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1 Introduction

Besides their application to the nonrelativistic AdS/CFT correspondence, nonrelativistic

conformal algebras [1–4] attract attention due to their non-trivial structure. The conformal

Galilei algebra is determined by a positive half-integer or integer number ` and the number d

of spatial dimensions. Most of its features do not depend on the dimension, except in the

special case of d = 2, where an additional central-charge extension is admitted [5, 6]. The

(more relevant) parameter ` counts the number of vector generators

G
(n)
i with i = 1, . . . , d and n = 0, . . . , 2` (1.1)

which span the `-conformal Galilei algebra together with the so(d) generators Mij for 1 ≤
i < j ≤ d and the generators P , D and K of the one-dimensional conformal algebra [4, 7].

Mechanical models invariant under `-conformal Galilei transformations typically con-

tain higher time derivatives for ` > 1
2 [7, 8, 10–14]. The method of nonlinear realiza-

tions [15–18] together with the inverse Higgs phenomenon [19] work quite well for the

`-conformal Galilei algebra, giving rise to interesting invariant Lagrangians [10, 11]. How-

ever, recent results on the conformal invariance of Pais-Uhlenbeck oscillators [20] with

specific frequencies [8, 9] appear to be add odds with the nonlinear-realization approach.

Indeed, in [8] the full `-conformal Galilei group was realized on a single bosonic field, thus

achieving conformal invariance for Pais-Uhlenbeck oscillators without a dilaton. To de-

scribe such a situation within the nonlinear-realization approach, one has to include the
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dilatation D and the conformal boost K in the stability subgroup. Usually, such an ex-

tension of the stability subgroup is undesirable, because the generators of the coset fail to

form a representation of the stability subgroup, and the construction of invariant actions

becomes problematic. In this paper we resolve this paradox by explicitly demonstrating (in

section 2) how actions can easily be constructed for such unusual cosets and transformation

properties of the fields and Cartan forms. Moreover, we show that the minimal actions in

d = 2 describe Pais-Uhlenbeck oscillators with specific frequencies1

ω, 3ω, 5ω, . . . , 2`ω for ` ∈ Z+
1

2
and 2ω, 4ω, 6ω, . . . , 2`ω for ` ∈ Z , (1.2)

where the basis frequency ω is a parameter entering the nonlinear realization.

For d = 2 it turns out to be advantageous to relabel the vector generators as [12]

Gα and Gα with α = −`, . . . , ` . (1.3)

In this notation (see (2.1) below) the ` = 1
2 -conformal Galilei algebra resembles the N = 2

superconformal algebra in one dimension, except that the fermionic generators are com-

muting (to zero). This raises the question whether one can make these generators non-

commuting, thereby introducing a deformation of the Schrödinger algebra. We analyze this

possibility (in section 3) and present the simplest invariant action describing this newly de-

formed variant of the harmonic oscillator. We also find the general solution for its equation

of motion.

As a byproduct of our deformation, the one-dimensional conformal group is realized in

an unusual way on a single complex bosonic field. We employ (in section 4) our modified

realization of the conformal group to generalize the recent investigation [21–23] of four-

dimensional Ricci-flat metrics with SL(2) symmetry. Reproducing their near-horizon Kerr

metric for ω = 0, we find for ω 6=0 a very specific modification affecting only the radial

and time variables. It is easy to include the effect of a cosmological constant, which yields

new constant-curvature metrics. In this case we present analytic expressions only for a

one-parameter family and for some isolated solutions.

2 Conformal Galilei group realization and Pais-Uhlenbeck oscillators

Recently it has been shown [8, 9] that the Pais-Uhlenbeck oscillator enjoys an `-conformal

Newton-Hooke symmetry for half-integer or integer values of ` if the oscillation frequency

is an odd or even integer multiple of the basis frequency ω, up to 2`ω, respectively. In this

section we are going to construct the minimal realization (on one complex bosonic field) of

`-conformal Galilei and Newton-Hooke symmetries for both integer and half-integer values

of the parameter `. We will demonstrate that the simplest invariant actions describe the

corresponding conformal Pais-Uhlenbeck oscillators.

To describe both, integer and half-integer, `-conformal symmetries we need to consider

conformal Galilei symmetry in 2+1 dimensions where the corresponding algebra has the

1These relations have been found in [8, 9].
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form

i [Ln, Lm] = (n−m)Ln+m, n,m = −1, 0, 1, (Ln)† = Ln, (2.1)

i [Ln, Gα] = (n`− α)Gα+n, i
[
Ln, Gα

]
= (n`− α)Gα+n, α = −`,−`+ 1, . . . , `,

(Gα)† = Gα, [U,Gα] = Gα,
[
U,Gα

]
= −Gα, (U)† = U.

