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Stellen Sie sich eine Welt vor, in der Fahrzeuge ohne einen menschlichen Fahrer zu
benoétigen autonom fahren konnen, in der Kiihlschranke fiir die Versorgung mit Lebensmit-
teln des téglichen Bedarfs verantwortlich sind, in der sich Produktionspléne automatisch
an sich dndernde Bediirfnisse anpassen konnen bevor iiberhaupt eine Anderung des Bedarf
beobachtet wird oder in der ein Team von Fuflballrobotern die menschliche Weltmeister-
mannschaft besiegen kann. Dies wire eine Welt, in der auf der einen Seite technische Geréte
wirklich den Nutzern dienen, indem sie sich kontinuierlich an sich &ndernde Gegebenheiten
anpassen. Auf der anderen Seite wéren diese Gerdte auf eine bestimmte Art auch ein
emanzipierter Teil unserer Gesellschaft.

Einige dieser aufgefiihrten Ideen sind inzwischen naher an der Marktreife angelangt als
man sich vielleicht vorstellt. Beispielsweise betreibt Google bereits jetzt autonome Fahrzeuge
im reguléren Straflenverkehr, Kiihlschrénke kénnen bereits von auflerhalb iiberwacht werden
und Produktionspléne passen sich zumindest an die aktuellen Gegebenheiten an. Basis all
dieser technischen Systeme — sowohl der existierenden als auch der aufkommenden neuen
— ist einerseits eine geeignete Sensortechnologie, um die aktuelle Situation wahrnehmen zu
konnen, und andererseits eine Adaptionslogik, die in der Lage ist, auf die wahrgenommenen
Stimuli angemessen zu reagieren.

Dieser Aspekt der Adaption ist das Hauptthema dieser Arbeit. Klassischerweise lisst sich
Forschung in Industrie und Wissenschaft entlang von zwei Richtungen einordnen: Entweder
wird versucht, das Potential und die Fahigkeiten existierender Systeme weiterzuentwickeln,
oder es wird versucht, neue Visionen zu etablieren und Prototypen fiir diese aufzubauen.
FEine mindestens ebenso herausfordernde Richtung ist es, beide Optionen zu kombinieren.
Warum sollten wir darauf warten, dass neue adaptive Losungen marktreif sind und sich
im téglichen Bedarf durchsetzen? Stattdessen ist es doch wesentlich vielversprechender,
aufkommende Visionen und neue Paradigmen in der Entwicklung von technischen Syste-
men mit existierendem Wissen und etablierten Losungen zu kombinieren. Ein Weg, dieses
umzusetzen, wird im Rahmen dieser Arbeit beschrieben.

Daher prisentiert diese Arbeit einen grundlegenden Entwurf fiir Systeme sowie das
darauf aufbauende Framework, anhand dessen Eigenschaften wie Selbstkonfiguration und
Selbstverbesserung fiir parametrisierbare technische Systeme zur Laufzeit ermdglicht wer-
den. Ein erwartetes Ergebnis durch die Anwendung des Frameworks auf existierende Sys-
teme ist die Herbeifiihrung gewiinschter Eigenschaften wie Adaptivitdt und Robustheit.
Aufbauend auf dem generellen Systementwurf werden im Rahmen dieser Arbeit Moglichkei-

ten zur Anwendung maschineller Lerntechniken in Echtweltsystemen untersucht. Dazu wer-
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den zwei neue Varianten von Learning Classifier Systemen und Fuzzy Classifier Systemen
entwickelt. Diese beiden modifizierten Anséitze werden in das Framework integriert und
stellen dabei einen wichtigen Mechanismus zur Realisierung der Selbstverbesserungseigen-
schaften dar.

Die wissenschaftlichen Erkenntnisse dieser Arbeit werden im Folgenden benannt. Ein-
gangs wird das bereits angesprochene Framework entwickelt und vorgestellt. Dieses Frame-
work ist in der Lage, den Selbstkonfigurationsprozess im laufenden Betrieb autonom zu
verbessern, indem Techniken des maschinellen Lernens eingesetzt werden. Daraufhin wird
das spezifische Lernproblem, das von einem Teil des Frameworks definiert wird, klassifiziert.
Aufbauend darauf wird nach passenden Techniken zu Lésung dieser Problematik gesucht.
Dazu werden dann die bereits benannten Varianten existierender maschineller Lernverfahren
entwickelt und vorgestellt. Weiterhin stellt diese Arbeit wesentliche neue Verfahren fiir
zwei weitere Forschungsgebiete vor, wobei beide Ansatze auf dem entwickelten Framework
beruhen. Im Bereich der StraBenverkehrsforschung wird ein System eingefiihrt, das die
Freigabezeiten an innerstadtischen Ampelanlagen automatisch an sich &ndernde Verkehrssi-
tuationen anpasst. Das gleiche Framework dient dann im Bereich der Datenkommunikation
dazu, ein System zu entwickeln, das die Protokollkonfigurationen von Datenkommunika-
tionsprotokollen dynamisch und zur Laufzeit an beobachtete Situationen in der Umgebung
des Knotens anpassen kann. Abschlieend wird ein abstrahiertes Modell zur Klassifizierung
von Echtweltsystemen eingefiihrt, anhand dessen die Menge an Systemen identifiziert wer-
den kann, fiir die das Framework einsetzbar ist.

Untersuchungen haben gezeigt, dass technische Systeme, die iiber das zusétzliche Frame-
work verfiigen, eine erheblich bessere Systemleistung erzielen knnen, wie herkémmliche Sys-
teme. Als Beispiel dienen die beiden exemplarisch untersuchten Hauptanwendungen dieser
Arbeit: Einerseits kann die verfiighare Kommunikationskapazitdt in mobilen ad-hoc Netz-
werken um etwa 6 % erhoht werden, wahrend andererseits die auftretenden Verlustzeiten von
Fahrzeugen in stadtischen Verkehrsnetzen um signifikante 16 % reduziert werden kénnen —
jeweils in Abhéangigkeit von den untersuchten Szenarien. Weiterhin zeigen die Ergebnisse
der ebenfalls durchgefiihrten generalisierten Untersuchung, dass das Framework in der Lage
ist, seiner Zielsetzung auch unter Einfliissen wie Storungen und verrauschten Sensordaten

nachzukommen.
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Abstract

Keywords: Organic Computing, Framework, self-improvement, self-configuration, safety-
oriented learning, machine learning, traffic control, network protocols, learning classifier

systems

Imagine a world where cars drive autonomously without the need for a driver, fridges are
responsible for keeping the needed amount of food, work schedules re-organise themselves
automatically considering the correct priorities, production systems change their production
schedule before the observed demands change or even shortages occur, or a soccer team
consisting of robots beats the (human) world champion team. This would be a world where,
on the one hand, technical devices really serve their users by adapting continuously to
changing conditions and demands, and, on the other hand, become a somehow emancipated
part of the world.

Some of these ideas are closer to market maturity as one might assume. For instance,
Google already operates autonomous cars, fridges can be supervised remotely already, smart
homes are on the way to become a part of reality, and production systems adapt at least
to current conditions. Basis of all these technical systems — both, existing and upcoming
ones — is (a) an appropriate sensor technology capable of detecting the situation and (b) an
adaptation logic capable of appropriately reacting on these stimuli.

This adaptation aspect is the major topic of this thesis. Typically, research by industry
and science can be categorised among two main research directions: increase the potential
and the abilities of existing systems or establish new visions and develop prototypes. But
an equally challenging direction is to make way for a cooperation of both approaches. Why
should we wait until new adaptive solutions will be well-engineered and well-established?
A better concept is to somehow combine upcoming visions and new paradigms of system
design with existing technical knowledge and solutions. This somehow is the common theme
of this thesis.

Therefore, this thesis presents the system design and the corresponding framework to
enable capabilities like self-configuration and self-improvement for parametrisable systems at
runtime. As a result of these capabilities, systems equipped with the framework as additional
control mechanism are characterised by aspects like adaptivity and robustness. Besides the
general system design, the thesis investigates the possibility of applying machine learning
techniques to real-world applications — two novel variants of Learning Classifier Systems
and Fuzzy Classifier Systems are developed. These modified machine learning techniques
are integrated into the framework. Thereby, they take over the responsibility of the self-
improvement tasks.

The contribution to scientific knowledge presented in this thesis is given as follows. Ini-
tially, the architectural framework is developed. This framework is capable of self-improving

the reconfiguration behaviour autonomously by making use of machine learning techniques.
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In addition, this thesis characterises the specific learning problem and investigates which
techniques are applicable. Additionally, modified variants for the most promising tech-
niques are developed to cover the restrictions and requirements of real-world systems and
their safety-demands. Furthermore, the thesis presents two contributions to the state of the
art in traffic control systems and data communication — both based on the general design. In
traffic control, a novel decentralised system to adapt traffic control strategies at urban inter-
sections according to changes in the traffic conditions is presented. The same system design
applied to data communication results in a locally-organised system to reconfigure network
protocol parameter sets as response to observed situations. Finally, the thesis introduces a
generalised model to classify real-world systems that are controllable by the framework.
Analytical considerations of the evaluation results demonstrate the benefit of applying
the developed framework to the control of technical systems. For instance, the available
communication bandwidth in mobile ad-hoc networks can be increased by about 6 %, while
the delays of vehicles in urban road networks can be dramatically decreased by up to 16 %
depending on the investigated scenario. In addition, the results of the generalised investi-
gation show that the framework is able to fulfil its task even under challenging conditions

such as noise and disturbances.
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Chapter 1

Introduction

1.1 Motivation

During the last decade, research departments of academia and several well-known companies
worldwide investigated possibilities to develop new design paradigms for systems that are
required to perform high-level management and control tasks in complex dynamic environ-
ments (e.g. IBM’s Autonomic Computing [1]). Examples for the targeted systems include
the management and control of vehicular and air traffic systems [2], data communication
and telecommunication networks [3, 4], business and production processes, unmanned aerial
vehicles [5], or health services [1]. Most of the effort has been driven by the insight that
monolithic, static solutions — which make up for the main part of today’s developments
— are not able to cope with the upcoming demands [6]. Thereby, new and adaptive so-
lutions will become of increasing commercial importance. This insight is accompanied by
disappointing experiences in applying conventional design methodologies and techniques to
the development of such novel adaptive systems. As a consequence, this insight made way
for researchers to focus on a paradigm shift: away from perfectly preplanned monolithic

solutions and towards self-organised, distributed, and autonomous entities (cf. [7]).

The high effort allocated for research on new fundamental concepts for self-organised
systems is accompanied by current trends. As one popular example, each human of (at least
the western) world is equipped with an ever growing number of devices such as handhelds,
smart phones, laptops, or music players. Furthermore, these devices are characterised by an
increase in their computational power — each of them is as powerful as a standard workstation

PC just a few years back in time. Considering just the smart phones — who would have
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envisioned that mobile telephones are as small and powerful as they are today only ten
years ago? Apart from the basic telecommunication functionality, today’s devices are able
to perform computer games, applications (e.g. text processing), and handle movie files highly
efficiently. They can be used to take part in multi-player games and can be connected to
diverse systems via technologies like Bluetooth or WiFi.

Besides the advantages of these technical comforts, some drawbacks can be observed as
well. Years ago, nobody would have thought about malfunctions of technical devices due
to mutual influences. Nowadays, interconnectedness between devices is not the exceptional
case — instead, it is nearly standard. Even if a device is not designed to interact with
others, it is subject to their actions in terms of messages, interferences, or just emission and
radiation. One aspect of these growing environmental influences is that their impact has to
be covered within the design of the system — which leads to more complex solutions that
are prone to failures due to this complexity. The manageability of interconnected systems
decreases, as users and administrators are just not able to understand and monitor every
single aspect of the system. In addition, it is impossible to anticipate all possible situations
that a system will be exposed to during its life-time — nobody knows which new trends
might appear within the next years or even months [1]. Furthermore, it is hardly possible to
explicitly specify the entire behaviour of a complex system on a detailed level, since complex
is just meant as another word for describing the exorbitant set of theoretically occurring
situations and corresponding configurations. From another viewpoint, these systems also
become too massive and confusing to be administrable [1]. As one example to underline
this observation, Ganek and Corbi stated that 40 % of today’s computer system outages are
caused by complexity-induced operator errors [8].

As a consequence, research initiatives
gap like Organic Computing (OC, [9]), Auto-
A \ \ nomic Computing [1], or Proactive Com-

puting [10] emerged and proposed to dis-

[

current systems ,OC* systems tribute computational intelligence among
| time: several (autonomous) entities, since mono-

lithic solutions will not be feasible anymore.

today e " The vision behind all of these initiatives is
mainly based on designing systems that are

Figure 1.1: Design gap characterised by aspects like local respon-

sibility, self-organisation, robustness, adap-

tivity, and capability of learning; they differ in the application domain, the degree of the

autonomy, and the way to achieve the desired behaviour of the favoured systems. But, to
some extent, the previously formulated ideas can be observed among all of them.

Considering the responsibilities of these targeted systems and the mentioned key-characte-

ristics, one fundamental aspect is that they will only achieve the desired behaviour, if they

are able to adapt themselves and their behaviour to changing environmental conditions.
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This is accompanied by the needed ability to perceive such changes in the first place, and
simultaneously control and continuously improve their own behaviour. As a consequence,
adaptivity and self-improvement have to define the foundation of such systems. Assuming
that it will take time for industry and science to develop satisfying solutions that cover all
necessary aspects, a design-gap can be identified. Today’s systems reach their limits and
the desired solutions are not available. Figure 1.1 illustrates this gap. This thesis intervenes
at exactly this gap. The basic assumption is that the existing OC principles can already
be applied to real-world systems in order to evoke the desired effects. Besides closing the
gap, it can be desirable to enable OC characteristics after finishing the design process in
order to unburden the designer from one part of the design task. Consequently, the question
arises how existing systems can be augmented with the desired behaviour. A combination
of existing technologies and the advantages of OC’s basic principles like adaptivity and

self-improvement is needed.

1.2 Problem Statement

“It is not the question whether adaptive and self-organised systems will emerge, but how

they will be designed and controlled.”

- Prof. Dr. Hartmut Schmeck, Karlsruhe Institute of Technology [7]

This thesis presents a mechanism to

close the considered design gap by in-
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knowledge. Although the presented ap-

Figure 1.2: Classification of the system’s de- 15ach transfers a certain degree of freedom
gree of freedom and the corresponding domain

knowledge from the designer to the system itself, this

degree of freedom is not unbounded. Fig-
ure 1.2 illustrates the possible range. Non-
parametrisable systems have a static character and a high degree of integrated domain
knowledge — provided by the developer at design time. Parametrisable systems have a

slightly higher degree of freedom, since they can be customised to specific environments. In
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contrast, systems where the output is obtained by using techniques like Evolutionary Pro-
gramming have a high degree of freedom, but limited domain knowledge — the evolutionary
process needs a feedback about the quality of its found solution in order to perform a guided
search, but it decides independently of the underlying problem about its next action. The
targeted system constitutes an in-between solution by extending the system’s freedom to
a certain degree — the developer has to provide some domain knowledge, but the system
decides about its actions (here: its configuration) at runtime within given boundaries.

This corresponds to the paradigm shift supported by the OC initiative. Traditional
system design follows a top-down path from the system level to the lower implementation
levels, while OC wants to move at least a subset of design time decisions to runtime [11].
In today’s systems, all future situations affecting the system have to be anticipated and
covered at design time. Obviously, this is hardly possible in cases of highly dynamic and
non-deterministic environments typically characterising real-world systems. Increasing the
system’s degree of freedom by moving a set of configuration decisions to the runtime and
hence into the system’s own area of responsibility should be accompanied by another ef-
fect: increasing the robustness in terms of a larger range of acceptable disturbances. This
paradigm shift has some fundamental consequences on the design process of such systems:

Self-configuration: The manual configuration task typically performed by searching for
a static configuration, which works well in most simulations, is replaced by self-configuration.
Classical system design anticipates situations and defines strategies, while OC systems recon-
figure themselves at runtime in response to user directives, external stimuli, or disturbances.
Therefore, the system needs an active component performing this adaptation task, which
has previously been covered by the designer of the system. In the context of OC, systems
are assumed to consist of several interconnected subsystems collectively achieving a common
goal. Due to the vast set of possible configurations and corresponding situations, the adap-
tation cannot be assigned to centralised elements working on behalf of the group. Thus, on
the one hand each of these interconnected subsystems is responsible for reconfiguring itself,
while on the other hand the reconfiguration of the complete system is agreed upon by the
subsystems using decentralised negotiation mechanisms.

Self-improvement: In classical system design alternative solutions are discovered at
design time, followed by evaluating candidates using simulation or building of real models.
Typically, templates or best-practises exist transferring the knowledge from one designer to
another. This knowledge can be assigned to the OC system to some degree by the designer,
but a large part has to be discovered autonomously at runtime. In the considered case,
this knowledge concerns the modification strategies for configuring the system according to
changing environments. Thus, the OC system has to be able to explore possible alternatives.
In the first place, the selection of predefined possibilities is feasible. But it bears the disad-
vantage of limiting the design space to a small set of anticipated solutions. In contrast, the
system has to be allowed to discover completely new solutions at runtime — which requires

the usage of learning and optimisation techniques at runtime. These basic concepts allow
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for a self-improvement of the system, but also result in safety and acceptance problems.

Hence, the trial parts have to be bounded to guarantee an acceptable system behaviour.

Sandboxing: Already in current system design, model- and simulation-based approaches
are standard. These approaches are characterised by the advantage of being able to anal-
yse the system behaviour (e.g. exposing the system to extreme situations) without taking
safety-restrictions or user-centric aspects into account. Consequently, a testing within a
protected and isolated area without impact on productive parts is done — this area is called
sandbox. The term can be found in a variety of research areas, but is typically used with the
same meaning of the underlying concept — something is tested in an isolated area, where it
cannot cause any undesired effects in the real system. Examples include the sandboz as a
“flexible and expressive thinking environment” [12], to analyse native x86-code [13], and as

a dynamic environment in the grid [14].

The same concept has to be transferred from design time to runtime in order to benefit
from its advantages. For a large range of applications, a variety of simulation tools and
models exist due to the analysis process at design time. These simulators cover a wide
range from microscopic (on the lowest level) to abstracted macroscopic (on the highest
level) approaches. Using such a sandbox at runtime leads to some basic considerations.
Simulation makes only sense if conclusions can be drawn from the results. Accordingly,
an optimisation component is needed, which is capable of using the sandbox as evaluation
function. Such an optimisation component requires a certain time horizon, meaning the
on-line part of the system cannot wait for the new solutions. Additionally, the simulation
models have to resemble the environment’s actual state as closely as possible — but such a
model will probably never reflect an exact copy of the reality (already caused by perception
using sensors). Consequently, the present thesis investigates the cooperation of time-delayed
optimisation of configuration sets and on-line learning based on these off-line discovered

rules.

