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Abstract

This thesis discusses the numerical solution of time dependent scattering phenomena in unbounded domains using
retarded potential boundary integral equations, also known as time domain boundary integral equations. We employ an
unconditionally stable space-time variational formulation whose fully discrete formulation results in a marching-on-
in-time (MOT) scheme through a history of sparse matrices and solution vectors.
The main focus of this work lies on the efficient computation of the matrix entries. We study the discrete retarded
potentials evaluated on one element of a surface triangulation. We show that besides the classical corner-edge singu-
larities on the boundary of the element additional singularities of geometrical nature exist, which we call geometrical
light cone singularities. These are located on the surface of cylinders around the element’s edges and parallel to the face
of the element. We analyze the regularity of the discrete retarded potential using piecewise defined countably normed
spaces.
Based on this analysis, we present the numerical approximation of the integrals defining the matrix entries. We derive
composite quadrature schemes for the inner and outer integration. The inner integration requires the evaluation of
the discrete retarded potential for which we prove exponential convergence. The outer integration involves the discrete
retarded potential as an integrand and here we apply the knowledge of its regularity to construct a composite quadrature
rule and prove its exponential convergence. This results inan overall exponential convergence.
We present numerical experiments underlining our theoretical investigations.

Keywords: retarded potentials, countably normed spaces, numerical quadrature
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Zusammenfassung

In dieser Arbeit untersuchen wir die Lösung zeitabhängiger Streuungsprobleme in unbeschränkten Gebieten unter der
Verwendung von Randintegralgleichungen mit retardiertenPotentialen. Hierbei benutzen wir eine variationelle For-
mulierung in Raum und Zeit, die ohne weitere Bedingungen stabil ist. Das resultierende diskrete Problem entspricht
einem Zeitschrittverfahren, welches die schwachbesetzten Matrizen und Lösungsvektorenaus den vorherigen Zeitschrit-
ten benötigt.
Das Hauptaugenmerk dieser Arbeit ruht auf der effizienten Berechnung der Matrixeinträge. Wir untersuchen das
diskrete retardierte Potential, ausgewertet auf einem Element der Oberflächentriangulierung. Wir zeigen, dass neben
den klassischen Kanten-Ecken-Singularitäten auf dem Rand des Elementes, zusätzliche Singularitäten geometrischer
Natur auftreten, welche wir geometrische Lichtkegel-Singularitäten nennen. Diese befinden sich auf den Manteln
der Zylinder um die Elementkanten und Elementen parallel zur Elementfläche. Wir analysieren die Regularität des
diskreten retardierten Potentials mit Hilfe von stückweise definierten abzählbar normierten Räumen.
Ferner stellen wir, basierend auf den Ergebnissen dieser Analyse, eine numerische Quadratur zur Approximation der
Integrale vor, welche die Matrixeinträge beschreiben. Wir leiten eine zusammengesetze Quadraturformel für die in-
nere und äußere Integration her. Das innere Integral erfordert die Auswertung der diskreten retardierten Potentiale.
Für die vorgestellte Quadraturformel weisen wir exponentielle Konvergenz nach. Bei der äußeren Quadratur tritt das
diskrete retardierte Potential als Integrand auf, so dass wir hier die Resultate bezüglich seiner Regularität anwenden
müssen. Die daraus hergeleitete Quadraturformel weist ebenfalls exponentielle Konvergenz auf, so dass die gesamte
Quadraturformel auch exponentiell schnell konvergiert.
Zudem stellen wir numerische Experimente vor, die unsere theoretische Ergebnisse bestätigen.

Schlagworte:retardierte Potentiale, abzählbar normierte Räume, numerische Quadratur
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Chapter 1

Introduction

In recent years the numerical simulation of radiation and scattering phenomena in unbounded domains in three dimen-
sions gained on importance. Here the boundary element method (BEM) [29] shows its natural strength, as it reduces
the problem in the unbounded domain to an integral equation on the boundary. The solution of the integral equation
then reveals the solution in every required point of the regarded domain via a cheap post-processing, whereas a finite
element method (FEM) will always be restricted to some fixed mesh in a bounded neighborhood of the scatterer.
Scattering phenomena occur in very different areas e.g. in acoustics or in the propagation of elastodynamic and elec-
tromagnetic waves. In the time domain, they can be represented using retarded potential boundary integral equations,
which are the topic of this work. This method has been known for a long time, but was quite unpopular as many works
reported instabilities and its implementation was said to be complicated. The increasing computational power and new
formulations could overcome these drawbacks. Many works have been published in this context [18, 9, 59, 19, 44, 1],
although the majority of the research is concerned with the collocation method [31, 41], for which rarely a mathemati-
cal analysis exists [16].The fully time dependent approachhas the major advantage, that the complete spectrum of the
solution can be rebuilt from the transient solution using e.g. the fast Fourier transform.
Bamberger and Ha-Duong propose in [4, 5] a space-time variational formulation of the underlying retarded potential
integral equations for which they could prove unconditional stability. Their work is extended to electromagnetic and
elastodynamic waves [57, 60, 3]. In [23, 15] an overview of the state of the art and an extensive list of references is
given. In [21] numerical results are presented.
Another approach, quite popular for this type of problem, isthe convolution quadrature [6, 7, 32, 34, 25]. This ap-
proach uses a time discretization scheme mapping the integral equation into the frequency domain and in a second step
transforms the system back into the time domain. This schemeresults in a series of dense linear equation systems. The
advantage of this method is, its ability to rely on many techniques known from frequency domain problems however
with their problems have to be dealt with and it does not allowa non-uniform time mesh.
The use of higher order basis functions in space and time is discussed in [46]; there B-spline fundamental solutions are
computed separately for each specific geometry. Another approach using higher approximations involves the usage of
global basis functions [55]. In [18] the plane wave algorithm is transferred into the time domain in order to obtain a
fast method.
In this work we will apply the space-time variational methodas proposed in [4, 5] and analyze the corresponding
discrete system. Our main focus lies on the numerical evaluation of the integrals which describe the entries of the
Galerkin matrices. The accuracy of the evaluation stronglyinfluences the approximate solution of the linear equation
system. For boundary integral equations resulting from time independent problems this was done e.g. in [49, 51].
We will discuss the regularity of the discrete retarded potential evaluated on one element and show that additional
singularities exist compared to the singularities classically known for time independent potentials. We use countably
normed spaces as introduced in [2] in order to describe the behavior of the discrete retarded potential. For this purpose,
we introduce weight functions located on the surface of cylinders around the edges of the element and parallel to the
element’s face. Countably normed spaces are a well-known tool used extensively in the analysis of hp-methods e.g. [38,
26, 27, 28] in order to describe the regularity of solutions of integral equations as well as partial differential equations,
but was also applied in the error analysis of quadrature schemes [49, 51]. We apply the new gained knowledge on the
singularities in the construction and analysis of an appropriate quadrature scheme for the Galerkin entries occurringin
the discrete space-time variational formulation. Some results of this work have already been published in [39, 40, 54].
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2 1 Introduction

Outline of this work

In Chapter 2we introduce the retarded potential boundary integral operators and the corresponding integral equations
of first kind. We briefly outline the unconditionally stable space-time variational formulation originally proposed by
Ha-Duong and Bamberger [4, 5] and give a detailed derivationof the fully discrete system resulting in a marching-on-
in-time (MOT) algorithm. Here we pay special attention to the analytical evaluation of the retarded time integrals.
Chapter 3discusses the regularity of the discrete retarded potential evaluated on one triangular element and describes
its regularity in an arbitrary plane using a piecewise defined countably normed space. The discrete retarded potential is
defined

(Pϕ)(x) :=
∫

T∩E(x)

k(x−y)ϕ(y)dsy

with a kernel functionk(x− y), where the integration domain is the intersection of the triangleT with the domain of
influenceE(x) of the point of observationx. This domain of influence is defined as the intersection of twoconcentric
spheres with centerx, such that we obtain an annular domain. We use the linearity of the integral to simplify the discrete
retarded potentialPϕ to an integral with the integration domain defined by one sphere with radiusR intersected with the
triangle. We analyze this simplified potentialPRϕ as follows. After verifying, that the bounded support of thesimplified
retarded potential is the combination of the three spheres with radiusR and centers in the vertices of the triangle, the
three finite cylinders around the triangle edges with radiusRand the prism defined by the triangle base with height 2R,
we show in Lemma 3.2 that the gradient of the simplified potentials can be reduced to the boundary of the intersecting
set. We show, that the gradient consists of a sum of integralsover the boundary ofT ∩BR(x); namely of integrals over
the triangle edges intersected with the sphere and of an integral over the triangle intersected with the boundary of the
sphere. Before we proceed with a detailed analysis of these two types of integrals we use Lemma 3.2 in order to derive
a formula for a derivative ofPRϕ of arbitrary order, which is stated in Theorem 3.4.
In Section 3.2.1 we then analyze the edge-based integral. Weshow, that it has bounded support defined by the union
of the spheres of radiusR and centers in the end points of the edges and a circular cylinder around the edge with
radiusR. We map the integral to an integral on a reference edge of length one (Lemma 3.5) and study the different
intersection types of spheres with variable centersx and the reference edge. This defines a natural decompositionof
the support of the edge-based function as proved in Lemma 3.6. In Lemma 3.8 we prove, that the edge-based function
possesses one-sided singularities in the first derivative located on the surface of the cylinder (without its caps) and
jumps exist on the surface of the spheres around the end points of the edge. Thesegeometrical light cone singularities
occur independently of the regularity of the kernel function k(x−y), but dependent on the kernel function we observe
the well-known classical singularity on the edge. We use these results in order to formulate the regularity on the disjoint
elements of the introduced decomposition intersected withan arbitrary plane in terms of countably normed spaces. For
this purpose, apart from a weight function located on the edge, we define an additional anisotropic weight function
located on the surface of the cylinder and formulate Lemma 3.10. Finally we map the results back to a general edge as
given in Lemma 3.11 and 3.12.
In Section 3.2.2 we analyze the second boundary integral derived in Lemma 3.2 with an integration domain defined
by the intersection of the triangle and the boundary of the sphere with centerx. First we discuss the bounded support
of the corresponding function and show, that besides the classical singularities on the boundary of the element and the
geometrical singularities on the surface of the cylinders around the edges, an additional geometrical singularity exists
located on the triangles parallel to the original triangle with distanceR. Here we detect jumps in the triangle function
and a one-sided singularity in its first derivative as statedin Lemma 3.16. Thus, we introduce an additional weight
function located on the triangles which are parallel to the original triangle and proceed with the characterization of the
simplified potentialPRϕ .
The natural decomposition of the support ofPRϕ is the mutual intersection of the spheres around the vertices and
the cylinders around the edges of the triangle. We decomposean arbitrary plane in the natural decomposition of the
support ofPRϕ . Summarizing the analysis of the previous two sections, we describe the quality of the singularity set
of the simplified retarded potential in Proposition 3.21. Finally we summarize the regularity of the retarded potential
using the results on the subelements of the partition to obtain Theorem 3.22.
The characterization of the complete discrete retarded potential is now straight forward. All observed singularities
duplicate (Proposition 3.25) and on an accordingly finer decomposition of the regarded plane we can formulate the
regularity in Theorem 3.26 as a consequence of Theorem 3.22.In Lemma 3.23 we prove a specification of the support
of the complete discrete retarded potential.
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In Section 3.3 we present some numerical results validatingthe theoretical derivations. Using high resolution plots of
a line and contour plots in planes parallel and perpendicular to the triangle plane, we give evidence for the geometrical
position of the different types of singularities and discuss their strength.
The construction and error analysis of a composite quadrature rule for a typical Galerkin entry in a matrix of the earlier
derived MOT-scheme is the topic ofChapter 4. We split the integral into an outer and inner integration. The outer
integration evaluates the discrete retarded potential multiplied with a test function on the domain of influence of the
trial element intersected with the test element, whereas the inner integration evaluates the discrete retarded potential
itself on the trial element intersected with the domain of influence of a point defined by the outer integration.
In Section 4.1 we construct a composite quadrature for the discrete retarded potential. We introduce local polar coor-
dinates(r,θ ) with respect to the point of observation projected onto the triangle plane and decompose the domain of
integration. On each subdomain, we perform a tensor productGaussian quadrature which is a possibly graded quadra-
ture in r taking into account the point singularity, if the kernel is weakly singular. We adopt the analysis of Schwab
[51] to show exponential convergence of this scheme. Additionally, we estimate the error of the quadrature rule in the
angleθ and show that a graded quadrature in the angle can improve theconvergence if the corresponding integration
domain is of a very unregular shape.
In Section 4.2 we propose a composite quadrature for the outer integral based on the results of Chapter 3. The natural
decomposition of the plane, defined by the test triangle in the domain of influence of the trial element as defined
in (3.23), results in an exponentially converging quadrature scheme. We take care of the different corner, edge and
corner-edge singularities on the subelements intersectedwith the test triangle.
Numerical experiments presented in Section 4.4 validate the exponential convergence of the implemented inner quadra-
ture scheme and give evidence, that the geometrical singularities have to be taken into account if exponential conver-
gence of the whole quadrature scheme is desired.
In Chapter 5we present numerical experiments based on the MOT-algorithm derived in Chapter 2 using the quadrature
schemes discussed in Chapter 4.
The Appendix is divided into three parts. In Part A we give a short overview of the weighted Sobolev spaces and
countably normed spaces used throughout this work and briefly introduce the space-time Sobolev spaces as defined
in [4, 5]. Part B discusses the regularity of the discrete retarded potentials on the three-dimensional subelements of
the decomposition of their support rather then the restriction to the plane which was needed in the analysis of the
quadrature scheme. In Part C we give some details on the implementation.
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Chapter 2

Retarded Potential Boundary Integral Equations and their
Discretization

Let us first give a brief summary of the underlying physical problem as e.g. pointed out in [23].
Consider the transient sound radiation of some bodyΩ−, whereΩ− is a bounded open domain with a connected
complement given byΩ := Ω+ = R3 \Ω−. Denote byn the outer normal on the boundaryΓ := ∂Ω . The scattered
acoustic pressure fieldu(t,x) induced by some incident fielduinc from the exterior domain fulfills the wave equation

Ω

Γn
�u :=

1
c2

∂ 2u
∂ t2 −∆u = 0, (2.1)

wherex ∈ Ω , t ∈ R and c is the wave velocity. In the following,
we setc = 1. We assume that the incident field has not reachedΩ−

at t = 0 and that all functions are causal, i.e. they are vanishing for
t < 0. Moreover, there hold initial conditions

u(0,x) =
∂
∂ t

u(0,x) = 0 for x∈ Ω , (2.2)

and boundary conditions onΓ , given by an operatorB acting on some functionf

Bu = f (t,x) in Γ ×R . (2.3)

If Bu = u one refers to a soft scatterer and the above described problem is called theDirichlet problemand for
Bu = ∂u

∂n − α
c

∂u
∂ t we will refer to theNeuman problemand have a hard or absorbing scatterer.α is known as impedance

function of the surfaceΓ , with α(x) ≥ 0 for all x∈ Γ . Forα(x) ≡ 0 we have a hard scatterer. Moreover, it holds

f (t,x) = −Buinc(t,x) .

The energy of the total pressure fieldutot := u+uinc is given by

E(t,utot) =
1
2

∫

Ω

∣∣∇utot(t,x)
∣∣2 +

∣∣u̇tot(t,x)
∣∣2dx.

Note, that we do not have to require an explicit radiation condition, as the system describes the full physical wave
behavior. The fundamental solution of the scalar wave equation (2.1) is known as

G(s, t,x,y) =
δ (t −s−|x−y|)

|x−y| .

Accordingly the representation formula is given [30] by

u(t,x) =
1

4π

∫

Γ

ny(x−y)

|x−y|

(
ϕ(τ,y)
|x−y|2 +

ϕ̇(τ,y)
|x−y|

)
dsy−

1
4π

∫

Γ

p(τ,y)
|x−y| dsy (2.4)

for all (t,x) ∈ Ω ×R+ with a retarded timeargumentτ := t −|x−y|, whereϕ = u+−u− = [u] andp = ∂u+

∂n − ∂u−
∂n =[

∂u
∂n

]
.

5



6 2 Retarded Potential Boundary Integral Equations and theirDiscretization

Remark 2.1.If c 6= 1 the retarded time argument isτ = t −|x−y|/c.

Definition 2.2. Define for(t,x) ∈R+× (R3\Γ ) theretarded single layer potentialby

Sp(t,x) =
1

4π

∫

Γ

p(τ,y)
|x−y| dsy

and theretarded double layer potentialby

Dϕ(t,x) =
1

4π

∫

Γ

ny · (x−y)

|x−y|

(
ϕ(τ,y)
|x−y|2 +

ϕ̇(τ,y)
|x−y|

)
dsy .

Thus, (2.4) reads

u(t,x) = Dϕ(t,x)−Sp(t,x) ,

whereϕ = u+−u− = [u] andp = ∂u+

∂n − ∂u−
∂n =

[
∂u
∂n

]
.

Definition 2.3. Define the time domain or retarded potential boundary integral operators forx ∈ Γ andt ∈ R+. The

single layer potentialreads

V p(t,x) =
2

4π

∫

Γ

p(τ,y)
|x−y| dsy

where its normal derivative with respect tox, theadjoint double layer potentialis

K′p(t,x) =
2

4π

∫

Γ
nx ·∇x

p(τ,y)
|x−y| dσy

=
2

4π

∫

Γ

nx · (x−y)
|x−y|

(
p(τ,y)
|x−y|2 +

ṗ(τ,y)
|x−y|

)
dsy

Thedouble layer potentialis given by

Kϕ(t,x) =
2

4π

∫

Γ
−ny ·∇x

ϕ(τ,y)
|x−y| dσy

=
2

4π

∫

Γ

ny · (x−y)

|x−y|

(
ϕ(τ,y)
|x−y|2 +

ϕ̇(τ,y)
|x−y|

)
dsy

and its normal derivative, the so-calledhypersingular operatoris

Wϕ(t,x) = − lim
x′∈Ω+→x

nx ·∇x′

(
2

4π

∫

Γ
ny ·∇x′

ϕ(t −|x′−y|,y)
|x′−y| dsy

)
.

Remark 2.4.Formally it holds e. g. for the single layer potential

Sp(t,x) =
1

4π

∫

Γ

p(τ,y)
|x−y| dσy =

1
4π

∞∫

0

∫

Γ

δ (t −s−|x−y|)
|x−y| p(s,y)dσy ds.

Denote the limits fromΩ+ andΩ− by

(u)± = lim
x→Γ ,x∈Ω±

u(x) ,

we can summarize the limits of the double and single layer potential and its normal derivatives by

Theorem 2.5 (Jump relations).Let x∈ Ω+ or x∈ Ω−, then forϕ , p∈C2(R×Γ ) there holds
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2(Sp)−(t,x) = 2(Sp)+(t,x) = V p(t,x)

2
∂ (Sp)−

∂n
(t,x) = (I +K′)p(t,x)

2
∂ (Sp)+

∂n
(t,x) = (−I +K′)p(t,x)

2(Dϕ)−(t,x) = (−I +K)ϕ(t,x)

2(Dϕ)+(t,x) = (I +K)ϕ(t,x)

2
∂ (Dϕ)−

∂n
(t,x) = 2

∂ (Dϕ)+

∂n
(t,x) = Wϕ(t,x)

Proof. A proof may be found in [22] (Lemma 3 and Lemma 4a). ⊓⊔

If we introduce the jump operator[ · ] acrossΓ defined as[u] := u+ −u− and define the tracesγ0u = u andγ1u = ∂u
∂n,

we can write the above theorem in a more compact way resultingin the well known jump relations

[γ0Sp] = 0 [γ1Sp] = −p

[γ0Dϕ ] = ϕ [γ1Dϕ ] = 0.

2.1 Retarded Potential Boundary Integral Equations

In this work we will focus on integral equations of first kind.See [23] and the references therein for the corresponding
analysis for integral equations of second kind.
Given the boundary dataBu = u = f (t,x) for (t,x) ∈R+ ×Γ we physically deal with a so-calledsoft scattererand
refer mathematically to aDirichlet problem. Due to the Corollary of Theorem 1 (p. 116) in [22] one can represent the
solutionu of (2.1) using a single layer ansatz forx /∈ Γ

u(t,x) = Sp(t,x)

with a density functionp. The single layer operator is continuous when passing the limit onto the boundary (Theorem
2.5) such that the indirect approach yields the boundary integral equation

V p(t,x) = f (t,x) . (2.5)

On the other hand, we can use the representation formula (2.4) for given boundary datau = f on Γ and obtain with
Theorem 2.5 andp := γ1u the direct formulation

V p= (K − I) f . (2.6)

Given the boundary dataBu = ∂nu = f , we assume the impedance functionα = 0. For thisNeuman problemor hard
scatterer, we can representu using the double layer potential by some density functionϕ , i.e. u = Dϕ . Taking the
normal derivative and passing the limit onto the boundary, we obtain the indirect formulation

Wϕ = f , (2.7)

with some density functionϕ (cf. [22] Corollary of Theorem 2, p. 119) . The direct approach with a given normal
derivative∂nu = f on the boundaryΓ yields

Wϕ = (I +K′) f , (2.8)

whereϕ = γ0u. Besides the soft and hard scatterer, the absorbing scatterer is of practical importance. Mathematically
it corresponds to the Robin problem, compare [21] for details.
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2.2 Space-Time Variational Formulations

The key idea in the derivation of a space-time variational formulation is the Fourier-Laplace transformation of the
time-dependent problem into frequency domain. The variational formulation in the frequency domain is then derived
and analyzed. The inverse Fourier-Laplace transform maps these results back into the time domain using the theorem
of Paley-Wiener and Parseval’s equation and we obtain the space-time variational formulation.
Let ω = η + iσ with η ,σ ∈R andσ > 0. The Fourier-Laplace transform of (2.1) is the well-knownHelmholtz equation

∆ û+ ω2û = 0 in Ω , (2.9)

here û represents the Fourier-Laplace-transform ofu. For more details on the functional framework compare Ap-
pendix A and the references given there. In the following, weapply the notation as introduced in [3] and define

∞∫

−∞

f (t)dσ t :=

∞∫

−∞

f (t)e−2σt dt .

The mapping properties of the retarded potential boundary integral operators were analyzed in [22], compare also [17].
In [4] the space-time formulation of the Dirichlet problem is studied and in [5] the corresponding analysis for the
Neumann problem is discussed. Compare also the overview paper [23] for more details and references. We define the
bilinear forms

aV(p,q) :=

∞∫

0

〈V p,∂tq〉 dσ t =

∞∫

0

∫

Γ

V p(t,x)∂tq(t,x)dsx dσ t (2.10)

aW(ϕ ,ψ) :=

∞∫

0

〈Wϕ ,∂tψ〉 dσ t =

∞∫

0

∫

Γ

Wϕ(t,x)∂tψ(t,x)dsx dσ t . (2.11)

Both bilinear forms are continuous and coercive in appropriate space-time Sobolev spaces, compare Appendix A. Note
that the spaces on which one proves the continuity and the coercivity of the bilinear forms are not the same. Moreover
all estimates are dependent onσ and explictly demand, thatσ > 0.

Remark 2.6.In [4] the time derivative is taken on the trial function rather than on the test function. In [15] the time

derivative is taken on the test function. Partial integration in time reveals, that both formulations only differ by a sign

and the discrete formulations are equivalent.

For the Dirichlet problems (2.5) and (2.6) we define the righthand side by

F1(q) :=

∞∫

0

∫

Γ

f (t,x)∂tq(t,x)dsx dσ t

F2(q) :=

∞∫

0

∫

Γ

(K − I) f (t,x)∂tq(t,x)dsx dσ t .

Then we can formulate the following two variational problems for the indirect and direct Dirichlet approach (2.5) and
(2.6) respectively:

Find p∈ Hs
σ (R+,H−1/2(Γ )) aV(p,q) = F1(q) ∀q∈ Hs

σ (R+,H−1/2(Γ )) (2.12)

Find p∈ Hs
σ (R+,H−1/2(Γ )) aV(p,q) = F2(q) ∀q∈ Hs

σ (R+,H−1/2(Γ )) (2.13)

In Theorem 2 in [4] forf ∈ H
3/2

σ0 (R+,H1/2(Γ )) andσ0 > 0 it was shown that the Dirichlet problem (2.1)-(2.3) with
Bu = u possesses a unique solution withp∈ H 0

σ0
(R+,H1/2(Γ )) and there holds the following estimate

∞∫

−∞

E(t,u)dσ t ≤C
1

σ2 max(σ−1
0 ,1)‖ f‖

H
3/2

σ0
(R+,H1/2(Γ ))

.
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For the integral equations for the Neumann problem (2.7) and(2.8) we define

F3(ψ) :=

∞∫

0

∫

Γ

f (t,x)∂tψ(t,x)dsx dσ t ,

F4(ψ) :=

∞∫

0

∫

Γ

(I +K′) f (t,x)∂t ψ(t,x)dsx dσ t .

Thus we formulate the following two variational problems for the indirect and direct Neuman approach (2.5) and (2.6),
respectively.

Find ϕ ∈ Hs
σ (R+,H1/2(Γ )) aW(ϕ ,ψ) = F3(ψ) ∀ψ ∈ Hs

σ (R+,H1/2(Γ )) (2.14)

Find ϕ ∈ Hs
σ (R+,H1/2(Γ )) aW(ϕ ,ψ) = F4(ψ) ∀ψ ∈ Hs

σ (R+,H1/2(Γ )) (2.15)

For results on existence and uniqueness compare [5].
Note that, for the hypersingular operator partial integration gives ([22] Lemma 4b)

∞∫

0

∫

Γ
Wϕ(x, t)η(x, t)dsx dt =

1
2π

∞∫

0

∫∫

Γ×Γ

{
nx ·ny

|x−y| ϕ̇(t −|x−y|,y)η̇(t,x)

+
curlΓ ϕ(t −|x−y|,y) ·curlΓ η(t,x)

|x−y|

}
dsy dsx dt ,

(2.16)

where the tangential surface curl operator curlΓ is defined via curlΓ ϕ = n∧∇ϕ̃, whereϕ̃ = ϕ in each intersection point
with Γ and in a tubular neighborhood toΓ ϕ̃ is constant a long each normal line toΓ .

2.3 Discretization of Retarded Potential Boundary Integral Equations

In this section we give the discretization of (2.12), (2.13), (2.14) and (2.15) and derive the corresponding algebraic
systems.

2.3.1 Discretization in Space and Time

Choose a regular triangulationTh of Γ into a finite number of subelementsΓj ( j ∈ {1, . . . ,Ns}) with the following
properties

1. Γ =
⋃

Γj∈Th

Γj

2. each elementΓj is closed a Lipschitz continuous boundary and with intΓj 6= ∅
3. for distinctΓi ,Γj ∈ Th it holds intΓi ∩ intΓj = ∅

Given a reference elementT := {(t1, t2) : 0≤ t1 ≤ 1− t2 ≤ 1} and the spaceSps
h (T) of polynomials of degreeps onT

Sps
h (T) :=

{
v : T →R : v(t1,t2) = ∑

i+ j≤ps

αi j t i
1t

j
2

}

we define forΓj ∈ Th with

Γj := {x = x j +a1, jt1 +a2, jt2 with (t1,t2) ∈ T anda1, j ,a2, j ∈R3} ,

the spline space of polynomials with total degreeps ≥ 0 by

Sps
h (Γj) :=

{
v : Γj →R : v(x) = (v◦F)(x) with (v◦F) ∈ Sps

h (T)
}
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whereF : T → Γj . Therefore, we choose the discrete spaces

Vh :=
{

v∈ L2(Γ ) : v|Γj ∈ Sps
h (Γj) for everyΓj ∈ Th

}
,

Wh :=
{

v∈C0(Γ ) : v|Γj ∈ Sps
h (Γj) for everyΓj ∈ Th

}
.

Note that it holdsVh ⊂ H−1/2(Γ ) andWh ⊂ H1/2(Γ ).
Given a partition of the time interval(0,∞) into subintervalsIn := (tn−1,tn] (n= 1, . . .), we choose a uniform subdivision
with |In| = ∆ t, such thattn = n∆T (n = 1, . . .). Nevertheless, the presented approach also admits a nonuniform time
mesh.
As the time and space variables interact in the retarded timeargumentτ = t −|x−y|, the time discretization results in
a reduction of the integration domain in space. Let us define adiscrete space as an approximation ofHs

σ (R+,R) by
Hm

σ (∆ t,R) defined form∈N andm≥ svia

Hm
σ (∆ t,R) =

{
f ∈ Hm

σ (R+,R) : f |Il ∈ Pm∀l ≤ 1
}

.

For the discrete Dirichlet problem we can proceed as follows. Let p∆ t,h ∈ Hm
σ (∆ t,Vh) be an approximation ofp ∈

Hs
σ (R+,H−1/2(Γ )). Then we define the discrete problems

Find p∆ t,h ∈ Hm
σ (∆ t,Vh) aV(p∆ t,h,q∆ t,h) = F1(q∆ t,h) ∀q∆ t,h ∈ Hm

σ (∆ t,Vh) , (2.17)

Find p∆ t,h ∈ Hm
σ (∆ t,Vh) aV(p∆ t,h,q∆ t,h) = F2(q∆ t,h) ∀∆ t,hq∈ Hm

σ (∆ t,Vh) . (2.18)

Ha-Duong investigated in [22] the a priori error of the retarded single layer ansatz (2.13), but especially for approxi-
mated surfacesΓ his results involve the quotients∆ t/h andh/∆ t.
The discrete Neuman problem can then be formulated as follows. Let ϕh,∆ t ∈ Hm

σ (∆T,Wh) be an approximation of
ϕ ∈ Hs

σ (R+,H1/2(Γ )).

Find ϕ∆ t,h ∈ Hm
σ (∆ t,Wh) aW(ϕ∆ t,h,ψ∆ t,h) = F3(ψ∆ t,h) ∀ψ∆ t,h ∈ Hm

σ (∆ t,Wh) , (2.19)

Find ϕ∆ t,h ∈ Hm
σ (∆ t,Wh) aW(ϕ∆ t,h,ψ∆ t,h) = F4(ψ∆ t,h) ∀ψ∆ t,h ∈ Hm

σ (∆ t,Wh) . (2.20)

2.3.2 Discrete Retarded Potentials and the MOT Algorithm

The presented discretization scheme is known for a long time, compare e.g. [21]. In the previous sections we have
discussed the discrete space-time Galerkin methods for different kinds of RPBIEs. In this section we want to focus on
the computation of the involved matrices. Thus, we discuss the discrete retarded potential for a general kernelk(x−y)
and the resulting matrix entry. Although the final results are already known from [21] we give a detailed derivation of
the fully discrete system.

Analytical Evaluation of Retarded Time Integrals

Let us first discuss the analytical evaluation of time integrals with one retarded time argument, i.e. given two function
f1 and f2, we solve integrals of the type

∞∫

0

f1(t −|x−y|) f2(t)dt . (2.21)

They occur in the computation of the Galerkin entries of the discrete space-time variational formulations discussed
earlier.

Remark 2.7.Note, that the analysis of the space-time variational formulation as discussed earlier explictly demands

σ > 0, as the coercivity estimate fails forσ = 0. Nevertheless, in practical computations one usually sets σ = 0,

compare [21] and so do we. In [1] the integrals are also computed forσ > 0 and no significant advantage was reported.

Although the stability of the schemes is only secured forσ > 0, no loss of stability is observed forσ = 0.
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Before we consider the retarded time integral more generally, we discuss a simple model integral to clarify the chosen
approach. Choosing piecewise constant basis functions in time represented using the Heavyside function, such that

γm(t) = χIm(t) = H(t − tm−1)−H(t− tm) ,

where the indicator functionχA(x) for a setA is defined by

χA(x) =

{
1 x∈ A

0 x /∈ A
.

We compute

ϒ n−m
0 (x,y) :=

∞∫

0

γm(t −|x−y|)γ̇n(t)dt

=

∞∫

0

(H(t −|x−y|− tm−1)−H(t−|x−y|− tm))(δ (t − tn−1)− δ (t − tn)) dt

= (H(tn−1−|x−y|− tm−1)−H(tn−1−|x−y|− tm))

− (H(tn−|x−y|− tm−1)−H(tn−|x−y|− tm))

= [H(tn−m−|x−y|)−H(tn−m−1−|x−y|)]− [H(tn−m+1−|x−y|)−H(tn−m−|x−y|)] .

Now, use

H(tl −|x−y|) =

{
1 |x−y| ≤ tl
0 else

,

which defines the four dimensional set

Kl := {(x,y) ∈ Γ ×Γ : |x−y| ≤ tl} .

