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Cover figure: Gravitational radiation emitted in the orbital plane during a binary black hole
merger encoded in the Weyl scalar U4. Plotted here is r- Uy to compensate for the 1/r falloff that
W, obeys. One can see that the amount of radiation is particularly strong during a certain time
- the time of the merger - and becomes weaker in the ring-down phase where the final black hole
settles to a stationary state.



Abstract

Keywords: Black holes, Gravitational waves, Numerical Relativity.

Binary black hole mergers are supposed to be the strongest source of gravitational radiation in
the Universe. These systems can radiate up to ~ 10% of their total mass leading to the colossal
liberation of ~ 10%%ergs in gravitational waves as for a supermassive black hole merger with a
mass of 107 solar-masses M. Hence, these systems are the first candidates to be detected in
gravitational-wave interferometers like (advanced/enhanced) LIGO, (advanced) Virgo and LISA.

In this thesis, we study various aspects of binary black hole mergers with the tools of numerical
relativity. By applying fully 3D simulation codes to realistic binary black hole initial data, mostly
restricted to the 2D parameter subspace of equal-mass spin-aligned binaries, we determine various
properties of the binary systems.

We compute the signal-to-noise ratio for the various configurations in the parameter subspace
considered and can show that spin-aligned binaries will be generally “three times as loud” as
spin anti-aligned binaries, hence leading to a probability of detection which will be ~ 30 times
larger than for the latter binaries. In addition, we derive a phenomenological expression for the
radiated energy and show that between ~ 3.6% and ~ 10% of the total mass of the binary will be
emitted in gravitational waves. Furthermore, we show that binaries with spin ¢y = —ao cannot
be distinguished within the given numerical accuracy, whereas configurations with spin a1 = ag
are clearly different. This indicates that gravitational-wave template banks can be modeled in
terms of a single scalar spin parameter a, at least at lowest order. Even simple waveforms, such
as those relative to non-spinning binaries, will be effective enough to provide a detection for most
configurations of equal-mass and aligned/anti-aligned binaries.

Several properties of the merger remnant are of particular interest. Among these is the recoil
velocity that the remnant can acquire due to asymmetric emission of gravitational radiation. In
the 2D parameter subspace of equal-mass and spin-aligned binaries, we quantify this effect and
conclude that the maximal emerging recoil of |vyecon| = 441.94 £ 1.56km /s will not be sufficient to
kick the remnant out of its host environment.

Furthermore, we consider the final spin of the merger remnant and find that the remnant is
typically spun-up by the merger. We determine the conditions under which the angular momentum
of the spacetime “flips sign” and under what conditions a Schwarzschild black hole is produced.

For both properties of the remnant, recoil and spin, we present simple phenomenological expres-
sions in terms of the parameters of the initial black holes that can be used in N-body simulations
of galaxy mergers and star-cluster dynamics, where it is impractical to include the full non-linear
interactions of binary black hole systems.

A major achievement in this thesis is the first unambiguous determination of binary black hole
merger waveforms at future null infinity J. Through the application of Cauchy characteristic
extraction, we are able to determine the full non-linear dynamics of the complete spacetime out to
JT. We show that the obtained waveforms are free of any gauge effects and contain only numerical
error. This also allows to assess the systematic finite-radius error inherent in all current wave-
extraction measurements, and we show that current numerical relativity waveforms are valid,
but corrections have to be taken into account for advanced detectors, especially for parameter
estimation.

Furthermore, we develop a multiblock infrastructure coupled to an adaptive mesh-refinement
driver, and use topologically adapted grids to accurately and efficiently represent the gravitational
wave-zone out to large radii. This allows to causally disconnect the artificial outer boundary of the
computational domain during Cauchy evolution such that the extraction world-tubes are located
within the future Cauchy horizon of the compact subset of the initial Cauchy hypersurface. As a
result, we are able to show that the higher harmonic modes of the wave-signal can be accurately
resolved, and we demonstrate convergence of modes up to (¢, m) = (6,6).






Zusammenfassung

Schlagworte: Schwarze Locher, Gravitationswellen, Numerische Relativitatstheorie.

Binérsysteme zweier verschmelzender schwarzer Locher werden als Quellen starkster gravitativer
Strahlung im Universum angesehen. Diese Systeme konnen bis zu ~ 10% ihrer Gesamtmasse ab-
strahlen, was der kolossalen Energiemenge von 10%%ergs gleichkommt, die bei verschmelzenden su-
permassiven schwarzen Léchern mit einer Masse von 107 Sonnenmassen Mg, in Gravitationswellen
freigesetzt wird. Diese Systeme sind deshalb die ersten Anwérter, die in Gravitationswelleninter-
ferometern wie (advanced/enhanced) LIGO, (advanced) Virgo und LISA nachgewiesen werden.

In der vorliegenden Dissertation studieren wir verschiedene Aspekte bindrer schwarzer Locher mit
Hilfe der numerischen Relativitatstheorie. Durch Anwendung von dreidimensionalen Simulations-
codes auf realistische Anfangsdaten bindrer schwarzer Locher, meist beschriankt auf den zwei-
dimensionalen (2D) Parameterunterraum gleichmassiger und spin-ausgerichteter Binérsysteme,
bestimmen wir verschiedene Eigenschaften der Schwarzlochsysteme. Wir berechnen das Signal-
zu-Rausch-Verhéltnis flir unterschiedliche Konfigurationen in dem betrachteten Parameterunter-
raum und konnen zeigen, dass spin-ausgerichtete Binarsysteme generell “dreimal lauter” als spin-
antiausgerichtete Systeme sind, und deshalb zu einer 30 mal hoheren Detektionswahrscheinlichkeit
fithren als letztere Systeme. Dariiber hinaus leiten wir einen phénomenologischen Ausdruck fiir
die abgestrahlte Energie ab, und zeigen, dass zwischen ~ 3.6% und ~ 10% der Gesamtmasse der
Binérsysteme in Gravitationswellen emittiert werden. Desweiteren zeigen wir, dass Bindrsysteme
mit Spin a; = —as innerhalb der numerischen Genauigkeit nicht unterschieden werden kénnen, je-
doch sind Systeme mit Spin a; = as eindeutig unterscheidbar. Dies indiziert, das Schablonenbénke
fir Gravitationswellen in Termen eines einzigen skalaren Spinparameters a modeliert werden
koénnen, zumindest bei niedrigster Ordnung. Es stellt sich heraus, dass sogar einfachste Wellen-
formen effektiv genug sind, um die meisten spin-ausgericheten Konfigurationen aufzuspiihren.