Application: Investigating learning in OC applications happens not just as an end in
itself — instead, the applicability of the developed concepts has to be demonstrated by means
of practise-oriented systems. Hence, practise-oriented and problem-related application do-
mains have to be identified and exemplarily investigated. These application examples have
to follow two goals. On the one hand, they can be used to demonstrate the benefit of the
developed framework in comparison to standard approaches. On the other hand, they shall
constitute major contributions to the state of the art in their particular domain by shifting
the boundaries of knowledge a bit further. Besides exemplarily investigating application
scenarios, a statement about the general applicability of the developed concepts is needed.
Hence, one part of the thesis’ challenge is to identify similarities between real-world systems,
develop a basic classification, and investigate for which of these classes an application of the

proposed framework is promising.
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1.3 Scientific Focus and Contribution

Based on the previously introduced research problems, the scientific focus of this thesis and

the contribution to scientific knowledge can be summarised as follows:

e Architectural framework: This thesis presents an architectural framework, which
allows for self-adaptation and self-configuration of existing parametrisable systems.
Besides the pure adaptation aspect, wrapping existing systems into the framework
equips them with further OC characteristics like robustness against a set of distur-
bances, flexibility, and self-improvement. Thereby, the framework works as a black

box solution without interfering with the underlying system’s logic.

e Machine Learning: The self-improvement is realised using machine learning tech-
niques. Therefore, this thesis characterises the specific learning problem and investi-
gates which techniques are applicable. Additionally, modified variants for the most
promising techniques are developed to cover the restrictions and requirements of real-

world systems and their safety-demands.

e Optimisation: The learning part distinguishes between on-line learning from feed-
back and a “sandbox” solution to explore new behaviours. Thus, a major focus of
the thesis is put on investigating a separation of the learning aspects by encapsulat-
ing the exploration part. Therefore, a sandboxr environment based on simulation has
been conceived and the applicability of different optimisation heuristics to the search

problem is focused.

e Traffic Control: Based on the general design, the thesis presents a new contribution
to the state of the art in traffic control systems. Considering realistic models of traffic
situations, the advantage of using the novel approach is demonstrated in comparison

to existing manually optimised traffic control strategies.

e Data communication: Data communication protocols are another application area
characterised by systems using mainly static and manually configured solutions. There-
fore, a system based on the proposed framework has been developed describing a novel

approach to enable situation-aware data communication.

e Generalisation: Finally, the applicability of the developed approach has been in-
vestigated by generalising the control problem. Considering this generalisation and
abstraction, the question is answered for which type of systems an application of the

framework is promising and where restrictions might be expected.
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1.4 Outline

This thesis is structured as follows. Chapter 2 gives an overview of related work that has
been published in the domain of architectures for adaptive systems. Apart from related
solutions, the generic Observer/Controller architecture is explained, which serves as a basis
for the presented work. Afterwards, the proposed system is introduced on an architectural
level in Chapter 3, accompanied by formally defining its scope and target. The architecture
describes a general concept, but leaves some design choices to the developer. In particular,
on-line learning and a safety-based off-line optimisation component are used — Chapter 4
discusses the characteristics of these components and determines which specific techniques
should be used to cover the corresponding tasks. Chapter 5 describes the structure of the
evaluation. Afterwards, the following three chapters demonstrate the applicability and the
potential benefit of the approach by applying it to different application domains: Chapter 6
introduces an adaptive traffic control system for urban road networks. Chapter 7 presents
a system to dynamically adapt data communication protocols to changes in their environ-
mental conditions. Chapter 8.1 discusses how the developed solution can be applied to
adaptive production control scenarios, while Chapter 8.2 demonstrates the applicability to
error prediction in enterprise mainframes. These four different applications are based on the
generic approach as discussed in the previous parts of the thesis — but they are not intended
to just serve as exemplary application scenarios. Instead, the evaluation part for all of them
demonstrates the unique characteristics of the solutions and the advantages compared to
the state of the art in their particular domains. In Chapter 8.3, the scope of the framework
is investigated by applying it to an abstracted mathematical problem. Finally, Chapter 9
contains the conclusion of this work and gives an overview of promising future research

opportunities.

1.5 How to Read this Thesis

This thesis contains several different aspects of diverse research domains. Of course, it is
conceived as a whole and intended for reading it in one piece. But — due to the variety of
covered areas — some readers might only be interested in partial aspects. Hence, the following
part aims at guiding readers to those areas they are mostly interested in. Consequently, the
guide is organised along the particular research areas covered by this thesis.

System Design: The basic idea of this thesis is to develop the system’s design and a
corresponding framework to enable self-configuration and self-improvement for parametris-
able systems. Hence, a major part focuses on system design aspects. Readers, which are
only concerned with this issue, will read Chapter 2 for a discussion of related work and
Chapter 3 for insights on the system developed in this thesis.

Machine Learning: The aforementioned aspect of enabling self-improvement capabil-
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ities to fine-tune the self-configuration of adaptive systems is achieved by using machine
learning techniques. In this context, a special focus is set on learning under safety re-
strictions. Researcher concerned with machine learning topics will find their major field of
interest covered by Chapter 4.1. This chapter discusses the applicability of machine learning
techniques to the control problem defined in the framework. Afterwards, two novel variants
for rule-based on-line learning mechanisms are introduced: a modified Learning Classifier
System and a modified Fuzzy Classifier System.

Optimisation Heuristics: Besides on-line learning capabilities, the framework con-
tains a component to discover the best possible response for currently unknown situations.
Finding the best response is typically referred to as an optimisation task — hence, one part
of this thesis deals with choosing appropriate search heuristics for the corresponding opti-
misation problem. Researchers focusing on this topic will find information regarding their
research area in Chapter 4.2.

Traffic Engineering: Researchers predominately interested in traffic engineering top-
ics will focus on Chapter 6. The chapter describes the Organic Traffic Control system as
one application for the framework presented in this thesis. Hence, the chapter provides a
comprehensive analysis of decentralised traffic control including the state of the art, the cus-
tomisation of the developed framework, and an extensive evaluation of real-world scenarios.

Data Communication: A second major scope of applying the framework is set on data
communication networks. Therefore, Chapter 7 introduces the Organic Network Control
system, which adapts parameter configurations of data communication protocols automat-
ically to changing environmental conditions. Analogously to the chapter concerned with
traffic engineering aspects, Chapter 7 provides a comprehensive analysis of network pro-
tocol parameter control including the state of the art, the customisation of the developed

framework, and an extensive evaluation using three different protocol types.



Chapter 2

State of the Art

Enabling adaptivity at system level has been investigated by researchers for years. As a
result, several architectures or design patterns have been presented carrying attributes like
adaptive, self-adaptive, or dynamic response. Further systems focus on more locality-based
principles like self-organisation, self-configuration, or self-management. All of these concepts
are by no means completely new. Thus, this chapter intends to give an overview of existing
related approaches and to highlight the need of a novel system, which is able to cover the
research questions discussed in the previous chapter.

The remainder of this chapter is organised as follows. Initially, Section 2.1 defines re-
quirements for adaptive systems covering the problem statement of the previous chapter.
Afterwards, research areas investigating adaptive systems are considered following a sys-

tematic approach:

e Initially, the particular domain and the relation to the topic of this thesis is motivated.

e Afterwards, basic architectures and design principles to achieve adaptivity in this

research area are presented.

e The third step investigates to which extent these basic principles have been transferred

to applications and prototypical implementations.

e Finally, these three aspects are used to characterise the research domain with respect

to the initial requirements and analyse their applicability to the identified problem.

Thereby, the Observer/Controller design pattern as developed in Organic Computing (OC)
[15] is set apart from other work, since it will serve as input and basis for the developed
framework.

In the remainder of this thesis, the terms “design”, “architecture”, “design pattern”, and

“framework” are used as follows. Design and architecture describe a general macrostructure

9
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of systems or a systematic concept of how to construct systems, respectively. A design
pattern is a concretisation of the former two abstract system descriptions. It decomposes
abstract tasks into more specific subtasks and describes the cooperation of the resulting
elements. The following discussion of the OC domain in Section 2.2 serves as example:
Figure 2.1 describes a general architecture, while Figure 2.2 depicts a design pattern, which
is based upon the general architecture. In contrast, the term framework denotes a concrete
implementation of a group of systems that are all following the same methodology and using
the same techniques — right up to a collection of class libraries and interfaces. Following
this classification, there is only one class below the framework: the concrete system itself,

which is serving a specific purpose.

2.1 Classification of Requirements

Chapter 1.3 introduced the scope of this thesis and defined the general requirements for the
system to be developed. In order to analyse the state of the art in more detail, the necessary
classification of these requirements is introduced in the following part. The identified aspects
are then used to characterise the particular concepts: either they can deal with the identified
problem or the demand of a new solution exists. Consequently, the following aspects define
requirements that have to be fulfilled as completely as possible. Therefore, they describe
attributes of an additional control mechanism that can be applied to allow for the desired
characteristics as introduced in the previous chapter.

A) Adaptivity: As initially defined, it is assumed that augmenting productive systems
with the additional ability to adapt themselves to changing environmental conditions will
lead to a higher system performance. Thus, an external control mechanism is needed that
allows for adapting the system in response to observed changes of attributes with impact on
the system’s performance. The result of this adaptation process is an increased performance
in terms of problem-specific metrics of the productive system’s particular domain.

B) Robustness: Closely connected to the goal of achieving adaptivity is the need of
robustness against a set of disturbances in the sense of [16]. Changing parameter config-
urations according to observations is assumed to increase the system’s performance. In
this context, disturbances are not only failures and misbehaviour of components, but also
unexpected situations where the static setup of parameters leads to a dissatisfying perfor-
mance. In contrast, changing them as response to disturbances and consequently keeping
the system’s behaviour within tolerated boundaries is an even more challenging task. As a
result, the need of users’ manual intervention (and the associated cost) can be drastically
decreased.

C) No interference with the system’s logic: The previously demanded adapta-
tion has to be reached without interfering with the system’s logic — an additional control

mechanism surrounding the system has to provide a customisable black box solution and



2.1. CLASSIFICATION OF REQUIREMENTS 11

to work on the available set of accessible configuration parameters. An intervention to the
logic of the system instead of configuring accessible parameters would entail that the control
mechanism cannot be realised as black box solution anymore. Consequently, this requires
the existence of such parameters for the system to be controlled.

D) Operability: The additional control mechanism is not allowed to affect the produc-
tive system’s operability. In cases where the additional adaptation mechanism fails (e.g. due
to malfunctions of components), the underlying productive system must be able to continue
its work (remain operable) — merely with a static character.

E) Flexibility: Current systems are characterised by processing static logic or at least
following a predefined goal. In future systems, the aspect of being able to change this goal on
demand will become of increasing importance. Thus, the control mechanism has to provide
adequate concepts to incorporate flexible goals and to change them at runtime.

F) Vast situation and configuration spaces: Based on the initial motivation of
OC [17], it is assumed that systems have to cope with vast situation and configuration
spaces. Closely related to the corresponding indefinite possibilities for observations and
configurations is the need of coping with unknown and unanticipated situations. The con-
trol mechanism has to find appropriate settings, although it cannot fall back to predefined
strategies and does not know the optimal response.

G) Self-improvement: Adaptivity can be achieved by different approaches ranging
from choosing between a restricted set of predefined behaviours to allowing the system to
explore new behaviours autonomously. Due to the assumed vast situation and configuration
spaces characterising real-world systems, a predefinition of alternatives is assumed to be
inappropriate. Thus, the control mechanism has to be capable of self-improving its behaviour
by taking a feedback on its actions into account. As a result, appropriate techniques to
perform self-optimisation and self-improvement are needed.

H) Restricted exploration: Self-improvement relies on choosing between alternative
actions and autonomously identifying new behaviours in case of unanticipated situations. In
addition, a qualitative feedback is needed distinguishing between good and bad behaviour.
Although this concept has to make use of exploration mechanisms, real-world systems require
that only tested and acceptable actions are performed — otherwise it cannot be guaranteed
that the system will always behave in an acceptable manner. Thus, the system has to be
equipped with an effective mechanism to restrict the exploration parts of self-improvement
— only pretested solutions are allowed. Since such a pretesting directly before applying the
action to the system is infeasible at design time due to the vast situation spaces, a “sandbox”
solution is needed.

I) Decentralised operation and collaboration: OC assumes that a set of au-
tonomous, more simple systems will replace the existing, monolithic ones to counter the
system’s complexity [7]. Since a controlled self-organised behaviour of several cooperating
elements is desired, the system architecture has to foresee decentralised collaboration pos-

sibilities. Although collaboration is typically application- and task-specific, the possibility
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has to be covered by the architecture by means of e.g. communication capabilities.

J) Comprehensibility: In order to achieve user acceptance, the control mechanism
has to provide appropriate interfaces for monitoring. In addition, the actions performed
by the adaptation component have to be comprehensible to users. An engineer analysing
the past behaviours by comparing input situations and applied actions has to be able to
understand why the system acted in the particular way.

K) Real-world requirements: OC and related research initiatives develop novel con-
cepts for systems applied to the real world. Thus, the control mechanism enabling adaptivity
for the productive system has to be able to deal with environments that are typically noisy.

)

The term “noisy” summarises various influences such as measurement errors, incomplete
observations, transmission errors, or continuous values that have to be treated like random
influences.

L) Generalised approach: In addition to these criteria A to K, a generalised frame-
work is needed, which does not provide just a domain-specific solution. In particular, it has

to allow for enabling adaptivity for a variety of systems and tasks.

Based on the aforementioned aspects (the previous itemisation from A to L) that are
characterising the requirements of the desired adaptation module (the control mechanism), a
comparison to the state of the art is possible. Hence, the remainder of this chapter identifies
related research areas and discusses existing concepts to cover similar or connected problems.
Therefore, the ordering of the aspects will be kept for each considered technique from the
state of the art.

2.2 Organic Computing

This thesis falls into the context of OC [17] — hence, it seems natural to start the search for
appropriate and suitable architectures, design patterns, or frameworks in this research field.
OC has emerged recently as a challenging vision for future information processing systems
[7] and claims that a paradigm shift in system development is needed. Comparable to the
“Vision of Autonomic Computing” [1], which predicts that the increasing interconnectedness
of systems and devices will become a “nightmare” for designers and administrators of IT
infrastructure, OC postulates the need of a paradigm shift in systems engineering towards
self-organised solutions. Nowadays, more and more systems are equipped with sensors and
actuators, aware of their environment, and communicating freely. Based on these charac-
teristics, future OC systems will be able to self-manage their behaviour, and a collection
of these systems will be able to self-organise to cooperatively achieve tasks. However, the
designer of the system will be able to delegate control to populations of smaller, more au-
tonomous, and collaborating entities. In this context, autonomous means that the particular

system is able to work in its environment without external control.
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In contrast to domain-specific initiatives like Autonomic Computing for the IT infrastruc-
ture environment, OC covers a broader spectrum of systems. Thus, current research inves-
tigates heterogeneous applications and theoretical concepts ranging from hardware [18, 19]
over robotics [20, 21] to software [22]. An overview of the concepts and basic ideas of OC is
given in [23, 24]. Although the focus is broad, some common ideas, especially for the basic
design of systems, can be observed. The most prominent example in system design is the
“Observer/Controller design pattern”, which has been introduced in [17] and further refined

in [25, 26]. A summary of the developed approach and its applications is given in [15].

2.2.1 The Observer/Controller Design Pattern

OC systems are characterised by the need of

goals

ternal changes. Typically, this response results

system status an adequate response to environmental or in-

in an adaptive behaviour and incorporates fur-

ther aspects like robustness and flexibility. In or-
der to allow for such an adaptation process, the
tput )

YY) F Y & ¢ ‘ system’s design provides a regulatory feedback
Organic system mechanism capable of monitoring, analysing,
& : agentirobo/entity and reacting to changing conditions. There-

fore, OC proposes the so-called generic Ob-
Figure 2.1: Basic concept of the Ob- server/Controller design pattern, which consti-
server/Controller architecture [26] tutes a generalised way to achieve controlled self-
organisation in technical systems [26, 25]. This
regulatory feedback mechanism contains three major components (see Figure 2.1 and Fig-

ure 2.2 for a more detailed version):

System under Observation and Control (SuOC) The SuOC is the “productive” part
of the system that serves a specific purpose. The term corresponds to the previous
notation of the “existing parametrisable system”, which has to be controlled by the
framework. Thus, the SuOC is functional without observer and controller and it will

remain operable if higher layers fail (i.e. Observer/Controller components).

Observer The SuOC’s state and dynamics are monitored by the observer in order to give
an appropriate description of the current situation for the whole system at each point
of time. The observer also monitors the environment, either directly or through the
sensors of the SuOC.

Controller Based on the observer’s aggregated information, the controller influences the
SuOC with respect to the goals given by the user.
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Figure 2.2: Generic Observer/Controller design pattern [26]

System under Observation and Control: The lowest layer of the architecture en-
capsulates the productive part of the system. This productive system can serve various
purposes, see Section 2.2.3. Higher layers of the architecture monitor and adjust (if neces-
sary) the parameter configurations of the productive system in discrete time intervals. OC
postulates the distribution of computational intelligence among large populations of smaller
entities — thus, the SuOC in Figure 2.2 can refer to single systems or groups of autonomous
systems, respectively. In both cases, the SuOC needs to fulfil some basic, application-specific

requirements:

e The SuOC’s behaviour and its environmental conditions have to be observable.

e The performance of the SuOC according to some goal given by the designer or user

has to be measurable.

e The SuOC has to possess a set of variable parameters that can be dynamically adapted

at runtime and that have certain impact on the performance of the system.

Observer: The observation task can be split into five consecutive steps: monitoring,
preprocessing, data analysis, prediction, and aggregation. The monitoring part receives the
raw data from the SuOC and is based on an observation model that customises the ob-
server’s functionality for the specific SUOC. Thus, it selects the observable attributes of
the system, the analysis detectors, and the appropriate prediction methods. This selection
is done within constant discrete time intervals, expressed as sampling rate. The observed

system data can consist of the SuOC’s individual data and some additional more global
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(environmental) system attributes. All measured data is stored in a log file for every loop
of observing/controlling the SuOC, since it has to be accessed by the predictor and by the

data analyser (see Figure 2.2), e.g. for calculating time-space patterns.

The actual observation process starts with receiving the SuOC’s raw data. This raw
data can be preprocessed in order to smooth the corresponding attributes and to extract
meaningful attributes — afterwards, it is transformed into a vector describing the system’s
situation. Next, the data analyser applies a set of detectors to this preprocessed data
vector. For instance, cluster computation, detection of emergence parameters (according
to the definition in [27]), or further mathematical and statistical methods might be needed
to extract meaningful information. The result of this step is a system-wide description of
the SuOC’s current state. Since the adjustment of the SuOC’s parameters is performed
according to the sampling rate, the controller’s action has impact on the next situation.
Thus, the attributes from the situation vector can be augmented with forecasts for both
— the next raw data as well as the next system-indicators (by using specific or statistical
methods like chart analysis). Finally, the aggregator collects the processed information
into the so-called situation descriptor, and passes it to the controller, which appropriately
influences the SuOC. Further details on the observer part with a special focus on determining

emergent behaviour have been discussed by Mnif in [28].

Controller: The controller’s task is to guide and control the SuOC by choosing its
most promising parameter configuration. It receives the processed and augmented situation
descriptor from the observer and interferes only in those cases with the SuOC where an
adaptation of the current settings is necessary. The decision module that is responsible for
choosing the most appropriate parameter settings for the current situation is called action
selector. Since OC systems act in real-world environments, a fast decision is necessary.
Thus, the action selector is equipped with two important capabilities: on-line learning and
preparation. The learning part works on a fixed set of different strategies that map a given
situation onto a corresponding action — it aims at increasing the quality of this selection
process. The task is performed in real-time. In addition, the preparation component is
responsible for extending the behavioural repertoire of the action selector and has a broader
time horizon. A detailed investigation of the controller part with a special focus on the

learning component has been performed by Richter in [29].

