest Workshop,

2004.

[129] J. Barceló, E. Codina, J. Casas, J.L. Ferrer, and D. Garćıa, “Microscopic traffic

simulation: A tool for the design, analysis and evaluation of intelligent transport

systems,” Journal of Intelligent and Robotic Systems, vol. 41, no. 2–3, pp. 173–203,

2005.

[130] Kevin Fall, “Network Emulation in the Vint/NS Simulator,” in Proceedings of the The

Fourth IEEE Symposium on Computers and Communications (ISCC’99), Washington,

DC, USA, 1999, p. 244, IEEE Computer Society.

[131] Andras Varga, “The OMNET++ discrete event simulation system,” in Proceedings

of the European Simulation Multiconference, Prague, Czech Republic, June 2001, pp.

319–324, SCS – European Publishing House.

[132] National Electrical Manufacturers Association, “NEMA Standards Publication TS

2-2003 v02.06 – Traffic Controller Assemblies with NTCIP Requirements,” 2003.

[133] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction,

Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, US, 1998.

[134] Björn Hurling, “Bewertung und Implementierung von verschiedenen Lernverfahren

zur automatischen Optimierung von Netzwerkprotokollparametern,” Master thesis,

Leibniz Universität Hannover, Institute for Systems Engineering, System and Com-

puter Architecture, August 2009.

[135] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Pren-

tice Hall Series in Artificial Intelligence. Prentice Hall, Upper Saddle River, NJ, USA,

3rd edition, 2010.

[136] Ethem Alpaydim, Maschinelles Lernen, Oldenbourg Wissenschaftsverlag GmbH,

München, 2008.

[137] Charles W. Anderson, “Learning to Control an Inverted Pendulum Using Neural

Networks,” IEEE Control Systems Magazine, vol. 9, no. 3, pp. 31–37, 1989.

[138] Jorge Casillas, Brian Carse, and Larry Bull, “Fuzzy-XCS: A Michigan Genetic Fuzzy

System,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 4, pp. 536 – 550, 2007.

[139] Stewart W. Wilson, “ZCS: A zeroth level classifier system,” Evolutionary Computa-

tion, vol. 2, no. 1, pp. 1–18, 1994.

216 BIBLIOGRAPHY

[140] Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and

Kevin J. Lang, “Readings in speech recognition,” chapter Phoneme recognition us-

ing time-delay neural networks, pp. 393–404. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1990.

[141] Dean A. Pomerleau, “Advances in neural information processing systems 1,” chapter

ALVINN: an autonomous land vehicle in a neural network, pp. 305–313. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

[142] Michael J. Kurtz, Piero Mussio, and Peter G. Ossorio, “A cognitive system for astro-

nomical image interpretation,” Pattern Recognition Letters, vol. 11, no. 7, pp. 507 –

515, 1990.

[143] Gerald Tesauro, “Temporal difference learning and TD-Gammon,” Communications

of the ACM, vol. 38, pp. 58 – 68, March 1995.

[144] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik, “Neural network studies.

1. comparison of overfitting and overtraining,” Journal of Chemical Information and

Computer Sciences, vol. 35, no. 5, pp. 826–833, 1995.

[145] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.

Howard, Wayne E. Hubbard, and Lawrence D. Jackel, “Backpropagation applied

to handwritten zip code recognition,” Neural Computation, vol. 1, pp. 541 – 551,

December 1989.

[146] Jerome Bruner, Jacqueline Jarrett Goodnow, and George Austin, A Study of Thinking,

Social Science Classics Series. Transaction Publishers, 1986.

[147] Richard E. Neapolitan, Learning Bayesian Networks, Prentice Hall, Upper Saddle

River, NJ, USA, 2003.

[148] Kevin Gurney, An Introduction to Neural Networks, CRC Press, 1997.

[149] Christopher John Cornish Hellaby Watkins, Learning from Delayed Rewards, Ph.D.

thesis, Kings College, University of Cambridge, Cambridge, GB, May 1989.

[150] Arthur L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of Research and Development, vol. 3, pp. 210 – 229, July 1959.

[151] Richard S. Sutton, “Learning to Predict by the Methods of Temporal Differences,”

Machine, vol. 3, pp. 9 – 44, August 1988.

[152] John H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, MI, USA, 1975.

BIBLIOGRAPHY 217

[153] John H. Holland and Judith S. Reitman, “Cognitive systems based on adaptive algo-

rithms,” ACM SIGART Bulletin, p. 49, June 1977.

[154] Tim Kovacs and Pier Luca Lanzi, “A bigger learning classifier systems bibliography,”

in Revised Papers from the Third International Workshop on Advances in Learning

Classifier Systems, London, UK, 2001, IWLCS ’00, pp. 213–252, Springer-Verlag.

[155] John H. Holland, Lashon B. Booker, Marco Colombetti, Marco Dorigo, David E.

Goldberg, Stephanie Forrest, Rick L. Riolo, Robert E. Smith, Pier Luca Lanzi, Wolf-

gang Stolzmann, and Stewart W. Wilson, “What is a learning classifier system?,” in

Learning Classifier Systems, From Foundations to Applications, London, UK, 2000,

pp. 3–32, Springer-Verlag.

[156] Jorge Casillas, Brian Carse, and Larry Bull, “Fuzzy XCS: An Accuracy-Based Fuzzy

Classiffier System,” in Proceedings of the XII Congreso Espanol sobre Tecnologia y

Logica Fuzzy (ESTYLF 2004), 2004.

[157] Stephen Frederick Smith, A learning system based on genetic adaptive algorithms,

Ph.D. thesis, Pittsburgh, PA, USA, 1980, AAI8112638.

[158] Stephen F. Smith, “Flexible learning of problem solving heuristics through adaptive

search,” in Proceedings of the Eighth international joint conference on Artificial intel-

ligence - Volume 1, San Francisco, CA, USA, 1983, pp. 422–425, Morgan Kaufmann

Publishers Inc.

[159] Stewart W. Wilson, “Classifier fitness based on accuracy,” Evolutionary Computation,

vol. 3, no. 2, pp. 149–175, 1995.

[160] Martin V. Butz, “XCSJava 1.0: An Implementation of the XCS classifier system in

Java,” Technical Report 2000027, Illinois Genetic Algorithms Laboratory, 2000.

[161] Martin Butz and Stewart W. Wilson, “An algorithmic description of xcs,” in IWLCS

’00: Revised Papers from the Third International Workshop on Advances in Learning

Classifier Systems, London, UK, 2000, pp. 253–272, Springer-Verlag.

[162] Martin V. Butz and Steward W. Wilson, “An algorithmic description of XCS,” Soft

Computing - A Fusion of Foundations, Methodologies and Applications, vol. 6, pp.

144–153, 2002.

[163] Fabian Rochner and Christian Müller-Schloer, “Adaptive decentralized and collabora-

tive control of traffic lights,” in INFORMATIK 2004 - Informatik verbindet, Band 2,

Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Ulm, 20.-24.

September 2004, Peter Dadam and Manfred Reichert, Eds. 2004, vol. 2, pp. 595–599,

GI.

218 BIBLIOGRAPHY

[164] Fabian Rochner, Holger Prothmann, Jürgen Branke, Christian Müller-Schloer, and

Hartmut Schmeck, “An organic architecture for traffic light controllers,” in Informatik

2006 – Informatik für Menschen, Christian Hochberger and Rüdiger Liskowsky, Eds.

2006, vol. P-93 of LNI, pp. 120–127, Köllen Verlag.

[165] Christian Becker, “Untersuchung von Mechanismen zur technischen Umsetzbarkeit

von Flexibilitaet in Organischen Systemen,” Diploma thesis, Leibniz Universität Han-

nover, Institute for Systems Engineering, System and Computer Architecture, May

2011.

[166] John H. Holland, “Computation & intelligence,” chapter Escaping brittleness: the

possibilities of general-purpose learning algorithms applied to parallel rule-based sys-

tems, pp. 275–304. American Association for Artificial Intelligence, Menlo Park, CA,

USA, 1995.

[167] Stewart Wilson, “Get Real! XCS with Continuous-Valued Inputs,” in Learning

Classifier Systems, Pier Lanzi, Wolfgang Stolzmann, and Stewart Wilson, Eds., vol.

1813 of Lecture Notes in Computer Science, pp. 209–219. Springer Berlin / Heidelberg,

2000.

[168] Manuel Valenzuela-Rendón, “The fuzzy classifier system: A classifier system for con-

tinuously varying variables,” in Proceedings of the 4th International Conference on

Genetic Algorithms, San Diego, CA, USA, July 1991, Richard K. Belew and Lashon B.

Booker, Eds. 1991, pp. 346–353, Morgan Kaufmann.

[169] Lotfi A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353,

1965.

[170] Andrea Bonarini, “Learning to coordinate fuzzy behaviors for autonomous agents,”

International Journal of Approximate Reasoning, vol. 17, no. 4, pp. 409 – 432, 1994.

[171] Charles E. Perkins and Pravin Bhagwat, “Highly dynamic destination-sequenced

distance-vector routing (dsdv) for mobile computers,” ACM SIGCOMM Computer

Communication Review, vol. 24, no. 4, pp. 234–244, 1994.

[172] Jiang Y. Ke, Kai S. Tang, and Ken F. Man, “Genetic Fuzzy Classifier for Benchmark

Cancer Diagnosis,” in Proceedings of 23rd International Conference on Industrial

Electronics, Control and Instrumentation (IECON97), 1997, vol. 3, pp. 1063 – 1067.

[173] George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications,

Prentice Hall, 2nd edition edition, 1995.

[174] Bram Cohen, “Incentives Build Robustness in BitTorrent,” in Proceedings of the 1st

Workshop on Economics of Peer-to-Peer Systems, Berkeley, 2003.

BIBLIOGRAPHY 219

[175] Kolja Eger, Tobias Hossfeld, Andreas Binzenhöfer, and Gerald Kunzmann, “Efficient

Simulation of Large-Scale P2P Networks: Packet-level vs. Flow-level Simulations,”

in Proceedings of the 2nd Workshop on the Use of P2P, GRID and Agents for the

Development of Content Networks (UPGRADE-CN’07), Monterey Bay, USA, 2007,

pp. 9–16.

[176] David H. Wolpert and William G. Macready, “No free lunch theorems for optimiza-

tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67 – 82,

1997.