Weiterhin ermitteln wir den durch asymmetrische Strahlung verursachten gravitativen Riickstof3.
Wir quantifizieren diesen Effekt im betrachteten 2D Parameterunterraum und schlieflen auf eine
maximal mogliche RiickstoBgeschwindigkeit von |vrecoil| = 441.94 4+ 1.56km /s, die nicht ausreicht,
um das verschmolzene schwarze Loch aus seiner Umgebung herauszuschleudern.

In einer verwandten Arbeit betrachten wir den Spin des verschmolzenen schwarzen Loches und
finden, dass der Verschmelzungsprozess typischerweise zu einer Zunahme des Spins fiihrt.

Fiir beide Eigenschaften, Spin und Riickstof}, préasentieren wir einfache phinomenologische Aus-
driicke, die in N-Korpersimulationen von Galaxienverschmelzungen und Sternenclustern verwendet
werden konnen.

Eine grofile Errungenschaft dieser Arbeit stellt die erste eindeutige Bestimmung von Gravitations-
wellen binérer schwarzer Locher bei lichtartig Zukunftsunendlich J+ dar. Durch die Anwendung
von Cauchy-charakteristischer Extraktion sind wir in der Lage, die volle nicht-lineare Dynamik der
kompletten Raumzeit einschlieflich J* zu bestimmen. Wir zeigen, dass die errechneten Wellen-
formen frei von Eicheffekten sind, und auschliellich numerische Fehler enthalten. Dies ermdoglicht,
den systematischen Fehler abzuschétzen, der jeder bisherigen Wellenextraktion anhaftet. Wir
zeigen, dass bisherige Wellenformen giiltig sind, jedoch miissen Korrekturen fiir die erweiterten
Detektoren einbezogen werden, insbesondere wenn Parameterbestimmung entscheidend ist.

Desweiteren entwickeln wir eine Multiblock-Infrastruktur, die an einen adaptiven Netzverfeiner-
ungstreiber gekoppelt ist, und benutzen topologisch angepasste Gitter, um die gravitative Wellen-
zone genau und effizient bis zu groflen Radien darzustellen. Dies ermdglicht, den kiinstlichen
duleren Rand der Berechnungsdoméne kausal abzuschneiden, sodass die Extraktionsweltrohren
innerhalb des zukiinftigen Cauchy-Horizontes der kompakten Untermenge der initialen Cauchy-
Hyperflache lokalisiert sind. Demzufolge sind wir in der Lage zu zeigen, dass die hoheren harmo-
nischen Moden des Wellensignals prazise aufgelost werden kénnen, und wir demonstrieren Kon-
vergenz der Moden bis zu (¢,m) = (6, 6).
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Preface

Why binary black hole mergers?

Any two gravitationally bound black holes (BHs) represent a binary black hole (BBH) system.
These systems continuously loose energy and angular momentum through the emission of gravi-
tational radiation and hence move closer to each other as they orbit. If not disrupted by external
forces, the ultimate fate of any such system is the final merger to a single BH.

These merging binaries are of prominent interest to gravitational-wave analysis because they are
supposed to produce the most powerful gravitational-wave signals and hence, are perfect candidates
for gravitational-wave detection. For example, a 100 solar mass binary will release a total amount
of about 10°° ergs corresponding to about 6% of its total mass, ~ 80% of which is liberated in the
very last seconds during the merger itself.

The detection of gravitational waves is an outstanding experimental evidence that has to be
adduced in order to confirm general relativity (GR) on an experimental level. Moreover, the
ability to measure gravitational waves will open up a whole new class of astronomical observations
since scientists will not be limited to the electromagnetic spectrum anymore, but it will enable
them to explore the Universe in its dominant interaction at cosmological scales. Since BBH
systems are expected to be the most powerful source of gravitational radiation, these binaries will
probably be the first to be detected, and they will probably also be the first objects to be studied
observationally with gravitational-wave detectors. Furthermore, BBHs represent the two-body
problem of vacuum GR, and observing them via gravitational-wave emission may give clues on
how our theories of gravitation have to be modified to eventually construct a unified theory of
particle interactions. Although this is beyond the current scope of today’s research, it still justifies
the fundamental importance of BBH systems.

Apart from pure detection of BH merger events, various astrophysical aspects of the merger
remnant are of great interest. Among these is the recoil (or “kick”) velocity of the merged object.
A recoil can occur if gravitational radiation is emitted asymetrically during the evolution of the
binary. Since gravitational waves carry energy, angular and linear momentum, there might be a
prominent direction in which linear momentum is beamed, thus resulting in a non-zero net linear
momentum or “kick”. In the case of supermassive BHs, which are expected to be harboured in
the centers of massive galaxies, after the system has merged, the final object may have received
a kick which is sufficient to overcome the binding energy of the host object so that the merger
remnant is ejected from it. Clearly, the absence of a central compact object has dramatic impact
on the further evolution of the host. For example, it is nowadays believed and in some cases
observationally verified that at least each major galaxy contains a massive BH [1-3], as well as
our own Galaxy [4, 5], and also active galactic nuclei [6, 7]. The merger of any two galaxies
then implies the merger of the central BHs [8-10], and in case of (super)massive BHs, which have
masses with more than 10° solar masses up to Msarpr « 10° M, the hierarchical merger during
the early stages of our Universe in the epoch of structure formation might even clarify the role
of supermassive BHs during the process of galaxy formation [11-22]. The successive merger of
supermassive BHs might lead to the ejection of the remnant from the surrounding dark matter
halo which is then no longer involved in the process of galaxy formation.

In the case of stellar BHs, i.e. BHs which carry a mass of up to a hundred solar masses, the most
common hosts are globular clusters [23]. The ejected object is then traveling within the galactic
medium and the abundance of such events leads to a galactic BH distribution [14, 24-26].

Another interesting property is the spin and mass of the final merged BH. The former can give
indication on the spin distribution of astrophysical BHs [16, 27, 28] such as BHs produced at the
end of the evolution of a binary system of massive stars, or the supermassive remnants produced
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in galaxy mergers. In addition, the a priori knowledge of the final spin of a binary system that
has not yet merged can help in the detection of the ring-down in gravitational-wave data analysis.
The final mass, or equivalently, the radiated amount of energy during binary evolution, can have
impact on the dynamics of the circumbinary disc accreting onto the binary [29, 30].

