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Abstract 

 
Aluminium toxicity is the major factor limiting crop productivity on acid soils. These acid soils represent a 

significant share of the world’s arable land. Most plant species are showing a pronounced root growth inhibition 

already at micro molar concentrations of Al in the soil solution which leads, as consequence thereof to reduced 

yield. Notwithstanding these severe effects of Al, there is a wide variation in Al resistance between plant species 

and even between genotypes within one species. Plant species like buckwheat are highly Al resistant and can 

even accumulate Al in above ground plant organs, whereas non Al accumulating plant species are showing only 

traces of Al in the leaf tissue. Buckwheat is only weakly affected by Al which is achieved by a combination of 

distinct resistance and tolerance mechanisms. However, under the common opinion resistance and tolerance 

mediating processes are acting in an opposite direction. On the one hand resistance mechanisms are keeping Al 

away from sensitive binding sites, thus preventing Al binding, uptake and resulting injury. On the other hand, 

processes participating in internal tolerance are enabling a plant to cope with Al which is taken up and to tolerate 

high symplastic Al concentrations. Due to the fact that this interrelation and the transport of Al itself are not 

understood this work focuses on the following objectives: I. How are resistance and tolerance mechanisms 

spatially organized? II. Does the in-situ analysis of Al distribution within the root tip provide information about 

the route of uptake and subsequent translocation? III. Are the Al uptake and translocation processes under 

metabolic control and do the resistance and tolerance mechanisms actually acting oppositional? IV. Is there a 

genotypic variation also in Al tolerance within the Fagopyrum genus and does this variation provide additional 

insights? The results show that Al is taken up by the 10 mm root apex is rapidly transferred to the xylem. 

Aluminium activates the resistance mechanism which is spatially overlapping with the zone of the most 

pronounced Al uptake. Furthermore, it is shown that a basipetal signal transduction for the transmission of 

resistance mediating stimuli is involved. The staining of Al in combination with LA-ICP-MS analysis of Al 

concentrations is an appropriate way for analysis of element distribution within cross sections of fresh root tip 

material. The results clearly indicate that Al is differentially localized in different distances from the root tip.  

The analysis of the uptake of Al into the water free space revealed that the Al-activated exudation of oxalate 

rapidly established a 1:1 ratio of oxalate and Al in the symplast, the Al concentration was 100 times higher than 

in the external solution, and the Al to oxalate ratio was 1:2. Loading and unloading of Al into and from the 

symplast has been clearly shown to be executed under metabolic control. Anion channel inhibitors reduced the 

constitutive and the Al-enhanced WFSF oxalate concentrations and intensified the Al-induced injury. The 

hypothesis is presented that an Al(Ox)+ plasma-membrane transporter in the root cortex and a xylem-loading 

Al(Cit)n- transporter in the xylem parenchyma cells represent key elements of Al accumulation in buckwheat. To 

achieve first genetic insights into Al hyperaccumulation a scope of 94 genotypes were screened. It is shown that 

these genotypes vary primarily gradually in the Al concentration in the xylem sap indicating that this trait is well 

conserved within this genus. A multiple correlation analysis provides circumstantial evidence for a positive 

correlation of Al resistance and tolerance mechanisms on a genotypic level. 
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Zusammenfassung 
Auf sauren Böden wird die Pflanzenproduktion maßgeblich durch Aluminiumtoxizität beeinträchtigt, wobei 

diese Böden einen beträchtlichen Anteil der agrarisch nutzbaren Fläche der Welt bedecken. Die meisten 

Pflanzenarten zeigen, schon bei mikromolaren Konzentrationen von Al eine deutliche Inhibierung des 

Wurzelwachstums was letztendlich zu erheblichen Ertragseinbußen führt. Abgesehen von den schwerwiegenden 

Folgen von Al-Toxizität gibt es eine große Variabilität in der Aluminiumresistenz zwischen verschiedenen 

Pflanzenarten und Genotypen innerhalb einer Art. Buchweizen ist durch eine hohe Al Resistenz charakterisiert 

und transloziert, im Gegensatz zu anderen Pflanzenarten darüber hinaus Al in den Spross. Buchweizen zeigt nur 

geringe Beeinträchtigungen durch Al-Toxizität, was dadurch erreicht wird, Al-Toleranz- und 

Resistenzmechanismen kombiniert werden. Daraus ergibt sich dennoch ein gewisser Widerspruch, da diese 

Prozesse bisher so verstanden wurden, dass sie in entgegen gesetzter Richtung wirken. Auf der einen Seite 

sorgen Resistenzmechanismen dafür, dass Al von sensitiven Bindungsstellen im Wurzelapoplasten ferngehalten 

wird und somit Bindung, Aufnahme und daraus resultierende Schädigung unterbunden wird. Auf der anderen 

Seite sorgen Toleranzmechanismen dafür, dass große Mengen an symplastisch lokalisiertem Al toleriert werden 

können. Da diese Beziehung zwischen Resistenz- und Toleranzmechanismen und der Al Transport selbst, noch 

nicht verstanden wird, befasst sich die vorliegende Arbeit mit folgenden Fragen: I. Wie sind Al-Resistenz- und 

Toleranzmechanismus lokal organisiert? I. Ist es möglich über eine in-situ Al-Analyse nähere Aufschlüsse über 

die Al-Aufnahme und die anschließende Translokation zu bekommen? III. Sind die Al-Aufnahme und 

Translokation aktive, von metabolischer Aktivität abhängige Prozesse und wirken sie tatsächlich gegensätzlich? 

IV. Gibt es genotypische Variabilität in der Al-Toleranz innerhalb der Gattung Fagopyrum. Die Ergebnisse 

zeigen, dass Al von den apikalen 10 mm der Wurzelspitze aufgenommen und schnell ins Xylem transportiert 

werden. Dabei aktiviert Al den Resistenzmechanismus, der lokal auch in die Regionen mit hohen Al-

Aufnahmeraten hereinreicht. Zusätzlich zeigte sich, dass eine basipetale Signaltransduktion in der Weiterleitung 

des resistenzvermittelnden Stimulus involviert ist. Die Fluoreszenzfärbung in Verbindung mit LA-ICP-MS 

Technologie hat sich als probates Mittel erwiesen, um die Al-Verteilung in radialer Richtung von 

Wurzelspitzenquerschnitten zu analysieren. Prinzipiell untermauern diese Ergebnisse, dass Al im 

Wurzelquerschnitt von Buchweizen sehr mobil ist. Al wird in verschiedenen Abständen von der Wurzelspitze in 

unterschiedlichen Zonen lokalisiert. Die Analyse der Al Aufnahme in den WFS zeigte, dass die Al aktivierte 

exsudation Oxalat von schnell zu einem Verhältnis von 1:1 (Al:Ox) im Apoplasten führt. Die Al Konzentration 

im Symplasten ist hingegen deutlich höher als im Apoplasten und das Al:Ox-Verhältnis liegt hier bei 1:2. Die 

Aufnahme und Abgabe von Al in und aus dem Wurzelsymplasten zeigte, dass diese Prozesse von metabolischer 

Aktivität abhängig sind. Der Einsatz von einem Anionenkanalinhibitor reduzierte die konstitutive und die Al- 

aktivierte Exsudation von Oxalat und führte zu einem verstärkten Al-induziertem Schaden. Die gezeigten 

Ergebnisse legen die Hypothese nahe, dass ein plasmamembrangebundener Al(Ox)+ Transporter im 

Wurzelkortex und ein Al(Cit)n- Transporter während der Xylembeladung die Schlüsselelemente der Al-

Akkumulation von Buchweizen darstellen. Um einen Überblick über die Variabilität der Al-Akkumulation bei 

Buchweizen zu bekommen wurden 94 Fagopyrum Genotypen einem Screening unterzogen. Dabei konnte 

gezeigt werden, dass die Al-Konzentration im Xylemsaft graduell variiert, was darauf hindeutet, dass es sich bei 

der Al-Akkumulation von Buchweizen um ein stark konserviertes Merkmal handelt. Eine multiple 
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Regressionsanalyse erbrachte einen Indizienbeweis für eine positive Korrelation zwischen Al-Resistenz und 

Toleranzmechanismus 

 

Keywords: Accumulator, Al resistance, Al detoxification 
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Abbreviations 

Al   aluminium 

ALMT1  aluminium-activated malate transporter 

ANOVA  analysis of variance 

°C   degree Celsius 

Cit   citrate 

CW   cell wall  

EDTA   ethylendiamine tetra acetate 

Fe   Iron 

FRD3   ferric reductase defective 3 (member of the MATE family) 

g   gram 

µg   microgram 

GF-AAS  graphite furnace atomic absorption spectrometer 

h   hour 

HPLC   high pressure liquid chromatography 

ICP-OES  inductively coupled plasma optical emission spectroscopy 

L   litre 

LA-ICP-MS  laser ablation inductively coupled plasma mass spectroscopy 

M   molar concentration 

MATE   multi drug and toxic compound extrusion protein family 

mg   milligram 

min   minute 

mL   millilitre 

mm   millimetre 

µm   micrometre 

mM   millimolar 

µM   micromolar 

n   number of observations 

nm   nanometre 

nM   nanomolar 

ns   nonsignificant 

Ox   oxalate 

PG   phenylglyoxal  
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rpm   rotations per minute 

SE   standard error 

WFSF   water free space fluid 

OA   organic acid 

P   probability 

qRT-PCR  quantitative real time polymerase chain reaction 
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General Introduction 

 

Acid soils and Al toxicity 

Aluminium is generally known as a light metal that makes up 8.3 % by weight of the earth’s 

crust (Downs, 1993). This quantity makes Al the third most abundant element after oxygen 

and silicon. Al is more or less ubiquitous and plant roots are therefore almost always exposed 

to Al in some form. Aluminium is too reactive chemically to occur in nature as a free metal. 

Consequently, it is found combined in a huge number of different minerals and most Al in the 

soil is present in feldspares, alumino-silicate compounds, and usually exists as insoluble and 

non-rhizotoxic forms. On the one hand, Al rhizotoxicity is reported under alkaline soil 

conditions (Jones, 1961, Rees and Sidrak, 1955) and in alkaline nutrient solutions containing 

Al at a pH above 8 (Ma et al., 2003, Stass et al., 2006) where the aluminate ion is the 

primarily prevailing species of Al (Martin, 1988). However, it is not yet clear whether the 

aluminate ion is the toxic Al species leading to rhizotoxicicty in the alkaline pH range (Stass 

et al., 2006). On the other hand, Al hydroxides are very insoluble around neutrality, but their 

solubility increases drastically as pH decreases (Marion et al., 1976). Al becomes toxic at low 

soil pH and the trivalent octahedral hexahydrate of Al (Al3+) is most abundant at a pH below 5 

(Martin, 1988). 

Acidic soils are a much more important agronomical problem than alkaline soil conditions. 

Most acid soils are saturated with aluminium rather than hydrogen ions. The acidity of the soil 

is therefore often a result of hydrolysis of aluminium compounds (Turner and Clark, 1966). 

Estimations of the global spread of acid soils, which are defined by a pH lower than 5.5 in 

their surface layers, comprise nowadays about 30 % of the total ice free land (von Uexkull 

and Mutert, 1995). The phenomenon of acidic soils is primarily found in two major global 

areas which are located in one northern belt, in regions with cold, humid temperate climate, 

and in one southern belt with warm, humid conditions. Soil acidification is mainly depending 

on the reservoir of alkaline cations and the leaching potential of these ions under certain soil 

conditions. Therefore, high rainfall, the removal of cations by harvested crops, acid 

precipitation from polluted air (Ulrich, 1980) and organic matter decay (Carver and Ownby, 

1995), or certain cropping practices as repeated application of reduced nitrogen compounds 

particularly if overshooting the demand of the crop (Adams, 1984) significantly accelerate the 

process of soil acidification. 
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The physiology of Al toxicity in plants 

Aluminium toxicity is the major constrain limiting crop production on acid soils. The toxic 

octahedral hexahydrate of Al (following mentions will refer to this Al species) directly and 

immediately interferes with the root tip and leads to a rapid inhibition of root growth 

(Delhaize and Ryan, 1995; Taylor 1988). The process of root-growth inhibition could be 

analysed within 1-2 h of Al contact to roots, thus it is supposed to be a primary effect of Al 

toxicity (Sivaguru et al., 1999; Horst, 1995). However, the primary cause of Al toxicity is not 

consistently determined (Delhaize and Ryan, 1995; Kochian, 1995; Matsumoto, 2000). 

Nevertheless, there is accumulating evidence that the root-tip apoplast is the main 

compartment for the development of Al toxicity (Horst, 1995) where it reduces cell-wall 

plasticity and elasticity (Ma et al., 2004) and thereby interacts directly with the apoplastic site 

of the cell wall-plasma membrane-cytoskeleton continuum (Horst et al., 1999). For example 

Al binds to the pectic residues and proteins in the cell wall decreasing the extensibility, it 

could displace other ions from critical sites in the cell wall or the plasma membrane, it binds 

to the lipid bilayer or membrane-bound proteins which could interfere with transport 

processes of essential nutrients, or it possibly disrupts the intracellular metabolism from the 

apoplastic compartment by triggering secondary-messenger pathways (Haug, 1984; Taylor, 

1988; Bennet and Breen, 1991; Rengel, 1992, Haug et al., 1994) 

Application of Al to defined apical root zones revealed an outstanding role of the distal 

transition zone (DTZ) for the development of Al toxicity in maize (Kollmeier et al., 2000, 

Ryan et al., 1993). The application of Al to both the meristematic zone and the elongation 

zone showed not the particularly same inhibitory effect as the application in the DTZ. It is 

indicated that Al induces alterations in the secretory pathway which interrupts the basipetal 

auxin flow being implicated in cell elongation. Based on these results it was proposed that the 

Al-induced callose formation represents a possible candidate for the inhibition of the auxin 

signalling pathway by plugging symplastic transport via plasmodesmata (Sivaguru et al., 

2000).  

Some studies suggest symplastic events to be related to the development of Al toxicity (Lazof  

et al., 1996; Silva et al., 2000; Taylor et al., 2000), where Al was proposed to inhibit vital 

functions of symplastic ligands as enzymes, calmodulin, tubulin, ATP, GTP and DNA or the 

Al-ligand complex induces toxic reactions and interferes with the metabolism. Furthermore, 

Al exposure leads to the induction of reactive oxygen species (ROS) as well as peroxidative 



General introduction 

___________________________________________________________________________ 

 11

damage to membranes. Even though, the peroxidation of lipids is rather likely to be not a 

primary mechanism of Al toxicity (Horst et al., 1992; Yamamoto et al., 2001). However, the 

symplastic relevance of Al toxicity is still matter of debate. Ions, and especially polyvalent 

ions as Al3+, are virtually insoluble in lipid bilayers which indicates that the plasma membrane 

represents a significant barrier for Al entry into the symplast (Delhaize and Ryan, 1995). 

 

How do plants cope with Al toxicity? - Al exclusion 

 

It is known for a long time that there is a wide variation in the Al resistance between plant 

species and genotypes within species (Magistad, 1925; Maclean and Gilbert, 1927). 

Particularly during the last two decades the physiological and molecular understanding of Al 

resistance has made far reaching progress. Generally the physiological mechanisms leading to 

detoxification of Al are divided by their site of action. There is one class of mechanisms that 

operate to exclude Al from the root apex, which are called external resistance mechanisms 

and another class that enables plants to tolerate Al in their symplast that are called internal 

tolerance mechanisms (Barcelo and Poschenrieder, 2002; Ma and Furukawa, 2003; Kochian, 

2004). The majority of Al resistant plants use external resistance mechanisms by root 

exudation of organic acid anions which are known to chelate and thereby detoxify rhizotoxic 

Al. For example wheat (Triticum aestivum) was shown to exude, specifically induced by Al, 

malate (Delhaize et al., 1993), maize (Zea mays) and common bean (Phaseolus vulgaris) 

citrate (Miyasaka et al., 1991; Kollmeier et al., 2001) and Fagopyrum esculentum oxalate 

(Zheng et al., 1998). However, different organic acid anions lead to the same benefit for the 

particular plant species. Al is excluded from both the root cell wall and the root symplast.  

The exudation process is induced or activated by Al in different plants in different patterns. Al 

activates a rapid exudation of malate in wheat (Pattern I), but a lag phase between onset of 

exudation and the exposure to Al spanning time frames of 4-10 h was observed in rye and 

common bean (Pattern II) (Li et al., 2000; Rangel et al., 2009). There is a proposed model 

how these differential responses are achieved. In pattern I-type responses the Al-induced 

exudation could occur in three different ways: i) Al interacts directly with a channel protein to 

trigger its opening; ii) Al interacts with a specific receptor protein on the membrane surface or 

with the membrane itself to initiate a secondary messenger cascade that then activates the 

channel, or iii) Al enters the cytoplasm and activates the channel directly or indirectly via 

secondary messengers. In contrast, in pattern II plant species Al is proposed to interact with 
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the cell, possibly via a receptor protein on the plasma membrane, to activate the transcription 

of genes that encode proteins involved in the transport of organic acid anions across the 

plasma membrane and possibly also with the metabolism of organic acids. This process will 

take some time (hours), which is responsible for the lag phase in pattern II plants (Ma et al., 

2001; Ryan and Delhaize., 2001). 

The exudation of organic acid anions could explain genotypic differences in the Al sensitivity 

for example in wheat (Delhaize et al., 1993) where resistant genotypes are characterized by an 

enhanced Al-activated exudation rate compared to the Al-sensitive genotypes. The excretion 

of organic acid anions, localized at the root tip particularly protecting the most sensitive root 

zones, facilitates to sustain normal root growth rates by preventing harmful effects of Al. For 

example an Al-resistant cultivar of wheat is able to maintain 80 % of the root-growth rate 

under Al toxicity, whereas a sensitive genotype is heavily inhibited and shows only growth 

rates of 12 % compared to the root growth rate without Al supply (Table 1). The resistant 

genotype is characterized by an enhanced malate exudation and this forms the basis of a first 

hypothesis to explain Al tolerance in wheat. Sasaki et al. (2004) cloned a wheat gene, an Al-

activated malate transporter) (ALMT1) which co-segregated with Al resistance in the progeny 

of two near-isogenic wheat lines differing in Al resistance. This approach was the first 

evidence that ALMT1 confers an Al-activated malate efflux and revealed that this gene 

encodes a protein constitutively expressed in root apices of the resistant line which is higher 

abundant than in the sensitive line. These results were further substantiated by Delhaize et al. 

(2004) who showed that this gene derived from wheat conferred Al resistance in transgenic 

barley plants. This gene transfer provided first evidence that the trait Al resistance can be 

transferred to important crop plants. Recently, a homolog of the wheat aluminium-activated 

malate transporter (AtALMT1) was shown to be critical for Al resistance in Arabidopsis and 

encodes as well an Al-activated root malate efflux transporter which is associated with 

resistance but is not a major Al-resistance quantitative trait loci in Arabidopsis (Hokenga et 

al., 2006). Parallel work with Sorghum bicolor identified a gene encoding a member of the 

multi drug and toxic compound extrusion (MATE) family, by positional cloning. This MATE 

gene product is an Al-activated citrate transporter which represents the major Sorghum Al 

tolerance locus (Magalhaes et al., 2007). Subsequently, Liu et al., (2009) revealed that 

STOP1, a transcription factor, is also required for the expression of this MATE gene and 

consequently for Al-activated citrate exudation. However, not all listed genotypic differences 

are exclusively explained by differences in the exudation pattern of organic acid anions. 
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Table 1. Overview over differences in Al resistance and/or tolerance between species and genotypes.  

 Al-resistance 

classification 

Genotype Relative root 

growth inhibition  

Al concentration 

[µM] 

Nutrient solution Reference 

resistant Atlas 20 % Triticum 

aestivum sensitive Scout 88 % 

20  100 µM CaCl2;  

pH 4.5 

Pellet et al., 1996 

resistant Cateo 5 % Zea mays 

sensitive 11*723 75 % 

40 calculated 

activity 

Piñeros et al., 2005 

resistant Quimbaya 18 % Phaseolus 

vulgaris sensitive Vax-1 68 % 

20 5 mM CaCl2; 0.5 

mM KCl; 8 µM 

H3BO3; pH 4.5 

Rangel et al., 2005 

resistant Koshihikari 40 % Oryza sativa 

sensitive Kasalath 70 % 

50 0.5 mM CaCl2; 

pH 4.5 

Ma et al., 2002 

resistant SC283 50-45 % Sorghum 

bicolor sensitive BR007 95-90 % 

27 calculated 

activity 

Magelhaes et al., 

2003 

resistant Alr-104 35 % Arabidopsis 

thaliana 

sensitive Columbia(wt) 83 % 

20 Complete 

nutrient solution; 

200 µM KH2PO4, 

pH 4.2 

Larsen et al., 1998 

resistant Bates 20 % Secale cereale 

sensitive Dongmu 70 60 % 

50  0.5 mM CaCl2; 

pH 4.5 

Yang et al., 2005 

resistant B.decumbens 55 % Brachiaria 

spec. sensitive B.ruzizensis 95 % 

60 calculated 

activity 

Wenzl et al., 2001 

resistant Jiangxi 45 % Fagopyrum 

esculentum sensitive Shanxi 78 % 

50 0.5 mM CaCl2; 

pH 4.5 

Zheng et al., 2005 

  

Furthermore, it has been shown that specific cell-wall properties are involved in differential 

Al resistance of genotypes. One the one hand, root tip Al contents are negatively correlated 

with root growth rates and consequently with Al resistance (Schmohl and Horst, 2001). Root 

tips with higher pectin contents accumulate more Al in their cell walls leading to a higher Al 

sensitivity. Moreover, the degree of methylation of pectic polysaccharides, affecting the 

negative charge of the cell wall, leads to changes in the Al binding capacity and is 

additionally shown to participate in genotypic differences in Al resistance in various plant 

species (Stass et al., 2007; Eticha et al., 2005b). On the other hand, certain cell-wall 

properties were mentioned to enable Al immobilization in the cell wall which prevent Al to 

enter the symplast and affect Al-sensitive sites in that compartment (Taylor et al., 1991). 

Some plants show an Al-induced pH barrier which leads to precipitation of Al in the 

rhizosphere (Larsen et al., 1998; Table 1.). The Al-resistant Arabidopsis mutant alr-104 

showed an increased net H+ influx into the root cells that significantly increased the pH of the 

surrounding nutrient solution which represents a resistance mechanism based on an Al-

induced increase in root-surface pH (Degenhardt et al., 1998). 
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How do plants cope with Al toxicity? – Al accumulation and Al tolerance 

mechanisms 

Generally, there is a wide range of plant species which accumulate Al in their above ground 

plant organs (Table 2) and thus exhibit an extraordinary degree of Al tolerance. Jansen et al., 

(2002) suggested that Al contents of 1000 ppm Al or more in dried leaf tissue are a suitable 

criterion for defining Al hyperaccumulation in plants. However, the total accumulated 

amounts differ, but even small concentrations of Al within certain tissues demand for 

effective internal tolerance mechanisms. 
 

Table 2: Al accumulation in leaf dry matter of Al accumulating plant species after several month of growth on 

acidic soils 

Species Leaf Al concentration 

 [mg g-1 dry matter] 

Reference 

Camellia sinensis 30 Matsumoto et al., 1976 

Hydrangea macrophylla 3 Ma et al., 1997 

Melastoma malabathricum 10 Watanabe and Osaki, 1998 

Fagopyrum esculentum 15 Ma et al., 2001 

Richeria grandis 1 Cuenca et al., 1990 

 

The mechanisms which enable specific plants to tolerate symplastic Al without interference 

with essential metabolic processes, need to be high efficient since Al is characterized by a 

high affinity to O-donor compounds. Despite the fact that a cytosolic pH of approximately 7.5 

Lesethan nanomolar concentrations of free Al are supposed to induce drastic consequences 

(Martin, 1988) due to an interaction of Al with sites regulated by Mg2+. These sites are 

involved in ATP-mediated phosphate transfer, cytoskeletal interactions and signal 

transduction. Al tolerance mechanisms primary involve complexation with organic acid 

anions within the cytosol, the compartimentation of Al within the vacuole or enzyme 

adaptation, either showing advanced tolerance or increased activity to produce for example 

more Al detoxifying ligands (Kochian, 1995). 