As a conclusion, it is important to note that an organic system will continue to work,
although observer and controller might be disturbed and stop working. Thus, the main
objective of the proposed architecture is to achieve a controlled self-organised system be-
haviour. In comparison to classical system design, OC systems have the ability to adapt

and to cope with some emergent behaviour they have not been programmed for explicitly.
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2.2.2 Design Variants of the Observer/Controller Design Pattern

The generic Observer/Contoller architecture needs to be customised to different scenarios
by adapting the various components of the observer and the controller. As stated in [30]
and depicted in Figure 2.3, this customisation of design variants ranges from fully central
to fully distributed architectures. The former case describes a single Observer/Controller
that regulates various components of the SuOC and that directly intervenes into all of these
entities (see Figure 2.3(a)). In contrast, the latter example defines one Observer/Controller
for each component of a technical system (see Figure 2.3(b)). These two variants — the fully
central and the fully distributed architecture — define the two extreme points in the design
space. Nevertheless, there are also many other distribution possibilities like a multi-level

architecture (see Figure 2.3(c)).

(a) Central (b) Distributed (¢) Multi-level

Figure 2.3: Design variants of the generic Observer/Controller design pattern [30]

Based on these various possibilities to realise and customise the generic Observer/Con-
troller architecture, the designer of the system has to decide about the most promising
approach for his context. In the course of this decision process, the need for different design
variants can be classified according to increasing size, complexity, and heterogeneity of the
contained subsystems. The simplest case is an isolated system with a clearly defined purpose
and a restricted configuration space where no distribution is needed (see Figure 2.1). In
contrast, larger and more complex systems are characterised by a drastic increase of the
number of possibly occurring situations and the corresponding number of different system
configurations that cannot be handled by one single Observer/Controller component. With
growing complexity, the demand of a hierarchical and multi-levelled decomposition of the
control problem becomes more recommendable. A common analogy for such systems is the
organisational structure of large companies. Some kind of management serves as highest
instance that defines abstract global goals or strategies. Lower layers of the hierarchy convert
the abstract goals for their area of responsibility into more specific goals — hence, high level
administration units are not bothered by low level decisions [29].

OC introduces the variability of systems as a measurement for the quantification of
complexity during the design process for technical systems. The term wvariability is defined
as the number of possible configurations of a SuOC [31]. Obviously, the variability tends

to increase with the complexity of the SuOC. However, introducing hierarchical and multi-
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levelled Observer/Controller structures is a powerful instrument to reduce the externally

visible variability and consequently hide the complexity of a system.

2.2.3 Application of the Observer/Controller Concept

The generic architectural design and its distribution variants describe an architectural
blueprint. Besides the application scenarios developed in the context of this thesis, sev-
eral projects from varying application domains have developed their own systems that are
built upon this basic concept or are at least inspired by it. This section provides a survey
of various applications. The survey is structured according to the distribution of the Ob-
server/Controller components. An overview and a detailed discussion of these projects has

been presented in [15] and is summarised in the remainder of this section.

Central Observer/Controller

Technical systems that cannot be subdivided into subsystems or that consist of highly
interrelated subsystems are monitored and controlled by a centralised Observer/Controller
architecture, see Figure 2.3(a). A first example for such an application is the organic
elevator control system as presented in [32]. Elevators are typically working according to
a simple mechanism — they stop at the nearest hall call in their current running direction
and only change their direction after serving all requests for the current one. In case of a
group of elevators working in parallel according to this simple concept, a synchronisation
effect can be observed when all elevators move up and down as a parallel wave. This so-
called bunching effect results in increasing waiting times for passengers and has been proven
as inefficient [33]. In terms of OC, this is an undesired emergent effect that has to be
detected and avoided. Therefore, the organic elevator control system consists of several
autonomous elevators and one centralised Observer/Controller component. The observer
contains corresponding emergence detectors, and the controller can intervene to discontinue
the synchronisation by manipulating the behaviour of individual elevator cabins.

The project Organic Computing in Off-highway Machines (OCOM) focuses on
machine management in off-highway machines like tractors or wheel loaders [34] and serves
as second example for a centralised design variant. Each off-highway machine consists
of several subsystems (like the traction drive, the power take-off, and various auxiliary
components) that are closely interrelated. Hence, an efficient operation of the machine
(e.g. in terms of a minimal fuel consumption) can be achieved by developing an adaptive
machine-wide management of these subsystems. Therefore, OCOM relies on a centralised
Observer/Controller design. The SuOC is formed by the machines’ subsystems, while the
Observer /Controller is responsible for a reliable, adaptive, and robust machine management.

A third example for centralised Observer/Controller systems are self-organised cleaning
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robots [29]. These robots search in their local neighbourhood for dirty places and clean
them by following a local strategy. Additionally, they try to self-improve their behaviour
by learning using the success of the cleaning strategy as evaluation criterion. They are
able to indirectly communicate with each other by placing “pheromones” at places they
have already cleaned — these pheromones are observed by other robots. The goal of this
communication is to avoid double-cleaning of areas and the resulting wasting of resources.
Therefore, a centralised and a distributed variant have been investigated — the former one
uses a centralised component that generates and exchanges the robots’ behaviour strategies
[35], while the latter one analyses fully decentralised learning strategies of the autonomous
robots [36].

Distributed Observer/Controller Components

As depicted in Figure 2.3(b), a second design variant for OC systems is useful if a technical
system consists of several loosely coupled subsystems. In these cases, each subsystem can
be equipped with a separate Observer/Controller component. The predominant application
area of this type are applications where the subsystems are locally distributed or belong to
different authorities. A prominent example are Service-oriented Architectures (SOAs) that
typically consist of several distributed applications and are characterised by a high degree of
interaction among these components. Based on the general concept, the design of Organic
Service-oriented Architectures (OSOAs) [37] has been investigated where management
responsibility at runtime is distributed to each component. Therefore, each SOA entity
is equipped with an Observer/Controller component to achieve controlled self-organisation
[38]. The observer monitors its SOA component and determines the current operational
state. Based on this information, the controller adapts the behaviour of the underlying
SOA component according to given objectives specified in service-level agreements (SLA).
Furthermore, automatically negotiated SLAs are used to coordinate the runtime behaviour

of service components according to given business objectives [39].

Multi-levelled Observer/Controller Components

The third type of OC systems is designed according to the variant depicted in Figure 2.3(c).
A set of distributed Observer/Controller components is hierarchically organised with those
on a higher level influencing subsystems on lower levels. Such a design can be found
in systems where several subsystems are sufficiently complex to require their own Ob-
server/Controller. One example for such a system has been developed in the context of
the project MeRegioMobil that investigates a smart home environment equipped with sev-
eral household appliances and an electric vehicle [40]. Within this smart home environment,
charging periods of the vehicle and the operation of various appliances (like freezer or wash-

ing machine) are automatically rescheduled in order to adapt the consumers’ energy demand
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to the power generation in the grid. This rescheduling is done by taking price signals into
account, which reflect a load-prediction of the energy grid, and considering constraints given
by the user. Therefore, a multi-levelled Observer/Controller framework is used. Each ap-
pliance is equipped with a local Observer/Controller component responsible for observing
the appliance’s current state and turning it on or off according to current conditions. Ad-
ditionally, these local Observer/Controller components communicate their data (e.g. power
consumption profiles) to a higher-level smart home management device that centrally derives

timing strategies for the smart home.

2.2.4 Characterisation of the Observer/Controller Design Pattern

Considering the list of requirements as introduced in Section 2.1, the generic Observer/Con-
troller design pattern can be characterised as follows:

A) Adaptivity: By dynamically adapting the SuOC’s parameters, the general design
of OC systems aims at enabling adaptivity.

B) Robustness: The approach is designed to provide robustness against distur-
bances, in particular those induced by emergent phenomena.

C) No interference with the system’s logic: Although the main focus of the concept
is to control emergent behaviour [27], the application of parametrisable systems without
interfering with their logic is possible.

D) Operability: Due to the clear separation and the non-intrusive concept, the SuOC
remains operable (with static configurations) in cases where the Observer/Controller
component fails (the principle of non-critical complezxity [11]).

E) Flexibility: The design pattern includes an interface for the user to define the
system’s goal. Thus, the design covers flexible goals. However, this feature has not been
investigated at a technical level, yet.

F) Vast situation and configuration spaces: The generic Observer/Controller de-
sign pattern aims at dealing with vast situation and configuration spaces. The partic-
ular realisation of observer and controller part decides whether unanticipated situations
are managed appropriately or not.

G) Self-improvement: The controller part of the concept contains a rule-based action
selector and an evaluation approach. Although not explicitly named in Figure 2.2, the
corresponding tasks can be covered by a self-improvement component.

H) Restricted exploration: The controller part contains a simulation model, which
can be used to restrict the exploration mechanism of the learning component — it
defines an abstract concept rather than a detailed classification of tasks.

I) Decentralised operation and collaboration: The design pattern does not in-
clude provisions for a decentralised collaboration. However, extensions are possible and

subject to ongoing investigations [11].
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J) Comprehensibility: Due to a rule-based approach, the behaviour of the system is
comprehensible to users — but this depends on the realisation of the learning part and

the freedom granted to this component.

K) Real-world requirements: The architectural concept has been designed to deal
with real-world requirements — in particular, continuous and noisy sensor information

can be used and disturbances are covered by the adaptation component.

L) Generalised approach: The Observer/Controller design pattern proposes a gener-
alised approach to allow for adaptivity in technical systems, but it lacks steps to substantiate

the abstract ideas.

In general, the generic Observer/Controller architecture postulates a design paradigm,
rather than defining a detailed concept and an applicable framework. Currently, the ar-
chitectural design and its components are not completely investigated. For instance, the
project Observation and Control of Collaborative Systems (OCCS) [41] covers certain as-
pects only, like the observation model of the observer or the quantification of robustness and
flexibility. Only scenario-specific prototype implementations are available, rather than a ref-
erence implementation. Furthermore, a major focus has been set on determining emergent
behaviour [27, 28, 29] — other detectors are mostly neglected. Due to the abstract character
of the concept, it does not provide a black box solution and therefore has to be customised

by defining distribution variants, models, and components like the action selector.

Summarising, the Observer/Controller design pattern tackles a large set of the initial
requirements. Due to its generic approach and the abstract design, it leaves some questions
open that are covered by this thesis: how can restricted and safety-oriented self-improvement
be enabled, how can collaboration and rule generation be realised? Furthermore, the way
towards an adjustable black box solution is pursued. Thus, the generic concept serves as

input and basic model for the framework as developed systematically in this thesis.

2.3 Related Architectural Approaches

Obviously, OC is not the only community addressing complexity by introducing controlled
self-organisation and learning or developing adaptive, flexible, and robust systems. Several
other software and hardware domains have to operate systems autonomously in unknown
environments — again, a certain degree of freedom needs to be granted to these systems
while they are simultaneously kept within controlled boundaries. A related survey of design
methodologies compared to OC’s generic Observer/Controller pattern is given by Richter
in [29)].
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2.3.1 Control Theory

Control theory is an interdisciplinary field of

Reference mathematics and engineering and relevant for

Svst . .
Outypsu(teTO) the control of various physical processes [42].
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cope with the behaviour of dynamics in technical

Figure 2.4: Control loop (detailed) systems [42]. In this context, a dynamic system
means that its behaviour changes over time —

mostly in response to external stimuli or forces [43]. In the simplest case, a system S pro-
duces some kind of output O for an input I. This output O is continuously compared to
a predefined reference value R. If O deviates from R, a controller will automatically adapt
the input value I in order to satisfy the goal O = R. Figure 2.4 illustrates this concept by
describing a feedback loop.

Typically, open and closed loop systems are distinguished. A system is called closed
loop system if its subsystems S and Sy are interconnected as a cycle (see Figure 2.5(b)).
Non-cyclic variants are referred to as open loop systems (see Figure 2.5(a)). The main
purpose of each control system is to guarantee the stability of the control loop’s behaviour.
In case of a linear system, this can be achieved by defining lower and upper boundaries. In
contrast, specific theories are needed for non-linear systems. Thus, the control model and the
control strategy are responsible for providing the desired behaviour. Three main categories
of control models are known in literature: adaptive control, proportional-integral-derivative

control and model-predictive control [44].

- System1 |— System2 |— System 1 — System 2 >

(a) Open loop (b) Closed loop

Figure 2.5: Open and closed loops in control theory

Adaptive Control

In order to cope with time-varying and disturbed sensor data, adaptive control [45] modifies
the control model used by the controller. A frequently discussed example to motivate the

concept is the control of an aeroplane whose mass decreases due to fuel consumption. Thus,
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the controller needs a control model that adapts itself according to these changes. The
main subject of adaptive control is to dynamically change the respective control law in that
sense that it does not need a-priori information about the bounds on these uncertain or

time-varying parameters.

Proportional-Integral-Derivative Control

The Proportional-Integral-Derivative (PID) controller is the most commonly used variant
of a feedback controller. It is the most promising approach in the absence of knowledge
about the underlying process [46]. It defines a generalised feedback mechanism that can
be found in a wide range of industrial installations, although the particular organisation
is application-specific. The concept is based on calculating the deviation of the desired
behaviour by comparing the measured value to the desired one — this difference is going to
be minimised by adjusting the process control inputs. The calculation is based on three
separate parameters: the proportional, the integral and the derivative values, denoted P,
I, and D. P is used to determine the reaction to the current error, I refers to the sum of
recent errors, and D relies on the rate at which the error has been changing. The process is
adjusted using the weighted sum of P, I, and D [47].

Model Predictive Control

One major problem in control theory is to guarantee stability for closed-loop control systems.
Introduced in the 1980s, Model Predictive Control (MPC) [48] has been successfully applied
to industrial installations such as oil refineries and chemical factories. Today, it is one of the
most widely used control techniques in process control. A driving car serves as prominent
example. Within a given control horizon the driver knows the desired trajectory. Based on
the characteristics of the particular car, he decides on the best control actions (accelerator,
braking, steering) in order to follow this trajectory. Thus, only the first control actions
are chosen at each instant — this procedure is followed repeatedly. In contrast, the decision
process is based on previous errors [48] in other strategies like PID.

The example illustrates that MPC controllers are based on dynamic models of the pro-
cess. The controller itself consists of a multi-variable control algorithm containing a dy-
namic model of the process, knowledge about past control actions, and an optimisation
cost function for the considered prediction horizon. Based on the model and the current
measurements, the MPC controller calculates the next actions for the independent variables
of the process. The operational part takes independent and dependent variable constraints
into account; afterwards, the determined set of actions is transferred to the corresponding
desired value of the regulatory controller. Most of the installations are based on linear mod-
els (they are approximately linear within a restricted prediction horizon [49, 50]), but also

non-linear models are known [51].
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Application of the Concept

Applications of control loops and their design variants are manifold and can be found in
different installations. Especially modelling is ubiquitous in science and engineering with a
strong connection to applied mathematics [44]. Thus, most of the literature about control
theory includes parts concerned with models using differential and difference equations [52].
The most prominent examples come from physical systems, especially mechanical, electrical,
and thermofluid systems [53]. Corresponding representatives of the problems are given as
follows. Arnold discusses mathematical methods applied to control problems of classical
mechanics [54], Kundur describes methods and control strategies for power system stability
[55], and fundamentals of fluid power control are given by Watson [56]. An overview of

further examples has been presented by Astrom and Murray [44].

Characterisation of Control Theory

Considering the list of requirements as introduced in Section 2.1, control theory concepts
can be characterised as follows:

A) Adaptivity: The approach enables adaptivity within the given boundaries pro-
vided by the logic of the control model.

B) Robustness: Control theory provides some kind of robustness against distur-
bances if these disturbances do not affect the controller or the functional process of the
system and have been considered by the designer.

C) No interference with the system’s logic: If appropriate models of the system’s
behaviour exist and the dependencies of parameter and system performance can be defined,
control theory might be adopted to deal with existing systems without interfering with
their logic.

D) Operability: Due to the strong interconnection between control mechanism and
element under control, the underlying process might not remain operable in cases where
the control mechanism fails.

E) Flexibility: The goal of the control loop is hard-coded — thus, it cannot handle
flexible goals.

F) Vast situation and configuration spaces: Vast situation and configuration
spaces have to be covered at design time by taking them into account when developing
the control model. Unanticipated situations are typically problematic and might lead to
failures.

G) Self-improvement: Current approaches do not consider self-improvement.

H) Restricted exploration: Due to the predefined logic, the system does not rely on
exploration mechanisms to cover unanticipated situations and therefore does not need

concepts to control the impact of such a mechanism.
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I) Decentralised operation and collaboration: Although systems can be intercon-
nected, collaboration to achieve goals cooperatively is not part of the design.

J) Comprehensibility: The comprehensibility to users depends on the complexity
of the system. Especially in large collections of integrated subsystems with interdependen-
cies, a comprehensibility is rarely given.

K) Real-world requirements: Control theory has been successfully applied to mani-
fold real-world applications — thus, the concepts are able to deal with real-world require-
ments.

L) Generalised approach: Due to the strong relation to the particular control prob-
lem, a control loop is always problem-specific. Nevertheless, the approach itself provides a
generalised concept.

Thus, control theory approaches do not match all the requirements for this thesis, since
especially unanticipated situations and the corresponding situation spaces are not applica-
ble. Consequently, the designer has to foresee all possible situations that might appear at

runtime.

2.3.2 Adaptive Architectures for Robotics

First of all, probably robot systems will come to mind when considering autonomous and
environmental-aware systems. Robots are designed to act under real-world conditions with-
out external control of human users. Thus, the robots have to cope with similar problems as
investigated in this thesis. Such a robot is defined as an entity consisting of principles from
system design and kinematics by combining sensors, actuators, and information processing

within one autonomous system [57].

Architectural Concepts

Several different approaches to design robot systems have been proposed and investigated
during the past decades [57]. Those being most closely connected to the topic of this thesis
are considered in the following. Sense-Plan-Act (SPA) was the predominant robot control
methodology until mid of the 1980s [58]. It defines a simple control loop consisting of three
phases. Phase one is used to gather all available information from the sensors (sense), in
phase two a world model is built upon the gathered information and the next move is derived
(plan). Finally, this plan is executed (act) in phase three. Figure 2.6(a) illustrates the
approach and shows that the planning phase distinguishes between five consecutive steps:
perception, modelling, planning, task execution, and motor control. During these steps,
a model-based determination of the next steps is performed and an appropriate control
strategy for the motors is calculated. SPA is used in iterations, which means that after

finishing the planning phase the next sensing phase starts immediately.
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Figure 2.6: The Sense-Plan-Act paradigm

Using the terms of control theory as discussed before, SPA is designed as an open control
loop (see Figure 2.5(a)) — the information flow through all three phases is linear from sensing
over modelling and planning to acting. Thus, the design and the corresponding behaviour
are easy to understand. But especially for the restricted computational capabilities of mobile
robots, the computationally intensive approach has drawbacks. A first approach to cope
with these drawbacks has been a separation of reactive and planning behaviour as proposed
by Herzberg et al. [59], see Figure 2.6(b). An alternative approach spearheaded by Brooks
[60] became more prominent. It decomposes the robot control problem into sub-problems —
these smaller problems are task-specific modules (Brooks calls them “behaviours”). They are
realised as a network of finite state machines. This subsumption architecture distinguishes
between several predefined behaviours. As a result, the planning part of choosing the best
behaviour or strategy is reduced. Figure 2.7 illustrates the basic concept. The architectural

design describes a set of layers being responsible for one specific behaviour each.

reason about behaviour of objects

plan changes to the world

identify objects

monitor changes

Sensors . Actuators
build maps

explore
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avoid objects

Figure 2.7: Brook’s subsumption architecture [60]
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Application of the Concept

Since SPA served as a reference model for years, several different systems based on the
concept can be found in literature [61]. One prominent example has been presented by
Shanahan and Witkowski and uses a Khepera robot [62]. The authors describe two applica-
tions in detail that are used for navigation and map building within an office scenario. The
navigation part results in knowledge about open and closed doors, while the map building
describes the rooms’ and doorways’ layout. A similar example is given by Stentz [63]. Both
examples are purely based on the SPA concept.