This algebra admits a central-charge extension [7] which looks slightly different for half-

integer and integer `,

i
[
Gα, Gβ

]
= (−1)`+α (`+ α)! (`+ β)! δα+β,0 Ĉ, for half integer `, α, β, (2.2)[

Gα, Gβ
]

= (−1)`+α (`+ α)! (`+ β)! δα+β,0 Ĉ, for integer `, α, β, (2.3)

if we insist on the hermicity of the central charge Ĉ† = Ĉ.

We aim for a nonlinear realization of the `-conformal Galilei group G in the coset G/H

with the choice of

H = span(L0, L1, U, Ĉ). (2.4)

This choice of stability subgroup H is quite unusual, because the dilatation L0 and the

conformal boost L1 will then generate unbroken symmetries. Previously [10], nonlinear

realizations of this group took L0 and L1 to be spontaneously broken and thus always

featured a dilaton among the physical fields. In contrast, in our approach only Gα and Gα
are spontaneously broken.

Our parametrization of the coset space reads

g = eit(L−1+ω2L1)
∏̀
α=−`

ei(uαGα+ūαGα), (2.5)

introducing a parameter ω. Although ω does not enter the `-conformal Galilei algebra, it

affects its dynamical realization, and in this context the term ‘`-conformal Newton-Hooke

algebra’ is often used [24].2 The `-conformal Galilei group is realized by left multiplications

on this coset,

g0 g = g′ h, h ∈ H. (2.6)

Thus, with respect to conformal transformations g0 = ei(aL−1+bL0+cL1) our fields uα, ūα
and time t transform as3

δt =
1 + cos(2ωt)

2
a+

sin(2ωt)

2ω
b+

1− cos(2ωt)

2ω2
c ≡ f(t),

u′−`(t
′) = ` ḟ u−`(t), ū

′
−`(t

′) = ` ḟ ū−`(t). (2.7)

Up to a redefinition of the parameters a, b, c, these transformations exactly coincide with

those in [8].

To find the transformation properties of the “lowest-weight” fields u−` and ū−` under

the shift symmetries generated by

gα = ei(bαGα+b̄αGα), (2.8)

2We thank A. Galajinsky for pointing this out to us.
3In what follows we will need to know the transformation properties of u−` and ū−` only.
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one has to commute gα past the factor eit(L−1+ω2L1) in the coset element (2.5). This is

achieved by employing the relation [25]

eit(L−1+ω2L1) = ei
tan(ωt)
ω

L−1 e−2i log(cos(ωt))L0 eiω tan(ωt)L1 , (2.9)

which easily yields

δαu−` = bα
tan`+α(ωt) cos2`(ωt)

ω`+α
, δαū−` = b̄α

tan`+α(ωt) cos2`(ωt)

ω`+α
. (2.10)

Apparently, for any given value of ` the transformations (2.10) are just combinations of

the shifts

e−2i `ωt, e−2i (`−1)ωt, . . . , e2i (`−1)ωt, e2i `ωt (2.11)

(including constants in the case of integer `).

The next step is to calculate the Cartan forms for g in (2.5),

g−1 d g = i Ω−1

(
L−1 + ω2L1

)
+ i

∑̀
α=−`

(
ωαGα + ω̄αGα

)
+ i ΩCĈ,

Ω−1 = dt, ωα = duα +Aαγ uγ dt, ω̄α = dūα +Aαγ ūγdt, (2.12)

where Aαγ is the (2`+1)× (2`+1) matrix

A =



0 −1 0 . . . 0 0 0

2`ω2 0 −2 . . . 0 0 0

0 (2`−1)ω2 0 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 −2`+1 0

0 0 0 . . . 2ω2 0 −2`

0 0 0 . . . 0 ω2 0


. (2.13)

The above calculations are quite similar to those ones performed in [10].