Al accumulation in Hydrangea macrophylla is well documented because of the ornamental 

value of blue sepals. This colour formation from pink to blue is obtained by a translocation of 

Al into the sepals, a compartimentation within vacuoles of subepidermal cells (Naumann, 
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2001) and by a complex formation between delphinidine 3-glucoside, Al and 3- 

caffeoylquinic acid (Takeda et al., 1985). 

 

Buckwheat – the combination of Al exclusion and Al accumulation/Al 

tolerance mechanisms 

 

A model organism for Al accumulation is buckwheat (Fagopyrum esculentum Moench) which 

is known for being Al resistant and furthermore Al-tolerant on a high level. Buckwheat 

responds to Al supply by immediate exudation of oxalate (Pattern I, Yang et al. 2006). In 

Pattern I plant species the Al resistance mediated by the release of organic acid anions is 

constitutively expressed and does not require an Al-induced protein biosynthesis process. The 

analysis of the Al-activated exudation process provided hints for the involvement of anion 

channels in efflux of oxalate. In Polygonum aviculare L. (You et al., 2005) and buckwheat 

(Zheng et al., 1998) the application of phenylglyoxal (PG), an anion channel inhibitor, which 

did not directly interfere with root growth, effectively inhibited the exudation of oxalate in the 

Al treatment. On the other hand, the application of cycloheximid (CHM), a protein synthesis 

inhibitor, led to a cessation of exudation in Cassia tora L., a Pattern II plant, but not in 

buckwheat, indicating a constitutively expressed metabolic “machinery” in buckwheat (Yang 

et al. 2006). 

Nonetheless, Al exclusion and Al accumulation mechanisms and their possible interrelation 

are not fully understood. Only a mechanistic model for the involved mechanisms exists. Ma 

and co-workers developed a framework for Al uptake and translocation in buckwheat. Briefly, 

Al is suggested to be taken up as Al3+. Once it crosses the plasma membrane, the Al3+ is 

chelated with oxalate to form a 1:3 Al:oxalate complex. When Al is translocated from the 

roots to the shoots, a ligand-exchange reaction occurs in the xylem to form Al citrate (Ma and 

Hiradate, 2000; Ma et al., 1998; Zheng et al., 1998). This complex is transported into above-

ground plant parts where again a ligand exchange is proposed to take place, and an Al oxalate 

complex will be reformed. If the Al concentration exceeds a certain limit, especially in the 

leaf margins, an Al-citrate complex will be additionally formed (Shen et al., 2004). Al is 

transported exclusively into transpiring organs and does not accumulate in the seeds (Shen et 

al, 2006). Buckwheat shows characteristics that qualify it as a model organism for further 

unravelling of the process of Al accumulation. Buckwheat has a short vegetative period, it is 
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an herbaceous plant, and the availability of ecotypes adapted to strongly acid Al-toxic soils 

may represent a powerful tool for the identification of novel genes responsible for a high level 

of Al resistance. Al resistance related genes had not yet been identified in buckwheat but the 

application of genotypes which have not been selected for suitable agronomic characteristics 

in the past (You et al., 2005) will represent a promising gene pool for tracking of genes 

conferring Al resistance and Al accumulation. Buckwheat also shows other important 

features. It is one of the few non-Poaceae cereals and as such it is often referred to as a 

“pseudocereal” which has been cultivated for a long time in several countries of Asia, Europe 

and North America for human and livestock consumption. Its production has, however, 

strongly decreased over the last decades and has almost disappeared in many western 

European countries. Only two cultivars were protected under plant breeders right in Germany, 

despite several attractive crop properties such as (I) short vegetative period, (II) resistance 

against most cereal diseases (III) high contents of lysine, an essential amino acid for the 

human diet, (IV) high rutin contents, a secondary metabolite which shows medicinal 

applications and (V) absence of gluten which is important for Coeliac disease patients. 

Buckwheat performs well on poor soils, and can be grown where wheat or even rye cannot be 

grown with profit (Sure, 1955). It shows high phosphorus efficiency (Zhu et al., 2002; Amann 

and Amberger 1989). In addition buckwheat and other Polygonum species grow well on acid 

soils (You et al., 2005). Therefore, this study will concentrate on buckwheat to characterize 

processes and interrelations that are not yet understood such as Al exclusion and Al 

accumulation. 

Four physiological approaches were experimentally explored: 1. Spatial characteristics of 

aluminium uptake and translocation in roots, 2. Characterization of aluminium uptake, 3. In-

situ aluminium localization in root tips, 4. Genotypic differences in aluminium accumulation 

of Fagopyrum accessions.  
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Abstract 

 

The detoxification of aluminum (Al) in root tips of the Al accumulator buckwheat by 

exudation of oxalate leading to reduced Al uptake (Al resistance) is difficult to reconcile with 

the Al accumulation (Al tolerance). The objective of this study was to analyze resistance and 

tolerance mechanisms at the same time evaluating particularly possible stratification of Al 

uptake, Al transport and oxalate exudation along the root apex. The use of a minirhizotron 

made it possible to differentiate between spatial responses to Al along the root apex with 

regard to Al uptake and organic acid anion exudation, but also to measure at the same time Al 

and organic acid transport in the xylem. Al accumulates particularly in the 3-mm root apex. 

The study showed that Al taken up by the 10-mm root apex is rapidly transferred to the xylem 

which differentiates in the 10 to 15-mm root zone as revealed by a microscopic study. Al 

induces the release of oxalate from the root apex but particularly from the subapical 6–20 mm 

root zone even when Al was applied only to the 5-mm root apex suggesting a basipetal signal 

transduction. Citrate proved to be the most likely ligand for Al in the xylem because Al and 

citrate transport rates were positively correlated. In conclusion, the data presented show that 

the Al-induced release of oxalate, and Al uptake as well as Al accumulation are spatially not 

separated in the root apex. 
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Introduction 

Aluminum (Al) is naturally occurring as aluminosilicate (Brady and Weil 2008). The 

solubility of this clay mineral-bound Al increases exponentially with decreasing pH below 4.5 

with the resultant increase in abundance of the phytotoxic Al3+ species (Dalal 1975). Soil 

acidity is a widespread problem constraining plant growth on more than 50% of the non-

irrigated arable land of the world (Miller et al. 1992) with Al toxicity as the major factor 

limiting crop production (Kochian, 1995). The human population is increasing 

hyperexponentially on a macrohistorical scale (Varfolomeyev and Gurevich 2001) 

particularly in the developing countries of the subtropics and tropics where acid soils are wide 

spread and food production is suboptimal. However, crop species, and genotypes within 

species, differ in their productivity on acid, Al-toxic soils. Therefore, it is important to unravel 

Al resistance and tolerance mechanisms naturally occurring in plants adapted to these 

conditions. Ecotypes evolved on strongly acidic soils represent a valuable source of Al 

resistance and tolerance genes that may be used to improve Al-sensitive crop plants (You et 

al. 2005).  

Buckwheat (Fagopyrum esculentum Moench), combines Al exclusion and Al tolerance (Ma et 

al. 1998, Zheng et al. 1998) accompanied with high phosphorus (P) efficiency (Amann and 

Amberger 1989, Zhu et al. 2002). However, the interrelationships and relative importance of 

these traits are not yet fully understood. It has been suggested by Ma and Hiradate (2000) that 

Al3+ is taken up by buckwheat, but that once it crosses the plasma membrane it is chelated 

with oxalate to form a 1:3 Al-oxalate complex (Ma et al. 1998). Further, when Al is 

translocated from the roots to the shoots, a ligand-exchange reaction occurs in the xylem to 

form Al citrate (Ma and Hiradate 2000). However, controversial results exist about the 

process of xylem loading. The concentration of Al in the xylem sap by far exceeds that in the 

external medium (Ma and Hiradate 2000) suggesting an actively driven process. 

Controversially, hydroxylamine, an inhibitor of respiration, did not affect the Al concentration 

in the xylem sap (Ma and Hiradate 2000) suggesting a passive process. Thus the mechanisms 

contributing to Al tolerance and Al accumulation of buckwheat are not well understood so far. 

In addition, they do not explain the comparatively low Al sensitivity of buckwheat root 

growth when exposed to Al3+ because this requires the protection of the root-tip apoplast 

from Al binding (Horst et al. 2007, Ryan et al. 2001). In this regard the exudation of organic 

acid anions complexing and thus detoxifying Al is of major importance (Li et al. 2009a, Ma et 
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al. 2001). It has been demonstrated that Al supply triggers oxalate exudation particularly in 

the 10-mm root tip without a lag phase. For that reason buckwheat has been classified among 

the Pattern I responders which release organic acid anions in response to Al by opening a 

plasma membrane anion-permease without a lag phase (Zheng et al. 1998). This mechanism 

is constitutively expressed and, thus, does not need protein synthesis or gene activation. The 

exudation of oxalate proved to be inappropriate to explain differences in Al resistance of 

buckwheat genotypes (Zheng et al. 2005). However, Peng et al. (2003) concluded that both 

the constitutive oxalate exudation and the internal oxalate content contribute to Al 

detoxification and to genotypic Al resistance (Peng et al. 2003). Another hypothesis suggests 

an alternative resistance mechanism, relating Al resistance to the precipitation of Al by P and 

the accumulation of Al–P in the root tissue (Zheng et al. 2005). The detoxification of Al in the 

root tips of buckwheat by exudation of oxalate leading to reduced Al uptake (Al resistance) is 

difficult to reconcile with the Al accumulation (Al tolerance). It has been suggested that Al 

exclusion and Al accumulation are spatially separated along the root apex (Ma and Hiradate 

2000). 

The objective of this study was to analyze resistance and tolerance mechanisms at the same 

time taking particularly a possible stratification of Al uptake, Al transport and oxalate 

exudation along the root apex into consideration. 

Material and Methods 

Plant material 

Buckwheat (F. esculentum Moench) cultivar ‘Lifago’ (Deutsche Saatveredelung AG, 

Lippstadt, Germany) was germinated in a peat substrate with 30% clay (Einheitserde, Balster 

Einheitserdenwerk GmbH, Fröndenberg, Germany). Plants were grown for 4 weeks in a green 

house at 25/20◦C day/night temperature. After this growth period the shoots were cut 10 mm 

below the first node exhibiting first adventitious root initials and above the primary leaf to 

reduce evaporation. The cuttings were transferred to low ionic strength nutrient solution for 4 

days, keeping the shoots at 100% relative humidity until adventitious roots had emerged. 

Subsequently, the plants were adapted to lower relative humidity by reducing air 

humidification. Finally, the pH of the nutrient solution was reduced to 4.3 in three steps, 

enabling an adaptation to low pH over at least 12 h before beginning the Al treatment. 

Adventitious roots have been used for this study because these roots are thicker than seminal 

roots and, thus, better suited for the rhizotron experiments. 
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Al and oxalate distribution along the root apex 

 

Rooted cuttings were grown for 24 h in complete nutrient solution at pH 4.3 with the 

following composition [μM]: 500 KNO3, 162 MgSO4, 30 KH2 PO4, 250 Ca(NO3)2, 8 H3BO3, 

0.2 CuSO4 , 0.2 ZnSO4 , 5 MnSO4 , 0.2 (NH4)6Mo7O24, 50 NaCl and 30 Fe-EDDHA. Addition 

of 75 ⎧M Al resulted in a mononuclear Al concentration of 40 ⎧M. Segments of adventitious 

roots were excised using a knife with 10 razor blades fixed in a distance of 1 mm. 

 

Minirhizotron experiments 

 

Compartmented rhizotrons were built and modified based on the model of Pitman (1971) 

(Fig. 1). These minirhizotrons were made of 2-mm thick acrylic glass plates. All elements 

were fixed with liquid glue for plastics (Revell GmbH & Co. KG, Bünde, Germany). Then 

45-mm root tips of adventitious roots of low pH-adapted buckwheat cuttings were excised and 

washed in control nutrient solution to remove symplastic contamination from the cut surface. 

After this washing step eight roots were placed in a rhizotron containing minimal nutrient 

solution composed of 500 μM CaCl2, 5 μM H3BO3, 100 μM K2SO4 and ±200 μM AlCl3 at pH 

4.3. Minimal nutrient solution was chosen to avoid interactions with Al, namely precipitation 

or complexation (e.g. with phosphate). The Al concentration was set to 200 μM in order to 

prevent depletion in the small volume of 2 ml, amounting to only 400 nmol Al per rhizotron. 

Single compartments were sealed with silicon grease to avoid Al contamination between the 

chambers. A leak between the compartments can be excluded based on the analysis of Al and 

organic acids in the protection compartment. Al was either applied in the first compartment to 

the apical 5 mm (or 10 mm) of the root or in the second compartment to the subapical 6–10 

mm (or 11–20 mm) zone. Al and organic acid anion concentrations were determined in the 

solution of each compartment. To analyze the Al contents of different root-tip zones, 3-mm 

segments (0–3 and 6–9 mm) or 8-mm segments (1–9 and 11–19 mm) were cut out of each 

zone to avoid contamination by silicon grease. Exudates were analyzed by combining the 

volumes of three compartments to one composite sample. Every treatment was performed in 

nine rhizotrons resulting in three composite samples. 
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Figure 1. Schematic structure of a minirhizotron. Eight adventitious root tips of buckwheat with a length of 45 

mm were placed in each rhizotron with (A) 5-mm compartments or with (B) 100-mm apical compartmentation. 

Incubation occurred for 6 h in minimal nutrient solution ±200 μM Al at pH 4.3. Three rhizotrons were 

combined to one sample. Three replicates, therefore, comprise nine rhizotrones per treatment. 

 

Determination of oxalate exudation from excised root segments 

 

Low pH-adapted root tips from adventitious roots of buckwheat cuttings were excised 30 mm 

behind the root tip. These root tips were again subdivided into six 5-mm segments. Ten 

segments from each zone were placed within one well of a 96-well plate. Root tips were 

washed three times by changing the control-nutrient solution without Al to remove 

cytoplasmic contaminations. Each well contained 300 μl nutrient solution (500 μM CaCl2, 5 

μM H3BO3, 100 μM K2SO4 and ±200 μM AlCl3 at pH 4.3). The root-tip segments containing 

microplate was placed on a platform shaker (Heidolph, Polymax 1040, Schwabach, Germany) 

at 20 rpm for 6 h. The nutrient solution was aerated by pipetting the solution up and down 

every 10 min. Organic acids were analyzed using high pressure liquid chromatography 

(HPLC; see below). 

Al determination 

Al was determined by GF-AAS (Unicam 939 QZ, Analytical Technologies Inc., Cambridge, 

UK) at a wavelength of 308.2 nm, an ashing phase of 20 s at1500◦C and an atomisation phase 

of 3 s at 2300◦C. Each sample was measured twice. Root tips were digested over night in 500 

μl double-distilled ultrapure nitric acid under continuous shaking at room temperature. After 

digestion the samples were appropriately diluted with double deionised water. 
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Organic acid determination 

 

The organic acid concentrations in the root exudates as well as in the extracts of root tissue 

were measured by isocratic HPLC (Kroma System 3000, Kontron Instruments, Munich, 

Germany). The organic acids were injected through a 20 µl loop-injector (Auto-sampler 360), 

separating different organic acids on an Animex HPX-87H (300 x 7.8 mm) column (BioRad, 

Laboratories, Richmond, California, USA), supplemented with a cation H+ micro-guard 

cartridge, using 10 mM perchloric acid as eluant at a flow rate of 0.5 ml per minute, constant 

temperature of 35 oC (Oven 480) and 74 hPa of atmospheric pressure. Measurements were 

performed at a wavelength of λ = 214 nm (UV Detector 320).  

Prior to the analysis of exuded organic acids the nutrient solution samples were exchanged 

using a cation exchange column (hydrochloric form) (AG® 50W-X8; Biorad; Life science 

group; Hercules; CA), followed by concentration to dryness via vacuum centrifugal 

evaporation (RCT 10-22T; Jouan; Saint-Herblain, France). Extracts of root tips were analyzed 

according to Wenzl et al. (2002) with modifications. Samples were homogenized in 500 µL 

70 % (v/v) EtOH using a swing mill (MM 200, Retsch GmbH & Co. KG; Haan, Germany) 

and incubated for 1 h at 45 °C. Samples were centrifuged at 15.000 rpm for 10 min in order to 

get a pellet. Subsequently, EtOH was evaporated to dryness by a vacuum centrifugal 

evaporator. The dry pellet was resuspended in 200 µL 10 mM perchloric acid, homogenized 

in an ultra sonic bath (Bandelin Sonorex super RK105; Bandelin electronic, Berlin; Germany) 

and finally filtrated using a filter unit with a pore size of 0.45 µm (GHP Nanosep®; MF 

Centrifugal device; Pall Life Sciences; Ann Arbor; MI). The filtrate was analyzed by HPLC. 

 

Staining of suberin and lignin in root tips 

 

Staining of suberin and lignin depositions in cell-wall material in root tips of adventitious 

roots of buckwheat cuttings was performed following the procedure described by Brundett et 

al. (1988). Root tips were embedded in 5 % (w/v) agarose with a low gelling temperature of 

31-39 °C. Sections were obtained by free hand sectioning using a razor blade. Sections were 

directly mounted on a slide and stained at first with 0.1 % (w/v) berberine in deionised water 

(dH2O) for one hour in darkness at room temperature. The solution was gently blotted off 

using tissue paper. Sections were rinsed three times with dH2O and again blotted dry. For 

counterstaining, a drop of 0.5 % (w/v) aniline blue was placed on each section for 0.5 h. 
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Afterwards, the sections were rinsed and blotted of as mentioned before.  Sections were 

covered by a 0.1 % (w/v) FeCl3 solution (in 50 % glycerine). Sections were observed under 

ultraviolet (UV) illumination with an Axioscope microscope (Zeiss,  Jena, Germany). 

Statistical analysis 

The ANOVA procedure of the statistical program SAS 9.2 (SAS Institute, Cary, NC) was 

used for analysis of variance. Means were compared using the Tukey test. 

Results 

After 24 h Al supply the profile of the Al contents along the root tip in mm segments revealed 

a steep decreasing gradient from the root apex to the more basal segments (Fig. 2). The first 

three mm contributed about 60 % to the Al content of the 10 mm root apex. 

The contents of organic acids measured in the bulk root tissue were oxalic > succinic >> 

malic > citric acids (data not shown). After 24 h Al supply the oxalic acid contents did not 

differ between the Al treatments. In contrast to the Al contents (see Fig. 2), the oxalic acid 

contents increased from the root apex to the more basal root segments independent of the Al 

treatment (highly significant segment effect only). 

 
Figure 2. Al contents of adventitious root tips of buckwheat after 24 h Al treatment in P (30 µM) and NO3

- 

(250 µM) reduced complete nutrient solution with and without 75 µM AlCl3 at pH 4.3 in mm-segment 

resolution. Cuttings were rooted for 4 days followed by 1 day pH adjustment. Data represent means +/- SE, n = 

4. For the ANOVA, **, *** denote probability levels at P < 0.01 and 0.001, respectively. Means with the same 

letter are not significantly different (Tukey test, P < 0.05). Capital letters denote the comparison of root-tip 

segments within Al treatments; small letters denote the comparison between Al treatments. 
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Figure 3. Oxalate contents of adventitious root tips of buckwheat after 24 h treatment in P (30 µM) and NO3

- 

(250 µM) reduced complete nutrient solution with and without 75 µM AlCl3 at pH 4.3 in mm-segment 

resolution. Cuttings were rooted for 4 days followed by 1 day pH adjustment. Data represent means +/- SE, n = 

4. For the ANOVA, **, *** denote probability levels at P < 0.01 and 0.001, respectively. Means with the same 

letter are not significantly different (Tukey test, P < 0.05). Capital letters denote the comparison of root tip 

segments within Al treatments. 

 

The use of mini-rhizotrons (Fig. 1) facilitated a more detailed study of the spatial 

characteristics of Al uptake and translocation along the root tip. This appeared to be necessary 

and promising on the basis of the results described above, showing gradients in Al and oxalate 

contents along the root. In a first approach the focus was on a differentiation between the 0-5 

and the 6-10 mm root zone (Fig. 4a). Application of Al in compartment 1 led to high Al 

accumulation, particularly in the 5 mm root apex in contact with Al (Fig. 4a). The Al contents 

of the more basal root zones were slightly enhanced (not significantly or significantly for 

zones 2 and 3 not in contact with Al, respectively). Aluminium transport via the xylem 

indicated rapid transfer of Al from the external solution to the xylem in the root apex. 

Aluminium application to the sub-apical 5-10 mm root zone in compartment 2 led to Al 

accumulation particularly in zone 2. But this accumulation was less than in zone 1 when Al 

was applied to the same zone. The Al contents of the adjacent apical and basal root zones 

were only slightly enhanced (not significantly or significantly for zones 1 and 3, respectively). 

Application of Al to zone 2 increased xylem Al transport to the same extent as application to 

the apical 5 mm zone. 
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Figure 4. Aluminium contents in different root sections and xylem aluminium transport rates of excised 45 mm 

apical zones of adventitious buckwheat roots after 6 h Al treatment (0 or 200 µM) in 5 (a) or 10 (b) mm 

compartmented mini-rhizotrons allowing application of Al to the specific root zones. After the Al treatment for 

(a) the root zones 0-3 mm (compartment 1), 6-9 mm (compartment 2), and 12-15 mm (compartment 3) and for 

(b) the root zones 0-10, 10-20 and 20-30 mm were analysed, respectively. Aluminium transport-rates in the 

xylem flow were calculated from the Al accumulation in the xylem-sap compartment (Fig. 1) when Al (200 µM) 

was applied to the specific root zone. For the ANOVA, *** denotes significant effects at P < 0.001.  Bars 

represent means +/- SE, n = 9. 

 

When Al was applied to 10 mm root sections (Fig. 4b), again the Al content was particularly 

increased in the root zone in contact with Al, more when applied to the apical than to the 

subapical root zone. There was little, but significant transfer of Al to the adjacent basal root 

sections. Xylem Al transport was largely enhanced by Al application to the 10 mm root apex 

but lower when Al was applied to the 10-20 mm root zone. Oxalate exudation was sampled 

from both compartments irrespective of the Al treatment zone (Fig. 5). The oxalate exudation 

was generally higher from the 5-10 compared to the 0-5 mm zone (Fig. 5a). Aluminium 

supply enhanced the oxalate exudation from the root zone which was in direct contact with 

Al. However, Al application to zone 1 also enhanced oxalate exudation from zone 2. When Al 

was applied to the 0-10 mm root zone (Fig. 5b) also the oxalate exudation from the non Al-

treated 10-20 mm zone was induced to a similar extent compared to the Al-treated root zone. 

However, application of Al to the sub-apical root section triggered exclusively the oxalate 

exudation from the Al-treated 10-20 mm root zone. 
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Figure 5. Oxalate exudation from two apical root zones of excised 45 mm apical zones of adventitious 

buckwheat roots after 6 h Al treatment (0 or 200 µM) in 5 (a) or 10 (b) mm compartmented mini-rhizotrons 

allowing application of Al to the (a) 0-5 or 5-10 mm and (b) 0-10 or 10-20 mm root zones. Oxalate was collected 

in both compartments. For the ANOVA, * and ** denote significant effects at P < 0.05 and 0.01, respectively, ns 

nonsignificant. Bars represent means +/- SE, n = 9. 

 

Studying the oxalate exudation using 5 mm excised apical root zones (Fig. 6) confirmed the 

oxalate exudation pattern along the root apex shown above with intact plants. Aluminium 

treatment enhanced oxalate exudation from the 20 mm root apex, particularly from the 11-15 

and 16-20 mm root zones. Beyond the 20 mm root tip (21-30 mm) the Al-induced oxalate 

exudation quickly reached the constitutive exudation of Al non-treated roots.  

 
Figure 6. Oxalate exudation profile of adventitious buckwheat roots. For the collection of the root exudates 

excised 5 mm apical root zones were treated without and with 200 µM Al in simplified nutrient solution  in 300 

µL micro-plate wells. For the ANOVA, *, ** and *** denote significant effects at P < 0.05, 0.01 and 0.001 

respectively, ns non significant. Data represent means +/- SE, n = 4. 
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In the xylem compartment not only Al but also organic acids could be determined, and the 

xylem transport-rate could be calculated. Oxalic acid could not be found in the xylem sap. 