BBH mergers can therefore contribute to the understanding on how today’s visible Universe has
formed and may someday be crucial for probing gravity experimentally in its most extreme regimes
with the help of gravitational-wave analysis.

Why numerical simulations?

Current gravitational-wave detectors suffer from the heavy influence of various sources of noise
in the recorded detector data stream and finding a signal within the large amounts of noise can
become very delicate. Fortunately, there exist a number of techniques of greatly enhancing the
chances for detecting an event. One of these techniques is the “matched-filtering” procedure in
which the detector data stream is matched against a known wave-signal. In addition, and apart
from data-analysis techniques of finding a signal in the recorded data, more advanced detectors
such as LISA will measure gravitational waves very accurately, and it will become possible to
analyze the parameters of the gravitational source with high accuracy. However, nobody knows a
priori how a gravitational wave depends on the parameters of its source. Thus, in order to make
sense of observed gravitational-waves, it is necessary to calculate the radiation of given gravitating
sources based on theoretical models. Today’s most established theory that allows for gravitational
waves is known as Einstein’s GR, and the determination of a source’s wave signature involves
solving Einstein’s field equations.

Unfortunately, these equations are rather complicated, and analytical solutions are only possible
for spacetimes that possess high degrees of symmetry. For example, there are solutions such as
the Schwarzschild and Kerr spacetimes that model single spherically (static) or axially symmetric
(stationary) BHs. However, more generic spacetimes such as BBH spacetimes do not possess such
high degrees of symmetry and no solutions have been found for this problem yet.

Hence, approximate methods have to be applied and there exist a variety of different perturbative
approaches. These methods suffer from the fact that they are only valid in certain regimes,
e.g. post-Newtonian methods are only valid in regimes with non-relativistic (internal) speeds and
weak gravitational fields inside the source. For BBH systems, these conditions can only be achieved
if the two bodies are well separated and hence, post-Newtonian methods can only be applied as
long as the BHs are still on widely separated orbits around each other and move at non-relativistic
speeds. If the two bodies get close enough, the system becomes unstable and plunges together at
ultra-relativistic speeds. At this point, post-Newtonian methods break down completely and can
not produce reliable results.

Black hole perturbation theory as another approximate approach is based on small deviations
from spherical or axial symmetry and can therefore only handle spacetimes that are not subject
to large distortions away from this symmetry. Hence, this method is only valid for BBH systems
that have already merged to a single BH. This BH is usually highly excited, but can be modeled
according to BH perturbation theory.

Unfortunately, both perturbative methods break down at the highly non-linear merger phase, and
although it is possible to combine different perturbative methods in order to cover a larger regime
(e.g. [31]), it is still necessary to assess the accuracy of such approximations which in most cases
is hard to estimate. Numerical simulations on the other hand do not rely on any perturbative
assumptions in some expansion parameters. Although still an approximative approach, too, it
is a necessary condition of the solution to converge to the analytical solution in the limit of
infinite resolution. Therefore in principle, higher accuracy in the solution is only a question of
computational power.

Hence, numerical simulations are a perfect tool for the analysis of BBH spacetimes and the com-
putation of the associated gravitational radiation content. Especially for the construction of



Preface «xi

gravitational-wave template banks [32-35], where it is necessary to know the full waveform includ-
ing the highly non-linear merger phase, numerical simulations are currently the only possible way
of attaining such a solution.

The challenge

The first attempt to model BHs on a computer was done by Hahn and Lindquist in the 1960s.
In their paper from 1964 [36], they tried to evolve wormhole initial data, and at that time, the
term “black hole” was not even coined. Despite arising difficulties of carrying the simulation
sufficiently far so that conclusive dynamical behavior from the wormhole data could be drawn,
they were nevertheless able to show the gravitational collapse of the two “mouths” accompanied
with “an interaction between them”. The first attempts to model head-on collisions of BHs was
done by Smarr in the 1970s [37-42] where he paved the way for many follow-up studies on that
topic. Some of these were accomplished in the 1990s [43-46] when the computational power first
permitted larger simulations.

However, it turned out that it was not so simple to just take Einstein’s equations and discretize
them. Despite the problems that arise when the system is under-resolved due to the lack of
computational power, it turned out that the standard 3+1 split of the field equations, the Arnowitt-
Deser-Misner (ADM) formalism, was numerically not stable because the equations are cast into a
form that is only weakly hyperbolic. The discrete system is therefore not necessarily stable and
exponentially growing modes can blow up the entire system within a finite amount of time basically
causing the simulation to crash. Furthermore, Einstein’s equations are an over-determined system.
This means that there are more equations than unknowns, particularly there are four additional
constraint equations to the six evolution equations for the six unknowns that need to be satisfied.
Mathematically, if these constraints are satisfied initially, they will always be satisfied during
evolution. However, due to the truncation error in numerical simulations, the constraints will
never be satisfied exactly. Unfortunately, this leads to exponentially growing constraint violations
and if not causing the simulation to crash, they at least render the calculation useless since the
solution does not belong to the class of solutions to the full Einstein equations anymore.

Another delicate issue arises due to the gauge invariance of GR which means that physically,
no coordinate system is preferable over any other. However, in numerical simulations, one has
to choose a coordinate basis in order to evaluate the equations. It turned out that picking a
gauge which is non-pathologic and keeps the distortions of the numerical grid reasonably small,
is highly non-trivial. This is closely related to the question of how the BH singularities can be
treated numerically. If singularities are to occur, they have to be avoided by all means, for infinite
quantities can not be represented on computers.

Furthermore, because of finite computer resources, the spacetime that is calculated needs to be
finite. This means that boundary conditions have to be imposed on the domain boundaries.
However, no boundary conditions for the Einstein equations are known that model an outgoing
radiation condition similar to the Sommerfeld condition that at the same time are constraint
preserving. Hence constraint violating modes will travel inside the simulation domain causing the
simulation to crash or at least making it highly inaccurate.

Finally, the computation of gravitational radiation is unambiguously defined only at future null
infinity thus practically requiring the computation of an infinitely sized spacetime. Again, this is
problematic as there are only finite computational resources.