Note, thatKn−m−1 ⊂ Kn−m ⊂ Kn−m+1, such that we can rewrite

ϒ n−m
0 (x,y) =

[
χKn−m(x,y)−χKn−m−1(x,y)

]
−
[
χKn−m+1(x,y)−χKn−m(x,y)

]

= χEn−m−1(x,y)−χEn−m(x,y) ,

wherediscrete light cone integration domain El is defined by

El := Kl+1 \Kl = {(x,y) ∈ Γ ×Γ : tl ≤ |x−y| ≤ tl+1} . (2.22)

This integration domain is of central importance when evaluating discrete retarded Galerkin integrals. It reflects, that
the evaluation of the time integrals depends only on the timedifferencen−m, which is the basis of the marching-on-
in-time (MOT) algorithm of this method.
Denote bySp,r(∆ t) the space of piecewise defined spline functions on the time mesh with time step size∆ t with a
degreep and letr = 1 indicate continuous splines, wherer = 0 denotes discontinuous splines.
Given piecewise defined spline functionsf1 ∈ Sp1,r1(∆ t) and f2 ∈ Sp2,r2(∆ t), where we assume, that the continuous
time splines have a support of two time intervals and discontinuous time splines have a support only on one time
interval. For functions defined on the discrete time interval we can evaluate the corresponding integrals of the type
(2.21) always analytically and obtain

ϒ l (x,y) =
nring−1

∑
p=0

p1+p2+1

∑
q=0

ϒpq|x−y|qχEl−p(x,y) . (2.23)

The matrixϒ = (ϒpq) results from the analytic evaluation of the time integrals and nring denotes the number of light
cone integration domains involved.
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Remark 2.8.If r1 = r2 = 0 then always two light cone integration domains are involved, i.e.nring = 2. If r1 = 1 and

r2 = 0 results in three light cone integration domainsnring = 3. These two cases are discussed in this work, following

basically the scheme presented in [21]. Nevertheless an extension to functions withr1 = r2 = 1 is possible, but then

four light cone integration domains are necessary and in (2.23) p = −1, . . . ,2. The use of time basis functions with

a bigger support is not advisable, as it requires even more light cone integration domains, which finally destroys the

sparsity of the corresponding Galerkin matrices.

In the discretization of the retarded boundary integrals, the following four integrals are used

ϒ n−m
0 (x,y) :=

∞∫

0

γm(t −|x−y|)γ̇n(t)dt , ϒ n−m
1 (x,y) :=

∞∫

0

β m(t −|x−y|)γn(t)dt ,

ϒ n−m
2 (x,y) :=

∞∫

0

β m(t −|x−y|)γ̇n(t)dt , ϒ n−m
3 (x,y) :=

∞∫

0

β̇ m(t −|x−y|)γ̇n(t)dt ,

where the analytical evaluation of the first integral was discussed earlier and reveals forl = n−m

ϒ l
0 =

(
1
−1

)
.

The remaining integrals reduce to

ϒ l
1 =

1
2∆ t




t2
l+1 −2tl+1 1

2∆ t2− t2
l − t2

l−1 2(tl + tl+1) −2
t2
l−2 −2tl−2 1



 , ϒ l
2 =

1
∆ t




−tl+1 1
t2l−1 −2
−tl−2 1



 , ϒ l
3 =

1
∆ t




−1
2
−1



 .

Compare Appendix C for details on the computation of the timeintegrals.

Discrete Retarded Single Layer Matrices

Given the discrete problems (2.18) and (2.17), let us now discuss the derivation of linear equation system. A density
p∆ t,h ∈ H0(∆ t,Vh) can be approximated by

p∆ t,h(t,x) =
Nt

∑
m=1

Ns

∑
i=1

pm
i γm(t)ϕi(x) whereϕi ∈Vh

using piecewise constant functionsγm(t) = χIm(t).
Thus the left hand side of (2.17) and (2.18) reads for test functionsq∆ t,h(t,x) = γn(t)ϕ j (x)

aV(p∆ t,h,q∆ t,h) =
Nt

∑
m=1

Ns

∑
i=1

pm
i

∫∫

Γ×Γ

ϒ n−m
0 (x,y)

ϕi(y)ϕ j (x)

|x−y| dsy dsx . (2.24)

We have seen earlier, thatϒ n−m
0 (x,y) depends only on the differencen−mand thus we can rewrite (2.24) as an algebraic

system in terms of matrices and vectors by

Nt

∑
m=1

Vn−mpm,

wherepm := (pm
i )

dim(Vh)
i=1 and the matrix entries reduce to

Vn−m
i j :=

1

∑
p=0

ϒ n−m
0,p,1

∫∫

En−m−p

|x−y|p−1ϕi(y)ϕ j(x)dsy dsx

with i, j = 1, . . . ,dim(Vh). Let us define the basic Galerkin entry.
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Definition 2.9. Given a kernel functionk(x,y,x− y), we define the entries of the basic Galerkin matrix on one light

cone integration domainEl by

Gl ,ν
i j (k) :=

∫∫

El

k(x,y,x−y)|x−y|νϕi(y)ϕ j (x)dsy dsx .

Thus we can rewrite (2.24)

V l = Gl−1,0(kV)−Gl ,0(kV) , (2.25)

wherekV(x,y,x−y) = |x−y|−1 denotes the kernel of the single layer potential.
In general, for a time integral with

ϒ k(x,y) =
nring−1

∑
p=0

p1+p2+1

∑
q=0

ϒpq|x−y|qχEl−p(x,y) ,

each matrixAl corresponding to a retarded integralAϕ with kernelkA(x,y,x−y) can be written as

Al =
nring−1

∑
p=0

p1+p2+1

∑
q=0

ϒpqG
l−p,q(kA) . (2.26)

Example 2.10.Using linear continuous trial functions and constant test function in time the matrix entries of the matrix

corresponding to the retarded single layer potential are given by

V l
i j =

2

∑
p=0

2

∑
q=0

ϒ l
1,pq

∫∫

El−p

|x−y|q−1ϕi(y)ϕ j(x)dsy dsx .

Discrete hypersingular operator matrices

Let us now focus on the discrete left hand side of (2.19) and (2.20). Then densityϕ ∈ Hs(R+,H1/2(Γ ) (s≤ 1) can be
approximated by piecewise linear trial functions in space and time, namelyϕ∆ t,h ∈ H1(∆ t,Wh) and

ϕ∆ t,h(t,x) =
Nt

∑
m=1

Ns

∑
i=1

ϕm
i β m(t)ϕi(x) whereϕi ∈Wh

Choose continuous linear basis functions in space and time,i. e. β n(t) = (∆ t)−1((t − tn)χIm − (t − tn+1)χIn+1). Using
(2.16) and choosingη(t,x) = γn(t)ϕi(x) with piecewise constant basis functionsγn(t) in time, we can rewrite the left
hand side of (2.20) and (2.19) to

Nt

∑
m=1

Wn−mϕm,

with ϕm = (ϕm
i )

dim(Wh)
i=1 and

Wn−m
i j =

∫∫

Γ×Γ

ϒ n−m
3 (x,y)

nx ·ny

|x−y|ϕi(y)ϕ j(x)dsy dsx

+

∫∫

Γ×Γ

ϒ n−m
1 (x,y)

curlΓ ϕi(y) ·curlΓ ϕ j(x)
|x−y| dsy dsx ,

(2.27)

wherei, j = 1, . . . ,dim(Wh). Using (2.31) we obtain
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Wl
i j =

2

∑
p=0

ϒ l
3,p0

∫∫

El−p

nxny

|x−y|ϕi(y)ϕ j(x)dsy dsx

+
2

∑
p=0

2

∑
q=0

ϒ l
1,pq

∫∫

El−p

|x−y|q−1curlΓ ϕi(y)curlΓ ϕ j(x)dsy dsx .

Discrete Retarded Double Layer Matrix and its Adjoint Counterpart

In the computation of the right hand side of (2.18) and (2.20)the double layer potential and its adjoint have to be taken
into account. Let us consider first the double layer potential in (2.18). We have to demand a certain regularity of the
input data functionf . Assumef can be approximated by piecewise linear continuous functions in space and time such
that

f∆ t,h(t,x) =
Nt

∑
m=1

Ns

∑
i=1

f m
i β m(t)φi(x)

whereβ m(t) = (∆ t)−1((t − tm−1)χIm(t)− (t − tm+1)χIm+1(t)) andφi is a piecewise linear function defined on element
Γi and as beforeq(t,x) = γn(t)ϕ j(x), such that the right hand side of (2.18) reads in matrix vector notation

I( f n−1− f n)−
n

∑
m=1

Kn−m f m

where f m := ( f m
i )i=1,...,Ns = ( f (tm,φi))i=1,...,dim(Wh)

Kn−m
i j :=

∫∫

Γ×Γ

ϒ n−m
2 (x,y)

ny · (x−y)

|x−y|3
φi(y)ϕ j (x)dsy dsx

+

∫∫

Γ×Γ

ϒ n−m
3 (x,y)

ny · (x−y)

|x−y|2
φi(y)ϕ j(x)dsy dsx ,

for i = 1, . . . ,dim(Wh) and j = 1, . . . ,dim(Vh) .
Thus the fully discrete double layer potential matrix for linear trial functions and the derivative of constant test functions
in time reads

K l
i j =

2

∑
p=0

1

∑
q=0

ϒ l
2,pq

∫∫

El−p

|x−y|q−3ny · (x−y)φi(y)ϕ j(x)dsy dsy

−
2

∑
p=0

ϒ l
3,p0

∫∫

El−p

|x−y|−2ny · (x−y)φi(y)ϕ j(x)dsy dsy ,

and asϒ l
3,p0 = −ϒ l

2,p1 for p = 0,1,2 we obtain

K l
i j =

2

∑
p=0

ϒ k
2,p0

∫∫

El−p

|x−y|−3ny(x−y)φi(y)ϕ j (x)dsy dsy . (2.28)

For linear trial functions and constant test function we use
∫ ∞

0
β̇ m(t −|x−y|)γn(t)dt = −

∫ ∞

0
β m(t −|x−y|)γ̇n(t)dt = −ϒ n−m

2 (x,y)

which leads to
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Kn−m
i j :=

∫∫

Γ×Γ

ϒ n−m
1 (x,y)

ny(x−y)

|x−y|3
φi(y)ϕ j (x)dsy dsx

−
∫∫

Γ×Γ

ϒ n−m
2 (x,y)

ny(x−y)

|x−y|2
φi(y)ϕ j(x)dsy dsx

for i = 1, . . . ,dim(Wh) and j = 1, . . . ,dim(Vh). Thus the fully discrete double layer potential matrix for linear trial
functions and constant test functions in time reads

Kk
i j =

2

∑
p=0

2

∑
q=0

ϒ k
1,pq

∫∫

Ek−p

|x−y|q−3ny(x−y)φi(y)ϕ j(x)dsy dsy

−
2

∑
p=0

1

∑
q=0

ϒ k
2,pq

∫∫

Ek−p

|x−y|q−2ny(x−y)φi(y)ϕ j (x)dsy dsy .

Usingϒ k
1,p2 = ϒ k

2,p1 it reduces to

Kk
i j =

2

∑
p=0

ϒ k
1,p0

∫∫

Ek−p

|x−y|−3ny(x−y)φi(y)ϕ j (x)dsy dsy

−
2

∑
p=0

(ϒ k
1,p1−ϒ k

2,p0)

∫∫

Ek−p

|x−y|−2ny(x−y)φi(y)ϕ j (x)dsy dsy .

(2.29)

The corresponding adjoint operators result in the corresponding transposed matrices.

Generalization to higher order test and trial functions in space and time

For discontinuous functions inSpi,0(∆ t) (i = 1,2) with polynomial degreep1 and p2 for the trial and test function
respectively, there holds

V l =
p1+p2+1

∑
q=0

α(1)
l Gl−1,q(kV)+

p1+p2+1

∑
l=0

α(0)
l Gl ,q .

Remark 2.11.a) All retarded matrices are only sparsely populated. For a retarded matrixA ∈n×n, the non-vanishing

matrix entries are proportional ton2max(1,h/∆ t). In Fig. 2.1 the typical distribution of non-vanishing matrix entries

is sketched.

b) V0 andW0 are symmetric and positive definite, cf. Lemma 2 on page 179 and Proposition 5 on page 146 in[22]. is

symmetric and positive definite.

Marching-on-in-time (MOT) Algorithm

Let us now summarize the fully discrete schemes discussed earlier in this chapter. The discrete single layer potential
ansatz (2.17) using piecewise constant test and trial functions results in the following algebraic system withn = 1, . . .

n

∑
m=1

Vn−mpm = f n−1− f n

which yields

V0pn = f n−1− f n−
n−1

∑
m=1

Vn−mpm.
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Fig. 2.1 Sparsity pattern of retarded matrixV0 on sphere surface with 5120 elements. 0.25% non-vanishing entries.

For (2.18) we obtain

V0pn = I( f n− f n−1)+
n

∑
m=1

Kn−m f m−
n−1

∑
m=1

Vn−mpm

whereV l is given in (2.25),K l in (2.28) with l := n−m andI denotes the corresponding mass matrix. The indirect
approach for the Neuman problem (2.19) yields for linear trial and constant test functions in time

W0φn =
∆ t
2

I( f n−1 + f n)−
n−1

∑
m=1

Wn−mφm

and for the direct formulation (2.20) there holds

W0φn =
∆ t
2

I( f n−1 + f n)+
n

∑
m=1

(Kn−m)T f m−
n−1

∑
m=1

Wn−mφm

whereWl is defined as in (2.27) andK l is given in (2.29).
All above described fully discrete systems are constructedin the same way. They involve the computation of a series of
matrices, that are sparsely populated as the light cone integration domainEl restricts the number of interacting element
per time step. The computation of each matrix does only depend on the time difference and another remarkable property
is, that for bounded surfacesΓ the matrices vanish if for the time differencel := n−m there holds

l >

[
diamΓ

∆ t

]
.

Thus we can describe the linear equation system for a series of non-vanishing matricesA j with j = 0, . . . , n̂ and a series
of solution vectorsx j with j = 1, . . . ,n such that the MOT scheme reads

A0xn = f n−
n−1

∑
m=max(1,n−n̂)

An−mxm =: bn . (2.30)

Thus forn≤ n̂ it holds

bn = f n−
n−1

∑
m=1

An−mxm

and forn > n̂ we have
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bn = f n−
n−1

∑
m=n−n̂

An−mxm = f n−
n̂

∑
m=1

An̂−m+1xm+(n−n̂)−1 .

One important question is, how does an error|Ak
i j − Ãk

i j | in the matrix entry(i, j) influence the error of the solution of
the linear system|xn

j − x̃n
j |. To our knowledge is has not undergone a rigors analysis. Nevertheless, it is immediately

clear, that the accuracy has to be high in order to avoid a pollution of the MOT scheme.
Finally, the abstract MOT scheme can be summarized as follows.

for n = 1, . . . do
if n >

[
diamΓ

∆ t

]
then

Domain of influence has passed the body;
No more matrix computation needed;

else
Allocate storage for basic Galerkin matrixGn−1 using (C.1);
ComputeGn−1;
Compose the new retarded matrices;
Delete basic Galerkin entries that are not needed in the nexttime step;

end
Compute right hand side by matrix vector multiplication;
Solve solve the linear equation system;
Store new solution vector

end
Algorithm 2.1 : Time Stepping Algorithm

Before we close this chapter, let us briefly outline its impact on the rest of this work. The most expensive part of the
MOT-scheme is the matrix computation, although the resulting matrices are sparse. The next two chapters are devoted
to the analysis of the discrete retarded potential and its corresponding Galerkin entry. We have seen, that higher order
basis function in time result in additional terms with multiplicative factors|x− y|ν in the generation of the basic
Galerkin entry. Thus in the following we will discuss the computation of an integral of the type

Gl ,ν
i j :=

∫∫

El

kν (x−y)ϕi(y)ϕ j(x)dsy dsx , (2.31)

wherekν(x−y) = |x−y|ν andν ≥−1. We can rewrite (2.31) on a triangulationΓh of Γ to

Gl ,ν
i j =

∫

Γh

∫

Γh∩E(x)

kν(x−y)ϕi(y)ϕ j(x)dsy dsx

= ∑
Ti ,Tj∈Γh

∫

Ti

∫

Tj∩E(x)

kν (x−y)ϕi(y)ϕ j(x)dsy dsx ,

whereE(x) := Btl+1(x) \Btl (x) is the so called domain of influence of the pointx. The inner integral is the discrete
retarded potential, which will be analyzed in the next chapter, whereas the Galerkin integral (2.31) is studied in Chap-
ter 4.





Chapter 3

Regularity of Discrete Retarded Potentials
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Fig. 3.1 Contour plot of Laplace single layer potential in triangle plane with triangle vertices(0,0,0), (1,0,0), (0,1,0).

Discrete time independent integral equations and the corresponding potentials have been studied for years and are well
understood. Singularities in the first derivatives of the discrete potentials are e.g. reported in [38]. In Fig. 3.1 we see the
contour plot of the single layer potential

(Pϕ)(x) =
1

2π

∫

T

1
|x−y| dsy

of the Laplace problem evaluated for pointsx lying in the triangle plane. Here we use an ansatz functionϕ which is
constant on the triangleT. The contour levels become dense close to the boundary of thetriangle, which indicates a sin-
gularity in the gradient ofP. In fact the potential itself is continuous, but its gradient possesses corner and corner/edge
singularities on the boundary of the trial elementT. If the corresponding Galerkin integrals

∫

T̂

∫

T

1
|x−y| dsy dsx

are evaluated numerically, these singularities have to be taken into account. Mund [43] proposes a grading strategy
towards the edges of elementT in the outer integration whereas Sauter and Schwab [49] present a method using
relative coordinates and the Duffy transformation that lifts the singularities. We will discuss an appropriate evaluation
of the Galerkin integral of retarded potentials in Chapter 4. Note only, that the second approach is not easily generalized
to retarded potentials as the use of relative coordinates also changes the usually complicated domains of integration.
Moreover, as we will see in this chapter, the retarded potentials evaluated for piecewise continuous basis functions in
space and time possess some additional anisotropic singularities in higher order derivatives.
We analyze the regularity of retarded potentials in terms ofcountably normed spaces. We show, that the potential
itself is continuous and that, additionally to the classical corner/edge singularities in the first derivatives, we observe

19
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what we callgeometrical light cone singularitiesin the second derivatives. These geometrical singularities are due to
the intersection of the discrete trial element with the discrete light cone integration domain. We apply these results in
Chapter 4 in order to construct an accurate quadrature scheme for the Galerkin elements involved.
Note that a triangulation of the surfaceΓ into planar subelements planar elements enforces the evaluation of the trial
functionϕ restricted to an elementT and the discretization in time induces the integration domains El as defined in
(2.22). Some authors rather use global basis functions [55]or B-Splines [46] in time, but so far they are only considered
for collocation methods.
In Chapter 2.3 we have defined a typical Galerkin entry occurring in the discrete space-time variational formulation of
retarded boundary integral equations.
Let T denote an arbitrary triangle using the notation as sketchedin Fig. 3.3(b). Identify now the usually time dependent
radii of the integration domain of the retarded potential with rmin := tl andrmax := tl+1. Then the domain of influence of
pointx equalsE(x) = Brmax(x)\Brmin(x), with 0≤ rmin < rmax< ∞ and the domain of integration of a discrete retarded
boundary integral is the triangleT illuminated byE(x), thus

T ∩E(x) = T ∩ (Brmax(x)\Brmin(x)) = (T ∩Brmax(x))\ (T ∩Brmin(x))) .

Using the linearity of the integral, a discrete retarded boundary integral or retarded potential can be expanded to

(Pϕ)(x) =

∫

T∩Brmax(x)

k(x−y)ϕ(y)dsy −
∫

T∩Brmin(x)

k(x−y)ϕ(y)dsy , (3.1)

whereϕ ∈ L∞(T) andk(x−y) is a Cauchy singular kernel, i.e. the Cauchy principal valueof integral (3.1) exists and
is Hı̈¿1

2 lder continuous in a neighborhood ofx, compare Definition 5.1.7 in [48].
Without loss of generality, we study

(PRϕ)(x) :=
∫

T∩BR(x)

k(x−y)ϕ(y)dy. (3.2)

for x∈R3 andR≥ 0.

3.1 Geometrical Description of the Domains of InfluenceE(x) and ER(T)

Throughout this chapter, we fix the notation of a triangleT as sketched in Fig. 3.3(b). Denote the vertices of the triangle
by pi , the edges byei and the planar edge normalsni (i = 1,2,3). The triangle plane is defined by

ET := {y∈R3 : (p−y,nT) = 0} ,

for p∈ T, wherenT denotes the triangle normal.
The function(PRϕ)(x) vanishes, if the intersectionT∩BR(x) is empty, i.e. if dist(x,T) > R. The sphereBR(x) intersects
a triangle vertexpi only if x∈ BR(pi). A triangle edgeei with end pointsp j ( j ∈ {1,2,3}\{i}) is intersected byBR(x),
if

x∈
⋃

j 6=i

BR(p j)∪CR(ei) ,

whereCR(ei) denotes a circular cylinder with axisei and radiusR.
The triangle interior is intersected byBR(x) if x∈ PR(T)∪⋃i (BR(pi)∪CR(ei)), where the triangular prismPR(T) is
defined via

PR(T) := {y∈R3 : y = yT + γnT , whereyT ∈ T , γ ∈ (−R,R)} .

Thus, the support of(PRϕ)(x) is

ER(T) := supp(PRϕ) = PR(T)∪
3⋃

i=1

(BR(pi)∪CR(ei)) . (3.3)
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Remark 3.1.The above described geometrical object is also known as trianguloid and can be written as the Minkowski

sum of a sphereBR(0) and a triangleT, i.e.T +BR(0) := {a+b : a∈ T,b∈ BR(0)}. Especially in computer graphics

domains like this are studied in the context of convolution surfaces [8] or sphere-swept volumes. We will refer toER(T)

as the domain of influence of elementT. A sketch ofER(T) may be found in Fig. 3.2.

(a) RadiusR< 0.5maxi |ei |. (b) RadiusR> maxi |ei |.

Fig. 3.2 Three-dimensional plot of the domain of influenceER(T).

x′

x

R(x′)

R

(a) Intersection of a sphereBR(x) with the triangle plane. (b) Vertex and edge labeling of triangleT.
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Fig. 3.3

3.2 Regularity of Retarded Boundary Integrals

In the following lemma we explicitly compute the gradient ofthe discrete retarded potential (3.2). We decompose the
integral into integrals over the triangle edges, circle segments and the original integration domain. Within the proof
we use a direct functional representation of the indicator functions of the intersecting domains via one-dimensional
Heavyside functionsH.
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x′

T ∩∂BR(x)

T ∩BR(x)

∂T ∩BR(x)

Fig. 3.4 Decomposition of the domain of integration.

Lemma 3.2.Given a triangle T with vertices pi and edges ei with corresponding outer normals ni (i = 1,2,3) as

sketched in Fig. 3.3(b). nT denotes the triangle normal. The orthogonal projection of x∈R3 onto the triangle plane

ET is given by x′ = x+(p−x,nT)nT , where p∈ ET . For ϕ ∈C1(T)∩L∞(T) and x∈ ER(T) it holds

∇(PRϕ)(x) = nT
(x− p,nT)

R′(x)

∫

T∩∂BR(x)

k(x−y)ϕ(y)dsy−
3

∑
i=1

ni

∫

ei∩BR(x)

k(x−y)ϕ(y)dsy

+

∫

T∩BR(x)

k(x−y)∇ϕ(y)dsy ,

(3.4)

where R′(x) = (R2− (p−x,nT)2)1/2 and ∇(PRϕ) = 0 for x /∈ ER(T).

Before we continue with the proof of the above lemma, let us consider its impact on the following analysis. In Chapter
3.2.1 we study the integrals in the sum of the second term in (3.4) and define

(Iei ϕ)(x) :=
∫

ei∩BR(x)

k(x−y)ϕ(y)dsy . (3.5)

We will prove, that this function is continuous inR3, but exhibits anisotropic singularities in its first derivatives, which
results in anisotropic singularities in the second derivatives of (3.2). In Chapter 3.2.2 we will study the first term in
(3.4) and therefore introduce

(ITϕ)(x) :=
(x− p,nT)

R′(x)

∫

T∩∂BR(x)

k(x−y)ϕ(y)dsy . (3.6)

We will see, that this function possesses jumps parallel to the triangle plane, i.e. the discrete potential (3.2) exhibits a

jump in its first derivatives.

Proof (of Lemma 3.2).Forx /∈ ER(T) (PRϕ) vanishes and thus do its higher derivatives. Letx∈ER(T), then we rewrite

the potential (3.2) using indicator functions andBR(x)∩ ET = BR′(x′)∩ ET (cf. Fig. 3.3(a)) and fory ∈ ET it holds

χBR(x)(y) = χBR′ (x
′)(y) = H(R′(x)−|y−x′|).

Denote byp′i the projection ofpi onto the line through the edgeei . Given a plane with normalni and pointp′i , the

indicator function of the left half space can be representedby H(−ni(y− p′i)). Now a triangle is the intersection of the

three left half spaces corresponding to the edges of the triangle intersected with the triangle planeET , such that

χT(y) = χET (y)
3

∏
i=1

H(−ni(y− p′i)) ,

which then yields
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(PRϕ)(x) =

∫R3

χBR(x)(y)χT(y)k(x−y)ϕ(y)dy

=
∫R3

χBR(x)(y)χET (y)
︸ ︷︷ ︸
=χBR′ (x

′)(y)χET
(y)

3

∏
i=1

H(−ni(y− p′i))k(x−y)ϕ(y)dy

=

∫

ET

H(R′(x)−|y−x′|)
3

∏
i=1

H(−ni(y− p′i))k(x−y)ϕ(y)dy.

Thus

∇(PRϕ)(x) =
∫

ET

∇x
[
H(R′(x)−|y−x′|)k(x−y)

]
ϕ(y)

3

∏
i=1

H(−ni(y− p′i))dy.

One easily verifies

∇x(y,x
′) = ∇x [(y,x)+ (p−x,nT)(y,nT)] = y− (y,nT)nT ,

∇x(x
′,x′) = ∇x

[
(x,x)+2(p−x,nT)(x,nT)+ (p−x,nT)2]= 2(x− (x,nT)nT) ,

such that asy∈ ET

∇x
∣∣y−x′

∣∣= − 1
|y−x′| (y−x− (y−x,nT)nT) = − y−x′

|y−x′| .

We can compute

∇x H(R′(x)−
∣∣y−x′

∣∣) = δ (R′(x)−
∣∣y−x′

∣∣)
(

(p−x,nT)

R′(x)
nT +

y−x′

|y−x′|

)

= δ (R′(x)−
∣∣y−x′

∣∣) (p−x,nT)

R′(x)
nT −∇yH(R′(x)−

∣∣y−x′
∣∣) .

Moreover,∇xk(x−y) = −∇yk(x−y) and thus using the product rule

∇x
[
H(R′(x)−|y−x′|)k(x−y)

]
= δ (R′(x)−

∣∣y−x′
∣∣) (p−x,nT)

R′(x)
nTk(x−y)

−∇y
[
H(R′(x)−|y−x′|)k(x−y)

]
.

Now, we have

∇(PRϕ)(x) =
(p−x,nT)

R′(x)
nT

∫

ET

δ (R′(x)−
∣∣y−x′

∣∣)
3

∏
i=1

H(−ni(y− p′i))k(x−y)ϕ(y)dy

−
∫

ET

∇y
[
H(R′(x)−|y−x′|)k(x−y)

] 3

∏
i=1

H(−ni(y− p′i))ϕ(y)dy.

(3.7)

We apply the product rule(∇y f )g = ∇y ( f · g) − f ∇y g for f (x,y) = H(R′(x) − |y− x′|)k(x− y) and g(x,y) =

∏3
i=1H(−ni(y− p′i))ϕ(y). Now, sinceg has bounded support, we can rewrite the second term in (3.7) using that

∫
ET

∇y( f ·g)dyvanishes. Note that we evaluate the integrals in the sense ofdistributions.

We compute explicitly
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∇y

[
3

∏
i=1

H(−ni(y− p′i))ϕ(y)

]
= −

3

∑
i=1

niδ (−ni(y− p′i))∏
j 6=i

H(−n j(y− p′j))ϕ(y)

+
3

∏
i=1

H(−ni(y− p′i))∇yϕ(y) .

As mentioned earlier in this proof fory ∈ ET it holds χBR(x)(y) = χBR′ (x
′)(y) = H(R′(x) − |y− x′|) and χei (y) =

δ (−ni(y− p′i))∏ j 6=i H(−n j(y− p′j)). Thus the second term in (3.7) reduces to

−
3

∑
i=1

ni

∫

ei∩BR(x)

k(x−y)ϕ(y)dsy +
∫

T∩BR(x)

k(x−y)∇yϕ(y)dsy .

Rewriting forx∈ ET

δ (R′(x)−
∣∣y−x′

∣∣)
3

∏
i=1

H(−ni(y− p′i)) = δ (R−|y−x|)
3

∏
i=1

H(−ni(y− p′i)) = χT∩∂BR(x)(y) ,

the first term in (3.7) reduces to

(p−x,nT)

R′(x)
nT

∫

T∩∂BR(x)

k(x−y)ϕ(y)dsy ,

which yields the assertion. ⊓⊔

Remark 3.3.A generalization to quadrilateral elements is straight forward, as we only have to regard one additional

edge. Thus the support of the corresponding potential is thesphere-swept volume of a quadrilateral (compare Re-

mark 3.1) and the below discussed singularities have one additional contribution to the edge based singularities.

Using Lemma 3.2 we can show recursively

Theorem 3.4.For ϕ ∈C|α |(R3) there holds

Dα(PRϕ)(x) = nT ·




α1

∑
l=1

∂ α1−l
1 (IT∂ l−1

1 ∂ α2
2 ∂ α3

3 ϕ)(x)

α2

∑
l=1

∂ α1
1 ∂ α2−l

2 (IT∂ l−1
2 ∂ α3

3 ϕ)(x)

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (IT∂ l−1

3 ϕ)(x)




−
3

∑
i=1

ni ·




α1

∑
l=1

∂ α1−l
1 (Iei ∂

l−1
1 ∂ α2

2 ∂ α3
3 ϕ)(x)

α2

∑
l=1

∂ α1
1 ∂ α2−l

2 (Iei ∂
l−1
2 ∂ α3

3 ϕ)(x)

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (Iei ∂

l−1
3 ϕ)(x)




+(PR(Dα ϕ)(x) ,

where the operators Iei ϕ and ITϕ are defined in(3.5)and (3.6), respectively.

Proof. Show first by induction forn∈N
∂ n

j (PRϕ)(x) = (nT) j

n

∑
l=1

∂ n−l
j (IT∂ l−1

j ϕ)(x)−
3

∑
i=1

(ni) j

n

∑
l=1

∂ n−l
j (Iei ∂

l−1
j ϕ)(x)

+

∫

T∩BR(x)

k(x−y)∂ n
j ϕ(y)dsy .

(3.8)

Forn = 0 the first two terms vanish and only the function(PRϕ)(x) remains. Forn = 1 the result follows directly from

Lemma 3.2 and finally forn+1 we conclude with (3.8) by applying Lemma 3.2 to its last term
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∂ n+1
j (PRϕ)(x) = ∂ j

(
∂ n

j (PRϕ)(x)
)

= (nT) j

n

∑
l=1

∂ n+1−l
j (IT∂ l−1

j ϕ)(x)−
3

∑
i=1

(ni) j

n

∑
l=1

∂ n+1−l
j (Iei ∂

l−1
j ϕ)(x)

+ (nT) j(IT∂ n
j ϕ)(x)−

3

∑
i=1

(ni) j(Iei ∂
n
j ϕ)(x)+

∫

T∩BR(x)

k(x−y)∂ n+1
j ϕ(y)dsy

= (nT) j

n+1

∑
l=1

∂ n+1−l
j (IT∂ l−1

j ϕ)(x)−
3

∑
i=1

(ni) j

n+1

∑
l=1

∂ n+1−l
j (Iei ∂

l−1
j ϕ)(x)

+

∫

T∩BR(x)

k(x−y)∂ n+1
j ϕ(y)dsy .

If we now successively apply (3.8), there directly follows

Dα(PRϕ)(x) = ∂ α1
1 ∂ α2

2 ∂ α3
3 (PRϕ)(x)

= ∂ α1
1 ∂ α2

2

(
(nT)3

α3

∑
l=1

∂ α3−l
3 (IT∂ l−1

3 ϕ)(x)−
3

∑
i=1

(ni)3

α3

∑
l=1

∂ α3−l
3 (Iei ∂

l−1
3 ϕ)(x)

+
∫

T∩BR(x)

k(x−y)∂ α3
3 ϕ(y)dsy




= (nT)3

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (IT∂ l−1

3 ϕ)(x)−
3

∑
i=1

(ni)3

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (Iei ∂

l−1
3 ϕ)(x)

+ ∂ α1
1

(
(nT)2

α2

∑
l=1

∂ α2−l
2 (IT∂ l−1

2 ∂ α3
3 ϕ)(x)−

3

∑
i=1

(ni)2

α2

∑
l=1

∂ α2−l
2 (Iei ∂

l−1
2 ∂ α3

3 ϕ)(x)

+

∫

T∩BR(x)

k(x−y)∂ α2
2 ∂ α3

3 ϕ(y)dsy




= (nT)3

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (IT∂ l−1

3 ϕ)(x)−
3

∑
i=1

(ni)3

α3

∑
l=1

∂ α1
1 ∂ α2

2 ∂ α3−l
3 (Iei ∂

l−1
3 ϕ)(x)

+ (nT)2

α2

∑
l=1

∂ α1
1 ∂ α2−l

2 (IT∂ l−1
2 ∂ α3

3 ϕ)(x)−
3

∑
i=1

(ni)2

α2

∑
l=1

∂ α1
1 ∂ α2−l

2 (Iei ∂
l−1
2 ∂ α3

3 ϕ)(x)

+ (nT)1

α1

∑
l=1

∂ α1−l
1 (IT∂ l−1

1 ∂ α2
2 ∂ α3

3 ϕ)(x)−
3

∑
i=1

(ni)1

α1

∑
l=1

∂ α1−l
1 (Iei ∂

l−1
1 ∂ α2

2 ∂ α3
3 ϕ)(x)

+

∫

T∩BR(x)

k(x−y)∂ α1
1 ∂ α2

2 ∂ α3
3 ϕ(y)dsy .