[177] James Kennedy, Russell C. Eberhart, and Yuhui Shi, Swarm Intelligence, Morgan

Kaufmann Series in Evolutionary Computation. Morgan Kaufmann, San Francisco,

CA, US, 2001.

[178] Thomas Weise, “Global optimization algorithms - theory and application,”

http://www.it-weise.de/, December 2010.

[179] Karin Zielinski, Optimizing Real-World Problems with Differential Evolution and Par-

ticle Swarm Optimization, Ph.D. thesis, Universität Bremen, Shaker Verlag Aachen,

DE, 2009.

[180] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to

Algorithms, MIT Press, Cambridge, MA, US, 2nd edition edition, 2001.

[181] Ivo Nowak, Relaxation and Decomposition Methods for Mixed Integer Nonlinear Pro-

gramming, International Series of Numerical Mathematics. Birkhäuser Verlag, Basel,

CH, 2005.

[182] Agoston E. Eiben and James E. Smith, Introduction to Evolutionary Computing,

Springer Verlag, 2nd edition, 2007.

[183] Jakob Vesterstrom, “A comparative study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical benchmark problems,” in

Proceedings of the IEEE Congress on Evolutionary Computation. 2004, vol. 2, pp.

1980–1987, IEEE.

[184] Dinkar N. Bhat, “An evolutionary measure for image matching,” in Proceedings

of the 14th International Conference on Pattern Recognition-Volume 1 - Volume 1,

Washington, DC, USA, 1998, ICPR ’98, pp. 850–, IEEE Computer Society.

[185] Rainer Storn and Kenneth Price, “Differential Evolution - A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Opti-

mization, vol. 11, no. 4, pp. 341–359, 1997.

220 BIBLIOGRAPHY

[186] Rasmus K. Ursem and Pierre Vadstrup, “Parameter identification of induction motors

using differential evolution,” in Proceedings of the IEEE Congress on Evolutionary

Computation. 2003, vol. 2, pp. 790–796, IEEE.

[187] Russell C. Eberhart and James Kennedy, “Particle swarm optimization,” in Pro-

ceedings of the 1995 IEEE International Conference on Neural Networks, 1995, pp.

1942–1948.

[188] Jovita Nenortaite and Rimantas Butleris, “Application of particle swarm optimization

algorithm to decision making model incorporating cluster analysis,” in Proceedings of

the 2008 Conference on Human System Interactions. May 2008, pp. 88–93, IEEE.

[189] Xin-She Yang, “Harmony search as a metaheuristic algorithm,” in Music-Inspired

Harmony Search Algorithm, Zong Geem, Ed., vol. 191 of Studies in Computational

Intelligence, pp. 1–14. Springer Verlag, Berlin / Heidelberg, DE, 2009.

[190] Kang S. Lee and Zong W. Geem, “A new meta-heuristic algorithm for continuous

engineering optimization: harmony search theory and practice,” Computer Methods

in Applied Mechanics and Engineering, vol. 194, no. 36-38, pp. 3902–3933, September

2005.

[191] Aditya Panchal, “Harmony search in therapeutic medical physics,” in Music-Inspired

Harmony Search Algorithm, Zong Geem, Ed., vol. 191 of Studies in Computational

Intelligence, pp. 189–203. Springer Berlin / Heidelberg, 2009.

[192] Scott Kirkpatrick, David Gelatt, and Mario P. Vecchi, “Optimization by Simulated

Annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598, pp. 671–680, 1983.

[193] Horacio Martinez-Alfaro and Donald Flugrad, “Collision-free path planning for mo-

bile robots and/or agvs using simulated annealing,” in Proceedings of the IEEE In-

ternational Conference on Systems, Man, and Cybernetics, October 1994, vol. 1, pp.

270–275.

[194] Markus Domdey, “Vergleich von Optimierungsverfahren für organische Systeme am

Beispiel von Organic Network Control,” Master thesis, Leibniz Universität Hannover,

Institute for Systems Engineering, System and Computer Architecture, April 2010.

[195] Colin R. Reeves, “Fitness landscapes,” in Search Methodologies: Introductory Tutori-

als in Optimization and Decision Support Techniques, Edmund K. Burke and Graham

Kendall, Eds., chapter 19, pp. 587–610. Springer Verlag, Berlin / Heidelberg, DE,

2005.

[196] Stuart A. Kauffman, The Origins of Order: Self-Organisation and Selection in Evo-

lution, Oxford University Press, 1993.

BIBLIOGRAPHY 221

[197] Jani Rönkkönen, Saku Kukkonen, and Kenneth Price, “Real-parameter optimization

with differential evolution,” in Proceedings of the IEEE Congress on Evolutionary

Computation, CEC 2005, 2-4 September 2005, Edinburgh, UK. IEEE, 2005, pp. 506–

513.

[198] Anthony Carlisle and Gerry Dozier, “An off-the-shelf PSO,” in Proceedings of the

workshop on particle swarm optimization, Indianapolis, IN, US, 1987, Purdue School

of Engineering and Technology.

[199] Ihor O. Bohachevsky, Mark E. Johnson, and Myron L. Stein, “Generalized simulated

annealing for function optimization,” Technometrics, vol. 28, pp. 209–217, August

1986.

[200] Dennis I. Robertson and R. David Bretherton, “Optimizing networks of traffic signals

in real time – the SCOOT method,” IEEE Transactions on Vehicular Technology,

vol. 40, no. 1, pp. 11–15, 1991.

[201] Arthur G. Sims and Kenneth W. Dobinson, “The Sydney coordinated adaptive traffic

(SCAT) system – Philosophy and benefits,” IEEE Transactions on Vehicular Tech-

nology, vol. 29, no. 2, pp. 130–137, 1980.

[202] Peter Dürr, Integration des ÖPNV in die dynamische Fahrwegsteuerung des Strassen-

verkehrs – Steuerungsverfahren Darvin, Veröffentlichung des Lehrstuhls für Verkehrs-

und Stadtplanung, Technische Universität München, 2001.

[203] Heinz Zackor, Fritz Busch, and Winfried Höpfl, “Entwicklung eines Verfahrens zur

adaptiven koordinierten Steuerung von Lichtsignalanlagen,” in Forschung Straßen-

bau und Straßenverkehrstechnik, Bonn-Bad Godesberg, Dec. 1990, vol. 607 / 1991,

Bundesminister für Verkehr.

[204] Andy Tomlinson and Larry Bull, “An investigation into LCS road traffic junction

controllers,” Tech. Rep., Faculty of Computing, Engineering & Mathematical Sciences,

Bristol, 2001.

[205] Yanan J. Cao, Neil Ireson, Larry Bull, and Ray Miles, “Design of a Traffic Junction

Controller Using Classifier System and Fuzzy Logic,” in Computational Intelligence –

Theory and Applications, Bernd Reusch, Ed. 1999, vol. 1625 of LNCS, pp. 342–353,

Springer.

[206] Yanan J. Cao, Neil Ireson, Larry Bull, and Ray Miles, “Distributed Learning Control

of Traffic Signals,” in Real-World Applications of Evolutionary Computing – EvoWork-

shops Proceedings, Stefano Cagnoni et al., Eds. 2000, vol. 1803 of LNCS, pp. 117–126,

Springer.

222 BIBLIOGRAPHY

[207] Hartmut Schmeck, “Optimierungstechniken des Organic Computing in der

Verkehrstechnik,” in Informatik bewegt! Informationstechnik in Verkehr und Logistik,

Andreas Pfingsten and Franz Rammig, Eds., pp. 11–38. Fraunhofer-IRB-Verlag, 2007.

[208] Holger Prothmann, Sven Tomforde, Jürgen Branke, Jörg Hähner, Christian Müller-

Schloer, and Hartmut Schmeck, “Organic Traffic Control,” in Organic Computing –

A Paradigm Shift for Complex Systems, Christian Müller-Schloer, Hartmut Schmeck,

and Theo Ungerer, Eds., chapter Chapter 5.1, pp. 431–446. Birkhäuser Verlag, 2011.

[209] Swiss Verkehrs-Systeme AG, “VS-Plus webpage,” Online, http://www.vs-plus.de,

2008.

[210] Joachim Mertz, Ein mikroskopisches Verfahren zur verkehrsadaptiven Knotenpunkt-

steuerung mit Vorrang des öffentlichen Verkehrs, Dissertation, Fachgebiet Verkehrs-

technik und Verkehrsplanung der Technischen Universität München, München, 2001.

[211] Christina Diakaki, Integrated control of traffic flow in corridor networks, Ph.D. thesis,

Technical University of Crete, Department of Production Engineering and Manage-

ment, Chania, Greece, 1999.

[212] Christina Diakaki, Vaya Dinopoulou, Kostas Aboudolas, Markos Papageorgiou, Elia

Ben-Shabat, Eran Seider, and Amit Leibov, “Extensions and new applications of the

traffic signal control strategy TUC,” in Transportation Research Record No. 1856.

2003, pp. 202–211, Transportation Research Board.

[213] Vaya Dinopoulou, Christina Diakaki, and Markos Papageorgiou, “Applications of the

urban traffic control strategy tuc,” European Journal of Operational Research, vol.

175, no. 3, pp. 1652–1665, 2006.

[214] Bernhard Friedrich, Ein verkehrsadaptives Verfahren zur Steuerung von Lichtsig-

nalanlagen, Veröffentlichung des Fachgebiets Verkehrstechnik und Verkehrsplanung.

Technische Universität München, 1999.

[215] Bernhard Friedrich, “Steuerung von Lichtsignalanlagen, BALANCE - ein neuer

Ansatz,” Strassenverkehrstechnik, Kirschbaum Verlag, Bonn, DE, vol. 7, 2000.

[216] Bernhard Friedrich, “Models for Adaptive Urban Traffic Network Control,” in Pro-

ceedings of the 8th Meeting of the Euro Working Group Transportation, Rom, 2000.

[217] Christopher Toomey, Bernhard Friedrich, and Michael Clark, “BALANCE – a Euro-

pean field trial,” in Proceedings of the 9th International Conference on Road Transport

Information and Control, 1998, 1998, number Conference Publication No. 454, pp. 95

– 99.

[218] N. H. Gartner, “Demand-responsive decentralised urban traffic control,” Tech. Rep.

DOT/RSPA/DPB-50/81/24, US Department of Transportation, 1982.

