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Abstract A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure
gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary
layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated —
one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-
scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean
velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a
simple linear model most often used in geophysical applications and a more sophisticated two-component-
limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling
terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-
topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor
importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison
of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is
superior to the simple linear model only for a few contributions. The linear model is able to reproduce the
principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order
turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated.

1. Introduction

Modeling the pressure-scrambling terms, i.e., the pressure-strain and pressure gradient-scalar covariances in
the Reynolds-stress and scalar-flux budgets, respectively, is one of the major challenges in second-order tur-
bulence modeling for numerical weather prediction and climate model applications [e.g., Miles et al., 2004;
Mironov, 2001, 2009]. The terms are of fundamental importance in the Reynolds-stress and scalar-flux budg-
ets as shown by e.g., Lenschow et al. [1980], Mironov et al. [2000], and Heinze et al. [2015]. In the Reynolds-
stress budget, for example, the pressure terms act to redistribute the kinetic energy produced by shear and/
or buoyancy between the velocity-variance components, thus reducing the turbulence anisotropy gener-
ated by shear, buoyancy, and rotation.

Moeng and Wyngaard [1986]; Andr�en and Moeng [1993]; Mironov [2001]; and Miles et al. [2004] used large-
eddy simulations (LES) to analyze the pressure-scrambling terms in dry convective and neutral atmospheric
boundary-layer flows. The present study extends previous work by considering the atmospheric boundary-
layer flows capped by shallow clouds. We use very high-resolution LES of a cumulus-topped and a
stratocumulus-topped boundary layer (i) to analyze the vertical structure of the pressure-scrambling terms
in the Reynolds-stress and the scalar-flux budgets, and (ii) to test the applicability of some commonly used
parameterizations (models) of the pressure-scrambling terms to the boundary layers capped by shallow
clouds. (Note that the terms ‘‘parameterization’’ and ‘‘model’’ are used interchangeably in this context. The
term ‘‘parameterization’’ seems to be more popular in numerical weather prediction and climate modeling
community.) Heinze et al. [2015, hereinafter H15] analyzed the second-moment budgets in cloud-topped
boundary-layer flows generated with LES and demonstrated that the pressure-scrambling terms are of para-
mount importance in maintaining the Reynolds-stress and the scalar-flux budgets. A step forward is made
in the present paper, where a detailed analysis of the pressure-scrambling terms is performed.

Key Points:
� Pressure-scrambling terms were

decomposed into several
contributions
� Turbulence-turbulence and buoyancy

components of pressure-scrambling
terms are most significant
� A simple linear model for

pressure-scrambling terms performs
reasonably well

Correspondence to:
R. Heinze,
rieke.heinze@mpimet.mpg.de

Citation:
Heinze, R., D. Mironov, and S. Raasch
(2016), Analysis of pressure-strain and
pressure gradient-scalar covariances in
cloud-topped boundary layers: A
large-eddy simulation study, J. Adv.
Model. Earth Syst., 8, 3–30, doi:10.1002/
2015MS000508.

Received 3 JUL 2015

Accepted 3 NOV 2015

Accepted article online 5 NOV 2015

Published online 8 JAN 2016

VC 2015. The Authors.

This is an open access article under the

terms of the Creative Commons

Attribution-NonCommercial-NoDerivs

License, which permits use and

distribution in any medium, provided

the original work is properly cited, the

use is non-commercial and no

modifications or adaptations are

made.

HEINZE ET AL. LES OF PRESSURE-SCRAMBLING TERMS 3

Journal of Advances in Modeling Earth Systems

PUBLICATIONS

http://dx.doi.org/10.1002/2015MS000508
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466/
http://publications.agu.org/


The pressure-strain and pressure gradient-scalar covariances are usually decomposed into contributions
due to nonlinear turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects
[e.g., Launder et al., 1975; Lumley, 1978; Zeman, 1981; Pope, 2000, p. 390]. The treatment is based on a
respective decomposition of the turbulent pressure field and the solution of the Poisson equations for the
above contributions to the fluctuating pressure field. The contributions to the pressure-scrambling terms
are then modeled (parameterized) separately.

The first parameterization of the pressure-strain covariance was proposed by Rotta [1951]. Some modelers
applied the Rotta return-to-isotropy parameterization to the entire pressure-term. Others, as e.g., Launder
et al. [1975], model only the so-called slow turbulence-turbulence contribution with the Rotta return-to-
isotropy parameterization. The so-called rapid contributions, which are the contributions due to mean
shear, buoyancy, and Coriolis effects, are modeled separately by setting them proportional to the mean-
shear, buoyancy, and Coriolis production/destruction terms in the Reynolds-stress budgets. In a similar fash-
ion, the slow turbulence-turbulence contribution to the pressure gradient-scalar covariance is modeled with
the Rotta-type relaxation parameterization, whereas the rapid contributions are taken to be proportional to
the mean-shear, buoyancy, and Coriolis terms in the scalar-flux budget. These parameterizations for the
rapid contributions are linear in the second-order moments. The Rotta-type return-to-isotropy parameteriza-
tion for the slow contributions and the linear parameterizations for the rapid contributions form what we
refer to as ‘‘the basic model’’ for the pressure-scrambling terms in the Reynolds-stress and scalar-flux budg-
ets. This basic model is most often used in geophysical applications [see e.g., Zeman, 1981; Umlauf and
Burchard, 2005].

In addition to the linear models (parameterizations), numerous more elaborate nonlinear models for the
pressure-scrambling terms exist [e.g., Lumley, 1978; Ristorcelli et al., 1995; Craft et al., 1996]. Usually, the
nonlinear models perform better than linear models, especially in flows with large departure from iso-
tropy (like boundary-layer flows affected by buoyancy and/or rotation). However, they usually consist of
rather complex expressions which are computationally too expensive for routine geophysical applica-
tions where turbulence is one of many physical processes to model [Andr�en and Moeng, 1993; Mironov,
2009].

Turbulence measurements or results of turbulence-resolving models, such as LES and DNS (direct numerical
simulations), are used to develop and test turbulence closure models and to determine (disposable) model
constants. Direct measurements of pressure-strain and pressure gradient-scalar covariances in the atmos-
pheric boundary layer are rather difficult since the atmospheric pressure fluctuations are very small in com-
parison to the mean pressure. Pressure probes tend to disturb the pressure field, leading to distorted
measurements [Wilczak, 1984; Wilczak and Bedard, 2004]. In early studies, the pressure-scrambling terms
were determined indirectly as residuals of second-moment budgets [e.g., Wyngaard and Cot�e, 1971; Len-
schow et al., 1980]. This approach is problematic as the residuals might also include accumulated measure-
ment errors which can be quite large [Stull, 1988, p. 163]. The first direct measurement of the horizontal
pressure gradient-temperature covariance in the atmospheric surface layer was conducted by Wilczak and
Bedard [2004] by means of a pressure-probe based on Nishiyama and Bedard [1991]. Nguyen et al. [2013]
were the first to present measurements of numerous pressure-scrambling terms in the surface layer (includ-
ing four components of the pressure-strain covariance tensor and two components of the pressure
gradient-temperature covariance vector). Detailed insight into the vertical structure of the pressure-
scrambling terms and their contributions in the entire boundary layer is gained from LES studies. Moeng
and Wyngaard [1986] and Mironov [2001] tested parameterizations of pressure gradient-scalar covariances
in the dry convective boundary layer, and Andr�en and Moeng [1993] concentrated on the pressure-
scrambling terms in the neutral boundary layer. It should be noted that detailed analysis of the pressure-
scrambling terms can only be performed on the basis of numerical data from LES or from DNS. Apart from
the fact that in situ measurements of fluctuating pressure are rather difficult [Wilczak and Bedard, 2004], the
decomposition of the fluctuating pressure is simply impossible on the basis of observational data.

In the present work, we use high-resolution LES of H15 to decompose the fluctuating pressure and to deter-
mine all contributions to the pressure-scrambling terms in the Reynolds-stress and scalar-flux budgets. A
simple linear model and a more sophisticated two-component-limit (TCL) nonlinear model are then com-
pared to LES data and the model constants are estimated.
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In what follows, a standard notation is used where t is time, xi5ðx1; x2; x3Þ are the Cartesian coordinates, g is
the acceleration due to gravity, f is the Coriolis parameter, Lv is the latent heat of evaporation, cp is the spe-
cific heat at constant pressure, Rv and Rd are the gas constants for water vapor and for dry air, respectively,
ui5ðu1; u2; u3Þ are the velocity components, p is the perturbation pressure (deviation of pressure from the
hydrostatically and geostrophically balanced pressure), T is the absolute temperature, h is the potential tem-
perature, qv is the (water vapor) specific humidity, and ql is the liquid water specific humidity. Reference val-
ues of potential temperature and density are denoted by h0 and q0, respectively. The virtual potential
temperature is defined as hv5h 11 Rv=Rdð Þ21½ �qv2qlf g. A generic variable s denotes a quasi-conservative
scalar that is either the liquid water potential temperature hl5h2 h=Tð Þ Lv=cp

� �
ql or the total water specific

humidity qt5qv1ql . The Einstein summation convention for repeated indices is used. The Kronecker delta is
denoted by dij, and the Levi-Civita tensor is denoted by eijk . An overbar ðÞ denotes a resolved-scale (filtered)
variable carried by the large-eddy model, and a single prime ðÞ0 indicates a deviation from the filtered quan-
tity (i.e., a subfilter-scale fluctuation). In section 2.2 and Appendix A, where a decomposition of the fluctuat-
ing pressure is explained, the angle brackets hðÞi denote a horizontal mean, and a double prime ðÞ00

denotes a deviation therefrom. In the rest of the paper, the angle brackets denote the quantities obtained
from LES data by means of averaging over horizontal planes and over time.