The concentrations of other organic acids were succinic > citric > malic acid.  Only citric acid 

responded to the Al supply. Therefore, only the correlation of the Al and citrate transport-

rates is shown. Generally, citrate and Al transport-rates in the xylem were significantly 

correlated (Fig. 7). The citrate transport-rate of the controls without Al supply and the positive 

value for the intercept of the regression with the y-axes clearly showed that citrate was 

constitutively transported independent of the Al supply. However, Al transport to and in the 

xylem induced an increased citrate transport. The Al and citrate transport-rates reflect the 

efficiency of Al xylem loading according to the root section exposed to Al: 0-5 mm < 6-

10 mm < 0-10 mm < 11-20 mm. With increasing Al transport the Al:citrate ratio decreased 

approaching a ratio of 1:1. Since it has been shown that Al accumulation and transport, and 

oxalate exudation differ between root-tip sections the question arises whether this could be 

related to morphological particularities of the buckwheat root.  

 
Figure 7. Correlation of Al and citrate transport-rates in the xylem sap without Al application (white symbols) or 

after Al application to the apical zone in compartment 1 (black symbols) or to the subapical zone in compartment 

2 (grey symbols). Aluminium was applied either to the root zones 0-5 and 6-10 mm (triangles) or the root zones 

0-10 and 10-20 mm (circles). Citrate and Al were collected in the xylem-sap compartment. Incubation of 45 mm 

apical root sections for 6 h in minimal nutrient solution +/- 200 µM Al at pH 4.3. For the ANOVA, * and ** 

denote significant effects at P < 0.05 and 0.01, respectively. 
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Therefore, a systematic microscopic analysis of the development of hydrophobic barriers and 

the differentiation status of the vascular system from the root tip in distinct 5 mm zones of the 

0-30 mm root tip was undertaken (Fig. 8) applying a berberine aniline-blue fluorescent 

staining procedure. The first 0-5 mm zone could be characterized by undifferentiated  

 
Figure 8. Berberine aniline -blue counterstaining of buckwheat free-hand cross sections embedded in 5 % 

agarose gel. Exposure time and magnification were 79 ms and 200 fold, respectively. Sections were obtained 

after embedding of 5 mm root tip zones in a distance of 0–5, 6–10,  1 – 15, 16– 20, 21-25 and 26 –30 mm from 

the root tip. Sections were examined under UV-light. Green, light blue and yellow fluorescence indicate 

meristematic cells, suberin and lignin depositions, respectively. The white bar represents a scale of 100 µm. 

 

meristematic cells showing strong autofluorescence. The second 5-10 mm zone showed first 

signs of differentiation between cortex and central cylinder, however, without any 

hydrophobic barrier. In the 11-15 mm zone, the first fully differentiated lignified xylem 

vessels were visible and the endodermis showed beginning suberin staining of the Casparian 

strip. All more basal root zones >15 mm from the root apex showed clear formation of fully 

differentiated lignified xylem vessels and a suberinized endodermal layer. 

Discussion 

 

The distribution of Al along the root axis clearly showed a steep decreasing gradient form the 

root apex to the 4th mm (Fig. 2). The high Al accumulation capacity of the root apex was 

confirmed by experiments in which the Al accumulation of the apical 5 mm (Fig. 4a) or 10 

mm (Fig. 4b) was compared with the corresponding adjacent basal root segments. This higher 

Al accumulation by the root apex was not specific for buckwheat because similar gradients of 

Al contents along the root apex have been demonstrated for other plants species such as maize 

(Zea mays, Eticha et al. 2005 a), faba bean (Vicia faba, Horst et al. 2007) loblolly pine (Pinus 

taeda, Moyer-Henry et al. 2005) and wheat (Triticum aestivum, Tice et al. 1992). Thus it 

appears that this pattern is not different between Al accumulators and Al excluders. 

The main reason for the Al accumulation particularly in the root apex is most likely a 

corresponding gradient of the pectin content as it has been shown for maize (Eticha et al. 

2005 b) and bean (Rangel et al. 2009, Stass et al. 2007) . The main binding sites for Al in the 

cell wall are the negative charges of the pectic matrix (Horst et al. 1999, Blamey et al. 2001). 
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Differences in the negativity of the root-tip cell-walls contribute to genotypic differences in 

Al resistance in rice (Yang et al. 2008), maize (Eticha et al., 2005b, Li et al. 2009a), but also 

in buckwheat (Zheng SJ, personal information, 2009). The Al content in the root tissue is a 

function of Al uptake into and Al translocation out of the tissue. One of the main advantages 

of the applied mini-rhizotron (Fig. 1) was that it allowed differentiating between spatial 

responses to Al along the root apex with regard to Al uptake and organic acid anion 

exudation. Additionally, it rendered possible to measure at the same time Al and organic acid 

transport in the xylem. The Al uptake and binding to the pectic matrix in the cell wall is 

strongly modified by the release from the symplast of organic acid anions which form 

complexes with Al. The capacity to release organic acid anions in response to Al supply is the 

main mechanism explaining genotypic differences in Al resistance within Al excluders 

(Delhaize et al. 2007). But the same principle also applies to the Al accumulator buckwheat 

which releases oxalate in response to Al (Ma et al. 1997, Figs. 5, 6). The Al-induced release 

of oxalate was greater from the sub-apical than from the apical root zone (Figs. 5, 6) which is 

in agreement with a lower Al accumulation in the sub-apical root sections (see above). The 

enhanced exudation of the sub-apical root tip zone might be due to the higher oxalate contents 

compared to the root apex (Fig. 3). However, the relationship between the root contents and 

exudation of organic acids is generally loose (Hayes and Ma 2003; Yang et al. 2005). Thus, a 

differential control of the presence and function of anion permeases in the plasma membrane 

of apical and subapical root zones appears to be more likely. In this context it is particularly 

intriguing that application of Al to the root apex induced mainly the release of oxalate from 

the adjacent sub-apical root zone (Fig. 5) which is schematically presented in Fig. 9. Despite 

the large body of evidence linking root architecture with root absorption of nutrients, the 

effect of root architecture on root exudation has been virtually unexplored (Walker et al. 

2003). 
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Figure 9. Schematic overview of Al uptake, accumulation, and transport in relation to Al-induced oxalate 

exudation in adventitious root tips of buckwheat. Aluminium application to the apical 10 mm (a) leads to high Al 

uptake, accumulation at the root apex, basipetal translocation of Al symplastically in the root cortex and 

particularly in the xylem. Oxalate release is triggered by Al more in the 11-20 mm zone than in the 0-10 mm 

treatment zone requiring signal transduction (yellow arrow). Aluminium applied to the 11-20 mm root section 

(b) is taken up and transported only basipetally at a lower rate while oxalate exudation from the Al-treated zone 

is triggered at the same zone (yellow arrow). 

 

In most Al excluders the exudation of organic acid anions is confined to the root apex (Ryan 

et al. 1995, Mariano and Kjeltens 2003, Liao et al. 2006) thus protecting the most Al-sensitive 

sites of the root (Sivaguru  and Horst 1998, Horst et al. 1999, Sivaguru et al. 1999). Also in 

buckwheat the main oxalate-releasing root zone was reported to be the first 10 mm (Zheng et 

al. 1998) or more exactly the first 5 mm (Zheng et al. 2005) of the root tip. In the present 

work it could be shown that particularly the sub-apical root zone 6-20 mm behind the root 

apex was the main oxalate-exuding root zone (Figs. 5, 6). This difference is caused by the 

analysis of adventitious roots in contrast to seminal roots analysed by Zheng et al. which 

could be confirmed by own comparative studies with seminal roots (unpublished data). 

The induction of the release of oxalate from sub-apical root zones not in contact with Al 

through Al application to the root apex requires a basipetal signal transduction (Fig. 9). There 

is no apical signal transduction because Al applied to sub-apical root zones did not induce 

oxalate exudation from the apex (Figs. 5, 9). The most likely signal is Al itself which is 

rapidly taken up into the symplast (own unpublished work) where it is bound to oxalate (Ma 

et al. 1997) at the site of Al application, and transported symplastically to sub-apical root 
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zones (Fig. 4, for a more extensive discussion on Al transport see below). How Al triggers 

organic acid anion permeases is not understood so far (Ryan 2001). The present results 

suggest that not only apoplastic Al but rather symplastic Al is involved in the activation of an 

oxalate permease in buckwheat.  

The specific experimental approach also allowed the calculation of Al transport out of the root 

zone to which Al was applied. Principally, three transport pathways have to be considered: 

apoplastic transport in the cortical cell walls, symplastic transport, and xylem transport which 

requires the transport into the central cylinder and the presence of differentiated xylem 

vessels. Based on the diffusion coefficients for apoplastic flow of ions provided by Pitman 

(1977) of less than 1 mm in 6 hours and the Al contents shown in Fig. 4, apoplastic transfer of 

Al from the Al-treated root zone to the adjacent root zones (5 or 10 mm apart) or even into the 

xylem sap collection compartment (45 mm away) was expected to be negligible.  Also, 

diffusion in the apoplast is undirected and thus cannot explain that Al applied to the 11-20 

mm zone only moved basipetally. Since Al is rapidly taken up into the symplast (own 

unpublished work) symplastic transport is more likely and could explain transfer of Al from 

the site of uptake to the next root zone 5, 10 or even 20 mm away (Fig. 4). Symplastic 

transport may also explain basipetally targeted transport of Al driven by unloading of Al into 

the xylem. Aluminium taken up by the 10 mm root apex was particularly rapidly loaded into 

the xylem (Fig. 4). Increasing xylem-Al transport could be shown as early as 1h after Al 

application (data not shown; Ma and Hiradate, 2000). When Al was applied to the 11-20 mm 

zone, xylem loading was less. This could be explained by an impeded symplastic Al transport 

from the epidermis to the central cylinder and thus to the xylem in differentiated root tissue. It 

has been shown that proceeding root differentiation in Arabidopsis affects the distribution of 

plasmodesmata. Epidermal cells of developing roots became progressively more isolated, 

suggesting that plasmodesmata in these cells were either less prevalent or effective (Duckett 

et al. 1994). The described scenario is in agreement with the morphology of the buckwheat 

adventitious root shown in Fig. 8. Whereas the apical 10 mm were largely undifferentiated 

tissue, the 11-15 and even more clearly the 16-20 mm zones showed clear differentiation 

between root cortex and central cylinder, suberinization of the endodermis, and formation of 

lignified xylem vessels.  

The transfer of Al into the xylem involves a ligand exchange from oxalate to citrate (Shen et 

al. 2004), because hardly any oxalate but large concentration of citrate are found in the xylem 

sap of buckwheat (Ma and Hiradate 2000; Fig 7). The exact localization of this ligand 

exchange is still unknown, although the xylem companion cells in the central cylinder are the 
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most probable candidates. Ma and Hiradate (2000) showed that the xylem citrate-

concentration is constitutively high and not affected by Al application and thus loading of Al 

into the xylem. In contrast to these results, a significant positive correlation between Al and 

citrate transport-rates in the xylem sap independent of the root zone of Al application was 

found (Fig. 7). The reason for this discrepancy might be the site of xylem-sap collection. 

Xylem sap was sampled from the excised root 45 mm behind the root apex which may well 

reflect the effect of Al uptake and loading into the xylem on xylem-sap composition. 

Sampling the xylem sap at the stem level might lead to shifts in the citrate/Al ratio because of 

xylem loading and unloading along the xylem pathway. In hortensia (Hydrangea 

macrophylla), another Al accumulator plant species, a close 1:1 correlation between citrate 

and Al could be found in xylem exudates sampled at the stem level (Naumann and Horst, 

2003). In buckwheat the Al transport rate in the xylem sap was strongly affected by the kind 

and length of the apical root zone exposed to Al (Fig. 4, Fig. 7). Application of Al to zones 

including the root apex, and 10 mm zones compared to 5 mm zones led to higher Al transport 

rates. The different regressions for the relationships between xylem-Al and citrate transport-

rates for the Al application to 5 or 10 mm zones (Fig. 7) is difficult to explain on the basis of 

the available data. It is evident that not the Al transport rate determines the citrate transport 

rate in the xylem sap which did not differ between the two applications. In both cases, Al 

supply enhanced the citrate transport rates from about 2 to 5 nmol root tip-1 6h-1. It may thus 

be speculated that the Al concentration in the apical 5 mm root apex determines the citrate 

release to the xylem. More detailed studies on the synthesis and transport of citrate in the root 

apex differentiating between the root cortex and the central cylinder are urgently needed. 

In conclusion, the data presented show that the Al-induced release of oxalate (Al exclusion 

mechanism protecting the cell wall from Al injury) and Al uptake and accumulation (Al 

tolerance) are spatially not separated in the root apex. The further characterization of Al 

uptake at the root apex as affected by oxalate is subject to ongoing studies and will be 

reported in a subsequent paper. 



Chapter II 

___________________________________________________________________________ 

 33

Chapter II 

Oxalate exudation into the root-tip water free space confers  

protection from Al toxicity and allows Al accumulation in the 

 symplast in buckwheat (Fagopyrum esculentum Moench) 

 

Benjamin Klug, Walter J. Horst 

 

Published in: New Phytologist (2010) doi: 10.1111/j.1469-8137.2010.03288.x 

 

Abstract 

A better understanding of aluminium (Al) uptake and transport is expected to contribute to 

unravel the apparent contradiction between Al exclusion and Al accumulation in buckwheat.  

We studied the effect of Al supply on the root-tip Al and oxalate concentrations of the 

apoplastic water free space fluid (WFSF) and the symplast as affected by temperature, oxalate 

supply and the anion-channel blocker phenylglyoxal (PG). 

Aluminium supply rapidly activated the release of oxalate to the WFSF to establish a 1:1 

Al:oxalate ratio. In the symplast, the Al concentration was 100 times higher than in the 

external solution, and the Al to oxalate ratio was 1:2. Loading and unloading of Al, but not of 

oxalate, into and from the symplast were reduced at low temperature and are thus under 

metabolic control. Application of PG reduced the constitutive and the Al-enhanced WFSF 

oxalate concentrations and enhanced Al-induced root-growth inhibition. Different from a 1:3 

Al:oxalate ratio, a 1:1 ratio ameliorated only partly Al-induced root-growth inhibition without 

affecting root-tip Al contents or WFSF Al concentrations. 

We present a hypothesis with an Al(Ox)+ plasma-membrane transporter in the root cortex and 

a xylem-loading Al(Cit)n- transporter in the xylem parenchyma cells as key elements of Al 

accumulation in buckwheat. 
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Introduction 

Aluminum toxicity is a major factor limiting crop productivity on acid mineral soils which 

comprise 40 % of the world’s arable land (Conner & Meredith, 1985). Aluminium toxicity is 

characterized by a rapid inhibition of root growth leading to reduced water and nutrient 

uptake and finally to limited growth and yield of Al-sensitive crops. However, great intra- and 

interspecific differences in Al resistance exist (Kochian et al., 2005; Ma & Furakawa, 2003) 

Aluminium resistance, a term which is used here in it’s general sense as a plant characteristic 

which allows a plant to growth without growth inhibition at elevated Al supply, rely on the 

exclusion of Al from binding and uptake of Al by the roots and thus low Al concentrations in 

the leaves (< 100 µg (g dry matter)-1) in most crops. However, some of the most Al-resistant 

plant species are Al accumulators and have evolved Al tolerance. Among these plant species 

are tea (Camellia sinensis var. sinensis), hortensia (Hydrangea macrophylla) and buckwheat 

(Fagopyrum esculentum Moench) which accumulate Al in leaves up to several mg (g dry 

matter)-1 (Matsumoto et al., 1976, Naumann & Horst, 2003, Ma et al., 1997a,). The 

mechanism underlying the internal tolerance mechanisms of the Al accumulator buckwheat 

are rather well understood. Once taken up, Al is bound as an Al-oxalate complex and is 

transported radially to the central cylinder where a ligand exchange to citrate is proposed to 

occur (Ma & Hiradate, 2000). In the xylem Al is transported as Al-citrate complex into above-

ground plant parts where again Al changes the ligand back to oxalate (Ma et al., 1998). When 

the Al import into the leaf exceeds a certain limit, especially at the leaf margins, an Al-citrate 

complex will be additionally formed (Shen et al., 2004). Aluminium is transported 

exclusively into transpiring organs and does not accumulate in the seeds (Shen et al, 2006) 

suggesting that Al is not phloem-mobile. In contrast to Al tolerance, Al uptake in buckwheat 

is not well understood yet. In response to Al treatment buckwheat releases oxalate from the 

root tips without a lag phase (Ma et al., 1998; Zheng et al., 1998) which is a typical feature of 

Pattern I Al excluders according to Ma et al., 2001. Thus, it appears that the anion permease 

facilitating the oxalate exudation is constitutively expressed in buckwheat (Ma et al., 2001; 

Yang et al., 2005) such as the malate permease TaALMT1 in wheat (Delhaize et al., 2007). 

However, a molecular and physiological characterization of this anion permease is still 

missing in buckwheat. The Al-activated release of oxalate suggests that Al is bound to oxalate 

in the root apoplast thus protecting Al-sensitive binding sites. Applying oxalate in different 

Al:oxalate ratios to buckwheat roots, Ma & Hiradate (2000) showed a strong reduction of Al 

uptake and translocation in the xylem sap even at a 1:1 ratio thus confirming the role of Al 
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complexation in Al exclusion. They conclude from their results that the Al accumulation of 

buckwheat requires the uptake of Al as Al3+ and a stratification along the root apex of oxalate 

release and Al3+ uptake. However, using mini-rhizotrons which allowed differentiating 

between spatial responses to Al with regard to Al uptake and organic acid-anion exudation 

and to measure simultaneously Al and organic acid transport in the xylem, we recently 

provided evidence that Al-induced release of oxalate, Al uptake and Al accumulation are 

spatially co-localized in the root apex (Klug & Horst, 2010).  

On the one hand the uptake process of Al was suggested to be an active process, because 

xylem-sap Al concentrations exceeded by far the concentration in the external solution (Ma & 

Hiradate, 2000). But on the other hand, the lack of a response of Al uptake and translocation 

in the xylem sap to the respiration-inhibitor hydroxylamine rather indicated a passive process 

(Ma & Hiradate, 2000). Thus, the nature of the Al-uptake process in buckwheat is not yet 

unequivocally clarified.   

The present study is focused on a characterisation of the transport of Al from the root apoplast 

into the root symplast of buckwheat. Special emphasis is placed on the characterisation of the 

Al and organic acid composition of the apoplastic water free space fluid (WFSF) in relation to 

Al uptake. It is expected that the better understanding of the Al uptake will contribute to 

unravel the apparent contradiction between Al exclusion and Al accumulation in the Al-

resistant Al accumulator buckwheat. 

 

Material and Methods 

Plant Material 

 

Buckwheat (Fagopyrum esculentum Moench) cultivar “Lifago” (Deutsche Saatveredelung 

AG, Lippstadt, Germany) was germinated in peat substrate with 30% clay (Balster 

Einheitserdewerk GmbH, Fröndenberg, Germany). Plants were grown for 4 weeks in a green 

house at 25/20 °C day/night temperature. After this period of growth the shoots were cut 1 cm 

below the first node with adventitious root initials and additionally above the primary leaf to 

reduce transpiration. These shoot cuttings were transferred to low ionic strength nutrient 

solution with the following composition [µM]: 500 KNO3, 162 MgSO4, 30 KH2PO4, 250 

Ca(NO3)2, 8 H3BO3, 0.2 CuSO4, 0.2 ZnSO4, 5 MnSO4, 0.2 (NH4)6Mo7O24, 50 NaCl, and 30 

Fe-EDDHA for 4 days keeping the shoots at 100 % relative humidity (rH) until adventitious 
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roots had emerged. The following day the plants were adapted to lower rH by reducing air 

humidity. Another day later, the pH of the nutrient solution was reduced in three steps to 4.3 

resulting in at least 12 h for adaptation to the low pH before the beginning of the Al treatment. 

 

Aluminium loading of intact adventitiously rooted cuttings 

 

With onset of the treatment, rooted and pH-adapted cuttings were transferred to either 0 µM 

or 75 µM AlCl3 in simplified nutrient solution containing 500 µM CaCl2, 8 µM H3BO3; 100 

µM K2SO4 at pH 4.3. A concentration of 75 µM AlCl3 was shown to be an Al concentration, 

leading to a root growth inhibition between 50 and 60 % (data not shown). The pH was 

controlled and readjusted when necessary to 4.3 using 0.1 M HCl or 0.1 KOH added drop 

wise under continuous stirring. The nutrient solution was aerated permanently.  

 

Aluminium loading and unloading of excised adventitious roots 

 

 Roots of pH-adapted cuttings were excised 10 mm behind the root tip. 30 root tips per sample 

were collected in net trays in ice cold minimal nutrient solution at pH 4.3. This nutrient 

solution was replaced 3 times to remove cellular contamination due to wounded tissues at the 

cutting surface. All root tips, but not the control treatment, were transferred in their net trays 

to either a warm or cold solution containing 75 µM AlCl3, pH 4.3. Only warm loaded root tips 

were transferred (after blotting to remove adhering solution) to either warm or cold unloading 

minimal nutrient solution without Al for 10 or 30 min. The net trays in the respective 

treatment solution were constantly shaken on a wave platform shaker (Heidolph polymax 

2040, Heidolph Instruments GmbH & Co. KG, Schwabach, Germany).  

 

Aluminium loading in presence of oxalate and phenylglyoxal 

 

pH-adapted buckwheat cuttings with adventitious roots were transferred to simplified nutrient 

solution. All treatments containing Al were pre-treated for 15 min with 75 µM AlCl3 at pH 

4.3 as an initial Al stimulus. After this pre-treatment the cuttings were transferred to the 

treatment solutions containing +/- 75 or 200 µM AlCl3, +/- 10 µM PG (Phenylglyoxal, Merck 

KGaA, Darmstadt, Germany) as anion-channel inhibitor, and +/- 75 or 200 µM oxalate. The 
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pH was monitored and adjusted if necessary during the treatment duration of 24 h. For 

measuring root growth, root tips were marked with Plaka colour (Pelikan, Feusisberg, 

Switzerland) using a fine paint brush 1 cm behind the tip and measured after 24 h using a 

ruler. Xylem sap was extracted from 2 cm stem segments by centrifugation at 6,000 g for 5 

min. Prior to centrifugation the cut ends were rinsed in double deionised water and gently 

blotted dry. The sap of two stem segments was combined to one composite sample. In the 

recovered xylem sap Al was analyzed by GF-AAS after appropriate dilution, and organic 

acids (OAs) were analysed by HPLC (see below). The Al fractionation in the root tips was 

performed as specified below.    

 

Fractionation of Al and organic acids in the root tissue 

 

In order to characterize the binding stage and compartmentation of Al and OAs in the roots a 

fractionated extraction procedure was applied following the procedure suggested by Yu et al. 

(1999) modified and described by Wang et al. (2004) and Rangel et al. (2009). Briefly, 30 10-

mm root tips were excised from adventitious roots on an ice-cooled graduated glass cutting 

plate. The root tips were then placed upright with the cutting surface facing down in a filter 

unit with a pore size of 0.45 µm (GHP Nanosep®; MF Centrifugal device; Pall Life Sciences; 

Ann Arbor; MI, USA). Until the extraction begun the filter units were stored on ice never 

exceeding 5 min. The nutrient solution adhering to the surface of the roots was removed by 

centrifugation at 60 g for two min. The water free space fluid (WFSF) was then extracted at 

4,000 g for 15 min. The cytoplasmic contamination of the WFSF was low. The activity of the 

cytoplasmic marker enzyme malate dehydrogenase (MDH) in the WFSF never exceeded 0.5 

% of the root-tip homogenate. Subsequently the root tips were frozen at -20 °C, defrozen, and 

again centrifuged at 4000 g for 15 min yielding the symplastic fraction. The volume of each 

fraction and sample was determined by micropipetting. To obtain pure cell-wall material, 

which is defined as ethanol-insoluble residue of the homogenate (Fry, 1988), the root tips 

were transferred to an Eppendorf vial and homogenised in 500 µL ethanol (96 % w/v) in a 

swing mill (MM200; Retsch; Haan; Germany) at 30 strokes min-1 for 3 min. The homogenate 

was pelleted by centrifugation at 23,000 g for 15 min. The pellet was resolubilized and 

centrifuged again. This procedure was repeated 3 times. The collected supernatants from each 

washing step were evaporated in a centrifugal evaporator (RCT 10-22T; Jouan; Saint-

Herblain, France), and the residue was digested in concentrated ultra pure nitric acid and its 
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Al content determined. Since the Al content of the ethanol fraction was very low and did not 

respond to Al treatment time and Al supply it was neglected in the calculation of the 

symplastic Al. The pellet contained the purified cell-wall fraction and was digested as 

performed for bulk root-tip Al analysis. In addition to Al OAs in the WFSF and the 

symplastic sap were analysed in sub-samples. 