Additionally, two famous approaches have been presented applying Brook’s basic design
to real robots: Genghis [64] and Herbert [65]. An overview of the fundamental concepts is
given in [66]. The first example, Genghis, is a six-legged walking-machine with decentralised
control. The overall movement of the system is based on the reactions of the legs. Each leg is
controlled by two motors (one for up-down and one for back-forth movements). The system
consists of augmented finite state machines (FSM) for each behaviour. The behaviours are
built incrementally and can be run by selectively deactivating later FSMs. Furthermore,
Connell presented the autonomous and mobile robot Herbert, which is able to wander around
in a closed office environment [65]. In this context, Herbert’s task is to get into peoples’
offices and pick empty soda cans from their desks. Herbert is able to avoid obstacles, to
follow walls, and to recognise objects looking like soda cans or desks in real-time. In total,
the behavioural repertoire consists of 15 different abilities that are ordered using Brook’s

layered approach.

Characterisation of the Approaches

Although the discussed architectural approaches and design patterns have differences, they
are built upon each other and can be considered as one major solution framework. Thus,
the list of requirements can be considered as follows:

A) Adaptivity: The approach allows for a restricted adaptivity — it takes the envi-
ronmental conditions into account.

B) Robustness: The approach is robust against disturbances that have been fore-
seen at design time and taken into account when designing the finite state machines; unan-
ticipated situations might lead to failures.

C) No interference with the system’s logic: The design of the system relies on
defining explicit behaviours realised as finite state machines. Hence, integrating existing
systems without interfering with the system’s logic is not feasible.

D) Operability: Due to the strong interconnection between control mechanism and
element under control, the underlying process might not remain operable in cases where
the control mechanism fails.

E) Flexibility: The concept does not cover flexible goals.
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F) Vast situation and configuration spaces: Perceiving real-world environments
using sensors leads to vast situation spaces. In contrast, the configuration space in
traditional robotics is very restricted. As a result, unanticipated situations lead to
failures in most cases.

G) Self-improvement: Current research addresses questions of self-improvement
within the domain of robotics (see e.g. [67]), but the topic is neglected within the design
pattern.

H) Restricted exploration: Since all behaviours are predefined, the approach does
not make use of automated exploration mechanisms to identify better behaviours —
consequently, no controlled and restricted usage of such mechanisms is considered.

I) Decentralised operation and collaboration: Decentralised collaboration is
not explicitly covered by the design.

J) Comprehensibility: The comprehensibility to users depends highly on the
purpose of the system, the particular model (SPA), or the number of possible behaviours —
in complex systems, comprehensibility can be considered as problematic.

K) Real-world requirements: Since robots are designed to take part in daily life and
to fulfil specific tasks in this context, the corresponding architectures have to cope with
real-world requirements.

L) Generalised approach: State machines are designed to cover just one task. Hence,
the basic approach is not a generalised concept — it requires high effort to customise a certain
solution.

In general, SPA has a further disadvantage: the model-based concept is very slow. In
particular, the system can almost never plan at the same rate as the environmental condi-
tions are changing. In addition, all modules depend on each other and failures affect the
whole system. Furthermore, the open loop plan execution has been identified as inadequate
due to uncertainty and unpredictability [68] — changing environments require an adaptation
of the system’s world model. The behavioural approach does not take such a world model
into account — consequently, the realisation of behaviour is easier to develop than standard
SPA. But in this concept, planning and optimisation are more difficult to be taken into

account.

2.3.3 Multi-Agent Systems and Adaptive Agents

A multi-agent system (MAS) is a technical system composed of multiple interacting, in-
telligent entities — the so-called agents [69]. Typically, the term MAS is used for software
agents, but it can also refer to robots, humans, or teams containing a mixture of both. These
agents are used to model or solve problems that cannot be handled in a standard monolithic
way due to high complexity. Usually, a MAS builds some kind of heuristic approach for an

insolvable or very complex problem [70]. In literature, the concept has been successfully
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applied to several well-known tasks, e.g. modelling social structures [71], disaster response
[72], or on-line trading [73].

Based on the terms given by Wooldridge [69], agents in a MAS can be characterised using
three main attributes: a) autonomy — each contained agent is at least partially autonomous,
b) local view — none of the agents has a global view of the system (e.g. due to the system’s
complexity), and c) decentralisation — all agents are equal, especially no designated control-
ling agent exists (otherwise the system can effectively be reduced to a monolithic system
[74]). Although these characteristics define restricted behaviours based on simple rules, a
collection of collaborating agents (the multi-agent system) can manifest self-organisation
and complex behaviours.

Since research has investigated MAS for several years, a wide variety of architectures and
approaches to design adaptive and self-organised behaviour has been proposed [69, 6]. First
attempts of deductive reasoning agents were based on logics [75, 76], but their popularity
decreased quickly due to several restrictions and limitations of the concept [77]. Afterwards,
the so-called mental aspects of the agents have moved into the focus [78, 79, 80]. As a result,
decision making does not completely found on pure logics. Among these approaches, the
Belief-Desire-Intention (BDI) model [78] has been established and widely accepted as basis

for further research in this domain.

The Belief-Desire-Intention Model

BDI implements the principal aspects of Bratman’s human practical reasoning theory [81]
and is characterised by the eponymous three attributes: the agent’s beliefs, desires and
intentions. An agent uses these basic concepts to solve a particular problem. The process
of developing or choosing a plan or strategy is separated from the execution of the currently
active plan or strategy. Due to this differentiation, the agent is able to react on observed
changes in the environment immediately — usually, deliberating plans takes time (choosing
what to do is often referred to as optimisation problem).

Based on the general model of the ar-

/ \ chitecture (see Figure 2.8), the designer of
Agent an agent has to define the particular mental

Desires Intentions attitudes. The beliefs are used to represent
the current status of the system as the agent

observed it — including the environment and

Beliefs rosalie . . .

actions other agents in the neighbourhood. In addi-

\ tion, beliefs can also contain inference rules
Detectors 4¢ ¥ Effectors — this attribute allows for forward-chaining
Environment and leads to new beliefs. The term belief is

d instead of knowledge, be-
Figure 2.8: The BDI design model [78] O PUIPose Iistead o Knowledse, be
cause the belief of the agent is based on its



2.3. RELATED ARCHITECTURAL APPROACHES 29

perception, which is not necessarily correct. The local view in combination with incomplete
or possibly disturbed sensor information leads to uncertainties in modelling the world’s
status.

The desires represent the agent’s motivation — in particular, each agent has personal
goals which are tried to be fulfilled at runtime. Typically, agents are not designed to cover
just one goal — the desire is a trade-off between several different (and possibly conflicting
or inconsistent) goals. Thirdly, the architecture defines an intentions entity. Intentions are
the result of desires and the current observation — the agent has chosen to achieve a specific
desire. Within the implementation of the BDI model, intentions are defined as effectively
started actions from a selected plan. In this context, plans are actions or sequences of
actions agents can perform to achieve their intentions. Bratman defined plans as only being
partially conceived, with details being filled in as they progress [81]. In order to trigger
the agent’s reactive activities, events are used. Such an event can be applied externally via
sensors or embedded systems, or internally to activate updates or activity plans. Usually,
they are used to update beliefs, trigger plans, or modify goals.

Application of the BDI-concept

Several representatives for architectures using BDI concepts are known in literature. As one
popular example, Martin et al. introduced the Open Agent Architecture (OAA) [82], which
aims at enabling the allocation of software services through a distributed set of autonomous
agents. Communication between and cooperative effort of the agents are organised by one
or more brokers. These brokers have knowledge about the capabilities of other agents and
are responsible for the matching of requests from users and agents. The goal of the concept
is to enable a transparent view on the system. For a particular request, a user or agent
does not have to know the identities, locations, or number of involved entities. The OAA
is used as a framework to minimise the effort needed for achieving interoperability between
various platforms, or the consequences of dynamic environments. Although it aims at being
a generalised approach to agent architectures, the main concerns are software services and
collective task performing.

The Adaptive Agent Architecture (AAA) approach presented by Kumar et al. [83] has
similarities to the previous example. The main difference is the focus, which has been set on
teamwork. Based on theoretic analysis, the authors developed a brokered architecture, which
allows for the automatic recovery from failures (of the broker). This broker is responsible
for forming groups based on the tasks and requests he receives. The self-organisation of
the agents aims at providing self-healing capabilities. In contrast to the system targeted by
this thesis, both systems lack properties like self-optimising behaviour, learning capabilities,
architectural design, and a re-usability of other systems.

The Cognitive Agent Architecture (COUGAAR) is an open source, distributed agent
architecture [84, 85, 86]. Due to the financial support of the Defense Advanced Research
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Projects Agency (DARPA), the focus has been set on developing distributed systems with
a large number of involved agents. Hence, these systems are characterised by military needs
like hierarchical task decomposition. Additionally, recent extensions of the approach in-
vestigated fault tolerance, scalability, and security aspects. Based on the vision of MAS,
the agents are supposed to achieve a common goal by arranging themselves into a society,
which collectively solves the tasks. The COUGAAR framework contains an adaptive control
mechanism using an Adaptivity Engine that makes use of the agent’s cognition and aggre-
gates the observed attributes by the integrated metrics service. Each agent has different

operational modes that can be exchanged depending on the situation.

Characterisation of the BDI Approach

Considering the list of requirements as introduced before, the MAS frameworks and the
corresponding BDI concept can be characterised as follows:

A) Adaptivity: For the agent itself, the BDI concept enables adaptivity according
to some predefined characteristics.

B) Robustness: According to the specific agent model, the system is characterised
by a restricted degree of robustness against disturbances — to cover disturbances that
occur according to unforeseen situations, concepts like self-improvement are missing.

C) No interference with the system’s logic: The concept relies on building inte-
grated agent-oriented systems — thus, it is not able to control existing solutions without
interfering with the system’s logic.

D) Operability: Since the agent covers both, the logic and the adaptation, the basic
purpose of the system will not remain operable in case of failures of the control mechanism.

E) Flexibility: As the desires are predefined for each autonomous agent, the approach
does not cover flexible goals.

F) Vast situation and configuration spaces: In most agent systems, vast situation
and configuration spaces are not considered; the same observation can be made for
unanticipated situations. But — in principle — (especially if an appropriate model exists)
both can be handled in the context of the design.

G) Self-improvement: Although some work has been done on learning in MAS (cf.
[87, 74]), the basic concept does not cover self-improvement.

H) Restricted exploration: Due to using predefined desires and behaviours, agents
have no exploration mechanism to identify new behaviours — consequently, such a mech-
anism is not subject to restrictions in its usage.

I) Decentralised operation and collaboration: Agent systems are typically de-
signed to enable decentralised collaboration, especially variants like AAA [83] have
their main focus on this topic.

J) Comprehensibility: The comprehensibility to users depends on the complexity

of the system. Since the motivation of this thesis is founded on the observation that systems
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become too complex for standard design techniques, BDI is assumed to be not applicable
to the corresponding systems.

K) Real-world requirements: Typically, agent systems are simulation-based abstrac-
tions of real problems [70] — thus, they can cope with abstracted real-world requirements.

L) Generalised approach: The BDI design pattern formulates a generalised approach
for a certain category of systems. Additionally, it integrates large parts of the system’s
functionality and is therefore not generally applicable.

Due to the abstract focus, the concepts developed for MAS are adapted in other research
initiatives like AC or OC in order to solve real-world problems, rather than just artificial or
scientific questions [88]. The BDI approach relies on the existence of goals, but an explicit
representation of these goals is missing in most cases [89]. In contrast to the system presented
in this thesis, BDI lacks mechanisms to learn from past actions, decisions, and observations
or to react on unforeseen situations. In particular, the architecture does not possess an
explicit component to cover self-optimising behaviour [90, 91]. Generally, it is difficult
to couple learning and the BDI architecture, since the model does not cover interaction
principles among agents of the population [92]. Besides learning questions, the approach
has weaknesses when being applied to real-world problems: the decisions are inferred using
multi-modal logics, which can hardly be applied to this problem domain due to incomplete
axiomatisations and inefficient computability [6, 93]. Furthermore, these inference rules
have to be developed in advance — here, a more autonomous solution would be useful. In
turn, scientists have not agreed on the necessity of the three BDI attitudes. In traditional
decision theory the distribution of responsibilities is questioned, while in artificial intelligence

researchers argue that three attitudes are insufficient [90].

2.3.4 Autonomic Computing

Based on the ideas of Autonomy Oriented Computing (AOC) [94], IBM developed the “Vi-
sion of Autonomic Computing (AC)” [1]. AOC focused on the development of artificial
technical systems capable of imitating behaviour observed in nature (e.g. ants) in order to
cope with computational-intensive problems. Jin and Liu defined four key aspects for a
new type of autonomy-oriented systems: autonomous entities, emergent behaviour, adap-
tive solutions, and self-organised behaviour. The basic ideas of AOC served as input for the
vision of AC. The AC Initiative by IBM adapted the concept and applied it to the domain
of computer infrastructures and large server farms.

Like OC, the AC initiative is motivated by the observation of rapidly growing complexity
of computing systems and the insight that their management needs new visions for design-
ing systems. In particular, systems capable of self-management are desired. Driven by the
economical motivation to reduce cost and effort, the reduction of complexity is realised by in-

creasing the freedom for self-managed entities. In this context, self-management is achieved
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by four basic attributes [3]: AC systems have to be self-configuring (be able to automat-
ically configure their components), self-healing (faults and misbehaviour is automatically
detected and corrected), self-optimising (capable of monitoring the own performance and
adapting to the measured values), and self-protecting (able to pro-actively identify and
protect against arbitrary attacks). Following Sterrit’s approach [3], these four attributes are
achieved by self- and environmental-awareness in combination with a control loop defined
by self-monitoring and self-adjusting components of the system. The common architectural
pattern for AC systems enabling these attributes is the so-called MAPE cycle, which is

presented in the following part.

The MAPE Cycle

With the MAPE cycle, IBM introduced a
Autonomic Manager (AM) basic architectural concept for autonomic

d systems [1, 95]. Within this abstract in-
N formation framework for self-managing IT
, \ systems, an autonomic system is defined

as a set of autonomic elements (AE) with
Sensorst 1Eff90t0fs each AE consisting of an autonomic man-

ager (AM) and the managed resource (MR).

{ Managed Resource (MR) } The MR has to provide a management in-

terface (defining the two attributes sensors
Figure 2.9: The MAPE cycle [1] and effectors), which is used to perform
the communication between the AM and its
MR. In order to allow for an adaptation of the MR to changing environmental conditions
and reacting on failures, it has to be observable via these sensors. Additionally, it has to be
adaptable using the effectors to allow for changing the MR’s behaviour. The AM itself is
designed as a control loop, providing capabilities to perform the four tasks monitor, analyse,
plan, and execute (the MAPE cycle, see Figure 2.9). Additionally, the MAPE cycle takes
supporting knowledge of the environment and management policies into consideration. Com-
pared to the OC approach as presented in Section 2.2, the MR represents the System under
Observation and Control, while the MAPE cycle covers the tasks of the Observer/Controller
component. In addition, AC systems following the MAPE concept are closed control loops
(cf. Figure 2.5(b)) in terms of control theory (see Section 2.3.1). The self-managing system
observes the status of some resources (software or hardware components) and autonomously
controls their parameters in order to keep them within a predefined range.
Similar to OC, the desired behaviour of the AM component relies on high-level busi-
ness goals given by the system’s user in form of policies. Examples for such goals include
maximising a given utility function or keeping the system’s performance within certain

boundaries [1]. In addition, these abstract goals can be split into more specific simpler
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ones by forming a hierarchy of control loops: some autonomic managers can manage others
and these can directly manage resources. As a result, a management hierarchy similar to
business organisations can be built. Summarising, the approach proposes a design of inter-
active collections of autonomic elements. Individual entities are responsible for managing
resources (e.g. devices or groups of other autonomic elements) in order to cover parts of
the management process automatically without the need of a user. Instead, the systems
self-configure and adapt themselves in accordance with given policies from humans or other

higher-level elements.

Application and Extensions of the Concept

Since 2003, a variety of architectural frameworks based on the MAPE cycle and consisting
of self-organised autonomic components has been proposed. Besides theoretical considera-
tions (e.g. White et al. defined general requirements for AC architectures [96] and Koehler
et al. searched for a computational model that allows for guaranteeing behaviours [97]), the
most important representatives of AC focused on investigating the design and the process
of the autonomous control cycle. As one example, Fuad and Oudshoorn presented a sys-
tem architecture for such an autonomic element [98]. Based on the initial MAPE cycle,
they describe the structural operation, since this is the fundamental building block of any
autonomic system.

The basic MAPE cycle is widely accepted in the AC community at design level. It
serves as basis for several installations and prototypes in research ranging from a uniform
framework for automated management of Internet services and their underlying network re-
sources (the Autonomic Service Architecture [99]) over a J2EE-based software architecture
for adaptive webserver applications [100] to systems for autonomic grid applications (Auto-
Mate [101]). Furthermore, Liu and Parashar presented Accord, a programming framework
for autonomic applications [102]. A prototype installation in the context of large server
farms has been presented with Unity [103]. The autonomous behaviour of AC systems is
based on high level goals in terms of policies. Calinesu worked on the definition and descrip-
tion of these policies [104] and presented a model-driven autonomic architecture [105, 106].
The framework for the formal specification of autonomic computing policies has the disad-
vantage that the developed approach is very specific and consequently hardly transferable

to other domains.

Characterisation of the MAPE Concept

Considering the list of requirements as introduced before, the MAPFE concept and its current
applications can be characterised as follows:

A) Adaptivity: Obviously, the whole approach is based on the goal to enable adap-
tivity.
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B) Robustness: Since the particular solutions of the general concept are based on
predefined behaviours, the robustness against disturbances is restricted. In particular,
it depends on which policies are foreseen by the developer as a discovery component is
missing.

C) No interference with the system’s logic: In general, the MAPE control loop is
able to control existing systems without interfering with their logic, but an investigation
of how this application can be conducted is missing. Thus, the idea has been formulated
but not yet sufficiently realised.

D) Operability: The MAPE cycle postulates an additional control loop — thus, it
should be possible that the managed device remains operable in cases where the control
mechanism fails.

E) Flexibility: Whenever goals are discussed in the context of AC, they are referred
to as static policies (e.g. [1]). Hence, flexible goals are not considered, but — in general —
they are consistent with the concept.

F) Vast situation and configuration spaces: AC’s predefined strategies are hardly
applicable to vast situation and configuration spaces. In addition, completely unan-
ticipated situations cannot be covered.

G) Self-improvement: The need for self-improvement and the corresponding au-
tonomous learning capabilities within the architectural concept is not emphasised.

H) Restricted exploration: MAPE’s degree of freedom does not include exploration
phases — consequently, there is no need of restricting the trial parts due to the usage of
predefined logic and policies.

I) Decentralised operation and collaboration: Initially, Kephard and Chess wrote
that an autonomous element “may require assistance from other elements to achieve its
goals” [1], but a systematic investigation of patterns for decentralised collaborative
behaviour is missing to the author’s knowledge.