From the general theory of nonlinear realizations [15–18] it follows that the forms

ωα and ω̄α (2.12) are invariant with respect to the shift symmetries (2.8) and transform

nontrivially under the conformal group (2.7), because

ei(aL−1+bL0+cL1) g = g′ ei(b+ct)L0 eicL1 eihĈ (2.14)

and, therefore,

(g′)−1dg′ = eihĈ eicL1 ei(b+ct)L0
(
g−1dg

)
e−i(b+ct)L0 e−icL1 e−ihĈ

+
(
eihĈ eicL1 ei(b+ct)L0

)
d
(
e−i(b+ct)L0 e−icL1 e−ihĈ

)
. (2.15)

The factor ei(b+ct)L0 just rescales the forms ωα (2.12) and the factor eihĈ is harmless for

these forms, while the second factor eicL1 will seriously reshuffle them. This is the price we

have to pay for the non-orthonormal coset (2.5).4 Nevertheless, the conditions

ωα = ω̄α = 0 for α = −`, . . . , `−1 (2.16)

4Orthonormality means that the coset generators form a representation of the stability subgroup. In

our case this is not so, because i[L−1, L1] = −2L0.
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are invariant under all symmetries. Thus, the entire tower of fields (uα, ūα|α = −`+1, . . . , `)

may be covariantly expressed through time derivatives of the lowest-weight fields u−` and

ū−` as

u−`+1 = u̇−`, u−`+2 =
1

2

(
ü−` + 2`ω2u−`

)
,

ū−`+1 = ˙̄u−`, ū−`+2 =
1

2

(
¨̄u−` + 2`ω2ū−`

)
, etc. (2.17)

This is the inverse Higgs phenomenon [19]. In addition we impose the covariant constraints

ω` = ω̄` = 0, (2.18)

which are just the equations of motion. It is not hard to check that they coincide with the

characteristic equation for the matrix A (2.13) written for the time derivative d
dt , i.e. with

the equations(
d2

dt2
+ ω2

)(
d2

dt2
+ 9ω2

)
. . .

(
d2

dt2
+ (2`)2ω2

)
u−` =

`−1/2∏
k=0

(
d2

dt2
+ (2k + 1)2ω2

)
u−` = 0,

(2.19)

d

dt

(
d2

dt2
+ 4ω2

)(
d2

dt2
+ 16ω2

)
. . .

(
d2

dt2
+ (2`)2ω2

)
u−` =

∏̀
k=1

(
d2

dt2
+ (2k)2ω2

)
u̇−` = 0,

(2.20)

for half-integer and integer `, correspondingly. Clearly, these equations follow from the

conformally invariant Pais-Uhlenbeck oscillator actions

SPU` =

∫
dt ū−`

`−1/2∏
k=0

(
d2

dt2
+ (2k + 1)2ω2

)
u−`

or SPU` = i

∫
dt ū−`

∏̀
k=1

(
d2

dt2
+ (2k)2ω2

)
u̇−`, (2.21)

respectively.

Thus, the nonlinear realization of the `-conformal Galilei group in the coset (2.5) gives

rise to the conformally invariant Pais-Uhlenbeck oscillators.

We have checked in the lowest cases that the Lagrangian is just the Cartan form for the

central charge Ĉ. Unfortunately, we did not succeed to bring the intermediate calculations

into readable form and, hence, a rigorous proof of this statement is lacking.

Let us complete this section with two comments.

• The main difference of our nonlinear realization with those considered in [10] is

putting the generators L0 and L−1 into the stability subgroup H (2.4). We may

restore these generators via employing a coset parametrized by

g = eit(L−1+ω2L1)
∏̀
α=−`

ei(uαGα+ūαGα)eiuL0eizL1 . (2.22)
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The additional factors will then seriously reshuffle the forms ωα, ω̄α of (2.12). Nev-

ertheless, the full set of constraints ωα = ω̄α = 0 for α = −`, . . . , ` will produce

the same set of equations of motion (2.19) and (2.20). The dilaton u will decouple

and obey the standard equation of motion upon imposing the additional constraints

ωL0 = ωL1 = 0 [25].

• However, if instead we use the coset

g = eit(L−1+ω2L1)eiuL0eizL1
∏̀
α=−`

ei(uαGα+ūαGα) (2.23)

as in [10], then the equations of motion will get modified by interactions between

the dilaton u and the fields u−` and ū−`. Passing from (2.23) to (2.22) requires a

redefinition of all the fields uα, ūα. In effect, we claim that the equations of motion

of [10] may be decoupled from the dilaton by a nonlinear redefinition of the fields.

3 A deformation of the Schrödinger algebra

3.1 Deformed oscillator

The commutation relations of the `-conformal Galilei algebra written in the form (2.1)

are reminiscent of the relations of the wedge subalgebra in the Virasoro algebra extended

by two commuting primary fields of the conformal weights `+1. From this analogy it is

natural to ask: can one admit nontrivial relations between these primary fields, i.e. make

the shift generators Gα and Gα non-commuting? A natural choice consists in the wedge

subalgebra in some nonlinear, W-type algebra discovered by A.B. Zamolodchikov [26]. Let

us consider the simplest case of a such deformation.