BIBLIOGRAPHY 223

[219] N. H. Gartner, “OPAC Strategy for demand-responsive decentralized traffic signal

control,” in Control, Computers, Communications in Transportation, J.-P. Perrin,

Ed., 1989.

[220] Florence Boillot, “Optimal Signal Control of Urban Traffic Networks,” in Proceedings

of the 6th International Conference on Road Traffic Monitoring and Control, 1992,

pp. 75–79.

[221] Florence Boillot, Sophie Midenet, and Jean-Claude Pierrelee, “The real-time urban

traffic control system cronos: Algorithm and experiments,” Transportation Research

Part C: Emerging Technologies, vol. 14, no. 1, pp. 18 – 38, 2006.

[222] F. Donati, V. Mauro, G. Roncolini, and M. Vallauri, “A Hierarchical Decentralised

Traffic Light Control System. The First Realisation: ‘Progetto Torino’,” in Proceedings

of the 9th IFAC World Congress, 1984, vol. II, 11G/A-1.

[223] Jean F. Barriere, Jean-Loup Farges, and Jean-Jacques Henry, “Decentralization vs

hierarchy in optimal traffic control,” in Proceedings of the 5th IFAC/IFIP/IFORS

International Conference on Control in Transportation Systems, 1986, pp. 209–214.

[224] Jean-Jacques Henry, Jean-Loup Farges, and Jean Tuffal, “The PRODYN real time

traffic algorithm,” in Proceedings of the 4th IFAC-IFIF-IFORS Conference on Control

in Transportation Systems, Baden-Baden, DE, 1983.

[225] Jean-Jacques Henry and Jean-Loup Farges, “PRODYN,” in Control, Computers,

Communications in Transportation, J.-P. Perrin, Ed., 1989.

[226] Jean-Loup Farges, Louahdi Khoudour, and Jean B. Lesort, “Prodyn: on site evalua-

tion,” in Proceedings of the Third International Conference on Road Traffic Control,

1990, 1-3 1990, pp. 62–66.

[227] Dirk Helbing, Stefan Lämmer, and Jean-Patrick Lebacque, “Self-organized control

of irregular or perturbed network traffic,” in Optimal Control and Dynamic Games,

Christophe Deissenberg and Richard F. Hartl, Eds., pp. 239–274. Springer, Dordrecht,

2005.

[228] Martin Treiber and Dirk Helbing, “Visualisierung der fahrzeugbezogenen und

verkehrlichen Dynamik mit und ohne Beeinflussungs-Systemen,” in Simulation und

Visualisierung 2004 (SimVis 2004) 4-5 März 2004, Magdeburg, Thomas Schulze, Ste-

fan Schlechtweg, and Volkmar Hinz, Eds. 2004, pp. 323–334, SCS Publishing House

e.V.

[229] Stefan Lämmer, Reglerentwurf zur dezentralen Online-Steuerung von Lichtsignalan-

lagen in Straßennetzwerken, Dissertation, Technische Universität Dresden, 2007.

224 BIBLIOGRAPHY

[230] Carlos Gershenson, Design and Control of Self-organizing Systems, Ph.D. thesis,

Faculteit Wetenschappen, Center Leo Apostel for Interdisciplinary Studies, Vrije Uni-

versiteit Brussel, Brussels, Belgium, March 2007.

[231] Seung-Bae Cools, Carlos Gershenson, and Bart D’Hooghe, Self-Organization:Applied

Multi-Agent Systems, chapter Selforganizing traffic lights: A realistic simulation, pp.

41 – 49, Springer UK, London, UK, 2007, chapter 3.

[232] Carlos Gershenson, “Self-organizing traffic lights,” Complex Systems, vol. 16, no. 1,

pp. 29–53, 2005.

[233] Sascha Zechner, “Konzipierung und Entwicklung einer Fluss- oder Druck-basierten

Steuerung für Organic Traffic Control (OTC),” Bachelor’s thesis, Leibniz Universität

Hannover, Institute for Systems Engineering, System and Computer Architecture,

May 2009.

[234] Ana L. Bazzan, “A distributed approach for coordination of traffic signal agents,”

Autonomous Agents and Multi-Agent Systems, vol. 10, no. 2, pp. 131–164, 2005.

[235] Yaser Chaaban, Jörg Hähner, and Christian Müller-Schloer, “Towards robust hybrid

central/self-organizing multi-agent systems,” in ICAART 2010 - Proceedings of the

International Conference on Agents and Artificial Intelligence, Volume 2 - Agents,

Valencia, Spain, January 22-24, 2010, Joaquim Filipe, Ana L. N. Fred, and Bernadette

Sharp, Eds. 2010, pp. 341–346, INSTICC Press.

[236] Matteo Vasirani and Sascha Ossowski, Exploring the Potential of Multiagent Learning

for Autonomous Intersection Control, chapter 13, pp. 280–290, Idea Group Publishing,

2009.

[237] Ana L. C. Bazzan and Franziska Klügl, Eds., Multi-Agent Systems for Traffic and

Transportation Engineering, Idea Group Publishing, Hershey, PA, US, 2009.

[238] As’ad Salkham, Raymond Cunningham, Anurag Garg, and Vinny Cahill, “A collabo-

rative reinforcement learning approach to urban traffic control optimization,” in Pro-

ceedings of the 2008 IEEE/WIC/ACM International Conference on Intelligent Agent

Technology, Sydney, NSW, Australia, December 9-12, 2008, 2008, pp. 560–566.

[239] Raymond Cunningham, Anthony Harrington, and Vinny Cahill, “Middleware for next

generation urban traffic control,” in Proceedings of the European Transport Conference

(ETC), Oct. 2004.

[240] Jaime Barcelo and Jordi Casas, “Dynamic network simulation with aimsun,” in Pro-

ceedings of the International Symposium on Transport Simulation, Yokohama, Japan,

Amsterdam, NL, 2002, pp. 1–25, Kluwer.

BIBLIOGRAPHY 225

[241] Transportation Research Board, “Highway capacity manual,” Tech. Rep., National

Research Council, Washington D.C., US, 2000.

[242] Martin Fellendorf, “Vissim: A microscopic simulation tool to evaluate actuated signal

control including bus priority,” in Proceedings of the 64th Institute of Transportation

Engineers Annual Meeting, Dallas, US, 1994.

[243] Jens Ludmann, “Beeinflussung des Verkehrsablaufs auf Strasse – Analyse mit dem

fahrzeugorientierten Verkehrssimulationsprogramm PELOPS,” Schriftenreihe Auto-

mobiltechnik, Institut für Kraftfahrwesen, Aachen, 1998.

[244] Haifeng Xiao, Ravi Ambadipudi, John Hourdakis, and Panos Michalopoulos,

“Methodology for selecting microscopic simulators: Comparative evaluation of AIM-

SUN and VISSIM,” Tech. Rep. CTS 05-05, Department of Civil Engineering, Univer-

sity of Minnesota, 2005.

[245] F. Webster, Traffic Signal Settings - Technical Paper No 39, Road Research Labora-

tory, London, UK, 1959.

[246] Joseph M. Sussmann, Perspectives on Intelligent Transportation Systems (ITS),

Springer Verlag, Berlin, Germany, 2005.

[247] Sven Tomforde, Holger Prothmann, Fabian Rochner, Jürgen Branke, Jörg Hähner,

Christian Müller-Schloer, and Hartmut Schmeck, “Decentralised Progressive Signal

Systems for Organic Traffic Control,” in Proceedings of the 2nd IEEE International

Conference on Self-Adaption and Self-Organization (SASO’08), Sven Brueckner, Paul

Robertson, and Umesh Bellur, Eds. 2008, pp. 413–422, IEEE.

[248] Holger Prothmann, Jurgen Branke, Hartmut Schmeck, Sven Tomforde, Fabian

Rochner, Jörg Hähner, and Christian Müller-Schloer, “Organic Traffic Light Con-

trol for Urban Road Networks,” International Journal of Autonomous and Adaptive

Communications Systems, vol. 2, no. 3, pp. 203 – 225, 2009.

[249] Ernest J. H. Chang, “Echo algorithms: Depth parallel operations on general graphs,”

IEEE Transactions on Software Engineering, vol. 8, no. 4, pp. 391–401, 1982.

[250] Leslie Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[251] David L. Mills, “Network Time Protocol (Version 3) - Specification, Implementation

and Analysis,” Tech. Rep. 90-6-1, Electrical Engineering Deptartment, University of

Delaware, 1990.

[252] Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Hähner, Christian Müller-

Schloer, and Hartmut Schmeck, “Possibilities and limitations of decentralised traffic

226 BIBLIOGRAPHY

control systems,” in 2010 IEEE World Congress on Computational Intelligence (IEEE

WCCI 2010). 2010, pp. 3298–3306, IEEE.

[253] Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems: Principles and

Paradigms, Pearson Education, 2nd edition edition, 2006.

[254] Carl Volhard, “Vorhersage der Verkehrsentwicklung für autonome Lichtsignal-

Anlagensteuerungen,” Master thesis, Leibniz Universität Hannover, Institute for

Systems Engineering, System and Computer Architecture, Hannover, De, September

2009.

[255] Ben Thancanamootoo and Matthew G. H. Bell, “Automatic Detection of Traffic Inci-

dents on a Signal-Controlled Road Network,” Tech. Rep. H7UNDT RR076, University

of Newcastle upon Tyne, Deptartment of Civil Engineering, June 1988.

[256] Emily Parkanyi and Chi Xie, “A complete review of incident detection algorithms

and their deployment: What works and what doesn’t,” Tech. Rep. NETCR 37, New

England Transp. Consortium, Storrs, CT, February 2005.

[257] Xiao-Yuan Wang, Kai-Wang Zhang, and Xin-Yue Yang, “Research of the road traffic

incident characteristics,” in Proceedings of 2005 International Conference on Machine

Learning and Cybernetics, August 2005, vol. 5, pp. 2688 – 2693.

[258] Peter T. Martin, Joseph Perrin, Blake Hansen, Ryan Kump, and Dan Moore, “Inci-

dent Detection Algorithm Evaluation,” Tech. Rep. MPC-01-122, University of Utah,

Prepared for Utah Department of Transportation, March 2001.

[259] Florian Mazur and Sigurdur Hafstein, “Verkehrslage via Internet: autobahn.NRW,”

Logistik Management, vol. 6, no. 4, pp. 60 – 69, 2004.