J) Comprehensibility: The comprehensibility to users depends on the complexity
of the autonomic system. Especially in large systems, it might suffer if the required policies
have to take complex interdependencies into account.

K) Real-world requirements: AC systems are mainly applied to infrastructure —
thus, they fulfil real-world requirements.

L) Generalised approach: At an abstract level, the MAPE design is generally applica-
ble. Due to the strong focus on IT infrastructure and mainframes, proof for a transferability
to other domains is missing and concepts for other technical systems have not been devel-
oped, yet.

Comparing the focused goal of this thesis’ system (and its context OC) with the one of
AC shows the main difference between both approaches: the application field. AC deals
with an increased heterogeneity, interconnectedness and complexity of IT-systems (namely
large-scale enterprise server systems [8]), while OC covers a variety of technical systems.

Main purpose of AC has been to build market-ready solutions used to decrease the effort for
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managing [T-infrastructure, rather than developing a generalised approach to controlled self-
organisation in technical systems. In addition, learning and exploration of new behaviours

automatically has not been explicitly investigated by the AC community.

2.3.5 Further Architectural Approaches

The above presented examples cover the major part of research focused on designing adap-
tive systems. Of course, these are not the only domains dealing with aspects relevant for
this thesis. The following part gives a short insight into other related research domains and
loosely connected concepts. Considering the motivation to enable context-awareness, adap-
tivity, and self-organisation, further research areas have strong connections to these topics.
As one example, the Autonomic Communication [107] initiative has emerged recently cover-
ing similar goals compared to IBM’s Autonomic Computing proposal. The most significant
differences are that it focuses on individual network elements, studies how the desired ele-
ment’s behaviour is learned, influenced or changed, and how it affects other elements within
this network. Thus, it has a strong connection to the Organic Network Control system as
presented in Chapter 7.

Furthermore, proactive computing [10] has to be named that served as foundation and
pool of ideas for current initiatives like OC or AC. Considering the aspect of highly intercon-
nected devices surrounding everybody, ubiquitous computing [108] and pervasive computing
[109] share parts of the same motivation and vision. But since they follow a different target
definition, the architectural context of this thesis is not matched.

In the context of distinguishing between appropriate on-line reactions based on a fixed
set of policies and a separated planning component, further contributions from software en-
gineering, mechanical engineering, and agent systems have to be mentioned: a three-layered
architecture for self-management [110], the Operator-Controller Module [111], and the Any-
time learning concept [112]. The former one — the Three Layer Architecture Model for Self-
Management (3LA) — has been presented by Kramer and Magee in [110]. Figure 2.10(a)
illustrates the basic design. The system consists of a given goal and a set of software compo-
nents providing the required logic. The target of the self-management process is that these
components configure themselves according to given goals — if this is not possible, they have
to be capable of reporting the problem. On the lowest layer (the component control), the
system’s components are interconnected and provide the static operational functionality. In
case of malfunctions or changes in the bottom layer’s status, the middle layer is responsible
for executing a predefined sequence of actions in order to adjust the bottom layer’s system
to the new conditions. Due to these predefinitions, a fast reaction is guaranteed. In cases
where no adequate plan exists or the goals are changed, the highest layer is responsible for
planning new strategies. Current research focuses on deriving local strategies for given con-

ditions from more abstract global goals. The main problems of this concept are described as



36 CHAPTER 2. STATE OF THE ART

finding a formal description for each situation, a powerful deriving engine, and a possibility
to derive specific goals from abstract directives. In addition, feedback on how the on-line

system performed is not used to self-improve the behaviour.
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Figure 2.11: Anytime Learning [112] concept, the middle layer contains a reflec-
tive operator in software that can adapt the
operational controller based on a given set of policies. Finally, the highest level contains
a cognitive operator monitoring the level beneath. It is responsible for gathering infor-
mation on itself and its environment. Therefore, various methods such as learning, use
of knowledge-based systems, or model-based optimisation in order to self-improve the be-
haviour are used. Due to the fully integrated control-loop-based system design, failures of
the learning module affect the whole system. In addition, the approach is highly domain-
specific and considers learning only as determining new policies. Thus, it is assumed that
each of these policies is optimal (which makes the simulation model absolutely reliable) —
consequently, self-improvement by taking feedback on the applied policies into account is
not considered.
Finally, the Anytime learning concept by Greffenstette and Ramsey [112] can be consid-

ered as inspiration for two-layered learning. In the context of investigating machine learning
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techniques for sequential decision problems, the authors developed their SAMUFEL learning
system [114, 115]. SAMUEL is designed to learn adequate reactive policies, described as
condition/action pairs, based on a given simulation model of the environment [112]. The
purpose of this simulated environment is to evolve new rules that are optimised using an
Evolutionary Algorithm [116]. This coupled learning module is integrated into the produc-
tive system as illustrated in Figure 2.11. The learning module is continuously executed. It
controls the interaction of the productive system with the environment, adapts its simu-
lation model, and explores new policies. Such new policies are provided to the execution
module. The process assumes that the model-based simulation will always lead to appro-
priate solutions and does not cover an on-line improvement of the action-selection policies.
A similar approach has been proposed by Oreizy et al. in [117]. Additionally, hierarchically
organised LCS variants like ALECSY'S [118] and MonaLysa [119] are known — in contrast to
the framework investigated in this thesis, they solely focus on increasing the learning speed,

rather than incorporating safety restrictions.

2.4 Summary

Based on the initial requirement analysis for the targeted system, this chapter discussed the
applicability of existing design patterns, their corresponding frameworks, and their promi-
nent representatives to these requirements. In the first step, OC’s generic Observer/Con-
troller design pattern has been identified as a basic platform for the developed framework.
The concept’s main control loop and its major components have been explained as well as
possible distribution variants and current applications. Afterwards, related architectural
approaches have been discussed and compared to the initially formulated requirements.
The analysis of the state of the art shows that none of the discussed concepts is applicable
to close the identified gap. In particular, no alternative approach fulfils all the requirements
sufficiently. Especially, a solution for restricted on-line learning in safety-critical environ-
ments is missing. Although different approaches to distinguish between learning tasks exist,
no explicit investigation of automatically improving the system’s behaviour while simulta-
neously guaranteeing an appropriate system performance has been identified. It is the goal
of this thesis to present a solution that is capable of both: fulfilling the requirements and
presenting an exemplary on-line learning concept for safety-critical systems. The following
Table 2.1 summarises the discussed results. The table distinguishes between five different
classifications: “X X7, “X7 “0”, “=” and “——". The first one denotes a full match of the
requirement by the particular technique, “0” states that the requirement might be satisfiable
(but — to the author’s knowledge — has not been appropriately investigated, yet), and “——"
states that the requirement is not fulfilled. The remaining two classifications are nuances
within this scale. Within the next chapter the developed framework is presented, which is

characterised by fulfilling the initially defined requirements.
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ID | C'riterion OC | CT | Robotics | MAS | AC
A) | Adaptivity XX X X X | XX
B) | Robustness XX X X X X
C) | No logic-interference X | — —— —— X
D) | Operability XX | —— - — | XX
E) | Flexibility 0| —— —— —— 0
F) | Vast spaces XX 0 0 0 0
G) | Self-improvement X - 0 0 0
H) | Restricted exploration X | — —— —— | —=
I) | Decentralised collaboration - — — | XX 0
J) | Comprehensibility X — 0 — 0
K) | Real-world requirements XX | XX XX 0] XX
L) | Generalised approach 0 X - 0 0

Table 2.1: Classification of the state of the art




Chapter 3

System Design

This chapter presents the developed framework and the corresponding design of the system.
Thus, the main focus is set on the functional concept and the contained main components,
their co-operation, and their responsibilities. The investigation, which particular techniques
are used to fill out the needs described by these components, is subject of Chapter 4. The
chapter is divided into four basic parts. Initially, the system’s objective is defined. The
desired behaviour of the system is designed using an adapted variant of a classification from
the OC domain (see Schmeck and Miiller-Schloer [120]). Based on this definition of what
the system has to be able to do and how it is supposed to behave, the scope of the system is
discussed. Here, the question is for which existing technical solutions the architecture and
the resulting framework are applicable. Therefore, requirements for systems to be controlled

by the framework are introduced.

Furthermore, the architecture itself is presented. Based on an abstract overview of the
design, the particular layers and their functionalities are presented. Thereby, a special focus
is set on the necessary adjustments needed to enable the observation and control of a new
system - in particular, the question “What has to be done in order to wrap a system with
the developed framework?” is brought up. This is of special interest, since the solution
presented within this thesis aims at providing a generalised approach for varying types of
systems. Consequently, the tasks for the adjustment process have to come with low effort

and considerable knowledge about the underlying problem.

39
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3.1 Target Definition

Based on the terminology given by Schmeck and Miiller-
Schloer in [120], the target of the framework is defined in the S
following section, which is based on previous work presented in [ CM ]

[121]. Let S be a parametrisable productive system controlled

—

by the framework (the control mechanism CM). Figure 3.1
illustrates the context. S is the productive system and the S
combination of S and its CM is denoted as S’. The com-

bined system S’ operates in an environment, which is subject Figure 3.1: Controlled sys-
tem and control mechanism

to changing conditions.

Definition 1 (Environment) The environment aggregates

all entities outside of S and its control mechanism CM. It consists of four types of at-
tributes: local, receivable, global, and inaccessible. Local attributes are completely accessible
by CM, while global attributes need some higher instance with a broader focus (e.g. a hi-
erarchical element). Receivable attributes are observed locally by a neighbouring system N
and communicated to the CM of S. In contrast, inaccessible attributes are hidden and

neither observable by CM, nor by higher entities.

The system S is continuously performing its productive tasks considering its configura-
tion defined by the set of parameters. Typically, these parameter configurations are static —
the CM’s goal is to adapt these parameters dynamically. One parameter set describes one
possible configuration of the SuOC. Consequently, the configuration space can be defined as

follows:

Definition 2 (Configuration space) All possible parameter configurations of the SuOC
define the configuration space CS (also called parameter space). Two types of param-
eters are distinguished: accessible and non-accessible (with respect to an external CM ). In
the remainder, all relevant parameters are assumed to be accessible. The current configura-

tion of the SuOC at time t can be expressed as c(t) € CS with ¢ being one possible instance

of C.

The dynamic adaptation of S has to be performed according to changes of the envi-
ronmental conditions: the situation. C'M is responsible for monitoring all attributes of S
and all attributes of the environment affecting the performance of S, which results in a

description of the current situation.

Definition 3 (Situation and state space) The SuOC’s state can be observed using in-
ternal and external variables defining the state space Z. All environmental attributes with

impact on the SuOC’s performance define the situation space Y, with the current status of
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these environmental attributes being expressed as y(t) (also denoted as the SuOC’s situa-
tion). The current state z(t) of the SuOC consists of the status of the internal parameters
c(t) and the status of the external environmental attributes y(t). This can be expressed as

Z=CSxY.

According to Definition 3, the configuration of S at time ¢ can be defined as a function
z(t) — for instance, if n attributes are used to describe the state of S, z(t) is a vector in some
n-dimensional state space Z. Some of these parameters are used as evaluation criteria (also
called objectives) n; ...ny, which are provided by a higher-level external entity (the user).
The CM depends on a user-specified goal g, which is expressed by the objective function f.
The system can incorporate a set of different goals G such that the user can choose a goal
g € G. At runtime, the C'M searches for the best mapping between an observed situation
y(t) (or z(t)) and a parameter configuration c(t): y(t) — c(t). Thus, it has to maximise
performance of S according to the current goal: fy(z(t)) — maxz.! The function f uses the
evaluation criteria 7 ...7 and maps the aggregated system state z(t) into the set of real
numbers by estimating the current system performance. Typically, the functional space of
f is known in advance, including its maximum and minimum boundaries (e.g. if S is a Peer-
to-Peer protocol instance and the evaluation function refers to maximising the download
rate, the minimum of the functional space is equal to zero and the maximum is given by
physical characteristics of the channel). Based on the objective function f, a hierarchy of

subspaces of the space Z can be built characterising the system’s performance:

1. Target Space (TS): If the goal g of the CM is fulfilled, e.g. the performance quantified
by f(z(t)) is above a given threshold 6;, the corresponding state z(t) is part of TS.

Thus, TS is the set of states where no control actions of CM are needed.

2. Acceptance Space (AS): The system state z(t) is called acceptable, if an acceptance
criterion or threshold 8, is satisfied: 8, < 6, if the fitness function is to be maximised,
0, > 0; otherwise. The set of all acceptable states satisfying the threshold 6, is called
acceptance space (AS). Obviously, TS is a subset of AS. Typically, the standard static
configuration of S (without additional C M) will lead to acceptable states on average.
Although the system’s state is acceptable, the CM will try to find a better solution

and consequently reach TS.

3. Survival Space (SS): If S is in an unacceptable state, but it is still possible to mod-
ify the system state z(t) such that at some later time ¢’ the resulting state z(t') is
acceptable, the system state belongs to SS. For example, let S be an instance of a
data communication protocol — C'M could have changed its queue sizes to zero and
no packages are stored anymore (and consequently none are processed). As a conse-
quence, the system performance will be low — but it can return to AS by increasing

this value.

IThis is equivalent to a goal specifying a minimisation of f, which can be solved by maximising — f(z(t))
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4. Dead Space (DS): If S cannot return into an at least acceptable state by itself, it is
not part of one of the previous sets and therefore belongs to the Dead Space. For
instance, a system running out of energy (battery-mode) is in DS until an external

authority tackles the problem.

Based on this enumeration, the target of the CM is to adjust ¢(¢) depending on the
observed state z(t) in such a way, that at the next evaluation time ' the corresponding
system state z(¢') will be part of TS. The remainder of this chapter explains, how this is

achieved in detail by explaining the architecture and its components.

3.2 Scope of the System

The following part of this chapter defines which systems can be controlled by the C'M.
Since a real-world applicability is of major focus, the typical key-characteristics of real-
world technical systems are discussed initially, based on the definition given by Rao and
Georgeff [6]. Afterwards, the effect of these characteristics on the C'M’s scope is explained.
The aspects given by Rao and Georgeff are used as a rough guide for the purpose of the

proposed framework:

e FEnvironment: The environment is non-deterministic. It changes at each instant of

time and can evolve into potentially many different ways.

e System: Besides the environment, the technical system (the combination of S and
CM) itself is non-deterministic. At any instant of time, the system can be instructed

to accomplish potentially many different objectives.

o Actions: The CM’s best action depends on both, external stimuli (context-aware)

and the internal status of system S.

e Horizon: The system’s horizon is restricted to locally available sensor data, no global

information can be used to decide on which is the best action to be taken.

e Cycle: The processing of CM and its actions are performed in cycles that correspond

to the rate at which the environment evolves.

These real-world aspects affect both: the system S and its control mechanism C'M pro-
vided by the proposed framework. Thus, only those systems are of interest that are situated
and processed in dynamic environments. This aspect corresponds to the requirement of
performing an adaptation according to changes of the environmental conditions and not
only according to internal changes. Furthermore, a possibility to access this environment
through sensors has to exist in order to allow for a suitable monitoring of the situation.
This monitoring is the basis for the decision about adapting S to observed changes — the

context-awareness. Hence, the effects of changes in the environmental conditions have to
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appear in such a form that the CM can adequately react on them — which means that effects

and actions of C M have to be within similar time-boundaries.

The C'M has to work on locally available information only. Based on this locality aspect,
some restrictions regarding the applicability of the framework to technical systems can be
derived. On the one hand, the performance of a technical system S to be controlled by
CM has to be measured locally without additional global knowledge. On the other hand, S
has to be configurable on-line (at runtime) using a set of parameters from the configuration
space C'S. The configuration of the variable parameters under control of the C'M needs to
have impact on the performance of S — otherwise, such a situation-dependent adaptation
would be of no avail. In addition, this impact of the parameters on the performance has to
be deterministic (at least to a certain degree). The approach relies on drawing conclusions
about the past actions and the corresponding change in the objective function’s payoff.
If the impact is more random than deterministic, deriving such kind of knowledge is not
possible. Furthermore, the objective function f itself has to be deterministic, otherwise
deriving knowledge is again not possible. In addition, f has to work on locally observed or
received attributes of the environment and of S (the state z(¢)). Other global or inaccessible

attributes cannot be taken into account in a distributed system (cf. Definition 1).

In addition, the quality analysis using the objective function f is continuously performed
by the CM. Thus, f has to possess characteristics like being continuously differentiable,
having a simple computability, and low structural change over time. The requirement that
the function has to be continuously differentiable is formulated due to the safety-based learn-
ing concept, which is realised by considering actions of “nearby” situations as appropriate.
Details on this assumption are given in the remainder of this chapter. The function f will
be frequently computed with the necessity of an immediate reaction — which restricts the set
of possible functions for f to those with relatively simple computability. In order to enable
learning within the C'M, an automated acquisition and storage of knowledge is needed. The
learning relies on finding appropriate mappings between situations and the corresponding
actions. This implies that appropriate actions for a given situation exist and these actions
will also be correct, if the corresponding situation occurs again. A time-dependence of the
basic fitness landscape modelled by f can be covered if it is quasi static, i.e. it does not
completely change the landscape (only slightly changing landscapes are manageable since

the learning takes time).

The aspects discussed before serve as indicators to decide whether an existing technical
system S can be controlled by the proposed framework or not. If S fulfils all requirements
and is characterised by the discussed attributes, it can be equipped with the additional C M

and therefore adapted on-line to changing environmental conditions.
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3.3 System Architecture

Based on the goal and the scope of the system, an architectural design of the framework
has been developed that serves as basis for answering the research questions as brought up
at the beginning of this thesis. In the remainder of this chapter, the general architecture
defined by the framework is discussed. In the further course of this thesis, the framework is
applied to different application scenarios, which requires a customisation and corresponding

application-specific modifications of both — the framework and its architecture.
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Figure 3.2: System architecture (single node)

Figure 3.2 depicts the general architecture of the proposed framework which is based on
the generic Observer/Controller design pattern as introduced in Chapter 2.2.1. The design
distinguishes between four consecutive layers. The bottom layer (Layer 0) encapsulates an
existing technical system S, e.g. the before mentioned traffic control system. In terms of OC,
S is called System under Observation and Control (SuOC) [25]. The particular internals
of the system’s logic and insights on the corresponding domain are not needed. However,
it is required that the parameters of the encapsulated SuOC can be altered by the Layer 1
component and the status of the system and its environment are accessible to higher layers.

In combination with the component situated at Layer 1 of the architecture, Layer 0 forms
a control loop. The Observer of Layer 1 collects local information and current settings of the
SuOC and aggregates them into a vector describing the current situation. This situation
vector then serves as input to the learning component of the controller, which is responsible

for deciding on necessary actions to be applied to the SuOC and for increasing the quality of
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this selection process over time. The learning component works on a defined set of possible
actions and is not allowed to modify them or to generate new ones. In case there is no
parameter set available suiting the current needs, an alternative strategy is needed. The
architecture does not allow new rules (pairs of situation/conditions and parameters/actions)
to be created randomly by e.g. Genetic Algorithms [122]. Instead, control is transferred to
Layer 2 of the architecture.

Layer 2 of the architecture consists of a simulation tool and an optimisation technique and
constitutes the “creative” component of the system. Based on observing current demands
at Layer 1 (in cases of unknown situations or sub-optimal existing rules), the component
has to find the best available parameter setting for the particular situation. If the action-
selection process of Layer 1 has no matching knowledge or the existing actions have not
been performant enough, the question “What would you do in this situation?” is given
to Layer 2. Based on an optimisation heuristic, Layer 2 evolves parameter settings and
repeatedly analyses them using a simulation tool. This bears the advantage that newly
created parameter sets are not directly used in the live system, as this could cause the
system to perform badly or even malfunction. Only those parameter sets qualifying in the
simulator of Layer 2 are passed back to Layer 1, and may then be applied in the real world.
Therefore, Layer 2 allows for a kind of “sandbox”-learning without the risk of applying
arbitrary parameter sets to the live system.