The basic idea is to replace the ` = 1
2 conformal Galilei algebra by the factor algebra

of the wedge subalgebra in W
(2)
3 [27, 28] over composite higher-spin generators, i.e. a linear

su(1, 2) algebra with the following commutation relations,

i [Ln, Lm] = (n−m)Ln+m, i [Ln, Gr] =
(n

2
− r
)
Gn+r, i

[
Ln, Gr

]
=
(n

2
− r
)
Gn+r,

[U,Gr] = Gr,
[
U,Gr

]
= −Gr,

i
[
Gr, Gs

]
= γ

(
3

2
(r − s)U − iLr+s

)
, n,m = −1, 0, 1, r, s = −1/2, 1/2. (3.1)

Here, γ is a deformation parameter: if γ = 0, we come back to the ` = 1
2 conformal Galilei

algebra. The exact value of γ is inessential: if nonzero it can be put to unity by a rescaling

of the generators Gr and Gr.

We choose the stability subalgebra H as

H = span(L0, L1, U) (3.2)

and realize this deformed symmetry by left multiplications of

g = eit(L−1+ω2L1) ei(uG−1/2+ūG−1/2) ei(vG1/2+v̄G1/2). (3.3)

– 6 –
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The transformation properties of the time t and the lowest-weight fields u, ū get deformed

for γ 6= 0:

g0 =ei aL−1 :
{
δt=a

(
sin2(ωt)+ 4 cos(2ωt)

4−γ2ω2(u ū)2

)
, δu=−a2ωu

(
sin(2ωt)+ 4i γω cos(2ωt)

4−γ2ω2(u ū)2 u ū
)
,

g0 =ei bL0 :
{
δt= b sin(2ωt)

2ω

(
4+γ2ω2(u ū)2

4−γ2ω2(u ū)2

)
, δu= b

2u
(

cos(2ωt)− 4iγω sin(2ωt)
4−γ2ω2(u ū)2u ū

)
,

g0 =ei cL1 :
{
δt= c

ω2

(
cos2(ωt)− 4 cos(2ωt)

4−γ2ω2(u ū)2

)
, δu= c

2ωu
(

sin(2ωt)+ 4iγω cos(2ωt)
4−γ2ω2(u ū)2 u ū

)
,

g0 =ei(aG−1/2+āḠ−1/2) :

{
δt= 2iγ cos(ωt )(āu−aū)+γ2ω sin(ωt)(āu+aū)u ū

4−γ2ω2(u ū)2

δu=a cos(ωt)− iγω
2 sin(ωt)u(2āu+aū)− i

2γω
2u2 ūδt,

g0 =ei(bG1/2+b̄G1/2) :

{
δt= 2iγ sin(ωt) (b̄u−bū)−γ2ω cos(ωt)(b̄u+bū)u ū

ω (4−γ2ω2(u ū)2)

δu= sin(ωt)
ω b+ iγ

2 cos(ωt)u(2b̄u+bū)− i
2γω

2u2 ūδt,

g0 =eiαU : δu=iαu. (3.4)

In what follows, we will need only the Cartan forms ω±1/2, ω̄±1/2 and ωU which read

ω−1/2 = du+
i

2
γ ω2u2 ū dt− vdτ, ω̄−1/2 =

(
ω−1/2

)∗
,

ω1/2 = dv +
i

2
γ v2 v̄ dτ − i

2
γ v

[
2v

(
dū− i

2
γ ω2u ū2 dt

)
+ v̄

(
du+

i

2
γ ω2u2 ū dt

)]
+

3i

2
γ ω2v u ū dt+ ω2 u dt, ω̄1/2 =

(
ω1/2

)∗
,

ωU =
3

2
γ

[
v v̄ dτ − v

(
dū− i

2
γ ω2u ū2 dt

)
− v̄

(
du+

i

2
γ ω2u2 ū dt

)
+ ω2u ū dt

]
, (3.5)

where

dτ =

(
1 +

1

4
γ2 ω2u2 ū2

)
dt+

i

2
γ (u dū− ū du) . (3.6)

The inverse Higgs constraints are the same as in the undeformed case,

ω−1/2 = ω̄−1/2 = 0 ⇒ v =
u̇+ iγ ω

2

2 u2 ū

1 + iγ2 (u ˙̄u− ūu̇) + γ2 ω2

4 u2 ū2
, v̄ = v?. (3.7)