The paper is organized as follows. Section 2.1 provides a brief description of the large-eddy model used and
of the simulated cases. The decomposition of the turbulent pressure is explained in section 2.2. Section 3
presents results from the analysis of LES data. First (section 3.1), the components of the turbulent pressure
are discussed. Then, vertical profiles of various contributions to the pressure-strain covariances (section 3.2)
and to the pressure gradient-scalar covariances (section 3.3) are presented and analyzed. In section 3.4,
some commonly used models (parameterizations) of the turbulence-turbulence (section 3.4.1), the buoy-
ancy (section 3.4.2), and the mean velocity shear (section 3.4.3) contributions to the pressure-strain and
pressure gradient-scalar covariances are tested against the LES data, and the model constants are esti-
mated. Summary and conclusions are presented in section 4.

2. Large-Eddy Simulations

2.1. Large-Eddy Model and Simulated Cases
In this study, the parallelized large-eddy model PALM [Raasch and Schr€oter, 2001; Maronga et al., 2015] is
utilized. Two cloud-topped boundary layers (CTBLs), the shallow trade wind cumulus case BOMEX [Siebesma
et al., 2003], and the nocturnal stratocumulus case DYCOMS-II, RF01 [Stevens et al., 2005] (hereinafter
referred to as simply DYCOMS), are simulated with a fine grid spacing of 5 m in all spatial directions.

The simulation setup and the model configuration used are exactly the same as described in H15. Further
details of the LES model PALM and of the simulation setup are given in H15 and the references therein. The
turbulence statistics discussed below are the result of averaging the LES fields horizontally and over the last
3 h of the simulation in the BOMEX case and over the last 2 h of simulations in the DYCOMS case. The num-
ber of samples is 540 for BOMEX and 360 for DYCOMS.

2.2. Decomposition of Pressure Covariances
In second-order turbulence modeling, the standard approach to treat the pressure-scrambling terms is to
decompose them into contributions due to nonlinear turbulence-turbulence interactions (T), mean velocity
shear (S), buoyancy (B), and the Coriolis effects (C) and to model these contributions separately [e.g., Zeman,
1981]. Applying this decomposition to the resolved-scale part of the pressure-strain covariance defined as

Pij5
1
q0

�p00
@�u00i
@xj

1
@�u00j
@xi

� �� �
; (1)

and to the pressure gradient-scalar covariance defined as

Psi52
1
q0
h�s00 @

�p00

@xi
i; (2)

yields
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Pij5PT
ij1PS

ij1PB
ij 1PC

ij 1PSG
ij 1PSU

ij ; (3)

Psi5PT
si1PS

si1PB
si1PC

si1PSG
si 1PSU

si ; (4)

Notice that, as different from the ensemble-mean modeling framework, an additional contribution due to
the subgrid scale (SGS) Reynolds stress and SGS scalar flux (superscript SG) should be considered in the LES
[see Mironov, 2001, for details]. Further contributions result due to the prescribed large-scale subsidence (SU)
in both CTBLs (see Appendix A in H15 for details).

The components of Pij and Psi are determined by using the corresponding contributions to the fluctuating
pressure,

�p005�p00T1�p00S1�p00B1�p00C1�p00SG1�p00SU; (5)

which in turn are determined from the following set of Poisson equations:
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� �
: (11)

Here, sij5u0i u
0
j will be referred to, although somewhat loosely, as ‘‘the SGS Reynolds stress’’ which is com-

puted by the PALM SGS model. (Note that, strictly speaking, the stress tensor is defined as 2qsij , where
q denotes the fluid density [see e.g., Pope, 2000, p. 581].) These Poisson equations are derived by taking the
divergence of the LES momentum equation, subtracting from the resulting equation its horizontal mean (in
order to obtain the equation for the deviation of pressure from its horizontal mean, �p00), and considering
the various processes, contributing to the fluctuating pressure, separately.

To solve the Poisson equations (6)–(11), appropriate boundary conditions for the fluctuating pressure com-
ponents at the surface and at the top of the model domain are needed which depend on the boundary
conditions used for the momentum equations in the LES model. According to Moeng and Wyngaard [1986]
and Hadfield et al. [1988], physically consistent boundary conditions can be derived by taking the vertical
momentum equation at the surface. By applying the surface no-slip conditions for the velocity components
(�u15�u25�u350 at x350) to the vertical momentum equation, we end up with

1
q0

@�p00

@x3
5

g
h0

�h
00
v2

@s003i

@xi
at x350: (12)

The surface boundary condition for the buoyancy and the SGS contributions should thus be
1
q0

@�p 00B
@x3
jx3505

g
h0

�h
00
v and 1

q0

@�p 00SG
@x3
jx35052

@s003i
@xi

, respectively. For all the other fluctuating pressure components, a

zero-gradient boundary condition holds. At the top of the model domain, the Neumann conditions in the
form of a zero-gradient should be used.

The previous paragraph describes the pressure boundary conditions that should be used to be fully consist-
ent with the momentum equations. However, a zero-gradient surface boundary condition is actually applied
for the buoyancy and SGS pressure components due to numerical constraints which are further described
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in Appendix A. Although the surface virtual potential temperature fluctuations are not negligible when pre-
scribing horizontally homogeneous surface fluxes, we argue based on Hadfield et al. [1988] that surface tem-
perature fluctuations in a convective boundary layer will have no major direct effect on the pressure field.
The implemented pressure decomposition was validated by means of a simulation of a free convective
boundary layer (simulation FC of H15). The components of the root-mean-square (r.m.s.) fluctuating pressure
are in excellent agreement with results shown by Moeng and Wyngaard [1986]; Mironov [2001]; and Miles
et al. [2004] (not shown). We argue that despite the choice of inconsistent surface pressure boundary condi-
tions for the buoyancy and SGS components, physically meaningful results are obtained, and the core of
the boundary layer, which is the center of our interest, will not be adversely affected.

There are principally two ways to calculate the fluctuating pressure. Three-dimensional LES fields of
the velocity components and the virtual potential temperature can be used to solve the diagnostic
Poisson equations (6)–(11) offline which was done, for example, by Moeng and Wyngaard [1986];
Andr�en and Moeng [1993]; and Mironov [2001]. An online approach can also be chosen, where the fluc-
tuating pressure components are determined during the simulation. This second option was chosen in
the present study and further details about its implementation in the LES model PALM can be found
in Appendix A.

A short comment on the decomposition of the pressure-velocity covariance appearing in the Reynolds-
stress budget is in order. It is the pressure gradient-velocity covariance,

Uij52
1
q0

�u 00i
@�p00

@xj

� �
1 �u00j

@�p00

@xi

� �� �
; (13)

that enters the resolved Reynolds-stress equation [see e.g., Stull, 1988, p. 135]. This covariance is usually
decomposed to separate out a trace-free part of Uij [Pope, 2000, p. 388]. In the present study, the following
decomposition of Uij into pressure diffusion (transport), T p

ij , and pressure–strain, Pij, is used:

Uij5 2
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ij

1
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�u00i
@xj

1
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� �
i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pij

: (14)

This decomposition is not unique. For example, a decomposition of Uij into isotropic (diffusion) and devia-
toric (trace-free) parts has also been advocated. It is still under debate which decomposition should gener-
ally be used in turbulence closures [e.g., Lumley, 1975; Speziale, 1985; Groth, 1991].

As pointed out in H15, the resolved and the subgrid scale contributions of the Reynolds-stress and scalar-
flux budget terms should be taken into account to close the LES-based budgets to a good order. The sum
of resolved and subgrid scale parts can then be interpreted as an approximation to the ensemble-mean
quantities. H15 showed that even in very high-resolution LES the subgrid scale contributions to the
pressure-strain covariance,

P ij5
1
q0

p0
@u0i
@xj

1
@u0j
@xi

� �* +
; (15)

and to the pressure gradient-scalar covariance,

Psi52
1
q0

s0
@p0

@xi

� �
; (16)

remain nonnegligible, especially close to the surface. Hence, they should also be accounted for in the pres-
ent study to obtain the best possible approximation of the ensemble-mean pressure-scrambling terms. The
question remains, however, as to which contribution to the pressure-scrambling terms the SGS terms P ij

and Psi should be added. Following Mironov [2001], the SGS pressure terms given by (15) and (16) are
attributed to the turbulence-turbulence contributions to the pressure-scrambling terms in the Reynolds-
stress and scalar-flux budgets, respectively.
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3. Results

3.1. Contributions to Turbulent Pressure
Vertical profiles of the contributions to the root-mean-square (r.m.s.) fluctuating pressure of both CTBLs are
shown in Figure 1. In the cumulus-topped boundary layer, Figure 1a, the buoyancy contribution is the larg-
est over the entire boundary layer. The contribution due to turbulence-turbulence interactions is the second
largest. Both, h�p 002T i

1=2 and h�p002B i
1=2, exhibit a maximum at the top of the conditionally unstable layer

(x3 � 1500 m). The contribution due to mean shear is smaller but not negligible. It is at maximum near the
surface where the velocity gradient is large. The turbulence-turbulence component is the largest compo-
nent over most of the stratocumulus-topped boundary layer, Figure 1b. At the top of the stratocumulus
layer, the buoyancy component becomes more important and dominates the total r.m.s. fluctuating pres-
sure. As is the case for BOMEX, the contribution due to mean shear is less important than the contributions
due to buoyancy and turbulence-turbulence interactions. In both CTBLs, the SGS contribution is fairly small.
This is also the case for the Coriolis and large-scale subsidence components. The Coriolis and the large-scale
subsidence components are not discussed in the following.

It should be pointed out that the square root of the sum of the six pressure variances shown in Figure 2 dif-
fers slightly from the square root of the total pressure variance. This indicates that the cross correlations of
the pressure contributions are rather small. Thus, the pressure components are weakly correlated.

An important difference between the cumulus-topped and the stratocumulus-topped boundary layers is
the relative importance of the buoyancy and the turbulence-turbulence contributions. The buoyancy contri-
bution is the dominant one over the entire boundary layer for the cumulus case. In the stratocumulus case,
the buoyancy contribution dominates only at the upper part of the cloud layer.