⊓⊔

3.2.1 Analysis of the Edge Integral Iei ϕ

In this section we study the function (3.5). We restrict the analysis to kernels of the formkν(x− y) = |x−y|ν with
ν ≥−1 and define

(Iν
ei

ϕ)(x) :=
∫

ei∩BR(x)

kν(x−y)ϕ(y)dsy .
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The support of (3.5) is given by

CR(ei) := CR(ei)∪
⋃

j 6=i

BR(p j) . (3.9)

Note, thatCR(ei) is a subset ofER(T). We sketched some interesting cases in Fig. 3.5.
First, we map the edgeei of the triangle to a reference edgee of length one, i.e. by translating, rotating and scaling
the original edgeei . This reference situation shall be studied in detail, in order to analyze the edge based integrals as
derived in Lemma 3.2 in detail. In the following, we denote bye the reference edge with end pointsm1 := (0,0,0)T

andm2 := (0,1,0)T . Let ê denote an arbitrary edge of an triangle with end points ˆm1 andm̂2 and an edge normalnê

lying in the triangle plane.

Lemma 3.5.Given an arbitrary edgêe of the triangle T with end pointŝm1 andm̂2 and the unit triangle normal nT .

Let ϕ ∈ L∞(ê) andR̂∈ R. Then there exists a scaled rotation including a translation F :R3 7→R3 with F (e) = ê

such that

(Iν
ê ϕ)(x̂) = |ê|ν+1

∫

e∩BR(x)

kν (x−y)ϕ̃(y)dsy ,

where R= |ê|−1R̂, y= F−1(ŷ), x= F−1(x̂), ϕ̃(y) = (ϕ ◦F )(y) and kν (x−y) = |x−y|ν with ν ≥−1.

Proof. Define the affine transformation, such thatF (e) = ê. We consider the basis

〈
(1,0,0)T ,(0,1,0)T ,(0,0,1)T〉

in the reference situation. Withdê := m̂2−m̂1 we define the basis〈nê,dê/|ê|,nT〉 wherenê = |ê|−1(dê×nT) corresponds

to the planar normal of the triangle edge. Thus, we can define the mapping by

F (x) = Ax+ m̂1 = x̂,

where the transformation matrix isA := (|ê|nê,dê, |ê|nT). Moreover it holds

F
−1(ê∩BR̂(x̂)) = F

−1(ê)∩F
−1(BR̂(x̂)) = e∩BR(F−1(x̂)) .

Thus, we can substitute

(Iν
ê ϕ)(x̂) =

∫

F−1(ê∩BR̂(x̂))

kν (F (x)−F (y))ϕ(F (y))|det(A)|dsy

= |det(A)|
∫

e∩BR(x)

kν(A(x−y))ϕ(F (y))dsy

= |det(A)||ê|ν
∫

e∩BR(x)

kν(x−y)ϕ(F (y))dsy

= |ê|ν+1
∫

e∩BR(x)

kν (x−y)ϕ(F (y))dsy .

In the last steps we used|A(x−y)|= |ê||x−y| and det(A) = |ê| asA is a rotation matrix scaled with|ê|. ⊓⊔

In the following we will analyze the reference edge functiondefined by

(Iνϕ)(x) :=
∫

e∩BR(x)

kν(x−y)ϕ(y)dsy . (3.10)
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(a) |e| > 2R. (b) |e| > 2R.

(c) 2R> |e| > R. (d) 2R> |e| > R.

(e) |e| < R. (f) |e| < R.

Fig. 3.5 Three-dimensional visualization ofCR(e).
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m1

m2

e

ê

m̂1

m̂2

F

Fig. 3.6 Mapping of reference edgee to edge ˆe.

Let us first study the intersection of the sphereBR(x) and the edgee. The different types of intersection define a natural
decomposition ofCR(e). In Fig. 3.5 several three-dimensional visualizations of this partition are plotted. In Fig. 3.8(a)
and 3.8(b) the below introduced decomposition ofR3 is sketched in the triangle plane.

Lemma 3.6.Let x∈R3. There exists a decomposition ofR3 in at most five disjoint subsets given by

S1 := BR(m1)\BR(m2) ,

S2 := BR(m2)\BR(m1) ,

S3 := BR(m1)∩BR(m2) ,

S4 := CR(e)\ (BR(m1)∪BR(m2)) ,

S5 :=R3\
(
S1∪S2∪S3∪S4

)

(3.11)

and we can compute explicitly

e∩BR(x) =





{
y∈R3 : y = m1 + γ(x(2)

s −m1); γ ∈ [0,1]
}

x∈ S1{
y∈R3 : y = x(1)

s + γ(m2−x(1)
s ); γ ∈ [0,1]

}
x∈ S2

e x∈ S3{
y∈R3 : y = x(1)

s + γ(x(2)
s −x(1)

s ); γ ∈ [0,1]
}

x∈ S4

/0 x∈ S5 ,

where x(1)
s and x(2)

s denote the intersection points of the sphere BR(x) and the edge e given by

x(1)
s :=

(
0, x2−

√
R2−x2

1−x2
3, 0

)T

and x(2)
s :=

(
0, x2 +

√
R2−x2

1−x2
3, 0

)T

.

Proof. The intersection of a sphere and an edge in the(x1,x2)-plane can be rewritten as the intersection of the edge

and the circle corresponding to the intersection of the sphere and the(x1,x2)-plane. Thus using the notation introduced

in Lemma 3.2 we can writee∩BR(x) = e∩BR′(x′), wherex′ = (x1,x2,0)T andR′(x) = (R2−x2
3)

1/2. The intersection

e∩BR′(x′) wheree : x = γ (0,1,0)T with γ ∈ [0,1] results in the following equation

x2
1 +(x2− γ)2 +x2

3 = R2 ,

with rootsγ1,2 = x2±
√

R2−x2
1−x2

3. A case distinction yields the subdomainsSi with i = 1, . . . ,5. ⊓⊔

Remark 3.7.a) Note that,S3 = /0 if R≤ 1
2 .

b) In Fig. 3.7 a sketch of the geometrical intersection casesis given. Forx∈ S1 or x∈ S2 the edge is intersected once

and twice forx∈ S4. Forx∈ S3 the whole edgee is illuminated, i.e. the edge lies in the sphereBR(x) and forx∈ S5

the intersection is the empty set.
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x∈ S1

x′

R′

x∈ S2

x′

x∈ S3

x′

x∈ S4

x′

x∈ S5

x′

Fig. 3.7 Five different cases for the intersection ofBR′ (x′) ande.

Lemma 3.6 verifies, that the support of(Iν
e ϕ)(x) is a so-called capsule, a sphere-swept volume of a segment assketched

in Fig. 3.5. This supportCR(e) is a composition of the spheresBR(m1) andBR(m2) and the cylinderCR(e) with radius
R and axise.
The following analysis shows, that the reference edge function (3.10) has anisotropic singularities in its gradient. The
position of these singularities is determined on the boundaries of the subdomainsSi as defined in (3.11), i.e. the surface
of the spheres∂BR(mi) (i = 1,2), corresponding to the dashed blue circles in Fig. 3.8 and the surface of the cylinder
CR(e) (without the caps) indicated by the red lines and denoted byΓ45.
The boundariesΓi j are defined as interfaces between the domainsSi andSj , wherei < j. The following boundaries are
of special interest, see also Fig. 3.8(c).

1. CaseS3 = /0.

S1∩S4 = Γ14 S2∩S4 = Γ24

S1∩S5 = Γ15 S2∩S5 = Γ25 S4∩S5 = Γ45

2. CaseS3 6= /0.

S1∩S2 = Γ12 = Γc

S1∩S3 = Γ13 S2∩S3 = Γ23

S1∩S4 = Γ14 S2∩S4 = Γ24 S3∩S4 = Γ34 = Γc

S1∩S5 = Γ15 S2∩S5 = Γ25 S3∩S5 = /0 S4∩S5 = Γ45

An explicit parameterization of the above defined boundaries, if not vanishing, is

Γc :=

{
x∈R3 : x2 =

1
2

andx2
1 +x2

3 = R2− 1
4

}
,

Γ13 :=

{
x∈R3 : x2 = 1−

√
R2−x2

1−x2
3 andx2

1 +x2
3 ≤ R2− 1

4

}
,

Γ14 :=

{
x∈R3 : x2 =

√
R2−x2

1−x2
3 and max

(
0,R2− 1

4

)
≤ x2

1 +x2
3 ≤ R2

}
,

Γ15 :=

{
x∈R3 : x2 = −

√
R2−x2

1−x2
3 andx2

1 +x2
3 ≤ R2

}
,

Γ23 :=

{
x∈R3 : x2 =

√
R2−x2

1−x2
3 andx2

1 +x2
3 ≤ R2− 1

4

}
,

Γ24 :=

{
x∈R3 : x2 = 1−

√
R2−x2

1−x2
3 and max

(
0,R2− 1

4

)
≤ x2

1 +x2
3 ≤ R2

}
,

Γ25 :=

{
x∈R3 : x2 = 1+

√
R2−x2

1−x2
3 andx2

1 +x2
3 ≤ R2

}
,

Γ45 :=
{

x∈R3 : 0≤ x2 ≤ 1 andx2
1 +x2

3 = R2} .

(3.12)
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Note that∂BR(m1) = Γ14∪Γ15∪Γ23, ∂BR(m2) = Γ13∪Γ24∪Γ25 and∂CR(e) = Γ45. Moreover, we define the jump of a
function f over a boundaryΓi j by

[ f ]Γi j := lim
x∈ Si

x→ Γi j

f (x)− lim
x∈ Sj

x→ Γi j

f (x) .

Whereas, if there is a singularity in a domainε, we interpret the jump in the following way

[ f ]Γi j := lim
x∈ Si\ε
x→ Γi j

f (x)− lim
x∈ Sj\ε
x→ Γi j

f (x) .

S1

S2

S4

S5

m1

m2

(a) S3 = /0

S1

S2

S4S3S4

S5

m1

m2

(b) S3 6= /0

Γ15

Γ25

Γ45

Γ14

Γ24

Γ14

Γ24

Γ45

Γ23

Γ13

(c)

Fig. 3.8 Domain and boundary definitions onCR(e).

We define the jump of a functionf on the surface of a sphereBR(m) by

[ f ]∂BR(m) = lim
x→ ∂BR(m)

x∈R3 \BR(m)

f − lim
x→ ∂BR(m)

x∈ BR(m)

f .

We observe different regularities of(Iν
e ϕ) on the subdomainsSi.

Lemma 3.8.Given kν(x−y) := |x−y|ν for ν ∈ Z with ν ≥−1 and ϕ ∈ L∞(e).

The first derivatives of Iν
e ϕ possess anisotropic jumps on∂BR(m1), ∂BR(m2) and a one sided pole on∂CR(e) without

the caps. Perpendicular to the edge e there holds for j= 1 or j = 3
∣∣∣[∂ j(I

ν
e ϕ)]∂BR(m2)

∣∣∣= Rν ∣∣x j
∣∣(R2−x2

1−x2
3

)−1/2 |ϕ(m2)| ,
∣∣∣[∂ j(I

ν
e ϕ)]∂BR(m1)

∣∣∣= Rν ∣∣x j
∣∣(R2−x2

1−x2
3

)−1/2 |ϕ(m1)| ,
∣∣∣[∂ j(I

ν
e ϕ)]∂CR(e)

∣∣∣= 2Rν lim
x→∂CR(e)

|ϕ(0,x2,0)|
∣∣x j
∣∣

(R2−x2
1−x2

3)
1/2

,

and parallel to the edge the derivative with respect to x2 exhibits a constant jump of size
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∣∣∣[∂2(I
ν
e ϕ)]∂BR(m2)

∣∣∣= Rν |ϕ(m1)| ,
∣∣∣[∂2(I

ν
e ϕ)]∂BR(m1)

∣∣∣= Rν |ϕ(m2)| ,
∣∣∣[∂2(I

ν
e ϕ)]∂CR(e)

∣∣∣= 0.

Iν
e ϕ has a singularity on the edge e forν = −1and forν ≥ 0 the integral is continuous.

Proof. Due to Lemma 3.6(Iν
e ϕ) vanishes inS5 whereas inCR(e) =

4⋃
i=1

Si it holds

(Iν
e ϕ)(x) =

∫

e∩BR(x)

kν(x−y)ϕ(y)dsy =

∫ b(x)

a(x)
kν(x−y)ϕ(y)dy2 ,

wherey1 = y3 = 0 and

a(x) =





0 x∈ S1∪S3

x2−
√

R2−x2
1−x2

3 x∈ S2∪S4 ,

b(x) =





1 x∈ S2∪S3

x2 +
√

R2−x2
1−x2

3 x∈ S1∪S4 .

Clearly,a,b∈C0(CR(e)) and on the boundary∂CR(e) = Γ15∪Γ25∪Γ45 the domain of integration and thus the integral

vanishes as

lim
x→∂CR(e)

a(x) = lim
x→∂CR(e)

b(x) (x∈CR(x)) .

As the integration domain changes continuously inCR(e), Iν
e ϕ is continuous forν ≥ 0, whereasIν

e ϕ possesses a

singularity on the edge forν = −1 which corresponds to the classical singularity.

Consider now∇(Iν
e ϕ). Definea := (0,a(x),0)T andb := (0,b(x),0)T and compute

∇(Iν
e ϕ)(x) = (∇b(x))kν (x−b)ϕ(b)− (∇a(x))kν(x−a)ϕ(a)+

∫ b(x)

a(x)
∇xkν(x−y)ϕ(y)dy2 .

Here we use the similar structure of∇a(x) and∇b(x) and define the functionsg(x) :=
√

R2−x2
1−x2

3 and

G(x) :=


 x1√

R2−x2
1−x2

3

,1,
x3√

R2−x2
1−x2

3




T

= (∂1g(x),1,∂3g(x))T .

Then we obtain on the different subdomains

∂ j(I
ν
e ϕ)(x)

∣∣
S1

= Rν(−1) jG j(x)ϕ(b)+

∫ b(x)

0
∂xj kν(x−y)ϕ(y)dy2 ,

∂ j(I
ν
e ϕ)(x)

∣∣
S2

= −RνG j(x)ϕ(a)+

∫ 1

a(x)
∂xj kν(x−y)ϕ(y)dy2 ,

∇(Iν
e ϕ)(x)|S3

=

∫ 1

0
∇xkν (x−y)ϕ(y)dy2 ,

∂ j(I
ν
e ϕ)(x)

∣∣
S4

= RνG j(x)
(
(−1) jϕ(b)−ϕ(a)

)
+

∫ b(x)

a(x)
∂xj kν(x−y)ϕ(y)dy2 ,

∇(Iν
e ϕ)(x)|S5

= 0,

(3.13)

with kν(x−a) = kν(x−b) = Rν for all x∈ S1∪S2∪S4.
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Again, we are interested in the continuity properties.G is continuous inCR(e), but one observes a singularity onΓ45.

Using a similar argumentation as forIν
e ϕ , it follows, that ∂ j(Iν

e ϕ)
∣∣
Si

is continuous (excluding the edgee) and vanishes

on ∂CR(e). OnΓ ∈ {Γc,Γ13,Γ14,Γ15,Γ23} there holds

lim
x→Γ

a(x) = 0,

and thusa = m1, whereas onΓ25 it holdsa(x) = 1 thusa = m2. OnΓ ∈ {Γc,Γ13,Γ23,Γ24,Γ25} there holds

lim
x→Γ

b(x) = 1,

thereforeb = m2. Forx∈ Γ15 we obtainb = m1 and onΓ45 it holdsa(x) = b(x) = x2. OnΓ24 we havea(x) = 2x2−1

and forx∈ Γ14 it yieldsb(x) = 2x2. In (3.13) one observes, that inS1, S2 andS4 we have an additional terms connected

to G. Therefore, we have to analyzeG j : CR(e) →R for j = 1,3 as defined above.

Using the boundary definition as given in (3.12) one concludes, thatG j is continuous onΓ13, Γ23. On the boundaries

Γ14 andΓ15 we observe a pole of type lim
α→R

(R2−α2)−1/2 on the circle given byx2
1 +x2

3 = R2 andx2 = 0. Similarly, on

Γ24 andΓ25 we observe a pole of type lim
α→R

(R2−α2)−1/2 on the circle given byx2
1 +x2

3 = R2 andx2 = 1. Whereas, on

the whole boundaryΓ45 it holds

lim
x→Γ45

G j(x) = x j lim
α→R

(R2−α2)−1/2 x j ∈ [−R,R] .

Thus one computes forj = 1 and j = 3

[∂ j(I
ν
e ϕ)]Γ12

= −Rνx j(ϕ(m2)−ϕ(m1))

[∂ j(I
ν
e ϕ)]Γ13

= [∂ j(I
ν
e ϕ)]Γ25

= − [∂ j(I
ν
e ϕ)]Γ24

= −Rνx j
(
R2−x2

1−x2
3

)−1/2ϕ(m2)

[∂ j(I
ν
e ϕ)]Γ15

= [∂ j(I
ν
e ϕ)]Γ23

= − [∂ j(I
ν
e ϕ)]Γ14

= −Rνx j
(
R2−x2

1−x2
3

)−1/2ϕ(m1)

[∂ j(I
ν
e ϕ)]Γ34

= Rνx j(ϕ(m1)+ ϕ(m2))

[∂ j(I
ν
e ϕ)]Γ45

= −2Rνϕ(0,x2,0) lim
x2
1+x2

3→R2

x j

(R2−x2
1−x2

3)
1/2

We observe a jump of constant size parallel to the edge.

[∂2(I
ν
e ϕ)]Γ12

= Rν(ϕ(m1)+ ϕ(m2))

[∂2(I
ν
e ϕ)]Γ14

= [∂2(I
ν
e ϕ)]Γ15

= − [∂2(I
ν
e ϕ)]Γ23

= Rνϕ(m1)

[∂2(I
ν
e ϕ)]Γ24

= [∂2(I
ν
e ϕ)]Γ25

= − [∂2(I
ν
e ϕ)]Γ13

= −Rνϕ(m2)

[∂2(I
ν
e ϕ)]Γ34

= −Rν(ϕ(m2)−ϕ(m1))

[∂2(I
ν
e ϕ)]Γ45

= 0

⊓⊔

In the following lemma, we describe the regularity of the reference integralIν
e ϕ using piecewise defined countably

normed spaces. Next to a classical singularity due to the kernel function, there exist geometrical light cone singularities
corresponding to the intersection of the sphere and the edge. We show, that these anisotropic singularities have different
strength on the regarded subdomains. We observe poles on thesurface of the cylinder with axise and jumps on the
surface of the spheres.
These geometrical singularities influence the regularity in the subdomainsS1, S2 andS4, where the effect onS4 is
stronger then onS1 and S2. Moreover, the discontinuities result in a decomposition of CR(e), on which we define
countably normed spaces.
We want to apply our knowledge of the singularities of discrete retarded potentials in Chapter 4 in order to discuss
the quadrature error of the corresponding Galerkin integrals. In this context the retarded potential is multiplied by a
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test function and integrated over the boundaryΓ . As we use a triangulation of the boundary, we evaluate the integral
element-wise. Each elementT̂ defines a triangle planeET̂ with normalnT̂ and we have to describe the behavior of
the discrete retarded potential in this plane. Thus we have to intersect the three-dimensional elements of the natural
decomposition ofCR(e) with the triangle planeET̂ . In the following, we will consider its regularity within a certain
plane, where we aim to apply the obtained results in the erroranalysis of the outer quadrature in Chapter 4.
Given a planeE with normaln defined by

(x− p,n) = 0

wherep∈ E and its distance to the origin isd = p ·n.
In the following two lemmata, we consider two functions in terms of their regularity in countably normed spaces. Let
us first describe the edge function on a fixed integration domain.
There exist detailed analysis on the classically known kernel singularities of boundary integrals [49, 51]. Here we will
consider kernel functionsk(x−y) holding the Calderon-Zygmund type inequality [13]

|Dαk(x−y)| ≤C0C
|α |
1 α!‖x−y‖min(l−α ,0) (3.14)

with l > −1. Furthermore, we assume, that on a bounded subsetA⊂R3 there holds

(Îϕ)(x) :=
∫

e
k(x−y)ϕ(y)dsy ∈ Blker−1

β (A)

with a weight functionΦβ ,α ,lker−1(x) located on the edgee. For the new singularities of geometrical type has to be
analysed separately. From (3.13) we know, that a description of an edge function on the subdomains involves the
analysis of a functiong(x1,x3) := (R2−x2

1−x2
3)

1/2.

Lemma 3.9.Given a function g(x) := (R2−x2
1−x2

3)
1
2 and a planeE . Let A denote a planar subset ofE and

a) If the planeE is parallel to e, we have singularities on the two intersection lines of the cylinder wall of CR(e). We

introduce local coordinatesξ1,ξ2 in the planeE , such thatξ1 andξ2 are perpendicular and parallel to e, resp. The

origin of the local coordinate system is the projection of the vertex m1 of e ontoE . Then it holds g∈ B1
β (S4∩E ) for

β ∈ (0,1) and g∈B2
β (Si ∩E ) for β ∈ (3

4,1) with i = 1,2 , where R′ denotes the distance to the cylindrical singularity

in the plane and

Bl
β (A) :=

{
u∈ H l−1(A) :

∥∥∥(R′2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
u
∥∥∥

L2(A)
≤Cdk−l (k− l)! for |α| = k≥ l ,C≥ 0,d ≥ 1

}

b) If the planeE is perpendicularto e , we have singularities on the intersection circle of thecylinder wall of CR(e).

We introduce local polar coordinatesξ1,ξ2 in the planeE , such thatξ1 is the radial variable andξ2 denotes the

angular variable. The origin of the local coordinate systemis the projection of the vertex m1 of e ontoE . Then it

holds g∈ Bl
β (S4∩E ) for β ∈ (0,1) and g∈ B1

β (Si ∩E ) for β ∈ (3
4,1) with i = 1,2 , where R′ denotes the distance

to the cylindrical singularity in the plane and

Bl
β (A) :=

{
u∈ H l−1(A) :

∥∥∥(R′2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
u
∥∥∥

L2(A)
≤Cdk−l (k− l)! for |α| = k≥ l ,C≥ 0,d ≥ 1

}

c) In S4∩E we choose a local elliptic coordinate coordinate system defined on the semi-axes of the intersecting ellipe.

Then g∈ B1
β (S4∩E ) with

Bl
β (A) :=

{
u∈ H l−1(A) :

∥∥∥
(
sin−2 θ −cosh2 ξ1cos2 ξ2−cos−2θ sinh2 ξ1sin2 ξ2

)α1−l+β ∂ α1
ξ1

∂ α2
ξ2

u
∥∥∥

L2(A)
≤Cdk−l (k− l)!

for |α| = k≥ l ,C≥ 0,d ≥ 1} .

In S1 and S2 we observe maximally two point singularities, thus we can further subdivide the domain, such that only

on point singularity per subelement is present and define on such an element a local polar coordinate system with

origin located the singularity and radial variableξ1 and angular variableξ2. Then there holds g∈ B2
β (Si ∩E ) for
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i = 1,2 with

Bl
β (A) :=

{
u∈ H l−1(A) :

∥∥∥ξ α1−l+β
1 ∂ α1

ξ1
∂ α2

ξ2
u
∥∥∥

L2(A)
≤Cdk−l (k− l)! for |α| = k≥ l ,C ≥ 0,d ≥ 1

}
.

Proof. Within this proof we use the following recursion formula several times. Given a functiong(ξ1) := (R′2− ξ 2
1 )

1
2

it holds∂ n
ξ1

g = (R′2− ξ 2
1 )−

2n−1
2 pn(ξ1), wherepn is a polynomial inξ1 of degreen. Proof by induction. Clearly, this is

true forn = 1. Now,

∂ n+1
ξ1

g = ∂1(R
′2− ξ 2

1 )−
2n−1

2 pn(ξ1)

= (R′2− ξ 2
1 )−

2n+1
2
(
(2n−1)ξ1pn(ξ1)+ (R′2− ξ 2

1 )∂1pn(ξ 2
1 )
)

= (R′2− ξ 2
1 )−

2n+1
2 pn+1(ξ1) .

In the following we analyze the intersection of the partition elementsSi (i = 1, . . . ,5) as defined in (3.11) with the

planeE . We intersect the two spheresBR(m1) andBR(m2) and the cylinderCR(e) with the plane. The intersection of a

sphere and a plane is either a circle or vanishes. If the planeis tangential to the sphere, the intersection is a point. The

intersection of a cylinder wall and a plane is more involved.Therefore, we split the analysis into three basic cases

a)E ‖ e The intersection of the cylinder and the plane results in twoparallel lines, one line or is empty.

b) E ⊥ e The intersection of the cylinderCR(e) is either empty or a circle.

c) E ∦ e andE 6⊥ e The intersection of the cylinder without its caps and the plane results in an ellipse, the arc of an

ellipse or the empty set. Compare Fig. 3.9 for some examples of the resulting intersections.

For case (a), i.e. the edge and the plane are parallel, we can restrict the analysis to planes parallel to the(x1,x2)-plane.

Due to the symmetry of the regarded spheres and the cylinder there is no loss of generality. The plane normal is then

n = (0,0,1)T . There is only a non-empty intersection, if the distance of the plane to the origin holdsd ∈ (−R,R). Now

the radius of the circles isR′ =
√

R2−d2 andm′
1 = (0,0,d)T , m′

2 = (0,1,d). In local coordinatesξ1,ξ2 parallel and

perpendicular toe, resp., the light cone function reduces tog(ξ1) =
√

R′2− ξ 2
1 and for higher derivatives there exists a

polynomialpn of degreen, such that

∂ n
ξ1

g(ξ1) = (R′2− ξ 2
1 )−

2n−1
2 pn(ξ1) .

The derivatives with respect toξ2 vanish and it remains to study the derivatives with respect to ξ1. We first verify, that

g∈ H1(S1∩E )

∥∥∂ξ1
g
∥∥2

L2(S1∩E )
≤

R′∫

−R′

ξ 2
1

√
R′2−ξ 2

1∫

−
√

R′2−ξ 2
1

(R′2− ξ 2
1 )−1dξ2dξ1

≤ R′2
R′∫

−R′

(R′2− ξ 2
1 )−1/2dξ1 = R′2 arcsin

ξ1

R′

∣∣∣∣
R′

−R′
= R′2π

In order to show, thatg ∈ Hm,2
β (S1∩E ) for m≥ 2, we need to estimate the weighted norms of the higher derivatives

∂ k
1g for 2≤ k≤ m
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(a) (b)

(c) (d)

Fig. 3.9 CR(e) intersected with different planes and the resulting intersection.

∥∥∥∂ k
1g(R′2− ξ 2

1 )k−2+β
∥∥∥

2

L2(S1∩E )
=

R′∫

−R′

(∂ k
1g)2(R′2− ξ 2

1 )2(k−2+β )(R′2− ξ 2
1 )

1
2 dξ1

=

R′∫

−R′

(R′2− ξ 2
1 )−

5
2+2β p2

k(ξ1)dξ1

≤C max
ξ∈S1∩E

|pk(ξ1)|2
R′∫

−R′

(R′2− ξ 2
1 )−

5
2+2β dξ1 < ∞ if β ∈ (

3
4
,1)

Note that, the integral
R∫

0
(R2− ξ 2

1 )α dξ1 exists forα > −1 as the following limit exists fors< 1

lim
ξ1→R

(R− ξ1)
s(R2− ξ 2

1 )α = lim
ξ1→R

(R− ξ1)
s+α(R+ ξ1)

α .

It remains to show

max
ξ∈(S1∩E )

|pk(ξ1)| ≤Cdk−2(k−2)! (3.15)
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Estimation of pn(ξ1):

It holds |p2(ξ1)| ≤ 2R′2. Assume now, that forpn(ξ1) = ∑
j≤n

α(n)
j ξ j

1 it holds |pn(ξ1)| ≤ Cdn−2(n− 2)!, whered =

max(1,R′2). Then one deduces the following recursion formula

pn+1(ξ1) = (2n−1)x1pn(ξ1)+ (R′2− ξ 2
1 )p′n(ξ1)

= ∑
j≤n

(2n−1− j)α(n)
j ξ j+1

1 +R′2 ∑
j≤n

α(n)
j jξ j−1

1

= ∑
j≤n+1

(2n− j)α(n)
j−1ξ j

1 +R′2 ∑
j≤n−1

α(n)
j+1( j +1)x j

1

such that

α(n+1)
j = (2n− j)α(n)

j−1+( j +1)R′2α(n)
j+1 .

Use this relation and (3.15), to estimate

|pn+1(ξ1)| =
∣∣∣∣∣ ∑

j≤n+1
((2n− j)α(n)

j−1+( j +1)(R′2α(n)
j+1)ξ

j
1

∣∣∣∣∣

≤ (2n−1)|pn(ξ1)|+nR′2|pn(ξ1)|

≤ (3n−1)(R′)n+1 ∑
i+ j≤n

∣∣∣α(n)
j

∣∣∣

Estimate the sum of the absolute value of the coefficients via

∑
j≤n

∣∣∣α(n)
j

∣∣∣≤ ∑
j≤n

(2n−2− j)
∣∣∣α(n−1)

j

∣∣∣+(R′)2 ∑
j≤n

( j +1)
∣∣∣α(n−1)

j

∣∣∣

≤ ((2n−2)+ (R′)2n) ∑
j≤n

∣∣∣α(n−1)
j

∣∣∣

≤ (2+R′2)n ∑
j≤n

∣∣∣α(n−1)
j

∣∣∣

≤ (2+R′2)nn! .

Now, n = elnn ≤ en and there follows

|pn+1(ξ1)| ≤ 3n(R′)n+1(2+R′2)nn!

≤Ce2(R′(2+R′2)e2)n−1(n−1)! .

OnS2 we can proceed in the same manner, where onS4 there holdsg∈ L2(S4∩E ) butg /∈H1(S4∩E ). g∈Hm,1(S4∩E )

for m≥ 1 as it holds for 1≤ k≤ m

∥∥∥∂ k
ξ1

g (R′2− ξ 2
1 )k−1+β

∥∥∥
2

L2(S4∩E )
=

R′∫

−R′

g(k)(ξ1)
2(R′2− ξ 2

1 )2(k−1+β ) dξ1

= C max
ξ∈(S4∩E )

∣∣p2
k(ξ1)

∣∣
R′∫

−R′

(R′2− ξ 2
1 )2β−1dξ1 < ∞ for β ∈ (0,1) .

From (3.15) it immediately follows

max
ξ∈(S4∩E )

∣∣p2
k(ξ1)

∣∣≤Cd2(k−1)(k−1)!2
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and thusg∈ B1
β (S4∩E ).

Let us now consider case (b), i.e. planesE perpendicular to the edgee. Due to the symmetry of the regarded objects it

is again sufficient to reduce the analysis to planes perpendicular to the(x1,x2)-plane withn= (1,0,0) andd ∈R. Here

the radius of the intersected circles, if not vanishing, isR′ =
√

R2−x2
1. The cylinder intersected with the plane is either

a circle with RadiusR for d ∈ [0,1] or the empty set. All circles have the common centermc = (0,d,0). If d 6= 0 and

d 6= 1 the intersection with the spheres always results in circles with a finite distance to the singularity on the surface

of the cylinder. Therefore, we regard the cased = [0,1] in more detail. We introduce a local polar coordinate systemin

E with origin mc and radial and angular variableξ1 andξ2, resp. Asg is only dependent toξ1, we have to estimate the

derivatives with respect toξ1 and it holdsg∈ B1
β (S1∩E ) for β ∈ (0,1) as

∥∥∥∂ k
ξ1

g(R′2− ξ 2
1 )2(k−1+β )

∥∥∥
2

L2(S1∩E )
≤

2π∫

0

R′∫

0

(∂ k
ξ1

g)2(R′2− ξ 2
1 )2(k−1+β )ξ1dξ1dξ2

=

2π∫

0

R′∫

0

(R′2− ξ 2
1 )2β−1p2

k(ξ1)ξ1 dξ1dξ2

≤C max
ξ∈S1∩E

2π |pk(ξ )|2
R′∫

0

(R′2− ξ 2
1 )2β−1ξ1dξ1

≤C max
ξ∈S1∩E

2π |pk(ξ1)|2



R′∫

0

(R− ξ1)
2(2β−1)ξ1dξ1





1
2



R∫

0

(R+ ξ1)
2(2β−1)ξ1dξ1





1
2

≤Cdk−1(k−1)! if β ∈ (0,1)

Here we used, that we can apply the same estimation forpk as before. NowS4 ∩ E is a circle andg ∈ B1
β (S4 ∩E )

using the polar local coordinates with the argumentation above. Note, that this result is not optimal, ifR is big and the

distance tod = 0 ord = 1 is big enough, the function is regular.