[260] Harold J. Payne and H.C. Knobel, “Development and Testing of Incident Detection

Algorithm,” FHWA Report FHWA RD 76 21, vol. 3, Federal Highway Administration,

US Department of Transportation, Washington DC, US, 1976.

[261] Harold J. Payne and Samuel Coakley Tignor, “Freeway Incident-Detection Algorithms

based on Decision Trees With States,” TRB Research Record 682, Transportation

Research Board, Washington DC, US, 1978.

[262] Lukas Klejnowski, “Design and implementation of an algorithm for the distributed

detection of disturbances in traffic networks,” Master thesis, Leibniz Universität Han-

nover, Institute for Systems Engineering, System and Computer Architecture, August

2008.

[263] Horst F. Wedde, Sebastian Lehnhoff, Bernhard van Bonn, Zoltan Bay, Stefan Becker,

Stefan Böttcher, Carl Brunner, Andreas Büscher, Thomas Fürst, Anca M. Lazarescu,

BIBLIOGRAPHY 227

Elisei Rotaru, Sebastian Senge, Bernd Steinbach, Ferkan Yilmaz, and Timm Zimmer-

mann, “Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time

Inspired by Honey Bee Behavior,” in Mobilität und Echtzeit – Fachtagung der GI-

Fachgruppe Echtzeitsysteme, Peter Holleczek and Birgit Vogel-Heuser, Eds., Berlin /

Heidelberg, DE, 2007, pp. 21 – 31, Springer Verlag.

[264] Andrew S. Tanenbaum, Computer Networks, Pearson Education, 4th edition, 2002.

[265] Johannes Joachim Lyda, “Dezentrale adaptive Routingverfahren in selbst-

organisierten Verkehrsnetzen am Beispiel von Organic Traffic Control,” Master thesis,

Leibniz Universität Hannover, Institute for Systems Engineering, System and Com-

puter Architecture, October 2010.

[266] Radia Perlman, Interconnections: Bridges and Routers, Professional Computing

Series. Addison Wesley, 2nd edition, 1999.

[267] Peter Hart, Nils Nilsson, and Bertram Raphael, “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100 – 107, July 1968.

[268] John M. McQuillan, Ira Richer, and Eric C. Rosen, “The new routing algorithm for

the ARPANET,” in Innovations in Internetworking, Craig Partridge, Ed., pp. 119 –

127. Artech House, Inc., Norwood, MA, USA, 1988.

[269] Jeanna Matthews, Computer Networking: Internet Protocols in Action, John Wiley

& Sons, 1st edition, 2005.

[270] TSS – Transport Simulation Systems, “Aimsun 5.1 microsimulator user’s manual,”

2008.

[271] Vehicle Certification Agency / UK Department for Transport, “New car fuel con-

sumption & emission figures,” 2009.

[272] Markus Weinreich, “Analyse von Sonderereignissen in urbanen Verkehrsnetzen unter

Nutzung von Organic Traffic Control,” Bachelor’s thesis, Leibniz Universität Han-

nover, Institute for Systems Engineering, System and Computer Architecture, August

2009.

[273] Matti Siekkinen, Vera Goebel, Thomas Plagemann, Karl-Andre Skevik, Mark Ban-

field, and Igor Brusic, “Beyond the Future Internet–Requirements of Autonomic Net-

working Architectures to Address Long Term Future Networking Challenges,” Future

Trends of Distributed Computing Systems, IEEE International Workshop, pp. 89–98,

2007.

[274] Karin Anna Hummel, Andrea Hess, and Harald Meyer, “Mobilität im future internet,”

Informatik Spektrum, vol. 33, no. 2, pp. 143 – 159, April 2010.

228 BIBLIOGRAPHY

[275] Mark Handley, “Why the internet only just works,” BT Technology Journal, vol. 24,

no. 3, pp. 119–129, July 2006.

[276] Thomas Kunz, Reliable Multicasting in MANETs, Ph.D. thesis, Carleton University,

2003.

[277] Martin Hoffmann, Michael Wittke, Jörg Hähner, and Christian Müller-Schloer, “Spa-

tial Partitioning in Self-organising Camera Systems,” IEEE Journal of Selected Topics

in Signal Processing, vol. 2, no. 4, pp. 1 – 10, August 2008.

[278] Sven Tomforde, Martin Hoffmann, Yvonne Bernard, Lukas Klejnowski, and Jörg

Hähner, “POWEA: A System for Automated Network Protocol Parameter Op-

timisation Using Evolutionary Algorithms,” in Beiträge der 39. Jahrestagung der

Gesellschaft für Informatik e.V. (GI), Stefan Fischer, Erik Maehle, and Rüdiger Reis-

chuk, Eds. 2009, pp. 3177–3192, Gesellschaft für Informatik e.V. (GI).

[279] Sven Tomforde, Björn Hurling, and Jörg Hähner, “Dynamic control of mobile ad-hoc

networks - network protocol parameter adaptation using organic network control,” in

Proceedings of the 7th International Conference on Informatics in Control, Automa-

tion, and Robotics (ICINCO’10), Joaquim Filipe, Juan Andrade Cetto, and Jean-Louis

Ferrier, Eds., Setubal, PT, 2010, vol. 1, pp. 28–35, INSTICC.

[280] Sven Tomforde, Björn Hurling, and Jörg Hähner, “Distributed Network Protocol

Parameter Adaptation in Mobile Ad-Hoc Networks,” in Informatics in Control, Au-

tomation and Robotics, Juan Andrade Cetto, Jean-Louis Ferrier, and Joaquim Filipe,

Eds., vol. 89 of Lecture Notes in Electrical Engineering, pp. 91–104. Springer, Berlin

Heidelberg, 2011.

[281] Sven Tomforde, Ioannis Zgeras, Jörg Hähner, and Christian Müller-Schloer, “Adaptive

control of wireless sensor networks,” in Proceedings of the 7th International Conference

on Autonomic and Trusted Computing (ATC’10), 2010, pp. 77 – 91.

[282] Sven Tomforde, Marcel Steffen, Jörg Hähner, and Christian Müller-Schloer, “To-

wards an Organic Network Control System,” in Proceedings of the 6th International

Conference on Autonomic and Trusted Computing (ATC’09), Juan Gonzalez Nieto,

Wolfgang Reif, Guojun Wang, and Jadwiga Indulska, Eds. 2009, pp. 2 – 16, Springer

Verlag, Berlin, Heidelberg.

[283] Björn Hurling, Sven Tomforde, and Jörg Hähner, “Organic network control,” in Or-

ganic Computing - A Paradigm Shift for Complex Systems, Christian Müller-Schloer,

Hartmut Schmeck, and Theo Ungerer, Eds., chapter Chapter 6.1.11, pp. 611–612.

Birkhäuser Verlag, 2011.

BIBLIOGRAPHY 229

[284] Elias Weingärtner, Hendrik vom Lehn, and Klaus Wehrle, “A performance compari-

son of recent network simulators,” in ICC 2009: IEEE International Conference on

Communications, 2009.

[285] David Montana and Jason Redi, “Optimizing Parameters of a Mobile Ad-hoc Network

Protocol with a Genetic Algorithm,” in Proceedings of the 2005 Conference on Genetic

and Evolutionary Computation (GECCO’05), New York, NY, USA, 2005, pp. 1993–

1998, ACM.

[286] Ethem M. Sözer, Milica Stojanovic, and John G. Proakis, “Initialization and routing

optimization for ad-hoc underwater acoustic networks,” in Proceedings of Opnet-

work’00, 2000.

[287] Damla Turgut, Sajal Daz, Ramez Elmasri, and Begurnhan Turgut, “Optimizing Clus-

tering Algorithm in Mobile Ad hoc Networks Using Genetic Algorithmic Approach,” in

Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’02),

2002, pp. 62 – 66.

[288] Tijs van Dam and Koen Langendoen, “An adaptive energy-efficient mac protocol

for wireless sensor networks,” in SenSys ’03: Proceedings of the 1st international

conference on Embedded networked sensor systems, I. Akyildiz, D. Estrin, D. Culler,

and M. Srivastava, Eds., New York, US, 2003, pp. 171–180, ACM.

[289] Kuo-Chun Huang, Xiangpeng Jing, and Dipankar Raychaudhuri, “Mac protocol adap-

tation in cognitive radio networks: An experimental study,” Computer Communica-

tions and Networks, International Conference on, vol. 0, pp. 1–6, 2009.

[290] Andras Farago, Andrew D. Myers, Violet R. Syrotiuk, and Gergely V. Zaruba, “A

new approach to MAC protocol optimization,” in Proceedings of the IEEE Global

Telecommunications Conference (GLOBECOM ’00), 2000, vol. 3, pp. 1742–1746 vol.3.

[291] Andras Farago, Andrew D. Myers, Violet R. Syrotiuk, and Gergely V. Zaruba, “Meta-

MAC protocols: automatic combination of MAC protocols to optimize performance

for unknown conditions,” IEEE Journal on Selected Areas in Communications, vol.

18, no. 9, pp. 1670–1681, Sep 2000.

[292] Pawan Goyal, Harrick M. Vin, Chia Shen, and Prashant J. Shenoy, “A reliable,

adaptive network protocol for video transport,” in Proceedings of IEEE INFOCOM

’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking

the Next Generation, 1996, vol. 3, pp. 1080–1090.

[293] Shimon Whiteson and Peter Stone, “Towards autonomic computing: adaptive network

routing and scheduling,” in Proceedings of the International Conference on Autonomic

Computing (ICAC’04), May 2004, pp. 286–287.

230 BIBLIOGRAPHY

[294] Justin A. Boyan and Michael L. Littman, “Packet routing in dynamically changing

networks: A reinforcement learning approach,” in Advances in Neural Information

Processing Systems 6, San Francisco, CA, US, 1994, pp. 671–678, Morgan Kaufmann.

[295] Jim Martin, Arne Nilsson, and Injong Rhee, “Delay-based congestion avoidance for

TCP,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp. 356 – 369, 2003.

[296] Leonard Kleinrock and Fouad A.Tobagi, “Packet Switching in Radio Channels: Part

I–Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics,”

IEEE Transactions on Communications, vol. 23, no. 12, pp. 1400–1416, dec 1975.