 

Aluminium determination 

 

Aluminium was determined by GF-AAS (Unicam 939 QZ; Analytical Technologies Inc.; 

Cambridge; UK) at a wavelength of 308.2 nm, an ashing phase of 20 sec at 1,500 °C and an 

atomisation phase of 3 sec at 2,300 °C. Each sample was measured twice. Root tips were 

digested over night in 500 µL double-distilled ultra-pure nitric acid under continuous shaking 

at room temperature. After digestion the samples were diluted as necessary with double 

deionised water.  

 

Determination of organic acids 

 

Organic acids in the root exudates as well as in the extracts of root tissue were measured by 

isocratic High Pressure Liquid Chromatography (HPLC, Kroma System 3000, Kontron 

Instruments, Munich, Germany). The OAs were injected through a 20 µl loop-injector (Auto-

sampler 360) of the HPLC, separating different OAs on an Animex HPX-87H (300 x 7.8 mm) 

column (BioRad, Laboratories, Richmond, CA, USA), supplemented with a cation H+ micro-

guard cartridge, using 10 mM perchloric acid as eluant at a flow rate of 0.5 ml per minute, 

constant temperature of 35 oC (Oven 480), and 74 hPa of atmospheric pressure. 

Measurements were performed at a wavelength λ = 214 nm (UV Detector 320). Prior to the 

analysis of exuded organic acid anions the nutrient solution samples were run through a 

cation-exchange column (hydrochloric form) (AG® 50W-X8; Biorad; Life science group; 

Hercules; CA, USA) followed by concentration to dryness via centrifugal evaporation (RCT 

10-22T; Jouan; Saint-Herblain, France). 
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Results 

The bulk Al contents of the apical 10 mm root tip rapidly increased within the first four hours 

of Al treatment (Fig. 1). Then the Al contents levelled off and after 8 h remained stable up to 

24 h Al treatment. After a lag phase of about 1 h the Al concentration in the xylem sap 

increased linearly up to 24 h Al treatment (Fig. 1). The xylem sap Al concentration reached 

the concentration of the external solution (75µM) after 8 h and about twice this concentration 

after 24 h Al treatment.  The contents of the OAs present in the aqueous extract of the 10-mm 

root tip were succinate = oxalate > malate. Whereas succinate (12.9) and malate (12.4) did not 

change during the Al treatment, the oxalate content (13.8) decreased with Al treatment 

duration to 5.0 (nmol (cm root tip)-1). 

 
Figure 1. Effect of Al treatment duration on the Al contents of 10-mm root tips and xylem-sap Al concentrations  

of adventitiously rooted buckwheat plants grown in simplified nutrient solution (500 µM CaCl2, 8 µM H3BO3; 

100 µM K2SO4) without and with 75 µM AlCl3 at pH 4.3. Points represent means +/- SE, n = 5. Different letters 

denote significant differences between treatment durations at P = 0.05. Succinate and malate contents were not 

significantly affected by treatment duration. 

 

The Al content of the 10-mm root apices was operationally fractionated into the water free-

space fluid (WFSF), symplast, and cell-wall fraction.  After Al treatment, the Al concentration 

in the WFSF quickly reached 250-600 µM, thus a 5-8 times higher concentrations than in the 

external solution supplied, and remained stable over the 24 h Al treatment period (Fig. 2a). 
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The symplastic Al concentration increased to about 5 mM and 11 mM after 0.5 h and 4 h Al 

treatment, respectively (Fig. 2b). Compared to the external Al concentration Al accumulated 

in the symplast by a factor of more than 100.  After 24 h the symplastic Al concentration 

decreased to 7 mM. The Al content of the cell walls increased steadily over the Al treatment 

period (Fig. 2c). The relative quantitative contribution of each root-tip Al fraction to the sum 

over all fractions revealed that up to 4 h Al treatment, the symplastic fraction showed the 

greatest share of the total Al content (Fig. 3). 

 
Figure 2. Aluminium concentrations in (a) the water free-space fluid (WFSF), (b) the symplastic sap, and the cell 

wall Al content (c) of 10-mm adventitious root tips of buckwheat plants not treated or treated with 75 µM AlCl3 

for 0.5, 4 and 24 h in simplified nutrient solution (500 µM CaCl2, 8 µM H3BO3; 100 µM K2SO4, pH 4.3). For the 

description of the fractionated extraction technique see Materials and Methods. Plants were rooted for 4 days 

followed by 1 day pH adjustment. Two independent experiments were conducted. ANOVA did not reveal a 

treatment x experiment interaction. Thus points represent means of two independent experiments +/- SE, n = 6. 

Means with different letters denote significant differences between treatment durations within the +Al treatment 

at P = 0.05. 

 

After longer Al treatment the cell-wall fraction became more important. The increasing share 

of the cell-wall fraction may have been due to both an internal redistribution of Al and 

decrease in symplastic Al, because the total Al content of the root tip did not increase between 

4 and 24 h Al treatment duration (compare Fig. 1). The relative contribution of the WFSF Al 

fraction was small and decreased with Al treatment duration because of increasing bulk-tissue 

Al contents. 
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Figure 3. Relative contributions of  cellular Al fractions to the total Al content of 10-mm apices of adventitious 

buckwheat roots after 0.5, 4 and 24 h of Al  treatment (75 µM)  in simplified nutrient solution  (500 µM CaCl2, 8 

µM H3BO3; 100 µM K2SO4  pH 4,3). 

 

In the WFSF as well as in the symplast, oxalate was the most abundant organic acid anion 

which responded to the Al supply. The oxalate concentration in the symplast was higher by a 

factor of about 25 than in the WFSF (Fig. 4). The oxalate concentrations were significantly 

correlated with the Al concentrations in the WFSF as well as in the symplast. The slope of the 

regression line for the WFSF is not significantly different from the 1:1 line and suggests an Al 

oxalate complex formation in a ratio of 1:1 in the WFSF (Fig. 4a).  

 
Figure 4. Correlations between Al and oxalate concentrations in the water free-space fluid (a) and the symplastic 

fraction (b) of adventitious 10-mm buckwheat root tips. Fractionated extraction of the 1-cm root tips after 0.5, 4 

and 24 h of Al  treatment (75 µM)  in simplified nutrient solution  (500 µM CaCl2, 8 µM H3BO3; 100 µM K2SO4  

pH 4,3). Points represent single values. For comparison the 1:1 (a) and 1:2 (b) Al:oxalate ratios are shown. For 

the ANOVA, * and *** denote levels of significance at P < 0.05 and 0.001, respectively. 
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The ratio of the Al and oxalate concentration was close to two and the regression line for the 

symplastic fraction was close to the 1:2 line indicating a 1:2 Al oxalate complex in the 

symplast (Fig. 4b). The intercepts with the y-axis suggest a constitutive oxalate concentration 

of 0.1 and 10 mM in the WFSF and the symplast, respectively. 

For further unravelling the Al accumulation and transport into the central cylinder we used 

excised adventitious root tips. In a first approach we studied the metabolic control of the 

initial steps of Al accumulation (loading) and unloading in the apoplast and symplast (Fig. 5). 

Within 30 min Al loading the Al concentration of the WFSF reached the Al concentration of 

the external solution of 75 µM independent of the temperature (Fig. 5a). After transfer of the 

roots to Al-free solution the WFSF Al concentration quickly decreased to the control level, 

again independent of the temperature. The Al concentration of the symplast, which after 30 

min of Al treatment reached more than one mM at 25°C, was decreased to 600 µM at 4°C 

(Fig. 5b). During the unloading period the symplastic Al concentration decreased only at 

20°C but not at 4°C.  

 
Figure 5. Concentrations of Al in the water free space fluid (WFSF) (a) the symplast (b), and cell-wall Al content 

(c) of excised 10-mm apices of adventitious buckwheat roots. Fractionated extraction of the root tips after 30 

min treatment with 75 µM Al (loading) in minimal nutrient solution  (500 µM CaCl2, 8 µM H3BO3; 100 µM 

K2SO4, pH 4,3) and subsequent unloading for 10 and 30 min in minimal solution without Al supply at 25°C 

(white bars) or 4°C (black bars) . Different letters denote significant differences at P < 0.05 between treatment 

durations; n = 5. 

 

Exposing the root apices for 30 min to Al rapidly enhanced the Al content of the cell walls 

independent of the temperature (Fig. 5c). The Al content was higher than in intact roots 

(compare Fig. 2c). After transferring the Al-loaded roots to Al-free solution the Al content of 

the cell walls rapidly decreased to about 50 % without a temperature effect.  
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Among the organic acids analysed in the WFSF and symplastic sap of the excised root tips, 

oxalate was again the most abundant and the only organic acid which responded to Al supply. 

Aluminium supply increased the oxalate concentration in the WFSF to 250 µM within 30 min 

without temperature effect (Fig. 6a). Transferring the root tips to Al-free solution initiated a 

rapid temperature-independent loss of oxalate. The symplastic oxalate concentration was 

higher than in the WFSF by a factor of 100 (Fig. 6b). It was not significantly affected by Al, 

temperature and unloading period. However, there was a consistent trend of enhanced oxalate 

concentrations at higher temperature and during Al unloading.  

 
Figure 6. Water free space fluid (a) and symplastic (b) oxalate concentrations of excised 10-mm apices of 

adventitious buckwheat roots. Fractionated extraction of the root tips after 30 min treatment with 75 µM Al 

(loading) in minimal nutrient solution  (500 µM CaCl2, 8 µM H3BO3; 100 µM K2SO4, pH 4,3) and subsequent 

unloading for 10 and 30 min in minimal solution without Al supply at 25°C (white bars) or 4°C (black bars) . 

Different letters denote significant differences at P < 0.05 between treatment durations; n = 5. 

 

To further explore the role of apoplastic oxalate on Al uptake we used the anion channel 

blocker PG and varied the apoplastic oxalate concentration by external application of oxalate. 

In order to induce oxalate exudation and a possible Al uptake system all Al-treated plants 

were exposed to 75 µM Al at pH 4.3 in a minimal nutrient solution for 15 minutes irrespective 

of the subsequent treatment. Application of PG reduced the constitutive and the Al-enhanced 

WFSF oxalate concentrations (Fig. 7a). External supply of oxalate (75 > 200 µM) increased 

the WFSF oxalate concentrations further compared to Al supply alone (Fig. 7b). The WFSF  
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Figure 7. Oxalate concentrations in the water free space fluid (WFSF) as affected by Al and PG treatment (a) and 

the oxalate supply (b) in the nutrient solution. Adventitious roots of buckwheat plants were grown in simplified 

nutrient solution of 500 µM CaCl2, 8 µM H3BO3, 100 µM K2SO4 at pH 4.3. They were exposed or not exposed 

to 75 or 200 µM AlCl3, 10 µM PG and 75 or 200 µM oxalate for 24 hours. Only Al-treated plants were pre-

treated with 75 µM Al for 15 min prior to the PG and oxalate addition. The WFSF was recovered by centrifugal 

extraction. For the ANOVA, * and ** denote significant effects at P < 0.05 and 0.01, respectively, ns non 

significant. Data represent means +/- SE, n = 4. 

 

oxalate concentration was higher by a factor of about 3 than the oxalate concentration of the 

external solution. The root growth-rate was not affected by PG application alone (Fig. 8a). 

However, when combined with Al treatment, the Al-induced inhibition of root elongation was 

further enhanced (significant Al*PG interaction). Aluminium treatment increased the Al 

content (Fig. 8c) and the Al concentration of the WFSF (Fig. 8e). Application of PG slightly 

reduced the WFSF Al concentration but did not affect the root-tip Al content. 

Oxalate application in a ratio Al/oxalate of 1:1 ameliorated Al-induced root-growth inhibition 

compared to Al application alone to 50% compared to 80% without oxalate supply 

independent of the Al supply (75 or 200 µM) (Fig. 8b). This amelioration could not be related 

to lower root-tip Al contents (Fig. 8d) or WFSF concentrations (Fig. 8f). Application of 200 

µM oxalate to 75 µM Al restored root growth nearly to the control (- Al) level (Fig. 8b). This 

can be explained by greatly reduced root-tip Al contents (Fig. 8d) and WFSF Al 

concentrations (Fig. 8f). 
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Figure 8. Root-growth rate, bulk Al root-tip content and Al concentration in the water free space fluid (WFSF) 

after centrifugal extraction as affected by Al and PG (a, c, e) or the oxalate supply (b, d, f) in the nutrient 

solution.  Adventitious roots of buckwheat plants were grown in simplified nutrient solutions of 500 µM CaCl2, 

8 µM H3BO3, 100 µM K2SO4 at pH 4.3. They were exposed or not exposed to 75 or 200 µM AlCl3, 10 µM PG 

and 75 or 200 µM oxalate for 24 hours. Only Al-treated plants were pre-treated with 75 µM Al for 15 min prior 

to the PG and oxalate addition. The WFSF was recovered by centrifugal extraction. For the ANOVA, *, **, and 

*** denote significant effects at P < 0.05, 0.01, and 0.001, respectively, ns nonsignificant. Data represent means 

+/- SE, n = 4. 
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Discussion 

The methodology established by Yu et al. (1999) and refined by Wang et al. (2004) and 

Rangel et al. (2009) allowed to separate operationally defined apoplastic and symplastic Al 

fractions (Fig. 2). Among the 3 fractions, the WFSF Al is expected to best represent in vivo 

localization of Al because it is recovered by centrifugation from the root tips without 

destroying the compartmentation. It is difficult to decide whether the symplastic and the cell-

wall Al fraction under or overestimate the in vivo compartmentation. During the extraction 

process particularly during the recovery of the cell sap, organic ligands may mobilize labile-

bound CW Al or symplastic Al which is bound by CW due to a higher Al-binding strength of 

CW compared to symplastic ligands (Rengel, 1996). In spite of these uncertainties the 

fractionated extraction procedure has proven to contribute to the understanding of Si 

amelioration of Al toxicity (Wang et al. 2004), Si-accumulating and Si-excluding plant 

species in relation to their resistance against plant pathogens (Heine et al. 2005, 2007). It also 

clearly differentiates between Al excluders such as Phaseolus vulgaris (common bean) and Al 

accumulators such as buckwheat which after 4h Al treatment accumulated about 10% (Rangel 

et al, 2009) and 67.4 % (Fig. 3) in the symplast of root apices, respectively. 

Aluminium activates the release of oxalate from root tips of buckwheat without a lag phase 

(Ma et al., 1997b, Klug & Horst, 2010) confirming its classification as Pattern I Al responder 

(Ma et al., 2001). The oxalate exudation leads to an oxalate concentration in the WFSF of 250 

µM after 0.5 h Al treatment (Figs. 4a, 6a). We also determined the oxalate concentration at 

the rhizoplane using a slow centrifugation (60 g) step preceding the extraction of the WFSF. 

The oxalate concentration in the rhizoplane water-film was below the detection limit (data not 

shown). This confirms the biphasic diffusion hypothesis elaborated by Kinraide et al. (2005). 

Using computational and experimental approaches these authors proposed that the epidermis 

acts as a barrier for both organic acid anion-release and Al uptake by roots. They proposed 

that this allows, with rather low exudation rates, to establish high organic acid-anion 

concentrations in the root-cortex WFSF necessary to reduce the Al3+ activity and thus 

protecting the root from Al injury ( Al resistance). Our data confirm this hypothesis for 

buckwheat: An Al:oxalate ratio of 1:1 in the WFSF of root tips (Fig. 4) suggest that the Al3+ 

concentration in the WFSF is rather low. Computation of the Al speciation in the WFSF using 

GEOCHEM-EZ (Shaff et al., 2009) revealed that at the measured Al and oxalate 

concentrations (ratio 1:1), 99 % of the Al was present Al:oxalate complex in the presence of 
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500 µM Ca (simplified nutrient solution). Increasing the Ca concentration to 6000 µM 

decreased the Al-oxalate formation only to less than 90 %. 

The Al-activated release of oxalate from the root tip was not significantly affected by the 

loading or unloading temperature regime (Fig. 6a), which may indicate that this efflux is not 

directly coupled to a metabolic energy-requiring process. If the Al-activated oxalate efflux is 

controlled in the same way as malate and citrate release in other plant species we may assume 

that the release of organic acid anions from the symplast is mediated by an organic acid-anion 

permease activated by Al3+ (Delhaize et al., 2007) along the membrane potential gradient. 

Thus, once the potential gradient has been established and is maintained, the release of 

oxalate is a passive process. 

Since we assumed that the triggering of the oxalate exudation and the uptake of Al(Ox)+ (see 

below) require an Al3+ stimulus we exposed the buckwheat roots to a brief Al treatment (15 

min) prior to the combined application of Al and oxalate in this study. This triggering was not 

performed by Ma & Hiradate (2000). We suggest that this is the reason why in their study, 

also the supply of Al and oxalate in a 1:1 ratio greatly reduced Al uptake and the Al 

concentration of the xylem sap. 

The role of the WFSF oxalate-concentration in Al resistance of buckwheat is supported by the 

application of the anion-permease inhibitor PG and the supply of oxalate to the external 

solution. PG application reduced the WFSF oxalate concentration (Fig. 7a) leading to 

enhanced Al-induced inhibition of root growth (Fig. 8a). Increasing the external oxalate 

supply increased the WFSF oxalate concentration (Fig. 7b) alleviating root-growth inhibition 

by Al (Fig. 8b). However, not the absolute WFSF oxalate concentration, but the Al:oxalate 

ratio determines the extent of the root-growth inhibition: with increasing ratio Al-induced 

inhibition of root elongation is ameliorated and finally prevented at a 1:3 ratio (Fig. 9). 
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Figure 9. Root growth rate of adventitious roots of buckwheat as affected by the ratio of oxalate to Al in the 

water free space fluid after centrifugal extraction. Plants were grown in simplified nutrient solutions of 500 µM 

CaCl2, 8 µM H3BO3, 100 µM K2SO4 at pH 4.3. They were exposed to 75 or 200 µM AlCl3, 10 µM PG and 75 or 

200 µM oxalate for 24 hours. Plants were pre-treated with 75 µM Al for 15 min prior to the PG and oxalate 

addition. Data represent means +/- SE, n = 4.  The root growth rate (+/- SE) of controls (-Al) are shown as 

shaded area. For the ANOVA, * denote levels of significance at P < 0.05. 

 

Such an oxalate versus Al excess in the external solution not only reduced Al toxicity but also 

the accumulation of Al in the WFSF (Fig. 8c) and in the entire root tissue (Fig. 8b). Similar 

results have previously been shown by Ma & Hiradate (2000). The 1:1 oxalate:Al complex 

still carries a positive charge (Happel, 2007) and thus is expected to slow down the 

accumulation of Al3+ but still to accumulate in the negatively charged root Donnan Free 

Space (DFS, Briggs & Robertson, 1957). However, the 1:2 and 1:3 Al-oxalate complexes 

carry negative charges (Happel, 2007) which prevent accumulation in the DFS (Pitman, 

1964). 

The unmethylated carboxyl groups of the pectic matrix are mainly responsible for the cation-

binding properties of the cell walls in the root apoplast (Glass, 2007). These negative charges 

are primary binding sites of Al3+ (Blamey et al., 1990, Chang et al., 1999). The rapid short-

term Al accumulation by roots is closely related to the negativity of the root apoplast (Horst et 

al., 2010 and references therein). This seems to also apply to buckwheat and explain the Al 

accumulation within 30 min of Al supply (Fig. 1). Binding of Al to the cell wall has been 

related to Al injury expressing as inhibition of root elongation and induction of callose 

formation in maize and common bean (Eticha et al., 2005c; Rangel et al., 2005) which is also 
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true for buckwheat (results not shown). Eticha et al. (2005b) and Yang et al. (2008) provided 

evidence for a role of the cell-wall negativity for genotypic differences in Al resistance in 

maize and rice, respectively. Using similar experimental approaches Zheng (SJ Zheng, 

Zhejiang University, Hangzhou, China, pers. comm. 2009) showed that the differential Al 

resistance of two buckwheat genotypes could also be related to differences in the Al binding 

capacity of root-tip cell-walls. 

From the discussion above we conclude that Al is present in the WFSF of the root tip as 

Al(Ox)+ which reduces but not prevents Al toxicity and little affects Al accumulation. 

Al(Ox)+ will be bound by the negatively charged cell wall (see above), but in addition and 

increasingly over time (Fig. 3) Al will bind to the pectic matrix because the stability constant 

of Al(Ox)+ is 6.1 (logK; Vance et al., 1996) whereas the stability constant of Al-pectin is 

expected to be significantly higher (Eticha et al., 2005b). This is supported by the fact that, 

although the stability constant of Al-citrate (1:1) and Al-EDTA is reported to be 8.32 and 16.5 

(Martell & Smith, 1982), respectively, the addition of citrate (Rangel et al. 2009) and even 

ETDA added in surplus (Orvig, 1993) did not fully remove Al from the cell walls. 

Temperature did not significantly affect the binding of Al by the cell walls (Fig. 5) indicating 

the passive nature of this process. In contrast to the loading and unloading of Al in the root-tip 

apoplast, the Al uptake and release of Al from the symplast proved to be affected by 

temperature (Fig. 5). The membrane transport of Al is not well understood either in Al 

excluders or in Al accumulators such as buckwheat (Ma & Hiradate, 2000). Ma & Hiradate 

(2000) showed that Al uptake in buckwheat was not affected by the respiration inhibitor 

hydroxylamine which suggested a passive uptake process. However, the reduction of Al 

accumulation in the symplast by 50% at 4 °C suggests an active process. This could be 

expected because Al is quickly accumulated in the symplast: after 30 min Al supply (75 µM) 

the symplastic Al concentration reached 5 mM and after 4 h 11 mM, a 10-30 times higher 

concentration than in the WFSF (Fig. 2). Since Al in the WFSF is expected to be present as 

Al(Ox)+ (see above) it appears justified to assume that Al is transported through the 

membrane in this form by a cation transporter under metabolic control. In addition, the 

transport could be facilitated by the negative potential difference between the apoplast and the 

symplast and a steep concentration gradient, since in the cytosol Al(Ox)+ is expected to 

immediately change to Al(Ox2)- because of the higher oxalate concentration in the cell sap 

(Fig. 4).  

Not only Al influx (loading) into the symplast but also the efflux from the symplast 

(unloading) appears to be temperature-dependent and thus under metabolic control (Fig. 5). 
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The unloading from the excised root tips may be indicative of the efflux from the symplast to 

the apoplast which is a prerequisite for xylem loading. The results and the conclusions drawn 

are similar to studies on Cd and Zn hyperaccumulation in Thlaspi caerulescens and 

Arabidopsis halleri (Verbruggen et al., 2009). Klein et al. (2008) used cell cultures of 

Arabidopsis thaliana and T. caerulenscens and concluded from their studies that the Zn/Cd 

transport pathway between root uptake and transport to the shoot could be elucidated on a 

cell-culture level. A lower accumulation of Zn and Cd in the cells was primarily due to a 

greater metal efflux in the accumulating plant species  T. caerulescens compared to the non-

accumulator A. thaliana (Klein et al., 2008). This view offers an explanation of the results 

shown in Figs. 1 and 2: Al is accumulated particularly in the symplast until the loading of the 

xylem is fully functional leading to a steeply increasing xylem sap Al concentration.   

The xylem loading of heavy metals in metal hyperaccumulators has been related to metal 

transporters such as heavy metal transporting ATPases (HMAs), oligopeptide transporters 

(OPTs) including the yellow-stripe 1-like (YSL) subfamily, and multi-drug and toxic 

compound extrusion (or efflux) membrane proteins (MATEs) such as FRD3 which is 

primarily a citrate permease involved in citrate loading into the xylem implicated in the xylem 

loading of Fe and possibly also Zn (Verbruggen et al. 2009 and references therein). Whether 

related or different transport proteins are involved in Al loading of the xylem is unknown.  