With these constraints taken into account, the form ωU simplifies to

ωU = −3

2
γ
(
v v̄ dτ − ω2u ū dt

)
. (3.8)

Observing that under all transformations (3.4) the form ωU only shifts by an exact differ-

ential, we can write down a simple invariant action,

S = − 2

3γ

∫
ωU =

∫
dt

u̇ ˙̄u− ω2u ū

1 + iγ2 (u ˙̄u− ū u̇) + 1
4γ

2ω2u2ū2
. (3.9)

The equations of motion following from this action coincide with those obtained from

the constraints

ω1/2 = ω̄1/2 = 0 ⇒ v̇ − iγv2

(
˙̄u− i

2
γ ω2u ū2

)
+ ω2u

(
3i

2
γvū+ 1

)
= 0, (3.10)

where v, v̄ are defined in (3.7).
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We conclude that the deformation of the symmetry algebra, i.e. the passing from the

` = 1/2 Galilei algebra to the su(1, 2) algebra produces a non-polynomial velocity depen-

dence in the action (3.9). The “free”(ω = 0) system shares this feature. The undeformed

(γ = 0) case describes a harmonic oscillator (or, with ω = 0, a free particle). The intriguing

question is whether our deformation preserves the integrability of the harmonic oscillator?

In the next section we will prove this by explicit construction of the general solution for

the system (3.9).

3.2 General solution

The integrability of the system (3.9) is evident due to conservation of the angular momen-

tum

i (ūv − uv̄) + γuūvv̄ = const =: C, (3.11)

which commutes with the Hamiltonian5

H =

(
1 +

1

4
ω2γ2u2ū2

)
vv̄ − i

2
ω2γ uū (uv̄ − ūv) + ω2uū. (3.12)

Thus, one may directly solve the equations of motion.

However, the deformed oscillator (3.9) possesses some interesting properties which

allow us to find the general solution in a purely algebraic way. Let us summarize

these properties.

• The currents I and Ī obey oscillator equations,

I = v̄ (1 + iγūv) , Ī = v (1− iγuv̄) ⇒ Ï + ω2I = 0 and ¨̄I + ω2Ī = 0.

(3.13)

• The current I2 oscillates with twice the frequency,

I2 = uv̄ + ūv ⇒ Ï2 + 4ω2I2 = 0. (3.14)

• Employing the evident solutions of (3.13) and (3.14),

I = A sin(ωt) +B cos(ωt), Ī = Ā sin(ωt) + B̄ cos(ωt),

I2 = µ
sin(2ωt)

2ω
+ ν cos(2ωt), (3.15)

and the conservation (3.11) one finds algebraically that

u=
2i(1+γC)+γI2−i

√
4(1+γC)−γ2I2

2

2γI
and v=

(
iγI2+

√
4(1+γC)−γ2I2

2

)
Ī

2(1+γC)
.

(3.16)

5The standard expression for the Hamiltonian may be obtained by using p =
(
1 + iγ

2
ūv

)
v̄ and p̄ =(

1− iγ
2
uv̄

)
v.
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• The constraints (3.7) yield three restrictions on the coefficients (A, Ā,B, B̄, µ, ν)

in (3.15), which may be solved for A, Ā and µ,

µ =
2BB̄

1 + γC
− ω2 (ν2 + ωC2)(1 + γC)

2BB̄
, A = −ω (ν − iC)(1 + γC)

2B̄
,

Ā = −ω (ν + iC)(1 + γC)

2B
, (3.17)

reducing the independent constants to (B, B̄, ν, C), which is the anticipated number.

The energy of this solution is given by the Hamiltonian H (3.12) as

E =
BB̄

1 + γC
+ ω2 (ν2 + C2)(1 + γC)

4BB̄
=

1

2

(
µ+

4AĀ

1 + γC

)
. (3.18)

We note that, for the special value C = − 1
γ , the system has only the trivial solution

u = ū = 0.

3.3 The ω = 0 case

It is worth commenting on the ω = 0 case. In this limit everything greatly simplifies. The

action reads

S0 =

∫
dt

u̇ ˙̄u

1 + iγ2 (u ˙̄u− ū u̇)
, (3.19)

while its symmetry transformations acquire the form

g0 = ei aL−1 :
{
δt = a,

g0 = ei bL0 :
{
δt = b t, δu = b

2u,

g0 = ei cL1 :
{
δt = ct2 − 1

4cγ
2 (u ū)2 , δu = ctu+ i

2cγu
2ū,

g0 = ei(aG−1/2+āḠ−1/2) :
{
δt = i

2γ (āu− aū) , δu = a,

g0 = ei(bG1/2+b̄G1/2) :