3.2. Contributions to Pressure-Strain Covariances
Vertical profiles of the diagonal elements P11 and P33 of the pressure-strain covariance tensor Pij are
shown in Figure 3. The diagonal elements appear in the budget equations of the velocity variances. The
principal role of the pressure-strain covariances is to return turbulence to an isotropic state by distributing
TKE evenly between its components. This explains the sign of P33 and P11 in Figure 3: P33 is mainly a loss-
term (negative) and P11 is a gain-term (positive) in the budget equations of the vertical and horizontal
velocity variances, respectively, in both CTBLs. The horizontal-velocity variance grows at the expense of the
vertical-velocity variance which is produced by buoyancy.

The contributions PB
11 and PB

33 due to buoyancy and PT
11 and PT

33 due to turbulence-turbulence interac-
tions are of the same order of magnitude in the BOMEX case (Figures 3a and 3c). These are the leading con-
tributions to the total pressure-strain covariance. The mean velocity shear contributions PS

11 and PS
33 are

Figure 1. Vertical profiles of the components of the root-mean-square (r.m.s.) fluctuating pressure and the total r.m.s. pressure h�p 002i1=2

directly from the LES model for BOMEX (a) and DYCOMS (b). The profiles are obtained by means of averaging over the last 3 h of simula-
tion for BOMEX and over the last 2 h of simulation for DYCOMS. The gray shading indicates the cloud layer.
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significant close to the surface and at the top of the subcloud mixed layer (z � 500 m). In the latter region,
the wind turns quickly toward the geostrophic wind producing directional shear. In the DYCOMS case (Fig-
ures 3b and 3d), the turbulence-turbulence and buoyancy contributions to P11 and P33 are of similar
importance apart from the upper part of the stratocumulus layer where the buoyancy contributions PB

11

and PB
33 dominate. There, the buoyancy production of the vertical-velocity variance is very large (cf. H15,

Figure 5f). In DYCOMS, the shear contributions PS
11 and PS

33 are of minor importance over most of the
boundary layer. Close to the surface, the shear contributions are of the same order of magnitude as the
buoyancy and turbulence-turbulence contributions. The SGS contributions PSG

11 and PSG
33 in both CTBLs are

significant only very close to the surface where LES are known to have deficits. The contributions to P22

behave similarly to the contributions to P11 and are thus not shown separately.

Note that the turbulence-turbulence contribution exhibits the opposite sign compared to the total
pressure-strain covariance and the other contributions in the upper part of the stratocumulus layer and
near the surface (Figures 3b and 3d). This illustrates the different behavior of slow and fast pressure contri-
butions. The slow terms PT

33 and PT
11 tend to return turbulence to isotropy ‘‘directly,’’ by increasing (reduc-

ing) the vertical-velocity variance and reducing (increasing) the horizontal-velocity variance where the latter
(former) variance dominates. The fast terms PB

33 and PB
11 lead to isotropization of the flow ‘‘indirectly.’’ The

term PB
33 compensates part of the buoyancy production of the vertical-velocity variance and is in effect a

sink term in the vertical-velocity variance budget. Therefore PB
11 is in effect a source term in the horizontal-

velocity variance budget (recall that PB
111PB

221PB
3350). The results shown in Figure 3 clearly demonstrate

that modeling the total pressure-strain covariance Pij with the Rotta return-to-isotropy parameterization
only (i.e., applying the return-to-isotropy parameterization to the entire pressure-scrambling term) may
cause failure of a turbulence model since even the sign of Pij may not be obtained correctly.

Figure 4 shows P13 and its components. Inside the subcloud layer of BOMEX, PT
13, PB

13 and PS
13 are of the

same order of magnitude (Figure 4a). Inside the cumulus layer, the relative importance of the turbulence-
turbulence contribution decreases, leaving the total pressure-strain covariance P13 dominated by the mean
shear and the buoyancy contributions. In DYCOMS (Figure 4b), the contributions PT

13; PB
13, and PS

13 are
roughly equally important throughout the boundary layer, including the cloud layer. Apart from the surface
layer, the SGS contribution is negligibly small in both CTBLs. The vertical profiles of the contributions to P23

are very similar to the vertical profiles of the contributions to P13 and are thus not shown. The mean-shear,
buoyancy, and turbulence-turbulence contributions to the P12 component of the pressure-strain covariance
are of similar importance in both BOMEX and DYCOMS (not shown).

3.3. Contributions to Pressure Gradient-Scalar Covariances
The pressure gradient-liquid water potential temperature covariance Phi and the pressure gradient-total
water specific humidity covariance Pqi appear in the budget equations of the liquid water potential

Figure 2. Vertical profiles of the total r.m.s. pressure h�p 002i1=2 directly from the LES model and the square root of the sum of the six pressure
variances, h�p 002i1=2

sum5h�p 002T 1�p 002S 1�p 002B 1�p 002C 1�p 002SG1�p 002SU1i1=2 for BOMEX (a) and DYCOMS (b). Gray shading and time averaging as in Figure 1.
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temperature flux and the total water-specific humidity flux, respectively. There is no strict analogy between
the pressure-strain covariance Pij and the pressure gradient-scalar covariances Phi and Pqi in terms of
redistribution since Phi and Pqi are vectors. The role of Phi and Pqi is in maintaining the second-moment
budgets, however, it is similar to the role of Pij. In isotropic flows, the scalar fluxes vanish since a nonzero
flux would imply a preferred direction and thus anisotropy. The pressure gradient-scalar covariances act to
diminish both the magnitude of the scalar fluxes and the difference between the flux components by
scrambling turbulent eddies [Hanjalić and Launder, 2011, p. 30].

The vertical components Ph3 and Pq3 of the pressure gradient-scalar covariances and the various contribu-
tions to Ph3 and Pq3 are shown in Figure 5. For both CTBLs, the total Ph3 is dominated by the buoyancy
contribution PB

h3 in the inversion layer (Figures 5a and 5b). By inversion layer, we refer to the interfacial
layer located between the top of the cloud layer and the free troposphere, which is very thin (rather broad)
in the DYCOMS (BOMEX) case where the temperature gradient at cloud top is strong (weak). Both the total
covariance and the buoyancy contribution are up to two orders of magnitude higher than in the remainder
of the boundary layer. The dominance of the buoyancy contribution is closely related to the vertical
temperature-flux budget where buoyancy production in the inversion layer is the dominant production
mechanism (cf. H15, Figures 9a and 9b). The buoyancy contribution to the pressure gradient–scalar covari-
ance compensates a large part of the buoyancy production term and in effect acts to destroy the flux. In

Figure 3. Vertical profiles of the pressure-strain covariance components P11, (a) and (b), and P33, (c) and (d), and of the contributions to
P11 and P33 due to turbulence-turbulence interactions (T), mean shear (S), buoyancy (B), and subgrid model (SG). The BOMEX results are
shown in Figures 3a and 3c, and the DYCOMS results are shown in Figures 3b and 3d. Legends refer to the plots in each row. Gray shading
and time averaging as in Figure 1.
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the lower part of both cloud layers and in the subcloud mixed layers, the turbulence-turbulence and the
buoyancy contributions are of the same order of magnitude. The shear contribution PS

h3 is much smaller
than PT

h3 and PB
h3 even close to the surface. The contribution due to the SGS stress is small, confirming the

fidelity of our LES results. The analysis of the vertical component of the pressure gradient-total water spe-
cific humidity covariance Pq3 yields similar results regarding the relative importance of the various contri-
butions (Figures 5c and 5d). As in the BOMEX and DYCOMS cases, the predominance of the buoyancy
contribution to the pressure gradient-scalar covariances in the inversion layer is also observed in dry con-
vective boundary layers [Moeng and Wyngaard, 1986; Mironov, 2001].

The horizontal components of the pressure gradient-scalar covariances, Ph1; Pq1; Ph2, and Pq2 (not
shown) are roughly equally composed of the turbulence-turbulence, shear, and buoyancy contributions in
both CTBLs. Only very close to the surface the shear contribution becomes dominant.

The above analysis shows that Phi and Pqi are analogous in terms of the relative importance of their vari-
ous contributions. In the following sections, the LES results are presented for one scalar only (liquid water
potential temperature). A discussion of models (parametrizations) of the pressure scrambling terms is given
in terms of a ‘‘generic’’ pressure gradient-scalar covariance Psi , where s stands for either hl or qt.

3.4. Testing Models for Pressure Covariances
In the following, the pressure-scrambling terms estimated on the basis of LES data are used to test the
applicability of some commonly used parameterizations to the boundary layers capped by shallow clouds.
LES data are also used to estimate dimensionless constants in some closure relations.

Two models are tested in the present study. One is the basic model of Rotta [1951] and Launder et al. [1975]
which is widely used in geophysical applications [e.g., Zeman, 1981; Umlauf and Burchard, 2005]. The param-
eterizations of the rapid pressure terms, i.e., the pressure terms due to buoyancy, mean shear, and Coriolis
effects, are linear in the Reynolds stress and scalar flux. The parameterization of the turbulence-turbulence
contribution (slow pressure term) is based on the Rotta return-to-isotropy model.

Figure 4. Vertical profiles of the total pressure-strain covariance components P13 for (a) BOMEX and (b) DYCOMS, and of the contributions
to P13 due to turbulence-turbulence interactions (T), mean shear (S), buoyancy (B), and subgrid model (SG). Ordinates are stretched near
the cloud layer top. Different abscissa scales are used for the boundary layer in Figure 4b. Gray shading and time averaging as in Figure 1.
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Figure 5. Vertical profiles of the total pressure gradient-scalar covariances Ph3, (a) and (b), and Pq3, (c) and (d), and of the respective con-
tributions due to turbulence-turbulence interactions (T), mean shear (S), buoyancy (B), and subgrid model (SG). The BOMEX results are
shown in Figures 5a and 5c, and the DYCOMS results are shown in Figures 5b and 5d. Legends refer to the plots in each row. Ordinates are
stretched near the cloud layer top. Different abscissa scales are used for the lower and upper part of the boundary layer. Gray shading and
time averaging as in Figure 1.
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Apart from simple linear models, various nonlinear models of the pressure-scrambling terms have been
developed to date. A detailed overview is given, for example, by Hanjalić and Launder [2011]. In this
study, the Craft et al. [1996] model of the buoyancy and turbulence-turbulence contributions is tested.
The model is nonlinear in the Reynolds stress and scalar flux. It satisfies the so-called two-component
limit (TCL). The TCL is the limit which turbulence approaches if the velocity component in one direction
vanishes (and all turbulence moments including the velocity fluctuation in that direction vanish as
well). Atmospheric turbulence approaches the TCL close to solid walls (e.g., the Earth’s surface) and in
strongly stable layers [e.g., Zeman, 1981], where vertical motions are strongly suppressed. By applying
the TCL constraint, a realizable model can be constructed, which ensures, among other things, that
velocity variances remain positive-definite or correlation coefficients cannot become larger than one
[see Craft et al., 1996, for details]. The Craft et al. [1996] model is referred to as the TCL model in what
follows.