On the highest (or all-embracing) level, the Layer 3 component is responsible for com-
munication and collaboration among distributed autonomous elements — each system being
equipped with an additional CM is able to communicate with others. Furthermore, this
layer provides the interface to the user or administrator of the system. Hence, the user has
access to current system measurements in order to monitor the system’s performance. Addi-
tionally, he can change or adjust the goal of the system by adapting the objective function.
Figure 3.3 depicts a network-wide view of the system. Several systems are equally wrapped
into the proposed architecture. They act within the same environment and communicate
via Layer 3. In addition, the user of the system can use the interfaces provided at Layer 3
of the particular autonomous elements to gain access to measurements, analysis, and the
objective function.

The architectural design has some similarity with the Viable System Model (VSM) as
introduced by Stafford Beer [123] as a recursively applicable template for structuring the
management of large enterprises. Beer distinguishes between five functional types of sub-

systems:
e the productive (value-adding) type
e the coordinating (of type 1 subsystems) type

e the optimising type (w.r.t. the current resource utilisation)

e the planning type
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Figure 3.3: Network-wide view of the architecture

e the decision level type (defining the goal for lower types)

As depicted in Figure 3.2, the task assignments of the introduced Layers 0 to 2 are
similar to those given by Beer with types 1 to 3. Type 4 is covered in a distributed manner
by collaboration (Layer 3) among equal elements. Only type 5 is not explicitly foreseen and
assumed to be situated in the user’s area of responsibility. Although the VSM is explicitly
non-technical?, it can also be applied to various domains where autonomous entities form a
collective organisation.

The remainder of this chapter will introduce the particular layers in more detail.

3.3.1 Layer 0: System under Observation and Control

On the lowest level of the architecture, the “productive” part (the SuOC) of the system is
integrated into the proposed framework. Due to the targeted generic concept, the SuOC is
not restricted to a particular application domain. Therefore, existing technical systems from
varying domains can be controlled in the same way. Examples include urban traffic control
systems (see Chapter 6), data communication protocols (see Chapter 7), or production
systems (see Chapter 8.1).

Layer 0 encapsulates an existing technical system — consequently, both systems have to
cooperate at runtime. In order to keep the effort for manually customising the existing
system low, the Layer 0 component provides two basic interfaces: one for the observation

of the SuOC and its surroundings and one for accessing the variable parameters. During

2Beer’s intention has been to model business organisations — thus, the original model belongs to the
domain of economic sciences.
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the integration process of the system S into the framework, the only part affecting the logic
and internal structure of S is to provide access for these two interfaces.

Although the approach of the proposed architecture aims at providing a generic solution,
an engineer applying the framework to his specific technical system S has to adjust it in a few
points and to supply additional information needed for the further process. For the bottom
level (Layer 0), these tasks are closely connected to the two basic interfaces as introduced
before. The first task corresponds to the observation interface of the Layer 0 component.
This interface has to provide access to all attributes representing the current status of S,
attributes quantifying the current performance of the system, and variables representing
the perceived environment. The information obtained by these attributes serves as basis for
the adaptation and optimisation processes at the higher layers of the architecture. Hence,
a complete description of the particular situation is needed, which is done by defining the
observation model. This observation model represents the decision which attributes are
observed.

Typically, the attributes of the observation model represent measurements for the cur-
rent status of S (e.g. system attributes, parameter configurations, disturbed sensors, etc.),
but also environmental data like the distribution of neighbours has to be taken into ac-
count. The environmental data to be observed depends highly on the particular system S
and its application domain. Considering as example urban traffic control systems, the most
important attributes of the current situation are the traffic flows over the intersections on a
turning basis — which can also be used as part of the performance metric on Layer 1. Con-
sidering data communication protocols, such a general statement is even more difficult, since
network protocols vary in their purpose and application domain. Controlling mobile ad-hoc
networks will typically adapt the parameter sets according to changes in the neighbourhood
formed by other nodes — in contrast, Internet-based routers running the TCP /IP protocol
stack will more likely be adapted according to observed latencies, delays, or traffic loads on
specific links. Besides the pure information serving as condition for the adaptation process,
the situation description has to provide all relevant information to analyse the performance
of the adaptation process locally.

The second task considers the particular system and its adaptation at runtime — which
parameters have to be changed according to the observations? A system to be controlled by
the framework has to possess runtime-adaptable parameters with influence on the system’s
performance. The second task for an engineer applying the framework to a system S is
to define the variable parameters of S that will be subject of control interactions by the
Layer 1 component. Although these parameters are application-specific, they are typically
similar within a domain of applications. For instance, these parameters might be durations
of green times in traffic control systems; in data communication networks, such parameters
are buffer sizes, interval lengths, counters, or delay times.

The lowest layer of the proposed architecture is characterised by the encapsulated “pro-

ductive system”. Based on the assumption of OC that a system has to remain fully operable
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although disturbances might lead to failures of single components, the proposed layers of
the architecture are strictly separated and operating autonomously. For instance, if the
Layer 1 component fails, Layer 0 and its SuOC are not affected. As a consequence, they
continue working on a static basis with the last parameter configuration — this will lead to
a sub-optimal performance until Layer 1 is operable again, but at least the system works.
Besides these general characteristics of OC systems, Layer 0 incorporates further at-
tributes regarding real-world applications. It is designed to be performed in real environ-
ments leading to possible influences that do not occur in systems sealed off from environmen-
tal impact. Following again the considerations by Rao and Georgeff [6] (cf. Chapter 3.2),
Layer 0 is mostly characterised by noisy sensor values, possibly disturbed components, con-

tinuously changing conditions, and non-deterministic or non-predictable behaviour.

3.3.2 Layer 1: On-line Adaptation

Layer 1 of the framework provides the functional- Layer 1 el
. h S OC . 1 h . . ~ Parameter selection Learning
ity to adapt the Su by actively changing its acces oS
sible parameters. Therefore, it contains two compo-
nents to achieve the best possible adaptation strat- < >
egy: an observer and a controller (see Figure 3.2).

Layer O
Figure 3.4 depicts the formation of a control loop %E[ System under Observation H—»ﬁgﬂ‘;‘;’
and Control

consisting of these two components in combination
with the SuOC at Layer 0. The control loop and

thereby Layer 1 is processed in a discrete time inter-

Figure 3.4: A first control loop de-

fined by Layers 0 and 1
val, typically referred to as sampling rate.

The observer is responsible for monitoring the SuOC and its surrounding environment.
It receives a description of the current situation by querying the observation-interface of
Layer 0. This situation description (cf. y(¢) in Chapter 3.1) contains data about the SuOC’s
settings, the status of the environment (if needed and accessible), and attributes to quantify
the SuOC’s performance. All of these values are based on sensor-data — thus, they might
be noisy or subject to disturbances (i.e. malfunctions of sensors). Therefore, the observer
serves as preprocessor: if possible, it filters bad values. Furthermore, it might contain a
prediction component calculating a forecast for some attributes based on historical observa-
tions or existing knowledge (depending on the underlying technical domain, approzimation
functions might exist). Besides predicted and observed values, a sophisticated view on the
measured attributes might need additional information about historical data. As a result,
this processed and augmented data is transferred to the controller. Figure 3.5 depicts a
detailed view of the observer component.

Based on the preprocessed data provided by the observer, the controller has to decide

about necessary actions to be applied to the SuOC. This action-selection represents the
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Figure 3.5: Detailed view of Layer 1’s observer

problem to choose the best strategy for the current situation (select the best parameter
configuration for the SuOC: y(¢t) — ¢(t)). Thus, it is that part of the concept which
initially enables adaptivity. The Layer 1 controller contains a set K of already known
actions K C CS to choose from in combination with knowledge about for which situation
the particular actions have been chosen.

Due to safety reasons, the system is not allowed to try or use untested actions — it has to
choose from the set of existing ones. In real-world applications, boundaries for the resulting
behaviour of the technical system have to be guaranteed, since e.g. malfunctions are not
tolerated by customers. FEspecially systems with a high degree of self-organisation and
freedom to adjust their behaviours autonomously have to work within a tolerated corridor.
As a result, the system’s regulations have to be verifiable within given boundaries. In the

context of this thesis, two main techniques are used to ensure the desired effect:

1. Limited set of actions: The set of selectable actions is fixed for the controller of
Layer 1 — it is not able to create or modify actions. Actions are either initially inserted

to the rule-base by an engineer or evolved at runtime using the Layer 2 component.

2. Restricted choices: The system is not allowed to choose any possible action from
its rule base. Instead, it has to respect a measurement of similarity defining how
similar an observed situation is to the one the particular action is dedicated for. The
set of possible choices is then limited by a given threshold ¢,,;, defining the minimum

allowed similarity (the maximum distance).

These limitations ensure the desired behaviour of the system. It is allowed to au-
tonomously adjust the SuOC bounded by policies of the user. In addition to the automated

adjustment of parameter configurations, the system is designed to improve the performance
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of its selection process over time. In order to enable such a self-improving behaviour, the
controller contains a learning component. The task of this component is to draw conclusions
from the measured system performance and the recently performed control decisions. More
formally, the system has to learn the mapping from situations y(t) to actions c(¢) aided by
an observable fitness measurement (quantified by f): f(z(t)) — R.

The situation descriptions as measured and provided by Layer 0 are based on attributes
from a real-world environment. They are defined on a subset of those variables describing
the system’s particular surroundings. These attributes are characterised by typical charac-
teristics of the real-world, the most prominent in this context is that they are continuous
values in most cases. Due to the usage of continuous data to describe the current situation,
the action-selection mechanism has to incorporate continuous values, too. This leads to the
following problem. A situation will hardly appear again — expressed by exactly the same
attributes contained in y(t). The specificity of this statement depends on the size and the
nature of the underlying search space and is therefore a question of the specific scenario
the system has to work in. Consequently, the action-selection component is not able to
store an exact mapping between all situations and actions. In contrast, it has to decide
which from the known actions promises the highest benefit. This highest benefit cannot be
pre-estimated or determined via deterministic techniques (like using always actions whose
corresponding situation is most similar to the observed one in terms of a similarity metric),
since the actual shape of the underlying fitness landscape is unknown. Thus, the system
needs the possibility to determine the best match between situations and actions automat-
ically at runtime. In other words, the system has to be able to learn this match — which is
the task of the learning component.

Learning necessarily relies on the possibility to try different solutions and then determine
which has been the best one based on a certain reward or feedback. This means that the
learning mechanism takes over the responsibilities of the action-selection mechanism. Thus,
the same restrictions have to be respected as defined for the action-selection. The learning
component is not allowed to create actions on its own and it has to consider the similarity
metric in combination with a predefined minimum of similarity. Chapter 4.1 discusses how
automated learning under these restrictions can be realised.

After performing the necessary process, the controller might have chosen to adapt the
SuOC. Therefore, it calls the adaptation-interface of Layer 0 and provides the new param-
eter configuration. Alternatively, it might keep the current configuration of the SuOC and
abandon an adjustment. Furthermore, if the current situation is unknown or the learning
component contains only rules with bad rating, it can trigger Layer 2 to find a new pa-
rameter setting for exactly the observed situation. Figure 3.6 depicts a detailed view of the
controller component.

Although the Layer 1 component of the proposed architecture provides a generic ap-
proach, three main customisation tasks have to be fulfilled. Similar to the tasks at Layer 0,

these tasks are needed to cover the specific character of the SuOC.
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Figure 3.6: Detailed view of Layer 1’s controller

(1) The first task is related to the automated learning. In order to equip the system
with the possibility to analyse its own behaviour and improve it over time, an evaluation
measurement is needed. An engineer customising the framework for the control of a
new system has to assure the availability of necessary performance indicators when initially
defining the situation description at Layer 0. Based on this data, a quantification method
is needed that allows for a fast computation of a measurement for the system’s performance
within the last cycle. This evaluation measurement is also subject to control interactions
of the user via the application interface provided at Layer 3. An external change of the
evaluation incorporates the possible flexible character of technical systems (i.e. the setting
of new goals).

(2) Besides the evaluation measurement, a quantification of the similarity between
situation descriptions provided by the observer is needed. Due to the divergence induced
by continuous values, the system needs a possibility to compare situations and compute
their similarity. Therefore, the engineer has to define a formula to compare these situation
objects.

(3) Finally, the observer can take prediction values into consideration when processing
and augmenting the observed attributes in order to provide a complete situation description
for the controller. Thus, an optional prediction model has to be defined. For some attributes,
prediction models exist (e.g. for the prediction of movements of neighbouring nodes [124]) —
they can be adapted for the corresponding attributes. Alternatively, these models have to
be developed and integrated into the framework.

Similar to the encapsulation of the SuOC and its Layer 0, Layer 1 remains fully operable
if higher layers fail. In this case, the adaptive control loop defined by the Layers 0 and 1

will still work as designed; but the absence of Layer 2 will lead to a static set of possible
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actions, which restricts the behavioural repertoire. Furthermore, Layer 1 is characterised
by its response time. Since the system has to work under real-world conditions, it has to
be able to react immediately on observations. Thus, both — the observer and the controller
part — cannot perform complex and time-consuming calculations. Especially a validation of
possible actions cannot be performed within feasible boundaries. Due to these restrictions,
the controller acts on pre-evaluated solutions — the safety consideration affects the set of
possible actions by only allowing tested solutions.

Finally, the system’s Layer 1 has to perform real-world learning. Thus, it is able to
self-improve over the complete operation period. This learning affects the quality of the
action-selection and results in a better system performance. Due to safety reasons, the
learning mechanism works on a defined set of possible actions at the beginning. Afterwards,
the behavioural repertoire is extended using the Layer 2 component and its sandbox-learning

mechanism.

3.3.3 Layer 2: Off-line Learning

The Layer 2 component of the architecture is responsible for extending the behavioural
repertoire of Layer 1 in case of unknown situations or insufficient knowledge. Thus, the
component realises the creative part of the system by implementing the sandboz-learning
principle. Such an off-line exploration allows to find appropriate actions without actually
having to test different alternatives in the real world. The latter could be detrimental,
as testing out potentially bad strategies in the real world can cause tremendous cost and
cause the system to fail permanently. Hence, it is guaranteed that the trial-and-error part
(which is necessary for unsupervised automated learning, see e.g. [125]) does not affect the
performance of the SuOC.

The Layer 2 component works on-demand — every time the Layer 1 component does not
know an adequate response to observed situations (e.g. no actions are known or only actions
which proved to be unqualified), it creates an optimisation task for Layer 2. The observer
of Layer 2 utilises the same pattern as discussed for the control loop at Layers 0 and 1 by
monitoring the adaptation component of Layer 1. If an optimisation task occurs, it is passed
to the controller, which is responsible for generating a new rule. In addition, the Layer 2
observer has to monitor the system resources and their utilisation by other tasks. Consider,
for instance, a standard PC performing an additional Peer-to-Peer client to download large
files from the overlay network (see Chapter 7.3.3). The generation of a new rule relies on an
optimisation task, which is performed using simulations as metric. Both — optimisation (a
large set of trials) and simulation — require high effort in terms of resource usage (CPU and
RAM). During such a rule-generation process, load situations might appear where a PC will
react slowly and does not provide the normal convenience for the user. Consequently, the

protocol adaptation has impact on the user and is not transparent anymore — this impact
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has to be avoided, otherwise acceptance problems will occur. Thus, the Layer 2 observer
monitors (and maybe predicts) the resource utilisation — the controller is only activated
during idle times.

The controller of Layer 2 is responsible for generating new rules. It receives the opti-
misation tasks and has to find the best possible action for these conditions. Therefore, it
combines an optimisation heuristic [126] with a simulation component. The optimisation
heuristic generates the particular candidate settings for the SuOC based on a target-oriented
approach. The performance of the candidate within the simulator serves as measurement
for its quality. Based on a “survival of the fittest” concept, the best setting is found after
several iterations of the optimisation cycle. The architecture defines the need of such a
technique, while Chapter 4.2 presents an investigation on which particular technique should
be used. A model-based planning is always limited by the necessary simplifications made
in the model. Thus, the best action with respect to the model is not necessarily the best
action with respect to the real world. Therefore, Layer 1 is allowed to fine-tune the selection
process by choosing between closely-situated conditions.

The second part of the controller is the simulation tool. Since nowadays many technical
systems are tested and developed based on simulations before building them or applying
them to the real world, simulation tools for nearly all significant technical solutions are
available. For those cases where no professional tool exists, an abstract implementation
of the problem and the system’s behaviour using Multi-Agent Toolkits like Repast [127] or
Mason [128] might be possible. Apart from the specific simulator, the purpose is to test
the behaviour of the SuOC with the parameter set generated by the optimisation heuristic
without applying it to the productive system S and the real environment.

The simulation tool itself has to be configured using a simulation model. This model
defines what exactly has to be simulated. It specifies the simulated SuOC’s status (e.g.
topology, abilities, disturbed components, etc.) and the environmental conditions (e.g.
neighbours, measured conditions). The situation description received from the observer has
to be turned into such a model by considering the internal values. In addition, the simulated
SuOC is configured using the parameter setting to be tested. For instance, the previously
used example of urban traffic control can be considered as follows. The simulated intersection
controller is configured with the control plan to be tested. Furthermore, the situation in
urban road networks might be defined using the observed traffic flow (in 2¢cles) for a]l
turning movements crossing the intersection. Most importantly, the simulation relies on a
realistic model of the intersection’s topology. The simulated traffic is generated according
to specific car-arrival-patterns from the field of traffic engineering. The amount of cars
simulated for each turning represents the measured values from the situation description.

In contrast, the control of data communication protocols relies on other simulation tools.
Their purpose is to represent real-world data communication with all possible effects (lost
packets, sending distance in wireless networks, dispersion models, etc.). For instance, a sim-

ulation of a mobile ad-hoc network mainly relies on the protocol’s state machine, a movement
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model for the nodes, a message model, and a distribution of nodes within the simulated area.
Thus, the situation description will cover an aggregated view of the neighbours’ positions
in order to find the best parameter setting for these conditions.

In order to enable the rule generation of Layer 2, one final task has to be fulfilled by the
engineer. He has to provide the previously discussed simulation tool and the corresponding
simulation model. The current framework has already integrated tools for traffic control
(Aimsun [129]), data communication (NS-2 [130], Omnet++ [131]), and Multi-Agent Sys-
tems (Mason [128], Repast [127]).

The Layer 2 component of the proposed framework is responsible for the off-line genera-
tion of rules (mappings of situations to actions). In comparison to the Layer 1 component,
it is characterised by a larger time horizon: no immediate answer is needed for a given
stimulus. Thus, a possibly delayed response due to model-based evaluation is possible. This
simulation-based learning represents the creative part of the whole system, since it is respon-
sible for discovering new actions. The corresponding trial-and-error part when discovering
new actions takes place in a “sandbox” — the simulation tool. Thus, the safety-critical part
of the learning process does not influence the real-world system.

Besides the safety aspect, Layer 2 has another key-characteristic — the effort. In contrast
to the relatively light-weight processes on Layers 0 and 1, simulation-based optimisation
requires high computational effort mainly provoked by the simulation tool and the large
number of simulations caused by the optimisation process. Although Layer 2 acts under a
larger time horizon, it also dictates the speed of the self-optimisation — it remains the only

possibility to extend the behavioural repertoire of Layer 1.