[297] Liliana Rosa, Antonia Lopes, and Luis Rodrigues, “Appia to R-Appia: Refactoring

a Protocol Composition Framework for Dynamic Reconfiguration,” Tech. Rep. 1,

University of Lisbon, Department of Informatics, 1997.

[298] Hugo Miranda, Alexandre Pinto, and Luis Rodrigues, “Appia: A Flexible Protocol

Kernel Supporting Multiple Coordinated Channels,” in Proceedings of the The 21st

International Conference on Distributed Computing Systems (ICDCS ’01), Washing-

ton, DC, USA, 2001, pp. 707 – 710, IEEE Computer Society.

[299] Matti A. Hiltunen, Richard D. Schlichting, Carlos A. Ugarte, and Gary T. Wong,

“Survivability through customization and adaptability: the Cactus approach,” in

Proceedings of the DARPA Information Survivability Conference and Exposition, 2000

(DISCEX ’00), 2000, vol. 1, pp. 294 – 307.

[300] Shivakant Mishra, Consul: a communication substrate for fault-tolerant distributed

programs, Ph.D. thesis, Tucson, AZ, USA, 1992.

[301] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd, and David Karr,

“Building Adaptive Systems Using Ensemble,” Software-Practice and Experience –

Special issue on multiprocessor operating systems, vol. 28, no. 9, pp. 963 – 979, 1998.

[302] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis, “Horus: a flexible

group communication system,” Communications of the ACM, vol. 39, no. 4, pp. 76 –

83, 1996.

[303] Sergio Mena, André Schiper, and Pawel Wojciechowski, “A step towards a new gen-

eration of group communication systems,” in Middleware ’03: Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on Middleware, New York, NY,

USA, 2003, pp. 414–432, Springer-Verlag New York, Inc.

[304] Thorsten Schöler and Christian Müller-Schloer, “First steps towards organic comput-

ing systems: monitoring an adaptive protocol stack with a fuzzy classifier system,” in

Proceedings of the 2nd conference on Computing frontiers (CF’05), New York, NY,

USA, 2005, pp. 10–20, ACM.

BIBLIOGRAPHY 231

[305] Thorsten Schöler and Christian Müller-Schloer, “An observer/controller architecture

for adaptive reconfigurable stacks,” in Proceedings of the 18th International Con-

ference on Architecture of Computing Systems (ARCS’05), Berlin / Heidelberg, DE,

2005, pp. 139–153, Springer Verlag.

[306] Pradeep Sudame and Badri R. Badrinath, “On providing support for protocol adap-

tation in mobile wireless networks,” Mobile Networks and Applications, vol. 6, no. 1,

pp. 43 – 55, 2001.

[307] Tao Ye and Shivkumar Kalyanaraman, “An adaptive random search algorithm for

optimizing network protocol parameters,” Tech. Rep., Rensselaer Polytechnic Inst.,

2001.

[308] Tao Ye and Shivkumar Kalyanaraman, “A recursive random search algorithm for

network parameter optimization,” SIGMETRICS Perform. Eval. Rev., vol. 32, no. 3,

pp. 44–53, 2004.

[309] Tao Ye, Hema T. Kaur, Shivkumar Kalyanaraman, and Murat Yuksel, “Large-scale

network parameter configuration using an on-line simulation framework,” IEEE/ACM

Transactions on Networking, vol. 16, no. 4, pp. 777 – 790, 2008.

[310] Nikos Georganopoulos and Tim Lewis, “A framework for dynamic link and network

layer protocol optimisation,” Mobile and Wireless Communications Summit, 2007.

16th IST, pp. 1–5, 2007.

[311] Nikos Georganopoulos and Hamid Aghvami, “Performance Evaluation of Transport

Protocols with Local Mobility Management,” in Personal Wireless Communications,

IFIP-TC6 8th International Conference, PWC 2003, Venice, Italy, September 23-25,

2003, Proceedings, Marco Conti, Silvia Giordano, Enrico Gregori, and Stephan Olariu,

Eds., Berlin / Heidelberg, DE, 2003, vol. 2775 of Lecture Notes in Computer Science,

pp. 251–260, Springer Verlag.

[312] Konstantinos Boukis, Nikos Georganopoulos, and Hamid Aghvami, “The Reconfig-

urable IP Mobility Component: Evaluation of Single Protocol Operation,” in Pro-

ceedings of the 64th IEEE Vehicular Technology Conference (VTC-2006 Fall), 25-28

2006, pp. 1 –5.

[313] William Su Sung-Ju, Sung ju Lee, and Mario Gerla, “Mobility prediction in wireless

networks,” in Procceedings of the IEEE MILCOM, 2000, pp. 491–495.

[314] Sungjoon Ahn and A. Udaya Shankar, “Adapting to route-demand and mobility (arm)

in ad hoc network routing,” in 9th International Conference on Network Protocols.

2001, pp. 56–66, IEEE.

232 BIBLIOGRAPHY

[315] Jeffrey Lowell Boleng, Exploiting location information and enabling adaptive mobile

ad hoc network protocols, Ph.D. thesis, Golden, CO, USA, 2002.

[316] Young-Bae Ko and Nitin H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc

networks,” Wireless Networking, vol. 6, no. 4, pp. 307 – 321, 2000.

[317] Oliver Stanze, Martina Zitterbart, and Christian Koch, “Mobility Adaptive Self-

Parameterization of Routing Protocols for Mobile Ad Hoc Networks,” in Proceedings

of IEEE Wireless Communication and Networking Conference (WCNC), Las Vegas,

USA, Apr. 2006, vol. 1, pp. 276–281.

[318] Hubert Zimmermann, “Osi reference model — the iso model of architecture for open

systems interconnection,” IEEE Transactions on Communications, vol. 28, no. 4, pp.

425–432, April 1980.

[319] Thomas Kunz, “Multicasting in mobile ad-hoc networks: achieving high packet deliv-

ery ratios,” in Proceedings of the 2003 conference of the Centre for Advanced Studies

on Collaborative Research (CASCON’03), 2003, pp. 156–170.

[320] Kaveh Pahlavan and Prashant Krishnamurthy, Principles of Wireless Networks: A

Unified Approach, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[321] Gregory F. Lawler and Vlada Limic, Random walk : a modern introduction, Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, 2010.

[322] Cauligi S. Raghavendra, Taieb Znati, and Krishna M. Sivalingam, Eds., Wireless

Sensor Networks, ERCOFTAC Series. Springer Netherlands, 2nd edition, 2004.

[323] Ioannis Zgeras, “Entwurf und Implementierung einer Agenten-basierten Simulation-

sumgebung für adaptive und robuste Sensornetzprotokolle,” Master thesis, Leibniz

Universität Hannover, Institute for Systems Engineering, System and Computer Ar-

chitecture, October 2009.

[324] Hock Beng Lim, Vinh The Lam, Mao Ching Foo, and Yulian Zeng, “Adaptive Dis-

tributed Resource Allocation in Wireless Sensor Networks,” White paper (technical

report), National University of Singapore, 2005.

[325] Hock-Beng Lim, Vinh The Lam, Mao Ching Foo, and Yulian Zeng, “An Adaptive

Distributed Resource Allocation Scheme for Sensor Networks,” in Proceedings of the

International Conference on Mobile ad-hoc and sensor networks (MSN’06), 2006, pp.

770 – 781.

[326] Johan A. Pouwelse, Pawel Garbacki, Dick H. J. Epema, and Henk J. Sips, “The bittor-

rent p2p file-sharing system: Measurements and analysis,” in Peer-to-Peer Systems

IV, 4th International Workshop, IPTPS 2005, Ithaca, NY, USA, February 24-25,

BIBLIOGRAPHY 233

2005, Revised Selected Papers, Miguel Castro and Robbert van Renesse, Eds., Berlin

/ Heidelberg, 2005, vol. 3640 of Lecture Notes in Computer Science, pp. 205–216,

Springer Verlag.

[327] Ipoque, “Internet study report 2008/2009,” http://www.ipoque.com/resources/internet-

studies/internet-study-2008 2009, 2009.

[328] Ralf Steinmetz and Klaus Wehrle, Eds., Peer-to-Peer Systems and Applications, Lec-

ture Notes in Computer Science. Springer Verlag, Berlin / Heidelberg, DE, 1st edition,

2005.

[329] Web, “The vuze bittorrent client,” http://www.vuze.com/, Vuze, Inc., 2010.

[330] Kolja Eger, “Simulation of BitTorrent Peer-to-Peer Networks in ns-2,”

http://www.tu-harburg.de/et6/research/bittorrentsim/index.html.

[331] Christoph König, “Analyse und Umsetzung von kollaborativem Lernen in einem

verteilten Netzwerksteuerungssystem,” Master thesis, Leibniz Universität Hannover,

Institute for Systems Engineering, System and Computer Architecture, August 2009.

[332] Sven Tomforde, “A Case Study for an Organic Production System,” Technical Re-

port SRA-01-2011, Leibniz Universität Hannover, Institute for Systems Engineering,

System and Computer Architecture Group, Hannover, DE, July 2011.

[333] IBM Corporation, “System Z webpage,” Online, http://www-03.ibm.com/systems/

de/z/, 2010.

[334] Miao Li, “Automatisiertes Data Mining von kontinuierlichen gesammelten System-

Kennzahlen im IBM System Z Umfeld,” Master thesis, Leibniz Universität Hannover,

Institute for Systems Engineering, Sytem and Computer Architecture Group (SRA),

Hannover, DE, May 2009.

[335] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo, “Discovery of Frequent

Episodes in Event Sequences,” Data Mining and Knowledge Discovery, Springer

Netherlands, vol. 1, no. 3, pp. 259–289, September 1997.

[336] Sven Tomforde, Andreas Brameshuber, Jörg Hähner, and Christian Müller-Schloer,

“Restricted On-line Learning in Real-world Systems,” in Proceedings of the IEEE

Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5-8 June,

2011, New Orleans, LA, US, 2011, pp. 1628 – 1635, IEEE.

[337] Andreas Brameshuber, “Untersuchung 2-schichtigen Lernens auf mathematisch mod-

ellierten Fitnesslandschaften,” Bachelor’s thesis, Leibniz Universität Hannover, Insti-

tute for Systems Engineering, System and Computer Architecture, March 2011.

234 BIBLIOGRAPHY

[338] Emre Cakar, Sven Tomforde, and Christian Müller-Schloer, “A role-based imitation

algorithm for the optimisation in dynamic fitness landscapes,” in IEEE Swarm Intel-

ligence Symposium, 2011. SIS 2011, Paris, France, 2011, pp. 139–146.