In both the basic model and the TCL model, the dimensionless departure-from-isotropy tensor is used. It is
defined as

aij5
h�u00i �u00j i1hsiji

E
2

2
3

dij; (17)

where E 5 1
2 h�u002i i 1 hei is the total (resolved 1 subgrid) TKE. The departure-from-isotropy tensor is a

measure of the flow anisotropy. In the isotropic limit, all components of aij are zero. Note that the parame-
terizations of the pressure-scrambling terms considered in the present study are cast in terms of quanti-
ties computed with the LES code. For example, the total TKE is a sum of the resolved TKE and the SGS
TKE. It is the sum of these resolved and SGS parts that is treated as an LES-based approximation of the
ensemble-mean TKE. The same holds for other turbulent quantities that enter the parameterizations con-
sidered here.

The basic model, which will be explained in detail in the following subsections, contains several dimension-
less constants. The numerical values of most of these constants are fixed by mathematical constraints. In
practice, however, those model constants are often treated as disposable parameters whose values are
adjusted to improve the overall performance of a turbulence model in a particular flow regime. This route is
also taken here and a least-square method is applied to determine best-fit values for the model constants.
The method is explained in Appendix B.

As the contributions to the pressure-strain and pressure gradient-scalar covariances due to turbulence-
turbulence interactions T, buoyancy B and mean shear S are the most important ones in our cloudy
boundary-layer cases (Figures 3–5), tests of models of these contributions are presented. Recall that the
results of the pressure gradient-scalar covariance tests are only shown exemplary for the pressure gradient-
liquid water potential temperature covariance Phi .

3.4.1. Contributions Due to Turbulence-Turbulence Interactions
The Rotta relaxation parameterization is used in the basic model for the turbulence-turbulence contribution
to the pressure-strain covariance. Rotta [1951] proposed that the return of turbulence to the isotropic state
is proportional to the degree of anisotropy and it occurs on a certain time scale called the return-to-isotropy
time scale. The return-to-isotropy parameterization used in the present study reads

PT
ij52

Cu
T

sE
aij E; (18)

where sE5E=h�i is the TKE dissipation time scale, � being the TKE dissipation rate, and Cu
T being a dimen-

sionless constant. Note that the return-to-isotropy time scale should enter equation (18), not the TKE dis-
sipation time scale. However, it is commonly assumed in geophysical and engineering applications that
the two time scales are proportional to each other. Values of Cu

T are determined empirically and there-
fore depend on the situation studied. Hanjalić and Launder [2011, p. 67] provide a range of
1:5 < Cu

T < 1:8. Based on atmospheric boundary layer simulations, Zeman [1981] determined a range of
1 � Cu

T � 3.

The Rotta approach was extended to the pressure gradient–scalar covariance by Monin [1965]. The relaxa-
tion (return-to-isotropy) approximation for the turbulence-turbulence contribution reads

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000508

HEINZE ET AL. LES OF PRESSURE-SCRAMBLING TERMS 13



PT
si52

Cs
T

sE
h�u00i �s 00i1hssii
� �

; (19)

where ssi denotes the SGS scalar flux computed by the LES model. Equation (19) suggests that the fluctuat-
ing pressure acts to destroy the scalar flux on a certain relaxation (return-to-isotropy) time scale. As with
equation (18), the scalar-flux return-to-isotropy time scale is assumed to be proportional to the TKE dissipa-
tion time scale. According to Zeman [1981], the values of Cs

T lie between 3 and 5. For dry convective bound-
ary layers, an estimate of Cs

T53:0 was obtained on the basis of LES data [e.g., Mironov, 2001].

There are numerous more complex models of PT
ij that are nonlinear in aij and h�u00i �s 00i. Dimensionless coeffi-

cients appearing in those models are either constants or functions of scalar invariants of tensors characteriz-
ing the problem in question, e.g., the departure-from-isotropy tensor aij [Lumley, 1978]. The TCL model of
Craft et al. [1996] uses the following expression for the turbulence-turbulence contribution to the pressure–
strain covariance:

PT
ij52

Cu
T1

sE
aij1Cu

T2 aik ajk2
1
3

A2dij

� �� �
E; (20)

where Cu
T15 3:75A1=2

2 11
� 	

A; Cu
T250:7, A25aij aji , and A35aij ajk aki are the invariants of aij, and A is the so-

called flatness parameter defined as A512 9
8 A22A3ð Þ.

The TCL parameterization for the turbulence-turbulence contribution to the pressure gradient-scalar covari-
ance reads [Craft et al., 1996]

PT
si 52Cs

T1
R1=2

sE
h�u00i �s00i1hssii
� �

11Cs
T2 A2

� �
1Cs

T3 aij h�u00j �s 00i1hssji
� 	h

1Cs
T4 aij ajk h�u00k�s00i1hsski

� �

1Cs

T5 R E aij
@h�si
@xj

:

(21)

The dimensionless parameters in (21) are Cs
T151:7 111:2 A2Að Þ1=2

h i
, Cs

T250:6; Cs
T3520:8; Cs

T451:1, and
Cs

T550:2A1=2. R5sE=ss is the ratio of the dissipation time-scales for the TKE and for the scalar variance. The
scalar variance dissipation time-scale is defined as ss5

1
2 h�s 002i1h1ið Þ=h�si, where 1 is the SGS scalar variance,

and �s is the scalar-variance dissipation rate. The latter quantities are estimated as 155s2
si=e and

�s5Kh @�s=@xið Þ2, where Kh is the SGS eddy diffusivity (see H15 for details).

In Figure 6, the turbulence-turbulence contributions PT
11; PT

33, and PT
13 from LES are compared with their

parameterizations through equations (18) and (20). The TKE dissipation rate h�i is estimated as a residual of
the total (resolved 1 subgrid) TKE budget as described in H15. Apart from the estimate of Cu

T 52:0 which is
in the typical range given by Zeman [1981], we use the best-fit values of Cu

T obtained by the least-square
method described in the Appendix B. Following Mironov [2001], the SGS contribution to the pressure-strain
covariance, P ij (see section 2.2 and Appendix B in H15), is added to the turbulence-turbulence part of the
resolved pressure-strain covariance. In the remainder of this paper, PT

ij denotes the sum of the resolved and
SGS contributions.

Figure 6 shows that the results obtained with the Rotta model and with the TCL model hardly differ. Over
most of the boundary layer, both parameterizations are able to reproduce the shape of the LES-based pro-
files quite accurately. However, both models underestimate the diagonal components PT

11 and PT
33 in the

cumulus layer (Figures 6a and 6c). At the top of the stratocumulus layer, both models have problems in
reproducing some maxima and minima (Figures 6b, 6d, and 6f). The best-fit values of Cu

T and their root-
mean-square error (RMSE) are provided for all components of the pressure-strain tensor in Table 1. Consid-
ering the RMSE, almost all values of Cu

T are within the range 1 � Cu
T � 3 known from literature. The esti-

mates in Table 1 differ among the six components of the pressure-strain tensor and among the two CTBLs.
There is no universal best-fit estimate for Cu

T that is valid for both cloudy boundary layers and for all spatial
directions. However, since the spread of Cu

T values is rather small, using the value of Cu
T 51:7 would provide

a reasonable fit for most components.

Figure 7 compares PT
h3 and PT

h1 from the LES data with their parameterizations through equations (19) and
(21). Similarly to the turbulence-turbulence contribution to the pressure-strain covariance, the SGS
pressure-term Psi is added to PT

si (see H15 for details). The sum is denoted as PT
si in the following.
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Figure 6. Vertical profiles of the turbulence-turbulence contribution to the pressure-strain covariance components PT
11, (a) and (b), PT

33,
(c) and (d), and PT

13, (e) and (f). Solid black lines show PT
11; PT

33, and PT
13 from LES data, short-dashed blue lines are based on the TCL

model (20), and long-dashed red as well as dotted orange lines are based on the Rotta-type parameterization (18) of the basic model. The
long-dashed red line is determined with Cu

T 52:0, and the dotted orange line, by means of the best-fit value of Cu
T which is 1.81 in Figure

6a, 1.33 in Figure 6b, 1.67 in Figure 6c, 1.59 in Figure 6d, 2.32 in Figure 6e, and 0.87 in Figure 6f (Table 1). The BOMEX results are shown in
Figures 6a, 6c, and 6e, and the DYCOMS results are shown in Figures 6b, 6d, and 6f. Gray shading and time averaging as in Figure 1.
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In Figure 7, Cs
T53:0 is used. The Rotta-type and the TCL parameterizations of PT

h3 agree satisfactorily with
the LES data over most of the two boundary layers except near the cloud top, where (19) underestimates
the LES data in both cases and (21) overestimates (underestimates) the LES data near the stratocumulus
(cumulus) top (Figures 7a and 7b). The local maximum at cumulus cloud base is completely missed by the
Rotta-type model; the TCL model performs slightly better. Both the Rotta-type model and the TCL model
reproduce the principal shape of the horizontal component PT

h1 of the pressure gradient-liquid water
potential temperature covariance (Figures 7c and 7d). Both models overestimate the LES data in the inver-
sion layer, although the TCL model performs better in the stratocumulus case (Figure 7d). The best-fit esti-
mates for Cs

T are given in Table 2. The best-fit values of Cs
T for the vertical components of the pressure

gradient-scalar covariances do not differ strongly between the two scalars and between the two CTBLs. The
values are roughly between 3 and 5 which is the range given by Zeman [1981]. Thus, one value for Cs

T can
be used to model both PT

h3 and PT
q3. The estimates of Cs

T for the horizontal components of the pressure
gradient-scalar covariances show a larger spread and larger RMSE. Overall, this shows the restrictive charac-
ter of the Rotta-type model.