3.3.4 Layer 3: Regional Cooperation

The highest layer of the architecture (Layer 3) provides the basis for communication and
collaboration between neighbouring systems. In contrast to the other three layers, the
tasks and responsibilities of Layer 3 are not completely part of the focus of this thesis,
since collaboration and cooperation is highly application-specific and cannot be covered by
a generalised approach. Albeit, it provides basic key features of the system, which are
discussed in the following. Additionally, some further application-specific mechanisms are
outlined when discussing the particular applications, see Chapter 6.4 as example for the
OTC system.

As depicted in Figure 3.2, Layer 3 is not designed following the concept as used for
the three basic layers. Instead, it embraces the basic system (defined by Layers 0 to 2) by
providing collaboration and communication capabilities for possibly all contained elements.
Furthermore, it defines the interface to the user of the resulting system. User interaction
will mostly follow two main targets; the corresponding entities are explained in the following

part of this chapter:
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e a) control and analyse the system’s status and performance, and

e b) change or manage the system’s goal, which allows for flexibility in terms of OC [16].

Connection to Layer 0: The connection between Layer 3 and Layer 0 aims at ex-
tending the perception area of the isolated entity (framework and SuOC). The basic system
(Layers 0 to 2) is designed to operate on local information only, which might not reflect the
complete available information at the particular node. To alleviate this restricted percep-
tion, the Layer 0 components of directly neighbouring systems can be allowed to exchange
their sensor information through Layer 3. Considering the initially named example of ur-
ban traffic control at intersections, an exchange of sensor information between neighbouring
intersection controllers can be used to improve the switching decisions of traffic-adaptive
controllers. For instance, so-called NEMA-controllers [132] take gaps in arriving vehicle
queues into account — closely situated intersections are able to determine the best gaps in
the approaching traffic based on sensor data of their neighbours.

Connection to Layer 1: Besides a direct exchange of sensor data at Layer 0, communi-
cation on a higher abstraction level is performed between neighbouring Layer 1 components.
This communication can affect both — the observer and the controller part of Layer 1. The
observer is responsible for aggregating and augmenting the collected data from Layer 0 in
order to provide a situation description that reflects the current status of the system and
its perceivable environment. In this context, collaboration can provide a possibility for the
observer of Layer 1 to build even more reliable situation descriptions. Considering the traffic
control example, the observer can generate an improved prediction of the traffic situation by
taking the neighbours’ current situation into account, since this traffic will probably arrive
within a given time interval at the corresponding incoming section. Such an improved pre-
diction allows for an earlier adaptation of the parameter settings and consequently allows
for further increasing the SuOC’s performance.

In contrast, the controller part directly affects the adaptation strategy for the SuOC’s
parameter settings. Collaboration mechanisms can be applied to negotiate the particular
configurations of some parameters. For instance, urban intersection controllers are typically
coordinated along large traffic streams such as main arterial roads to form so-called Pro-
gressive Signal Systems (PSS). Therefore, the begin of a cycle is adjusted in such a way that
arriving vehicles on coordinated streams do not have to wait at red traffic lights when arriv-
ing at the next intersection. This parameter defining the relative begin of a cycle is called
offset (see Chapter 6.4.1) and can only be determined appropriately among neighbours.

Connection to Layer 2: The connection between Layer 2 and Layer 3 of the archi-
tecture affects the sandboxing. Simulation-based learning has the drawback of depending
on the availability of computational power. Some scenarios will not allow for an on-demand
usage of Layer 2 as originally implied by the architecture. For instance, a population of en-
tities might contain a subset coming with less energy and computational power, e.g. nodes

in wireless sensor networks (see Chapter 7.3.2). However, a situation-aware adaptation has
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to be possible. Therefore, collaboration comes into play, which provides external Layer 2
capabilities by sharing those of neighbouring nodes. Beside this extreme example of a com-
pletely missing Layer 2, further even more popular possibilities are feasible. Neighbouring
nodes can share their Layer 2 resources in case of idle times or return after failures. Fur-
thermore, double creation of similar rules can be avoided by exchanging existing rules. Such
a mechanism has been exemplarily investigated for the Organic Network Control System in
Chapter 7.4.

Connection to the user: Finally, Layer 3 incorporates the flexible character of an
OC system — the user or administrator has the opportunity to change the system’s goal
at runtime. Therefore, the goal manager provides access to the current objective function,
which is considered by the learning component of Layer 1 when determining the reward for
the last evaluation cycle and by the rule-generation component of Layer 2 when rating the
performance of a candidate parameter set within the simulation tool. As example for such
a change of the objective function serves again the traffic control domain. In high traffic
periods, the predominant goal is to optimise the throughput. In contrast, the goal during
low traffic periods might be adapted to decrease the delay times caused by red traffic lights.
In addition, Layer 3 incorporates the functionality to monitor the controlled system and its

behaviour — the user interface is situated here.

Due to the application-specific character of Layer 3, there are no well-defined tasks
like for the other layers when applying the framework to a new system. But the system
has to be able to communicate with its neighbours. Therefore, two basic components are
necessary: a communication interface for physically exchanging messages between entities
and an identifier for entities to recognise others. Within this thesis, these two components

are assumed to be available.

The Layer 3 component provides a basis for on-line communication and collaboration be-
tween neighbouring systems. Since the purpose of collaboration mechanisms is application-
specific, the component is mainly characterised by the application domain of the controlled
SuOC. Correspondingly, the communication itself is characterised by the particular enti-
ties. For instance, communication in data communication networks as considered by ONC
(see Chapter 7) can be established by taking advantage of the underlying communication
channel of the SuOC. But even in such networks the communication differs: latencies and
delays, link reliabilities, or delivery ratios of transmitted packages change with the type of
the network. Similarly, each intersection controller in urban road networks is assumed to
be connected with its direct neighbours, which reduces the problem to the one of ONC.
But — in some cases — such an assumption might not be possible. Here, further technical

equipment is needed or Layer 3 has to be deactivated.
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3.4 Discussion of Requirements

Based on the previously presented architectural design of the framework, the next section
discusses how the requirements as introduced in Chapter 2.1 are fulfilled:

A) Adaptivity: The control mechanism provided by the framework enables adap-
tivity for the parametrisable system. It adjusts variable parameters to changing internal
and external conditions.

B) Robustness: The control mechanism provides robustness against a set of dis-
turbances. In cases where the standard system would suffer due to unexpected behaviour,
the adaptive version reacts and is able to find acceptable solutions within the granted degree
of freedom. In this context, disturbances are not only failures and misbehaviour of individ-
ual components, but also unexpected situations where the static setup of parameters leads
to a dissatisfying system performance.

C) No interference with the system’s logic: The architectural design of the frame-
work wraps existing parametrisable systems and provides OC-characteristics for static sys-
tems (Layer 0). The framework does not interfere with the system’s logic — the com-
munication is realised using well-defined observation and adaptation interfaces.

D) Operability: Each layer of the system encapsulates a specific part of the logic — the
underlying SuOC is able to continue its work (remain operable) in cases where Layer 1
or 2 fail. It just falls back to a static character again by keeping the last configuration.

E) Flexibility: Besides disturbed situations, interventions of the user have to be cov-
ered. A possibility of flexible goals is foreseen allowing the user to exchange goals at
runtime.

F) Vast situation and configuration spaces: The system is designed to deal with
vast situation and configuration spaces. Due to the two-layered learning concept, it
can appropriately react on unanticipated situations.

G) Self-improvement: Layer 1 contains a learning component responsible for self-
improving the action-selection process at runtime.

H) Restricted exploration: The sandbox of Layer 2 and the boundaries for the learn-
ing component of Layer 1 restrict the trial-parts of learning — only pretested solutions
are allowed. Since a pretesting at design time is infeasible due to the vast situation spaces,
a sandbox solution is foreseen. This mechanism tests and evaluates possible actions for a
given situation at runtime without interfering with the productive system.

I) Decentralised operation and collaboration: Layer 3 provides decentralised
collaboration possibilities allowing for a controlled self-organised behaviour of several co-
operating elements.

J) Comprehensibility: The system design provides interfaces for monitoring. In ad-
dition, the actions performed by the additional adaptation component can be traced and
reconstructed — thus, the system’s behaviour is comprehensible to users.

K) Real-world requirements: The control mechanism of the framework can deal with
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real-world requirements, i.e. all kinds of improper inputs, noise, and continuous values.
L) Generalised approach: In general, the framework is applicable to all kinds of
technical systems. Four examples are introduced in the remaining chapters. In order to
investigate the general applicability, Chapter 8.3 provides a detailed analysis of this topic.
As a summary, the control mechanism provided by the proposed framework fulfils all

defined requirements as introduced in Chapter 2.1.

3.5 Summary

This chapter discussed the target definition and the scope of the proposed system, followed
by a detailed explanation of the architecture and its components. The resulting framework
allows for on-line adaptation of an existing system S to changing environmental conditions.
The architecture distinguishes between four different layers. The lowest layer (Layer 0)
wraps an existing technical system S into the framework by providing access through two
basic interfaces: one for the observation of the SuOC’s and its environmental status and one
for altering the parameter settings. In combination with the on-line adaptation component
of Layer 1, Layer 0 forms a first control loop of the system. Based on automated learning, the
system is able to improve its performance due to an optimised parameter-selection behaviour
over time.

The developed system provides a self-optimising behaviour with respect to the param-
eter selection. Therefore, automated learning is used without the drawbacks of “normal”
learning: trial and error. In order to guarantee that the system does not lead to failures
affecting the system’s performance significantly, two main differences to standard learning
approaches have been developed. The first restriction affects the set of possible choices
for the learning component — it is only allowed to select parameter sets that have been
generated for similar situations. Secondly, the explorative part of the learning component
is encapsulated and transferred to Layer 2 — this layer incorporates the sandbox-learning
paradigm. Parameter settings are tested under simulated conditions before they are applied
to the real system.

The basic system is defined by the Layers 0 to 2 and describes an isolated autonomously
acting system. Through the additional Layer 3, communication among and collaboration
between neighbouring systems is enabled. Collaboration is application-specific and ranges
from exchanging sensor data to negotiating parameter settings. The presented framework
is designed to provide a generalised solution. However, some basic tasks have to be fulfilled
before the framework is able to control a new system S and thus adapt it to changes in the
environmental conditions. Besides typical smaller implementation issues, these are mainly

the following five tasks:

1. Situation (observation model): All internal and environmental attributes having
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impact on the selection process or the performance measurement need to be available

through the observation interface of Layer 0.

. Similarity measurement: The selection process of the learning component needs

a measurement of similarity for the situation descriptions to be able to choose only

nearby rules.

. Performance metric: The self-optimising behaviour of the framework is based on

the existence of a metric defining good and bad behaviour.

. Configuration space (variable parameters): Obviously, a framework that is de-

signed to alter parameters of systems at runtime has to know which parameters have

to be changed.

. Simulation model: If not already contained in the framework, a simulation tool and

a realistic simulation model are needed to enable Layer 2 sandboxing.

The next chapter investigates which techniques should be applied to the learning task

at Layer 1 and the optimisation task at Layer 2.
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Chapter 4

Design Choices

The previous chapter introduced the framework’s architecture with a special focus on dis-
cussing the particular layers and their responsibilities. In addition, the tasks of the layers
have been outlined by defining abstract responsibilities. In contrast to this abstract focus,
this chapter investigates these particular tasks in detail and determines solutions for possible
design choices. For instance, the machine learning part of the architecture’s Layer 1 compo-
nent is defined based on its responsibilities and the designated result. Therefore, a specific
technique is needed, which is capable of fulfilling the corresponding tasks. Hence, the first
part of this chapter analyses the learning task, identifies possible techniques, and discusses
the usage of these different mechanisms. Based on an additional comparative study within
one exemplary application scenario, the achieved results of using these candidate techniques

are compared.

Considering the architecture as depicted in Figure 3.2, a design choice like the one for
the learning problem is also situated at Layer 2: the rule-generation component. The
architecture defines the need of an optimisation heuristic that is capable of finding the best
possible parameter configuration for the SuOC in one particular situation. Much effort has
been spent on investigating fast and accurate techniques to optimise a given function —
thus, the problem is similar to the learning problem outlined before. Hence, the second part
of this chapter analyses the optimisation task, identifies possible techniques, and discusses
the usage of them in the context of the framework. Finally, both aspects (learning and
optimisation) are consolidated and a recommendation on which combination promises the

best results within the framework is given.

61
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4.1 On-line Adaptation Using Machine Learning

In the first step, the question of how to realise the central learning component of Layer 1 is
investigated. Automated or machine learning has been a research area focussing on different
approaches and concepts to realise learning in technical systems for decades [133]. As a
result, a set of different techniques has been developed from which each single technique
is characterised by varying strengths and weaknesses. Thus, it is not the purpose of this
thesis to extend the existing set of different approaches, but to identify and adapt the most
promising ones according to the demands specified by the controller of Layer 1. Hence, this
section investigates the learning component of Layer 1 in detail and determines the most
promising way to realise the learning task. The investigation of the learning component
builds on previous research presented in [134].

Initially, the term “machine learning” needs to be defined to specify the context within
this thesis. Based on this definition, the special characteristics of the learning problem
are determined. Afterwards, possible techniques capable of coping with the problem are
identified and adjusted to meet the specific demands. Thereby, typical problems from the
field of machine learning are considered as reference and basis for a comparison. To validate
these analytical considerations, an empiric investigation has been performed that compares

the identified candidate techniques in an exemplary setting.

4.1.1 Term Definition: Machine Learning

Machine Learning (ML) is a well-established research area and has its origins in Artificial
Intelligence [135]. It forms a superordinate concept for all types of artificial knowledge
generation in computer systems based on experiences. Typically, an artificial system learns
by means of examples and is able to generalise them. The target is not to simply store
mappings between an input ¢; and an output oj in the form of i; — o, but rather to
“recognise” the regularity within the sample data. This is necessary, since such artificial
systems aim at being capable of classifying and handling previously unknown or unforeseen
data.

ML techniques have been successfully applied to various application areas. Currently,
they are mainly used in domains like data analysis, data mining, and pattern recognition
[133]. Nowadays, an increasing distribution can be observed in all kind of “intelligent”
systems, which are able to adapt themselves according to changing conditions [136]. These
obviously heterogeneous application domains have motivated researchers from different areas
to develop definitions for the term machine learning (or the basic learning problem) suiting
perfectly to their special demands and interests. Thus, a consideration of learning within the
proposed framework has to start with determining a definition that clarifies the demands of
the particular component. Therefore, the most important term mentioned in the previous

paragraph is taken into account: ezperience. Scientists like Alpaydim [136] summarise ML
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as meaning to program a computer in such a way that a given performance measurement
is increased by taking example data and historical experiences into account. More formally,
the definition given by Mitchell is used in the context of this thesis [125]:

Definition 4 (Learning Problem) A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.

Mapping this definition to the framework and the considered application scenarios, the
common problem becomes visible. The traffic control system has to select the duration of
green times at an intersection according to a given performance criterion (e.g. minimise de-
lays at the intersection). Based on the expected reward determined by the simulator when
generating the parameter set and experiences with the parameter set in previous cases, the
learning component can increase its selection strategy of the signal plans. Furthermore, the
control of data communication networks has to select network protocol configurations (like
buffer sizes, delays, etc.) according to a particular performance criterion (e.g. decrease the
overhead in mobile ad-hoc networks). As a summary, the problem defined by the frame-
work’s design is to increase the system’s performance by means of some kind of performance
criterion due to experiences — and accordingly an improvement of the parameter selection

strategy over time.

4.1.2 Characteristics of the Learning Problem

In literature, ML techniques are usually applied to artificial scenarios like controlling an
inverted pendulum [137], the approximation of a mathematical function [138], or choosing
the movements of an agent on a grid (the Woods-scenario [139]). Further popular applica-
tion scenarios with a more realistic background (as e.g. discussed by Mitchell [125]) include
learning to recognise spoken words [140], to drive autonomous vehicles [141], to classify
astronomical structures [142], or to play games like backgammon [143]. Although these ex-
amples represent a variety of different tasks for the responsible learning component, different
ML techniques can be used to realise the learning part — meaning they are able to improve
the behaviour of the automated system over time by taking experiences into account. In
addition, each learning problem has its own characteristics leading to the observation that
not each technique is applicable for each problem domain.

Consequently, the question arises how the learning problem of the Layer 1 component
is characterised in contrast to the already investigated problems. Although some of the
mentioned problems have a real-world background (e.g. recognise spoken words, drive au-
tonomous vehicles), most of the problems in literature are artificial, whereas the framework
of this thesis is designated to solve more complex real-world problems from different do-

mains. Hence, the first main difference to most of the already investigated problems is given
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by the typical characteristics of real-world scenarios like insufficient information, noise,
need of fast reaction times, or disturbances.

Especially compared to the Woods-scenario or backgammon, the Layer 1 component is
confronted with highly complex and vast configuration spaces for both — input and output
variables. As a result, the system has to cover larger spaces for actions (configura-
tions) and situations. Considering e.g. the control of data communication protocols, the
situation (or condition) serving as input to the learning component can contain attributes
like available neighbours, available resources, or movements. Neighbours in mobile ad-hoc
networks can highly vary due to the context — the extreme values of the possible range are
defined 1) by no neighbours (alone in the countryside) and 2) by several thousands (during
a football match or a concert). For the control of urban traffic lights, values for delay times,
queue sizes, and traffic flows for each contained turning movement will be considered to
describe the situation — all these values are real values ranging again from zero to several
thousands. In contrast, the most important situation characteristic for backgammon is the
distribution of the gaming pieces along the 24 fields of the backgammon board. Similar
observations can be made for the action part. In comparison, the Woods-scenario consists
of 6,561 different situations in its simplest setting and provides just four different actions
for each agent.

The third main difference is the missing final target state for Layer 1’s controller. For
backgammon or the Woods-scenario, the decision whether the agent has been successful or
not is simple: if it reached the target (Woods) or won the game (backgammon), it receives a
reward. In contrast, the continuous control of traffic lights at urban intersections or of data
communication protocols has no final target state. There is no single task to be completed
(like to find the food or keep the pendulum upright). The approach is based on a single-step
reward function, but the reward as measure for the quality of the last action is always noisy.

Closely connected to the problem of missing target states is the fourth difference: the
subsequent state is not deterministic. In literature, the function§ : § x A — S
is defined (with S the set of situations and A the set of possible actions) which results in
the state sy;1. For the Woods-scenario, the mapping is deterministic: if the agent moves to
cell x, the agent will be at that cell in the next cycle. The same observation can be made
for the backgammon player — after his move, the opponent can choose from a set of valid
moves and adjust the setting of the game in a deterministic way. Considering the control of
mobile ad-hoc network protocols, the effect is not that simple — the subsequent state is also
influenced by joins/leaves of other nodes or collisions on the channel — but this information is
transparent for the system. Similarly, the urban traffic control system can predict a change
of the delays for turning movements caused by a change of the control strategy — but there
are mutual influences with the selection strategies of its direct neighbours.

Besides the subsequent state, other attributes are non-deterministic compared to stan-
dard problems — the one with the highest influence is the non-deterministic reward.