In case (c), where the plane is neither parallel nor perpendicular to the edge, we can restrict the analysis to planes with

a normaln = (sinθ ,cosθ ,0) with θ ∈ (0,π/2) and a distanced to the origin. We introduce a local elliptic coordinate

system whose centerm is the center of the ellipse. In a rotated coordinate system defined by the two semi-axesea and

eb with variablesz1 andz2 of the intersecting ellipse the local coordinatesξ1,ξ2 are defined by

z1 = ecoshξ1cosξ2

z2 = esinhξ1sinξ2

wheree is fixed as the linear eccentricity of the intersecting ellipse. Before we continue, let us shortly summarize the

main properties of the intersecting ellipse. The lengths ofthe two semi-axes area = R′/cosθ andb = R′. Thus the

linear eccentricitye=
√

a2−b2 = 1/sinθ . Therefore,g reads in the local elliptic coordinate system

g̃(ξ1,ξ2) =

(
a2b2

a2−b2 −b2cosh2 ξ1cos2 ξ2−a2sinh2 ξ1sin2 ξ2

) 1
2

where a2b2

e2 = R′2sin−2 θ . For the intersecting ellipseξ1 = κ is fixed and it holds coshκ = a
e = sin−1 θ and sinhκ =

b
e = tan−1 θ . Now,
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∂ξ1
g̃ = −

(
a2b2

a2−b2 −b2cosh2 ξ1cos2 ξ2−a2sinh2 ξ1sin2 ξ2

)− 1
2 [

b2cos2 ξ2 +a2sin2 ξ2
]
coshξ1sinhξ1

∂ξ2
g̃ =

(
a2b2

a2−b2 −b2cosh2 ξ1cos2 ξ2−a2sinh2 ξ1sin2 ξ2

)− 1
2 [

b2cosh2 ξ1−a2sinh2 ξ1
]
cosξ2sinξ2

Now, b2cosh2 ξ1−a2sinh2 ξ1 = 0 for ξ1 = κ and thus the derivative with respect toξ2 vanishes due to l’Hospital on

the intersecting ellipse and we identify the leading singularity of derivatives∂ α1
ξ1

∂ α2
ξ2

g̃ as

(
a2b2

a2−b2 −b2cosh2 ξ1cos2 ξ2−a2sinh2 ξ1sin2 ξ2

)− 2α1+1
2

.

The remaining part is a polynomial in coshξ1, sinhξ1, cosξ2 and sinξ2, which can be easily estimated, such that it

holds
∥∥∥
(
sin−2 θ −cosh2 ξ1cos2 ξ2−cos−2 θ sinh2 ξ1sin2 ξ2

)α1−1+β ∂ α1
ξ1

∂ α2
ξ2

u
∥∥∥

L2(S4∩E )
≤Cdk−1(k−1)!

The radii of the intersected circles, if not vanishing, are for BR(m1) andBR(m2) given byR1 =
√

R2−d2 andR2 =√
R2− (d−cosθ )2, respectively. We can at most observe two point singlarities and they can be treated by the classical

theory as originally introduced in [20].g∈B2
β (S1) andg∈B2

β (S2) for β ∈ (0,1) in the corresponding local coordinates.

⊓⊔

We have described the singularity on the cylinder wall and asthis singularity is of significant importance for the
regularity description of retarded potentials, we will refer to this type of singularity in the following ascylindrical
singularity.
Now, we have analyzed all necessary components in order to formulate the regularity of the edge functionIν

e ϕ in an
arbitrary planeE .

Lemma 3.10 (Regularity of Iν
e ϕ restricted to a planeE ). Given a planeE . Subdivide the disjoint elements Si (i =

1, . . . ,5) as defined in(3.11)of the decomposition of CR(e)∩E such that on each new subelement S′ ∩E there exits

only one type of singularity.

• For a cylindrical singularity w.r.t. edge e there holds in a local coordinate system(ξ1,ξ2) as defined in Lemma 3.9

depending on the orientation ofE

Iν
e ϕ(x) ∈ B1

β (S′∩E )

with a weight function located on the cylinder wall of CR(e) andβ ∈ (0,1). The intersection of S′ with the planeE

refers to exactly one of the cases in Lemma 3.9.

• If on S′∩E a classically known kernel singularity w.r.t. edge e is observed, we can describe the regularity as follows.

Iν
e ϕ(x) ∈ Blker−1

β (S′∩E )

with a weight function located on the edge e andβ ∈ (0,1).

Proof. In Lemma 3.8 we have seen, that on the interfaces of the partition of CR(e) there exist jumps. Because of these

jumps, we have to study the regularity ofIν
e ϕ on each subdomainSi ∩E separately. Moreover, depending on the kernel

functionkν(x− y) apart from the geometrical singularities classically known kernel singularities located on the edge

e can occur, compare (3.13). Thus it is necessary to further subdivide a regarded subelementSi ∩E if e⊂ Si ∩E . In

Lemma 3.9 the influence of the geometrical singularities wasanalysed which is now combined with the classically

known singularities located on the edgee and we obtain the following discussion on the different subelements. Let

S′i ∩E denote such a decomposition element ofSi ∩E .
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1. Analysis in S3∩E . Due to (3.13) here the geometrical singularities have no influence and thus no further subdivision

is neccessary, as only the classically known kernel singularity has an impact on the regularity ofIν
e ϕ in S3∩E . Thus

we can directly apply the classically known regularity results.

2. Analysis in S1∩E and S2∩E . Without loss of generality, we can restrict the analysis toS1. Here we have to deal

with an additional boundary term as given in (3.13). Nevertheless, the classically known kernel singularity can also

influence the regularity ofIν
e ϕ . Thus we have to further subdivide theS1∩E such that on each resulting subelement

we either have the influence of the classically known kernel singularity or the geometrical singularity. As these

singularities are located on curves with a finite distance such a decomposition always exits.

If such a subelementS′1 now involves the classically known kernel singularity, we can apply the same arguments as

given onS3. If the subelementS′1 involves the geometrical singularity, we can apply Lemma 3.9 and obtain in the

appropriate local coordinate system(ξ1,ξ2)

Iν
e ϕ(x) ∈ B1

β (S′∩E ) .

Note, that for general planes, we can only concludeIν
e ϕ ∈ B1

β (Si ∩E ) (i = 1,2), although for planes parallel toe,

we obtain the better resultIν
e ϕ ∈ B2

β (Si ∩E ), compare Lemma 3.9 a.

3. Analysis in S4 ∩ E . We apply the same arguments as forS1 and S2. With an appropriate decomposition due to

the edgee we obtain the same results for the elements with classicallyknown kernel singularities or cylindrical

singularities, respectively. But in contrast toS1 andS2 there exists no improved regularity for planes parallel toe.

4. Analysis in S5∩E . Iν
e ϕ vanishes inS5.

⊓⊔

Back transformation to a general edge

Now, we want to map the result on the reference edgee to a general edge ˆe. First, we can transfer the results of
Lemma 3.8 to a general edge function and obtain

Lemma 3.11.Let kν(x−y) := |x−y|ν for ν ≥−1 andϕ ∈ L∞(ê).

Iν
ê ϕ is continuous inR3, whereas the first derivatives possess jumps on∂BR̂(m̂i) (i = 1,2) and poles on∂CR(ê) (without

the caps). As Iνê ϕ vanishes inR3\CR(ê) this pole is one-sided inCR(ê).
∣∣∣[∂nê(I

ν
ê ϕ)]∂BR̂(m̂1)

∣∣∣= |ê|R̂ν |nê(x̂− m̂1)|
(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)−1/2 |ϕ(m̂1)| ,

∣∣∣[∂nê(I
ν
ê ϕ)]∂BR̂(m̂2)

∣∣∣= |ê|R̂ν |nê(x̂− m̂1)|
(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)−1/2 |ϕ(m̂2)| ,

∣∣∣[∂nê(I
ν
ê ϕ)]∂CR(ê)

∣∣∣= 2|ê|R̂ν lim
x̂→∂CR(ê)

∣∣ϕ(|ê|−3(ê(x̂− m̂1))ê)
∣∣|nê(x̂− m̂1)|

(
R̂2− (nê(x̂− m̂1))2− (nT(x̂− m̂1)2

)1/2
,

∣∣∣[∂nT (Iν
ê ϕ)]∂BR̂(m̂1)

∣∣∣= |ê|R̂ν |nT(x̂− m̂1)|
(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)−1/2 |ϕ(m̂1)| ,

∣∣∣[∂nT (Iν
ê ϕ)]∂BR̂(m̂2)

∣∣∣= |ê|R̂ν |nT(x̂− m̂1)|
(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)−1/2 |ϕ(m̂2)| ,

∣∣∣[∂nT (Iν
ê ϕ)]∂CR(ê)

∣∣∣= 2|ê|R̂ν lim
x̂→∂CR(ê)

∣∣ϕ(|ê|−3(ê(x̂− m̂1))ê)
∣∣|nT(x̂− m̂1)|

(
R̂2− (nê(x̂− m̂1))2− (nT(x̂− m̂1)2

)1/2
.

We observe a jump of constant size parallel to the edge
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∣∣∣[∂ê(I
ν
ê ϕ)]∂BR̂(m̂1)

∣∣∣= |ê|R̂ν |ϕ(m̂2)| ,
∣∣∣[∂ê(I

ν
ê ϕ)]∂BR̂(m̂2)

∣∣∣= |ê|R̂ν |ϕ(m̂1)| ,
∣∣∣[∂ê(I

ν
ê ϕ)]∂CR(ê)

∣∣∣= 0.

Proof. Due to Lemma 3.5 it holds(Iν
ê ϕ)(x̂) = |ê|ν+1Iν(x) with R= R̂/|ê| andx = F−1(x̂). It immediately follows

|ê|∂x1 = ∂nê, ∂x2 = ∂ê and|ê|∂x3 = ∂nT as it holdsx = 1
|ê|2 AT(x̂−b). Now

∂nê(I
ν
ê ϕ)(x̂) = |ê|ν ∂x1Iν(x)

∂ê(I
ν
ê ϕ)(x̂) = |ê|ν+1∂x2Iν (x)

∂nT (Iν
ê ϕ)(x̂) = |ê|ν ∂x3Iν(x)

and therefore using Lemma 3.8
∣∣∣[∂ê(I

ν
ê ϕ)]∂BR̂(m̂2)

∣∣∣= |ê|ν+1
∣∣∣[∂x2Iν ]∂BR(m2)

∣∣∣= |ê|ν+1Rν |ϕ̃(m1)| = |ê|R̂ν |ϕ(m̂1)|

As

R2−x2
1−x2

3 =
1
|ê|2

(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)

and we obtain using Lemma 3.8
∣∣∣[∂nê(I

ν
ê ϕ)]∂BR̂(m̂2)

∣∣∣= |ê|ν+1
∣∣∣[∂1Iν ]∂BR(m2)

∣∣∣

= R̂ν |ê| |nê(x̂− m̂1)|
|ê| |ê|

(
R̂2− (nê(x̂− m̂1))

2− (nT(x̂− m̂1)
2)−1/2 |ϕ(m̂2)|

The remaining jumps are obtained in a similar manner. ⊓⊔

Finally we transform the regularity description in terms ofcountably normed spaces to a general triangle edge ˆe by
introducing local coordinates in appropriate local coordinate systems.

Lemma 3.12.[Regularity of Iνê ϕ restricted to a planeE ] Given a planeE . We can decompose CR̂(ê)∩E into

S∈ {CR̂(ê)\ (BR̂(m̂1)∪BR̂(m̂2)) ; BR̂(m̂1)∩BR̂(m̂2) ; BR̂(m̂1)\BR̂(m̂2) ; BR̂(m̂2)\BR̂(m̂1)} .

If there exist multiple singularities in A∩E we further subdivide the planar element until only one type of singularity

exists per regarded subelement S′∩E .

• For a cylindrical singularity w.r.t. edgêe there holds in a local coordinate system(ξ1,ξ2) defined as in Lemma 3.9

depending on the orientation ofE

Iν
ê ϕ(x) ∈ B1

β (S′∩E )

with a weight function located on the cylinder wall. andβ ∈ (0,1). The intersection of S′ with the planeE refers to

exactly one of the cases in Lemma 3.9.

• If on S′∩E a classically known kernel singularity w.r.t. edgeê is observed, we can describe the regularity as follows.

Inuêϕ(ξ ) ∈ Blker−1
β (S′∩E )

with a weight function located on the edgeê andβ ∈ (0,1).

Proof. Follows directly from the analysis of the edge function on the reference edgee. The local coordinates as in-

troduced in Lemma 3.9 are defined independently of the orientation of the reference edge and therefore apply also to
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the general situation. Note that the elements of the naturaldecompositionCR(e) are transformed to the spheres and the

cylinder given above. This is a direct consequence of Lemma 3.5. ⊓⊔

3.2.2 Analysis of the Triangle Integral ITϕ

So far, we have analyzed the edge based integralIν
e ϕ and it remains to study the second boundary integral of

Lemma 3.2. In this section we consider the function

(ITϕ)(x) :=
(x− p,nT)

R′(x)

∫

T∩∂BR(x)

kν (x−y)ϕ(y)dsy .

Note, that we do not restrict to kernels likekν (x−y) = |x−y|ν but allow general kernels.
Let us first regard the domain of integrationT ∩∂BR(x). Forx∈R3 the setT ∩∂BR(x) is not empty if dist(x,T) ≤ R
and dist(x, pi) ≥ R for at least one vertexpi (i = 1,2,3) of T, such that

T ∩∂BR(x) 6= ∅ ⇔ x∈ ER(T)\
3⋂

i=1

BR(pi) .

Therefore,

(ITϕ)(x) =






(x−p,nT )
R′(x)

∫

T∩∂BR(x)
kν(x−y)ϕ(y)dsy x∈ ER(T)\

3⋂
i=1

BR(pi)

0 else.

(3.16)

Fig. 3.10 Visualization ofT ∩BR(x) = ∅ for x∈⋂3
i=1BR(pi).

In order to discuss the regularity of the triangle integral(ITϕ)(x) as defined in (3.6), see Lemma 3.2, we will regard
the auxiliary problem replacing the triangleT by the whole triangle planeET .

Auxiliary Problem: Eref ∩∂BR(x)

Here we focus on the reference situationEref = {x : x3 = 0}, i.e. nT = (0,0,1), such thatR′(x) = (R2 − x2
3)

1/2 and
choosingpref = 0∈ Eref it holds(x− pref,nT) = x3 andx′ = (x1,x2,0). We define

(IErefϕ)(x) :=






x3
R′(x)

∫

Eref∩∂BR(x)
kν(x−y)ϕ(y)dsy |x3| < R

0 |x3| ≥ R,
(3.17)
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wherey3 = 0. Again, we use thatEref∩ ∂BR(x) = Eref∩ ∂BR′(x′), i.e. we integrate over the boundary of a circle with
radiusR′(x) and centerx′ in the (x1,x2)-plane. Introducing polar coordinates(r,θ ) with respect tox′, namely with
rθ := (cosθ ,sinθ ,0) there holdsy = R′(x)rθ +x′. This reveals for|x3| < R

(IErefϕ)(x) = x3

∫ 2π

0
k
(
x3nT −R′(x)rθ

)
ϕ(R′(x)rθ +x′)dθ . (3.18)

Now, IEref(x) is continuous for|x3| < Rbut possesses a jump atx3 = ±Ras

lim
x3→±R

(IEref
ϕ)(x) = ±Rk(±RnT)

∫ 2π

0
ϕ(x′)dθ = ±2πRk(±RnT)ϕ(x′) 6= 0.

Let us now consider the first derivatives ofIEref
(x). For |x3| < Rwe obtain

∂xj (IEref
ϕ)(x) = x3

∫ 2π

0
k
(
x3nT −R′(x)rθ

)
∂y1ϕ(y)

∣∣
y=R′(x)rθ +x′ dθ ( j = 1,2) .

This integral is of the same type as (3.18), thus forϕ sufficiently smooth, we again observe a jump forx3 =±R. Clearly
this works for higher order derivatives, too.
For the derivative with respect tox3 we use

∂x3

(
k
(
x3nT −R′(x)rθ

)
ϕ(R′(x)rθ +x′)

)
=

[
nT +

x3

R′(x)
rθ

]
∇zk(z)|z=x3nT−R′(x)rθ

ϕ(R′(x)rθ +x′)

−k
(
x3nT −R′(x)rθ

) x3

R′(x)
rθ ∇zϕ(z)|z=R′(x)rθ +x′

such that

∂x3(IEref
ϕ)(x) =

∫ 2π

0
k
(
x3nT −R′(x)rθ

)
ϕ(R′(x)rθ +x′)dθ

+x3

(
nT +

x3

R′(x)
rθ

)∫ 2π

0
∇zk(z)|z=x3nT−R′(x)rθ

ϕ(R′(x)rθ +x′)dθ

−x2
3

1
R′(x)

rθ

∫ 2π

0
k
(
x3nT −R′(x)rθ

)
∇zϕ(z)|z=R′(x)rθ +x′ dθ

which is singular forx3 →±R. We can formulate its regularity in countably normed spaces, which yields the following
lemma.

Lemma 3.13.Given an arbitrary planeE with normal n and distance d to the origin. Denote by Q a bounded subset

of Eref and define QR := {x : |x3| < R and(x1,x2,0) ∈ Q}. Given the function g(x) = (R2−x2
3)

1/2.

• If E andEref are parallelthe function g is regular in local coordinates in the planeE .

• If E andEref are not parallel, the singularity is if present located on a line. We define a local cartesian coordinate

system inE with directions e‖ and e⊥ parallel or perpendicular to the line singularity.ξ1 andξ2 are the variables

corresponding to e⊥ and e‖ respectively. Then

g∈ B1
β (QR∩E )

=

{
u∈ H l−1(QR∩E ) :

∥∥∥(R2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
u
∥∥∥

L2(QR∩E )
≤Cdk−l (k− l)! for |α| = k≥ l ,C ≥ 0,d ≥ 1

}

Proof. We have to show that for a functiong(x) = (R2−x2
3)

1/2 andβ ∈ (0,1), it holdsg∈ B1
β (QR∩E ) with a weight

function in the local coordinate system. The proof follows the argumentation of the proof of Lemma 3.9. Note, that

it is necessary to bound the integration domain toQR if the second plane is parallel to the planeEref, but it is no loss

of generality as we seek to study the integralITϕ on its naturally bounded support. As in Lemma 3.9 we regard the

following three cases: the planesE andEref are parallel, perpendicular or neither of them.
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If the planes are parallel, i.e.n = ±nT all regarded derivatives in a local coordinate system are regular. If the planes

are perpendicular, we can regard planes with normaln = (1,0,0). Here the local cartesian coordinate system is defined

in the direction of the triangle normale⊥ and perpendicular to this directione‖ denoted byξ1 andξ2 respectively. We

thus have to analyze the derivatives with respect toξ1 andξ2. As the function is singular inξ1, we can only conclude

IEref
ϕ ∈ B1

β (QR∩E ). If the planes are neither parallel nor perpendicular, we can only concludeIEref
ϕ ∈ B1

β (QR∩E )

as the planes can be close to perpendicular, compare also theargumentation in the proof of Lemma 3.9. For planes

neither parallel nor perpendicular, we either have no singularity at all (if the singular parallely shifted triangles are not

intersected or we have a line and can define a local coordinatesystem similar to the parallel case using the directions

e‖ ande⊥ parallel and perpendicular to the line singularity respectively. ⊓⊔

As the above introduced local coordinate system is independent of the orientation ofEref, we can rephrase the above
lemma to

Lemma 3.14.Given an arbitrary planeE with normal n and distance d to the origin. Denote by Q a bounded subset

of Eref and define QR := {x : |(x− p,nT)| < R and x′ = x− (p−x,nT) ∈ Q}.

• If E andEref are parallelthe function g is regular in local coordinates in the planeE .

• If E andEref are not parallel, the singularity is if present located on a line. We define a local cartesian coordinate

system inE with directions e‖ and e⊥ parallel or perpendicular to the line singularity.ξ1 andξ2 are the variables

corresponding to e⊥ and e‖ respectively. Then

IET ∈ B1
β (QR∩E )

=

{
u∈ H l−1(QR∩E ) :

∥∥∥(R2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
u
∥∥∥

L2(QR∩E )
≤Cdk−l (k− l)! for |α| = k≥ l ,C≥ 0,d ≥ 1

}

Proof. Here we can directly apply Lemma 3.13. The local coordinate systems are defined with respect to the possible

singularity and thus independent of the orientation ofET . ⊓⊔

Due to the importance of this second geometrical singularity, we refer to this singularity in the following asplanar
singularity, as the singularity is located in a plane or subsets of it.
Let us finally summarize the quality of the observed singularity in the following proposition.

Proposition 3.15.Given a triangle planeET andϕ ∈C1(ET)∩L∞(ET). The function

(IET ϕ)(x) :=





(x−p,nT)
R′(x)

∫

ET∩∂BR(x)
kν(x−y)ϕ(y)dsy |(x− p,nT)| < R

0 else

is continuous for|(x− p,nT)| < R and possesses a jump of size R at|(x− p,nT)| = R and a singularity in the first

derivative.

The above problem focuses on what is happening, perpendicular to the triangle. The next auxiliary problem tries to
answer the question on what is happening, when the sphere meets an edge of the triangle. For this purpose, we regard
the case of a half plane intersected with a sphere.

Auxiliary Problem: Half Plane

In order to study the situation, when the sphere meets a triangle edge, we regard the half plane

Href := {x : x3 = 0 andx1 ≥ 0} .

Thus we define
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(IHrefϕ)(x) :=






x3
R′(x)

∫

Href∩∂BR(x)
kν(x−y)ϕ(y)dsy |x3| < R andx∈ CR(∂Href)

0 else
(3.19)

where∂Href := {x : x1 = x3 = 0} such thatCR(∂Href) is the infinite cylinder with radiusR around thex2-axis. If
|x3| < Randx∈ CR(∂Href), we use polar coordinates with respect tox′ and obtain

(IHrefϕ)(x) = x3

θ(x)∫

−θ(x)

k(x3nT −R′(x)rθ )ϕ(R′(x)rθ +x′)dθ , (3.20)

where cosθ (x) = x1/R′(x). Such that for|x3| ≤ R

θ (x1,x3) =






arccos

(
−x1√
R2−x2

3

)
x1 ∈ (−R,0)

π
2 x1 = 0

π −arccos

(
x1√

R2−x2
3

)
x1 ∈ (0,R)

0 x1 ≤−R

π x1 ≥ R

defines a continuous function. Later on, we will need the partial derivatives ofθ (x) given by

∂x1θ (x1,x3) =

{
1√

R2−x2
1−x2

3

x1 ∈ (−R,R)

0 else
∂x3θ (x1,x3) =





x1x3(R2−x2
3)

−1√
R2−x2

1−x2
3

x1 ∈ (−R,R)

0 else

and clearly∂x2θ (x1,x3) = 0.

x′ θ(x′)

R′(x)

x1

Fig. 3.11 Visualization of the intersectionBR(x)∩Href.

Let us first study the continuity of(IHref
ϕ)(x). This function is clearly continuous forx ∈ {x : x2

1 + x2
3 < R2}. Thus

it remains to regard the limits onto the boundary of this domain. For x1 = 0 and|x3| → R there directly applies the
analysis of the reference plane. If we regard these limits for x1 = 0 it holdsx′ ∈ ∂Href andθ (x) = π

2 , such that we
obtain

lim
x3→±R

(IHrefϕ)(x) = ±Rk(±RnT)

π
2∫

− π
2

ϕ(x′)dθ = ±πRk(±RnT)ϕ(x′) 6= 0, (3.21)
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i.e. we observe a jump with a scaling factorπ rather than 2π corresponding the opening angle on the boundary of the
half plane. Transferring this observation to the triangle,it follows, that if x′ ∈ ei for some edgeei , there exists a jump
of sizeπ .
It remains to study the limit onto the boundary of the cylinder CR(∂Href)

lim
x2
1+x2

3→R2
(IHref

ϕ)(x) = lim
x2
1+x2

3→R2
x3

θ(x)∫

−θ(x)

k(x3nT −R′(x)rθ )ϕ(R′(x)rθ +x′)dθ ,

where

lim
x2
1+x2

3→R2
θ (x) = lim

x2
1+x2

3→R2
arccos



 −x1√
R2−x2

3



= arccos(±1) = 0.

Thus the integral vanishes and the function is continuous onthis part of the boundary.
Therefore, we have shown that(IHref

ϕ)(x) is a continuous function except forx1 = 0 and|x3| = R where the function
exhibits a jump.
In the next step, we aim to study the first and later on the general higher derivatives of(IHrefϕ)(x). Compute the first
derivatives of (3.20).

∂x1(IHref
ϕ)(x) = x3∂x1θ (x)

[
k(x3nT −R′(x)rθ(x))ϕ(R′(x)rθ(x) +x′)

−k(x3nT −R′(x)r−θ(x))ϕ(R′(x)r−θ(x) +x′)
]

+x3

θ(x)∫

−θ(x)

k(x3nT −R′(x)rθ )∂x1ϕ(R′(x)rθ +x′)dθ

∂x2(IHrefϕ)(x) = x3

θ(x)∫

−θ(x)

k(x3nT −R′(x)rθ )∂x2ϕ(R′(x)rθ +x′)dθ

∂x3(IHref
ϕ)(x) =

θ(x)∫

−θ(x)

k(x3nT −R′(x)rθ )ϕ(R′(x)rθ +x′)dθ

+x3∂x3θ (x)
[
k(x3nT −R′(x)rθ(x))ϕ(R′(x)rθ(x) +x′)

−k(x3nT −R′(x)r−θ(x))ϕ(R′(x)r−θ(x) +x′)
]

+x3

θ(x)∫

−θ(x)

∂x3(k(x3nT −R′(x)rθ )ϕ(R′(x)rθ +x′))dθ

Here we meet some of the effects as discussed earlier in Section 3.2.1. The derivative with respect tox2 shows the
same behavior as for the auxiliary problem on the plane and iscontinuous. The third term in∂x3IHrefϕ reflects the same
behavior as for the auxiliary problem on the plane. Whereas the second term in∂x3IHref

ϕ is far more interesting. Here
the geometrical singularity situated on the surface of a cylinder around the boundary of the half plane is of exactly
the same quality as discussed in Lemma 3.11. There we have already discussed its regularity and we again observe
the one-sided singularity on the surface of the cylinder. Moreover, we can observe very nicely the interaction of these
singularities in∂x3θ (x1,x3), where both singularities, the singularity around the boundary of the half plane and the
singularity perpendicular to the triangle face are combined.
Clearly, one can formulate the regularity in terms of countably normed spaces on the presented partition, but we want
to delay this analysis and discuss the problem evaluated on asector first. Note, that the analysis of a half plane also
involves the regularity of the kernelkν(x−y), compare Section 3.2.1.
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Auxiliary Problem: Sector

In order to study the effects, when the sphere meets a triangle edge in more detail, we restrict the analysis to a planar
sectorSref with opening angleω .
Assume, that the sector is the intersection of two half planes, such that the vertex of the sector lies in the origin.

Sref

x

Fig. 3.12 Visualization of the intersection∂BR(x)∩Sref.

Now the support of the regarded integral is the combination of two cylinders around the boundary of the half plane, a
strip with height 2Rwith center-baseSref and a sphere around the origin. The behavior of the regarded integral within
the cylinders and the strip follows directly form the two previous auxiliary problems and within the sphere, each ray of
the sector is intersected only once, which again draws a strong connection to the behavior ofIν

e ϕ as discussed in the
last section.
We can construct the angular integration domain using the angles derived in the auxiliary problem of the half plane.
We again observe the edge-vertex singularity known from Section 3.2.1 and additionally, the singularity parallel to the
face of the sector. Thus the regularity has to be regarded in the decomposition induced by the intersection of the sphere
around the sector origin, the cylinders around its edges andthe unbounded prism with baseSref and height 2R.
The behavior of the function is the same as discussed before,but one additional effect on the sector origin has to be
regarded, namely in polar coordinates we obtain forx = (0,0,x3)

lim
x3→±R

(ISrefϕ)(x) = ±Rk(±RnT)

∫ ω

0
ϕ(x′)dθ = ±ωRk(±RnT)ϕ(x′) 6= 0

which reflects the behavior parallel to the triangle edges with distanceR.

Reference Triangle

Denote byTref the triangle with verticesp1 = (0,0,0), p2 = (1,0,0) andp3 = (0,1,0). Replacing the triangle plane by
the triangleTref yields

(ITrefϕ)(x) :=





x3
R′(x)

∫

Tref∩∂BR(x)
kν(x−y)ϕ(y)dsy x∈ ER(Tref)\

⋂3
i=1BR(pi)

0 else
.

Again we introduce polar coordinates with respect tox′. In order to study the continuity of(ITrefϕ)(x) we have to

consider the limits(ITrefϕ)(x) onto the boundary of its supportER(Tref) \
⋂3

i=1BR(pi). First we analyze(ITrefϕ)(x) on
∂ER(Tref) and distinguish the following cases:
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1. If x→ T ref±RnT we can proceed as follows.
For x′ ∈ intTref there always exists a neighborhood ofx′ such that the intersecting circle lies within the triangle and
thus we can directly apply the above results of Prop. 3.15 to obtain

lim
x3→±R

(ITrefϕ)(x) = ±2πRk(±RnT)ϕ(x′)

2. If x′ = pi for i = 1,2,3 there holds with the corresponding inner triangle angleωi

lim
x3→±R

(ITrefϕ)(x) = ±Rk(±RnT)

∫ ωi

0
ϕ(x′)dθ = ±ωiRk(±RnT)ϕ(x′) 6= 0

3. Forx′ ∈ ei we obtain

lim
x3→±R

(ITrefϕ)(x) = ±Rk(±RnT)

∫ π

0
ϕ(x′)dθ = ±πRk(±RnT)ϕ(x′) 6= 0

This behavior is also displayed in the numerical experiments in Chapter 3.3, compare Fig. 3.19.
If x→ ∂ER(Tref)\{x : x∈ T ref±R} we take the limit onto the spheres and the surfaces of the cylinders without its caps
building the boundary ofER(Tref) as discussed in Section 3.1. Consequentlyx′ /∈ T ref.
Studying now the interior boundary∂

(⋂3
i=1BR(pi)

)
of supp(ITrefϕ) one immediately verifies, that(ITrefϕ)(x) → 0 for

x∈ supp(ITrefϕ) andx→ ∂
(⋂3

i=1BR(pi)
)
, as the angular integration domain vanishes for allx.

Mapping the above results into a general triangle plane, we can formulate the following lemma

Lemma 3.16.For (ITϕ)(x) as specified in(3.16) on the exterior boundary of the support∂ER(T) there holds for

x∈ ER(T)\
3⋂

i=1
BR(pi)

lim
x→∂ER(T)

(ITϕ)(x) = ±α(x′)Rk(±RnT)ϕ(x′)

where

α(x′) =






2π x′ ∈ intT

π x′ ∈ {e1,e2,e3} \ {p1, p2, p3}
ωi x′ = pi (i = 1,2,3)

0 x′ /∈ T

On the interior boundary∂
(⋂3

i=1BR(pi)
)

there holds for x∈ supp(ITϕ)

lim
x→∂(

⋂3
i=1BR(pi))

(ITϕ)(x) = 0.

Moreover, the gradient of ITϕ has one-sided poles on the surface of the cylinders without its caps with axis ei and

jumps on the surfaces of the spheres with centers pi .

Proof. Mapping the before discussed results on the reference triangleTref onto a general triangleT. ⊓⊔

Remark 3.17.If we now reduce the analysis to kernelskν(x− y) = |x− y|ν with ν ≥ −1, as it occurs for the discrete

retarded single layer potential, it holds in Lemma 3.16k(±RnT) = Rν .

At this point, we want to delay the analysis of the regularityof ITϕ in terms of countably normed spaces inR3 and
restricted to a planeE to the next section. As some effects are similar to the results for Iν

e ϕ discussed in the previous
section, we need a partition of the regarded domains with respect to the spheres around the vertices and cylinders
around the edges, which is introduced in the next section. Note that the critical domain corresponds to the yellow
shaded triangles in Fig. 3.2.
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3.2.3 Singularities of the Retarded Potential

Now, we are able to describe the singularity distribution ofretarded potentials in the discrete light cone. Let us again
consider the simplified potential (3.2). As we have seen in Section 3.2.1 and 3.2.2 a retarded potential possesses
anisotropic singularities generated by the edge/vertex orthe face of the triangle. These singularities are induced by
the intersection of the triangle with the sphereBR(x), therefore, we call them in the followinggeometrical light cone
singularities. They occur additional to the classical corner-edge singularities on the boundary of the element induced
by the regularity of the integral kernel. Before we continuewith the discussion of (3.2) let us summarize these different
singularities.