[339] Rahmi Akçelik, “Traffic signals: Capacity and timing analysis,” Tech. Rep. 123,

Australian Road Research Board, 1981.

[340] Björn Hurling, Sven Tomforde, and Jörg Hähner, “A generic architecture for re-

stricted on-line learning of network protocol parameters,” in Proceedings of the first

Workshop on Self-Adaptive Networking (SAN’10), held in conjunction with 4th IEEE

International Conference on Self-Adaptive and Self-Organising Systems (SASO’10),

2010.

[341] Stefan Rudolph, “Konvergenz in Learning Classifier Systems,” Seminar paper, Leib-

niz Universität Hannover, Institute for Systems Engineering, System and Computer

Architecture, July 2010.

[342] Emre Cakar, Nugroho Fredivianus, Jörg Hähner, Jürgen Branke, Christian Müller-

Schloer, and Hartmut Schmeck, “Aspects of Learning in OC Systems,” in Organic

Computing - A Paradigm Shift for Complex Systems, Christian Müller-Schloer, Hart-

mut Schmeck, and Theo Ungerer, Eds., incollection 3.1, pp. 237 – 251. Birkhäuser,

June 2011.

Appendix

Appendix A: Classification of Machine Learning

Techniques

Part A of the appendix lists the result of the classification process of machine learning

techniques in the context of Chapter 4.1. Therefore, the general characteristics as introduced

in Chapter 4.1.2 serve as basis for the classification. The following list repeats the particular

characteristics and assign an ID to each of them. This ID is used in the following table.

Within this table, the scale as introduced for Chapter 2 is applied by using five classes:

“++”, “+”, “0”, “−”, and “−−”. The first one denotes a full match of the requirement by

the particular technique, “0” states that the requirement might be satisfiable under certain

circumstances, and “−−” states that the requirement is not fulfilled.

• A Learning at runtime

• B Pre-training

• C Online sandboxing

• D Traceability by engineer

• E Noisy sensor data

• F Fast reaction time

• G Large configuration space

• H Large situation space

• I No final target state

• J Subsequent state is not deterministic

• K Non-deterministic (on-line) reward

• L Limited learning cycles

235

236 BIBLIOGRAPHY

T
ech

n
iq

u
e

A
B

C
D

E
F

G
H

I
J

K
L

D
ecisio

n
T

rees
−
−

+
+

−
−

+
0

+
+

−
−

−
+

+
+

+
0

B
ay

esia
n

B
elief

N
etw

o
rk

s
−
−

+
+

−
−

0
0

+
+

−
−

−
+

+
+

+
0

A
sso

cia
tio

n
ru

le
lea

rn
in

g
−
−

+
+

−
−

+
+

0
+

−
−

−
−

+
+

+
+

0
In

d
u
ctiv

e
lo

g
ic

p
ro

g
ra

m
m

in
g

−
−

+
+

−
−

+
+

0
+

−
−

−
−

+
+

+
+

0
S
u
p
p

o
rt

v
ecto

r
m

a
ch

in
es

−
−

+
+

−
−

−
0

+
−

+
+

+
+

+
0

A
rtifi

cia
l

N
eu

ra
l

N
etw

o
rk

s
−
−

+
+

−
−

−
−

+
+

+
+

+
+

+
+

+
+

+
+

+
+

0
(M

o
d
ifi

ed
)

A
N

N
−
−

+
+

−
−

−
−

+
+

+
+

+
+

+
+

+
+

+
+

+
+

0
L

ea
rn

in
g

C
la

ssifi
er

S
y
stem

s
+

+
+

+
−
−

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

−
(M

o
d
ifi

ed
)

L
C

S
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
F

u
zzy

C
la

ssifi
er

S
y
stem

s
+

+
+

+
−
−

0
+

+
+

+
+

+
+

+
+

+
+

+
+

+
−

(M
o
d
ifi

ed
)

F
C

S
+

+
+

+
+

+
0

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

Q
-L

ea
rn

in
g

+
+

+
+

−
−

−
−

+
+

+
+

−
−

−
+

+
+

−
T

D
-L

ea
rn

in
g

+
+

+
+

−
−

−
−

+
+

+
+

−
−

−
+

+
+

−

T
a
b

le
9.1:

C
la

ssifi
ca

tio
n

o
f

m
a
ch

in
e

lea
rn

in
g

tech
n

iq
u

es

BIBLIOGRAPHY 237

Appendix B: Comparison of Optimisation Techniques

(a) Situation 1 (b) Situation 2

Figure 9.1: Exemplary situations (Situation 1 and 2)

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 49 3 12.9429 0.8049 10.0367 0.8242 248.16 96.90
GA 83 61 13.1183 0.7004 11.6277 1.0250 78.10 40.25
HS 28 23 12.4767 1.1038 10.7654 0.8490 156.69 103.43
PSO 23 14 12.6921 0.6658 10.6435 0.8263 152.99 80.70
RD 0 1 10.6144 0.4651 9.8613 0.6608 160.67 84.05
SA 1 1 9.8204 1.3502 8.2905 1.5520 321.21 133.33

Table 9.2: Results for Situation 1

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 33 9 13.3011 0.7076 10.2740 0.8754 202.81 91.10
GA 18 76 13.2470 0.5791 11.9748 0.9573 67.99 54.73
HS 24 28 12.6763 1.0206 10.9437 0.9711 147.47 102.24
PSO 16 17 12.7442 0.6978 10.6999 0.9171 142.22 71.55
RD 0 4 11.1281 0.6796 10.1905 0.6022 276.74 137.37
SA 4 4 10.1105 1.6329 8.0619 1.6475 252.16 167.63

Table 9.3: Results for Situation 2

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 34 22 22.8668 1.9424 15.4908 2.6483 135.48 66.68
GA 85 91 24.9561 1.4507 20.1839 2.3254 48.30 27.14
HS 29 60 22.4558 2.2356 17.8443 2.3607 82.62 60.55
PSO 44 48 23.6499 1.8405 13.3274 2.8862 90.53 52.55
RD 3 22 19.3371 1.9788 16.0749 2.1606 173.44 116.82
SA 5 7 15.8673 4.7608 8.5769 4.7380 267.23 158.68

Table 9.4: Results for Situation 3

238 BIBLIOGRAPHY

(a) Situation 3 (b) Situation 4

Figure 9.2: Exemplary situations (Situation 3 and 4)

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 35 24 21.2105 1.6065 13.6879 2.4773 124.45 52.13
GA 61 96 22.9522 2.2211 19.6722 2.3403 42.10 20.76
HS 52 61 21.9391 2.7724 16.0406 3.2818 92.54 80.22
PSO 51 39 22.0187 1.6402 14.5536 2.9352 108.91 60.94
RD 8 9 15.8486 2.5044 12.5327 2.5351 204.94 136.85
SA 8 10 14.6737 5.5508 8.2697 4.1664 246.48 154.08

Table 9.5: Results for Situation 4

(a) Situation 5 (b) Situation 6

Figure 9.3: Exemplary situations (Situation 5 and 6)

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 42 21 23.0487 1.0968 14.6087 3.2400 134.76 74.47
GA 86 89 24.3678 1.1340 21.0835 2.7751 47.98 28.90
HS 48 58 22.9355 1.8952 18.0346 3.4676 83.20 57.16
PSO 58 45 23.6461 1.1240 16.2594 3.4386 105.00 58.43
RD 3 21 18.8036 2.2663 14.7831 2.9576 185.37 126.92
SA 5 9 15.2561 6.0656 8.8607 4.7522 244.79 159.56

Table 9.6: Results for Situation 5

BIBLIOGRAPHY 239

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 4 35 28.1198 1.0925 21.1208 3.7389 119.92 68.42
GA 43 84 30.7414 2.4902 26.5917 3.5866 46.42 34.92
HS 2 65 28.1439 1.7005 24.3454 2.6449 80.02 82.07
PSO 34 51 30.5453 2.5959 22.9540 3.6205 94.76 55.48
RD 0 24 25.5172 1.4986 20.4808 3.4786 186.38 133.19
SA 2 11 23.1877 5.6783 14.7351 5.6662 236.61 150.69

Table 9.7: Results for Situation 6

(a) Situation 7 (b) Situation 8

Figure 9.4: Exemplary situations (Situation 7 and 8)

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 3 9 27.4569 1.0056 21.9374 1.7774 183.30 74.83
GA 47 85 29.5304 2.2898 26.9274 2.2272 56.39 38.94
HS 5 39 27.0549 1.4978 23.5525 2.1253 133.67 103.77
PSO 21 24 28.7896 1.8344 23.0679 1.8054 124.23 60.65
RD 0 5 23.4211 1.3423 21.2852 1.5042 240.28 155.71
SA 2 5 24.0763 2.6695 16.5265 5.1809 305.77 149.35

Table 9.8: Results for Situation 7

SR(500) SR(83) AP (500) Std. Dev. AP(83) Std. Dev. NC Std. Dev.