{
δt = i

2γt
(
b̄u− bū

)
− 1

4γ
2uū

(
b̄u+ bū

)
δu = b t+ i

2γu
(
2 b̄ u+ b ū

)
,

g0 = eiαU : δu = iαu. (3.20)

The expressions for the higher Goldstone fields v and v̄ (3.7) become very simple,

v =
u̇

1 + iγ2 (u ˙̄u− ūu̇)
, v̄ =

˙̄u

1 + iγ2 (u ˙̄u− ūu̇)
, (3.21)

as do the equations of motion,

v̇ − iγv2 ˙̄u = 0. (3.22)

Since for ω = 0 the Hamiltonian H (3.12) reduces to

H0 = vv̄, (3.23)
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that the equations (3.22) merely state that the currents

I = v̄ (1 + iγūv) and Ī = v (1− iγuv̄) (3.24)

are conserved,

İ = 0 and ˙̄I = 0. (3.25)

Thus, these currents — corresponding to the shift generators G−1/2 and G−1/2 — commute

with the Hamiltonian (3.23).

Concerning the general solution of the equations of motion (3.22), we still have a free

equation for the current I2 (3.14),

I2 = uv̄ + ūv ⇒ Ï2 = 0, (3.26)

and therefore obtain

I = B, Ī = B̄, I2 = µ t+ ν. (3.27)

The angular momentum (3.11) is still conserved, and so one may algebraically find the

solution of the equations of motion in the form

u =
2i(1 + γC) + γI2 − i

√
4(1 + γC)− γ2I2

2

2γI
. (3.28)

Again, checking the relations (3.21) determines the coefficient µ in (3.27) to

µ =
2BB̄

1 + γC
. (3.29)

The energy of this solution is derived from the Hamiltonian H0 (3.23),

E =
BB̄

1 + γC
=

1

2
µ. (3.30)

4 Massive extension of near-horizon Einstein metrics

4.1 Deforming the near-horizon Kerr metric

In the ω = 0 limit, considered in the previous subsection, the transformations of our fields

u, ū and the time t exhibit interesting properties. After passing to a new basis {t, ρ, φ}
defined by

ρ =
1

u ū
, φ = − i

2
log
(u
ū

)
, (4.1)

the so(1, 2) transformations (3.20) acquire the form

δt = a+ bt+ c

(
t2 − γ2

4ρ2

)
, δρ = −bρ− 2ctρ, δφ =

cγ

2ρ
, (4.2)

where, as before, the parameters a, b, c correspond to translations (L−1), dilatations (L0)

and conformal boosts (L1), respectively. This form resembles the realization of the one-

dimensional conformal symmetry found by Bardeen and Horowitz [29] in considering the

near-horizon limit of the four-dimensional Kerr black hole.6

6The precise relation is obtained via replacing γ → 2iγ and φ→ −2iφ.
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In the same basis (4.1), the ω 6= 0 so(1, 2) transformations (3.4) read

δt = a

(
4ρ2 cos(2ωt)

4ρ2−ω2γ2
+sin2(ωt)

)
+b

(4ρ2+ω2γ2) sin(2ωt)

2ω(4ρ2−ω2γ2)
− c

ω2

(
4ρ2 cos(2ωt)

4ρ2−ω2γ2
−cos2(ωt)

)
,

δρ = aω sin(2ωt)ρ−b cos(2ωt)ρ−csin(2ωt)ρ

ω
,

δφ = −a2ω2γ cos(2ωt)ρ

4ρ2−ω2γ2
−b2ωγ sin(2ωt)ρ

4ρ2−ω2ρ2
+c

2γ cos(2ωt)ρ

4ρ2−ω2γ2
. (4.3)

Does there exist some ω 6= 0 deformation of the near-horizon Kerr solution in which the con-

formal so(1, 2) symmetry is realized as in (4.3)? To answer this question we apply the pro-

cedure performed in [22]. The conformal invariants entering the near-horizon metric read

ω1 =

(
2ρ

γ
− ω2 γ

2ρ

)2

dt2 +
dρ2

ρ2
, ω2 =

(
2ρ

γ
+ ω2 γ

2ρ

)
dt+ 2dφ, dθ, (4.4)

where θ is the latitudinal angular variable, which is inert under the conformal transfor-

mations (4.3). With these invariants one may express the most general four-dimensional

conformally invariant metric as

ds2 = F (θ)

[(
2ρ

γ
− ω2 γ

2ρ

)2

dt2 +
dρ2

ρ2
+ dθ2

]
−G(θ)