3.4.2. Contributions Due to Buoyancy
In order to account for the buoyancy contribution to the pressure-strain covariance in the basic model, the
so-called isotropization of production (IP) parameterization [Naot et al., 1970] is used. The IP parameterization
is linear in the second moments. It reads [e.g., Hanjalić and Launder, 2011, p. 119]

PB
ij 52Cu

B Bij2
1
3

dijBkk

� �

52Cu
B

g
h0

di3 �u00j �h
00
v

D E
1 svj
� �� 	

1
g
h0

dj3 �u00i �h
00
v

D E
1 svih i

� 	
2

2
3

dij
g
h0

dk3 �u00k �h
00
v

D E
1 svkh i

� 	� �
;

(22)

where Bij5
g
h0

di3 �u00j �h
00
v

D E
1 svj
� �� 	

1
g
h0

dj3 �u 00i �h
00
v

D E
1 svih i

� 	
denotes the buoyancy production/destruction

term in the Reynolds-stress budget equation [H15, equation (1)]. Estimates of Cu
B reported in the literature

are in the range 0:3 � Cu
B � 0:6, where Cu

B5 3
10 can be derived analytically in the case of isotropic turbulence

[e.g., Hanjalić and Launder, 2011, p. 120].

Analogously to equation (22), the IP parameterization for the buoyancy contribution to the pressure
gradient-scalar covariance is

PB
si52Cs

B Bsi52Cs
B

g
h0

di3 �s 00�h
00
v

D E
1 svsh i

� 	
; (23)

where Bsi5
g
h0

di3 �s00�h
00
v

D E
1 svsh i

� 	
is the buoyancy production/destruction term in the scalar-flux budget

(H15, equation (3)). The way of estimating the SGS scalar-virtual potential temperature covariance

svs5s0h0v is explained in detail in H15. In the IP parameterizations (22) and (23), the pressure-scrambling
terms due to buoyancy are set proportional to the buoyancy terms in the Reynolds-stress and scalar-flux
budgets, respectively. Therefore, the buoyancy contributions to the pressure-scrambling terms simply
compensate a part of the buoyancy production/destruction of the Reynolds stress and scalar fluxes. A
theoretical value of the dimensionless constant Cs

B that stems from isotropic tensor modeling is 1/3 [see
e.g., Lumley, 1978; Zeman, 1981; Hanjalić and Launder, 2011]. Moeng and Wyngaard [1986] found, how-
ever, that the value of Cs

B50:5 is more consistent with data from LES of a slightly sheared, dry convective
boundary layer.

Table 1. Best-Fit Estimates of Cu
T

a

PT
11 PT

22 PT
33 PT

12 PT
13 PT

23 Lit.

Cu
T (B) 1.81 6 1.08 1.99 6 1.55 1.67 6 1.30 1.29 6 1.37 2.32 6 1.23 2.38 6 1.47 1–3

Cu
T (D) 1.33 6 0.78 1.72 6 1.08 1.59 6 0.94 1.13 6 0.66 0.87 6 0.70 2.57 6 0.28 1–3

aBest-fit estimates of the model constant Cu
T of the Rotta-type parameterization (18) including root-mean-square error (RMSE) for

BOMEX (B) and DYCOMS (D). Linear regression is used for fitting. Literature values (Lit.) stem from Zeman [1981].
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Figure 7. Vertical profiles of the turbulence-turbulence contribution to the vertical PT
h3, (a) and (b), and horizontal PT

h1, (c) and (d), compo-
nents of the pressure gradient-liquid water potential temperature covariance. Solid black lines show PT

h3 and PT
h1 from LES data, short-

dashed blue lines are based on the TCL model (21), and long-dashed red and dotted orange lines are based on the Rotta-type parameter-
ization (19) of the basic model. The long-dashed red line is determined with Cs

T53:0, and the dotted orange line, by means of the best-fit
value of Cs

T which is 4.26 in Figure 7a, 3.25 in Figure 7b, 1.66 in Figure 7c, and 3.50 in Figure 7d (Table 2). The BOMEX results are shown in
Figure 7a and 7c, and the DYCOMS results are shown in Figures 7b and 7d. Ordinates are stretched near the cloud layer top. Different
abscissa scales are used for the lower and upper part of the boundary layers in Figures 7a, 7b, and 7d. Gray shading and time averaging as
in Figure 1.
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The TCL parameterization of the buoyancy contribution to Pij is

PB
ij ¼ 2

3
10

1
3A2

80

� �
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:

(24)

This parameterization is taken from Hanjalić and Launder [2011, p. 123] and is based on Craft et al. [1996]. In
the isotropic limit where aij 5 0, equation (24) reduces to the IP parameterization (22) with Cu

B5 3
10.

The TCL parameterization [Craft et al., 1996] of the buoyancy contribution to Psi reads

PB
si52

1
3

dik2aik

� �
Bsk52

1
3

dik2aik

� �
g
h0

dk3 �s00�h
00
v

D E
1 svsh i

� 	
: (25)

It differs to the IP parameterization (23) by the nonconstant factor 1
3 dik2aik
� �

. Note that (25) gives nonzero
contributions to the horizontal components (i 6¼ 3) of PB

si , which the IP model (23) does not.

Three components of the buoyancy contribution PB
ij to the pressure-strain tensor computed from (22) and

(24) are compared with the LES data in Figure 8. A value of Cu
B5 3

10 and the best-fit estimates of Cu
B are used.

For the diagonal components PB
11 and PB

33 (Figures 8a–8d), the linear IP model with Cu
B53=10 and the non-

linear TCL model give similar results over most of both CTBLs. Both models do a reasonable job but leave
room for improvement in agreeing with LES data. Both the IP and the TCL model strongly underestimate
the peaks of PB

11 and PB
33 at the top of the stratocumulus layer (Figures 8b and 8d). The linear profiles of

PB
11 and PB

33 computed from (22) and (24) in the subcloud layers of BOMEX and DYCOMS are eye-catching.
This can be attributed to the proportionality of (22) to the buoyancy production/destruction term Bij . The
diagonal components B11 and B22 are both zero, leaving B33 to be the only nonzero diagonal contribution
in (22). B33 is proportional to the vertical buoyancy flux which shows a linear decrease with height in the
subcloud layer of both CTBLs (cf. H15). However, PB

11 (PB
33) computed by the LES model do not decrease

(increase) linearly with height in the subcloud layer. Compared to the diagonal components, the models of
the off-diagonal component PB

13 show closer agreement with LES data (Figures 8e and 8f). Except for the
surface layer, both models are able to reproduce the shape of the LES-based profiles quite well.

Table 3 presents the best-fit estimates of Cu
B . They are all smaller than one as the IP parameterization

requires. The range of best-fit values is larger than the range of 0:3 � Cu
B � 0:6 given in literature. High

RMSEs are also present. The best-fit estimates of Cu
B are lower for DYCOMS than for BOMEX.

Table 2. Best-Fit Estimates of Cs
T

a

PT
h1 PT

h2 PT
h3 PT

q1 PT
q2 PT

q3 Lit.

Cs
T (B) 1.66 6 1.45 1.44 6 1.23 4.26 6 1.54 1.75 6 1.31 1.31 6 1.08 4.13 6 1.30 3–5

Cs
T (D) 3.50 6 2.38 3.89 6 1.42 3.25 6 2.29 1.45 6 0.86 1.11 6 0.62 2.86 6 0.64 3–5

aAs in Table 1 but for the model constant Cs
T used in (19).
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Figure 8. Vertical profiles of the buoyancy contribution to the pressure-strain covariance components PB
11, (a) and (b), PB

33, (c) and
(d), and PB

13, (e) and (f). Solid black lines show PB
11; PB

33, and PB
13 from LES data, short-dashed blue lines are based on the TCL

model (24), and long-dashed red and dotted orange lines are based on the IP parameterization (22) of the basic model. The long-
dashed red line is determined with Cu

B 5 3
10, and the dotted orange line, by means of the best-fit value of Cu

B which is 0.52 in Figure
8a, 0.36 in Figure 8b, 0.54 in Figure 8c, 0.38 in Figure 8d, 0.79 in Figure 8e, and 0.20 in Figure 8f (Table 3). The BOMEX results are
shown in Figures 8a, 8c, and 8e, and the DYCOMS results are shown in Figures 8b, 8d, and 8f. Grey shading and time averaging as
in Figure 1.
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Figure 9 compares the buoyancy components PB
h3 and PB

h1 computed from the parameterizations (23) and
(25) with the LES data. The TCL model strongly underestimates PB

h3 at the top of and above the cumulus
layer (Figure 9a). It overestimates PB

h3 near the stratocumulus top and underestimates it in the upper part of
the subcloud layer (Figure 9b). The IP model is able to reproduce the LES-based profile quite accurately in
the BOMEX case. In the DYCOMS case, the IP model noticeably underestimates the LES data near the top of
the stratocumulus layer (Figure 9b). As regards the vertical pressure gradient-scalar covariance, a simple IP
model (with the best-fit value of a dimensionless model constant) proves to perform better than a more
sophisticated TCL model. This is in line with Mironov [2001] who observed a similar behavior in a dry con-
vective boundary layer. The best-fit estimates of the model constant Cs

B are very close to 0.5 for both CTBLs
and for both scalars (see Table 4). This corroborates the findings of Moeng and Wyngaard [1986] and Miro-
nov [2001] who found 0.5 to be an optimal value of Cs

B for the dry convective boundary layer. If the IP
parameterization (23) with Cs

B50:5 is used, the buoyancy contribution PB
s3 offsets one half of the buoyancy

production in the scalar-flux budget.