DE 22 13 23.2290 7.2118 11.8427 4.1119 195.01 94.96
GA 74 67 27.2051 5.4273 16.9912 5.7171 72.62 45.59
HS 59 48 26.3289 5.7101 15.1670 6.3728 104.96 71.84
PSO 32 18 24.4271 6.6363 12.5649 4.2316 154.13 82.54
RD 15 10 17.5451 8.1467 12.1552 4.7833 196.67 124.00
SA 19 6 17.9791 10.7517 8.0483 4.1706 285.69 142.12

Table 9.9: Results for Situation 8

240 BIBLIOGRAPHY

BIBLIOGRAPHY 241

Appendix C: Organic Traffic Control

C.1: Scenario located at Hamburg, Germany

A

K
B

C

D E

F GH

I

J

Figure 9.5: Turnings of the investigated intersection

Signal Group ID S1 S2 S3 S4 S6 S7 S8 S10

Contains turning A+J H F C+D G I B E+G+K

Table 9.10: Relation between signal groups and turning movements for node K3

Phase ID Contained signal groups Phase duration

P1 S3 + S7 1 s
P2 S7 5 s
P3 S7 + S8 3 s
P4 S7 + S8 + S10 34 s
P5 S7 + S8 3 s
P6 – 3 s
P7 S2 2 s
P8 S2 + S4 + S6 5 s
P9 S1 + S2 + S4 + S6 9 s
P10 S1 + S2 + S6 4 s
P11 S1 + S2 + S3 + S6 3 s
P12 S1 + S2 + S3 7 s
P13 S1 + S2 + S3 + S7 1 s
P14 S2 + S3 + S7 6 s
P15 S3 + S7 4 s

Table 9.11: List of signal groups, their assignment to phases, and the green time durations
for node K3

242 BIBLIOGRAPHY

Borsteler Chaussee Alsterkrugchaussee Deelböge Rosenbrook

Borsteler Chaussee 8, 754 2, 016

Alsterkrugchaussee 1, 080 1, 738 14, 209

Deelböge 7, 7, 38 690 13, 987

Rosenbrook 1, 618 13, 307 13, 586

Total 78, 723 10, 436 13, 997 24, 078 30, 212

Table 9.12: Aggregated traffic demand for node K3 (number of vehicles)

C.2: Stadium scenario located at Hannover, Germany

The following tables list the traffic demands as considered for the simulation of the sta-

dium event in Chapter 6.5.2. The data has been provided by the Landeshauptstadt Han-

nover, Fachbereich Tiefbau (Bereich Koordinierung und Verkehr) and the Verkehrsman-

agementzentrale Niedersachsen (Region Hannover). The traffic demands are derived from a

census performed at the 9th of May, 2009. Additionally, turning probabilities for in-between

intersections (and approaches to car parks) where no actual data exist, have been approx-

imated [272]. In some tables, the roads of an intersection appear twice – each with an

additional attribute. Thereby, E (east), W (west), N (north), and S (south) specify the

part of the road if it crosses the intersection.

Traffic demands for intersection Aegidientorplatz / Friedrichswall / Willy-Brandt-

Allee / Osterstr.

Aegidientorplatz Willy-Brandt-Allee Friedrichswall Osterstr.

Aegidientorplatz 253 1162 230

Willy-Brandt-Allee 176 38 145

Friedrichswall 740 43 175

Osterstr. 199 57 132

Total 1115 353 1332 550

Table 9.13: Arrival 12 – 13 o’clock

Aegidientorplatz Willy-Brandt-Allee Friedrichswall Osterstr.

Aegidientorplatz 268 1271 237

Willy-Brandt-Allee 100 44 97

Friedrichswall 1008 68 143

Osterstr. 235 56 130

Total 1343 392 1445 447

Table 9.14: Arrival 13 – 14 o’clock

BIBLIOGRAPHY 243

��� ��������	�
���
������
�� ��� ��� ���

������� �
���� �
��� ���� ���
������
��

����
�� ��� �����
��� ���������� �� ��� �����
���� �������������� �������
�� �
��

�������� �
���� ��� ����� ��� �������� ��� ���� �!���� �� ��� ��� "
#	�

$�����

�������� �	
� % &'� (�� �����
�����
�� ��������� ���)��
� ���� *� ��� ���

�����

�
���� ��� ��� ������� ��� +�
���
������
�� ��� ��� ,��� $�� %! � % (��
�� ��� ���

�	����� ��� ,��
�� ��� ��� ,��� $�� %-&'� � %�&'� (�� ��)
���������� �� ����� ���

�����
� ��.#��� ,
� 	��� �	/
�� $�� "�����
��� �
�������� �� �
� ����������� 0����

��� ����� ��� �

� ��������/���� +�
���
������
�� �������
� ������ �������� �
�����

��� ���
����� ����� �))��1������ ������� ��� ����
�� ��������	�
���
������
�� ���

��� ��� +������
���� ��� ���
����� ����� 	�2���� ���� �� ������� �
���
�� ���

3���������� ��� ���

����� ��� �� 	�� ��� 4
��
�� ��� ���
�� ��������	�
���
����

�
 �
#�����.��
����� �����

���� $�� "�����
���� ��� ����� 5��
� ��� ����#���

������ 	
���������� ���� ������ ���� �
�����
��
�� ����� ����
���� ��� 	�����

6������
��
����
��.�
���� �
� ������ 0�
�� �
����� ��� $���������� ���������

	�
���
���� ��� ��� ������� �
� - 7
�� ��� ��� �	����� �
� �!� 7 ����� ������
�����

8����� ���
����� ������� �
��� ����� 9���2������ �
���� ��� ����#�� 	�� ���� ��

���� +�
���
���������� ��� �
���
������ ���� ���� �� �
 +
������
���� ���� ��� ���

������� 4������� 	������:���������

��������� 	
�
�
���������� ��� ���������

!

Figure 9.6: The investigated road-network of the stadium area at Hannover, Germany

Aegidientorplatz Willy-Brandt-Allee Friedrichswall Osterstr.

Aegidientorplatz 253 1431 199

Willy-Brandt-Allee 128 76 118

Friedrichswall 991 127 141

Osterstr. 247 61 141

Total 1366 441 1648 458

Table 9.15: Arrival 14 – 15 o’clock

Aegidientorplatz Willy-Brandt-Allee Friedrichswall Osterstr.

Aegidientorplatz 233 942 102

Willy-Brandt-Allee 210 97 123

Friedrichswall 1277 56 200

Osterstr. 250 49 113

Total 1737 338 1152 425

Table 9.16: Departure 17:30 – 18:30 o’clock

Traffic demands for intersection Friedrichswall / Culemannstr. / Karmarschstr.

244 BIBLIOGRAPHY

Aegidientorplatz Willy-Brandt-Allee Friedrichswall Osterstr.

Aegidientorplatz 291 919 99

Willy-Brandt-Allee 300 68 139

Friedrichswall 876 45 135

Osterstr. 205 43 101

Total 1381 379 1088 373

Table 9.17: Departure 18:30 – 19:30 o’clock

Friedrichswall (E) Culemannstr. Friedrichswall (W) Karmarschstr.

Friedrichswall (E) 320 35

Culemannstr. 81 240 35

Friedrichswall (W) 768 229 822

Karmarschstr. 60 144

Total 909 373 560 892

Table 9.18: Arrival 12 – 13 o’clock

Friedrichswall (E) Culemannstr. Friedrichswall (W) Karmarschstr.

Friedrichswall (E) 356 39

Culemannstr. 78 227 34

Friedrichswall (W) 1046 360 806

Karmarschstr. 72 99

Total 1196 459 583 879

Table 9.19: Arrival 13 – 14 o’clock

Friedrichswall (E) Culemannstr. Friedrichswall (W) Karmarschstr.

Friedrichswall (E) 455 51

Culemannstr. 62 398 27

Friedrichswall (W) 1016 408 680

Karmarschstr. 84 94

Total 1162 502 853 758

Table 9.20: Arrival 14 – 15 o’clock

Friedrichswall (E) Culemannstr. Friedrichswall (W) Karmarschstr.

Friedrichswall (E) 264 29

Culemannstr. 86 401 10

Friedrichswall (W) 1084 267 651

Karmarschstr. 87 144

Total 1257 411 665 690

Table 9.21: Departure 17:30 – 18:30 o’clock

Traffic demands for intersection Friedrichswall / Leibnizufer / Lavesallee

BIBLIOGRAPHY 245

Friedrichswall (E) Culemannstr. Friedrichswall (W) Karmarschstr.

Friedrichswall (E) 315 35

Culemannstr. 102 342 11

Friedrichswall (W) 860 236 555

Karmarschstr. 58 124

Total 1020 360 657 601

Table 9.22: Departure 18:30 – 19:30 o’clock

Leibnizufer Friedrichswall Lavesallee

Leibnizufer 679 289

Friedrichswall 284 664

Lavesallee 310 659

Total 594 1338 953

Table 9.23: Arrival 12 – 13 o’clock

Leibnizufer Friedrichswall Lavesallee

Leibnizufer 823 308

Friedrichswall 318 743

Lavesallee 375 930

Total 693 1753 1051

Table 9.24: Arrival 13 – 14 o’clock

Leibnizufer Friedrichswall Lavesallee

Leibnizufer 808 388

Friedrichswall 500 1166

Lavesallee 351 896

Total 851 1704 1554

Table 9.25: Arrival 14 – 15 o’clock

Leibnizufer Friedrichswall Lavesallee

Leibnizufer 546 231

Friedrichswall 332 775

Lavesallee 739 1130

Total 1071 1676 1006

Table 9.26: Departure 17:30 – 18:30 o’clock

Leibnizufer Friedrichswall Lavesallee

Leibnizufer 637 235

Friedrichswall 331 774

Lavesallee 425 673

Total 756 1310 1009

Table 9.27: Departure 18:30 – 19:30 o’clock

Traffic demands for intersection Lavesallee / Gustav-Bratke-Allee

246 BIBLIOGRAPHY

Lavesallee (N) Friedrichswall Lavesallee (S)

Lavesallee (N) 253 707

Friedrichswall 229 96

Lavesallee (S) 641 113

Total 870 366 803

Table 9.28: Arrival 12 – 13 o’clock

Lavesallee (N) Friedrichswall Lavesallee (S)

Lavesallee (N) 267 791

Friedrichswall 211 111

Lavesallee (S) 941 145

Total 1152 412 902

Table 9.29: Arrival 13 – 14 o’clock

Lavesallee (N) Friedrichswall Lavesallee (S)

Lavesallee (N) 323 1261

Friedrichswall 219 135

Lavesallee (S) 927 148

Total 1146 471 1396

Table 9.30: Arrival 14 – 15 o’clock

Lavesallee (N) Friedrichswall Lavesallee (S)

Lavesallee (N) 295 830

Friedrichswall 156 91

Lavesallee (S) 1692 228

Total 1848 523 921

Table 9.31: Departure 17:30 – 18:30 o’clock

Lavesallee (N) Friedrichswall Lavesallee (S)

Lavesallee (N) 289 811

Friedrichswall 169 97

Lavesallee (S) 646 114

Total 815 403 908

Table 9.32: Departure 18:30 – 19:30 o’clock

Traffic demands for intersection Lavesallee / Am Waterlooplatz

Lavesallee (N) Am Waterlooplatz Lavesallee (S)

Lavesallee (N) 120 683

Am Waterlooplatz 46 146

Lavesallee (S) 708 124

Total 754 244 829

Table 9.33: Arrival 12 – 13 o’clock

BIBLIOGRAPHY 247

Lavesallee (N) Am Waterlooplatz Lavesallee (S)