It was not until 2005 when the first successful orbiting BBH coalescence was accomplished by Frans
Pretorius [47] using a generalized harmonic formulation of the field equations with compactified
outer boundaries, constraint damping terms and excision of the interior domain of the BH in
order to remove the singularity from the numerical grid. At the same time, codes that were using
a different formulation of the field equations, the Baumgarte-Shapiro-Shibata-Nakamura-Oohara-
Kojima (BSSNOK) system with the so-called puncture technique, underwent a revolution with the
discovery of “moving punctures” [48, 49] which led to superior stability and robustness. Since then
the whole field of numerical relativity (NR) entered a gold-rush which still holds on. Shortly after
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the first full merger simulations from inspiral to merger and ring-down phase were accomplished,
the field started to apply their codes to study the astrophysics of BBH mergers in a detail that has
never been possible beforehands. Publications were released on a daily basis leading to a number
of exciting discoveries, e.g. the magnitude of recoil velocities in BBH mergers and the surprising
fact that non-zero initial spins of the initial BHs produce a much larger kick than unequal-mass
binaries. But despite the numerous discoveries that became possible, there are still issues that need
to be tackled in order to gain more accuracy and predictive power, especially for the construction
of gravitational-wave templates.

One of these issues is buried in the gravitational-wave extraction methods which rely on simplified
coordinate and fall-off assumptions at the extraction radius. Another pressing issue is the ability
of evolving BBHs for a larger number of orbits prior to merger so as to construct effective and
faithful hybrid waveforms [32-35]. Such hybrid waveforms are constructed from post-Newtonian
evolutions for the first hundreds and thousands of orbits, and which are then matched to numerical
relativity waveforms which encompass the last couple of orbits including merger and ring-down.
In order to be able to achieve a high-quality matching, it is necessary to push the matching region
more towards the early inspiral, as well as computing the gravitational wave itself as accurately
as possible.

Some of these issues are addressed in this thesis and overviewed in more detail in the next section.

The goal and new results obtained in this thesis

This thesis deals with numerical BBH merger simulations with new and improved gravitational-
wave extraction methods as its main result, but also considers various important physical aspects
such as gravitational-wave detectability, recoil velocities and final spin of the merger remnant.

The new results obtained in this thesis are partly reported in [50-60] and constitute the author’s
genuine contribution to the field of numerical relativity, gravitational-wave analysis and binary
black hole physics. In addition, the author has contributed to results achieved in [61-65].

We acknowledge close collaboration with Nigel T. Bishop', Peter Diener?, Nils Dorband?, Sascha
Husa?, Michael Koppitz®, Denis Pollney®, Luciano Rezzolla’, Erik Schnetter®, Bela Szilagyi® and
Jonathan Thornburg!?.

Gravitational-wave detectability of equal-mass spin-aligned binary black hole mergers

An important result [51] in this thesis is concerned with various aspects of gravitational-wave
analysis. The question that we try to address here is how well BBH merger configurations in
the 2D parameter subspace of equal-mass spin-aligned/anti-aligned binaries can be seen by the
various gravitational-wave detectors (see Chapter 14). With the help of numerical simulations, we
find that spin-aligned binaries are more than “three times as loud” as the corresponding binaries
with anti-aligned spins, thus corresponding to event rates up to 30 times larger. In addition, we
consider the waveform mismatch between different spinning configurations and find that within
numerical accuracy, binaries with opposite spins cannot be distinguished whereas binaries with
equal spin have clearly distinct gravitational-wave emissions. This has important consequences
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for the construction of gravitational-wave template banks and puts high demands on parameter
estimation.

Furthermore, we present a simple analytical expression for the radiated amounts of energy due to
gravitational waves and find that the radiated amount of mass is between 3.6% and 10%.

We also consider higher harmonic modes and how they influence the analysis above.

Recoil velocities

One of the top astrophysical aspects of BBH mergers is the gravitational recoil of the merger
remnant. We present results [55-57] based on a momentum flux analysis code on the dependence
of the recoil velocity in terms of the parameters of the initial BHs in the 2D parameter subspace
of equal-mass spin-aligned binaries.

In this subspace, a recoil occurs for those binaries only, whose spins are either non-equal or equal
but opposite (see Chapter 12). It turns out that within the error bars, the recoil has a quadratic
dependence along the direction a; = —as in the 2D spin diagram, which represents a correction to
the linear post-Newtonian predictions. Given a set of numerical simulations, we derive a simple
analytical phenomenological expression for the recoil and extrapolate to a maximum recoil of
|Vrecoil| = 441.94 £ 1.56km/s in that parameter subspace, which is unlikely to be sufficient for
ejecting the remnant from its host object.

In finding the proper functional dependence, it is crucial to consider the recoil integration constant,
which arises due to radiation that would have been emitted before the simulation was started (see
Section 12.1).

Final spin

Another important finding is the relation of the spin of the merger remnant to the initial spins
and mass-ratio of the initial BHs. Through a large set of performed simulations, we have found a
phenomenological expression for the final spin [57-59]. In the parameter subspace of equal-mass
spin-aligned binaries, we construct a simple quadratic fitting formula, revealing that the final spin
depends only on the total initial spins of the binary (see Section 13.1). By extending the analysis
also to unequal-mass binaries, we are able to show that the remnant is typically spun-up by the
merger. In addition, it is possible to produce remnants that encounter a global spin flip, i.e. the
total angular momentum is positive, but the spin of the remnant is negative. Accordingly, it is
possible to produce a final Schwarzschild BH (see Section 13.2).

With a minimal set of assumptions and without additional fits, it is possible to extend this work
to generic mass-ratios and spins (see Section 13.3).

Highly accurate and efficient binary black hole merger evolutions

A major achievement in this thesis is the implementation of a multiblock scheme coupled to an
adaptive mesh-refinement driver together with high-order spacetime evolutions [54]. The multi-
block scheme allows for the application of topologically adapted grids so that computational re-
sources are not lavished. For example, the gravitational wave-zone of a radiating source has
spherical topology, which is not captured by the commonly used Cartesian grids. This results in
a severe drawback. If the computational domain is enlarged, the computational effort scales with
the number of points as N3. Spherical grids on the other hand, simply scale as IV, since the angu-
lar resolution remains constant. To maintain regularity and a nearly homogeneous distribution of
angular points throughout the entire domain, a “cubed-sphere” six-patch coordinatization of 52
is employed, and the use of a global Cartesian coordinate frame allows for a common global tensor
basis, so that tedious tensor transformations between local coordinate maps can be avoided (see
Section 7.3).