[(
2ρ

γ
+ ω2 γ

2ρ

)
dt+ 2dφ

]2

. (4.5)

Note that shifting ρ → ωρ and t → ω−1t corresponds to putting ω = 1, and redefining

ρ→ γρ amounts to setting γ = 1. The vacuum Einstein equations

Rµν = 0 (4.6)

impose conditions merely on the coefficient functions F (θ) and G(θ):

2(F + F ′′)(2F − F ′′) + 3(F ′ + F ′′′)F ′ = 0 and G = −(F ′)2

F
+

4

3
(F + F ′′). (4.7)

Somewhat surprisingly, the mass parameter ω does not enter these equations, and thus

they are identical to the ω = 0 case studied in [22]. Referring to this paper for a detailed

analysis, we reproduce here the general solution,

F (θ) = C1

(
1 + cos2(θ)

)
+ C2 cos(θ) ⇒ G(θ) =

(
4C2

1 − C2
2

)
sin2(θ)

C1 (1 + cos2(θ)) + C2 cos(θ)
, (4.8)

with arbitrary integration constants C1 and C2. The third integration constant hides in a

trivial constant shift of θ. It is remarkable that the solution space is linear (i.e. it admits su-

perpositions) although the equation is not. We conclude that the modified realization (3.4)

of the conformal so(1, 2) symmetry introduces a “frequency” modification into the four-

dimensional Ricci-flat metrics constructed (for ω = 0) in [22]. The physical interpretation

of the metric (4.5) with the solution (4.8) requires passing back to Minkowski signature

via γ → − i
2γ and φ→ i

2φ and remains an open challenge.
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4.2 Deforming the near-horizon Kerr-dS/AdS metric

It is easy to extend the construction to general Einstein metrics, i.e. constant-curvature

metrics, by adding a cosmological constant Λ to (4.6). Demanding

Rµν + Λgµν = 0 (4.9)

for the metric (4.5) changes the conditions (4.7) to

2(F+F ′′)(2F−F ′′)+3(F ′+F ′′′)F ′−2ΛF
(
4F 2+3(F ′)2+FF ′′

)
+4Λ2F 4 = 0, (4.10)

G = −(F ′)2

F
+

4

3
(F+F ′′−ΛF 2), (4.11)

which is no longer homogeneous under rescaling of F . However, the Λ dependence may be

absorbed in a rescaling F → F/Λ. It follows that solutions blow up in the Λ → 0 limit,

unless their overall scale is variable. The equation for F can be rewritten as

1

F ′
(
F + F ′′ − ΛF 2

)2 d

dθ

[
4F − 3 (F ′)2

F + F ′′ − ΛF 2

]
= 0, (4.12)

and so it reduces to solving7

4F − 3 (F ′)2

F + F ′′ − ΛF 2
= 4C0 ⇒ 4 (F − C0)

(
F + F ′′ − ΛF 2

)
− 3(F ′)2 = 0 (4.13)

with some integration constant C0. In the limit of C0 →∞ we are led to

F + F ′′ − ΛF 2 = 0, (4.14)

so this possibility of solving (4.12) is already included in (4.13). The general solution

to (4.13) contains one more integration constant besides C0 and the trivial θ shift. In the

limit Λ → 0, we can compare with the general solution (4.8) in the pervious subsection

and confirm this count by the explicit relation

4C1(C1 − C0) = C2
2 for Λ = 0. (4.15)

The full explicit solution to (4.10) is given by elliptic functions and will not be displayed

here. We would like to mention four special cases however. First, for C0 = 3/4Λ we have

the particular solution

F (θ) =
3

2Λ (1 + cos(θ))
⇒ G(θ) = − 3 sin2(θ)

Λ (1 + cos(θ))3 . (4.16)

The other three cases occur at C0 →∞, i.e. are solutions to (4.14). Second,

F (θ) =
1

Λ
+

144 eθ

(1− 24Λeθ)2
⇒ G(θ) = − 20736Λe2θ(1 + 24Λeθ)2

(1− 24Λeθ)4(1 + 96Λeθ + 576Λ2e2θ)
. (4.17)

7The solution F = C0 to equation (4.13) is admitted only for C0 = 1/Λ as is seen from (4.10).
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Third, there is the trivial constant solution

F (θ) =
1

Λ
⇒ G(θ) = 0 (4.18)

to be discarded since it produces a singular metric. Fourth and most interesting, the C1 = 0

family of (4.8) smoothly extends to a family of Λ 6= 0 solutions,

F (θ) =
C2

(
cos(θ) + 1

3ΛC2

)(
1 + 1

3ΛC2 cos(θ)
)2 ⇒ G(θ) = − 27C2 sin2(θ)

(3 cos(θ) + ΛC2) (3 + ΛC2 cos(θ))2 , (4.19)

since the naturally singular 1/Λ behavior could be absorbed into C2 in this case.