Lavesallee (N) 135 767

Am Waterlooplatz 60 168

Lavesallee (S) 1026 184

Total 1086 319 935

Table 9.34: Arrival 13 – 14 o’clock

Lavesallee (N) Am Waterlooplatz Lavesallee (S)

Lavesallee (N) 194 1102

Am Waterlooplatz 99 316

Lavesallee (S) 976 235

Total 1075 429 1418

Table 9.35: Arrival 14 – 15 o’clock

Lavesallee (N) Am Waterlooplatz Lavesallee (S)

Lavesallee (N) 138 783

Am Waterlooplatz 301 171

Lavesallee (S) 1619 336

Total 1920 474 954

Table 9.36: Departure 17:30 – 18:30 o’clock

Lavesallee (N) Am Waterlooplatz Lavesallee (S)

Lavesallee (N) 136 767

Am Waterlooplatz 93 125

Lavesallee (S) 667 93

Total 760 229 892

Table 9.37: Departure 18:30 – 19:30 o’clock

Traffic demands for intersection Ritter-Brüning-Str. / Allerweg

Ritter-Brüning-Str. (N) Allerweg Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 125 705

Allerweg 100 100

Ritter-Brüning-Str. (S) 832 147

Total 932 272 805

Table 9.38: Arrival 12 – 13 o’clock

Ritter-Brüning-Str. (N) Allerweg Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 125 710

Allerweg 100 100

Ritter-Brüning-Str. (S) 1210 214

Total 1310 339 810

Table 9.39: Arrival 13 – 14 o’clock

248 BIBLIOGRAPHY

Ritter-Brüning-Str. (N) Allerweg Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 213 1205

Allerweg 100 100

Ritter-Brüning-Str. (S) 1211 214

Total 1311 427 1305

Table 9.40: Arrival 14 – 15 o’clock

Ritter-Brüning-Str. (N) Allerweg Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 143 811

Allerweg 80 80

Ritter-Brüning-Str. (S) 1955 345

Total 2035 488 891

Table 9.41: Departure 17:30 – 18:30 o’clock

Ritter-Brüning-Str. (N) Allerweg Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 134 759

Allerweg 80 80

Ritter-Brüning-Str. (S) 760 134

Total 840 268 839

Table 9.42: Departure 18:30 – 19:30 o’clock

Traffic demands for intersection Ritter-Brüning-Str. / Stadionbrücke

Ritter-Brüning-Str. (N) Stadionbrücke Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 211 594

Stadionbrücke 334 215

Ritter-Brüning-Str. (S) 645 161

Total 979 372 809

Table 9.43: Arrival 12 – 13 o’clock

Ritter-Brüning-Str. (N) Stadionbrücke Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 262 709

Stadionbrücke 306 140

Ritter-Brüning-Str. (S) 1118 280

Total 1424 542 849

Table 9.44: Arrival 13 – 14 o’clock

BIBLIOGRAPHY 249

Ritter-Brüning-Str. (N) Stadionbrücke Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 251 790

Stadionbrücke 258 94

Ritter-Brüning-Str. (S) 1167 292

Total 1425 543 884

Table 9.45: Arrival 14 – 15 o’clock

Ritter-Brüning-Str. (N) Stadionbrücke Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 137 409

Stadionbrücke 62 174

Ritter-Brüning-Str. (S) 2300 256

Total 2362 393 583

Table 9.46: Departure 17:30 – 18:30 o’clock

Ritter-Brüning-Str. (N) Stadionbrücke Ritter-Brüning-Str. (S)

Ritter-Brüning-Str. (N) 90 318

Stadionbrücke 100 184

Ritter-Brüning-Str. (S) 894 99

Total 994 189 492

Table 9.47: Departure 18:30 – 19:30 o’clock

Remaining intersection without traffic demands

Beuermannstr. (N) Schützenplatz Beuermannstr. (S)

Beuermannstr. (N) 50 % 50 %

Schützenplatz 50 % 50 %

Beuermannstr. (S) 50 % 50 %

Table 9.48: Approach to car park Schützenplatz from Beuermannstr.

Beuermannstr. (N) Arthur-Menge-Ufer Beuermannstr. (S)

Beuermannstr. (N) 50 % 50 %

Arthur-Menge-Ufer 50 % 50 %

Beuermannstr. (S) 50 % 50 %

Table 9.49: Intersection Beuermannstr. / Arthur-Menge-Ufer

Arthur-Menge-Ufer (W) Seuferallee Arthur-Menge-Ufer (E)

Arthur-Menge-Ufer (W) 50 % 50 %

Seuferallee 50 % 50 %

Arthur-Menge-Ufer (E) 50 % 50 %

Table 9.50: Approach to car park Seuferallee from Arthur-Menge-Ufer

250 BIBLIOGRAPHY

Arthur-Menge-Ufer Culemannstr. Willy-Brandt-Allee

Arthur-Menge-Ufer 50 % 50 %

Culemannstr. 0 % 100 %

Willy-Brandt-Allee 0 % 100 %

Table 9.51: Intersection Arthur-Menge-Ufer / Culemannstr. / Willy-Brandt-Allee

Stadionbrücke (W) Stammestr. Stadionbrücke (E)

Stadionbrücke (W) 50 % 50 %

Stammestr. 50 % 50 %

Stadionbrücke (E) 50 % 50 %

Table 9.52: Approach to car park Stammestr. from Stadionbrücke

Stadionbrücke F.-W.-Fricke Weg Beuermannstr.

Stadionbrücke 50 % 50 %

F.-W.-Fricke Weg 50 % 50 %

Beuermannstr. 50 % 50 %

Table 9.53: Intersection Stadionbrücke / F.-W.-Fricke Weg / Beuermannstr.

F.-W.-Fricke Weg Lodemannweg F.-W.-Fricke Weg (P)

F.-W.-Fricke Weg 50 % 50 %

Lodemannweg 50 % 50 %

F.-W.-Fricke Weg (P) 100 % 0 %

Table 9.54: Approach to car park Lodemannweg from F.-W.-Fricke Weg

Ritter-Brüning-Str. Beuermannstr. Lavesallee

Ritter-Brüning-Str. 20 % 80 %

Beuermannstr. 0 % 100 %

Lavesallee 100 % 0 %

Table 9.55: Intersection Ritter-Brüning-Str. / Beuermannstr. / Lavesallee (Arrival)

Ritter-Brüning-Str. Beuermannstr. Lavesallee

Ritter-Brüning-Str. 5 % 95 %

Beuermannstr. 0 % 100 %

Lavesallee 100 % 0 %

Table 9.56: Intersection Ritter-Brüning-Str. / Beuermannstr. / Lavesallee (Departure)

Sven Tomforde

Address Bennostr. 16, 30451 Hanover, Germany
Telephone
Mobile

+49 (0)511-43 74 540
+49 (0)177-317 61 00

E-Mail sven.tomforde@web.de
Date of birth 17. December 1978 in Buchholz i.d.N.
Nationality German

PhD AND UNIVERSITY

06/2007 – 10/2011 Dr.-Ing. degree at the Faculty for Electrical Engineering and

Computer Science at the Leibniz University of Hanover, Germany
PhD in Organic Computing at the Institute for Systems Engineering
(ISE) in association with Prof. Müller-Schloer:
"An Architectural Framework for Self-configuration and Self-
improvement at Runtime "
(Advisor on 17 Diploma/Master/Bachelor theses and coordinator for
seven scientific aids)

04/2005 – 05/2007 Degree in Computer Science at the Leibniz University in Hannover,

Germany (M. Sc.)

 05/2005 – 12/2005 M.Sc. at the Leibniz University in Hannover and the

University of Bristol
Thesis in association with Prof. Brehm and Dr. Muller:
"Author Disambiguation for Scientific Papers"

 09/2006 – 05/2007 Term abroad (Erasmus) at the University of Bristol, United
Kingdom, Computer Science

09/2002 – 09/2004 Degree in Business Informatics at the University of Applied Sciences

and Arts Hannover, Germany (Diploma / FH)
Thesis in association with Prof. Walenda:
"Durchführung einer empirischen Studie und Entwicklung eines
intranetbasierten Systems zur Verbesserung des Wissens-
austauschs im Supply Chain Management der Continental AG"

08/1999 – 08/2002 Degree in Business Economics at the Berufsakademie für
Bankwirtschaft, Hannover, Germany (Betriebswirt / BA)

Degree in Banking at the Industrie- und Handelskammer (Chamber of
Industry and Commerce) Hannover, Germany (Bankkaufmann / Bank
business management assistant)

1991 – 1998 Grammar school (Gymnasium Winsen), Winsen/Luhe; Abitur 1998
 (A-levels)

 EXPERIENCE

06/2007 – 10/2011 Research project "Organic Traffic Control (OTC)"

Development of a decentralised traffic control system
Technologies: C++, JAVA, Python, Aimsun, MASON

03/2004 – 09/2004 Internship at AWD AG in Hannover, Germany
Department: Application Management
Technologies: JAVA, J2EE, MS Office, SQL

11/2003 – 03/2004 Research project "Kalymnos" at Fachhochschule Hannover

Development of a component-based application for a company from
the financial sector
Technologies: JAVA, SQL

03/2004 – 09/2004 Internship at Continental AG in Hannover, Germany

Department: Supply Chain Management
Technologies: HTML, MS Office

08/1999 – 07/2001 Trainee at Volksbank Syke eG, Syke, Germany
 Bank business management assistant

07/1998 – 07/1999 Civilian Service at German Red Cross, Winsen/Luhe, Germany
 Emergency medical technician

TEACHING EXPERIENCE

09/2007 – 10/2011 In charge of the SRA Tutorial "Organic Computing"

Technologies: JAVA, NetLOGO

09/2007 – 10/2011 In charge of the SRA Student Seminar "Organic Computing"

ADDITIONAL EDUCATION

02/2009 Participation in the International School of Design of Collective

Intelligence at the Lorentz Center, Leiden, Netherlands

11/2007 Participation in the International Winter School of Self-Organisation

in Embedded Systems at Schloss Dagstuhl, Wadern, Germany

09/2003 – 03/2004 Project for the Volkswagen AG Wolfsburg, Germany Development of

an ASP-based Rights Management for Intranets

LANGUAGES

German: Native language
English: Fluent both orally and in writing (thesis written in English)
Latin: Latin certificate (school time)
French: Basic knowledge