At the same time, it is desirable to treat the strong-field region with established mesh-refinement
methods. In the case of BBHs, a hierarchy of nested grids surrounds each BH to allow for the
placement of resolution where necessary.
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The coupling of both schemes together with high-order finite difference operators results in su-
perior accuracy and resolution, particularly in the wave-zone, and the presented code can deliver
comparable accuracy to spectral evolution schemes. For example, in Section 11.3, we demonstrate
that the merger remnant of an equal-mass non-spinning reference BBH configuration is ringing
with frequencies that have a residual of less than 0.01% to the prograde quasi-normal modes of a
Kerr BH for all modes up to (¢,m) = (6,6). Convergence tests with different resolutions reveal
that the wave-modes up to (¢, m) = (6,6) converge at the given theoretical order of accuracy (see
Section 11.2).

Furthermore, the artificial outer boundary of the computational domain can be sufficiently re-
moved so that it is causally disconnected from the wave-extraction world-tubes. Thus, the interior
spacetime evolution is not contaminated by any boundary effects, and gravitational waves can be
extracted at a radius 7 = 1000M and larger. In contrast, other studies have carried out extraction
at r = 350M at most, but are usually limited to r < 100M. The possibility of extracting waves
with high accuracy and at large distances to the source enable a detailed analysis of the asymp-
totic fall-off behavior of the complex Weyl scalars and help to assess the accuracy of traditional
finite-radius wave-extraction [53] (see Section 15.1). It is shown that below an extraction radius
of r = 220M, the error in the extrapolation increases by one order of magnitude.

Finally, the scalability of the new code is outstanding, thus making it ready for computations at
the peta scale with 10,000 cores and more.

Unambiguous determination of gravitational waveforms from binary black hole mergers

The second main result of this thesis is the successful determination of BBH merger waveforms
where they are unambiguously defined, that is, at future null infinity. Due to the necessarily
finite computational domain, previous studies of BBH merger waveforms were always limited to
finite-radius wave-extraction. This, however, introduced an unknown systematic error since the
mathematical identification of certain curvature components with outgoing gravitational radiation
can only be unambiguously accomplished at future null infinity. By stopping the computation at
a finite radius, the non-linear dynamics of the wave-zone out to future null infinity is completely
neglected, and the resulting systematic error is hard, if not impossible to assess. In previous
studies, it was common to extrapolate the finite-radius waveforms to infinity, but still, the result
is contaminated with finite-radius effects.

We have removed this problem by the successful application of Cauchy characteristic extraction,
thus evolving the entire spacetime of generic BBH mergers out to future null infinity [50, 52]. We
are able to show that current finite-radius extrapolated extraction techniques are valid to a preci-
sion of about 0.01%, but corrections have to be taken into account for the advanced gravitational-
wave detectors, and when parameter estimation is crucial (see Section 15.2).

The implemented code is general purpose, and can straight-forwardly be applied to other astro-
physical problems such as core-collapse supernovae simulations or binary neutron star mergers.

Analysis and visualization

We have implemented a number of easy to use analysis tools for analyzing the properties of the
gravitational wave-signal. Among these is a collection of Python classes, which can extract quan-
tities like radiated energies or angular momentum, and which can be used to perform convergence
tests and other post-processing analysis (see Section 9.4).

Furthermore, we have implemented a database plugin for the state-of-the-art visualization toolkit
VisIt, which enables it to read the Cactus/Carpet file-format. This plugin provides full support for
adaptive mesh-refinement grids and arbitrary curvi-linear meshes, so that the Cactus community,
and especially numerical relativists, are able to take full advantage of sophisticated visualization
and 3D data inspection (see Section 10). This plugin is freely available [66].

Finally, we have implemented a C++ template class driver for 2D data representations on topo-
logically spherical grids for Cactus (see Section 7.4). This driver can manage parallely distributed
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surface data across multiple processors and offers easy-to-use functions such as surface integration
and harmonic decomposition. In addition, by using multiple coordinate maps, regular derivatives
can be obtained everywhere, which can be used to remove certain complications in the isolated
horizon computational implementation.

In this way, other scientists can benefit from an existing infrastructure, and a great amount of
code redundancy is avoided.

Organization of this thesis

This thesis is organized in three parts. In the first part, we introduce the reader to the underlying
mathematical theory and concepts of numerical relativity and gravitational-wave extraction, as
well as BBH mergers. In the second part, we continue with the numerics and computational
implementation of the BBH and gravitational-wave extraction problem. The third part of this
thesis is fully devoted to new physics results obtained with the (partially new) methods and codes
described in the previous parts.

First part

In the first chapter of the first part, we repeat the fundamental properties of BHs, introduce
important aspects of the assumed asymptotic structure of spacetimes for analyzing gravitational
radiation and recall key concepts in gravitational wave theory. The first chapter concludes with
an introduction to BBH mergers and their parameter space.

The second chapter is fully devoted to the Cauchy problem of vacuum GR, i.e. the question of
how to reformulate the Einstein equations such that the equations are in a form that can be
used for time-evolutions on a computer. Here, key points are the evolution equations themselves,
gauge conditions for fixing the remaining gauge freedom, construction of BBH initial data and the
handling of spacetime singularities that may occur. All of these ingredients form the basics for
the BBH evolution codes used in this thesis.

The third chapter introduces a different evolution system: the characteristic problem of GR.
This evolution system is important for the implementation of a new gravitational-wave extraction
method applied for the first time to BBH spacetimes, and the characteristic evolution code makes
use of the equations and techniques stated therein.

The fourth chapter gives a brief overview on BH horizons, especially apparent horizons. In terms
of the described isolated and dynamical horizon framework, it is possible to define the mass and
spin of a BH. This is of key importance for new results obtained regarding the behavior of the
final mass and spin of the BBH merger remnant in terms of the initial BH parameters.

The final chapter of part I introduces the underlying theoretical methods in gravitational-wave
extraction. We describe three methods that all find applications in this thesis. Of particular in-
terest is the third method, which couples characteristic evolutions to Cauchy evolutions and yields
gravitational waveforms that are determined at future null infinity. This theoretical framework is
then for the first time successfully applied to BBH spacetimes in a later chapter.

Second part

The first chapter of the second part repeats some basics from numerical analysis, such as numerical
stability, hyperbolicity and convergence. This is important for the understanding whether the
numerical approximation to the continuum problem is a valid and accurate one, and guides us in
the design of a numerical scheme. In this chapter, we also introduce the discretization method
employed for the evolution equations, such as finite differences, the method of lines and Runge-
Kutta time-integration.

The next chapter is devoted to the computational infrastructure that has been used and im-
plemented. We give a brief overview on the computational framework Cactus and describe the
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adaptive mesh-refinement scheme that is applied. We proceed with the description of the newly
implemented multiblock simulation code as well as a newly developed driver for 2-surfaces that
facilitates our wave-extraction modules and can be used in the future to e.g. improve the isolated
and apparent horizon computational implementations.