Aluminium is expected to be present as an anionic Al(Ox2)- complex in the cytosol of root 

cortical cells as suggested by the 1:2 ratio of Al:oxlate in the symplast (Fig. 4). This 

suggestion is in agreement with data by Ma et al. (1998) who concluded from their 13C-NMR 

analysis of roots and root cell-sap that Al is present in the root as 1:2 and 1:3 Al:oxalate 

complexes. A higher proportion of Al(Ox3)3- in comparison to our study can be explained by 

the analysis of total roots with an expected higher vacuolation compared to the more 

cytoplasmic root apices in our study. Since citrate instead of oxalate is the only Al ligand in 

the xylem sap (Ma & Hiradate, 2000) it may be expected that ligand exchange from Al(Ox2)- 

to Al (Cit) is taking place in the xylem parenchyma cells. This assumption is supported by 

own unpublished data on the oxalate and citrate contents in surgically partitioned cortical and 

stele tissues: In the cortical tissue, 40 µmol (cm tissue length)-1 oxalate and no citrate, in the 

stele tissue including the xylem, only 0.8 µmol (cm tissue length)-1 oxalate and 3.5 µmol (cm 

tissue length)-1 of citrate were found. Given the high cytosolic pH, it may be expected that a 

rather stable anionic Al (Cit)n- complex will form (Borrmann and Seubert, 1999, Happel and 

Seubert, 2006). Given the high stability of the Al (Cit)n- complex it appears likely that the 

metal complex and not citrate and Al3+ are transported separately into the xylem sap.  
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Based on the results and the discussion we present a hypothesis on the transport of Al from 

the external solution to the xylem in buckwheat (Fig. 10). Initially (minutes), binding of Al3+ 

in the apoplast triggers the release of oxalate through a not yet identified anion permease. 

Oxalate complexes Al to form the 1:1 complex Al(Ox)+ which reduces Al binding to Al-

sensitive apoplastic binding sites thus increasing Al resistance. However, this complex is not 

stable enough to fully protect the root tip from Al injury (inhibition of root elongation, callose 

formation). Al(Ox)+ is readily transported and accumulated in the symplast via a cation 

transporter (unknown) under metabolic control. Since the oxalate in the cytosol is 

constitutively high and increasing with Al accumulation, Al is present in the cytosol as 

Al(Ox2)- and may be stored in the vacuoles even as Al(Ox3)3-. In the cytosol Al(Ox2)- is 

transported through the endodermis into the central cylinder where a ligand exchange to 

citrate, leading a rather stable Al (Cit)n- anionic complex, is taking place in the xylem 

parenchyma cells. This complex is loaded into the xylem through a metal-chelate transporter 

(unknown) again under metabolic control. 
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Figure 10. Hypothetical scheme for the transport of Al from the external solution to the xylem. For the 

explanation of the scheme refer to the discussion. The ? denotes unknown transporters/permeases. 

 

We are aware of the fact that this hypothesis is still speculative. However, it appears to us 

important to clearly pinpoint the knowledge gaps at this point in order to better focus the 

physiological and molecular studies necessary to finally decipher Al accumulation in 

buckwheat and possibly other Al accumulators. 



Chapter III 

___________________________________________________________________________ 

 52

 

 

 

Chapter III 

 

Aluminium localisation in root tips of the aluminium-

accumulating plant species buckwheat (Fagopyrum esculentum 

Moench)  
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Abstract 

Aluminium (Al) toxicity is the main pedogenic factor limiting crop productivity world wide. 

Some crop species show high Al resistance either by exclusion of Al from uptake or tolerance 

of Al in the plant tissue. Buckwheat is known as Al-resistant and Al-accumulating plant 

species. The Al uptake process in the root tip in Al-accumulating plant species is not 

completely understood. For visualisation of Al uptake and accumulation fluorescent dyes are 

usually applied, but the specific staining conditions are not known. Results presented here 

reveal that these dyes are indeed able to track Al under Al accumulator-specific in-situ 

conditions. Morin allows staining of Al under presence of organic acid ligands. Morin showed 

higher sensitivity and competitiveness than lumogallion. LA-ICP-MS analysis of Al 

concentrations was an appropriate method for analysis of element distribution within cross 

sections of fresh root-tip material, particularly when compared with the Al staining method. 

Results clearly indicate that Al is highly mobile in radial direction from epidermal to stelar 

tissues. The root tip predominantly accumulates Al and the following root tip zone show a 

homogenous Al distribution within the whole root tip cross section. Hereafter follows a zone 

with enhanced xylem parenchyma Al contents. Distal root tip regions only fluoresce within 

single xylem vessels. Both, the fluorescent staining and LA-ICP-MS measurements revealed 

the same root Al accumulation pattern and the used calibration method for LA-ICP-MS 

allowed a precise quantitative Al determination.  
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Introduction 

Organic acids play a major role in detoxifying aluminium (Al) in the root-tip apoplast (Al 

resistance by Al exclusion) or within the symplast and moreover in the Al accumulation 

processes in shoots (Al tolerance) (Ma et al., 1998; Chapter I and II). This symplastic 

detoxification, compartmentation, and translocation are the most important tolerance-

mediating processes. However, these processes require the Al transport through at least one 

membrane. Currently our knowledge concerning this membrane passage of Al trough 

biological membranes is limited and not completely understood. These shortcomings may be 

primarily ascribed to the complex aqueous coordination chemistry of Al, its high affinity to 02 

donor compounds and the lack of affordable and appropriate stable isotopes (Taylor et al., 

2000). Therefore, Al was often detected by fluorescence microscopy and spectrometry. The 

fluorochromes morin and lumogallion form stable complexes with Al. The fluorescence 

emission of the chromophore-Al complexes have been used frequently for the determination 

and quantification of Al in freshwater, generally in biological samples, and extensively for the 

localization of Al in plant tissues, particularly in root tips (Ščančar and Milačič, 2006; 

Levesque et al., 2000; Tanoi et al., 2001; Ahn et al., 2002; Gutierrez and Gehlen, 2002; 

Eticha et al., 2005a; Jones et al., 2006). 

The formation of the morin-Al complex is strongly influenced by the binding stage of Al. 

Also the precise binding conditions of lumogallion are currently unknown. The correct 

assessment of the specific conditions underlying Al-dye complex formation is of particular 

importance, especially in the case of Al-accumulating plant species like buckwheat, where Al 

is supposed to be bound to organic acids.  

The targeted staining of Al within roots of buckwheat could give further information about 

the uptake processes for Al. However, this requires information on specific dye-ligand 

interactions and subsequent responses in fluorescence emission. Browne et al. (1990b) stated 

that morin is a reagent with minimized disturbance. In that study the fluorescence of the Al-

morin complex was directly related to Al3+
 and Al-hydroxy complexes indicating that morin 

forms complexes only with inorganic monomeric Al species but not with organic acids (Lian 

et al., 2003). The precise Al-morin complex formation and underlying stability constants 

remained unclear for a long time. It was reported that morin detects cell wall-bound Al (Ahn 

et al., 2002), but Eticha et al. (2005a) unequivocally showed that morin could not stain cell 

wall-bound Al. The results of Eticha et al. support the conclusion that morin is not able to 

stain Al in high stability complexes (Lian et al., 2003). 
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The aim of this study was to in-depth investigate the limitations and prospects of morin and 

lumogallion for staining Al. For this purpose the Al-accumulating plant species buckwheat 

was chosen which utilizes oxalate and citrate as main Al complexors in the plant tissue. The 

established staining method for Al gives further insights into the proposed radial symplastic 

pathway of Al within the buckwheat root-tip symplast (Chapter I and II). Furthermore, the 

method comparison of staining soluble Al species with the determination of total Al 

concentrations by LA- ICP-MS substantially contributed to unravelling Al-binding stages and 

ligand exchange processes during radial Al transport in the root tip.  

Material and Methods 

Plant Material  

Buckwheat (Fagopyrum esculentum Moench) cultivar “Lifago” (Deutsche Saatveredelung 

AG, Lippstadt, Germany) was germinated in peat substrate containing 30% clay (Balster 

Einheitserdewerk GmbH, Fröndenberg, Germany). Plants were grown for 4 weeks in a green 

house at 25/20 °C day/night temperature. After this period of growth the shoots were cut 1 cm 

below the first node with adventitious root initials and additionally above the primary leaf to 

reduce transpiration. These shoot cuttings were transferred to low ionic strength nutrient 

solution with the following composition [µM]: 500 KNO3, 162 MgSO4, 30 KH2PO4, 250 

Ca(NO3)2, 8 H3BO3, 0.2 CuSO4, 0.2 ZnSO4, 5 MnSO4, 0.2 (NH4)6Mo7O24, 50 NaCl, and 30 

Fe-EDDHA for 4 days keeping the shoots at 100 % relative humidity (rH) until adventitious 

roots had emerged. The following day the plants were adapted to lower rH by reducing air 

humidification. Another day later the pH of the nutrient solution was reduced in three steps to 

4.3 resulting in at least 12 h for adaptation to the low pH before the beginning of the Al 

treatment. Afterwards, the plants were transferred to a simplified nutrient solution (500 µM 

CaCl2, 8 µM H3BO3; 100 µM K2SO4, pH 4.3) supplemented either with 0 µM or 75 µM 

AlCl3. A concentration of 75 µM AlCl3 was verified to inhibit root-growth between 50 and 

60% (Chapter II) and to activate Al exclusion and tolerance mechanisms (Chapter I and II). 

The pH was controlled frequently and, when necessary, re-adjusted to 4.3 using 0.1 M HCl or 

0.1 KOH added drop wise under vigorous stirring. The nutrient solution was aerated 

continuously. 
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Fluorometry 

To systematically clarify the complex formation of Al with lumogallion and morin either the 

Al concentration at a given dye concentration or the dye concentration at a given Al 

concentration was varied (Fig. 2, Fig. 3). The aim of this experiment was to identify the effect 

of different Al: organic ligand ratios (e.g. 1:1 and 1:3; Al/ligand) on the fluorescence yield. 

The Al:organic ligand solutions were incubated at 25 °C for 0.5 h. Morin (33 mM in DMSO) 

was added to a final concentration of 30 µM at pH 4.8. The Al-morin complex formation was 

done at 25 °C for 1 h under continuous shaking.  Lumogallion (1 mM in 0.1 M sodium acetate 

buffer, pH 5.2) was added to a final concentration of 30 µM lumogallion in the sample. After 

1 h incubation at 60 °C on an incubation shaker the fluorescence was measured with a Hitachi 

spectrofluorometer (F2000, Hitachi Ltd., Tokyo, Japan)  

 

Microscopy 

Adventitious root tips of buckwheat plants treated with 75 µM Al for 24 h were excised 10 

mm behind the root tip and immediately placed in chilled (4°C), Al-free simplified nutrient 

(see above) solution for 10 minutes. The tips were then fixed with the distal end facing down 

in an upright position on a Tissue-tek® (OCT Compound for Cryostat Sectioning, Sakura 

Finetek Europe B.V., Zoeterwoude, Netherlands) base, frozen at -20 °C, and then completely 

embedded in Tissue-tek®. These root-tip preparations were sectioned by means of a cryo 

microtome (Leica 2800 E Frigocut, Microtome Cryostat, Leica Microsystems GmbH, 

Wetzlar, Germany) at a chamber temperature of -20 °C and object temperature of -16 °C. 

Cross sections (16 µm) were positioned in a drop of morin and placed under a Zeiss 

Axioscope microscope (Zeiss, Axioscope, Jena, Germany), equipped with epifluorescence 

illumination (Mercury lamp, HBO 50W). The filter settings were: Band pass filter BP 395–

440 nm (exciter), beam splitter FT 510 nm, and  long-wave pass filter LP 515 nm (emitter) 

(Browne et al., 1990b). Pictures were taken with digital camera (Axio Vison, Zeiss, Jena, 

Germany) 

In a second approach, apical 0 - 5, 6 – 10, 11 – 15, 16 – 20, 21 – 25 and 26 – 30 mm 

adventitious root sections from plants treated with 75 µM Al for 0,5, 4 or 24 h were 

embedded in 5 % (w/v) low-gelling point agarose (Fluka, Buchs, Switzerland) at 35 °C. These 

embedded root tips were free-hand sectioned using a razor blade. Slices of agarose-embedded 

root tips were placed on microscopy glass slides, and a drop of morin solution was placed on 

the agarose-embedded free-hand root-tip sections. After an incubation time of 5 min, samples 
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were examined as described before. Photographs were taken from each root tip zone from at 

least 12 replications derived from individual root tips. A representative picture was selected 

and depicted in Figure 5.  

 

Laser-ablation ICP-MS 

For LA-ICP-MS an additional experiment was carried out. Plants were treated for 24 h with 

75 µM AlCl3 in 18 L simplified nutrient solution (500 µM CaCl2, 8 µM H3BO3; 100 µM 

K2SO4, pH 4.3). Root tips were excised and sectioned in 5 mm segments (0-5, 6-10, 11-15, 

16-20, 21-25 and 26-30 mm behind the tip). These segments were embedded into 5 % (w/v) 

low-gelling point agarose (Fluka, Buchs, Switzerland) at 35 °C. These embedded root tips 

were free-hand sectioned using a razor blade. Slices of agarose and embedded root tips were 

placed on microscopy glass slides. The embedding of root tips in agarose served as protection 

against desiccation in the argon flow and, furthermore, represented an adequate physical 

fixation with regard to occurring forces during the laser ablation process. Tissues were ablated 

using a solid state NYAG-laser (UP193 SS, New Wave Research Co. Ltd., Cambridge, 

England). The laser beam was adjusted to a diameter of 20 µm and 50 % energy (1.82 J cm-1). 

The ablation chamber, coupled to the ICP-MS torch via a polyethylene tube, was filled with 

argon as carrier gas at a flow rate of 0.3 L min-1. After passing the chamber the flow rate was 

accelerated to 1.15 L min-1. The 13C signal served as internal standard. 13C and 27Al signals 

were detected using the quadropole ICP-MS (7500 CX, Agilent Technologies, Santa Clara, 

USA). Table 1 summarizes further specifications of ICP-MS settings. 

 

Table 1: ICP-MS tuning parameters 

Plasma conditions: 

RF power  1300 W 

RF matching  1.7 V 

Sample depth 5.8 mm 

Torch-H 0.2 mm 

Torch-V 0.7 mm 

Carrier gas  0.3 L min-1 

Make-up gas  1.15 L min-1 
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For the calibration of the Al signal a mixture of pectin and agar was used. The C content in 

the dry matter of 46 % and a dry matter content of 2.9% were adjusted to finally match the 

conditions of freshly harvested adventitious buckwheat root tip cuttings. Aluminium was 

added to the calibration mixture (0, 5 and 10 nmol (10 mm-root tip)-1) to simulate Al 

concentrations typically observed in root tips. After polymerization slices were cut and placed 

on microscopy glass slides. Calibration was performed as described for the samples (see 

above). Every cross section was visually captured by microscopy so that the individual 

diameter of each replicate could be determined by the laser ablation system software (Version 

11) (New Wave Research Inc., Fremont, CA, USA). The diameter was sectored into 4 circular 

regions and one central region (Fig. 1). These regions are termed in the following as: I -

central cylinder, II - endodermal, III - inner cortical, IV - outer cortical, V - epidermal tissues. 

 

Figure 1. Schematic overview over the laser-ablation path across the root-tip cross-section. The arrow represents 

the diametric ablation path. I-V represent tissue areas with the same radial share (t) of the whole radius. 

Results  

Morin and lumogallion showed increasing fluorescence intensity with increasing Al 

concentrations when recommended dye concentrations (30 µM Morin; 60 µM Lumogallion) 

were applied (data not shown). Both dyes highly effectively stained Al in the 1-10 µM 

concentration range. However, variation of the dye concentrations at a given Al concentration, 

which yielded approximately the same fluorescence intensity for both dyes, showed an 

optimum curve for morin (Fig. 2a) with an optimum of 30 µM. The highest lumogallion 

fluorescence intensity was already measured at 10 µM dye application. Further increasing the 

lumogallion concentrations (10-40 µM) did not significantly change in fluorescence. 

 

I 
II III IV V 

t
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Figure 2. Effect of morin and lumogallion concentrations on the fluorescence intensity at given Al 

concentrations. For morin (A) 6 µM and for lumogallion (B) 3 µM AlCl3 were added. Morin was measured at pH 

4.8 at excitation and emission wavelengths of 418 nm and 502 nm. Lumogallion was measured at pH 5.2 in 0.1 

M acetate buffer at excitation and emission wavelengths of 507 nm and 567 nm. Bars represent means +/- SD, n 

= 4. Different letters denote a significant difference (Tukey test P < 0.05). 

 

The effectiveness of both dyes to stain Al was tested by using a dye concentration of 30 µM 

(Fig. 3). Increasing the Al concentration increased the fluorescence intensity steeper for morin 

than for lumogallion. Moreover, the fluorescence of the Al:morin complex responded to 

increasing Al concentrations up to 120 µM whereas the maximum of the Al:lumogallion 

fluorescence was already reached at 50 µM Al. Therefore, morin showed higher fluorescence 

intensities than lumogallion irrespective of the Al concentration. The Al-morin fluorescence-

intensity significantly increased throughout the tested concentration range. However, lower Al 

than dye concentrations (3-10 µM) did not significantly differ in the case of morin but had 

significantly higher fluorescence intensities compared to lumogallion. 

 

 



Chapter III 

___________________________________________________________________________ 

 59

 
Figure 3. Regression analysis of fluorescence intensities of Al-lumogallion and Al-morin complexes at given dye 

concentration (30 µM) at varied Al concentrations. Lumogallion measurements were done at pH 5.2 in 0.1 M 

acetate buffer at excitation and emission wavelengths of 507 nm and 567 nm, respectively. Morin measurements 

were done at pH 4.8 at excitation and emission wavelengths of 418 nm and 502 nm, respectively. Symbols 

represent means +/- SD, n = 4. Morin samples at 50, 60 and 120 µM Al were diluted appropriately to remain in 

the effective measuring range. Different letters denote a significant statistical difference (Tukey test P < 0.05). 

Capital letters denote the comparison between different Al-lumogallion fluorescence-intensities. Lower case 

letters denote the comparison between different Al-morin fluorescence-intensities. 

 



Chapter III 

___________________________________________________________________________ 

 60

 
Figure 4: Relative fluorescence intensity of lumogallion and morin as affected by the presence of the Al-

chelating ligands oxalate, citrate, and malate in different ratios. Morin: AlCl3 6 µM, morin 30 µM, organic acids 

6 or 18 µM, pH 4.8; detection at excitation and emission wave lengths 418 nm and 502 nm, respectively. 

Lumogallion: AlCl3 20 µM, lumogallion 60 µM, organic acids 20 or 60 µM, buffered by sodium acetate buffer 

pH 5.2; detection at excitation and emission wavelengths of 507 nm and 567 nm, respectively. Bars represent 

means +/- SD; n = 4. Different letters denote significant statistical differences (Tukey test P < 0.05). Capital 

letters denote the comparison between different ligands within one dye and one ratio. Lower case letters denote 

the comparison between lumogallion and morin within one ligand and one ratio. The asterisks mark significant 

differences between different ratios within one dye and one ligand. 

 

Aluminium is known to be detoxified in Al-resistant and accumulating plant species by 

organic acids, but the effectiveness of Al staining dyes in the presence of organic acids was 

not systematically analysed, yet. Therefore, we studied the Al dye fluorescence in the 

presence of citrate, malate and oxalate (Fig. 4). Thereby, the effect of different Al:ligand 

ratios was analyzed, too. The fluorescence intensity of the Al-dye complex without any 

competing ligand was set to 100 %. Oxalate in a ratio of 1:1 and particularly of 1:3 

(Al:oxalate) reduced the fluorescence intensity of the Al-lumogallion complex stronger than 

that of the Al-morin complex (Fig. 4). The presence of citrate greatly reduced the 

fluorescence intensity of both Al-dye complexes even at the 1:1 ratio. The presence of malate 
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only reduced the fluorescence intensity of the Al-lumogallion but not of the Al-morin 

complex.  

The results indicate that morin is more sensitive and competitive than lumogallion particularly 

in the presence of competing ligands such as oxalate and citrate. Therefore, we used morin for 

further Al in-situ localisation experiments in buckwheat root-tip cross-sections. Morin 

staining of buckwheat root cross-sections after treatment with 75 µM Al from 0.5 – 24 h 

revealed that significant concentrations of Al were present across the whole cross section as 

early as 0.5 h of Al treatment (Fig. 5A). Only a very low autofluorescence was detected in the 

cross sections not treated with Al (Fig. 5C).   
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Figure 5. (A) Fluorescence images of the Al-morin complex in buckwheat root-tip cross-sections obtained from 

increasing distance from the root tip (columns) and with increasing Al treatment duration (rows) (75 µM AlCl3 

for 0.5, 4, and 24 h). Samples were intact root tips in simplified nutrient solution (500 µM CaCl2, 100 µM 

K2SO4, 8 µM H3BO3, pH 4.3). Scale bar represents 200 µm at 100-fold magnification. (B) Close up of the 0-5 

mm cross section. Black arrows indicate cells with intact cytoplasm showing high symplastic fluorescence 

intensities, white arrows indicate during preparation damaged and empty cells. Scale bars represents 100 µm at 

200 fold magnification. (C) Cross sections of the control treatment (24 h) with increasing distance from the root 

tip stained by morin. Scale bar represents 200 µm at 100 fold magnification.   
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The typical and characteristic distribution of Al within the 0-5 mm zone, which is considered 

to be symplastic due to the fluorescence localisation, was already obtained after 0.5 h of Al 

treatment (Fig. 5B). Thereby, the highest symplastic Al concentrations were found in the 

outer cortical cell layers (Fig. 5A). Also the 6-10 mm zone exhibited high symplastic Al 

contents. However, the fluorescence contribution of the epidermal layers relative to the total 

fluorescence of the cross section decreased with increasing distance from the root tip. The 11-

15 mm root zone showed lower symplastic Al concentrations compared with more apical 

zones. The most pronounced Al-morin fluorescence-intensity was located in the stelar and 

endodermal root-tip tissues. In this zone the first root-hairs developed. This Al distribution 

pattern also remained in the 16-20 mm zone, where root hairs were still present. The 

following 21-30 mm root zones showed both a low fluorescence intensity, where only single 

xylem vessels exhibited a marked Al-morin fluorescence. In the 21-25 mm zone first lateral 

roots emerged in the majority of the samples. Compared to the primary root these lateral root 

tips were stained more intensively. The areas surrounding the lateral roots, particularly where 

the endodermal cell layer is penetrated, the fluorescence exhibited no enhanced intensity. 

With increasing Al-treatment duration (4 h) the distribution pattern of Al within the first root 

section remained principally unchanged compared to 0.5 h Al treatment; the epidermal zones 

again showed the highest fluorescence. Furthermore, the 11 – 15 mm zone exhibited enhanced 

endodermal and stelar Al contents not only in xylem vessels but also in xylem parenchyma 

cells. The Al-morin fluorescence in a distance of 16-20 mm after 4 h Al treatment showed a 

comparable distribution pattern as found after 0.5 h of treatment duration, too. The same is 

true for the sections from zone 5 and 6 (21 - 30 mm). Lateral root formation and long root 

hairs existed in both zones. In this section a homogenous and low fluorescence intensity 

throughout the whole cross section was obtained with increased fluorescence intensities only 

in single xylem vessels.  

The pattern of fluorescence was principally also not changed under prolonged Al supply (24 

h): (1) the sections from 11-15 mm from the root tip showed higher endodermal fluorescence, 

(2) cross sections from the 16-20 mm zone had higher stelar Al contents, whereas the outer 

cell layer showed almost no Al-morin fluorescence, (3) sections from both distal zones (21-25 

and 26-30 mm) exhibited bright Al-morin fluorescence only in single vessels. 

After extended Al treatment durations for 24 h the root morphology and the Al distribution in 

the apical 0-5 mm zone was studied more detailed. Sections were prepared from more 

precisely defined distances from the tip by using a cryo-microtom. Al treatment led to severe 
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morphological distortions at the root apex. Epidermal and outer cortical layers seem to be 

detached from the root (Fig. 4). 