The horizontal buoyancy component PB
h1 computed from (23) and (25) and from LES are shown in Figures

9c and 9d for both CTBLs. Note that (23) yields a nonzero value for the vertical component PB
s3 of PB

si

(aligned with the vector of gravity) only. The linear parameterization (23) is unable to account for the hori-
zontal components (i 5 1 and i 5 2) of PB

si . This is obviously at variance with our LES data showing that the
horizontal buoyancy contributions to Psi are of the same order of magnitude as the shear and as the
turbulence-turbulence contributions. Thus, the IP model should not be used to model the buoyancy contri-
bution to the horizontal pressure gradient-scalar covariance. As seen from Figures 9c and 9d, the TCL model
is able to give an order-of-magnitude estimate of PB

h1 but it fails in reproducing the shape of the LES-based
profiles.

3.4.3. Contributions Due to Mean Velocity Shear
Within the framework of the basic model, the contribution due to mean velocity shear is accounted for by
means of the IP parameterization. The IP parameterization for the pressure-strain covariance reads

PS
ij52Cu

S Gij2
1
3

dijGkk

� �

5 Cu
S �u00j �u00k

D E
1 sjk
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where Gij52 �u 00j �u00k

D E
1 sjk
� �� 	

@ �u ih i
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� �

1 sikh i
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@xk

� �
is the mean shear production/destruction term

in the Reynolds-stress budget equation. The model constant Cu
S is usually taken to be equal to 3

5 [Hanjalić

and Launder, 2011, p. 68].

The IP parameterization for the shear contribution to the pressure gradient-scalar covariance reads

PS
si52Cs

S Gu
si5 Cs

S �u00k�s
00� �

1 sskh i
� � @ �uih i

@xk
; (27)

where Gu
si52 �u 00k�s

00� �
1 sskh i

� �
@ �uih i=@xk is the production/destruction of scalar flux due to mean shear

appearing in the scalar-flux budget (H15, equation (3)). The estimates of the model constant Cs
S lie in the

range 0:4 � Cs
S � 0:55 [Hanjalić and Launder, 2011, p. 68].

Equations (26) and (27) show that PS
ij and PS

si given by the IP parameterizations are proportional to the shear
production/destruction terms in the Reynolds-stress and scalar-flux budgets, respectively. As Cu

S and Cs
S are

positive and smaller than one, a part of the shear production is offset by the pressure-scrambling terms.

Table 3. Best-Fit Estimates of Cu
B

a

PB
11 PB

22 PB
33 PB

12 PB
13 PB

23 Lit.

Cu
B (B) 0.52 6 0.57 0.49 6 0.59 0.54 6 0.53 – 0.79 6 0.60 0.77 6 0.83 0.3–0.6

Cu
B (D) 0.36 6 0.20 0.39 6 0.20 0.38 6 0.20 – 0.20 6 0.15 0.38 6 0.30 0.3–0.6

aAs in Table 1 but for the model constant Cu
B used in the IP parameterization (22). Literature values (Lit.) are taken from Hanjalić and

Launder [2011, S. 120]. Note that a fitting for the PB
12 is not possible since (22) gives zero for this component.
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Figure 9. Vertical profiles of the buoyancy contribution to the vertical PB
h3, (a) and (b), and horizontal PB

h1, (c) and (d), components of the
pressure gradient-liquid water potential temperature covariance. Solid black lines show PB

h3 and PB
h1 from LES data, short-dashed blue

lines are based on the TCL model (25), and long-dashed red and dotted orange lines are based on the IP parameterization (23) of the basic
model. The long-dashed red line is determined with Cs

B50:5, and the dotted orange line, by means of the best-fit value for Cs
B which is

0.48 in Figure 9a, and 0.47 in Figure 9b (Table 4). A fitting in Figures 9c and 9d was not possible since (23) gives zero for these components.
The BOMEX results are shown in Figures 9a and 9c, and the DYCOMS results are shown in Figures 9b and 9d. Ordinates are stretched at
the top of the cloud layer. Different abscissa scales are used for the lower and upper part of the boundary layer in Figures 9a, 9b and 9d.
Gray shading and time averaging as in Figure 1.
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Zeman [1981] proposed, based on Launder et al. [1975], another linear parameterizations for PS
ij and PS

si .
They read

PS
ij5

4
5

Sij1Cu
S1 aik Sjk1ajk Sik2

2
3

dijakl Skl

� �
1Cu

S2 aik Wjk1ajk Wik
� �� �

E (28)

and
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where Cu
S1512=7; Cu

S250; Cs
S153=5 and Cs

S251, and Sij and Wij are the symmetric and the antisymmetric
parts of the mean-velocity gradient tensor:
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: (30)

The values of model constants Cu
S1 and Cu

S2 are not independent as they are both functions of one more dis-
posable parameter. That parameter can be determined by an additional constraint which Zeman [1981]
based on rapid-distortion calculations [Townsend, 1970].

Zeman’s parameterization (28) is equivalent to the IP parameterization (26) if Cu
S15Cu

S25Cs
S5 3

5. Similarly for
the pressure gradient-scalar covariance, if Cs

S15Cs
S25Cs

S, then equation (29) coincides with equation (27).
Essentially this means that both linear parameterizations differ in the values of model constants only. Since
Zeman [1981] uses Cs

S250, the rotational part proportional to Wij is neglected in (28).

In Figure 10, the shear contributions PS
33; PS

12, and PS
13 computed from (26) and (28) are compared with

the LES data. The value of Cu
S 5 3

5 is used in (26). Only Zeman’s parameterization is able to reproduce the
diagonal element PS

33, at least qualitatively, near the surface in both CTBLs (Figures 10a and 10b). Close to
the surface, the IP parameterization yields the shear contribution with the opposite sign as compared to
LES. At the top of the mixed layer, z � 500 m for BOMEX and z � 850 m for DYCOMS, Zeman’s parameteriza-
tion yields the opposite and the IP parameterization the same sign of PS

33 as the LES. As the shear contribu-
tion PS

33 is only significant close to the surface (see Figures 3c and 3d), the failure of a model for PS
33 is

tolerable at the subcloud layer top (but not close to the surface).

For the PS
12 component (Figures 10c and 10d), both linear models agree well with the LES data. The best-fit

estimates for Cu
S are 0.77 6 0.78 for BOMEX and 0.80 6 0.71 for DYCOMS (see Table 5). With due regard for

the standard deviation, these estimates are close to the conventional value 0.6. Apart from the surface layer
of both CTBLs and the entrainment layer of DYCOMS, the PS

13 component is reproduced rather well by
both linear models (Figures 10e and 10f). The best-fit estimates of Cu

S for the off-diagonal components of
PS

ij are presented in Table 5. A fitting to the diagonal components is not performed. The fitting method
used excludes the near-surface layer (see Appendix B for details). Then, the method is not able to give a
true best-fit estimate because the IP parameterization gives a wrong sign of PS

33 close to the surface (see,
e.g., Figures 10a and 10b), i.e., where it really matters (well above the surface, PS

33 is very small and the accu-
racy of its representation is not crucial). The best-fit estimates of Cu

S for the off-diagonal components of PS
ij

are all smaller than one as the IP parameterization requires.

Figure 11 shows the horizontal component PS
h1 of the shear contribution to the pressure gradient-liquid

water potential temperature covariance. A comparison of PS
h1 computed from (27) and (29) with the LES-

based profiles reveals that both linear models are able to reproduce the shape of the PS
h1 profile in both

Table 4. Best-Fit Estimates of Cs
B

a

PB
h1 PB

h2 PB
h3 PB

q1 PB
q2 PB

q3 Lit.

Cs
B (B) – – 0.48 6 0.08 – – 0.51 6 0.13 0.5

Cs
B (D) – – 0.47 6 0.40 – – 0.48 6 0.19 0.5

aAs in Table 1 but for the model constant Cs
B used in the IP parameterization (23). Literature values (Lit.) stem from Moeng and Wyng-

aard [1986]. Note that a fitting for the horizontal components of the pressure gradient-scalar covariances is not possible since (23) gives
zero for these components.
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Figure 10. Vertical profiles of the mean-shear contribution to the pressure-strain covariance components PS
33, (a) and (b), PS

12, (c) and (d),
and PS

13, (e) and (f). Solid black lines show PS
33; PS

12, and PS
13 from LES data, short-dashed blue lines are based on the linear model (28) of

Zeman [1981], and long-dashed red and dotted orange lines are based on the IP parameterization (26) of the basic model. The long-
dashed red line is determined with Cu

S 5 3
5, and the dotted orange line, by means of the best-fit value for Cu

S which is 0.77 in Figure 10c,
0.80 in Figure 10d, 0.47 in Figure 10e, and 0.23 in Figure 10f (Table 5). No fitting is provided in Figures 10a and 10b. (See text for further
details). The BOMEX results are shown in Figures 10a, 10c, and 10e, and the DYCOMS results are shown in Figures 10b, 10d, and 10f. Gray
shading and time averaging as in Figure 1.
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CTBLs. Near the stratocumulus top in DYCOMS and near the top of the subcloud layer in BOMEX, Zeman’s
parameterization overestimates the LES data. The IP parameterization performs satisfactorily in the DYCOMS
case. In the BOMEX case, the IP parameterization with Cs

S50:5 underestimates the LES data in the cumulus
layer, and the use of the best-fit estimate of Cs

S50:89 results in an overestimation of the PS
h1 maximum near

the subcloud layer top. Table 6 contains the best-fit estimates of Cs
S for the horizontal components of the

shear contribution to the pressure gradient-scalar covariance. All estimates of Cs
S are smaller than one (as

required), but the range obtained on the basis of our LES is broader than the range 0:4 � Cs
S � 0:55 given

by Hanjalić and Launder [2011, p. 68].

For the vertical component of PS
si , the IP parameterization (27) yields zero due to zero mean vertical

velocity. Zeman’s parameterization (29) is able to give an order of magnitude estimate of Ps3 but fails
to reproduce the shape of the LES-based profiles (not shown). As the shear contribution Ps3 is of
minor importance in comparison to the buoyancy and turbulence-turbulence contributions (see Figure
5), a very accurate representation of PS

s3 is not crucial for modeling the total pressure gradient-scalar
covariance.