The third chapter of the second part, describes the discretization scheme of the Cauchy and
characteristic evolution equations, as well as the numerical construction of initial data, puncture
tracking and apparent horizon finding.

The fourth chapter mainly explains the computational details of the newly implemented Cauchy
characteristic extraction code. However, we also give brief descriptions of the existing numerical
implementations of the other two extraction methods that have been extensively used in this
thesis. The chapter concludes with the description of a gravitational-wave analysis script to be
able to extract information on the radiation-related quantities, such as energy, linear and angular
momentum.

The final chapter of part II gives an overview of a visualization database plugin for the visualization
toolkit VisIt. This plugin teaches Vislt how to read the Cactus/Carpet file-format for adaptive
mesh-refinement and curvi-linear grids, and is freely available to the Cactus community, especially
numerical relativists, that need to inspect huge amounts of data efficiently and in parallel.

Third part

The first chapter of the third part introduces the parameter subspace that is mainly considered
in this thesis, describes the simulations that have been performed, and states results on the
convergence of all codes that are used in this thesis. Further tests on the accuracy and consistency
of the simulations strongly support the validity of the numerical results that are obtained with
these codes.

The next chapter deals with the gravitational recoil that the merger remnant can acquire due to
the asymmetric emission of gravitational radiation. We present a detailed study on spin-aligned
binaries that is later extended to the whole 2D subspace of such binaries. A phenomenological
expression for the recoil velocity in terms of the spins of the initial BHs is derived.

The third chapter of part three deals with the final spin of the remnant. Again, we derive phe-
nomenological expressions for the spin in terms of the initial BHs. An initial study is restricted
to the 2D subspace of spin-aligned binaries. Subsequent studies extend the spin to the entire 7D
BBH parameter space.

The fourth chapter pursuits the question, how well spin-aligned binaries can be seen in gravitational-
wave detectors. We compute the maximal horizon distances of these binaries and compare the
relative chances of detecting certain spin configurations. We analyze the influence of higher wave-
modes on the detector and consider, how well different spin configurations can be distinguished
from each other. The chapter concludes with fitted expressions for the radiated energies and
signal-to-noise ratio in terms of the spins of the initial BHs.

The last chapter considers current wave-extraction techniques and analyzes the problem of finite-
radius extraction. By employing the two newly developed codes during this thesis, ¢.e. the adaptive
mesh-refinement multiblock code, as well as the Cauchy-characteristic extraction code, we are able
to assess the accuracy of finite-radius computations. First, by taking advantage of the multiblock
code, we are able to accurately resolve the fall-off behavior of the Weyl scalars at large distances
to the BBH system. Second, we present the first unambiguous BBH merger waveform computed
at future null infinity and compare the result to extrapolations from finite-radius extractions.

This thesis is concluded with a summary and outlook. In a subsequent appendix, we state formulas
and expressions that, for the sake of readability, have been post-poned to the end of this thesis.

Notation and conventions

In the following, we give some overview of the notation and conventions that are used here.
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The notation and formalism are based on Misner, Thorne and Wheeler [67]. A tensor is written
in the form

T, Sy,  hap, (0.0.1)

where greek indices range from 1 to 4, Latin indices range from 1 to 3, i.e. ¢, j, k, ..., n denote spatial
indices that run over components 1,2,3 or z,y, z whereas greek indices denote 4-indices that run
over all components 0,1,2,3 or t,x,y, 2. Upper-case Latin indices label components confined to
the submanifold S2, i.e. they refer to coordinates on the sphere and range from 2 to 3.

We use a spacelike metric signature (—, +, +, +).

The complex conjugate of a quantity A is denoted by A.

0, means the partial derivative 0/0x# and A denotes the partial time-derivative of quantity A.

Sums over spherical harmonic modes are usually abbreviated as

= i ZE: : (0.0.2)

Lm =2 m=—¢

The spherical harmonics themselves are used in the form as described in Section 7.4.

A tilde denotes a conformally rescaled tensor, i.e. S% = ¢"S% with n being the conformal weight.
€7% is the Levi-Cevita symbol.

Round brackets denote symmetrization procedure while square denote antisymmetrizing indices.
Whenever it applies from the context, f;;, denotes the discrete function on points f;;x = f(xi, y;, 2k)-

We usually write At and Az (or just A) to denote time and spatial discretization step-size but
sometimes also use k and h, respectively.

We use geometrized units (see Appendix A.1), so that time and space have the dimension of
mass. Consequently, the simulation parameters and output are in units of the total mass M of
the spacetime.
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Chapter 1

Vacuum binary black hole spacetimes

Black holes arise as a solution to the Einstein equations in GR either with or without external
matter-energy fields. The “two-body” problem of GR is then defined by gravitationally bound
BHs, i.e. binary black hole (BBH) systems. In vacuum!® the dynamics of BBH systems are fully
determined by the gravitational interaction of the spacetime alone, i.e. without any matter sources,
and are hence not influenced by external matter induced forces.

Although it is astrophysically very unlikely to find a pure vacuum binary black hole system that is
not surrounded by any form of accretion disk or dust?, it is nevertheless important to understand
the dynamics and properties of such systems in the absence of matter as this relativistic two-body
problem represents a fundamental dynamical problem of GR. Especially for the late inspiral and
merger phase, the force governing the dynamics of the system is the gravitational interaction alone.
Another more profound reason to start with vacuum binary black holes is that they are simpler
and hence easier to handle when using analytical or numerical models.

BBH mergers are probably common systems in the Universe. For example, it is believed that
almost all galaxies contain a central supermassive black hole (SMBH) [1-3, 7, 70], and the merger
of two colliding galaxies [71] practically leads to the merger of the central SMBHs [8, 9, 72].

Stellar black holes (10 — 102 M) on the other hand are the result of, e.g. gravitationally collapsed
stars and they are hosted in e.g. globular clusters (see [23, 68, 69] for formation mechanisms of
astrophysical BHs). Globular clusters are relatively old, dense clusters of star systems and as
such, they potentially contain many collapsed and degenerate objects such as BHs that, due to
the dense population, may experience close dynamical interaction and hence may also produce
BBH mergers.

As BBH systems represent accelerated mass, they radiate away energy through gravitational waves,
similar to accelerated charge radiating electromagnetic waves. In fact, BBH systems are the
strongest sources of gravitational radiation in the Universe, and hence are the first expected
candidates for gravitational-wave detection. It is therefore of primary interest to the gravitational
wave astronomy community to understand the anatomy of BBH merger waveforms as these can
be used as templates for searches in gravitational-wave detectors.