 

 
Figure 6. Root tip cross section in a distance of 0-450 µm from the root tip after 24 h treatment duration in 

simplified nutrient solution(500 µM CaCl2, 100 µM K2SO4, 8 µM H3BO3, 75 µM AlCl3, pH 4.3).  

 

In a distance of 0-180 µm the Al-morin fluorescence was homogeneously distributed 

throughout the cross sections with higher fluorescence yields in the 0 – 90 µm zone compared 

to the 90 – 180 µm section. Microscopy of the subsequent regions from 180 to 360 µm 

revealed that Al accumulated predominantly in the outer cortical cell layers. The homogenous 

Al distribution obtained by free hand sectioning in a distance of 6-10 mm (see above) here 

already appeared in a distance of >360 µm.  

 

 

The qualitative information about the Al distribution in distinct root tip sections as obtained 

by morin staining was further substantiated by LA-ICP-MS measurements. Figure 7 shows a 

representative Al quantification pattern expressed as Al-signal intensity in distances of 0-5 

(Fig. 7A) and 11-15 mm (Fig. 7B) from the root tip. This signal intensity was calibrated (see 

“Materials and Methods” section) and either calculated as Al concentration (Fig. 8) or as Al 

contents (Fig. 9). The latter was extrapolated by the geometric volume of 4 hollow cylinders 

and one central cylinder (see Fig 1). To do so, the  root diameter of each root cross-section 

was divided by 9 resulting in 4 circular zones (two times) and one central zone (see Fig. 1) 

which are in the following termed as epidermal layer, outer and inner cortical layer, 

endodermal layer and stelar tissue. By including a 13C signal as internal calibrator it was 

possible to determine that the 27Al signal was obtained at constant 13C intensities. This is 

important to ensure because the amount of material ablated by the laser beam has to be 

constant and should not be affected by different cell-layer integrities or other artefacts, e.g. 

different absorptions of laser energy due to variable colours of tissues along the ablation path. 

Cross sections prepared from the apical root tip (0-5 mm) showed high 27Al peaks in the 

epidermal and outer cortical cell layer and lower intensities in the inner root-tip tissues. 

Despite comparable carbon contents in the 11-15 mm root tip zone compared to the remaining 
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root zones the Al distribution followed a different pattern, e.g. compared to the apical root tip. 

Here, the highest Al concentrations were found in the inner root-tip tissues, whereas the outer 

cell layers exhibited rather low fluorescence intensities. 

Using the described calibration method the LA-ICP-MS results (Fig. 8 & 9), which were 

assigned to the individual root tissue layers, have been statistically evaluated. Indeed, there 

were statistically significant differences between the individual tissue layers and root-tip 

zones. Beginning at the root tip the cross section was characterized by enhanced Al 

concentrations in the epidermal and outer cortical cell layers (Fig. 8). This Al distribution 

pattern completely changed in the adjacent 5 mm zone to a homogenous Al distribution. In 

the next 5 mm section the highest Al concentration was found in the stelar tissue and, at least 

in tendency, also in the endodermal layer. This trend was also found in the 16-20 mm zone, 

where the elevated Al concentration in the endodermis became more pronounced. Both 

following zones were characterized by low and more homogenously distributed Al with 

slightly lower Al concentrations in outer than inner root tip tissue layers. 

 

 

 
 
Figure 7. 27Al and 13C signal intensities of a representative cross section prepared from the 0-5 mm (A) and 11-15 

mm (B) zone after 24 h treatment with 75 µM Al in minimal nutrient solution (500 µM CaCl2, 100 µM K2SO4, 8 

µM H3BO3, pH 4.3). The red line represents the 27Al the green line the 13C (internal standard) signal intensities. 

The triple green line represents the ablated path. The Al signal intensity was normalized by calculating means 

over the ablated path length of 10 µm and 1 sec ablation time. The laser beam was adjusted to a diameter of 20 

µm and 50 % energy resulting in 1.82 J cm-1.  
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Figure 8. Aluminium concentrations in different root tip tissue layers (bars) and different distances from the root 

tip (graphs) after 24 h treatment with 75 µM Al in simplified nutrient solution (500 µM CaCl2, 100 µM K2SO4, 8 

µM H3BO3,pH 4.3).  Root tip tissue layers were defined by dividing the root diameter into nine even regions. 

Data were calibrated by ablation of agarose/pectin mixture with the same carbon and water contents than 

buckwheat root tips and defined Al contents. The Al signal intensity was normalized by calculation means over 

ablated path length of 10 µm and 1 sec ablation time. Bars represent means of 6 ablated cross-section diameters 

of 6 different root tips per 5 mm zone. Different letters denote significant statistical differences (Tukey test P < 

0.05). 
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Figure 9. Aluminium contents of different hollow cylinders and one central cylinder of a buckwheat adventitious 

root tip calculated by the volume in distances of 0-5 (A) and 6-10 (B) mm from the tip after 24 h of 75 µM Al 

treatment in minimal nutrient solution (500 µM CaCl2, 100 µM K2SO4, 8 µM H3BO3, pH 4.3). Root tip hollow 

cylinders (II to V) and central cylinder (I) were calculated by previously defined nine even regions in the root 

diameter (see Figure 1). Data were calibrated by ablation of agarose/pectin mixture with the same carbon and 

water content than buckwheat root tips and defined Al contents. The Al signal intensity was normalized by 

calculating means over ablated path length of 10 µm and 1 sec ablation time. Bars represent means of 6 ablated 

cross section diameters of 6 different root tips per root tip zone. Different letters denote significant statistical 

differences (Tukey test P < 0.05). 

 

The analysed Al concentrations from Figure 8 were multiplied with specifically calculated 

volumes of the previously defined nine sections (Figure 1) forming four artificial hollow 

cylinders and one central cylinder (in Figure 9 depicted as I-V). By doing so it, was possible 

to calculate Al contents of specific root zones. When compared to the 5 – 10 mm root zone 

the 0-5 mm zone had higher Al contents in the cortical root zones systematically decreasing in 

the inner parts of the cross section (Fig. 9A and B). Segments from more distal root tip zones 

exhibited a comparable Al distribution as obtained from the 5-10 mm root zone (data not 

shown). Thus, the total Al contents decrease at least in tendency with increasing distance from 

the root tip. This Al distribution is a consequence of specific volumes of the individual root 

cylinders from zone V to zone I. The outer cell layers (V) represent already 40% and, 

therefore, the greatest part of the total root tip volume whereas the central stelar cylinder 

comprises only about 1.2 % of the total root tip volume. Results presented here clearly show 

that the Al analysis by the LA-ICP-MS technology is a useful tool for the evaluation of 

conventional total root-tip Al analyses. Taken together, the apical 5 mm root tip zone 
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accumulated 8 nmol (root tip)-1 whereas the subapical root tip zone (6-10 mm) showed lower 

Al contents of about 3.5 nmol (root tip)-1. These calculated values range within the same 

magnitude as compared to the bulk root tip analysis (about 10 nmol (10 mm root tip)-1). 

Discussion 

The use of dyes for mineral element-specific in-situ staining allows qualitative but not 

quantitative statements on the element distribution within tissues. However, knowledge of 

binding-stages and stability constants of dye-complexes facilitate both relative quantification 

and qualitative statements. One example may illustrate this: if an Al measurement revealed 

high amounts of Al in a specific tissue, but the same tissue exhibits only low levels of 

fluorescence, the conclusion can be drawn that Al is very stably complexed in complexes 

which are characterised by higher stability constants than the Al-dye complex. A 

spectrofluorometric clarification of specific Al species by a complex-specific shift of emitted 

wavelength spectra failed to provide further information about Al-ligand interactions (Brauer, 

2001). Both morin and lumogallion are known to detect Al with high sensitivity, but 

information on their specific efficiencies is currently inconsistent. The lumogallion staining 

method was reported to be more sensitive for Al detection than the use of morin at least in 

confocal microscope applications (Kataoka et al., 1997). In contrast, in this study the morin 

staining method showed a higher sensitivity. However, lumogallion was reported to have a 

high stability constant, a measure of the stability of complex, (log k 7.76) over pH ranges 

from 2 to 5.7 (Shuman, 1992), whereas the stability constant of the Al-morin complex was 

reported to be slightly lower (log k of 6.47). Unfortunately, in that study the effect of pH was 

not further specified (Katyal and Prakash, 1977). Later, Saarl and Steltz (1983) showed a clear 

pH dependency of Al-morin complex formation and fluorescence intensity, which might 

explain the discrepancy in stability constants and underestimation of the Al-morin stability. 

Differences in the sensitivity of both dyes may result from the coordination chemistry of the 

dye-Al complex formation. Lian et al. (2003) reported that morin is able to form complexes in 

1:1 and 2:1 ratios. Results about the stoichiometric relations were also not unequivocally 

clarified. The data of Saarl and Seltz (1983) suggest a 1:1 morin-Al complex formation. 

However, the ratio was determined using an immobilization method leaving some questions 

about the reagent:morin binding properties. Furthermore, complexes with a 1:1 and 1:2 and/or 

1:3 (Al/morin) stoichiometry were reported (Brown et al., 1990; Sawada et al., 1978). The 

specific complex formation was concentration-dependent where low total morin 

concentrations (near 1 µM) yielded 1:1 species.   
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Al-lumogallion complexes at a ratio of 1:1 were frequently reported (Kataoka et al., 1997; 

Hoshino and Yotsuyanagi, 1985). Results presented in Figure 2 revealed that the fluorescence 

intensity of a 1:1 Al-dye ratio increases with increasing proportion of morin, whereas the 

fluorescence decreases when the lumogallion concentration is increased. Indeed, the Al-morin 

complex had increased fluorescence emission when the morin:Al ratio was switched to 1:3. 

Thus, one Al ion can be complexed by one, two or even three molecules of morin thereby 

gradually increasing fluorescence intensity of the complex. However, when the 1:3 ratio is 

exceeded, the fluorescence intensity decreases. In contrast, lumogallion exhibited the maximal 

fluorescence intensity at a 1:1 concentration ratio indicating that lumogallion indeed binds Al 

exclusively in a ratio of 1:1. 

Lumogallion has been shown to detect Al even in the presence of organic ligands (Shuman, 

1992; Sutheimer and Cabaniss, 1995). However, the chemical form of Al, which is detected 

by morin, remains unknown so far, although water quality analyses suggest that the morin 

complex is weak in comparison to other typical ligands like oxalate (Lian et al., 2003). The 

authors concluded that morin can only detect Al in its inorganic forms (e.g. Al3+, Al(OH)2
+) 

(Lian et al., 2003). These contradictory results (on the one hand morin stains Al more 

efficiently than lumogallion, on the other hand morin is not able to form a complex with Al in 

the presence of organic acid anions) led us to conduct a test series to clarify the 

competitiveness of each dye to stain Al in the presence of Al-complexing carboxylic acid 

anions. Compared to lumogallion morin emitted higher fluorescence intensities than 

lumogallion. Furthermore, the presence of oxalic, malic or citric acid anions reduced the 

fluorescence intensity less pronounced, e.g. malate hardly affected the fluorescence intensity 

of the Al-morin complex, but significantly reduced the one of the Al-lumogallion complex. 

Oxalate only slightly reduced the fluorescence intensity of the Al morin but more of the Al 

lumogallion complex. Nevertheless, the presence of citrate greatly reduced the fluorescence of 

both Al-dye complexes. The autofluorescence of Al and the individual dyes alone was 

negligible (less than 5 %). Therefore, we conclude from these results that the use of morin is 

an appropriate method to track Al on its symplastic way in Al accumulating plant species. 

This is a prerequisite particularly for investigations in buckwheat, where Al is symplastically 

detoxified by oxalate (Ma and Hiradate, 2001; Chapter I and II). 

In this study a LA-ICP-MS based method was developed for the tissue-specific in-situ 

measurement and calibration of Al concentrations and contents. The method was successfully 

evaluated by comparing the results of the new method with the conventional bulk-root tip Al 
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determination, since, indeed, the extrapolation of tissue-specific Al contents to whole bulk 

root tip levels yielded comparable Al contents as analysed directly in total root tips. 

Al uptake in Al accumulating plant species like buckwheat showed that Al is translocated in 

substantial amounts in above ground plant organs (Ma and Hiradate, 2000 Shen et al., 2006). 

As a prerequisite, Al needs to be predominantly symplastically transferred in the root tip in 

radial direction towards the stelar tissues; the apoplast appears to play only a minor role in Al 

diffusion (Chapter I). However, the exact transport route of Al radial direction was not 

analysed so far. 

Therefore, in this study special emphasis was put on the localization of Al within the root and 

the characterisation of Al tolerance-mediating processes, which primary take place in the root. 

To do so, morin was chosen as appropriate Al staining dye owning the necessary capabilities 

(1) to stain Al within the root tip tissue and (2) to track Al and its transport in the roots. 

Preliminary results on buckwheat revealed that Al is primarily accumulated in the apical 

region of the root tip, while the subapical region was characterized by the highest Al 

translocation efficiency (Chapter I). Further analyses substantiated that Al is highly mobile in 

the radial direction in buckwheat root tips. Different root tip zones showed different radial Al 

localisation patterns in the individual root-tip tissues (Fig. 1).  

Al primarily accumulates in the outer cortical layers of the apical root tip (0-5 mm) (see Fig. 

5, 7 and 9). Additionally, the apical region but not the remaining regions visually showed the 

highest symplastic Al-morin fluorescence contribution in relation to the total Al distribution 

(Fig. 5b) irrespective of the treatment duration, which suggests that this Al content is either 

not transported by induced-translocation processes or this distribution represents an 

equilibrium concentration of accumulation and translocation. Our data suggest that Al is in 

this root zone not exclusively bound to fixed charges in the pectic cell wall matrix but is also 

present in a soluble, morin detectable binding stage (Eticha et al., 2005a), which is in 

buckwheat mostly detoxified by oxalate (Chapter II). This may be further underlined by 

morin-Al staining experiments since this zone also exhibited the highest fluorescence 

indicating a high accumulation of soluble Al. The root cell-wall has a high capacity for Al 

sorption (Zhang and Taylor, 1990). Jones et al. (2006) suggested that one origin of apoplastic 

fluorescence development, apart from pectic bound Al and symplastically located Al, 

correlates with the saturation of binding sites of the cell wall. Hence, in buckwheat either the 

fixed negative charges appear to be saturated already after very short (<0.5 h) Al treatment 

durations or the concentration of soluble, oxalate-detoxified Al is rather high. The latter 
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possibility requires the activation of oxalate exudation without delay after starting the Al 

treatment. 

In contrast to the apical root zone the 6 -10 mm zone showed a homogenous Al distribution 

(Fig. 5a) especially after 0.5 and 4 h of Al treatment. The 24 h treatment additionally showed 

a pronounced Al-morin fluorescence in the outer cortical cell layers. This predominant Al 

accumulation in these cell layers is not in accordance with the Al distribution pattern obtained 

by LA-ICP-MS radial ablation of the cross sections. This discrepancy indicates a difference in 

total Al contents analysed by ICP-MS and the soluble Al concentration within the morin-

stained root tissue. It is possible that Al in outer cell layers is less stable detoxified as Al-

(Ox)1
+ complex. This would be in line with analysis on water free space fluid, where Al and 

oxalate were found primarily in a 1:1 ratio (Chapter II). This Al-(Ox)1
+ complex reduces the 

Al-morin fluorescence only slightly (Fig. 4). While the Al is translocated to the central 

cylinder the complex shifts to a Al:Ox ratio of 1:2. This complex form showed a pronounced 

reduction in fluorescence (Fig. 4). Indeed, a 1:2 Al-Oxalate complex was found in the root tip 

symplast of adventitious buckwheat root tips (Chapter II). It appears that the WFSF of the 

outer cortical cell layers is infiltrated by Al, which is detoxified by oxalate in a 1:1 ratio. 

Then, changing the complex ratio to Al-(Ox)2
- while moving to the central cylinder leads to 

decreased fluorescence intensities. Therefore, we propose that the outer cortical cell layers, 

particularly in the 6 -10 mm distance from the root tip, are the primary zone of Al entrance 

into the symplast. At the same time it appears to be the location of most pronounced Al 

uptake (Chapter I), because the uptake promoting Al:Oxalate gradients are present in the same 

zone (Chapter II). 

Zone 3 (11-15 mm) and zone 4 (16-20 mm) were characterized by enhanced fluorescence 

(Fig. 5) as well as by increased total Al contents (Fig. 8) in the central cylinder region. Here, 

Al was primarily localized in the outer layers of the central cylinder suggesting that xylem 

parenchyma cells accumulate the majority of Al in this distance from the root tip. Surgically 

dissected cortical and stele tissues from distal root tip zones revealed that substantial Al 

concentrations of 2 nmol (mg fresh matter)-1 were found in the stele tissue as compared to 4 

nmol (mg fresh matter)-1 of cortical tissues. However, the analysis of bulk Al contents in the 

cortical tissue represents a mixture of apoplastic and symplastic Al, whereas the stele tissue 

represents Al contents only representing symplastic Al, because these tissues are disconnected 

from Al located in the cortical apoplast by the endodermis. It is known that the xylem 

parenchyma cells are primarily responsible for xylem loading of ions for long distance 

transport (Köhler and Raschke, 2007). Furthermore, it was shown that specific transporters, 
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for example the boron transporter BOR1, are restricted to pericycle cells (Takano et al., 

2002). Pericycle cells comprise the outermost part of the stele, which showed the brightest Al-

induced fluorescence in our study. Obviously, these cells play a key role in xylem loading of 

Al in buckwheat roots. The unloading of parenchymal cells in a distance of 10-20 mm is 

characterized by fluorescence of single xylem vessels in distal regions (20-30 mm) of the root 

tip. These zones seem to transport Al so that their Al accumulation and contribution to xylem-

Al loading is rather low. 

The entrance of metals (e.g. Al) into the central cylinder and subsequent xylem loading points 

to the capability of cells to unload metals from the cytoplasm. This capability primarily 

determines the difference between metal non-accumulating and tolerant accumulator plant 

species (Klein et al., 2008). Currently the majority of the plant species characterized in terms 

of Al uptake was investigated by Al-specific dye fluorescence, which was observed in the 

outer cortex and epidermal regions (Kataoka et al., 1997; Jones et al., 2006). Thus, root radial 

Al transport processes into the stele do not take place in Al non-accumulating plant species. 

Usually, mineral transport processes are controlled by transporters, channels or 

plasmodesmata. In the case of K+ cortical cells are dominated by a K+ channel particularly 

facilitating K+ influx into the root cell, whereas in stelar cells K+ channels are prevalent, 

which enable the K+ efflux into the apoplast / xylem (Roberts and Tester 1995). However, 

such clear differences were not obtained in Arabidopsis cortical and stelar tissues (Maathuis et 

al., 1998). Some authors questioned the role of K+ efflux channels in xylem sap K+ loading 

(Kochian & Lucas 1988, Lacombe et al., 2000). They preferred a process mediated by active 

transport systems (Kochian & Lucas 1988) or a combination of active and passive xylem 

loading processes (Lacombe et al., 2000). However, not only the orientation of transporter 

could be decisive for translocation processes but also tissue specific expression patterns. A 

promoter::GUS localization study on a Zn transporter of Arabidopsis (AtZIP4::Gus) revealed 

that the transporter expressed in the stele indicating that this Zn transporter is associated with 

uptake into the root cell symplast rather than with xylem loading (Milner and Kochian 2008). 

The process of Al translocation needs further clarification including investigations on 

molecular mechanisms specifically e.g. proteins involved Al transport. To do so, this study 

clearly showed that future analyses should take tissue-specific longitudinal & radial local 

differences into account.  
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 Chapter IV 

Differences in aluminium accumulation and resistance between 

genotypes of the genus Fagopyrum 

 

Benjamin Klug; Thomas Kirchner; Walter J. Horst 

(To be submitted) 

Abstract 

Aluminum (Al) toxicity is a major factor reducing crop productivity worldwide. There is a 

broad variation of inter- and intra-specific Al resistance. Whereas the Al resistance 

mechanism are generally well explored in Al-excluding plant species, Al resistance through 

Al accumulation and Al tolerance is not yet well understood. Therefore, we screened a set of 

94 genotypes of the Al accumulator genus Fagopyrum with special emphasis on Fagopyrum 

esculentum Moench, with the objective to identify genotypes with greatly differing Al 

accumulation capacity. The genotypes were grown in Al-enriched peat-based substrate for 30 

days. Based on the Al concentration of the xylem sap which varied by a factor of 5, only 

quantitative but no qualitative genotypic differences in Al accumulation could be identified. 

Aluminium and the citrate concentrations and Al and Fe concentrations in the xylem sap were 

positively correlated suggesting that Fe and Al are loaded into and transported in the xylem by 

related mechanisms. In a nutrient solution experiment using selected genotypes differing in Al 

and citrate concentrations in the xylem sap, inhibition of root elongation by Al, root oxalate-

exudation and Al accumulation proved to be highly significantly correlated. This confirms 

that Al activated oxalate exudation is a prerequisite for both, protection of the root apoplast 

from Al injury (Al exclusion) and Al accumulation (Al tolerance). 
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Introduction 

Aluminium toxicity is one of the major constrains for crop production on acid soils (Kochian 

et al., 2004). The area of acid soils is further increasing and represents significant percentages 

of the world’s arable lands. There is evidence that long-term acidification induced by changes 

in widespread not sustainable land use and consequent vegetative succession is one reason for 

further acidification (Krug and Frink, 1983). Therefore, the physiological understanding of 

mechanisms participating in the adaptation of plants to acid soils and concomitant mineral 

toxicities is of major importance. However, the knowledge in external resistance mechanisms 

is far advanced, but the understanding of internal tolerance mechanisms in this context still 

lacks a fast progress. It has been often screened and bred for Al resistance of important crop 

plants (Horst et al., 1997; Yang et al., 2000; Zhou et al., 2007), including Al-excluding and 

Al-accumulating plant species. However in buckwheat the result revealed that the exudation 

of chelating ligands, particularly oxalate, is not directly associated with genotypic differences 

in Al resistance (Peng et al., 2003). This might indicate, especially in Al-accumulating and 

highly resistant plant species that not only Al-exclusion mechanisms were exclusively 

responsible for the high resistance, but also tolerance mechanisms are significantly 

participating. However, the analysis of the contribution and the incorporation of internal Al-

tolerance mechanism-analysis in screening experiments was up to now completely omitted. 

The mechanisms restricting Al uptake and translocation in non-Al accumulators are proposed 

by Ma and Hiradate (2000) which emphasize the role of cell wall composition (Martin, 1986), 

the Al chemistry and the development of hydrophobic bands, which may restrict apoplastic 

transport pathways. It is known for Al accumulating buckwheat that Al is transported 

symplastically, which circumvents the physical apoplastic barrier, the casparian strip (Ma et 

al., 1998; Chapter I and II). Furthermore, it is known that Al is complexed symplastically by 

oxalate anions which allows soluble binding stages of Al and thus the precipitation of Al-

hydroxides in the near neutral pH of the cytoplasm is avoided. Therefore, Al could be actively 

transported into root cell vacuoles as well as by long-distance transport via xylem flow into 

the vacuoles of leaf cells.  

Therefore, the aim of the study was to screen a set of buckwheat (Fagopyrum esculentum, 

Fagopyrum tartaricum and Fagopyrum acutatum) genotypes and species for differences in 

the above ground Al accumulation. Furthermore, this study will facilitate an evaluation of the 

interrelation of resistance and internal tolerance. The analysis of the ionome in the xylem sap 

of buckwheat will give first hints for the association of other ions to the transport of Al and 
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provides indications for related transport mechanisms. However, the identification of either 

qualitatively or quantitatively differing genotypes and the restriction of tolerance and 

accumulation mediating mechanisms to a number of possibly related genes will provide the 

opportunity for first genotype related transcriptomic insights in the Al accumulation of 

buckwheat and the understanding of Al-tolerance and translocation in buckwheat.  