Considering again the previous examples, the contrast is clearly visible. Within the Woods-
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scenario, the agent receives a fixed reward for finding the food. The same setup is used for
winning the backgammon game or keeping the pendulum upright. Although the Layer 1
component adapts the parameter configuration, the impact on the reward cannot be pre-
dicted absolutely correctly in advance, since other influential factors cannot be measured.
The action of the system might have been correct, but environmental factors can disturb
the effect in a way that the reward leads to a bad classification of the action. As example,
the Peer-to-Peer filesharing protocol “BitTorrent” can be controlled by the proposed system
with the reward defined as using the achieved download rate of the client. This download
rate is influenced by the configuration of the protocol parameters, but also by factors the
agent cannot even observe. As one example, a high load on the underlying network caused
by other applications can lead to a decrease of BitTorrent’s download rate and consequently
to a bad reward. Thus, the agent cannot assume that action a applied to situation s will re-
sult at each time ¢; in reward r(s, a); but rather the reward can be modelled as a randomised
variable with the expected value E[r(s,a)].

Probably all classical ML techniques are based on the existence of experiences E either
at design time or at runtime. The performance of the learning rate depends strongly on the
number of learning cycles — simplified, one can state that as more different experiences F
are available the better is the learning performance of the system. In some cases, this effect
can turn in the opposite direction (see “overfitting” problem in Neural Networks [144]).
Thus, the approach relies on a large number of learning cycles. In contrast, real-world ap-
plications have the problem that only few evaluation cycles are possible — in contrast to
simulated environments where all possible stimuli can be generated and analysed extremely
fast. Thus, the number of evaluations is restricted by the normal time of the day. Further-
more, the most prominent situations will account for the largest fraction of situations, while
other situations will only occur seldom (and hence are evaluated once in a while). A system
might be trained in advance, but the problem of on-line learning is still present, since only
a small fraction can be considered at design time.

As a conclusion, we can state that the learning problem of the Layer 1 component has its
own characteristics compared to standard learning problems. Hence, there is no commonly
agreed standard solution from literature to be obviously applied. Thus, the following part
focuses on determining candidate techniques and adapting them for an application in the

framework.

4.1.3 Machine Learning Techniques for Layer 1

Based on the preceding consideration of the learning problem’s characteristics, the next part
of this section deals with the question of how learning has been covered by research and how
these results can be applied to the particular problem defined for Layer 1. In addition, the

question arises which of the existing concepts from literature are applicable and how they
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have to be adapted to match the initially formulated safety restrictions.

Therefore, a first step is to classify existing approaches of machine learning to create
a basis for the succeeding question of which techniques are promising candidates. Several
different classifications are known in research, one of the most popular ones is based on the
way knowledge exists in the particular learning techniques: symbolic systems (propositional
logic, predicate logic) where knowledge is represented explicitly by examples and induced
rules are distinguished from subsymbolic systems like Artificial Neural Networks (ANN),
which are trained to show a specific behaviour, but which do not provide insights into the
“learned” solution process — here, knowledge is implicitly represented.

Based on Definition 4, one more popular aspect to distinguish between different classes
of ML techniques is given by the question of how the experiences E are present. Consider,
for example, a computer program controlling a player in the game four in a row. One
possible approach might be to provide a trainer that determines the ideal moves for specific
situations. Alternatively, the experiences E can be present in a more indirect form — the
automated player receives a feedback at the end of the game. Based on the outcome, it can
analyse whether its sequence of moves has been successful or not. The two possibilities are
representatives for two more generalised learning concepts: Supervised Learning realises the
learning (or training of the system) by providing examples and Reinforcement Learning by
means of reward or punishment (reflecting a positive or negative outcome).

Supervised Learning (SL) assumes to have an appropriate set of input and (correct)
output pairs available at design time. Typically, techniques from the field of SL are applied
to classify large data sets where an expert-classified subset already exists (see e.g. LeCun
et al.’s detection of handwritten digits [145]). Thus, a prerequisite for applying SL to the
learning task of the framework is the availability of optimal actions for different kinds of
situations — ideally covering the complete situation space. What seems to be manageable
for handwritten digits, is dramatically more complex for the control of varying technical
systems. For handwritten digits, a validation is based on a configuration space of 10 different
possibilities (the digits “0” to “9”). In contrast, a validation of correct matchings within the
proposed framework depends on an optimisation component and the possibility to oversee
the complete situation space at design time. Although the former aspect is potentially
feasible, it is time-intensive and requires large computational effort. Even more limiting is
the latter aspect. Typically, the situation space is too vast. In addition, a trained SL-system
is not able to take a feedback of the environment into account and is consequently not able
to further improve at runtime (or react appropriately to unanticipated situations).

The most famous representatives of SL are Concept Learning [146], Decision Trees [125],
Bayesian Belief Networks [147], or Artificial Neural Networks [148]. Although they de-
scribe different approaches and even different types of representing knowledge (implicitly
vs. explicitly), they all are based on a pretraining at design time and a succeeding static
configuration at runtime. Thus, SL techniques are not applicable to the framework.

Reinforcement Learning (RL) differs fundamentally from SL. Although the system
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also learns mappings between situations and actions, it is not supported by an external coach.
There is no training set allowing to derive a policy or generalise inherent correlations. In
contrast, the learning approach depends on receiving a feedback of the performed actions
providing the possibility to evaluate its decisions automatically. This evaluation is done
by receiving a numerical reward quantifying good or bad performance. If the initial state
has been improved by the last action (or set of actions) considering the particular task, the
system receives a high reward. In contrast, the system receives a low or even a negative
reward, if the chosen action has proven to be ineffective or bad [133]. Since the SuOC’s
performance needs to be quantifiable using numerical values, the basic concept suits the
initially defined requirements for learning in the developed framework.

Due to the on-line learning capability, RL is a widely investigated domain resulting
in various different solutions. Within this domain, three major concepts have to be distin-
guished: Temporal Difference (TD) learning [143], @Q-Learning [149], and Rule-based learning
[133]. TD Learning has been introduced by Samuel in 1959 [150]. He investigated possibili-
ties to develop an automated player with learning capabilities for the board game Draughts.
The concept relies on an evaluation function for all states of the board — such a function
estimates the probability that the own player wins. The estimations for succeeding states
serve as training input for preceding states [151]. This simple concept is also the main prob-
lem for the application to the framework’s learning problem. The next situation is predicted
based on the historical ordering of situations — this assumes a strong dependency between
situations and neglects unanticipated events like disturbances.

Q-Learning is an extension of TD and has been initially described by Watkins in [149].
He adapted the concept by changing the purpose of the evaluation function — it describes
pairs of states and actions. The system learns a function () mapping a pair of situation and

action onto a numeric reward:

Q:SzA - R (4.1)

If the system considers the expected reward as selection criterion, it has to determine
that action maximising @ for the given situation. In classic Q-Learning [149], this selection
process is done using a look-up table storing all pairs of situations and actions. Such a look-
up table is not feasible for continuous and vast situation spaces. Beyond look-up tables,
TD learning has been equipped with different update prediction functions (like function
approximation) all trying to reduce the limiting effect defined by look-up tables. But even
these variants have major drawbacks. They are not concordant with the safety-restrictions
of Layer 1’s learning component and there is no possibility to combine the approach with
Layer 2’s sandboxing.

Based on the early TD and Q-Learning approaches, Rule-based learning emerged as
a further reinforcement-based method. Early work by Holland [152, 153] served as ba-

sis for further developments, leading to one of the most active and well-documented areas
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in genetic-based machine learning [154]. As a result, Learning Classifier Systems (LCS)
[155] and the closely connected Fuzzy Classifier Systems [156] are well-established concepts.
Classifier systems store knowledge explicitly by using rules (the so-called classifiers), which
allows for a comprehensibility of their behaviour. They learn on-line by receiving a reward
from the environment and updating the performance values assigned to the classifiers. Clas-
sifier systems fulfil most of the requirements formulated for the learning task of Layer 1; the
most significant deviation can be observed when considering the rule-creation process and
the selection-base of the system. Thus, they are modified in the remainder to fully match
the demands.

Besides the two popular concepts SL and RL, several other directions of research are
known in literature. But these concept are neglected for varying reasons. In some cases,
mathematical inference and reasoning is used, which cannot be applied to the problem due
to inappropriate information and the lack of a consistent world model. In other techniques,
knowledge about the fitness landscape defined by the learning problem is required (see e.g.
[125, 136] for the previous examples). The discussion named only a few criteria why some
concepts are not applicable and others serve as basis for further adjustments. Thus, it sum-
marises the investigation performed on the basis of the initially formulated requirements
for the learning component and the special characteristics of the learning problem as in-
troduced previously. As a result of this process, a matrix has been generated classifying
each considered learning technique according to these criteria — this matrix can be found in

Appendix A.

4.1.4 A Modified Real-valued Learning Classifier System

As stated before, the most promising candidates are rule-based systems. Since there is no
adequate rule set in advance and due to the need of an improvement over time, simple
rule systems mapping a situation to an action are not useful. Instead, learning rule-based
systems are needed. The most prominent representatives are Learning Classifier Systems
(LCS). The field of LCSs as introduced by Holland in the 1970ies [152, 153] is probably one
of the best-investigated genetic-based machine learning domains in literature [154] and is
founded on the concepts of reinforcement learning. Holland describes the basic approach as

a three-step process:
e classify the input,
e choose an appropriate action, and
e gain experience from observing the behaviour [155].
This reflects exactly the learning problem outlined by the architecture at Layer 1.

In literature, two broad categories of LCS are known: Pittsburgh and Michigan style

classifier systems. The former one is based on concepts proposed by researchers at the
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University of Pittsburgh [157, 158]. This type of LCSs focuses on learning as an off-line
optimisation process. In contrast, researchers at the University of Michigan investigated
on-line learning systems. Since an on-line learning is targeted here, Pittsburgh-style is
neglected and Michigan-style is meant when discussing LCS in the following. Considering
the Michigan-direction in LCS research, the eXtended Classifier System (XCS) as proposed
by Wilson [159] is widely accepted as one of the most prominent variants and serves as basis
for several extensions. Figure 4.1 describes the typical schematic design of an XCS — the
basic concept is explained in the following, while the reader is referred to the literature for
further details and a detailed algorithmic description [160, 161, 162].
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Figure 4.1: Schematic overview of an XCS according to Wilson [159]

In general, an LCS is designed to learn the best action for a given situation — which
is typically defined as a vector of numerical values. In this context, best specifies that
action resulting in the highest reward. Therefore, the system contains a set of possible
actions from which it can choose the most promising one. The quality of this selection
process is improved over time by taking the reward into account — this value represents
the experience as mentioned in Definition 4. In other words, the environment provides
some kind of reinforcement (also called payoff) serving as a measure for the quality of
the last actions performed by the LCS. Considering the application within the proposed
framework, the success of the SuOC’s adaptation process is quantified by some kind of
performance measurement for the SuOC. Based on such a performance measurement, the
LCS can determine whether it is promising to choose a specific action again for a given

situation or not.
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In order to fulfil the described task, the LCS operates on large sets of rules, so-called
classifiers. Each of these classifiers represents a mapping of a condition (the situation) to
an action (a parameter set of the SuOC). Furthermore, it contains some rating attributes
— the learning is done by updating these rating attributes according to the performance of
the classifier when it has been applied to the system. A classifier within an XCS-style LCS
consists of several more attributes (see Figure 4.1) [160, 161, 162]:

e Condition: ¢ € C specifies the condition part of the classifier — the situation for
which the classifier can be applied. C'is defined as the complete situation space and

corresponds to the set Z in Chapter 3.

e Action: a € A specifies what the system does, if the classifier is chosen in the partic-

ular situation. A correpsonds to the set C'S as introduced in Chapter 3.

e Prediction: The prediction p is a forecast of the reward r, which is expected if the

proposed action a; is applied in the given situation c;.

e Error: The error € is a measurement of the wrong predictions occurred within the

preceding evaluation cycles.
e Fitness: The fitness F reflects the reliability of the classifier’s prediction.

These five attributes define the core of a classifier. In addition, further values can be
found in different implementations, like the number of occurrences of the classifier in action
sets, the averaged size of these action sets, or the last time the classifier participated in
forming offspring. For the context of this thesis, these further attributes are irrelevant.

As depicted in Figure 4.1, the basic cycle of the XCS can be divided into two phases: the
performance and the evaluation (or learning) phase. The former one determines one action
and applies this to the live systems, while the latter one is used to learn from the achieved
experience by observing the corresponding effect in the controlled system.

Performance phase: Initially, the LCS contains a basic set of classifiers — the popu-
lation denoted as [P]. The performance phase begins with comparing the condition parts
of all contained classifiers to the stimulus as observed from the environment — the matching
classifiers become part of the match set [M]. Typically, [M] consists of several different
actions proposed by the contained classifiers, but the system needs only one. Consequently,
it has to choose the most promising one. Thus, the next step is to build a prediction ar-
ray [PA] assigning one real-valued measurement to each distinct action proposed by the
classifiers in [M]. In Wilson’s XCS, this value is calculated as fitness-weighted prediction.
As a result, each action in [M] is rated by a numerical value — based on the corresponding
distribution, the required action is chosen. Following these measurements for all actions in
[M], there are several different strategies known to choose the required action, which will be
applied to the controlled system. For instance, one can obviously always choose the most

promising one (highest-weighted prediction value), or rely on probability-based approaches.
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Typically, a roulette-wheel-based determination process can be found in scenarios from lit-
erature [159], since this allows for a good trade-off between using the most promising action
and allowing others to proof their performance and consequently gain experience. All clas-
sifiers proposing the selected action form the action set [A]. The corresponding action is

performed afterwards and [A] is stored for later updating within the evaluation cycle.

Evaluation phase: The second phase — the evaluation phase — is responsible for updat-
ing the evaluation figures of the classifiers. This part of the process derives the knowledge
and stores it for further use. Since an XCS is an accuracy-based classifier system, the target
is to increase this accuracy x over time by using Temporal Difference Learning techniques
[149]. After applying the selected action a; to the system, the performance is observed and
some amount of payoff is received. Based on this payoff, the performance values of all clas-
sifiers contained in [A] are updated according to the observation. Initially, the prediction p
of each classifier is altered in the direction of the payoff using a Q-Learning-like algorithm.
The approach takes the maximum figure as part of the prediction array into account and

discounts this by a factor (by multiplication).

In addition, each classifier’s (contained in [A]) prediction error € and fitness f are updated
using the received payoff. Since the prediction p is a forecast of how the system will perform
using this classifier in the matching situation, the prediction error € describes the mean error
of this prediction. In contrast, the fitness value f considers the accuracy of the classifier’s
prediction — it is computed as follows. Initially, the accuracies  of all classifiers in [A] are
computed. Afterwards, the relative accuracy of each classifier is determined (divide x; by
the sum of all k; € [A]). Finally, the fitness value f is determined based on this relative
accuracy, which makes f representing the accuracy of the particular classifier in relation to
the accuracies of those classifiers typically being part of the same action sets. Consequently,
a pressure is put onto classifiers to perform better than similar ones — according to the
principle “survival of the fittest”. More details of the update mechanisms for p, €, and f
are given by Wilson [159].

Besides these two main phases of an LCS, an important question arises: where do the
classifiers come from? The answer to this question is founded on two different mechanisms:
1) the covering process and 2) the Genetic Algorithm (GA). If no matching classifier was
found during the building process of the match set, a classifier consisting of a condition
matching the current stimulus, a random action, and a default value is added to the rule base.
This process is called covering. Additionally, a reproduction cycle is started sporadically.

Within this cycle some classifiers are chosen to be ¢

‘parent” individuals, and the genetic
operators crossover and/or mutation are applied to copies of these parents to form offspring,
which are inserted to the rule base [159]. Classifiers with high accuracy values are reproduced
more frequently than less accurate classifiers. In Wilson’s XCS algorithm, the generation of
offspring is performed on the action set, other variants consider the match set or the whole

population. For further details on this topic, the reader is referred to Wilson [139, 159].
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Since the concept contains a mechanism to create new classifiers, it needs another mech-
anism to delete bad classifiers in order to keep the size of the rule-base at a manageable
level. The complexity of an LCS depends on the number of contained classifiers. In each
performance phase, the population has to be searched for matching classifiers. Afterwards,
only subsets of the population ([A] and [M]) are considered. The corresponding complexity
of the LCS is O(n) with n denoting the number of classifiers. In order to keep the search
feasible although new classifiers are created continuously, a mechanism to get rid of bad or
redundant ones operates on the population regularly. Wilson’s XCS is configured to keep the
population size at a given level. Therefore, the proposed concept selects existing classifiers
to be substituted stochastically whenever new classifiers are created.

Modifications of the original algorithm: Although LCSs are evolutionary on-line
learning systems, some modifications are necessary before using them for the control task
of the framework. The modifications described in the following part of this chapter are
based on previous work (cf. [163, 164, 2]). Existing systems like XCS (which serves as basis
for a modified version) create classifiers in a stochastic process and evaluate their quality
by applying their actions directly to the environment. For the task defined by Layer 1 of
the architecture, this is inadequate due to, for instance, the safety requirements formulated
before. In order to use an LCS within the proposed framework, both aspects of the classifier
generation have to be adapted: 1) the covering mechanism and 2) the rule generation using
GAs. The latter part is already considered within the architecture of the framework —
instead of using a GA on the action set [AS], new classifiers — or more precisely their action
parts containing the SuOC’s parameters — are evolved by an optimisation heuristic, which
uses a simulation software to evaluate the parameters’ quality with respect to a specific
situation. Due to this sandboring, an approximate quality of a classifier is known even if
it has not been previously applied to the SuOC in the real environment. Although it is
assumed that the simulation models of Layer 2 reflect the reality, imprecisions induced by
the simulation-based evaluation are inevitable — however, the on-line learning performed
by the LCS is intended to cope with these limitations. During the overall operation time,
underperforming classifiers are sorted out — with underperform meaning that they do not
reach the best performance, but still do not behave badly.

The concept of the previous paragraph demands that Layer 2 is activated whenever the
LCS does not contain a matching or only inappropriate rules. Unfortunately, evolving good
parameters based on simulations takes time, while an LCS is expected to react on changes
in the observed environment immediately. Hence, a mechanism is needed that provides a
promising action, although the rule base does not cover the current stimulus — in Wilson’s
XCS, this is done by the covering mechanism. Again, this part has to be adapted, since a
randomised approach cannot be tolerated. Thus, covering is also customised by 1) selecting
a classifier located most “closely” to the unmatched situation and 2) widening its condition
as far as necessary to match the situation. The widening of existing classifiers located closely

to an unmatched situation enables an immediate response of the LCS while, on the other
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Figure 4.2: Modified covering mechanism

hand, the situation-dependent quality of the parameter set remains (somewhat) predictable.
Figure 4.2 illustrates the concept of the modified covering mechanism using an example with
a two-dimensional situation space. The point marked “Input” in the two-dimensional space
describes the observed situation. In the example, the rule base contains only two classifiers:
A and B. Both classifiers cover a certain part of the search space defined by intervals in
each dimension. By copying A and B and widening their condition parts (the intervals)
as far as necessary, new classifiers are created that match the current stimulus. Based on
the discussed adaptations, the developed variant of Wilson’s XCS can be applied to the

framework and used as learning component.

Management of the rule-base: In addition, stochastically organised deletion of classi-
fiers is not useful if the generation is done using time- and resource-expensive optimisations.
Thus, the concept has been adapted as follows. Whenever new classifiers are created by
Layer 2, the mechanism searches for other classifiers covering the same condition and ex-
changes them by the new one. Typically, this happens if the covering component has copied
a nearby classifier. If no preceding classifier is found, a classifier is only exchanged when
matching the following conditions: 1) it has a given minimum experience (has been part of
action sets), 2) a relatively low fitness value (compared to the rest of the population), and
3) it has been created by covering. Layer 2-based 