Table 5. Best-Fit Estimates of Cu
S

a

PS
11 PS

22 PS
33 PS

12 PS
13 PS

23 Lit.

Cu
S (B) – – – 0.77 6 0.78 0.47 6 0.14 0.66 6 0.69 3

5
Cu

S (D) – – – 0.80 6 0.71 0.23 6 0.30 0.44 6 0.61 3
5

aAs in Table 1 but for the model constant Cu
S used in the IP parameterization (27). Note that a fitting for the diagonal components of

PS
ij is not provided. (see section 3.4.3 for further details.) Literature values (Lit.) are taken from Hanjalić and Launder [2011, S. 68].

Figure 11. Vertical profiles of the shear contribution to the horizontal component PS
h1 of the pressure gradient-liquid water potential tem-

perature covariance for BOMEX (a) and DYCOMS (b). Solid black lines show PS
h1 from LES data, short-dashed blue lines are based on the

linear model (25) of Zeman [1981], and long-dashed red and dotted orange lines are based on the IP parameterization (27) of the basic
model. The long-dashed red line is determined with Cs

S50:5, and the dotted orange line, by means of the best-fit value for Cs
S which is

0.89 in Figure 11a, and 0.29 in Figure 11b (Table 6). Ordinates are stretched at the top of the cloud layer. Different abscissa scales are used
for the lower and upper part of the boundary layer in Figure 11b. Gray shading and time averaging as in Figure 1.
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4. Conclusions

High-resolution large-eddy simulations are used to perform a detailed analysis of the pressure-scrambling
terms, i.e., the pressure-strain and the pressure gradient-scalar covariances in the Reynolds-stress and
scalar-flux budgets, respectively, in the cumulus-topped (BOMEX) and stratocumulus-topped (DYCOMS-II,
RF01) boundary-layer flows. Recall that the pressure-strain covariance in the Reynolds-stress budget acts to
redistribute the turbulence energy evenly between its components and thereby drives turbulence towards
an isotropic state. The pressure gradient-scalar covariance in the scalar-flux budget also drives turbulence
toward an isotropic state by reducing the magnitude of the scalar flux and the difference between the flux
components. Using LES, the pressure-scrambling terms are decomposed into contributions due to
turbulence-turbulence interactions, buoyancy, mean velocity shear, and Coriolis effects. The performance of
some commonly used parameterizations for the aforementioned contributions to the pressure-scrambling
terms is tested against LES data.

The decomposition of the pressure-strain covariance Pij shows that the contributions due to turbulence-
turbulence interactions PT

ij and buoyancy PB
ij are the most important ones in cloud-topped boundary

layers. The Coriolis contribution PC
ij is negligibly small. The mean velocity shear contribution PS

ij is important
near the surface, but it is of minor importance inside the cloud layers (where it can safely be neglected, at
least in the CTBL regimes considered in the present study). The buoyancy and the turbulence-turbulence
contributions are of the same order of magnitude in the cumulus cloud layer. In the stratocumulus cloud
layer, the buoyancy contribution dominates. The analysis of Pij shows that the turbulence-turbulence con-
tribution and the total pressure-strain covariance may have opposite sign in some parts of the flow. This is
the case for e.g., P11 and P33 near the surface and in the upper part of the cloud layer in the
stratocumulus-topped boundary layer. Then, applying Rotta return-to-isotropy parameterization to the
entire pressure-scrambling term (and not to the slow return-to-isotropy part only) in the Reynolds-stress
budget may cause the model failure, since even the sign of Pij may not be obtained correctly.

The pressure gradient-liquid water potential temperature covariance Phi and the pressure gradient-total
water specific humidity covariance Pqi are similar in terms of the relative importance of the various contri-
butions and (with some reservations) in terms of shapes of their vertical profiles. The vertical component of
the pressure gradient-scalar covariance Ps3 (s stands for either hl or qt) is dominated by the buoyancy in
the inversion layer. In the remainder of the boundary layer in both cases, the turbulence-turbulence and the
buoyancy contributions are roughly equally important. The shear contribution to Ps3 is small even close to
the surface. The horizontal component of pressure gradient-scalar covariances are roughly equally com-
posed of buoyancy, shear, and turbulence-turbulence contributions in the subcloud and the cloud layers,
while the shear contribution dominates close to the surface.

The pressure-scrambling terms estimated on the basis of LES data are used to test the applicability of two dif-
ferent models for the turbulence-turbulence, buoyancy, and shear contributions to the pressure-scrambling
terms to the boundary layers capped by shallow clouds. The two models are a simple ‘‘basic model’’ (including
the Rotta-type parameterization for the slow turbulence-turbulence contributions and the parameterizations
for the rapid buoyancy and shear contributions that are linear in the second-order moments involved) and a
more complex two-component-limit (TCL) model (nonlinear in the second-order moments). For the basic
model, the ‘‘conventional’’ values of the model constants taken from literature are used along with the ‘‘best-
fit’’ values that are determined by means of a least-square method (see Appendix B).

Consideration of the turbulence-turbulence contribution to the pressure-strain covariance shows that both
the Rotta-type relaxation parameterization of the basic model and the TCL parameterization are able to
reproduce the principal features of the LES-based profiles with approximately the same accuracy. This

Table 6. Best-Fit Estimates of Cs
S

a

PS
h1 PS

h2 PS
h3 PS

q1 PS
q2 PS

q3 Lit.

Cs
S (B) 0.89 6 0.96 0.78 6 0.93 – 0.91 6 0.72 0.77 6 0.94 – 0.4–0.55

Cs
S (D) 0.29 6 0.98 0.70 6 1.28 – 0.46 6 0.19 0.45 6 0.96 – 0.4–0.55

aAs in Table 1 but for the model constant Cs
S used in the IP parameterization (27). Literature values (Lit.) are taken from Hanjalić and

Launder [2011, S. 68]. Note that a fitting for the vertical pressure gradient-scalar covariances is not possible due to zero horizontal-mean
vertical velocity.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000508

HEINZE ET AL. LES OF PRESSURE-SCRAMBLING TERMS 25



conclusion is also valid for the pressure gradient-scalar covariances (except for the region near the cloud
top in both CTBLs, where both parameterizations reveal large deviations from the LES data). Thus, using a
more complex TCL model instead of a rather simple Rotta-type parameterization does not result in a better
agreement with LES data in the regimes considered in the present study.

Both the linear isotropization-of-production parameterization of the basic model and the nonlinear TCL
parameterization do a reasonable job in describing the diagonal components of the buoyancy contribution
to the pressure-strain covariance. However, both parameterizations fail to describe the peaks of PB

11 and
PB

33 at the top of the stratocumulus layer and the nonlinear shape of the PB
11 and PB

33 profiles in the sub-
cloud layer of both CTBLs. The off-diagonal component PB

13 of the buoyancy contribution to the pressure-
strain covariance is reproduced quite satisfactorily with both parameterizations.

A simple linear parameterization of the vertical component of the buoyancy contribution to the pressure
gradient-scalar covariance shows a good performance in both CTBLs. It gives somewhat better agreement
with the LES data than the more sophisticated TCL parameterization. However, the horizontal components
of the buoyancy contribution to the pressure gradient-scalar covariance cannot be correctly reproduced by
a linear parameterization. The oversimplified linear model yields horizontal components that are identically
zero. The TCL model is able to give an order-of-magnitude estimate of the horizontal components, but the
shape of the profiles cannot be reproduced satisfactorily.

Two parameterizations of the mean velocity shear contributions to the pressure-scrambling terms are
tested against the LES data, namely, the IP parameterization and the parameterization of Zeman [1981] (the
TCL parameterizations for the shear contributions are not tested). These parameterizations are, in fact, very
similar. They are both linear in the second-moments but they differ in the values of their dimensionless con-
stants. Both the IP parameterization and the Zeman parameterization appear to be capable of describing
most components of the pressure-scrambling terms reasonably well. The exceptions are the diagonal com-
ponents of the pressure-strain covariance (exemplified by PS

33), for which the IP parameterization fails as
even the sign of the components in question cannot be given correctly.

Table 7 provides a summary of performance of parameterizations (models) of the pressure-scrambling
terms in the atmospheric boundary layers capped by shallow clouds. A model is rated as good (G) if the
shape of the LES-based vertical profile of the contribution in question is reproduced satisfactorily in most
parts of the CTBL. A model is rated as acceptable (A) if the sign of the contribution is reproduced correctly
(at least in most parts of the CTBL) but the LES-based and the modeled vertical profiles are largely dissimilar
in terms of their shapes. A model fails (F) if even the sign of the contribution is not reproduced correctly. A
dash ‘‘–’’ in Table 7 indicates that a model of the respective contribution is not tested (e.g., the TCL model
for the shear contributions).