Definition 3.18.Singularities on the boundary of a triangleT are calledclassical corner/edge singularities. We distin-

guish the geometrical light cone singularities in the following way. Singularities located on the wall of the cylinder of

CR(e) are calledcylindrical light cone singularitiesand singularities located parallel to the triangle face with a distance

R are calledplane light cone singularities.

We have analyzed the triangle integral (3.6) and the edge function (3.5). Both cases result in a decomposition of
the support of the integrals. Using Lemma 3.2 we conclude, that on the regarded decomposition elements all these
regularities interfere. Thus we have a complicated structure of the overall decomposition ofER(T). In Fig. 3.2 two
basic cases of the three-dimensional objects are plotted. One clearly observes the decomposition of the domain of
influenceER(T) into the capsularsCR(ei) of the triangle edges which include the spheresBR(pi) around the triangle
verticespi and its complementER(T) \⋃3

i=1CR(ei). We will not give the explicit decomposition ofER(T) as it has a
very complicated structure and can have different numbers of subelements depending on the radiusR as sketched in
Fig. 3.14 and Fig. 3.13. We rather use the following abstractdefinition of the decomposition ofER(T).

Definition 3.19 (Partition of ER(T)). Given a triangleT, define a disjoint decomposition ofR3 through the (minimal)

partition given by

ΘR(T) :=
{

A⊂R3 : A∩B= A or A∩B= ∅ ∀B∈ {ER(T),CR(ei),BR(pi) : i = 1,2,3}
}

(3.22)

whereCR(ei) is defined in (3.9) andER(T) is given by (3.3).

Remark 3.20.(i) Note that, forA1,A2 ∈ΘR(T) it holdsA1∩A2 = ∅ or A1 = A2.

(ii) Let us construct one explicit example of the decomposition ER(T). AssumeR> diamT. DenoteBi := BR(pi) and

Ci = CR(ei)\
⋃

j 6=i BR(p j). Then

ER(T) = ER(T)\
3⋃

i=1

CR(ei)

⊕B1∩B2∩B3⊕C1∩C2∩C3

⊕B1\CR(e1)⊕B2\CR(e2)⊕B3\CR(e3)

⊕C1\B1⊕C2\B2⊕C3\B3

⊕ (B1∩B2)\B3⊕ (B1∩B3)\B2⊕ (B2∩B2)\B1

⊕C1∩B1⊕C2∩B2⊕C3∩B3

Let us first consider the behavior ofPRϕ . In Fig. 3.2 the singularity distribution ofPRϕ is sketched in a three-
dimensional plot. The cylindrical singularities are marked in red. The spheres are blue and the plane light cone singu-
larities are shaded in yellow.

Proposition 3.21.Let ϕ ∈ L∞(T).

a) The integral(3.2)exists and defines a continuous function inR3. Moreover, PRϕ ∈ L2(R3).

b) The gradient of PRϕ is singular on the edges and vertices of the triangle T and possesses a jump parallel to the

triangle face with distance R. In its second derivatives PR exhibits jumps on the surface of the spheres with centers

in the vertices and radius R and one-sided singularities from the interior on the surface of the cylinders (without the

caps) where the edges are the axis and the radius is R.
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Fig. 3.13 Cross section of the domain of influenceER(T)

(a) R < diam(T), Partition of ER(T) into 10

subelements.

(b) R < diam(T), |e1| < R, |e2| ≥ R and |e3| ≥ R, Partition of

ER(T) into 14 subelements.

(c) R< diam(T), |e1| < R, |e2| < R and|e3| ≥ R, Partition ofER(T)

into 15 subelements.

(d) R ≥ diam(T), Partition of ER(T) into 14

subelements.

Fig. 3.14 Cross section of the domain of influenceER(T) with the triangle plane for different radiiR.
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Proof. The proof of part (a) results directly from the classical boundary integral.

For weakly singular kernels, we can apply the results of the classical single layer potential

P̃ϕ(x) :=
∫

T
kν(x−y)ϕ(y)dsy .

Theorem 3.35 in [48] states the existence and the continuityof P̃(x). In the proof the domain of integration is split

into a neighborhood ofx and its complement. NowBR(x) is such a neighborhood and thus, as the integral exists and is

shown to be continuous on Lipschitz continuous surfaces, wecan transfer the result to(PRϕ)(x).

Note,PRϕ has a bounded supportER(T), whose closure is compact and thus

‖PRϕ‖2
L2(R3) = ‖PRϕ‖2

L2(ER(T))

Part (b) is a consequence of Lemma 3.2 and the behavior ofITϕ and Iei ϕ as discussed in Lemma 3.16 and 3.11,

respectively. ⊓⊔

Let us now formulate the regularity of the simplified retarded potential (3.2).

Theorem 3.22.Given a triangle T and a planeE . For each A∈ΘR(T) there exists a decomposition of A∩E such that

there exists only one type of singularity per subelement A′∩E .

• For a cylindrical singularity w.r.t. edge ei there holds in a local coordinate system(ξ1,ξ2) defined according to

Lemma 3.9

PRϕ ∈ B2
β (A′∩E ) ,

whereβ ∈ (0,1) and the weight function is located on the cylinder wall of CR(ei). The orientation of planeE defines

exactly one of the three cases discussed in Lemma 3.9.

• For a planar singularity there holds in a local cartesian coordinate system(ξ1,ξ2) defined according to Lemma 3.13

PRϕ ∈ B2
β (A′∩E ) ,

whereβ ∈ (0,1) and the weight function is located in the planes parallelly shifted to the triangle planeET by R.

The singularities if present are located on line segments.

• for a classically known kernel singularity w.r.t. edge ei in a local coordinate system(ξ1,ξ2) with

PRϕ ∈ Blker
β (A′∩E ) ,

whereβ ∈ (0,1) and the weight function is located on the edge ei .

Proof (of Theorem 3.22).Due to Lemma 3.2 and Theorem 3.4 we know that by analyzing the corresponding functions

Iei ϕ andITϕ , we fully describe the regularity ofPRϕ . DasIei ϕ andITϕ describe the derivatives ofPRϕ , we win one

order of regularity if we regardPRϕ . We combine the results of Lemma 3.10 and 3.13 forIν
e ϕ andITϕ to a regularity

result forPRϕ as due to Lemma 3.2 both of the functions influence the gradient of PRϕ . Due to the jumps in the first

and second derivatives ofPRϕ on the interfaces between the elements of the decompositionΘR(T), we again can only

locally describe its regularity on the elementsA∈ΘR(T). As already discussed in Lemma 3.10 we have the additional

influence of the classically known kernel singularities. Here they are based on the edges of the triangleT. The edge of

T not only define such a classically known kernel singularity,but each of these edgesei moreover define a (cylindrical)

geometrical singularity located on a the wall of the cylinder with radiusR and axisei . Thus we have three times the

effects of the analysis of the edge integralIν
e ϕ . We can adopt the arguments used in Lemma 3.10, but the regularity can

only be described in local coordinate systems(ξ1,ξ2) depending on the edge generating the specific type of singularity

and the orientation of the planeE , compare Lemma 3.9 and 3.13.
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Let A ⊂ A′ ∈ ΘR(T). SubdivideA∩E until there exists only one kind of singularity per element corresponding to a

cylindrical, a planar or a classically known singularity. Thus we have elements with possibly circular, elliptic or straight

edges, that possess either a point singularity in one of the corners of the element or a singularity located on one part

of the boundary edges or no singularity at all. Note that all geometrical singularities have a cut-off behavior, i.e. the

singularity based on a line segment is only one-sided.

⊓⊔

3.2.4 Complete Retarded Potential

Let us finally comment on the full retarded potential (3.1) for rmin > 0. In Fig. 3.15 we sketch its singularity distribution
in the triangle plane. Clearly, this is again a three-dimensional object. Its support is the gray shaded domain in Fig. 4.1(a)
and also referred to as domain of influence of the triangleT. In the following lemma, we analyze the geometrical
description of this domain of influence.

Fig. 3.15 Singularity distribution of (3.1) forrmin > 0 in the triangle plane.

Lemma 3.23.Let rmax > rmin ≥ 0. There holds

E(T) = Ermax(T)\
3⋂

i=1

Brmin(pi) ,

where Ermax(T) := {y∈R3 : |x−y| ≤ rmax and x∈ T}.

Proof. It holds

Ermax(T) := {y∈R3 : |x−y| ≤ rmax andx∈ T} =
⋃

x∈T

Brmax(x)

E(T) := {y∈R3 : rmin ≤ |x−y| ≤ rmax andx∈ T} =
⋃

x∈T

(Brmax(x) \Brmin(x)) .

Now, asE(T) ⊆ Ermax(T) we can writeE(T) = Ermax(T)\ (Ermax(T)\E(T)) and compute
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y∈ Ermax(T)\E(T) ⇔ y∈
⋃

x∈T

Brmax(x)∧y /∈
⋃

x∈T

(Brmax(x)\Brmin(x))

⇔
(
∃x∈ T : y∈ Brmax(x)

)
∧¬
(
∃x∈ T : y∈ (Brmax(x) \Brmin(x)

)

⇔
(
∃x∈ T : y∈ Brmax(x)

)
∧
(
∀x∈ T : y /∈ (Brmax(x)\Brmin(x)

)

⇔
(
∃x∈ T : y∈ Brmax(x)

)
∧
([
∀x∈ T : y∈ Bc

rmax
(x)
]
∨ [∀x∈ T : y∈ Brmin(x)]

)

⇔
((

∃x∈ T : y∈ Brmax(x)
)
∧ (∀x∈ T : y∈ Brmin(x))

)

⇔ (∀x∈ T : y∈ Brmin(x))

⇔ y∈
⋂

x∈T

Brmin(x) ,

where we usedBrmin(x) ⊂ Brmax(x). Thus it followsE(T) = Ermax(T)\ ⋂
x∈T

Brmin(x).

As T is convex, the intersection of all spheres with centerx∈ T and radiusrmin equals the intersection of the spheres

whose centers are the verticespi of T, such that

⋂

x∈T

Brmin(x) =
3⋂

i=1

Brmin(pi) .

⊓⊔

Remark 3.24.Note that forrmin < 1
2 max

i
|ei | we haveE(T) = Ermax(T), i.e.T fully illuminates itself.

Next, we describe the quality of the singularities of (3.1).Note, that all singularities duplicate as sketched in Fig. 3.15.

Proposition 3.25.Let ϕ ∈ L∞(T).

a) The integral(3.1)exists and defines a continuous function inR3.

b) The gradient of Pϕ is singular on the edges and vertices of the triangle T and possesses jumps parallel to the

triangle face with distance rmin and rmax. In its second derivatives P exhibits jumps on the surface ofthe spheres

with centers in the vertices and radii rmin and rmax and one-sided singularities from the interior on the surface of

the cylinders (without the caps) where the edges are the axisand the radii are rmin and rmax.

Proof. Due to (3.1) it holds

(Pϕ)(x) = (Prmaxϕ)(x)− (Prminϕ)(x)

and thus the assertions is a consequence of proposition 3.21applied toPrmaxϕ andPrminϕ . ⊓⊔

In order to give a regularity result of the retarded potential reduced to a planeE , let us first define the natural decom-
position ofR3

Θ rmax
rmin

(T) :=
{

A⊂R3 : A∩B= A or A∩B= ∅ ∀B∈ {Θrmin(T),Θrmax(T)}
}

. (3.23)

An example of this decomposition intersected with the triangle plane is sketched in Fig. 3.15. We describe the regularity
of the retarded potentialPϕ as defined in (3.1) in the following theorem.

Theorem 3.26.Given a triangle T and a planeE . For each A∈ Θ rmax
rmin

(T) there exists a decomposition of A∩E such

that there exists only one type of singularity per subelement A′∩E .

• For a cylindrical singularity w.r.t. edge ei and radius R there holds in a local coordinate system(ξ1,ξ2) defined

according to Lemma 3.9

Pϕ ∈ B2
β (A′∩E ) ,
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whereβ ∈ (0,1) and the weight function is located on the cylinder wall of CR(ei). The orientation of planeE defines

exactly one of the three cases discussed in Lemma 3.9 and either R= rmin or R= rmax.

• For a planar singularity there holds in a local cartesian coordinate system(ξ1,ξ2) defined according to Lemma 3.13

Pϕ ∈ B2
β (A′∩E ) ,

whereβ ∈ (0,1) and the weight function is located in the planes parallelly shifted to the triangle planeET by R.

The singularities if present are located on line segments and either R= rmin or R= rmax.

• for a classically known kernel singularity w.r.t. edge ei in a local coordinate system(ξ1,ξ2) with

Pϕ ∈ Blker
β (A′∩E ) ,

whereβ ∈ (0,1) and the weight function is located on the edge ei .

Proof. As we have seen in the very beginning of this chapter in (3.1) it holds

(Pϕ)(x) = (Prmaxϕ)(x)− (Prminϕ)(x)

such that we can apply Theorem 3.22 and on the induced decomposition of the regarded plane, we obtain the piece-

wise defined regularity description. On the composition of all spheresBrmin(pi) the retarded potential behaves like the

classical time independent potential and thus, the two terms cancel out, which is also confirmed by Lemma 3.23.⊓⊔

3.3 Numerical Experiments

In this section, we use the numerical evaluation of retardedpotentials as discussed in Chapter 4.1. Given a reference
triangleT with verticesp1 = (0,0,0)T , p2 = (1,0,0)T andp3 = (0,1,0)T .

3.3.1 High Resolution Plots on a Line

Let R> 0. We analyze the simplified retarded potential (3.2) with piecewise constant trial functions, i.e.ϕ(y) = 1 on
T. In the following, high resolution plots along different lines for different kernel functionskν(x−y) = |x−y|ν of the
potential and its directional derivative are presented. Weobserve the behavior discussed earlier in this section.

In the Triangle Plane

Consider first the bisecting lined = γ(1,1,0)T with γ ∈R in the triangle planeET . In Fig. 3.16 the singularity distri-
bution inET is sketched. Using a high resolution we aim to compute the potential and the directional derivative of the
simplified potential (3.2) for different kernel functionskν(x− y) = |x− y|ν with ν = −1 andν = 0. ChooseR= 0.2.
In Fig. 3.17(a) and 3.17(b) the potential and the directional derivative are plotted forν = −1 and in Fig. 3.17(c) and
3.17(d) one finds the corresponding data forν = 0, both plotted over the signed distanced(x) := x ·d/|d| to the origin.
In x1 the domain of influenceER(x1) first meets the triangleT. Here the potential and its directional derivative are
continuous forν = 0 andν = −1 as expected (cf. Fig. 3.17(a) and 3.17(c)). Fig. 3.17(b) clearly displays the classical
singularities on the triangle edges and vertices due to the weakly singular kernel inx2 andx6. The singularity inx3 can
not be observed separately as it is superposed by the stronger singularities inx4. For all points ond betweenx4 andx5

the domain of integration isT and thus constant. Forx5 andx7 we again observe a bend in the directional derivative,
which indicates the singularity in the second derivative.
The singularities inx1, x3, x4, x5 andx7 are indeed of geometrical nature which becomes clear, as we observe a similar
behavior fork0 andk−1. Thus they are independent of the regularity of the kernel functionk.
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x1

x2

x3
x4

x5

x6

x7

Fig. 3.16 High resolution plot on dashed black line of simplified retarded potential (3.2).
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(a) (PRϕ)(x) for kν (x,y) = 1/|x−y|
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(b) ∂n(PRϕ)(x) for kν (x,y) = 1/|x−y|
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(c) (PRϕ)(x) for kν (x,y) = 1
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(d) ∂n(PRϕ)(x) for kν (x,y) = 1

Fig. 3.17 High resolution plots on the line along(1,1,0)T .

Perpendicular to the Triangle Plane

If we plot the discrete retarded potential (3.2) and its directional derivative along a line perpendicular to the triangle
plane, we can nicely observe the jumps in the first derivatives of (PRϕ)(x) as they were predicted in Lemma 3.16. In
Fig. 3.18 we compare the size of the jumps for different kernel functionskν and in Fig. 3.19 we study the case of a line
intersecting a vertex and edge of the triangle.
Let R= 0.2. (PRϕ)(x) is continuous forν = −1 andν = 0, compare Fig. 3.18(a) and Fig. 3.18(c). In Fig. 3.18(b) we
observe a jump of size 1 inx3 =±R, which corresponds to the results of Lemma 3.16. Note that the kernel is multiplied
by 1/2π andν = −1. Forν = 0 we observe a jump of size 2πR in x3 = ±R.
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Choose nowR= 0.5. We regard the directional derivative perpendicular to the triangle plane for a kernel function with
ν = 0. Fig. 3.19(a) verifies that the directional derivative of(PRϕ)(x) possesses a jump of sizeω1R in x3 = ±R on a
line perpendicular to the triangle plane throughp1 with angleω1 = π/2. On a line passing perpendicular through an
edge as displayed in Fig. 3.19(b) we observe the expected jump of sizeπR.
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(d) ∂3(PRϕ)(x) for kν (x−y) = 1

Fig. 3.18 High resolution plots on the linex = (0.25,0.25,0)+s(0,0,1) (s∈ [−1,1]), rmin = 0 andrmax = 0.2. We plot(PRϕ) and∂3(PRϕ)

overx3 for different kernelsk and constant basis functions on the reference triangleT.

3.3.2 Contour Plots of the Retarded Potential in Different Planes

In this subsection we focus on the weakly singular kernelkν(x− y) = |x− y|−1. We analyze the discrete retarded
potential (3.1) and its gradient within different planes parallel and perpendicular to the triangle planeET . In contrast to
the high resolution plots on different lines we will focus also on the casermin > 0 and the change of the minimal and
maximal radius, where we fixrmax− rmin = ∆ t.
In Fig. 3.20 and 3.21 we focus on the evaluation of the discrete retarded potential (3.1) with∆ t = 0.3 in the triangle
planeET . The potential itself is continuous, but we clearly observethe expected singularities. In the right picture of
Fig. 3.20(a) we note the classical corner and edge singularities on the boundary of the triangle due to the singular kernel
function.
In the gradient plots ofP(x) for rmin > 0 the contour levels become dense parallel to the triangle edges with distance
rmin andrmax as sketched in Fig. 3.15 indicating the geometrical light cone singularities as discussed in Theorem 3.26.
Moreover we clearly observe, how the discrete retarded potential moves over the triangle plane for increasing radii. In
Fig. 3.22 an additional surface plot of the absolute gradient of P(x) finally draws the attention to the steep growth close
to the geometrical light cone singularities.
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(b) x0 = (0,0.5,0)

Fig. 3.19 High resolution plots on the linex= x0+s(0,0,1) (s∈ [−1,1]), rmin = 0 andrmax= 0.5. We plot∂3(PRϕ) overx3 for kν (x−y) = 1

and constant basis functions on the reference triangleT.

As we have discussed earlier in this chapter and sketched in Fig. 3.2 the support ofP(x) is a three-dimensional object,
namely the domain of influenceE(T). In order to underline this fact, in Fig. 3.23 we plot the absolute gradient of the
potential in four planes parallel toET with different distancesx3 to ET .
We see how for increasingx3 the singularities squeeze together and how forx3 = 2.0 the singularities due tormin vanish
as they have smaller support.
Finally, we want to focus on the strongest geometrical lightcone singularity, the jump parallel to the triangle. Fix
rmin = 1.9 andrmax= 2.1. In Fig. 3.24 contour plots of the potential and its derivative ∂3P in the plane perpendicular to
the triangle planeET with x1 = 0.25 are plotted and we clearly observe the singularities due to the first term in Lemma
3.2 as analyzed in Lemma 3.16. The jumps occur in the first derivatives and are therefore stronger as the singularities
due to the second term in 3.2, this is the reason, why they do not show so clearly as in the figures before.

3.4 Technical Results

Lemma 3.27.Let fn(t) =
∫
(t2 +a2)n/2dt for n≥−1. It holds

f2 j+1(t) =
(2 j +1)!!
(2 j +2)!!

(
j

∑
k=0

(2( j −k))!!
2( j −k)+1)!!

a2kg2( j−k)+1(t)+a2 j+2 f−1(t)

)
(3.24)

f2 j+2(t) =
(2 j +2)!!
(2 j +3)!!

j+1

∑
k=0

(2( j −k)+1)!!
(2( j −k)+2)!!

a2kg2( j−k)+2(t) (3.25)

for j ≥ 0, where gn(t) := t(t2+a2)n/2 and

f−1(t) = arsinh
t
a

= ln(t +
√

t2 +a2).

Proof. Let us first prove the following recurrence formulas

f2 j+1(t) =
1

2 j +2

[
t(t2+a2)

2 j+1
2 +(2 j +1)a2 f2 j−1(t)

]
, (3.26)

f2 j+2(t) =
1

2 j +3

[
t(t2 +a2) j+1 +2( j +1)a2 f2 j (t)

]
. (3.27)

If n = 2 j −1 , there holds
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(c) rmin = 0.6, rmax = 0.9

Fig. 3.20 P(x) (left) and|∇P(x)| (right) are plotted for increasing radiirmin andrmax for pointsx in the triangle planeET . All computations

were done on the reference triangleT.
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(b) rmin = 1.2, rmax = 1.5
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(c) rmin = 1.5, rmax = 1.8

Fig. 3.21 P(x) (left) and|∇P(x)| (right) are plotted for increasing radiirmin andrmax for pointsx in the triangle planeET . All computations

were done on the reference triangleT . Continuation of Fig. 3.20.
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Fig. 3.22 Surface plot of the absolute value of the retarded potentialon the reference triangleT.
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(d) x3 = 2.09

Fig. 3.23 Contour plots of|∇P(x)| with fixed rmin = 1.8, rmax = 2.1 for points in a plane with distancex3 to the triangle plane.
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(a) Contour plot of potentialP
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Fig. 3.24 rmin = 1.9 andrmax = 2.1. Contour plots forx1 = 0.25

∂t t(t
2 +a2)

2 j+1
2 = (t2 +a2)

2 j+1
2 +(2 j +1)t2(t2 +a2)

2 j−1
2

= (2 j +2)(t2+a2)
2 j+1

2 − (2 j +1)a2(t2 +a2)
2 j−1

2 .

Integration with respect tot yields (3.26). Forn = 2 j we obtain (3.27) with

∂tt(t
2 +a2) j+1 = (t2 +a2) j+1 +2( j +1)t2(t2 +a2) j

= (2 j +3)(t2+a2) j+1−2( j +1)a2(t2 +a2) j .

Summarizing for arbitraryn≥ 1 it holds

fn(t) =
1

n+1

(
gn(t)+na2 fn−2(t)

)

Now, we can proof the desired relations by induction. First for odd indices forj = 0 (3.24) immediately follows from

(3.26) and

f2 j+3(t) =
1

2 j +4

[
g2 j+3(t)+ (2 j +3)a2 f2 j+1(t)

]

=
1

2 j +4

[
g2 j+3(t)+

2 j +3
2 j +2

(
(2 j +1)!!

(2 j)!!

j

∑
k=0

(2( j −k))!!
(2( j −k)+1)!!

a2k+2g2( j−k)+1(t)

)

+
(2 j +3)!!
(2 j +2)!!

a2 j+4 f−1(t)

]

=
1

2 j +4

[
(2 j +3)!!
(2 j +2)!!

j+1

∑
k=0

(2( j −k)+2)!!
(2( j −k)+3)!!

a2kg2( j−k)+3(t)+
(2 j +3)!!
(2 j +2)!!

a2 j+4 f−1(t)

]
,

which finishes the proof for (3.24). For even indices it worksquite similar. Forj = 0 (3.27) validates the result and

f2 j+4(t) =
1

2 j +5

[
g2 j+4(t)+ (2 j +4)a2 f2 j+2(t)

]

=
1

2 j +5

[
g2 j+4(t)+ (2 j +4)

(
(2 j +2)!!
(2 j +3)!!

j+1

∑
k=0

(2( j −k)+1)!!
(2( j −k)+2)!!

a2kg2( j−k)+2(t)

)]

=
1

2 j +5

[
(2 j +4)!!
(2 j +3)!!

j+2

∑
k=0

(2( j −k)+3)!!
(2( j −k)+4)!!

a2kg2( j−k)+4(t)

]

yield (3.25). Note thatg0(t) = f0(t). ⊓⊔



Chapter 4

A Composite Quadrature Rule for Retarded Potentials

Quadrature rules for time independent boundary integrals and the corresponding Galerkin entries have been studied
intensively, see e.g. [47, 49, 48, 51, 43]. The authors follow different approaches for the numerical computation of the
weakly singular integrals. A quadrature scheme for the boundary integral or potential is presented in [51] and analyzed
using countably normed spaces. A graded quadrature towardsthe point singularity of the potential is introduced. In
[43] Mund adopts this scheme by separating the inner and the outer integration and applying a grading in the outer
integral towards the edges of the elements. Schwab and Sauter [49] employ relative coordinates in order to lift the
singularity of the kernel function using a Duffy trick, which results in a stable and reliable quadrature scheme. They do
not evaluate the inner and the outer integral separately, but solve the problem in one step applying a four dimensional
tensor product quadrature rule. In [13] the idea of relativecoordinates is adopted to an analysis using Gevrey classes.
There also exist many approaches for the fast numerical evaluation of boundary integrals, e.g. in the context of hierar-
chical matrices [24]. These methods use the decay of the kernel function and the separation in near and far field. This
is not easily adopted for retarded potentials because, as wehave seen in Chapter 3 there exist geometrically distributed
singularities that also occur in the far field.
To our knowledge, the numerical evaluation of retarded potentials and their discrete space-time Galerkin entries have
not undergone a rigorous error analysis. In [53] the analytical evaluation of the discrete retarded potentials is discussed,
but not the corresponding matrix entry.
In this chapter, we apply the results of Chapter 3 and construct a quadrature rule for the numerical computation of the
entries of a matrices resulting the discrete bilinear forms. This construction proceeds in two steps, separating the outer
and the inner integration. As discussed in Chapter 2.3 the time integrals are evaluated analytically and result in a light
cone integration domainEl as defined in (2.22), such that we have to evaluate terms like

Gl ,ν
i j =

∫∫

El

kν(x−y)ϕi(y)ϕ j (x)dsy dsx , (4.1)

wherekν(x−y) = |x−y|ν denotes a weakly singular kernel function andϕi andϕ j are piecewise defined polynomial
trial and test functions with bounded support. Identifyrmin := tl andrmax := tl+1 and regard the prototype integral

Gν
i j :=

∫∫

E

kν(x−y)ϕi(y)ϕ j(x)dsy dsx , (4.2)

with

E := {(x,y) ∈ Γ ×Γ s.t.rmin ≤ |x−y| ≤ rmax} .

Moreover, define the point light cone or the domain of influence of pointx∈R3 sketched in Fig. 4.1(b) by

E(x) := Brmax(x)\Brmin(x) =
{

y∈R3 s.t.rmin ≤ |x−y| ≤ rmax
}

,

and the element light cone or the domain of influence of a triangleT ∈R3 sketched in Fig. 4.1(a) by

E(T) :=
⋃

x∈T

E(x) = {y∈R3 : rmin ≤ |x−y| ≤ rmax, x∈ T} .

As we have seen in Section 3.2.4E(T) is the support of a discrete retarded potential evaluated onT ∩E(x). Defining

61
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E(Tj ,Ti) := E∩ (Tj ×Ti) , (4.3)

we rewrite (4.2) to

Gν
i j = ∑

Ti′ ⊂ suppϕi

Tj ′ ⊂ suppϕ j

∫∫

E(Tj′ ,Ti′ )

kν(|x−y|)ϕi(y)ϕ j(x)dsy dsx

= ∑
Ti′ ⊂ suppϕi

Tj ′ ⊂ suppϕ j

∫

Tj′∩E(Ti′ )

ϕ j (x)Pi,i′(x)dsx , (4.4)

with a retarded potentialPi,i′ given by

Pi,i′(x) :=
∫

E(x)∩Ti′

kν(|x−y|)ϕi(y)dsy . (4.5)

We implement a quadrature rule for the integration with respect tox (outer quadrature) and depending on this we

(a) Outer integral: Domain of influence of trianglêT intersected

with triangleT.

T

E(T)

E(T)∩ T̂

(b) Inner integral: Domain of influenceE(x) of pointx∈E(T)∩ T̂.

rmin

rmax

E(x)∩T

x

Fig. 4.1 Domains of influence and the illumination of test and trial elementT̂ andT during the evaluation of the inner and outer integral of

the Galerkin entry.

evaluate the retarded potential (inner quadrature). We present appropriate decomposition strategies for both parts of
the quadrature scheme and discuss grading strategies. In order to keep the notation as plain as possible, we will study
the following simplified integral. Given thetrial element Tand thetest element̂T and test and trial functionsϕ andϕ̂
defined onT andT̂, respectively, a typical entry in the Galerkin matrix reads

G(ϕ , ϕ̂) := (Pϕ , ϕ̂) =

∫

E(T)∩T̂

(Pϕ)(x)ϕ̂(x)dsx , (4.6)

where we evaluate the retarded integral
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(Pϕ)(x) :=
∫

E(x)∩T

k(x−y)ϕ(y)dsy . (4.7)

Before we continue with the construction and analysis of a quadrature rule forG(ϕ , ϕ̂), let us briefly describe the
structure of the integralG(ϕ , ϕ̂). In Fig. 4.1 the main idea of the integration is sketched. Letus first consider the outer
integral. In Chapter 3 we have discussed the regularity of the integrandP in detail. We evaluatêϕ only in the element
T̂, such that the integration domain reduces toE(T)∩ T̂, compare Fig. 4.1(a). Thus elementT illuminates a part of
element̂T through its domain of influenceE(T). For the inner integral, each pointx∈E(T)∩ T̂ illuminates the element
T through its domain of influenceE(x) and we integrate overE(x)∩T. Thus the illuminated part of̂T illuminates a
part of elementT in the inner integration, as sketched in Fig. 4.1(b).
Following the ideas in [43] we evaluate the outer and the inner integral step by step decomposing the integration domain
and using a grading strategy for the different singularities. To our knowledge this was not done up to now in this extend.
Especially in engineering circles also an adaptive quadrature is used for the computation of the discrete potential [42].
But even here, a rigorous error analysis is still missing andit raises the question how the cut-off behavior due to the
different domains of influence affects its accuracy.

4.1 Composite Quadrature Rule for the Inner Quadrature

In this section we will construct and analyze a composite quadrature rule forPϕ as defined in (4.7). We will present a
specified composite quadrature rule and an error analysis.

4.1.1 Construction of a Composite Quadrature Rule

Decomposition of the integration domainE(x)∩T

We seek a parametric representation of the integration domain E(x)∩T . The domain of influenceE(x) of pointx is an
annular domain with centerx and radiirmin andrmax. Therefore, we have to find the intersection of triangleT and two
concentric spheres. This three-dimensional intersectionproblem can be rewritten to a two-dimensional intersectionin a
three-dimensional space. Letx′ denote the orthogonal projection ofx onto the triangle planeET and defined := |x−x′|,
cf. Fig. 4.2(b)). Then

E(x)∩ET = (Br ′min
(x′)\Br ′max

(x′))∩ET =
{

y∈ ET : r ′min ≤ |x′−y| ≤ r ′max

}
,

wherer ′min/max := (r2
min/max−d2)1/2 and thus

E(x)∩T = (Br ′min
(x′)\Br ′max

(x′))∩T .

Now, we introduce polar coordinates(r,θ ) with respect tox′ and decomposeE(x)∩T =
nd⋃

l=1
Dl , where the subdomains

Dl are defined on a sector(θl ,θl+1) with a lower boundr1,l (θ ) and an upper boundr2,l (θ ) in radial direction, such that

Dl :=
{
(r,θ ) : θ ∈ (θl ,θl+1) andr ∈ (r1,l (θ ), r2,l (θ ))

}
.

The radial bounds direction are characterized by the position of the intersected edgee compared to the concentric
circles,

r1,l :=

{
r ′min e∈ Br ′min(x)

re(θ ) else
r2,l :=

{
r ′max e /∈ Br ′max(x)

re(θ ) else
,

wherere(θ ) is the representation of the intersected triangle edgee in polar coordinates with respect tox′, which reads
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(a) Example for a decomposition ofE(x)∩T with re-

spect tox′ into nd = 5 subelements.

x′ x

x′

d

y

E(x)∩T

(b) Projection ofx onto the triangle plane.

Fig. 4.2

re(θ ) =
v ·n

n1cosθ +n2sinθ
, (4.8)

wheren = (n1,n2,n3)
T denotes the normal of the edge andv is the end point ofe.

e

n

re(θ)

θ

Fig. 4.3 Representation of an edgee in polar coordinates(r,θ).

D̂1 D̂2 D̂3 D̂4

Fig. 4.4 Generic integration domains
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Remark 4.1.a) The above definition of the domainDl for l = 2,3,4 are still valid, if one side of the element vanishes.