 

Material and Methods 

Plant material  

The experiments were conducted using the reference cultivar of buckwheat Fagopyrum 

esculentum “Lifago” known from former experiments (Chapter I and II) which was provided 

by Deutsche Saatveredelung AG (Lippstadt, Germany). Additionally, a set of 94 Fagopyrum 

accessions was kindly provided by the gene bank of the Leibniz Institute of Plant Genetics 

and Crop Plant Research (IPK, Gatersleben, Germany). These Fagopyrum accessions 

included various genotypes of Fagopyrum esculentum Moench var. Esculentum; Fagopyrum 

esculentum Moench var. Emarginatum (Roth) Alef.; Fagopyrum tataricum (L.) Gaertn. and 

Fagopyrum acutatum (Lehm.) Mansf. ex Hammer. The overall genetic origin of these 

genotypes includes Europe and Asia (see S1). For the analysis of Al resistance mechanisms in 

a nutrient solution experimental approach genotypes from the species Fagopyrum esculentum 

Moench with differing Al translocation patterns were chosen. 

 

Plant cultivation 

Plants were sown into peat-based substrate containing 30 % clay without the addition of Al, 

because Al toxicity should not interfere during the process of germination. In the following 4 

weeks of cultivation Al was added in 4 steps each consisting 2 g Al2(SO4)3*18H2O resulting 

in 8 g of Al2(SO4)3*18H2O per L substrate. This amount was determined based on a substrate-

specific Al-buffer curve, as usually performed for the production of blue coloured Hydrangea 

macrophylla (Naumann and Horst, 2003), with a target pH of the aqueous substrate extract of 

4.3. The reference cultivar “Lifago” was additionally exposed to various Al concentrations (0; 

2; 4; 6 and 8 g of Al2(SO4)3*18H2O per L substrate) to evaluate the response of the plant to 

increasing Al supply. Three plants were grown in each pot, containing 1 L of substrate for 

four weeks. Samples of these three plants were generally combined to one composite sample. 



Chapter IV 

___________________________________________________________________________ 

 76

The experimental design was a randomized block design with three replicates. Plants were 

grown in a greenhouse at 20 °C at daytime and 18 °C during the night.  

 

Substrate analysis  

The pH, the concentration of soluble total and monomeric Al and mineral nutrients in the 

substrate were determined in a 1:3 water extract after 1 day incubation of the substrate at 

room temperature. The extracts were passed through a filter with a pore size of 0.45 µm. Al 

and mineral nutrients were determined by optical inductively coupled plasma-emission 

spectroscopy (Spectro Analytical Instruments GmbH, Kleve, Germany). Monomeric Al 

concentration was determined following the method of Kerven et al. (1989) using aluminon 

as dye for Al and spectrophotometric measurement of the Al-aluminon complex extinction at 

532 nm. 

 

Genotypic comparison in nutrient solution 

Genotypes with differential Al accumulation capabilities were chosen for further 

investigations in a nutrient solution experiment. Plants were grown for 4 weeks in a green 

house at 25/20 °C day/night temperature. After this period of growth the shoots were cut 1 cm 

below the first node with adventitious root initials and additionally above the primary leaf to 

reduce transpiration. These shoot cuttings were transferred to low ionic strength nutrient 

solution with the following composition [µM]: 500 KNO3, 162 MgSO4, 30 KH2PO4, 250 

Ca(NO3)2, 8 H3BO3, 0.2 CuSO4, 0.2 ZnSO4, 5 MnSO4, 0.2 (NH4)6Mo7O24, 50 NaCl, and 30 

Fe-EDDHA for 4 days keeping the shoots at 100 % relative humidity (rH) until adventitious 

roots had emerged. The following day the plants were adapted to lower rH by reducing air 

humidity. Plants were than grown for 2 weeks in nutrient solution. Afterwards, the pH of the 

nutrient solution was reduced in three steps to 4.3 resulting in at least 12 h for adaptation to 

the low pH before the beginning of the Al treatment (+/- 75 µM AlCl3 at pH 4.3).The Al 

treatment was performed in simplified nutrient solution, containing 500 µM CaCl2, 100 µM 

K2SO4 and 8 µM H3BO3 to avoid mineral interactions during that short-term Al treatment. 

 

Sampling of xylem sap 

Sampling of xylem sap was performed following the method described by Ma and Hiradate 

(2000) with some modifications. The stem was severed 2 cm above the root. The cut surface 
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was rinsed with ddH2O and blotted off. The xylem sap was collected for not more than 0.5 h 

to yield reliable data on concentrations of solutes in the xylem sap. The xylem sap was 

collected in 1 mL micro-pipette tips which were trimmed to fit the cut stem. The volumes of 

the exudates were determined by 1000 µL micropipettes. Exudates were directly frozen in 

liquid N2. 

 

Mineral element analysis 

Mineral element contents in the bulk-leaf tissue were determined in the primary leaf after dry 

ashing at 480 °C for 8 h, dissolving the ash in concentrated 1:3 diluted HNO3, and then 

diluting (1:10 v/v) with ddH2O. Measurements were carried out by optical inductively 

coupled plasma-emission spectroscopy (Spectro Analytical Instruments GmbH, Kleve, 

Germany). The Al concentration in the xylem sap was determined after appropriate dilution 

with ddH20 by graphite furnace atomic absorption spectrometry (GF-AAS). The composition 

of other minerals in the xylem sap was performed after dilution by applying inductively 

coupled plasma-emission mass spectrometry (7500 CX, Agilent Technologies, Santa Clara, 

USA). 

 

Determination of organic acids 

The organic acid (OA) concentrations in the root exudates as well as in the xylem sap were 

measured by isocratic High Pressure Liquid Chromatography (HPLC, Kroma System 3000, 

Kontron Instruments, Munich, Germany). The OAs were injected through a 20 µl loop-

injector (Auto-sampler 360) of the HPLC, separating different OAs on an Aminex HPX-87H 

(300 x 7.8 mm) column (BioRad, Laboratories, Richmond, California, USA), supplemented 

with a cation H+ micro-guard cartridge, using 10 mM perchloric acid as eluant at a flow rate 

of 0.5 ml per minute, at a constant temperature of 35 oC (Oven 480), and 74 hPa of 

atmospheric pressure. Measurements were performed at a wavelength λ = 214 nm (UV 

Detector 320). Prior to the analysis of exuded OA the nutrient solution samples were 

exchanged using a cation exchange column (Hydrochloric form) (AG® 50W-X8; BioRad; 

Life science group; Hercules; CA) followed by concentration to dryness via centrifugal 

evaporation. 
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Results 

Supplementation of the substrate with Al2(SO4)3*18H2O significantly decreased the pH of the 

substrate due to its acidic hydrolysis (Fig. 1). An Al supply of 8 g lead to pH values of 4.2-

4.0. Increasing total soluble and monomeric Al concentrations were found after exceeding an 

Al application of 6 g. Neither the pH reduction, nor the Al supplementation to the substrate 

lead to reduced growth of the reference buckwheat cultivar “Lifago” (Fig. 2)  

 
Figure 1. Total soluble, monomeric Al concentrations and substrate pH in the aqueous substrate extract as 

affected by increasing supply of Al2(SO4)3*18 H2O. Bars represent means +/- SE, n = 3. Different letters denote 

significant differences between treatment durations at P <0.05. Capital letters denote the comparison between 

different pH values. Lower-case characters represent the comparison between different monomeric Al 

concentrations.  

 

The vegetative shoot growth of the buckwheat cultivar “Lifago” (Fig. 2) was not affected and 

showed an equivalent height irrespective of the applied Al amount. Increasing amounts of Al, 

especially the 8 g treatment did not induce obvious mineral deficiency symptoms. 

Furthermore, a ranking of root growth in the substrate showed most pronounced root growth 

at 4 g Al (data not shown). This might indicate optimum growth conditions under the 

presence of small amounts of Al. These conditions are also indicated, albeit not significantly 

in the shoot fresh matter production of the reference cultivar (Fig. 3).  
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Figure 2. Vegetative shoot growth of buckwheat cv. “Lifago” as affected by increasing Al2(SO4)3*18 H2O 

supply in 1 L substrate, four weeks after germination. 

 

 

 
Figure 3. Plant fresh matter production and height of buckwheat cv. “Lifago” as affected by increasing 

Al2(SO4)3*18 H2O supply in 1 L substrate three weeks after germination. Bars represent means +/- SE, n = 3. For 

the ANOVA ns denotes nonsignificance at P=0.05. 

 

The soil analysis revealed that monomeric Al species (Al3+) are present at an Al supply of 8 g. 

However, the above ground Al accumulation, analyzed in the primary leaf, showed enhanced 

Al contents at an Al application of 2 g compared to the control (0 g) (Fig. 4A). The Al 

accumulation increased with increasing Al supply. The phosphorus concentration in the 

primary leaf was not affected by increasing Al supply (data not shown), but decreased 

significantly in the soil solution. The Al concentration in the xylem sap exceeded 200 µM at 

Al applications of 4 g and reached values of about 400 µM at an Al application of 6 g. The Al 

concentration did not further increase beyond an Al supply exceeding 6 g. The citrate and Al 



Chapter IV 

___________________________________________________________________________ 

 80

concentrations in the xylem sap are significantly correlated (Fig. 4B) and the citrate 

concentration increased with increasing Al concentrations. 

 
Figure 4. A: Leaf Al concentration and xylem sap Al concentration of buckwheat cv. “Lifago” as affected by 

increasing Al2(SO4)3*18 H2O supply in 1 L substrate three weeks after germination. Bars represent means +/- 

SE, n = 3. Different letters denote significant differences between treatment durations at P = 0.05. Capital letters 

denote the comparison between different leaf Al concentrations. Lower-case characters represent the comparison 

between different xylem Al concentrations. B: Correlation of Al and citrate concentrations in the xylem sap as 

affected by increasing Al2(SO4)3*18 H2O supply in 1 L substrate three weeks after germination. For the ANOVA 

*** denote levels of significance at P = 0.001.  

 

The xylem-sap Al concentrations responded to the applied Al concentration. Therfore, we 

chose the xylem sap concentration and an Al supply of 8 g Al2(SO4)3*18 H2O for the 

comparison of different buckwheat genotypes with different growth habits. The fresh matter 

production of the 94 genotypes varied between 5 and 10 g per plant. The number of leafs per 

plant was particularly highly variable. Some genotypes showed about 5 times more leaves 

than others. The analysis of Al accumulation in the primary leaf might have been affected by 

different numbers of leafs for different genotypes (data not shown) which could have led to 

dilution or concentration effects in the analysed leaf tissue, thus the xylem Al concentration 

appeared to be a more suitable parameter for the characterization of the Al accumulation 

capacity.  

The comparison of the xylem Al concentration revealed a broad genotypic variation of the Al 

concentration in the xylem sap (Figure 5). However, we were not able to identify one 

buckwheat genotype that did not translocate Al into the shoot. The Al concentration of 

genotypes with the most pronounced Al translocation capacity are reaching concentrations of 
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about 450 µM Al in the xylem sap. The lowest concentrations, which were found in some 

genotypes, were in the range of 100 µM at the same supply of Al.  

 
Figure 5. Xylem sap Al concentration of 94 different buckwheat genotypes after 4 weeks of substrate culture 

with an Al supply of 8 g Al2(SO4)3*18 H2O. Three plants per 1 L pot were combined to one composite sample, 

bars represent means +/- SE, n = 3. Different letters denote significant differences between treatment durations at 

P = 0.05. Genotypes were grouped according to their xylem sap Al concentration. 

 

The genotypes also differed in the Al concentration of the primary leaf (Fig 6). However, the 

Al concentrations of the leaves were not correlated with the Al concentrations of the xylem 

sap (Fig. 5).  

A correlation analysis with the whole set of genotypes revealed a highly significant 

correlation of the citrate and Al concentration in the xylem sap (Fig 7A). Generally, citrate in 

the xylem sap seemed to be available in excess compared to Al. The analysis of the ionic 

composition of the xylem sap was extended with a sub-set of genotypes. All identified 

inorganic compounds were analyzed for a correlation with the Al concentration in the xylem 

sap. These analyses revealed that only the iron concentration was related to the xylem Al 

concentration (Fig 7B). It was found that about 20 times more citrate than Al in the xylem 

sap. Ten times more Al than Fe was transported. Also citrate and Fe translocation were 

significantly correlated (P<0.0001). The slope showed values of 95 which suggested that 95 

times more citrate than Fe were loaded into the xylem.  
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Figure 6. Leaf Al concentration of 94 different buckwheat genotypes after 3 weeks of substrate culture with a Al 

supply of 8 g Al2(SO4)3*18 H2O. Three plants per 1 L pot were combined to one composite sample, bars 

represent means +/- SE, n=3. The order of genotype arrangement follows descending xylem sap Al concentration 

(see Fig. 5). MSD was determined at P = 0.05. 

 

 
Figure 7. Correlation of xylem sap citrate with xylem sap Al concentrations (A) and correlation of xylem sap Al 

with xylem sap iron concentrations (B). Samples were obtained as stem bleeding sap after collection for 30 min. 

Points represent means +/- SE, n = 3, For the ANOVA *** denote levels of significance at P = 0.001. 
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For further analysis, six genotypes, spread over the whole xylem Al concentration spectrum, 

were chosen for an experiment in nutrient solution. These genotypes were significantly 

different in their Al translocation quantities, and additionally showed different response 

patterns of the xylem-sap citrate concentration. Each Al concentration in the xylem sap 

(depicted in dark grey bars in Fig. 5), categorized by high, mid and low Al concentrations in 

the xylem sap, was represented by a genotype which showed either an Al concentration 

responding or a non-responding citrate concentration in the xylem sap. 

 

The analysis of the bulk root Fe contents further supported an interaction between Al and Fe. 

Irrespective of the genotype, Al treatment lead to a reduction of the iron contents in the bulk 

root system compared to the control treatment (Fig. 8). This can only partly be explained by 

the omission of Fe supply during the short term (24 h) Al treatment to avoid interactions of 

the iron-chelate EDDHA and Al, because also the controls without Al did not receive Fe 

during this period. It thus appears that Al supply enhanced the Fe transport from the roots to 

the shoots. 

 
Figure 8. Iron content of the bulk root dry matter of buckwheat cultivars differing in Al translocation after 

preculture in complete nutrient solution with 60 µM Fe-EDDHA and subsequent +/- Al treatment for 24 h in 

simplified nutrient solution without Fe addition. Bars represent means +/- SE, n = 3. For the ANOVA, * and ** 

denote significant effects at P < 0.05 and 0.01, respectively, ns nonsignificant.  
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In contrast to the substrate experiment the plants used in the nutrient solution approach had 

comparable shoot architectures, because adventitiously rooted cuttings were used. The shoots 

of these cuttings were reduced to one leaf and the hypocotyl prior the rooting procedure. This 

facilitated the comparison of in-planta Al fluxes between genotypes, because all genotypes 

had the same number of leaves during the Al treatment. The genotypes 38, 86 and 63 showed 

in trends higher Al concentrations in the leaf dry matter than the genotypes 10, 39 and 54, 

even though only the genotypes 38,10 and 54 were significantly different. The decreasing 

trend of Al accumulated in the leaves from genotype 38 to 54 might be in line with the 

decreasing xylem sap concentration as determined in the substrate experiment, where also 

genotype 38 and 86 had the highest Al xylem sap concentration and the latter two genotypes 

were characterized by lower Al concentrations in the xylem sap.  

 

 
Figure 9. Leaf Al concentration in the dry matter of buckwheat cultivars differing in Al translocation after 

preculture in complete nutrient solution and subsequent +/- Al treatment for 24 h in simplified nutrient solution. 

Bars represent means +/- SE, n = 3. For the ANOVA, * and *** denote significant effects at P < 0.05 and 0.001, 

respectively, ns nonsignificant. 

 

Root oxalate exudation was significantly activated by Al application. The genotypes 38 and 

86 showed significantly higher exudation rates than the genotypes 39 and 54 (Fig. 10A). 

Citrate was exuded in minor amounts and showed no Al-activated exudation pattern (Data not 

shown).  
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Figure 10. Oxalate anion exudation rate of roots of buckwheat cultivars differing in Al translocation after pre-

culture in complete nutrient solution +/- Al treatment for 24 h in simplified nutrient solution without.. Bars 

represent means +/- SE, n = 3. For the ANOVA, * and *** denote significant effects at P < 0.05 and 0.001, 

respectively. 

 

The root growth-rate of the control treatment was in the range of 0.7-1 mm h-1. Aluminium 

supply decreased the root growth in some genotypes. The genotypes 38, 86, and 63 showed 

no root-growth inhibition while the genotypes 10, 39 and 54 were inhibited by 30-50 % due to 

the 75 µM Al treatment (Fig. 11). 
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Figure 11. Root growth-rate of buckwheat cultivars differing in Al translocation after preculture in complete 

nutrient solution and subsequent +/- Al treatment for 24 h in simplified nutrient solution. Root growth rate was 

analyzed by marking the root tip 1.5 mm behind the tip before the treatment and measuring the distance again 

after 24 h. Bars represent means +/- SE, n = 3. For the ANOVA, * and *** denote significant effects at P < 0.05 

and 0.001, respectively, ns nonsignificant. 

Discussion 

Substrate parameters 

As a prerequisite for this study it was confirmed that the application of Al to the substrate led 

to the presence of Al in a plant-available form (Fig. 1), which is supposed to be Al3+ (Ma and 

Hiradate, 2000). At a substrate pH of about 4.3 a major proportion exists as mononuclear Al 

species. This general pH dependency is in line with the analysis of Marion et al. (1976) who 

showed that Al3+ is the predominant Al species in this pH range. However, the difference 

between monomeric Al according to Kerven et al. (1989) and total soluble Al (ICP-OES) 

clearly indicates that also polynuclear, most probable Al stably complexed by organic ligands 

such as humic acids was also present.  

The Al concentration in the leaves of the Al accumulator buckwheat increased with increasing 

Al supply (Fig. 4) even at 2 g Al2(SO4)3*18 H2O which did not lead to increased monomeric 

Al in the substrate extract. This indicated that buckwheat may be able to take up/mobilise not 

only mononuclear Al. Buckwheat is known not only as an Al accumulating plant species but 

also for its high phosphorus acquisition efficiency (Amann and Amberger, 1989; Zhu et al., 
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2002). Since P is often fixed to Al and Fe oxides and hydroxides desorption of P requires the 

solubilization of Al/Fe by root-exuded ligands such as oxalate. This might suggest that the Al 

uptake efficiency and P efficiency are closely related. 

In conclusion, the application of Al in amounts of up to 8 g Al2(SO4)3*18 H2O L-1 substrate 

proved to lead to high concentration of mononuclear Al in the substrate solution thus 

facilitating the comparison of the genotypic Al translocation capabilities irrespective of 

genotypic differences in P efficiency. 

 

Genotypic aspects 

The main focus of this study was the determination of differences in Al accumulation in the 

shoots among a large number of Fagopyrum species and genotypes. The comparison revealed 

that all tested species and genotypes accumulated Al in the shoot, thus no qualitative 

differences were found. However, genotypes differed in xylem Al concentration by about a 

factor of five (Fig. 5). The accumulation trait could not be related to the origin of the 

genotypes. Genotypes with highest Al concentration in the xylem sap originated from 

different regions as for example Belarus (genotype 15), Iran (genotype 38), North Korea 

(genotype 73), and Italy (genotype 86). 

The similar range of Al accumulation was also found within the family of Melastomeceae 

(Jansen et al., 2002b). Species from that family were shown to accumulate Al in huge 

amounts in the shoots. However, the variation within the family was shown to be in the range 

of 6-66 mg Al g-1 dry matter. In contrast, a comparison of members from the taxa 

Polygonaceae, the family of buckwheat, showed that some genotypes differing in Al 

resistance did not accumulate Al in their shoots (You et al., 2005). This might suggest that the 

trait of Al accumulation is not spread over the whole family of the Polygonaceae thus being 

rather typical for the genus Fagopyrum. Based on semi-quantitative tests the Al accumulation 

trait was mapped onto a recent angiosperm phylogeny. This classification revealed that Al 

hyperaccumulation is a simple, primitive trait that has not arisen independently several times 

during evolution but was lost independently in many derived taxa (Jansen et al. 2002a; White, 

2002). The authors suggested that the trait of Al accumulation shows low incidence in 

evolutionary advanced groups which appears to be correlated with the herbaceous habit. 

Therefore, own results rather indicate that the genus Fagopyrum might represent an 

exceptional case where the evolutionary background does not fit into this generalistic 

proposition and thus needs to be further studied by other mapping approaches. Regardless of 
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the fact that no qualitative differences in the Al accumulation of the 94 genotypes could be 

found, which makes comparisons on the transcriptomic or genetic level difficult, we still 

contribute new information to the not completely understood trait of Al accumulation.  

 

Xylem sap Al concentration the parameter of choice 

Aluminium concentrations in leaves showed significant genotypic differences (Fig. 6). 

Unfortunately this parameter was not suitable for a genotype or even species spanning 

comparison due to great differences in growth habitus. The number of leaves or the total 

above-ground biomass confounded the comparison of the concentrations on the dry matter 

basis. A higher biomass production might have led to a dilution effect. Such a dilution effect 

was found for Cd accumulation of maize cultivars, where the genotype with the highest 

biomass production showed lower Cd concentrations (Kurz et al., 1999). Therefore, the xylem 

sap Al concentration was chosen as the primary parameter for the comparison of the 

genotypes and their Al accumulation capacity. The xylem sap was sampled only for 0.5 h, 

because various studies showed that only shortly after cutting off the shoot representative data 

on the in vivo xylem composition can be assessed (Siebrecht & Tischner, 1999). The same 

technique has been used for the characterization of heavy metal hyperaccumulation. Xylem 

sap Cd and Zn concentrations were used to show considerable scope for the selection of 

advanced hyperaccumulation ecotypes with the objective of increasing the phytoextraction 

efficiencies to remediate metal-contaminated soils (Lombi et al., 2001).   

 

Al transport 

The prevailing uptake capability of heavy metals and particularly Al in hyperaccumulating 

plant species such as buckwheat raises the evolutionary question about specific transport 

processes for non essential metals. Why do plants take up toxic metals and evolve C-cost 

intensive internal detoxification mechanisms? One suggestion is that the plant may take some 

benefit of the toxic metal, either by acting as a defence or deterrence to pathogens and 

herbivores or simply enabling plants to grow on acid soils (White, 2002). Another suggestion 

is that proteins involved in the metal homeostasis are unspecific and thus may represent an 

uptake route for not essential elements. Transporters often exist as a part of a large family 

with variable functions. However, some proteins are highly specific for particular metals, but 

some are rather unspecific and can potentially transport a range of related metals (Williams 

and Salt, 2009). There are indications for the latter suggestion to apply to buckwheat. The 
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trend obtained in the xylem sap Fe translocation is retrieved in the iron contents of the bulk 

root dry matter (Figure 8). This indicated, that Al treatment enhances the transport of root Fe 

to the xylem. The xylem citrate transport may be the connective link between Al and Fe 

transport rates because Al and citrate transport rates were correlated in the xylem sap (Figure 

4B and 7A) as well as the iron and Al transport were significantly correlated. 

Using NMR Ma and Hiradate (2000) showed that Al is complexed by citrate in the xylem sap. 

However, in their study the citrate concentration showed no response to externally applied or 

internally transported Al. In contrast, in the present study a significant correlation between 

xylem citrate and Al concentrations existed. Both, the increasing Al supply led to increasing 

citrate concentrations in the reference cultivar (Fig. 4B) and the genotypes which translocated 

Al more efficiently were characterized by higher citrate concentrations in the xylem sap as 

compared to genotypes translocating Al on a lower level (Fig. 7A). Furthermore, we were 

able to show the same relationship on the xylem sap level of excised single root tips and intact 

plants (Chapter I and II). These data strongly suggest that the citrate concentrations in the 

xylem sap of buckwheat respond to the Al supply even though citrate is available in excess 

especially in the lower Al concentration ranges. The excess of citrate over Al in the xylem sap 

suggests that the xylem loading of citrate is not exclusively coupled to Al transport processes. 

But the presence of Al enhances the citrate xylem-loading which also facilitates Fe xylem-

loading. Iron is known to be transported in the xylem coupled to citrate which is loaded into 

the xylem trough MATE-proteins (FRD3, Durett et al., 2007); but the particular Fe species 

transported through the plasma membrane is not yet specified. The data presented in this 

study might suggest that Al leads to an enhanced citrate synthesis within the xylem 

parenchyma cells which then could be directly transported into the xylem via FRD3-

transporters. Another possibility could be that the Al citrate complex is loaded directly into 

the xylem as suggested (Chapter II).  