Finally, the implications of results from the present study for modeling (parameterizing) turbulence in the
atmosphere should be briefly discussed. As the above analysis suggests, simple linear parameterizations of
the pressure-scrambling terms in the Reynolds-stress and scalar-flux budgets do not appear to be inferior to
more complex TCL parameterizations in the boundary-layer regimes considered. Linear parameterizations
fail to describe some contributions to the pressure-scrambling terms but are able to describe the principal
features of most contributions reasonably well. It is the opinion of the present authors, however, that the
TCL parameterizations (or similar nonlinear realizable parameterizations) should still be given preference

Table 7. Performance of the Tested Models With Respect to the Various Contributions to Pressure-Strain and Pressure Gradient–Scalar
Covariances

PT
ij PT

si PB
ij PB

si PS
ij PS

si

bm-IP G G diag. comp.: A vert. comp.: G G (but PS
33: F) G

Off-diag. comp.: G hor. comp.: F

bm-Z 2 2 2 2 G G

TCL G G diag. comp.: A vert. comp.: G 2 2

Off-diag. comp.: G hor. comp.: A

aThe abbreviation bm-IP denotes the basic model (bm) where the IP parameterization for the buoyancy and the shear contributions
is used. bm-Z is the basic model where the parameterization of Zeman [1981] is used for the shear contributions. See text for further
explanation of the ratings G (good), A (acceptable), F (fail).
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over simple linear parameterizations when modeling turbulence in the atmosphere. The point is that a
turbulence parameterization scheme used within a numerical model of atmospheric circulation should
deal with many very different turbulence regimes encountered in the Earth’s atmosphere, not with some
particular regimes only. Although the TCL and the simplified linear parameterizations are found to per-
form similarly in the particular CTBL regimes considered in the present study, the TCL and similar parame-
terizations are more flexible and have the potential to realistically describe various turbulence regimes.
Simplified linear parameterizations are less flexible; they can describe some particular turbulence regimes
but will almost inevitably fail in the other regimes for which they have not been tuned. As an illustrative
example, consider the nonlinear TCL parameterization, equation (25), and the linear parameterization,
equation (23), for the buoyancy contribution to the pressure gradient-scalar covariance. Equation (25) is
valid in both the isotropic limit and in the two-component limit, where the latter constraint is vitally
important to model turbulence in stable density stratification. The linear parameterization (23) with Cs

B5

0:5 appears to describe the vertical component of the buoyancy contribution to the pressure gradient-
scalar covariance better than the TCL parameterization (25). However, the linear parameterization entirely
fails in describing the horizontal components of the buoyancy contribution to the pressure gradient-
scalar covariance. Furthermore, (23) with Cs

B50:5 will also fail in the two-component limit, where Cs
B

should be equal to 1 in order to avoid spurious generation of the scalar fluxes by the buoyancy forces.
Setting Cs

B51 satisfies the two-component limit and helps describing turbulence in strongly stratified
flows (regions of the flow), but then the linear parameterization will fail in the isotropic limit and in con-
vective flows, where the buoyancy production of turbulence will be strongly underestimated. That is, the
linear model is not able to satisfy a number of important constraints simultaneously, simply by construc-
tion. We, therefore, tend to think that the research efforts should go into further development of flexible
and physically plausible nonlinear parameterizations of the pressure-scrambling terms and (which is
important for applications) into their optimization in terms of computational efficiency.

Although nonlinear, intrinsically realizable parameterizations of the pressure-scrambling terms are more
attractive than linear parameterizations, it seems unlikely that they will be widely used in practical applica-
tions in the short-term to medium-term prospects. Simplified linear parameterizations will most likely be uti-
lized in numerical weather prediction, climate modeling, and related applications for some, perhaps many,
years to come. Then a modeler has to face a very difficult ‘‘tuning dilemma.’’ Tuning the model constants
(such as Cs

B) to describe particular flow regimes in the best possible way, one should put up with possible
large uncertainties in the other regimes. An accurate description of many turbulence regimes is not possible
due to inflexibility of linear parameterizations (which have too few degrees of freedom to satisfy several
important constraints). The following pragmatic way out can be suggested to avoid big trouble. A turbu-
lence parameterization scheme utilizes simplified parameterizations of the pressure-scrambling terms,
including the Rotta-type parameterizations for the slow turbulence-turbulence contributions and the (linear
in second-moments) parameterizations for the rapid buoyancy, shear, and Coriolis contributions. However,
the model constants are replaced with empirically-based functions of the dimensionless governing parame-
ters (such as, e.g., the gradient Richardson number) constructed so that to satisfy the necessary constraints.
In this way, the resulting parameterizations remain rather simple and computationally inexpensive, but
large errors caused by the shortcomings of the linear parameterizations of the pressure-scrambling terms
can be avoided. A model of the stably stratified atmospheric boundary layer, that avoids spurious genera-
tion of the heat flux through the use of a function of the gradient Richardson number instead of a constant
value of Cs

B in the linear parameterization (23), was proposed by Wyngaard [1975].

As the two CTBLs considered in the present study are dominated by buoyancy, less attention is paid to the
shear contributions to the pressure-scrambling terms than to the turbulence-turbulence and buoyancy con-
tributions. Consideration of convective flows, where the role of mean velocity shear is large (or even domi-
nant), is beyond the scope of the present study. A detailed analysis of the pressure-scrambling terms in
such flows, including the evaluation of complex, nonlinear parameterizations (such as the TCL parameteriza-
tion), is of considerable interest and should be performed in the future using LES (or DNS).

Appendix A: Determination of Fluctuating Pressure Components in PALM

The decomposition of the fluctuating pressure, equation (5), is linear. Thus, the total fluctuating pressure �p00

should be numerically equal to the sum of its components. To ensure this equality, we took care that the
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Poisson equations for the pressure components are solved in the same way as the Poisson equation for the
total pressure �p in the LES model PALM. This online approach, where the pressure components are deter-
mined during the LES model run, guarantees that precisely the same numerics are applied to the pressure
components and to the total pressure.

In the incompressible LES model PALM, a predictor-corrector method (also called fractional-step or projec-
tion method [e.g., Chorin, 1968, 1969; Patrinos and Kistler, 1976]) is used to calculate a flow free of diver-
gence. This method splits the integration of the model equations into two steps. In the first predictor step,
the momentum equations are solved without the pressure-gradient term yielding a preliminary velocity
field which is generally not free of divergence. The divergence of the preliminary velocity field is then used
as a source term in the Poisson equation for pressure. Once the pressure equation is solved, the preliminary
velocity field is corrected by means of the pressure-gradient term in the second corrector step. Overall, this
method guarantees the calculation of an incompressible flow.

The individual pressure components are determined in the same manner as the total pressure. First, the tenden-
cies of the LES momentum equations due to advection (A), buoyancy (B), Coriolis effect (C), subgrid diffusion
(SG), and large-scale subsidence (SU) are stored separately. In the predictor step, provisional velocity fields based
on each process are calculated. In the corrector step, the divergences of the provisional velocity fields are deter-
mined which are then, in turn, the source terms of the respective Poisson equations. These equations are solved
in the LES model by means of fast Fourier transforms, and the pressure components are obtained.

A comment on the boundary conditions for the pressure components should be made. At the surface, a
zero-gradient condition is used for each component. This is not fully consistent with the momentum equa-
tions as described in section 2.2, since the buoyancy gradient and the divergence of the subgrid scale stress
are generally nonzero at the surface. However, with regard to the fact that the predictor-corrector method
is used to determine the pressure components, a pressure boundary condition is not required at the sur-
face. The reason is that by using the predictor-corrector method on a staggered grid formulated in discrete
space, a definition of a pressure boundary condition at the wall is not needed [e.g., Vreman, 2014]. Thus, we
argue that, despite the somewhat inconsistent choice of the pressure boundary conditions, physically
meaningful results are obtained.

At the top of the model domain, a zero pressure (Dirichlet) boundary condition is assumed for all compo-
nents. This is somewhat inconsistent with regard to the top boundary conditions discussed in section 2.2.
However, concerning the pressure boundary condition at the model top, zero-gradient (Neumann) and zero
pressure (Dirichlet) conditions are roughly equivalent if there are vanishing velocity and scalar fluctuations
at the model top. This is the case in our simulations since Rayleigh damping is used toward the model top.
Sensitivity tests with a zero-gradient condition at model top (results are not shown) indicate that the pres-
sure components and the turbulence statistics are very little affected by the type of the pressure boundary
condition applied at the top of the computational domain.

The method described above provides the pressure components �pA due to advection, �pB due to buoyancy,
�pC due to Coriolis effect, �pSG due to subgrid diffusion, and �pSU due to large-scale subsidence.

To separate the contributions due to turbulence-turbulence interactions (T) and mean shear (S), we consider
the source term of the Poisson equation for the pressure component due to advection:

1
q0

@2�pA

@x2
i

52
@2 �ui�uj
� �
@xi@xj

52
@2�u00i �u00j
@xi@xj

22
@�u00j
@xi

@ �uih i
@xj

:

(A1)

The first term on the right-hand-side of (A1) is equivalent to the source term of the pressure contribution
due to turbulence-turbulence interactions in equation (6) and the second term is equivalent to the source
term for the mean-shear pressure contribution in equation (7). This implies that

�pA5�pT1�pS: (A2)

The contribution due to advection, �pA, is determined by solving (A1). The shear contribution �pS is calculated
by solving (7) in the LES model where its source term is determined based on the velocity fields at the
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current time step. The turbulence-turbulence contribution is then determined by means of (A2) as a differ-
ence �pT5�pA2�pS.

It should be noted that our LES model solves for a modified pressure which is the sum of the pressure and
the trace of the subgrid scale stress. This trace is subtracted from the subgrid scale part of the pressure.

Appendix B: Determination of Best-Fit Values for Model Constants

All parameterizations of the basic model (see equations (18), (19), (23), (23), (27), and (27)) are essentially a
product of a model constant C and a function f ðx3Þ. This product is fitted to the LES profiles of the pressure-
scrambling terms denoted as PLESðx3Þ. The following model is used to evaluate C: PLESðx3Þ5C � f ðx3Þ. By
means of linear regression the model constant C can now be calculated with C5 PLESðx3Þ=f ðx3Þ½ �x3

where
� � �½ �x3

denotes a mean over vertical levels. Thus, the best-fit constant is just the vertical mean of the
ratio of LES-based pressure covariance and f ðx3Þ. The root-mean-square error (RMSE) is also provided.
The fitting is applied over the middle part of the boundary layer, at 100 m < z < 2000 m for BOMEX and at
100 m < z < 800 m for DYCOMS, excluding the near-surface layer and the interfacial layer. Close to the sur-
face, the LES fields are chiefly determined by the subgrid model and are less reliable. The interfacial layer is
excluded from the fitting since the strong gradients in the stratocumulus case are not well resolved. Fur-
thermore, a weighting is applied in the course of the vertical averaging to soften the influence of outliers
on the mean. Only those values of PLESðx3Þ=f ðx3Þ are used to compute the vertical mean that are within a
certain range around the literature value clit of the particular model constant. This range was chosen arbitra-
rily to clit65. Using ranges between 2 and 7 has only minor impact on the resulting best-fit values.
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