For example, if the decomposition element includes a vertexof the triangle. Given a triangleT and letrmax> rmin >

0. In Fig. 4.2(a) we sketch a typical decomposition of the illuminated triangle domainT∩E(x) into five subdomains.

b) The number of subelementsDl is bounded by 12.

c) It holdsr i,l ∈C∞(θl ,θl+1) for i = 1,2.

Thus the representation of (4.7) in polar coordinates reads

(Pϕ)(x) =
nd

∑
l=1

∫

Dl

(d2 + r2)
ν
2 ϕ(r,θ )rdrdθ , (4.9)

whered > 0 andϕ denotes a sufficiently regular function. Note bye1 ande2 the upper and lower line segment in a
decomposition element, with edge normalsn1, n2 and verticesv1 andv2, respectively. We identify four generic cases
of decomposition types as sketched in Fig. 4.4 and thus defineD̂l for l = 1, . . . ,4 via

D̂1 := {(r,θ ) : θ ∈ (θ1,θ2) andr ∈ (rmin, rmax)} ,

D̂2 := {(r,θ ) : θ ∈ (θ1,θ2) andr ∈ (re1(θ ), rmax)} ,

D̂3 := {(r,θ ) : θ ∈ (θ1,θ2) andr ∈ (rmin, re2(θ ))} ,

D̂4 := {(r,θ ) : θ ∈ (θ1,θ2) andr ∈ (re1(θ ), re2(θ ))} ,

(4.10)

and thus it is sufficient to regard

(P̂l ϕ)(r,θ ) :=
∫

D̂l

(d2 + r2)
ν
2 ϕ(r,θ )rdrdθ l = 1, . . . ,4. (4.11)

Before we continue with the construction of a quadrature rule for (4.11) let us fix some notation. We basically use the
notation of [13]

Geometric mesh and composite quadrature

Given some functionf on an interval[a,b] and define an integral

I f =

b∫

a

f dx,

we denote byQ[a,b]
n the Gauı̈¿12-Legendre quadrature rule withn quadrature points on the interval[a,b] given by

Q[a,b]
n f :=

n

∑
i=1

wi f (xi)

with quadrature nodesxi and quadrature weightswi . Note that a Gauı̈¿12-Legendre quadrature rule of ordern is exact for
polynomials of degree 2n−1. If the integration domain is clear from the context we simply refer toQn. For f ∈C2n(a,b)
there holds the well known error estimate [33]

E[a,b] f := Q[a,b]
n f −I f =

(b−a)2n+1(n!)4

(2n+1)[(2n)!]3
d2n

dξ 2n f (ξ ) whereξ ∈ (a,b) . (4.12)

Given a subdivision of[0,1] into msubintervalsI j ( j = 1, . . . ,m), avariable order composite Gauı̈¿1
2 rule on [0,1] with

degree vectorn = (n1, . . . ,nm) is defined by

Qn,m,σ g :=
m

∑
j=1

Q
I j
n j g.
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For n1 = · · · = nm we refer to aconstant order composite quadratureand otherwise to avariable order composite
quadrature. If the underlying composition is a geometric subdivision,one also refers to agraded quadrature. A geo-
metric subdivision of[0,1] with m levels and a grading parameterσ ∈ (0,1) is defined by

[0,1] =
m⋃

j=1

I j , whereI j := [x j−1,x j ] ,

where

x0 := 0, x j := σm− j ( j = 1, . . . ,m) .

I1 I2 I3 I4

Fig. 4.5 A geometric subdivision of[0,1] with σ = 0.5 andm= 4.

A generalization to an arbitrary interval[a,b] is straight forward applying a linear mapping

x0 := a, x j := a+(b−a)σm− j ( j = 1, . . . ,m) .

Construction of a composite quadrature rule for (4.11)

The construction of a quadrature rule for (4.11) involves the integration domainŝDl with l = 2,3,4 which haveθ -
depending integration bounds inr and can be of regular shape. Although the initial triangle isregular, its intersection
with the domain of influenceE(x) easily results in unregular subelements.
Each domainDl (l = 1, . . . ,4) can be described in polar coordinates with respect tox′ and we can rewrite (4.11) to

P̂l(r,θ ) =

∫ θ2

θ1

∫ r2(θ)

r1(θ)
f (r,θ )drdθ ,

where

f (r,θ ) := (d2 + r2)
ν
2 ϕ(r,θ )r

and

r1(θ ) =

{
rmin on D̂1,D̂3

re1(θ ) on D̂2,D̂4
r2(θ ) =

{
rmax on D̂1,D̂2

re2(θ ) on D̂3,D̂4
.

The composite quadrature rule on the ray(r1(θ ), r2(θ )) is defined by

Q[r1(θ),r2(θ)] f := Q[r1(θ),r2(θ)]
nr ,mr ,σr f

wherenr = (n(r)
1 , . . . ,n(r)

m ), mr ≥ 1 andσr ∈ (0,1] and denote byQ[θ1,θ2]
nθ f the quadrature rule of ordernθ , such that

QD̂l f := Q[θ1,θ2]
nθ (Q[r1(θ),r2(θ)]

nr ,mr ,σr f )

Remark 4.2.On D̂1 the classical tensor product Gaussian quadrature rule applies as the radial integration domain is

independent of the angleθ and we obtain

QD̂1 f = Q[θ1,θ2]
nθ ,mθ ,σθ ⊗Q[rmin,rmax]

nr ,mr ,σr f .
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4.1.2 Error Analysis for the Evaluation of the Retarded Potential

In this subsection we seek to study the integral

I (D̂l ) f :=
∫ θ2

θ1

∫ r2(θ)

r1(θ)
f (r,θ )drdθ , (4.13)

where we define the quadrature rule

Q(Dl ) f := Q[θ1,θ2]
nθ

(
Q[r1(θ),r2(θ)]

nr ,mr ,σr f
)

for nr = (n1, . . . ,nm) denoting the number of quadrature points on each subinterval of the geometric mesh withmr level
and grading factorσr . nθ denotes the number of quadrature points inθ and is chosen proportional tomr .

Theorem 4.3.Given a function f∈B0
β (T) with a weight functionΦβ ,α ,0(r) = r |α |+β and letmax(1,

√
rmax)(θ2−θ1) <

eCθ , then there holds for Dl as defined in(4.10)
∣∣∣I (Dl ) f −Q(Dl ) f

∣∣∣≤Ce−b 3√N

for l = 1, . . . ,4 and where N denotes the total number of quadrature points andC and b are positive constants inde-

pendently of N, but depending on the grading factorσr the number of levels mr and on f . Cθ is defined in Lemma 4.6.

Proof. We can split the error into an error depending on the angle andone depending on the radius and obtain

∣∣∣I f −Q(Di) f
∣∣∣≤

θ2∫

θ1

∣∣∣∣∣∣∣

r2(θ)∫

r1(θ)

f (r,θ )dr−Q[r1(θ),r2(θ)] f

∣∣∣∣∣∣∣
︸ ︷︷ ︸

=:|E[r1(θ ),r2(θ )] f |

dθ

+

∣∣∣∣∣∣

θ2∫

θ1

Q[r1(θ),r2(θ)] f dθ −Q[θ1,θ2] ⊗Q[r1(θ),r2(θ)] f

∣∣∣∣∣∣
︸ ︷︷ ︸

=:|E[θ1,θ2]Q[r1(θ ),r2(θ )] f |

≤ (θ2−θ1) max
θ∈(θ1,θ2)

∣∣∣E[r1(θ),r2(θ)] f
∣∣∣+
∣∣∣E[θ1,θ2]Q[r1(θ),r2(θ)] f

∣∣∣

As f ∈ B0
β (T), on each ray there holdsf ∈ B0

β (0,
√

2) for β ∈ (0, 1
2) and thus Lemma 4.4 yields

|E[r1(θ),r2(θ)] f | ≤C1e−b1
√

Nr

where we know from the proof of Lemma 4.4, thatm2
r ∼ Nr .

From Lemma 4.6 withQ[r1(θ),r2(θ)] f ∈C2nθ (θ1,θ2) we obtain for max(1,
√

rmax)(θ2−θ1) < eCθ
∣∣∣E[θ1,θ2]Q[r1(θ),r2(θ)] f

∣∣∣≤C2(θ2−θ1)e
−b2nθ ,

whereNr denotes the total number of quadrature points on one ray andCθ is defined as in Lemma 4.6.

The total number of quadrature pointsN on the domainDl is N = Nrnθ ∼ m3, such thatm∼ 3
√

N and asnθ ∼ m we

finally obtain
∣∣∣I f −Q(Di) f

∣∣∣≤ (θ2−θ1)C1e−b1
√

Nr +(θ2−θ1)C2e−b2nθ

≤ (θ2−θ1)Ce−bnθ

≤ (θ2−θ1)Ce−b 3√N .
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⊓⊔

For a fixed angleθ the error on a ray[0, r(θ )] can be estimated as follows.

Lemma 4.4 (Error analysis on ray).Given f∈ B0
β ([0, r(θ )]) andβ ∈ (0, 1

2). Then for everyσ ∈ (0,1) and a linear

degree vector p with

p j = max{1,⌊µ j⌋} and µ >
(3

2 −β ) lnσ
lnFmin

,

where Fmin is defined within the proof, there exists a constant b> 0 independently of N such that there holds
∣∣∣E[r1(θ),r2(θ)] f

∣∣∣≤Cexp(−b
√

Nr) .

where C is a constant depending on f .

Proof. In this proof, we will follow the lines of the proof of Theorem4.1 in [51]. We restrict the analysis tor1(θ ) = 0,

i.e. the singularity is approached, ifr1(θ ) > 0 the following analysis can be adopted. In the following, wewill suppress

the indexr and rather writeσ , m andn as there is no confusion possible. It holds

|E[r1(θ),r2(θ)] f | ≤
∣∣∣∣
∫

I1
f (r,θ )dr

∣∣∣∣+
m

∑
j=2

∣∣∣∣
∫

I j

f (r,θ )dr−Q j f

∣∣∣∣ , (4.14)

wherer0 = 0, r j = r2(θ )σmr− j
r for j = 1, . . . ,mand thusI j = (r j−1, r j). Let us now estimate the first term. Here we use

f ∈ B0
β (I1) for β ∈ (0, 1

2) and we obtain

∣∣∣∣
∫

I1
f (r,θ )dr

∣∣∣∣≤
∫

I1
| f |rβ r−β dr

≤
(∫ r1

0
r−2β dr

) 1
2
(∫

I1
| f |2r2β dr

) 1
2

=
[r2(θ )σm−1]

1
2−β

√
1−2β

| f |
H0,0

β (I1)
.

Each summand in the second term of (4.14) can be estimated using Lemma 4.12 by the infimum over all polynomials

π of total degreep j := 2n j −1 and we obtain

|Er(θ) f | ≤
[r2(θ )σn]

1
2−β

√
1−2β

Cf +
m

∑
j=2

2|I j | inf
π
‖ f −π‖L∞(I j )

and by Lemma 4.13 we obtain together with Lem. 4.16 and ash j = 1−σ
σ r j−1 =: λ r j−1

inf
π
‖ f −π‖2

L∞(I j )
≤C

1

∑
k=0

h2k−1
j inf

π
| f −π |2Hk(I j )

≤C
1

∑
k=0

h2k−1
j r−2(β+k)

j−1
Γ (p j −sj +1)

Γ (p j +sj +3−2k)

(
λ
2

)2sj

| f |2
H

sj +1,0

β (J)

≤Cr1−2β
j−1

Γ (p j −sj +1)

Γ (p j +sj +1)

(
λ
2

)2sj

| f |2
H

sj +1,0

β (J)

= Cr2(θ )1−2β σ (m− j+1)(1−2β )Γ (p j −sj +1)

Γ (p j +sj +1)

(
λ
2

)2sj

| f |2
H

sj +1,0

β (J)

As f ∈ B0
β (0, r2(θ )) it yields
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inf
π
‖ f −π‖2

L∞(I j )
≤CC2

f (df )
2sj+2r2(θ )1−2β σ (m− j+1)(1−2β )Γ (p j −sj +1)

Γ (p j +sj +1)
(Γ (sj +2))2

(
λ
2

)2sj

≤CC2
f (df )

2r2(θ )1−2β σ (m− j+1)(1−2β )Γ (p j −sj +1)

Γ (p j +sj +1)
(Γ (sj +2))2

(
ρdf

2

)2sj

,

whereρ = max(1,λ ). Following the proof of Theorem 3.36 in [52], selectsj = α j p j with α j ∈ (0,1) for j = 2, . . . ,nr

and we can estimate using Stirling’s Formula

Γ ((1−α)p+1)

Γ ((1+ α)p+1)
(Γ (2+ α p))2 ∼ (p−s)!

(p+s)!
((s+1)!)2

∼
[

(1−α)(1−α)

(1+ α)(1+α)

]p(
1−α
1+ α

) 1
2

p−2α pe−3(1+ α p)3+2α p

Now,

(1+ α p)2α p = (α p)2α p
(

1+
1

α p

)2α p

→ (α p)2α pe2 (p→ ∞)

and thus

Γ ((1−α)p+1)

Γ ((1+ α)p+1)
(Γ (2+ α p))2 ≤Cp3

[
(1−α)(1−α)

(1+ α)(1+α)

]p

α2α p

Inserting the definition of functionF as given in Lemma 4.18 we can obtain

inf
π
‖ f −π‖2

L∞(I j )
≤CC2

f d
2
f r2(θ )2( 1

2−β )σ2(m− j+1)( 1
2−β )p3

j (F(ρdf ,α))2p j

such that

∣∣I j
∣∣ inf

π
‖ f −π‖L∞(I j )

≤CCf df
(1−σ)

σ
r2(θ )(

3
2−β )σ (m− j+1)( 3

2−β )p3/2
j (F(ρdf ,α))p j

Now, Lemma 4.18 yields

Fmin = min
α∈(0,1)

F(ρdf ,α) = F(ρdf ,αmin) < 1 with αmin =

(
1+

(
ρdf

2

)2
)−1/2

< 1.

Thus the estimation results in

|Er(θ) f | ≤CCf

[
r2(θ )(

1
2−β )σm( 1

2−β )

√
1−2β

+
m

∑
j=2

df r2(θ )
3
2−β σ (m+1− j)( 3

2−β )p3/2
j F

p j
min

]

≤CCf df σ (m+1)( 3
2−β )r2(θ )

2
3−β max(1, r2(θ ))

[
1+

m

∑
j=2

p3/2
j F

p j
min

]

Selectp j = ⌊µ j⌋ ( j = 2, . . . ,m) and a slopeµ that will be determined later, where⌊x⌋ := max
k∈Z ,k≤x

k. Define the index

j0 := max
2≤ j≤m

( j : ⌊ jµ⌋ ≤ 1) ,

such that the term in squared brackets can be estimated independently ofmby

1+
m

∑
j=2

p3/2
j F

p j
min ≤ 1+

j0

∑
j=2

Fmin

σ j( 3
2−β

+
m

∑
j= j0+1

( jµ)3/2

(
Fµ

min

σ
3
2−β

) j

.

Here the last term can be estimated form→ ∞ by a constantC if
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Fµ
min

σ
3
2−β

< 1 ⇔ µ >
(3

2 −β ) lnσ
lnFmin

.

Thus we obtain

|Er(θ) f | ≤CCf df r2(θ )
2
3−β max(1, r2(θ ))σ (m+1)( 3

2−β )

If we estimate the number of quadrature pointsNr(θ) on each ray, we obtain withp j = 2n j −1

Nr(θ) ≤
m

∑
j=1

n j ≤
1
2

m

∑
j=1

(p j +1) ≤ µ
2

m2 .

and we can estimater2(θ ) ≤ rmax, such that

|Er(θ) f | ≤CCf df max(1, r2
max)exp(−bN1/2

r ) .

⊓⊔

The estimation of|E[θ1,θ2]Q[r1(θ),r2(θ)]
pr f | uses a different technique. Due to the structure of integral(4.13), each angular

integration point results in a ray in the radial integration. In domainD̂1 this is obviously no problem, as the shape is
always regular, but for̂D2 andD̂3 and worst forD̂4 the shape can be very anisotropic and we can no longer rely on any
regular structure of the integration domain, although the original triangulation surely was shape regular.

n

θ∗ θ1 θ2

θ∗− π
2

θ∗ + π
2

Fig. 4.6 Sketch of edge functionre(θ) and its visualization.

On the domainŝDl for l = 2,3,4, the integration bounds inr depend onθ . Thus, the estimation of the error in the angle
involves the computation of the higher derivatives ofrn(θ ) which is analyzed in the following lemma.

Lemma 4.5.Given a function rn(θ ) = (n1cosθ +n2sinθ )−1 with n1 = cosθ∗ and n2 = sinθ∗, compare Fig. 4.6 then
∣∣∣∂ k

θ rn(θ )
∣∣∣≤ 2kk!|cos(θ −θ∗)|−(k+1)

Proof. The addition theorem yieldsrn(θ ) = cos−1(θ −θ∗) and one immediately verifies, that
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∂ k
θ rn(θ ) =





cos−1(θ −θ∗)
l
∑
j=0

α(2l)
j tan2 j(θ −θ∗) k = 2l

cos−1(θ −θ∗)
l
∑
j=0

α(2l+1)
j tan2 j+1(θ −θ∗) k = 2l +1

as one proves by induction for odd and even orders of derivative

∂ 2l+1
θ rn(θ ) = ∂θ ∂ 2l

θ rn(θ )

=
1

cos(θ −θ∗)

l

∑
j=0

α(2l)
j tan2 j+1(θ −θ∗)+2 jα(2l)

j (1+ tan2(θ −θ∗)) tan2 j−1(θ −θ∗)

=
1

cos(θ −θ∗)

l

∑
j=0

(
α(2l)

j +2 jα(2l)
j +2( j +1)α(2l)

j+1

)
tan2 j+1(θ −θ∗)

∂ 2l
θ rn(θ ) =

1
cos(θ −θ∗)

l−1

∑
j=0

a(2l−1)
j tan2 j+2(θ −θ∗)+a(2l−1)

j (2 j +1)(1+ tan2(θ −θ∗)) tan2 j(θ −θ∗))

=
1

cos(θ −θ∗)

l

∑
j=0

(
α(2l−1)

j−1 +(2 j +1)α(2l−1)
j

)
tan2 j(θ −θ∗)

+
1

cos(θ −θ∗)

l

∑
j=1

(2 j −1)α(2l−1)
j−1 tan2 j(θ −θ∗)

(4.15)

Thus we can estimate

∣∣∣∂ k
θ rn(θ )

∣∣∣≤ |cos(θ −θ∗)|−(k+1)
l

∑
j=1

∣∣∣α(k)
j

∣∣∣ (4.16)

and by comparing the coefficients in (4.15), we can derive a recursion formula for the coefficients

α(2l)
j = α(2l−1)

j−1 +(2 j +1)α(2l−1)
j +(2 j −1)α(2l−1)

j−1 ( j = 0, . . . , l)

α(2l+1)
j = α(2l)

j +(2 j)α(2l)
j +(2 j +2)α(2l)

j−1 ( j = 0, . . . , l) ,

whereα(2l)
−1 = α(2l−1)

−1 = α(2l−1)
l = α(2l)

l+1 = 0. This results for even orders of derivative in

l

∑
j=0

∣∣∣α(2l+1)
j

∣∣∣≤
l

∑
j=0

∣∣∣α(2l)
j +2 jα(2l)

j +2( j +1)α(2l)
j+1

∣∣∣

≤
l

∑
j=0

∣∣∣α(2l)
j

∣∣∣+2l
l

∑
j=0

∣∣∣α(2l)
j

∣∣∣+2l
l

∑
j=0

∣∣∣α(2l)
j

∣∣∣

≤ (4l +1)
l

∑
j=0

∣∣∣α(2l)
j

∣∣∣ .

For odd derivatives this yields

l

∑
j=0

∣∣∣α(2l)
j

∣∣∣≤
l

∑
j=0

∣∣∣α(2l−1)
j−1 +(2 j +1)α(2l−1)

j +(2 j −1)α(2l−1)
j−1

∣∣∣

≤ (1+(2(l −1)+1)+2l−1)
l−1

∑
j=0

∣∣∣α(2l−1)
j

∣∣∣

≤ (4l −1)
l−1

∑
j=0

∣∣∣α(2l−1)
j

∣∣∣ ,

and thus the successive application of this estimate gives
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∑
j

∣∣∣α(k)
j

∣∣∣≤ 2(k+1)∑
j

∣∣∣α(k−1)
j

∣∣∣≤ 2kk!

and (4.16) yields the desired estimate. ⊓⊔

Let us now consider the error analysis in the angle.

Lemma 4.6.Given the assumptions as in Theorem 4.3 and letmax(1,
√

rmax)(θ2−θ1) < eCθ on D2, D3 and D4, with

Cθ :=






min
θ∈(θ1,θ2)

|cos(θ −θ∗
1)| in D̂2

min
θ∈(θ1,θ2)

|cos(θ −θ∗
2)| in D̂3

min
θ∈(θ1,θ2)

(|cos(θ −θ∗
1)|, |cos(θ −θ∗

2)|) in D̂4

whereθ∗
i denotes the angle corresponding to the edge normalni (i = 1,2); then there exist positive constants b and C

independently of nθ such that
∣∣∣E[θ1,θ2]Q[r1(θ),r2(θ)]

nθ f
∣∣∣≤C(θ2−θ1)e

−bnθ . (4.17)

Proof. We estimate the higher derivatives of

g(θ ) := Q[r1(θ),r2(θ)] f (r(θ ),θ ) = Q[0,1]
t f ((r2(θ )− r1(θ ))t + r1(θ ),θ ) (4.18)

on subdomain̂Dl , as defined in (4.10), where

r(θ ) =






(rmax− rmin)t + rmin in D̂1

(rmax− re1(θ ))t + re1(θ ) in D̂2

(re2(θ )− rmin)t + rmin in D̂3

(re2(θ )− re1(θ ))t + re1(θ ) in D̂4

whererei (θ ) is defined as in (4.8) andni ,vi are the normal vector and right vertex vector of an edgeei .

Although (4.18) is clearly regular inθ on all regarded subdomains, we have to estimate the error with great care. We

are interested in the error due to the quadrature rule corresponding to the integration with respect to the angleθ . For a

Gauı̈¿1
2-Legendre quadrature rule of ordern, we use the classical error estimate (4.12).

Thus we have to estimate higher order derivatives with respect to θ of Q[r1(θ),r2(θ)]( f (r(θ ),θ )). We first analyze the

higher order derivatives off (r(θ ),θ ) on the subdomains.

In Corollary 2.11 in [14] we find a simplified version of the multivariate formula of Faà di Bruno yielding for (4.18)

∂ n
θ f (r(θ ),θ ) = ∑

1≤|α |≤n

Dα f ∑
k∈p(n,α)

n!
n

∏
j=1

(∂ j
θ r(θ ))kj,1(∂ j

θ θ )kj,2

k j ,1!k j ,2![ j!]|k j | ,

whereα = (α1,α2), k j = (k j ,1,k j ,2) and

p(n,α) =

{
(k1, . . . ,kn) : k j ≥ 0,

n

∑
j=1

k j = α,
n

∑
j=1

j
∣∣k j
∣∣= n

}
.

In our specific case, we can further simplify the formula and obtain, using the convention 00 = 1 and writingk j := k j ,1

∂ n
θ f (r(θ ),θ ) = ∑

1≤|α |≤n

Dα f ∑
k∈p(n,α)

n!
α2!

n

∏
j=1

(∂ j
θ r(θ ))kj

k j ![ j!]kj
, (4.19)

where nowk1,2 = α2 andk j ,2 = 0 for j ≥ 2 and we rewrite
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p(n,α) =

{
(k1, . . . ,kn) : k j ≥ 0,

n

∑
j=1

k j = α1,
n

∑
j=1

jk j = n−α2

}
.

Denote byθ∗
i the angle corresponding to the unit normal vectorni for i = 1,2, then there holds on the different domains

1. OnD̂1 we have∂ n
θ r(θ ) = 0 for all j ≥ 1 and thus

∂ n
θ f (r(θ ),θ ) = ∑

1≤|α |≤n

Dα f

2. OnD̂2 there holds∂ j
θ r(θ ) = (1− t)∂ j

θ re1(θ ) and with Lemma 4.5 we obtain
∣∣∣∂ j

θ r(θ )
∣∣∣≤ 2 j j!|v1||cos(θ −θ∗

1)|−( j+1)

≤ 2 j j!rmax|cos(θ −θ∗
1)|−( j+1) ,

where we can estimate without loss of generality, that|v1| ≤ r ′max, asv1 can be chosen, such that it is located in the

ring Br ′max
(x′)\Br ′min

(x′) andr ′max≤ rmax. Now we can estimate (4.19) such that

|∂ n
θ f (r(θ ),θ )| ≤ ∑

1≤|α |≤n

‖Dα f‖∞ ∑
k∈p(n,α)

n!
α2!k1! · · ·kn!

n

∏
j=1

(
2 j rmax|cos(θ −θ∗

1)|−( j+1)
)kj

.

Now, for k = (k1, . . . ,kn) ∈ p(n,α) it holds

n

∏
j=1

(
2 j rmax|cos(θ −θ∗

1)|−( j+1)
)kj

= 2

n
∑
j=1

jk j

r

n
∑

j=0
kj

max |cos(θ −θ∗
1)|

−
n
∑

j=1
jk j−

n
∑

j=0
kj

= 2n−α2rα1
max|cos(θ −θ∗

1)|α2−n−α1 ,

such that

|∂ n
θ f (r(θ ),θ )| ≤Cf ∑

1≤|α |n

n!
α2!

2n−α2rα1
max|cos(θ −θ∗

1)|α2−n−α1 ∑
k∈p(n,α)

n

∏
j=1

1
k j !

≤Cf n!2nrn
max|cos(θ −θ∗

1)|−2n ∑
1≤|α |≤n

1
α2! ∑

k∈p(n,α)

n

∏
j=1

1
k j !

.

Let us now show, that

∑
k∈p(n,α)

n

∏
j=1

1
k j !

≤ 1
α1!

(
n−1

α1−1

)
.

Here we use the following formula [14]

r! ∑
k∈p̂(n,r)

n

∏
j=1

1
k j !

=

(
n−1
r −1

)
(4.20)

for

p̂(n, r) :=

{
(k1, . . . ,kn) :

n

∑
j=1

k j = r ,
n

∑
j=1

jk j = n

}
.

As |p(n,α)| ≤ |p̂(n,α1)| we conclude the desired estimate with (4.20) and

∑
k∈p(n,α)

n

∏
j=1

1
k j !

≤ ∑
k∈p̂(n,α1)

n

∏
j=1

1
k j !

.
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Therefore,

|∂ n
θ f (r(θ ),θ )| ≤Cf n!2nrn

max|cos(θ −θ∗
1)|−2n ∑

1≤|α |≤n

1
α1!α2!

(
n−1

α1−1

)
,

and if we now use
n−α1

∑
α2=0

1
α2! ≤ e and

n

∑
α1=0

1
(α1−1)!

1
α1

(
n−1

α1−1

)
≤

n

∑
α1=0

(
n

α1

)
= 2n ,

it finally yields

‖∂ n
θ f (r(θ ),θ )‖∞ ≤Cf |cos(θ −θ∗

1)|−2nmax(1, rmax)
nn!22n .

With the classical error estimate (4.12) we obtain

E f = Q[θ1,θ2]
n −I f

≤ (θ2−θ1)
2n+1

2n+1
(n!)4

(2n!)3‖∂ n
θ f (r(θ ),θ )‖∞

≤ (θ2−θ1)
2n+1

2n+1
(n!)5

(2n!)3Cf max(1, rn
max) max

θ∈(θ1,θ2)
|cos(θ −θ∗

1)|−2n22n .

Stirling’s formula yields

(n!)5

(2n!)3 ∼ π√
2

( e
64

)n 1
nn−1

and obtain

(n!)5

(2n+1)(2n!)34n ∼ π
3
√

2

( e
16

)n 1
nn−1 =

π
3
√

2
e−n(ln(16)−1)−(n−1) lnn ≤Ce−2n .

Thus it yields

ED1 f ≤C(θ2−θ1)
2n+1max(1, rn

max) max
θ∈(θ1,θ2)

|cos(θ −θ∗
1)|−2ne−2n

≤C(θ2−θ1)e
2nln(θ2−θ1)e−2nln(Cθ )e−2nmax(1, rn

max) ,

where

Cθ := min
θ∈(θ1,θ2)

|cos(θ −θ∗
1)|

such that

ED1 f ≤C(θ2−θ1)e
−2n(− ln(θ2−θ1)+ln(Cθ )+1) max(1, rn

max)

Now for rmax≤ 1

− ln(θ2−θ1)+ ln(Cθ )+1 > 0

which yields the condition

θ2−θ1 < eCθ
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and forrmax > 1

−1
2

ln(rmax)− ln(θ2−θ1)+ ln(Cθ )+1> 0

such that

√
rmax(θ2−θ1) < eCθ

and we finally obtain

ED2 f ≤C(θ2−θ1)e
−bn

for positive constantsC andb independent ofn.

3. OnD̂3 there holds∂ j
θ r(θ ) = t∂ j

θ re2(θ ) and with Lemma 4.5 we obtain
∣∣∣∂ j

θ r(θ )
∣∣∣≤ 2 j j!rmax|cos(θ −θ∗

2)|−( j+1)

the same argumentation as onD̂2 yields for max(1,
√

rmax)θ2−θ1 < eCθ where

Cθ := min
θ∈(θ1,θ2)

|cos(θ −θ∗
2)| the following estimate

ED3 f ≤C(θ2−θ1)e
−bn

4. OnD̂4 there holds∂ j
θ r(θ ) = t∂ j

θ re2(θ )+ (1− t)∂ j
θre1(θ ) and Lemma 4.5 yields

∣∣∣∂ j
θ r(θ )

∣∣∣≤ 2 j j!rmax|cos(θ −θ∗
2)|−( j+1) +2nn!rmax|cos(θ −θ∗

1)|−(n+1)

Now define

Cθ := min
θ∈(θ1,θ2)

(|cos(θ −θ∗
1)|, |cos(θ −θ∗

2)|)

which for max(1,
√

rmax)θ2−θ1 < eCθ results in

E f ≤C(θ2−θ1)e
−bn

⊓⊔

Numerical experiments have shown, that the proposed quadrature converges exponentially fast even, when the condition
max(1,

√
rmax)(θ2−θ1) < eCθ is violated, but then the pre-asymptotical interval is relatively big.

We observe, that the constant in (4.17) depending onθ blows up forθ approachingθ∗
i ± kπ

2 (i = 1,2, k ∈ N). This
singularity is never reached, as the normal vector of the line segment would be perpendicular to ray direction and
the decomposition strategy ensures, that this case is not possible. Nevertheless,θ can get close to this point and
thus we investigate a grading in direction of the critical point. Let us consider domain̂D2 with a graded quadrature

Q[θ1,θ2]
n,m,σ towardsθ∗

1 ± kπ
2 . Without loss of generality, we can assume, thatθ∗

1 ± kπ
2 < θ1 and thus we apply a constant

order composite quadrature with a geometric mesh towardsθ1 with θ0 = θ1, θ j := θ1 + σmθ +1− j
θ (θ2−θ1) andnθ :=

(n0,n0, . . . ,n0) given by

Q[θ1,θ2]
nθ ,mθ ,σθ f =

mθ

∑
j=0

Q
I j
n0 f .

The constantCθ can be controlled by scaling the integration domain down, whenCθ becomes small. Then the expo-
nential convergence can be guaranteed without claiming conditions on the size of the integration domain inθ and we
can formulate the following lemma.

Lemma 4.7.For the constant order composite quadrature Q[θ1,θ2]
nθ ,mθ ,σθ f there holds
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E[θ1,θ2]Qnθ ,mθ ,σθ f ≤Ce−bnθ

where the total number of quadrature points is given by Nθ = mθ nθ . b and C are constants independent of Nθ .

Proof. Construct the composition such that on each subinterval there holds

max(1,
√

rmax)
∣∣I j
∣∣< eCθ ,

which can be achieved by a grading towards the critical valuesθ∗
1 ± π

2 . Thus Lemma 4.6 yields

E[θ1,θ2]Qnθ ,mθ ,σθ f ≤
m

∑
j=1

E[I j ]Qnθ f ≤
m

∑
j=1

Ce−bnθ ≤ mθCe−bnθ = Ce−bnθ ln(mθ ) ≤Ce−bnθ .

⊓⊔
We can use this result to obtain the following theorem.

Theorem 4.8.Given a function f∈B0
β (T) with a weight functionΦβ ,α ,0(r) = r |α |+β , then there holds for Dl as defined

in (4.10)
∣∣∣I (Dl ) f −Q(Dl ) f

∣∣∣≤Ce−b 3√N

for l = 1, . . . ,4 and where N denotes the total number of quadrature points andC and b are positive constants inde-

pendently of N, but depending on the grading factorσr the number of levels mr and on f .