5 An extended Niederer transformation

It should be clear from our construction that it is possible to redefine the time t and the

fields u, ū, v, v̄ which parameterize our coset (3.3) to bring it into an ω-independent form,

g = eit(L−1+ω2L1) ei(uG−1/2+ūG−1/2) ei(vG1/2+v̄G1/2)

→ g̃ = eiτL−1 ei(ũG−1/2+˜̄uG−1/2) ei(ṽG1/2+˜̄vG1/2). (5.1)

The exact relation between two bases reads

τ =
4− ω2γ2u2ū2

4 + ω2 γ2 tan2(ωt)u2 ū2

(
tan(ωt)

ω

)
,

ũ =
2iu

2 i + ω γ tan(ωt)u ū

(
1

cos(ωt)

)
, ṽ =

d
dτ ũ

1 + iγ2
(
ũ d
dτ

˜̄u− ˜̄u d
dτ ũ
) . (5.2)

This is an extended version of the Niederer transformation [30, 31] which maps a harmonic

oscillator to a free particle. One may easily check that the action (3.9) and the metric (4.5)

acquire the form

S =

∫
dt

u̇ ˙̄u− ω2u ū

1 + iγ2 (u ˙̄u− ū u̇) + 1
4γ

2ω2u2ū2
=

∫
dτ

d
dτ ũ

d
dτ

˜̄u

1 + iγ2
(
ũ d
dτ

˜̄u− ˜̄u d
dτ ũ
) ,

ds2 = F (θ)

[(
2ρ

γ
− ω2 γ

2ρ

)2

dt2 +
dρ2

ρ2
+ dθ2

]
−G(θ)

[(
2ρ

γ
+ ω2 γ

2ρ

)
dt+ 2dφ

]2

= F (θ)

[
4ρ̃2

γ2
dτ2 +

dρ̃2

ρ̃2
+ dθ2

]
−G(θ)

[
2ρ̃

γ
dτ + 2dφ̃

]2

, (5.3)

where

ρ̃ =
1

ũ ˜̄u
, φ̃ = − i

2
log

(
ũ
˜̄u

)
. (5.4)

Due to the known features of the Niederer transformation, the equivalence between the

two theories is only a local one.
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6 Conclusions

We have constructed a minimal field realization (on a single complex boson) of the `-

conformal Galilei group in 2+1 dimensions. The simplest actions, given by the integral

of the Cartan form for the central-charge generator, describe conformally invariant Pais-

Uhlenbeck oscillators.

The main difference between our approach and previous ones [10] is in the structure of

the stability subgroup H, in which we put the generators of dilatation and conformal boost.

Despite the non-orthonormality of the resulting coset space we could construct covariant

equations of motion by imposing proper restrictions on the Cartan forms.

We have found it useful to employ a special basis for the `-conformal Galilei algebra, in

which the shift generators resemble primary spin-(`+1) fields of a Virasoro algebra. This

basis has also been used, for example, in [12]. This analogy may be prolonged further by

deforming the conformal Galilei algebra to include a wedge subalgebra in some nonlinear

W -type algebra. We did this for the simplest ` = 1/2 Galilei algebra, i.e. for the Schrödinger

algebra. We constructed the simplest action for this case and proved that the corresponding

system and its ω 6= 0 extension are both integrable and solvable.

Concerning further developments, we make the following remarks.

• Our deformation is not limited to the case we presented. For example, one may

contemplate an su(n) deformation of the Schrödinger algebra, based on the wedge

subalgebra in a quasi-superconformal algebra (see e.g. [32] and references therein).

One may also consider a deformation of the ` = 1 conformal Galilei algebra as well

as the deformations for other values of `.

• To shed light on the interpretation of the proposed deformation, it is important to

look at the quantum deformed oscillator and its spectrum.

• One may investigate the supersymmetric extension of the deformed oscillator, which

should be based on the wedge subalgebra in the N = 2 super W
(2)
3 algebra [33].

• Along the line we proposed, deformations of other conformal Galilei algebras will also

yield modified transformation laws for the time parameter and the fields, thus pro-

viding novel realizations of the d = 1 conformal algebra. The latter may be employed

for constructing new four-dimensional Einstein metrics along the line of [21, 23].
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