In this chapter, we will first briefly introduce the Einstein field equations as well as the very basic
properties and parameters of BHs. We will continue with some assumptions and requirements
on the associated asymptotic structure of spacetimes containing BHs and gravitational radiation.
The asymptotic structure of a spacetime is important for defining gravitational waves in a suitable
manner, and as we will see in Sections 1.3 and 1.4, gravitational waves are unambiguously defined
only at future null infinity, which represents a surface in spacetime where all null rays terminate,
i.e. it is a boundary of spacetime. In order to be able to define gravitational radiation at all,
it is necessary to assume that spacetime becomes asymptotically flat far away from the source,
i.e. spacetime will asymptote to Minkowski spacetime at large distances. A subsequent section
will introduce the notion of gravitational waves as well as their basic properties.

Finally, we will describe the basic stages of a BBH merger system, as well as the parameters
describing such a system and the properties of the merger remnant.

IWe are only concerned with vacuum throughout this thesis.
2BHs are usually formed and located inside galaxies or globular clusters [23, 68, 69] and are therefore naturally
within a gas-rich environment, or at least an environment that is not completely exhausted of matter.
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1.1 The Einstein equations

The underlying theory that describes the dynamics of interacting black holes is Einstein’s theory
of GR3. This theory puts space and time together into an overarching concept of spacetime where
time has no preferred meaning anymore, and it describes the fundamental interaction of gravitation
as a result of spacetime being curved by matter and energy. The spacetime itself is defined as a
pair (M, g), where M is a connected 4D Hausdorff C°° manifold and g is the pseudo-Riemannian
(or Lorentzian) metric tensor. The metric tensor defines the notion of proper distances in our
spacetime, and a non-constant, non-trivial metric tensor? implies that the spacetime is curved
in some sense, e.g. stretched, squeezed or bend in all kinds of possible ways. The notion of a
manifold on the other hand, corresponds naturally to our intuitive ideas of the continuity of space

and time®.

The Einstein field equations are a set of ten coupled partial differential equations (PDEs) for the
components of the spacetime metric tensor coupled to a stress-energy tensor containing the matter
source terms. In tensorial form, the equations read

Gy = 87T, (1.1.1)

where T),, is the stress-energy tensor of all matter fields, and G, is the Einstein tensor. The
Einstein tensor reads

1
Gy = Ry — 5 Rgpu (1.1.2)

where R, is the Ricci tensor and R is the Ricci scalar. The Ricci tensor and Ricci scalar represent
certain contractions of the Riemann tensor R, which is defined as

REyxp = 217 a0 — 2T ap T w1 (1.1.3)

where the vertical lines around the index v mean that it should be exempted from the antisym-
metrization operation, and where the I' are the Christoffel symbols of the metric defined by

1
L., = 59% (Gvou + Juow — Guv,o) - (1.1.4)
The following contractions of the Riemann tensor define the Ricci tensor and scalar
R, =R a0, R=RH,. (1.1.5)

Since we are interested in pure vacuum, we can set the stress-energy tensor to zero. This, however,
simplifies the field equations to
R,, =0. (1.1.6)

In other words, the Einstein tensor in (1.1.1) contains second derivatives of the metric tensor so
that the Einstein equations form a coupled set of ten® non-linear hyperbolic PDEs of second-order.
The non-linearity arises from quadratic terms of the metric tensor in the Riemann tensor and is
one of the aspects of the Einstein field equations that makes it hard to implement a numerically
stable evolution scheme (see Section 6.3 for some basics on stability).

We can consider (1.1.6) as the starting point for doing numerical simulations of vacuum spacetimes,
but unfortunately these equations are not yet in a form suitable for numerical integration. In
numerical simulations, one would like to specify initial data on some initial time instance and then

30f course black holes can also be described in terms of modified theories of gravity. However, very little is known
about how to numerically evolve BHs in other theories than GR.

4Actually, this depends on the coordinate system used. A metric tensor can look highly non-trivial in some funny
looking coordinate system and yet simply represent flat Minkowski spacetime. For a proper analysis of the
curvature content one has to consider the Riemann tensor defined in (1.1.3).

5 At very small scales of the order of the Planck length, some theories, e.g. loop quantum gravity [73] predict that
spacetime itself is discrete. However, for distances down to 10~ %¢m the continuity of spacetime could be shown
experimentally on this length scale [74].

6 As a consequence of the Bianchi identities, the Ricci tensor of a Riemannian manifold is symmetric. This means
that only 10 of the 16 total components of (1.1.6) are independent.
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numerically evolve these initial data in time, i.e. we would like to specify metric data on an initial
spatial 3D hypersurface that is evolved along a timelike vector field so that the full 4D geometry
is constructed from a succession of 3D metric data on spatial hypersurfaces. The Einstein field
equations in the form of (1.1.6), on the other hand, represent a set of equations for all of 4D
spacetime, i.e. the field variable is the full 4D metric tensor. We therefore have to transform the
field equations to a form that is suitable for numerical simulations”. The foliation of spacetime in
terms of spatial 3D hypersurfaces results in the Cauchy evolution problem of GR and is described
in Chapter 2. However, it is also possible to foliate spacetime in terms of null hypersurfaces. This
results in the characteristic evolution problem and is described in Chapter 3.

Having formulated the equations in terms of a Cauchy problem, hyperbolicity (see Section 6.4)
arises from the fact that the principle part of the equations contains only real eigenvalues and hence
finite speeds of propagation. This property is very important. No information can travel faster
than the speed of light, and a proper causal (globally hyperbolic) structure of spacetime is induced
by this aspect (see for example [75]). However, there are different “flavors” of hyperbolicity (see
Section 6.4) and not all hyperbolic forms of a given system lead to a successful numerical scheme
in the sense that the numerical solution may grow unboundedly in time eventually terminating
the simulation before the interesting physics have been extracted. One of these flavors, strong
hyperbolicity, offers the desired properties of a well-behaved discrete evolution system. We present
the Einstein equations written in strongly hyperbolic form in Chapter 2 and discuss aspects of
their discretization in Chapter 6.