Proof. The proof is similar to the proof of Theorem 4.3, but it uses Lemma 4.7 to achieve unconditional exponential

convergence in the angle. ⊓⊔
If we now return to the retarded potential(Pϕ)(x) as defined in (4.7), we can construct the inner quadrature rule by

Q(in) f =
nd

∑
l=1

Q(Dl ) f

and apply the convergence results on the subdomains. Theorem 4.3.

Theorem 4.9 (Error on E(x)∩T). Given the retarded potential Pϕ as defined in(4.9), it holds
∣∣∣Pϕ −Q(in) f

∣∣∣≤Ce−b 3√N

where f(r,θ ) = (d2 + r2)
ν
2 ϕ(r,θ )r and Q(in) f defines the composite quadrature rule on the subdomains Dl and uses a

total number of quadrature points N, b, C are positive constants independent of N.

Proof. Due to [51] f ∈ B0
β (T) and we apply Theorem 4.3 and obtain

∣∣∣P−Q(in) f
∣∣∣≤

nd

∑
l=1

∣∣∣I (Dl )−Q(Dl )P
∣∣∣≤Ce−b 3√N .

⊓⊔

4.2 Outer Quadrature for Discrete Retarded Potentials

4.2.1 Decomposition of Integration Domain T̂ ∩E(T)

In Chapter 3 the regularity of the discrete retarded potential evaluated on an elementT was discussed. We have proven,
that the function corresponding to the discrete retarded potential possesses besides the classical singularities several



4.2 Outer Quadrature for Discrete Retarded Potentials 77

singularities of geometrical nature. The classical singularities have the strongest influence on the continuity of higher
order derivatives, if we deal with weakly singular kernel functions as known from the time independent case, cf. [43].
Nevertheless, the geometrical singularities have also a significant influence on the regularity of higher order derivatives
of Pϕ . In Fig. 3.2 the distribution of the geometrical singularities inR3 is sketched forrmin = 0. Forrmin > 0 we obtain
an additional set of geometrical singularities, as discussed in Section 3.2.4.
A numerical integration ofPϕ over the domain̂T ∩E(T) has to pay attention to these different singularities. In order
to achieve an exponential convergence, we have to incooperate these singularities into a composite quadrature rule
including an appropriate grading strategy. Thus let us firstdescribe an appropriate decomposition of the integration
domain. Regard first the simplified domain of influenceER(T) as defined in (3.3) withR> 0.
Intersect the domain of influenceER(T) including the spheresBR(pi) and the cylindersCR(ei) with the planeET̂

corresponding to the test elementT̂. These intersections can result in quite complicated shapes. In Chapter 3 we
have already discussed some of these intersections in the triangle planeET , compare e.g. Fig. 3.15 and some results
perpendicular and parallel to this plane, cf. Fig. 3.23 and 3.24. But how do these intersections look like, if the triangle
planesET andET̂ are neither parallel nor perpendicular?
The intersection of a sphereBR(pi) and a planeET̂ always results in a circleBR′(pi)(p′i). Given the normalnT̂ of the
planeET̂ and a point ˆp ∈ ET̂ we can describe such a circle in the following way. First project its centerpi into the
triangle planeET̂ which results inp′i = pi − (pi − p̂,nT̂)nT̂ . If the sphere is actually intersecting the plane, the radius of
the projected circle is due to Pythagoras’ theorem

R′(pi) =

{√
R2− (pi − p̂,nT̂)2 ,

∣∣(pi − p̂,nT̂)
∣∣< R

0, else
.

If the circles touch a cylinder in a point, there exists a point singularity. If the circle coincides with the surface of the
cylinder touching its caps, there exists a one-sided singularity on the whole boundary of the circle. If the circle does
not touch the cylinders, the potential is regular.
Therefore, on the three circlesBR′(pi)(p′i) with (i = 1,2,3) the potentialP(x) possesses one-sided singularities from the
interior of the circle.
Coming now to the intersection set of a cylinderCR(e) with the planeET̂ the situation is a bit more complicated. Heree
denotes the axis ofCR(e) andm1 andm2 are the end points ofe. The intersection can result in circles, ellipses or in either
one line or two parallel lines and as we regard a finite cylinder, also in subsets of these elements. In Chapter 11.7.3 in
[50] a detailed case study for intersection of plane and cylinder is presented. Note that in contrast the analysis of [50],
our cylinder has open caps. Denote the axis direction of the cylinder d = e/|e| and its center pointc = (m1 + m2)/2.
The half-height of the cylinder ish = |e|/2. There three basic cases are distinguished

1. ET̂ ‖ e, i.e.
∣∣d ·nT̂

∣∣ = 1: The intersection is either one or two line segments for a distance dist(e,ET̂) = R or
dist(e,ET̂) < R. If dist(e,ET̂) > R, then the intersecting set is empty.

2. ET̂ ⊥ e, i.e.
∣∣d ·nT̂

∣∣= 0: If dist(c,ET̂) < h the intersection is a circle; for dist(c,ET̂) ≥ h the intersection is empty.
3. ET̂ andei are neither parallel nor perpendicular. Compute the intersection pointIa of ET̂ with the axis of the cylinder

and compute its distance to the center pointc

a. dist(Ia,c) < h: There always exists an intersection.
b. dist(Ia,c)≥ h: There might exist an intersection depending on the relative position of the plane compared to the

cylinder.

In both cases the intersection will be an ellipse, an elliptical arc or two elliptical arcs. For an infinite cylinder the
ellipse can be represented [50] by

ce = m1 +
(p−m1) ·nT̂

a ·nT̂

a

ru =
R∣∣a ·nT̂

∣∣ u =
a− (a ·nT̂)nT̂∣∣a− (a ·nT̂)nT̂

∣∣

rv = R v = nT̂ ×u,

wherece is the origin of the ellipse with axis directionu andv and radiiru andrv.

On the boundary of the intersected domains (without the caps) there exists a one-sided edge singularity.
These three spheres and cylinders are a subset of the domain of influenceER(T). The only remaining part is the prism
PR(T), i.e. we have to intersect the planeET̂ with the shifted trial elementsTR± := T ±R. This intersection is either
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a line, a point, the whole triangle or empty, depending on therelative position of the planeET̂ to the triangleT. In
Chapter 11.5.3 [50] a detailed analysis of the different cases and its detection may be found.
Note that for the general case withrmin > 0 all these singularities duplicate as pointed out in Proposition 3.25.

4.2.2 Construction of the Composite Quadrature Rule

The discrete retarded potential (4.7) was analyzed in for Theorem 3.26. We have to decompose the planeET̂ induced
by the test element with respect to the singularity field of the retarded potential given byΘ rmax

rmin
(T) as defined in (3.23).

This partition intersected with the test elementT̂ defines the the composition of the integration domainE(T)∩ T̂ of the
outer integral and thus

G(ϕ , ϕ̂) = ∑
A=A′∩ET̂ ,A′∈Θ rmax

rmin (T)

∫

A∩T̂

f (x)dx.

The elementsA∈Θ rmax
rmin

(T) can have a complicated structure, but they all can be described as a polygon withκ edges,
where each edge is a line segment, the arc of a circle or the arcof an ellipse. It is also possible, that the partition
elements result in complete circles and ellipses. In Fig. 4.7 a typical decomposition for the example discussed in the
beginning, compare Fig. 4.1(a), is sketched. In this specific example the test elementT̂ is decomposed into 5 elements
illuminated byE(T). The remaining part of the element is not part of the integration domain. We define the outer
quadrature rule via

Q(out) f := ∑
A=A′∩ET̂ ,A′∈Θ rmax

rmin (T)

Q(A∩T̂) f .

T

E(T)

(a) Position ofT̂ in the singularity distribution ofT.

T̂

(b) Zoom of the illuminated test trianglêT.

Fig. 4.7 Example of the decomposition of̂T in the natural decomposition as induced byT if both elements lie in the same plane.

Before we continue, we collect some definitions of geometricmeshes for corner, edge and corner edge singularities.
Denote byK := [0,1]× [0,1] the unit square. We definex0 = 0 andxk = σm−k for k= 1, . . . ,m, such thatIk := [xk−1,xk],
wherem∈ N is the grading level andσ ∈ (0,1) the grading parameter. The geometric meshKσ

m is defined in the
following ways, depending on the type of singularity..
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Geometric mesh for a corner singularity: In [51] we find the following suggestion of a geometric mesh for a point
with m∈N level and grading parameterσ ∈ (0,1). The decompositionKσ

m of K into 3(m−1)+1 elementsKi j is

K j j = I j × I j ( j = 1, . . . ,m) ,

K1 j =

(
j−1⋃

l=1

Il

)
× I j ( j = 2, . . . ,m) K j1 , = I j ×

(
j−1⋃

l=1

Il

)
( j = 2, . . . ,m) .

Compare also Fig. 4.8(a). The degree vector is given byp = (p1, . . . , pm), such that on the elementsK1 j , K j1 andK j j a
quadrature rule of degreep j is used.

Geometric mesh for an edge singularity:

The decompositionKσ
m of K into m elementsK j is

K j = I j × [0,1] ( j = 1, . . . ,m) .

Compare also Fig. 4.8(b). The degree vector is given byp= (p1, . . . , pm). We define a spline spaceSp(Km
σ ) of piecewise

defined polynomialsp(x,y) with a polynomial degreep j in x1 and p in x2 on K j , i.e. v|Ii×I j
∈ Pp j ,p(K j), where we

demandp∼ m. On the right hand side, an example with quadrature points issketched.
We will prove the exponential convergence of a composite quadrature rule for an anisotropic quadrature rule.

Proposition 4.10.Let f ∈ Bl
β (K), with an anisotropic weight function likeΦβ ,α ,l (x1,x2) = x|α |−l+β

1 . Then the variable

order composite quadrature rule as described above yields exponential convergence, i.e.

∣∣IK f −QK f
∣∣≤Ce−b 3√N ,

where b and C are constants independent of the total number ofquadrature points N.

Proof. By construction it holds,QK f := (Q[0,1] ⊗QI j ) f and thus

∣∣IK f −QK f
∣∣≤

m

∑
j=1

∣∣IK j f −QK j f
∣∣

≤
m

∑
j=1

∣∣∣∣∣∣∣

∫

K j

f −Q[0,1]
∫

I j

f

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
Q[0,1]

∫

I j

f −QK j f

∣∣∣∣∣∣∣

=
m

∑
j=1

∣∣∣I I j (I [0,1]−Q[0,1]) f
∣∣∣+
∣∣∣Q[0,1](I I j −QI j ) f

∣∣∣

≤
m

∑
j=1

∣∣I j
∣∣max

x1∈I j

∣∣∣(I [0,1]−Q[0,1]) f (x1, ·)
∣∣∣+

m

∑
j=1

max
x2∈[0,1]

∣∣(I I j −QI j ) f (·,x2)
∣∣

Now, the function is analytic parallel to the edge and perpendicular to the edge, we can apply the usualBβ -analysis in

one-dimension as already discussed in Lemma 4.4, such that

∣∣IK f −QK f
∣∣≤C2e−b2n2 +C1e−b1

√
N1 ,
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wheren2 denotes the number of quadrature point for the evaluation inx2 andN1 ∼ m2 denotes the total number of

quadrature points for the evaluation inx1. C1, C2, b1 andb2 are positive constants independent ofn2 andN1. As n2 ∼ m

we further estimate

∣∣IK f −QK f
∣∣≤Ce−b 3√N .

⊓⊔

Geometric mesh for an corner-edge singularity: In [38] the following geometric mesh is proposed. The decomposition
consists ofm2 elements defined via

Ki j = Ii × I j (i, j = 1, . . . ,m) (4.21)

Moreover, for a degree vectorp= p1, . . . , pm we define a spline spaceSp(Km
σ ) of piecewise defined polynomialsp(x,y)

with a polynomial degreepi in x1 andp j in x2 on Ii × I j , i.e. v|Ii×I j
∈ Ppi,p j (Ki j ). Compare also Fig. 4.8(c).

(a) Corner singularity. (b) Edge singularity. (c) Corner-edge singularity.

Fig. 4.8 Grading strategy for the different types of singularities for m= 4 andσ = 0.5.

4.2.3 Error Analysis

Theorem 4.11.Given a function f(x,y) := k(x−y)ϕ(y)ϕ̂(x) it holds
∣∣∣G(ϕ , ϕ̂)−Q(out)Q(in) f

∣∣∣≤Ce−b 4√N

where b and C denote positive constants independent of the number of quadrature points N.

Proof. Define f (x,y) := k(x−y)ϕ(y)ϕ̂(x) and estimate
∣∣∣G(ϕ , ϕ̂)−Q(out)Q(in) f

∣∣∣≤
∣∣∣G(ϕ , ϕ̂)−Q(out)(Pϕ)(x)

∣∣∣−
∣∣∣Q(out)(Pϕ)(x)−Q(out)Q(in) f

∣∣∣

The second term can be estimated by Theorem 4.9, whereas for the estimation of the first term, we have to apply

the knowledge of the regularity ofPϕ as formulated in Theorem 3.26. Each partition element can involve corner,

edge and corner-edge singularities. Corner or point singularities have been analyzed in Theorem 4.1 [51]. Corner

and corner-edge singularities have been analyzed in the context of the hp-method, compare [27] for the exponential

convergence on geometric meshes with edge singularities and [38] the corresponding corner-edge singular case. These
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techniques can also be applied in the construction of a quadrature on a domain with edge or corner-edge singularities. In

Proposition 4.10 we give a short proof for the exponential convergence of the graded quadrature for an edge singularity.

The regularity the retarded potential on each partition elementA ∈ Θ rmax
rmin,ET̂

(T) intersected with the test trianglêT is

described by a countably normed spaceBl
β (A∩ T̂), where the weight function and the order are given in Theorem3.26.

Therefore, we can always divide the regarded subelement, such that a conform mapping of the above described model

situation yields, that there exist positive constantsb andC independent of the number of quadrature pointsN such that
∣∣∣∣∣∣

∫

A∩T̂

Pϕ(x)ϕ̂(x)dsx−Q(A∩T̂) ((Pϕ)(x)ϕ̂(x))

∣∣∣∣∣∣
≤Ce−b 4√N

and thus the assertion follows. ⊓⊔

4.3 Technical Results

In this section we collect some of the auxiliary results usedthroughout this chapter. Some of the presented results
are quoted from other works or slightly modified and only stated for the sake of completeness, whereas some where
delayed, as the estimation is straight forward, but lengthy. The next lemmata were used in the proof of Lemma 4.4.

Lemma 4.12 (Lemma 4.1 in [51]).Let f ∈C0(Ω), Ω ⊂Rr , and let Q be a PI quadrature rule onΩ which is exact of

total degree p≥ 0. Then
∣∣∣∣
∫

Ω
f dx−Q f

∣∣∣∣≤ 2|Ω | inf
π
‖ f −π‖L∞(Ω)

where the infimum is taken over all polynomialsπ of total degree p.

Lemma 4.13 (Lemma 4.3 in [51]).Let Ω = (−h/2,h/2)r ⊂Rr with h∈ (0,1) and l > r/2 a natural number. Then

we have for everyψ ∈ H l (Ω)

‖ψ‖2
L∞(Ω) ≤C

l

∑
m=0

h2m−r |ψ |2Hm(Ω)

where the constant C depends on r, but is independent of h.

Lemma 4.14 (Lemma 3.38 in [52]).Let J= (a,b) ⊂R, h= b−a and u∈ H p+1(J) for some p≥ 1. Then there exists

a polynomialφ of degree p on J, such that for m= 0,1

∥∥∥(u−φ)(m)
∥∥∥

2

L2(J)
≤Ch−2m

(
h
2

)2(s+1) (p−s)!
(p+s+2−2m)!

∥∥∥u(s+1)
∥∥∥

2

L2(J)

where C> 0 is independent of h, p and u and s∈ N0, s≤ p, m= 0,1 if p ≥ 1 and s= m = 0 if p = 0. Moreover,

u(a) = φ(a) and u(b) = φ(b) for p≥ 1.

Remark 4.15.Again, we do not need an exact interpolation on the boundary and a more general version of Lem. 4.14

would do the job.

The next Lemma is a modification of Lemma 3.39 in [52] forB0
β -functions.

Lemma 4.16.Let J= (a,b) ⊂ (0,1), 0 < λ < CJ and h= b−a = λa. For each u∈ Hs+1
β (J) there exists a polynomial

φ of degree p≥ 1, such that

∥∥∥(u−φ)(m)
∥∥∥

2

L2(J)
≤Ca−2(β+m) Γ (p−s+1)

Γ (p+s+3−2m)

(
λ
2

)2s

|u|2
Hs+1,0

β (J)
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for s≤ p, s∈R and m= 0,1.

Proof. It holds
∥∥∥u(s+1)

∥∥∥
L2(J)

=
∥∥∥u(s+1)rβ+s+1r−(β+s+1)

∥∥∥
L2(J)

≤ a−(β+s+1)|u|
Hs+1,0

β (J)

Using this and Lem. 4.14 it yields

∥∥∥(u−φ)(m)
∥∥∥

2

L2(J)
≤Ch−2m

(
h
2

)2(s+1) (p−s)!
(p+s+2−2m)!

a−2(β+s+1)|u|2
Hs+1,0

β (J)

≤CCJa−2(β+m)

(
λ
2

)2(s+1−m) (p−s)!
(p+s+2−2m)!

|u|2
Hs+1,0

β (J)

≤Ca−2(β+m)

(
λ
2

)2s (p−s)!
(p+s+2−2m)!

|u|2
Hs+1,0

β (J)
(4.22)

whereas the last step uses thatλ is bounded, which is the case for geometrical meshes, cf. remark 4.17. Applying the

real method of interpolation as stated e.g. in [52] Theorem B.3. we defineσ := s+ θ −1 for θ ∈ (0,1) and

Hσ+1,0
β (J) := (Hs,0

β (J),Hs+1,0
β (J))θ ,∞

Thus the error operatorT : Hs+1,0
β (J) → L2(J) with Tu := (u−φ)(m) is linear and bounded due to (4.22). Thus inter-

polation yields (here we can apply an argumentation similarto Schwab in [52] p. 92)

‖T‖2
Hσ+1,0

β (J)→L2(J)
≤ ‖T‖2(1−θ)

Hs,0
β (J)→L2(J)

‖T‖2θ
Hs+1,0

β (J)→L2(J)

≤Ca−2(β+m)

(
λ
2

)2σ Γ (p+1−σ)

Γ (p+1+ σ +2−2m)
.

Inserting the definition ofσ and using thatΓ (x) is a monotone increasing function forx≥ 1 the assertion follows.⊓⊔

Remark 4.17.For the proposed geometrical subdivision of the ray, we haveλ = (1−σ)/σ which is bounded forσ > 0,

but can become arbitrary large forσ → 0. Nevertheless, for practical purposesσ wouldn’t be chosen too close to zero.

Lemma 4.18.Define F: (1,∞)× (0,1)→R via

F(d,α) :=

(
αd
2

)α( (1−α)1−α

(1+ α)1+α

)1/2

then it holds

inf
α∈(0,1)

F(d,α) = F(d,αmin) < 1, αmin =
2√

4+d2
.

4.4 Numerical Experiments

4.4.1 Accuracy of the Numerical Evaluation of Retarded Integrals

Let us discuss the evaluation of retarded potentials following the quadrature schemes introduced in Section 4.1. We
will choosermin = tl andrmax = tl+1, wheretl = l∆ t and evaluate

P(x) =

∫

T∩Btl+1(x)\Btl (x)

1
|x−y| dsy (l = 0,1, . . .)
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where we fix the triangleT = {(0,0,0),(1,0,0),(0,1,0)}.
Fix ∆ t = 1/3. As we have already discussed the composite quadrature forthis type of integral in some detail, we only
want to underline the composition of the integration domainfor some of the chosen pointsx as sketched in Fig. 4.9.
We observe, that forx = (0.25,0.25,0) the intersectionT ∩Btl+1(x) \Btl (x) vanishes forl ≥ 3, such that we regard
the potential evaluation on the first three rings. Each ring corresponds to one time step in the final MOT scheme. In
Fig. 4.9(a) the decomposition on each ring is sketched.

(a) Example: Point in triangle,x = (0.25,0.25,0)T . (b) Example: Point outside triangle,x = (−1,−1,0)T .

Fig. 4.9 Examples for the decomposition of the integration domain for ∆t = 0.3.

The first ring is decomposed into 7 subelements, the second into 9 and the third into four subelements. One immediately
notices the different size of these subelements, such that auniform distribution of quadrature points is a difficult task.
A grading in the angle is not necessary for this example, as the use of polar coordinates lifts the point singularity. For
integrals with a stronger singularity on the kernel, as e.g.occurring for the double layer potential, this is naturallynot
true.
In Fig. 4.10(a) and 4.10(b) we observe the exponential convergence forx = (0.25,0.25,0) andx = (−1,−1,0) on all
rings. In Fig. 4.9(b) the decomposition of the integration domain forx = (−1,−1,0) is sketched.
As analyzed in Lemma 4.6 the exponential convergence of the Gaussian quadrature over the angle can posses a big
pre-asymptotic interval. Thus we apply an additional grading in the angle, depending on the distance of the angular
integration domain to the critical values as identified in Lemma 4.6. In the practical implementation, we activate the
angular grading if the direction of the angular integrationxθ and the normaln of the edge representationre(θ ) as
defined in (4.8) are almost perpendicular. We choose|xθ ·n|< 0.2. If x = (0.1,0.85,0) we can observe the effect of the
grading. In Fig. 4.10(c) we have exponential convergence onall four rings. Using a grading in the angle in Fig. 4.10(d)
and Fig. 4.10(e) the convergence on ring 1 forl = 1 is significantly improved compared with Fig. 4.10(c), where a
grading withσ = 0.17 seems to be the better choice.

Remark 4.19.(i) Note, that this quadrature scheme was used to compute thefigures in Section 3.3.

(ii) As we use polar coordinates for the kernel function|x−y|−1 no grading in the radius is necessary.

4.4.2 Test for the Accuracy of the Quadrature Routine

Given the matrixV corresponding to the classical single layer potential

Vi j :=
1

2π

∫

Γ

∫

Γ

ϕi(x)ϕ j (y)

|x−y| dsy dsx

and the basic Galerkin matrix
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(a) x = (0.25,0.25,0)T , without grading.

10
0

10
1

10
2

10
3

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

number of quadrature points

er
rp

r

x=(−1,−1,0)

 

 
error on ring 4
error on ring 5
error on ring 6

(b) x = (−1,−1,0)T , without grading.
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(c) x = (0.1,0.85,0)T , without grading.
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(d) x = (0.1,0.85,0)T , σ = 0.17,m= 6.

10
1

10
2

10
3

10
4

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of quadrature points

er
ro

r

x=(0.1,0.85,0), σ=0.5, m=6

 

 
error on ring 0
error on ring 1
error on ring 2
error on ring 3

(e) x = (0.1,0.85,0)T , σ = 0.5, m= 6.

Fig. 4.10 Error of the retarded potentialP(x) =
∫

Btl+1(x)\Btl (x)

|x−y|−1 dsy with ∆t = 1/3 in different pointsx.
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Gk
i j :=

1
2π

∫∫

Ek

ϕi(x)ϕ j (y)
|x−y| dsy dsx ,

for i, j = 1, . . . ,dim(Vh). Due to the additivity of the integral it holds for a bounded boundaryΓ

V =
∞

∑
k=0

Gk =
n̂

∑
k=0

Gk , (4.23)

with n̂+1 non-vanishing matrices.
For this numerical experiment we use the recursively refinedicosahedron as an approximation of the sphere. Two
refinement steps correspond to 320 triangles on the surface mesh. We use the analytical evaluation of the time indepen-
dent single layer matrix as proposed in [38] and realized within the program package MaiProgs [37]. We compare the
maximal error in the matrix entries of the sum of the retardedmatrices and the analytical version of the time indepen-
dent matrix, as pointed out in (4.23). We contrast differentquadrature strategies for the retarded matrices and analyze
their behavior for different polynomial degrees in space and different time step sizes.
Numerical experiments have shown, that a quadrature schemewith a cut-off function on the kernel function does not
yield the desired accuracy.
In Table 4.1 we the standard outer quadrature for weakly singular integrals as provided in MaiProgs [37], compare also
[38]. Here grading towards the singular edges and vertices of the corresponding trial element is used as e.g. sketched
in [43]. The inner quadrature implements the decompositionof the integration domain as described in Section 4.1.1.
We do not gain an exponential convergence as we did not implement the full decomposition scheme as discussed in
Section 4.2.2. Nevertheless, we achieve already an accuracy that lead to a stable MOT-scheme as we will see in the
next chapter.

p/N ∆t n̂ max(V −∑n̂
i=0Gk)

24 quad. points 12 quad. points 8 quad. points 4 quad. points 2quad. points

0/320 3.0 0 2.9778e-08 2.9647e-08 8.5263e-09 4.7401e-06 1.0468e-04

1.0 1 2.9778e-08 2.9647e-08 8.5263e-09 4.7401e-06 1.0468e-04

0.5 3 2.9778e-08 2.9647e-08 8.5263e-09 4.7401e-06 1.0468e-04

0.25 7 2.9778e-08 2.9652e-08 9.0388e-09 4.6643e-06 1.0174e-04

0.125 15 2.9778e-08 2.9684e-08 1.6393e-08 2.6057e-06 6.3145e-05

0.0625 31 2.9778e-08 2.9752e-08 2.5795e-08 9.0869e-07 2.8050e-05

1/960 3.0 0 1.8828e-08 1.9044e-08 4.6762e-08 5.2965e-06 1.0917e-04

1.0 1 1.8828e-08 1.9044e-08 4.6762e-08 5.2965e-06 1.0917e-04

0.5 3 1.8828e-08 1.9044e-08 4.6762e-08 5.2965e-06 1.0917e-04

0.25 7 1.8828e-08 1.9050e-08 4.7177e-08 5.2488e-06 1.0601e-04

0.125 15 1.8828e-08 1.8979e-08 3.6390e-08 2.9440e-06 6.5484e-05

0.0625 31 1.8828e-08 1.8914e-08 2.7276e-08 1.2705e-06 3.3426e-05

2/1920 3. 0 2.4462e-08 2.4638e-08 4.9144e-08 5.0653e-06 1.0744e-04

1. 1 2.4462e-08 2.4638e-08 4.9144e-08 5.0653e-06 1.0744e-04

0.5 3 2.4462e-08 2.4638e-08 4.9144e-08 5.0653e-06 1.0744e-04

0.25 7 2.4462e-08 2.4638e-08 4.8080e-08 4.8564e-06 1.0266e-04

0.125 15 2.4462e-08 2.4633e-08 3.8654e-08 2.7042e-06 6.2303e-05

0.0625 31 2.4462e-08 2.4510e-08 3.0234e-08 1.0976e-06 3.0921e-05

Table 4.1 Analysis of the polar quadrature for retarded potentials for different polynomial degreesp of the test and trial functions in space

and different time steps∆t on sphere with 320 triangles andGk( f ) ∈RN×N (k = 0, . . . , n̂) with f (x,y,x−y) = |x−y|−1. Equal distribution

of quadrature points in subelements using polar quadraturewithout grading inr for potential evaluation.

In Table 4.2 we performed the same experiment for the kernel of the double layer potential and observe, that the
influence of the geometrical light cone singularities is even worse.
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p/N1×N2 ∆t n̂ max(K −∑n̂
i=0Gk)

24 quad. points 12 quad. points 8 quad. points 4 quad. points 2quad. points

0/320×162 3.0 0 1.5655e-11 4.6712e-11 2.7278e-09 2.6086e-07 5.9782e-06

1.0 1 1.5194e-07 1.5194e-07 1.5200e-07 2.3555e-07 5.2483e-06

0.5 3 1.5194e-07 1.5194e-07 1.5200e-07 2.3555e-07 5.2483e-06

0.25 7 1.5194e-07 1.5194e-07 1.5200e-07 2.3555e-07 5.2483e-06

0.125 15 1.5194e-07 1.5194e-07 1.5194e-07 2.3555e-07 5.2483e-06

0.0625 31 1.5194e-07 1.5194e-07 1.5194e-07 2.3367e-07 4.3491e-06

Table 4.2 Analysis of the polar quadrature for retarded potentials for different polynomial degreesp of the test and trial functions in space

and different time steps∆t on sphere with 320 triangles andGk( f ) ∈RN1×N2 (k = 0, . . . , n̂) with f (x,y,x−y) = ny · (x−y)|x−y|−3. Equal

distribution of quadrature points in subelements using polar quadrature with grading inr for potential evaluation.



Chapter 5

Numerical Results

Never in the history of mankind has it been possible to produce

so many wrong answers so quickly.

Carl-Erik Fröber

In this Chapter we present numerical experiments validating our code and underlying the efficiency of the method. All
computations were done as an extention of the software package MaiProgs [37].
The presented results where computed on a cluster with 5 nodes à 8 cores with 2.93 GHz and 48 Gbyte, where each
core uses two Intel Nehalem X5570 processors.

5.1 Retarded Single Layer Potential Ansatz

Fig. 5.1 Mesh of the surface of the sphere with 320 and 5120 elements.

We solve the single layer ansatzVϕ = f . The corresponding space-time variational formulation (2.12) and its dis-
cretization (2.17) have been discussed earlier. In [7] forΓ = B1(0) an exact solution of the problem is given. The
surface mesh ofΓ := ∂B1(0) is generated by a recursive refinement of the icosahedron, compare Figure 5.1. For
f (t,x) = sin5(t) it is known, that the exact solution is given byϕ(t,x) = ∂t f (t,x) = 10sin4(t)cos(t) for t ∈ [0,2] and
thus

‖ϕ(t, ·)‖L2(∂B1(0)) = 20
√

π sin4(t)cos(t) t ∈ [0,2] .

Although the presented schemes are unconditionally stable, we give the ratio between space and time discretization
and define

β :=
∆ t
h

c,

where we setc = 1. This corresponds to the Courant-Friedrichs-Levy coefficient known for finite difference methods
and sometimes abbreviated byCFL. Nevertheless, in our case it is only a factor that reflects the relation between space
and time resolution commonly used for these kind of MOT schemes [21].
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Fig. 5.2 Numerical results for benchmark of Sauter and Banjai

In Fig. 5.2 we compare theL2-error in each time step for different space and time discretizations. In Fig. 5.2(a) the
L2-norm of the approximate solution converges towards theL2-norm of the exact solution for a fixed space mesh and
a decreasing time step∆ t. This is reflected by the behavior of theL2-error in Fig. 5.2(b), where the error halves if∆ t
halves. In Fig. 5.2(c) we fix∆ t = 0.01 but observe, that the error in time is dominant. One a certain resolution a time
is reached, the error is no longer significantly decreasing.But as the solution is constant in each time step this is not
rather surprising. In Fig. 5.2(d) we fixβ ≈ 0.12 and observe almost the same behavior as in Fig. 5.2(a).
Using the space-timeL2-norm defined via

‖ϕ‖2
L2([0,T],L2(Γ )) :=

∫ T

0
‖ϕ(t, ·)‖2

L2(Γ ) dt ,

we obtain for fixed values ofβ the convergence results presented in Fig. 5.3. Namely a convergence rate of approxi-
mately 1/3 in space and 1 in time. Note that, as the error in time seems tobe unrelated to the value ofβ , the error in
space is smaller ifβ decreases, although the rate of convergence is the same.
In order to eliminate the influence of the error in space we choose a good approximation in space and vary∆ t. here
we again observe the order of convergence 1. For the analysisunpolluted by the temporal error, we choose a high
resolution in time and decreaseh. Here we choose 500 and 1000 time steps corresponding to∆ t = 0.004 and∆ t =
0.002, respectively. The results are not very satisfactory asthe temporal error is big compared to the spacial error, but
a further reduction of the time step is not easily possible because the intersection of the discrete light cone integration
domain with the mesh becomes very small.
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Fig. 5.3 Convergence results for fixedβ .
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Fig. 5.4 Convergence results for fixed space and time resolutions.

5.2 Direct Problem using the Single Layer Potential

In this section we consider the direct formulation of the Dirichlet problem as discussed in 2.18. We use a benchmark
given in [12]. LetΩ− := BR(0) andΓ := ∂BR(0), such thatΩ = R3 \BR(0). Then forr = |x| and a wave velocity
c > 0 there holds

u(t, r) =
1
r

(
3
4
−cos

(
π(r −ct+3R)

2R

)
+

1
4

cos

(
π(r −ct+3R)

R

))
(H(r −ct+3R)−H(r −ct−R)) .

One easily verifies, that�u = 0 for (t,x) ∈R+Ω andu̇(0, r) = u(0, r) = 0 in Ω . In the following we fixc = 1. The
Cauchy data on the surface of the sphere are

u(t,1) =

(
3
4
−cos

(π
2

(4− t)
)

+
1
4

cos(π(4− t))

)
(H(4− t)−H(−t)) ,

∂u
∂n

(t,1) =

(
−3

4
+cos

(π
2

(4− t)
)

+
π
2

sin
(π

2
(4− t)

)
− 1

4
(cos(π(4− t))+ π sin(π(4− t)))

)
(H(4− t)−H(−t)) .

Thus the sphere is radiating a signal fort ∈ (0,4), compare Fig. 5.5.
For this problem we can study the long time behavior of our method. In Fig. 5.6 the error reduces if∆ t reduces. Here we
use a mesh with 320 elements, but for finer triangulation of the sphere we observed the same behavior. Two perturbing
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Fig. 5.5 Exact solution of direct problem.

facts remain. Once the signal vanishes, the error stucks a very high level and for a very high resolution in time the error
increases again. One explanation might be, that the error inthe retarded double layer potential pollutes the solution
stronger than expected. Nevertheless, the method itself behaves very stable.
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Fig. 5.6 Numerical solution of Dirichlet problem.

5.3 Computation Times, Memory Requirement and Performance

The computation of the matrices it by far the most expensive part in the computations. Only the use of the parallel
computation of the matrix entries with OpenMP [11] providedin Maiprogs resulted in acceptable computation times.
In Table 5.1 we compare the computation time and memory requirements for a triangulation of the unit sphere into
5120 elements for the retarded single layer matrix. A higherresolution in time results in more non-vanishing matrices
and thus the demand of memory and computation time increases, although each matrix becomes sparser as the light
cone integration domain reduces if the time step size decreases.
Once the complete set of non-vanishing matrices is computed, the algorithm is very fast and the computation on
arbitrarily long time intervals is no problem, as the MOT-scheme reduces to a plain matrix vector multiplication. First
we assemble the right hand side as described in Section 2.3 and than we solve the linear equation system. Here the
conjugate gradient method worked well, but as the system matrix is the in each time step a LR-decomposition could
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No. of matrices ∆t Memory(MByte) total Wall-time(Sec)

1 2.0 314.6 7.8266e+03

2 1.0 406.2 7.9025e+03

4 0.5 546.0 8.3621e+03

8 0.25 698.0 9.5144e+03

16 0.125 911.3 1.1621e+04

32 0.0625 1284.7 1.6032e+04

64 0.03125 1998.8 2.4803e+04

Table 5.1 Memory requirement for different resolution in time on the mesh of a unit sphere approximation with 5120 elements.

also be applied. Although the condition number of the systemmatrix is not bounded it is increasing very slowly as
plotted in Fig. 5.7(a).
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Fig. 5.7

In Fig. 5.7(b) we compare the wall time needed for the computation of the different matrices. The first matrices are
quite expensive, which is due to the grading strategy in the outer quadrature used for the singularities on the boundary
of each element. If the near field is left the computation times increase as the light cone integration domain illuminates
more elements due to the shape of the domain.
The approximate performance for the computation of one matrix is 15.25 for 64 matrices and 15.37 for 32 matrices
on the computing system used for the numerical experiments.This coincides also with the overall performance of the
method.





Chapter 6

Conclusions

There exist many possible continuations and extensions of the presented work. Compared to the time independent
boundary integral method the theory of the retarded potential boundary integral method is still in its infancy. As pointed
out in [15] the analysis in the weighted space-time Sobolev spaces is incomplete and the a priori error estimates are
still not optimal. Although it is quite difficult to gain a complete overview of the state of the art, as many results are
published in PhD thesis, which are not all available to the public, a further research in this area is definitely needful.
Moreover, so far only the h-version was investigated although there is no obvious reason to restrict the computations
in such a way. Higher polynomial degrees in space and time should lead to better convergence rates and might as well
be able to tackle non-smooth input data.
Another logical step would be to study adaptive schemes in space and time. There are many works [58, 10] investigating
residual and hierarchical error estimators, which aim to locally reduce the error by refining the mesh. Such a scheme
should also be applicable for retarded boundary integral equations, where additional difficulties are expected. One
question is how does a locally strongly refined mesh influencethe condition number of the Galerkin matrix. But
also a non-uniform time mesh can be applicable, when one e.g.deals with strongly changing input data in time. The
implementation of adaptive meshes in space most probably requires the extension of the analysis presented in Chapter 3
on triangles to quadrilaterals, which should be straight forward as Lemma 3.2 is easily generalized.
FEM-BEM coupling approaches were presented in [3, 17], but here as well as in many other problems concerned with
retarded potential integral equations the convergence analysis is still incomplete.
Finally let us discuss a possible realization of the outer quadrature presented in Section 4.2. Step by step one should
include the different singularities and the cut-off behavior of the discrete retarded potential. Besides the classical
singularities on the boundary of the element the planar geometrical light cone singularities have the strongest impacton
the quadrature error. An appropriate decomposition and a possible grading towards this one-sided singularities should
be taken into account. The next step would then be the implementation of the cylindrical light cone singularities and
finally a decomposition with respect to the spheres around the vertices of the regarded element. Thus the computation of
the desired decomposition involves the intersection with up to four planes, six cylinders and six spheres. The question
is, if such a complex intersection problem, which is probably easily polluted by numerical instabilities can still result
in a fast method. Therefore, one has to find a compromise between the needed accuracy and the efficiency of the
computational implementation. Here the introduction of relative coordinates as used for the time independent potentials
[49] might be an option.
First attempts on a fast evaluation of retarded potentials were made in [56].
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Appendix A

Functional Framework and Notation

In this chapter, we give the functional framework and some basic notations. The indicator functionχA(x) for a setA is
defined by

χA(x) =

{
1 x∈ A

0 x /∈ A
.

In the following,H(x) denotes the Heavyside function andδ (x) the delta distribution. Denote by〈 · , · 〉 a possibly
hermitian inner product defined via

〈u,v〉 :=
∫

Γ
uv̄dsx .

Countably Normed Spaces

In this section we give the definition of the countably normedspaces which are extensively used throuhout this thesis
in order to describe the regularity of the discrete retardedpotentials, cf. Chapter 3. The countably normed spaces
Bm

β (Ω) where introduced in [2, 20]. LetΩ denote a bounded domain, then we first define the weighted Sobolev spaces

Hm,l
β (Ω).

Definition A.1 (Weighted Sobolev spaceHm,l
β (Ω)). Let β be a real number withβ ∈ (0,1) if not specified otherwise.

The weight functionΦβ ,α ,l (x) for α = (α1,α2,α3) andl ∈N is defined throughout this work in several ways and is

defined when needed. Moreover, denote

Dα :=
∂ |α |

∂xα1
1 ∂xα2

2 ∂xα3
3

= ∂ α1
1 ∂ α2

2 ∂ α3
3 .

Then theweighted Sobolev spacesare defined form∈N andm≥ l ≥ 1 on some domainΩ by

Hm,l
β (Ω) =

{
u : u∈ H l−1(Ω) for l > 0, ‖Φβ ,α ,lD

αu‖L2(Ω) < ∞ for l ≤ |α| ≤ m
}

with the norm

‖u‖2
Hm,l

β (Ω)
= ‖u‖2

H l−1(Ω) +
m

∑
k=l

∑
|α |=k

∫

Ω
|Dαu(x)|2Φ2

β ,α ,l (x)dx,

and a semi norm

|u|2
Hm,l

β (Ω)
=

m

∑
k=l

∑
|α |=k

∫

Ω
|Dαu(x)|2Φ2

β ,α ,l (x)dx.

These spaces are needed in order to define the countably normed spaces

95



96 A Functional Framework and Notation

Definition A.2 (Countably normed spaceBl
β (Ω)). u∈ Bl

β (Ω) if u∈ Hk,l
β (Ω) for all k≥ l and if there holds

∥∥Φβ ,α ,l D
αu
∥∥

L2(Ω)
≤Cdk−l (k− l)!

for |α| = k = l , l +1, . . . and with constantsC > 0 andd ≥ 1 independent ofk. We refer toBl
β (Ω) as countably normed

space.

Indexed Sobolev Spaces in Space

In this section we define the indexed norms as used in the analysis of retarded potential integral equation. In [35, 36]
the classical definition of Sobolev spaces in space and space-time is given. In the following‖ · ‖Hm(Ω) denotes the
usual norm of the corresponding Sobolev spaces as defined in [35]. Forω ∈C andm∈N we define the indexed norms
recursively by

‖u‖2
0,ω,Ω := ‖u‖2

L2(Ω) ,

‖u‖2
m,ω,Ω := ‖u‖2

m−1,ω,Ω +
1

|ω |2
‖∇u‖2

m−1,ω,Ω .

As pointed out in [23] this norm is equivalent to the commonH1(Ω)-Norm for |ω | 6= 0. In [3] we the following
definition is given, that extends the definition to real valued indicesr ∈R.

Definition A.3. Let u∈ D ′(Ω). uω is called the distribution, extended byω in C and for ally∈ |ω |Ω defined by

uω :=
1
|ω |u

(
y
|ω |

)
.

Then we define for allω ∈C, all r ∈R and for allu∈ Hr(Ω) a norm onHr(Ω) by

‖u‖2
r,ω,Ω :=

1
|ω | ‖uω‖2

Hr (|ω|Ω) .

Due to Proposition 2.21 in [57] the indexed norms‖·‖s,ω,Ω are equivalent to the classical Sobolev norms as e. g. given
in [35].

Remark A.4.One has to be very careful while defining the above indexed norm. Using the same notation Ha-Duong

[22] and Terrasse [57] define it differently, namely

‖u‖2
m,ω,Ω := |ω |2‖u‖2

m−1,ω,Ω +‖∇u‖2
m−1,ω,Ω (Ha-Duong)

‖u‖2
m,ω,Ω := ‖u‖2

m−1,ω,Ω +
1

|ω |2
‖∇u‖2

m−1,ω,Ω (Terrasse)

This fact also been pointed out by Ha-Duong in his overview paper [23]. Both norms only differ by a factor|ω |.

Weighted Functional Spaces in Space-Time

Based on these indexed norms, one defines weighted functional spaces in space-time [3, 17, 21]. LetX be an inner
product space and denote byD ′

+(X) the space of causal distributions overR with values inX., i. e. with zero values
for negative times. Moreover, letS ′

+(X) be the union of all tempered distributions or distributionsof slow growth in
D ′

+(X). For allσ0 ∈R define

L (σ0,X) = { f ∈ D
′
+(X),e−σ0t f ∈ S

′
+(X)} ,
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and the space of Laplace transformable distributions overR with values inX

L (X) = { f ∈ D
′
+(X),∃σ0 : f ∈ L (σ0,X)}.

One property of these spaces is

∀σ ≥ σ0 and f ∈ L (σ0,X) it holds f ∈ L (σ ,X)

thus we denote byσ( f ) = min
σ∈R{ f ∈ L (σ ,X)}.

Definition A.5. Let f ∈ L (X). TheFourier-Laplace transformof f in the half plane{ω ∈C : Imω ≥ σ( f )} denoted

by f̂ is given by

f̂ (ω) = F(e−σt f )(η) =

∫ +∞

−∞
eiωt f (t)dt

if e−σt f ∈ L1(R+,X) whereω = η + iσ ∈ C and Imω ≥ σ( f ). F denotes the Fourier transform in time without

normalization.

The Fourier-Laplace transformL may be defined for all Laplace transformable functions defined as above. In order to
specify the inverse Fourier-Laplace transformL−1, we need the theorem of Paley-Wiener.

Theorem A.6 ([23]).

1. (Paley-Wiener theorem). An X-valued functionf̂ (ω) is the Fourier-Laplace transform of f∈ L (X) if and only if it

is homomorphic in some half plane Cσ0 = {ω ∈C; Im ω > σ0} and of temperate growth in some closed half plane

of Cσ0. This last condition means that there existsσ1 > σ0 and k∈N such that

‖ f̂ (ω)‖X ≤C(1+ |ω |)k for all ω s.t. Imω ≥ σ1 (A.1)

2. Moreover, the support of f∈ L (X) is in [T,∞) if and only if the inequality(A.1) is replaced by

‖ f̂ (ω)‖X ≤C(1+ |ω |)ke−(Im ω)T for all ω s.t. Imω ≥ σ1

3. (Parseval’s formula). On the other hand, if f,g∈ L1
loc(R,X)∩L (X), there holds

1
2π

∫ +∞+iσ

−∞+iσ
( f̂ (ω), ĝ(ω))X dω =

∫ +∞

−∞
e−2σt( f (t),g(t))X dt

where(·, ·)X is the hermitian product of X andσ > max(σ( f ),σ(g)).

We need this formula, in order to transfer the results in frequency domain into time domain.
We define the operatorΛs : L (X) → L (X) by

Λsu = L−1((−iω)sû) ∀s∈R ,

whereL−1 is the inverse Fourier-Laplace transform (FL-transform) as given in Def. A.5. Fors∈N the operatorΛs is
the derivative of orders.
Let X denote an inner product space ands,σ ∈R with σ > 0 then

H
s

σ (R+,X) :=
{

u∈ L (σ ,X) : e−σtΛsu∈ L2(R+,X)
}

where this Hilbert spaces are equipped with the natural norm

‖u‖2
H s

σ (R+,X) :=
∫ +∞

−∞
e−2σt‖Λsu(t)‖2

X dt

=
1

2π

∫ +∞+iσ

−∞+iσ
|ω |2s‖û(ω)‖2

X dω (Parseval’s formula)
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Now, for m∈N ands∈R we define following [3]

Hs
σ (R+,Hm(Ω)) = H

s
σ (R+,L2(Ω))

Hs
σ (R+,Hm(Ω)) =

{
u∈ Hs

σ (R+,Hm−1(Ω)), ∇u∈ Hs−1
σ (R+,Hm−1(Ω)3)

}
.

These Hilbert spaces are equipped with a norm

‖u‖2
Hs

σ (R+,L2(Ω)) =
1

2π

∫ +∞+iσ

−∞+iσ
|ω |2s‖û‖2

m,ω,Ω dω .

One can extend the definition also to real valued Sobolev spaces. Letr ∈R, then

Hs
σ (R+,Hr(Ω)) =

{
u∈ L (σ ,Hr(Ω)),

∫ +∞+iσ

−∞+iσ
|ω |2s‖û‖2

r,ω,Ω dω < ∞
}

,

this space is again a Hilbert space and has the norm

‖u‖2
Hs

σ (R+,Hr (Ω)) = ‖u‖2
s,σ ,Hr (Ω) =

1
2π

∫ +∞+iσ

−∞+iσ
|ω |2s‖û‖2

r,ω,Ω dω .

The theorem of Paley-Wiener in a slightly modified version gives us the equivalence result of the common norms and
the indexed norms introduced above.
All above definitions can also be applied to the boundary∂Ω of Ω .

Remark A.7.Note that, in [3, 23] the norms are abbreviated by‖u‖s,σ ,X = ‖u‖Hs
σ (R+,X).

In [23] it is shown, thatV is a bounded operator mapping formH1,−1/2,−1/2
σ ,Γ :=

{
p : ṗ∈ H−1/2

σ (R+,H−1/2(Γ ))
}

into

H1/2
σ (R+,H1/2(Γ )). Moreover the coercivity estimate

∞∫

0

Sṗ(t,x)p(t,x)dσ t ≥C‖p‖2
H
−1/2
σ (R+,H−1/2(Γ )

is given.
Similar results hold for the other retarded potential boundary integral operators, compare [23] and the references
therein.



Appendix B

Regularity of Discrete Retarded Potentials inR3

In this chapter we want to extend the analysis presented in Chapter 4 in order to describe the regularity of the discrete
retarded potential on its three-dimensional elements of the decompositionΘ rmax

rmin
(T).

As we have seen in the proof of Lemma 3.8 the gradient of(Iν
e ϕ) involves a function which is the derivative of

g(x) := (R2−x2
1−x2

3)
1/2 .

In the following lemma, we will give the regularity ofg in terms of countably normed spaces in three dimensions,
compare Lemma 3.9 for its reduction to a plane.

Lemma B.1.Given a function g(x) := (R2−x2
1−x2

3)
1
2 .

In S4 the singularity is located on the cylinder wall and we define local cylindrical coordinates with the origin m1.

ξ1 denotes the radial variable,ξ2 the angular variables andξ3 the variable parallel to the reference edge e. Then

g ∈ B2
β (S4) for β ∈ (3

4,1). In S1 and S2 the singularity is located on the equator of the spheres. we define local

spherical coordinates with origins m1 and m2 respecively.ξ1 denotes the radial variable andξ2 andξ3 the two angular

variables. Then g∈ B2
β (Si) for β ∈ (3

4,1) with i = 1,2. The countably normed space is defined via

Bl
β (Si) :=

{
u∈ H l−1(Si) :

∥∥∥(R2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
∂ α3

ξ3
u
∥∥∥

L2(Si)
≤Cdk−l (k− l)! for |α| = k≥ l ,C≥ 0,d ≥ 1

}
.

Proof. Let us first regard the situation inS4. Hereg(ξ ) = (R2− ξ 2
1 )1/2. First we verify, thatg∈ H1(S4).

∥∥∂ξ1
g
∥∥2

L2(S4)
=

R∫

0

2π∫

0

1∫

0

(R2− ξ 2
1 )−1ξ 2

1 dξ1dξ2dξ3

= 2π
R∫

0

(R2− ξ 2
1 )−1ξ 2

1 dξ1 ≤C

In order to show, thatg∈ Hm,2
β (S4) for m≥ 2, we need to estimate the weighted norms of the higher derivatives ofg

for 2≤ k ≤ m. The argumentation is exactly the same as in the proof of Lemma 3.9 forS1 and we obtaing∈ B2
β (S4)

with β ∈ (3
4,1). Similarly, we obtain, thatg∈ B2

β (Si) for i = 1,2 andβ ∈ (3
4,1). ⊓⊔

Lemma B.2 (Regularity of Iν
e ϕ on a decomposition ofR3). Given the disjoint elements Si (i = 1, . . . ,5) as defined in

(3.11)of the decomposition of CR(e).

• For a cylindrical singularity w.r.t. edge e there holds in a local cylindrical coordinate system defined accoring to

Lemma 3.9

Iν
e ϕ(x) ∈ B2

β (Si ∩E )

with a weight function located on the cylinder wall of CR(e) andβ ∈ (0,1).
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• If on Si a classically known kernel singularity w.r.t. edge e is observed, we can describe the regularity as follows.

Iν
e ϕ(x) ∈ Blker−1

β (Si ∩E )

with a weight function located on the edge e andβ ∈ (0,1).

Proof. Here we follow the argumentation of Lemma 3.12 using Lemma B.1. ⊓⊔

Lemma B.3.Denote by Q a bounded subset ofEref and define QR := {x : |x3| < R and(x1,x2,0) ∈ Q}. We define

a local cartesian coordinate system defined by the directionvectors of the planeET and the plane normal nT with

variablesξ2, ξ3 andξ1 respectively. Then IEref
(x) ∈ B2

β (QR) with

Bl
β (QR) :=

{
u∈ H l−1(QR∩E ) :

∥∥∥(R2− ξ 2
1 )α1−l+β ∂ α1

ξ1
∂ α2

ξ2
∂ α3

ξ3
u
∥∥∥

L2(QR)
≤Cdk−l (k− l)! for |α| = k≥ l ,C≥ 0,d ≥ 1

}

Proof. We have show, that given a function ˜g(x) = (R2 − ξ 2
3 )1/2 andβ ∈ (0,1), it holdsg ∈ B1

β (QR) with a weight

function. The proof follows the argumentation of the proof of Lemma 3.9. Note, that it is necessary to bound the

integration domain toQR, but it is no loss of generality as we seek to study the integral ITϕ on its naturally bounded

support. ⊓⊔

Again we delay the analysis of the integralITϕ until we regard the complete potential as pointed out in Section 3.2.2
the integral possesses next to the facial singularity parallel to the triangle the same kind of cylindrical singularities as
observed for the edge-based integralsIei ϕ . Thus we have to apply the same kind of partition as we will apply for the
complete integralPRϕ .
Before we formulate the regularity of the whole decomposition ofER(T), we regard some characteristic elements. We
start with the subdomain, if present, on which the regularity is only restricted by the regularity of the kernel, but not
influenced by the geometrical light cone singularities. Namely, the common intersection of all three spheres. Note that
this case occurs only, ifR> 0.5maxi |ei |. Here we observe a regularity comparable to the situation ofthe classical time
independent boundary integrals and no influence of the classical singularities.
Let us now formulate the regularity of the whole retarded potential (3.2). Compare Theorem 3.22 for the formulation
restricted to a plane.

Theorem B.4.Given a triangle T. On each A∈ΘR(T) there exists only one type of singularity.

• For a cylindrical singularity w.r.t. edge ei there holds in a local coordinate system(ξ1,ξ2,ξ3) defined according to

Lemma B.1

PRϕ ∈ B3
β (A) ,

whereβ ∈ (0,1) and the weight function is located on the cylinder wall of CR(ei).

• For a planar singularity there holds in a local cartesian coordinate system(ξ1,ξ2,ξ3) defined according to

Lemma B.3

PRϕ ∈ B3
β (A) ,

whereβ ∈ (0,1) and the weight function is located in the planes parallelly shifted to the triangle planeET by R.

• For a classically known kernel singularity w.r.t. edge ei in a local coordinate system(ξ1,ξ2,ξ3) with

PRϕ ∈ Blker
β (A) ,

whereβ ∈ (0,1) and the weight function is located on the edge ei .

Proof. Here we can follow the argumentation of Theorem 3.22 using Lemma B.2 and B.3. ⊓⊔

For the complete potentialPϕ there thus follows similar to Theorem 3.26
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Theorem B.5.Given a triangle T. On each A∈Θ rmax
rmin

(T) there exists only one type of singularity.

• For a cylindrical singularity w.r.t. edge ei and radius R there holds in a local coordinate system(ξ1,ξ2,ξ3) defined

according to Lemma B.1

Pϕ ∈ B3
β (A) ,

whereβ ∈ (0,1) and the weight function is located on the cylinder wall of CR(ei), where R= rmin or R= rmax.

• For a planar singularity there holds in a local cartesian coordinate system(ξ1,ξ2) defined according to Lemma B.3

Pϕ ∈ B3
β (A) ,

whereβ ∈ (0,1) and the weight function is located in the planes parallelly shifted to the triangle planeET by R.

The singularities if present are located on line segments and either R= rmin or R= rmax.

• For a classically known kernel singularity w.r.t. edge ei in a local coordinate system(ξ1,ξ2,ξ3) with

Pϕ ∈ Blker
β (A) ,

whereβ ∈ (0,1) and the weight function is located on the edge ei .





Appendix C

Implementation Issues

In this chapter we will comment on the implementation of the retarded integrals and the realization of the MOT-scheme
for retarded boundary integral equations as discussed in Chapter 2 and give some details on the analytical evaluation
of the retarded time integrals.

Storage Allocation for Retarded Matrices

Given two trianglesTi andTj in R3 and radii 0≤ rmin < rmax, we derive a rough superset of the interaction domain of
these triangles is given byE(Ti ,Tj) = {(x,y) ∈ (Ti ,Tj ) : rmin ≤ |x−y| ≤ rmax} as introduced in Chapter 4. In order to
allocate the matrix storage and to keep the computational cost as low as possible, we are interested in an a priori check,
whetherE(Ti ,Tj) = /0, as these elements do not contribute to a possible matrix entry.
In the following lemma, we give an easy computable superset of E(Ti ,Tj).

Lemma C.1.Let Brk(mk) denote the circumsphere of triangle Tk for k = i, j. There exits a supersetSE(Ti ,Tj ) of the

domain of influence E(Ti ,Tj) of two triangles Ti and Tj defined by

SE(Ti ,Tj ) :=

(
Ti ∩

(
Br j+rmax(mj)\B(rmin−r j )+(mj)

))
×
((

Br i+rmax(mi)\B(rmin−r i)+(mi)
)
∩Tj

)

Proof. The elements illuminate each other through their domain of influenceE(Tk), such that elementTi can maximally

illuminates inE(Tj) and vise versa. Thus it holds

E(Ti ,Tj) ⊂ (Ti ∩E(Tj))× (E(Ti)∩Tj) .

Let Br(m) denote the circumsphere of triangleT. Now Ermax(T) ⊂ Br+rmax(m) andB(rmin−r)+(m) ⊂
3⋂

i=1
Brmin(pi), such

that with Lemma 3.23 it follows

E(T) ⊂ Br+rmax(m)\B(rmin−r)+(m) .

⊓⊔

Remark C.2.For the computation of the outer quadrature for the Galerkinelements it is necessary to decompose the

test element in the domain of influence of the trial element. As E(T) might possess a hole, we have to differ between

its outer boundaryΓ +
E(T)

and its inner boundaryΓ −
E(T)

. Applying Lemma 3.23, it immediately follows that

Γ +
E(T) = ∂Ermax(T) and Γ −

E(T) = ∂
3⋂

i=1

Brmin(pi) .
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T

E(T)

Fig. C.1 Sketch of superset ofE(T) in triangle planeET .

Storage allocation scheme

Let us briefly describe the storage allocation scheme for a retarded matrix corresponding to a discrete light cone with
radii rmin andrmax. Given a triangulation ofΓ into n elements, then for each pair of elementsTi andTj with i, j = 1, . . . ,n
we have to check

Step 1 Compute the circumspheres ofTi andTj denoted byBr i (mi) andBr j (mj), resp.
Step 2 Compute the distance of each element to its circumcenters:

dmin
i = dist(mj ,Ti) and dmin

j = dist(mi ,Tj)

Note:Here we used an algorithm proposed in [50]/Chapter 10.3.2
Step 3 Compute maximal distance of each element to its circumcenters:

dmax
i = max

x∈Tj

∥∥mj −x
∥∥ and dmax

j = max
x∈Tj

‖mi −x‖

Step 4 Allocate matrix entry(i, j) and( j, i) if (dmin
i ≤ r j + rmax anddmax

i ≥ (rmin− r j)+) and(dmin
j ≤ r i + rmax

anddmax
j ≥ (rmin− r i)+)

We use a sparse row storage format for our matrices as e. g. introduced in [45]. In Fig. C.2 the allocated matrix entries
and the actually non-vanishing matrix entries are comparedfor a mesh on a unit ball with 5120 elements and a time
step of∆ t = 0.03125.
Moreover, the computation of a matrixAl corresponding to a retarded potential is the sum of basic Galerkin matrices
Gl̂ (kA) which are used in different time steps, compare Section 2.3.Thus it is sensible to compute these matrices
only once and to reuse them later. In (2.26) it is displayed, that especially for higher polynomial degrees in time, we
compute basic Galerkin matrices on the same discrete light cone integration domainEl̂ but with a different kernel. It
is only logical to allocate the storage once and to decomposethe different integration domains only once. We then
compute the different integral on the discrete light cone integration domain and store the solution in one matrix, where
each matrix entry is an array of entries each corresponding to one kernel function. MaiProgs provides a subroutine, that
enables the assembly of the matrixAl based on the above described data structure.
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Fig. C.2 Allocated matrix entries (red) and actually non vanishing matrix entries (green).

Analytical evaluation of time integrals

In this section we compute some basic time integrals used in Section 2.3.2.

Basic time integrals

Let n > mandν,n,m∈N. In the follwoing we will regard

ϒ n−m
p1,p2,ν(x,y) :=





∞∫

0
(t −|x−y|− tm+ν)p1χIm(t −|x−y|)χ̇In(t)dt p2 = −1

∞∫

0
(t −|x−y|− tm+ν)p1χIm(t −|x−y|)χIn(t)dt p2 = 0

Their evaluation is summarized in the next lemma.

Lemma C.3.The integrals depend only on the difference l= n−m and there holds

ϒ l
p1,p2,ν (x,y) =

1

∑
p=0

p1+p2+1

∑
q=0

ϒ p1,p2,l ,ν
pq |x−y|qχEl−p(x,y)

and

ϒ 0,−1,l ,0 =

(
−1

1

)
ϒ 0,0,l ,0 =

(
tl+1 −1

−tl−1 1

)

ϒ 1,−1,l ,ν =

(
−tl−ν 1

tl−1−ν −1

)
ϒ 1,0,l ,ν =

1
2

(
t2
l−ν − t2

ν+1 −2tl−ν 1

t2
l−1−ν − t2

ν 2tl−1−ν −1

)

Proof. The computation forp1 = 0 andp2 =−1 was already discussed in some detail in Chapter 2.3.2. Forp1 = 0 and

p2 = 0 it follows
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ϒ n−m
0,0 (x,y) :=

∫ ∆ t

0
[H(t −|x−y|+ tn−m)−H(t−|x−y|+ tn−m−1)] dt

= t [H(t −|x−y|+ tn−m)−H(t−|x−y|+ tn−m−1)]|∆ t
t=0

−
∫ ∞

0
t [δ (t −|x−y|+ tn−m)− δ (t −|x−y|+ tn−m−1)] [H(t)−H(t−∆ t)] dt

= ∆tχEn−m(x,y)+ (tn−m−|x−y|)χEn−m(x,y)+ (|x−y|− tn−m−1)χEn−m−1(x,y)

For p1 = 1 with p2 = −1 the desired result follows immediately and for(p1, p2) = (1,0) we compute

ϒ n−m
1,0,ν (x,y) :=

∫ ∞

0
(t −|x−y|− tm+ν)χIm(t −|x−y|)χIn(t)dt

=
∫ ∆ t

0
(t −|x−y|+ tn−m−ν−1) [H(t −|x−y|+ tn−m)−H(t−|x−y|+ tn−m−1)] dt

=
(t −|x−y|+ tn−m−ν−1)

2

2
[H(t −|x−y|+ tn−m)−H(t−|x−y|+ tn−m−1)]

∣∣∣∣
∆ t

t=0

−
∫ ∆ t

0

(t −|x−y|+ tn−m−ν−1)
2

2
[δ (t −|x−y|+ tn−m)− δ (t −|x−y|+ tn−m−1)] dt

Here we shifted the domain of integration and used partial integration. In the following we will use thatH(−x) =

1−H(x) and as before, we can write

ϒ n−m
1,0,ν (x,y) =

(tn−m−ν −|x−y|)2

2
χEn−m(x,y)− (tn−m−ν−1−|x−y|)2

2
χEn−m−1(x,y)

−
∫ ∞

0

(t −|x−y|+ tn−m−ν−1)
2

2
[δ (t −|x−y|+ tn−m)− δ (t−|x−y|+ tn−m−1)] [H(t)−H(t−∆ t)] dt

=
(tn−m−ν −|x−y|)2

2
χEn−m(x,y)− (tn−m−ν−1−|x−y|)2

2
χEn−m−1(x,y)−

t2
ν+1

2
χEn−m(x,y)+

t2
ν
2

χEn−m−1(x,y)

=
1
2

(
|x−y|2−2tn−m−ν |x−y|+(t2

n−m−ν − t2
ν+1)

)
χEn−m(x,y)

− 1
2

(
|x−y|2−2tn−m−ν−1|x−y|+(t2

n−m−ν−1− t2
ν)
)

χEn−m−1(x,y) .

⊓⊔

Discontinuous and Continuous Time Basis

For it holdsϒ l
0 (x,y) = ϒ l

0,−1(x,y). As we have seen in Chapter 2.3.2, the computation of the discrete hypersingular
operator involves a more connected type of time integral. Weuse piecewise continuous linear trial functions in space
β m(t) =

t−tm−1
∆ t χIm − t−tm+1

∆ t χIm+1 and piecewise constant test functionsγm(t) = χIm(t). Then

ϒ n−m
1 (x,y) =

∫ ∞

0
β̇m(t −|x−y|)γ̇n(t)dt

= (∆ t)−1
∫ ∞

0

(
χIm(t −|x−y|)−χIm+1(t −|x−y|)

)( d
dt

χIn(t)

)
dt

= (∆ t)−1
(

ϒ n−m
0,−1,0(x,y)−ϒ n−m−1

0,−1,0 (x,y)
)

= −(∆ t)−1(
χEn−m(x,y)−2χEn−m−1(x,y))+χEn−m−2(x,y)

)

where the second term of the derivative ofβ m(t) vanishes as it involves the delta distribution. Here we basically use
Lemma C.3. The same works for
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ϒ n−m
2 (x,y) =

∫ ∞

0
βm(t −|x−y|)γn(t)dt

= (∆ t)−1
(

ϒ n−m
1,0,−1(x,y)−ϒ n−m−1

1,0,0 (x,y)
)

,

Such that we finally obtain

ϒ n−m
2 (x,y) = (2∆ t)−1

(
|x−y|2−2tn−m+1|x−y|+ t2

n−m+1

)
χEn−m(x,y)

− (∆ t)−1
(
|x−y|2− (tn−m+ tn−m−1)|x−y|+ 1

2
(t2

n−m+ t2
n−m−1)−∆ t2

)
χEn−m−1(x,y)

+ (2∆ t)−1
(
|x−y|2−2tn−m−2|x−y|+ t2

n−m−2

)
χEn−m−2(x,y)

Now,

ϒ n−m
3 (x,y) =

∫ ∞

0
βm(t −|x−y|)γ̇n(t)dt

= (∆ t)−1
(

ϒ n−m
1,−1,−1(x,y)−ϒ n−m−1

1,−1,0 (x,y)
)

= (∆ t)−1[(|x−y|− tn−m+1)χEn−m(x,y)+ ((tn−m+ tn−m−1)−2|x−y|)χEn−m−1(x,y)

+(|x−y|− tn−m−2)χEn−m−2(x,y)
]
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