It should be noted that GR as formulated by Einstein is not the only possible way of describing
gravity and BHs®. Higher-order corrections to GR. or other theories of gravitation can be, and
should be, considered as well for evolving BBHs since GR loses its predictive power at the BH
singularity and physics breaks down at that point. It is obvious, also with respect to a unified
theory, that GR is not the final answer to the nature of gravity and it is expected that the higher-
order dynamics of BBHs will be altered by other theories of gravitation, even far from the the
purely quantum scales of the Planck length or the Planck energy [76]. Hence the gravitational
radiation is different at least at higher order. Future gravitational-wave detectors might be able
to measure these corrections to GR and rule out different candidates for a theory of gravitation.

1.2 Black holes

A BH is a collapsing region of spacetime, e.g. a gravitationally collapsing star, inevitably leading
to a spacetime-singularity where the curvature tensor R, becomes infinite?, and where GR
completely looses any predictability at the singularity. Consequently, if spacetimes are assumed
to be globally hyperbolic, and hence are assumed to contain no naked singularities, there must
be a region in spacetime surrounding this singularity where the lightcones at each point are tilted
inwards so that no light ray can escape from within that region. In other words, in an asymptot-
ically flat spacetime, no future-pointing null geodesic from this region can escape to future null
infinity and therefore, this region is causally disconnected from the rest of spacetime. This also
means that all singularities that a spacetime may contain are invisible from future null infinity. If
this was not the case, then any new information leaking out of the singularity could contaminate
the remaining part of spacetime and hence render the complete theory useless. The fact that any
singularity shall be causally disconnected from the rest of spacetime is also known as the cosmic
censorship conjecture [78]. The outer boundary of events that are connected to future null infinity
(see Section 1.3) and that of those which are not is the event horizon (see Chapter 4). One may
then define a BH as the region of spacetime inside this horizon. However, it is debatable whether
this definition may be too demanding (see e.g. [79]), as it has certain drawbacks. For example,
as we will explain in Chapter 4, the event horizon is a global property of a spacetime and hence

"The Einstein equations can be brought to a form that is preferable for numerical simulations (see Section 2.2)
since it obeys a preferable form of hyperbolicity.

8In some theories, BHs do not even exist.

9 A more rigorous definition of a spacetime-singularity is given in [77].
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we may define a BH only after the entire spacetime is known. As such, it would be impossible to
locate a BH during a numerical simulation, as the full spacetime is not yet known.

The simplest BH solution is at the same time the first non-trivial solution that was found for
the Einstein equations: the Schwarzschild solution [80]. This solution describes a spherically
symmetric spacetime which becomes singular at the origin and is given by the Schwarzschild line
element

dr?

24 2
ds® = —(1—2M/r)dt +1—2M/7“

+7%(d0” + sin® 0 d¢?) (1.2.1)
where (1,6, ¢) denote the standard spherical polar coordinates and 7 in this metric form is in-
trinsically defined by the requirement that 47r? is the area of spacelike two surfaces S2. As one
moves away from the singularity at r = 0 towards » — 0o, we notice that spacetime becomes
asymptotically flat, i.e. it approaches Minkowski. In Section 1.3, we will discuss the important
topic of asymptotic properties of spacetimes. For example, comparing with Newtonian theory

reveals that M in (1.2.1) should be regarded as the gravitational mass, as measured from infinity,
of the BH producing the field.

The Schwarzschild solution (1.2.1) is static, i.e. there is a timelike Killing vector which is a gradient,
and is spherically symmetric, i.e. is invariant under the group of isometries SO(3) operating on
the spacelike two-spheres S2. The event horizon of this solution is located at » = 2M. It can
be shown [81, 82] that the Schwarzschild solution is a unique solution for static BHs, i.e. any
solution of the vacuum field equations that is spherically symmetric, is locally isometric to the
Schwarzschild solution.

A stationary axisymmetric rotating and unique [82, 83] solution was found by Kerr [84] and later
generalized by Newman et al. [85] to also contain electric charge. The Kerr-Newman line-element
in Boyer-Lindquist coordinates (r, 0, ¢,t) reads

A in®
ds* = —=dt —asin®0d¢]” + w[(ﬂ + a?)d¢ — adt]?
p P
p?
+ R+ PRl (12.2)
where

A = r2—2Mr+o®+Q? (1.2.3)
0> = 12 +a’cos’h (1.2.4)
a = S/M. (1.2.5)

Here, « represents the angular momentum S per unit mass M as measured from infinity, and
Q@ represents the electric charge. It is useful to also introduce the dimensionless spin parameter
a = a/M = S/M?. If the cosmic censorship conjecture [78] is true, then each singularity must
be covered by an event horizon (there are no naked singularities'?), which imposes a condition on
the parameters «, Q and M

M? > Q* + 2. (1.2.6)

In cases where the charge () vanishes, the spin parameter is bounded between —M < a < M. In
terms of the dimensionless spin-parameter a, this inequality becomes —1 < a < 1. This condition
on the spin a is a generic condition for axisymmetric spacetimes and |a| = 1 can only be achieved
if a slice of that spacetime is a slice of the Kerr solution [86]. This fact will become important
when constructing initial data for BBH simulations (see Section 2.4). As we will see, the current
method for obtaining initial data for spinning BHs involves the construction of spacetime slices
that are not Kerr, and hence does not admit maximally spinning BHs.

101f this conjecture were not true then the region of spacetime at the singularity, where physics breaks down, would
have causal influence on the rest of spacetime and hence the theory would not be globally hyperbolic.
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Black hole parameters

As one could already guess from these two solutions to the Einstein field equations, it turns out that
there are only 3 parameters describing a classical stationary BH: the mass M, the dimensionless
spin a, and the charge Q. It can be shown that this is true for all stationary and axisymmetric
BHs in (electro-)vacuum and has been established by the “no-hair” theorem [82, 87, 88]. However,
it appears to be very unlikely that an astrophysical BH carries any charge. As astrophysical BHs
are usually surrounded by disks of gas, the BH will be immediately discharged by the surrounding
matter and hence neutralized. It is therefore not of major interest to consider BHs, and especially
BBHs with charge. As we are also only considering the vacuum Einstein equations'!, we will
completely drop the charge parameter Q.

Astrophysically, it furthermore turns out that BHs may only be found in certain mass ranges,
and there is a common classification that has nowadays been established. Stellar mass black holes
(SBHs) are usually formed by the gravitational collapse of a star with at least 1.5M and have
been categorized by masses of order 10Mgy < M < 100My. Such BHs are usually hosted in
globular clusters [23, 68, 69] which are old clusters of stars and therefore contain many collapsed
and degenerate objects. The next class are intermediate mass black holes (IMBHs) with masses
100Mg < M < 10° Mg, 