A similar close relationship between Al and citrate concentrations in the xylem sap has been 

described for three cultivars of Hydrangea macrophylla which is also known to be an Al 

accumulating plant species. Geochem PC calculations indicated that citrate plays a dominant 

role for Al transport in Hydrangea (Naumann and Horst, 2003). 

Excess citrate in the xylem sap was not found if the xylem sap was sampled shortly behind the 

root tip (Chapter I) which may indicate that several other processes, like Zn, Ca (Ueno et al., 

2008) and Fe (Durett et al., 2007) transport are also closely connected to citrate loading of the 

xylem getting increasing importance with increasing xylem path length in direction to the 

shoot. A direct coupling of Al and citrate transport to the xylem sap of excised root tip might 
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also be related to the fact that Al was the only metal which was supplied in the used 

simplified nutrient solution. In contrast, in full nutrient solution and in substrate solution used 

in other experiments a set of different metals was present.  

In conclusion the results suggest that in buckwheat roots both, Fe and Al are loaded into and 

transported in the xylem as citrate complexes. Thus citrate might be an unspecific metal 

ligand in the xylem sap. However, the specific Al loading process into the xylem which was 

shown to be a metabolism dependent process (Chapter II), needs to be further analysed.  

Association of Al resistance and Al accumulation 

Using a subset on genotypes based on differential Al and citrate xylem sap concentrations 

(Fig.5, Fig.7) it appears that the genotypes which built up high concentrations of Al in the 

xylem sap and translocated Al most efficiently also showed enhanced Al-activated root 

oxalate-exudation rates (Fig.10). Therefore, these genotypes exhibited enhanced Al resistance 

(less inhibition of root elongation, Fig.11) compared to the genotypes translocating lower 

amounts of Al. 

 
Figure 12. Correlation analysis of resistance and tolerance-mediating processes and their contribution to the 

maintenance of the relative root growth rate (0 µM Al = 100 %) of 6 buckwheat genotypes under Al toxic 

conditions (75 µM). Multiple linear regression revealed that all independent variables contribute to the relative 

root growth-rate at P < 0.05.  
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Consequently, Al resistance mediated by oxalate exudation and Al accumulation appears to be 

positively correlated in buckwheat. These results further substantiate the conclusions based on 

our previous studies showing that Al exclusion and Al accumulation are not mutually 

exclusive but spatiotemporally interrelated (Chapter I). However, it is difficult to quantify the 

relative importance of oxalate exudation/Al exclusion and Al accumulation/Al tolerance for 

the performance of buckwheat on acid, Al-toxic soils. The multiple regression analysis (Fig. 

12) of inhibition of root elongation by Al, root oxalate-exudation and Al accumulation 

revealed for the selected set of genotypes grown in hydroponics a highly significant 

regression coefficient. Thus the dependent variable relative root growth can be predicted from 

a combination of the independent variables oxalate exudation rate and leaf Al accumulation. 

Both, oxalate exudation and Al accumulation reduce Al toxicity clearly indicating that the Al-

activated exudation of oxalate confers protection of the roots against Al injury and mediates 

Al accumulation at the same time. This is in agreement with mainly apoplastic lesions of Al 

toxicity as elaborated by Horst et al., (2010). Oxalate exudation leads to the formation of an 

Al oxalate complex thus reducing the positive charge of the toxic Al3+ and interaction with the 

negative charges of the cell wall and the plasma membrane. Since the rate of oxalate 

exudation is not high enough only a 1:1 Al:oxalate complex can form which is still positively 

charged (Al-Ox)+ (Chapter II). This confers some protection of apoplastic Al-sensitive 

charges (enhanced Al resistance as expressed as reduced inhibition of root elongation). At the 

same time (Al-Ox)+ is accumulation in the apoplast which facilitates its uptake into the 

symplast as (Al-Ox)+ as suggested (Chapter II).  

In conclusion, also the comparison of the Al resistance in relation to Al-induced oxalate 

exudation and Al accumulation of Fagopyrum genotypes support the previously postulated 

interrelationship between Al exclusion and Al accumulation (Chapter II). 

 

The contribution of the above ground Al accumulation to the inhibition of Al sensitivity is not 

negligible: If 250 µM are estimated as a mean xylem sap Al concentration at an average 

xylem sap exudation rate of 200 µL per h (Ma and Hiradate, 2000; and own unpublished data) 

the amount of Al discharged from the root would account for an Al transport of about 50 nmol 

h-1. This amount compared with a maximal Al content of 10 nmol (10 mm root tip)-1 

represents the potential to unload Al from the most Al-sensitive apoplastic sites, the transition 

zone of the root tip, which has been shown in many plant species to be the most Al-sensitive 

root-tip zone (Ryan, et al., 1993; Sivaguru and Horst, 1998; Rangel et al, 2007). Furthermore, 

we showed that Al is primarily accumulated in the meristematic zone of the root tip where the 
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first three mm account for more then 60 % of the Al content of the 10 mm root tip. Thus, the 

Al amount which needs to be discharged from the most Al-sensitive root zone is smaller than 

10 % of the 10 mm root tip. Hence, the establishment of a 1:1 ratio of Al and oxalate in the 

root apoplast reduces apoplastic Al injury and, additionally, enhances the Al uptake into the 

symplast and subsequent translocation to the shoots thus contributing to keeping the 

apoplastic phytotoxic Al concentration low. 
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General Discussion 

Aluminium toxicity is a major problem affecting crop productivity worldwide. A strategy 

focusing on the alleviation of Al toxicity by lime applications which is supposed to increase 

soil pH, thus reducing the activity of rhizotoxic Al species is ineffective (Rao et al., 1993). 

Lime is not mobile in the soil profile, therefore, at best reducing Al toxicity in the top soil. 

Additionally, lime is cost-intensive and, therefore, inappropriate particularly in developing 

countries where Al toxicity is wide spread.   

For that reason, other approaches are more promising. Understanding the mechanisms of Al 

toxicity and resistance of plants is of fundamental importance. Therefore, integrated 

approaches which focus on genetic resistance mechanisms in crop plants combined with 

advances in mechanistic understanding of underlying mechanisms represent a more promising 

procedure. Furthermore, plants like buckwheat which were not bred for certain agronomic 

traits and additionally adapted to Al toxicity, are expected to conserve more Al resistance 

genetic information, and will be a good resource to discover important resistance genes (You 

et al., 2005). As shown in the present work, buckwheat exhibits a well coordinated resistance 

machinery, involving efficient Al tolerance and Al exclusion mechanisms which provides an 

important resource of genetic information which could be transferred to other not-resistant 

crop plants. Simultaneously, unravelling of the molecular basis of underlying mechanisms is a 

challenge particularly for the Al accumulator buckwheat where all resistance-associated 

processes are supposed to be expressed constitutively and no gene activation is necessary for  

the high Al resistance. The Al-exclusion, the Al-tolerance and accumulation-mediating 

mechanism are most likely expressed constitutively, because Al uptake into the symplast and 

translocation are quickly occurring which indicates that no de-novo protein biosynthesis is 

necessary. However, this study provides a set of new insights into these mechanisms and it is 

clearly shown that all involved resistance mechanisms, the exclusion and accumulation of Al 

are acting in a well coordinated manner and are not mutually exclusive. 

 

The role of the apoplast in Al-accumulating buckwheat 

 

Aluminium is known to interfere directly and immediately with the root tip apoplast (Horst et 

al., 2007) (Fig 1 A), however buckwheat is well protected (Chapter II, Fig. 6). Oxalate, which 

detoxifies Al (Fig 1 B), is exuded immediately without a lag phase (Zheng et al., 1998). A lag 
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phase is found in other plant species, necessary for gene activation and protein synthesis 

which are either related to the OA synthesis or their efflux (Ryan and Delhaize, 2001). This 

sudden exudation detoxifies Al directly. Subsequently a concentration ratio of 1:1 

(Al:oxalate) is formed in the water free space of buckwheat root tips (Chapter II, Fig. 4). 

Thus, Al is detoxified to some extend. Nevertheless, due to the high stability constants of Al-

pectin complexes Al binds to cell-wall constituents and the detoxification cannot fully protect 

Al-sensitive sites in buckwheat root tips. The 1:1 ratio of Al and oxalate in the water free 

space is sustained for extended Al treatment durations (Chapter II, Fig. 2). Notwithstanding, 

only excessive supplementation of oxalate into the nutrient solution completely alleviated Al-

induced root growth inhibition and is also shown to disrupt the Al uptake process into the root 

symplast (Chapter II, Fig. 8 and 9). The binding of Al to the cell wall is a major site of Al 

accumulation in not Al-resistant plant species and furthermore in buckwheat (Chapter II, Fig. 

3). However, this Al fraction is quantitatively not the most important fraction in buckwheat 

after Al treatment duration of less than 4 h. In contrast, in Al not accumulating plant species 

accumulate Al predominantly in the root-tip apoplast. Irrespective of the treatment duration 

the majority of Al is associated with the cell wall. Only small proportions of Al are found to 

be localised symplastically. In root tips of buckwheat Al is primarily accumulated in the first 

3 mm of the root tip (Chapter I, Fig. 2). Aluminium in this apical root tip region is 

apoplastically as well as symplastically localized as shown by morin staining and a 

fractionated extraction which proved to be a suitable measure for analysing Al distribution 

even in tissues of Al-accumulating plant species (Chapter III, Fig. 5 and Chapter II, Fig 2). 

The dye morin stained the apoplastic localization of Al, which indicates that Al is also present 

in a soluble binging stage, rather associated with organic acid anions than with cell wall 

constituents because these were shown not to be stained by morin (Eticha et al., 2005a). The 

Al accumulation in non Al-accumulating plant species is characterized by a biphasic uptake 

pattern where the accumulation in the cell-wall fraction is responsible for a first and rapid 

binding of Al to negative charges in the apoplast. This rapid phase is followed by a linear 

phase which is supposed to be related to membrane passage of Al. However, buckwheat 

exhibits not the same accumulation pattern. Aluminium contents in the cell-wall fraction are 

increasing linearly and it is not shown that short-term Al treatments lead to an enhanced Al 

binding compared to treatments for longer terms (Chapter II, Fig. 2). This again could be 

related to the pattern I response in exudation of oxalate. This execution of the Al exclusion 

mechanism facilitates the fast development of an equilibrium Al concentration in the WFSF. 

Apoplastic Al binding is not affected by active metabolic processes, and there were no 
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enhanced Al binding rates under chilled conditions observed (Chapter II, Fig. 5c). This 

characterizes the apoplastic binding of Al as passive process. The same is true for the 

exudation which is also a passive process because there is no difference between the 

exudation rates of oxalate under low and high temperatures (Chapter II, Fig. 6a). This requires 

an opening of a pre-existing anion channel without a direct energy turnover. This could be 

performed by a conformation change of the channel protein only by the free binding energy of 

Al which is equivalently shown for K+ channels (Jiang et al. 2002). The concentration of Al 

in the WFSF is maintained on a moderate level of about 200 µM irrespective of the Al 

treatment duration (Chapter II, Fig. 2). The Al-activated efflux of oxalate leads to an 

equivalent concentration in the WFSF suggesting that the root epidermis represents an 

important diffusion resistance for OAs (Kinraide et al., 2005). This allows  efficient 

detoxification of Al in the WFSF at low carbon costs in the finite volume of the WFS. 

Additionally, oxalate represents the simplest dicarboxylic acid producing a high stability 

complex with Al utilising only two carbon atoms per molecule. In comparison, malate utilized 

by wheat for Al detoxification (Ryan et al., 1995), contains four carbon atoms per molecule 

and the Al-malate stability constant is much lower. Thus the cost-benefit ratio of the use of 

malate is lower than of oxalate which could be one reason for the superior Al resistance if 

buckwheat is compared with wheat.  

The bulk Al contents of root tips of various plant species and genotypes often correlate very 

well with their respective Al resistance or sensitivity (Rangel et al., 2005, Eticha 2005a). This 

is not the case for buckwheat; Al-sensitive genotypes roughly have the same Al contents 

compared to Al-resistant genotypes. A screening of 94 buckwheat genotypes revealed that 

accessions showing lower exudation of oxalate in response to external Al application 

exhibited the most pronounced Al-induced root growth inhibition (Chapter IV, Fig 10 and 

11). Thus, these genotypes were less Al-resistant. However, the Al contents accumulated in 

the root apices were not significantly different between the genotypes. Even the application of 

an anion-channel inhibitor, clearly reducing oxalate root-exudation did not increase the 

apoplastically bound Al. Zheng (2009, Zeijang University, Hangzhou, China, personal 

information) showed that the application of the anion-channel inhibitor PG also did not affect 

the total Al content accumulated in the apoplast but lead to a tighter binding of Al to the cell 

wall. These results support the view (Horst et al., 2010) that also in buckwheat Al-induced 

inhibition of root elongation is due to stable Al binding to the pectic matrix of the cell wall.  
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Figure 1. Schematic overview of the key elements involved in Al accumulation, Al resistance and Al tolerance-

mediating mechanisms in the root tip of buckwheat. Section A) represents the Al binding to fixed negative 

charges in the cell wall. Section B) shows the Al-activated but metabolic independent efflux of oxalate anions. 

Section C) depicts the metabolism-dependent uptake of Al(Ox)+ by a postulated cation transporter. Section D) 

represents the Al-activated structuring of a gradient through the formation of Al/oxalate complexes differing in 

Al:oxalate ratio facilitating Al uptake. Section E) depicts the ligand exchange to citrate in xylem parenchyma 

cells and the proposed active loading of Al(Cit)n- into the xylem. 
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Al uptake and the symplastic contribution to Al resistance in buckwheat 

 

The study indicates that an interaction of Al exclusion and Al tolerance is responsible for the 

extraordinary performance of buckwheat on acidic and Al-toxic soils (overview in Fig. 1). 

This was further substantiated by a multiple linear regression, which showed that the Al-

exclusion mediating exudation of oxalate as well as the above ground Al accumulation, 

comprising the internal tolerance mechanism, are positively correlated and both contribute to 

the growth of buckwheat under Al-toxic conditions, thus the overall Al resistance (Chapter 

IV, Fig. 12). However, the transport process of Al into the symplast as prerequisite for 

internal tolerance was virtually unknown. First approaches to unravel Al accumulation in 

buckwheat suggest that only free Al3+ is taken up (Ma and Hiradate, 2000). These results were 

obtained applying Al or Al-oxalate complexes to the roots in nutrient solution. Under these 

conditions Al was only taken up in case of the Al3+ supply. However, the results presented 

here clearly show that this does not unequivocally prove that Al3+ is taken up by the 

buckwheat root tips for the following reasons: I) Al uptake and exclusion mechanisms are 

spatially co-localized, which makes it unlikely that Al is present in the form of Al3+ at the 

plasma membrane surface, if oxalate anions are present at the same time and place in the 

apoplast (Chapter I). II) It is shown that Al is taken up as Al-oxalate complex if Al and 

oxalate (Ox) are present in the ratio of 1:1 and the plasma membrane received an Al3+ 

stimulus (Chapter II). III) The results confirm an uptake cascade postulated by Ma and 

Hiradate (2000) provided that the apoplast represents already the first compartment where Al-

(Ox)+ is formed and continues as the more stable Al-(Ox2)- in the cytosol and the even more 

stable Al-(Ox3)3- in the vacuole (Fig 1D). The cytosolic Al-(Ox2)-  possibly represents the 

signal which induces the initiation of Al exclusion mechanisms in root zones which are not in 

direct contact with Al3+  (Chapter I, Fig. 9)  

The uptake of Al is rapid and active, because the Al concentration of the external solution is 

rapidly exceeded in the symplastic solution and in the xylem sap. The Al uptake is strongly 

reduced if the ambient temperature is decreased to 4°C (Chapter II, Fig 5b) (Fig. 1 C). 

Furthermore, uptake of Al into the symplast occurs even without transpiration and no negative 

pressure in the xylem vessels in excised root tips (Chapter I, Fig. 4). Therefore we conclude 

that Al is taken up by an active cation transporter. However, the results presented do not allow 
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the final conclusion that it is a specific Al transporter or just an unspecific cation transporter. 

Uptake and above-ground accumulation of Al is a well conserved trait within 94 tested 

Fagopyrum genotypes originating from almost all over the northern hemisphere which makes 

a randomly occurring mutation, without an evolutionary advantage unlikely. 

Once Al is taken up it is translocated predominantly and fast in radial direction. It is proposed 

that a tissue-specific orientation of plasmodesmata is responsible for this radial Al transport in 

a distance of 5-10 mm from the root tip. There are various studies showing that 

plasmodesmata in different plant tissues show a particular functional diversity. Different root 

tip regions could be characterized by a specific orientation of plasmodesmata which could 

influence the dominating flow direction of particular solutes in specific regions of the root tip 

(Waigmann and Zambryski, 1995; Duckett et al., 1994; Oparka et al., 1995). It is additionally 

proposed, that the root tip has the highest density or activity of citrate transporters associated 

to Al-xylem loading. It is further indicated that there are metabolic differences in the cortical 

and stelar cells of the root tip. In the cortical tissue, 40 µmol (cm tissue length)-1 oxalate and 

no citrate, in the stele tissue including the xylem, only 0.8 µmol (cm tissue length)-1 oxalate 

and 3.5 µmol (cm tissue length)-1 of citrate were found. This can explain why a ligand 

exchange from Al oxalate to Al citrate tales place in the xylem parenchyma. In contrast with 

the available literature on Al translocation in buckwheat, we observed a pronounced positive 

response of citrate in the xylem sap to the Al translocation rate. Citrate and Al transport rates 

were either showing response to spatially differentiated Al application (Chapter I, Fig. 7) or in 

a genotypic comparison in which the xylem sap Al concentrations were associated with the 

xylem citrate concentration after short term xylem-sap sampling (Chapter IV, Fig 7A). The 

xylem-loading Al transporters are under metabolic control because the xylem loading or the 

unloading of the symplast (Chapter II, Fig. 5b) into the xylem apoplast was temperature-

dependent (Bravo-F and Uribe, 1981) . The Al transport was linked to the transport of iron 

(Fe) (Chapter IV, Fig. 7B). A possible explanation for this relation could be that citrate anions 

represent a common “ferry” for Al as well as Fe (Fig. 1 D). The presence of Al induces an 

enhanced synthesis of citrate in the xylem parenchyma cells. This high citrate concentration 

enables enhanced citrate loading via FRD3 transporters, which were shown to facilitate the 

transport Fe in the xylem (Green et al., 2004; Durett et al., 2007). Additionally, the high 

concentration of citrate leads to a ligand exchange from Al oxalate to Al citrate in these stelar 

cells which enables the Al-citrate xylem loading by an unknown transporter. 

A systematic in-situ Al localization approach revealed significant radial differences in the Al 

distribution. The apical root-tip region showed highest Al-morin fluorescence or Al 
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accumulation intensity in the outer cortical cell layers with is in line with the results obtained 

by the stratified Al application in mini rhizotrons (Chapter III, Fig. 5 and Chapter I, Fig. 4). 

However, in a distance of 5-10 mm the highest fluorescence and concentrations of Al were 

analyzed at an early degree of differentiation of pericycle cells at freshly developed xylem 

vessels substantiating enhanced translocation capacity of these zones. 

In conclusion the results clearly present a well coordinated resistance and tolerance machinery 

which is not only acting at the root tip level but also at a root to shoot level which includes 

signal transduction and long distance transport processes which continuously discharge Al 

from Al-sensitive root-tip tissues and translocate it to Al-insensitive tissues and 

compartments.
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Outlook 

 

The results of the present work clearly show spatial and tissue specific differences in the 

accumulation of Al as well as distinct local differences in the detoxification and transportation 

involved processes. Moreover, various elements of the tolerance, resistance and transport 

mediating mechanisms are further characterized and are identified to represent key elements 

for further research on the Al accumulation in buckwheat. It is known, that for the precise 

analysis of Al-induced effects in Pattern II plants a strategy focusing on specific tissues will 

increase the likelihood of success in unraveling molecular mechanisms or in isolating 

transporters in plants where the Al-toxicity conditions induce specific genes (Ryan et al. 

2003). In general, a major problem in transcriptomic approaches is the participation of cells or 

tissues, which are not directly involved in the physiological response reaction caused by a 

specific treatment. This problem is particularly important in Al-toxicity and/or Al tolerance / 

exclusion mechanisms because of the spatial characteristic of Al induced mechanisms on root 

tip level. The comparable high amount of transcripts of non target cells/tissues may mask 

induced minor changes in the expression of transcripts of interest from target cells/tissues. 

This tissue specificity was not only shown for pattern I plants (Sivaguru and Horst, 1998), 

where for instance a zone of ca. 2 mm in root apex, the distal transition zone of maize, is 

primary responsible for the expression of resistance and sensitivity, but also for pattern II 

plants like non-accumulators (Rangel et al., 2007) and additionally for accumulators (Zheng 

et al., 1998) and substantiated and extended in the own work (see chapters above). Moreover, 

in pattern I plants as buckwheat the analysis of locally defined regions and a comparison of 

specific tissues provides not only a promising chance, but the comparison of different tissues 

within one plant will represent most probably the only way for a progress in research on Al 

uptake and translocation mechanisms in buckwheat, because no induction of genes and de-

novo protein synthesis might take place (Ma et al., 2001) and no near-isogenic lines are 

available. Thus a genotypic comparison of two lines which only differ in Al-tolerance will not 

be possible. Therefore, the consecutive work should be focused into two different approaches 

following principally the same aim, the molecular unravelling of Al uptake and translocation 

in buckwheat, particularly on a locally defined level: 
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I. Expression analysis of physiologically determined candidate genes: 

 

The present study clearly pinpoints the critical steps for Al uptake and translocation and 

moreover, involved key elements were hypothetically determined. Such possible key elements 

or candidate genes could code for proteins like for example citrate- and metal-chelate 

transporters, plasma membrane-located anion channels, for the efflux of oxalate or, proteins 

which are either involved in the synthesis of oxalate and citrate or their efflux. Furthermore, 

proteins which show integration into toxicity/sensitivity accounting mechanisms like pectin 

methyl esterases are of major importance. However, databases are showing a limited number 

of genomic and cDNA/EST sequences of non-model organism such as buckwheat. The NCBI 

nucleotide database contains in total only 451 (27.04.2010) nucleotide sequence records from 

buckwheat, and the biochemical relation to Al uptake and translocation involved genes will be 

most probably very different. Despite this low state of knowledge in the molecular 

background of non-model organisms and particularly in buckwheat, database-assisted 

molecular work even though offers basic in-silico research possibilities. 

The alignment of sequences originating from several model-organisms or even molecularly 

better characterized plant species will allow the locating plant-species spanning conserved 

regions of the coding sequences of potential candidate genes. According to these sequences 

the design of degenerated primers will enable the amplification of specific homologous 

Fagopyrum esculentum sequences. These unique sequences could be sequenced after cloning 

into Escherichia coli. The knowledge of the specific F. esculentum sequence will facilitate to 

design primers directly for that particular plant species. These primers could subsequently be 

used for qRT-PCR-based expression analysis. Such expression analysis is not only able to 

resolve absolute differences in expression levels as expected for induced genes, but also 

quantitative differences in transcript levels which could be expected for constitutively 

expressed genes could be detected. Nicolić et al. (2010) showed as well as for the 

hyperaccumulation of essential Cu and non-essential Cd that the presence of these metals 

increased the gene expression of tolerance-associated genes in buckwheat, even if the 

associated proteins are constitutively present. This expression analysis will be performed in 

different root tissues. The expression of a certain gene within the cortex as compared to its 

expression in the xylem parenchyma or the total root tip will reveal insights into the proposed 

stratification of involved mechanisms. 
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II. Global gene expression profiling in buckwheat tissues   

 

Complex structures such as shoot apices and organ primordia can be micro-dissected into 

cells from individual constituent cell layers. Laser capture micro dissection (LCM) has the 

potential to completely resolve one cell type from the other, because individual cells of one 

type are removed from the tissue context (Kerk et al., 2003). Stelar tissues were already 

compared with epidermal tissues of maize hypocotyls (Nakazono et al., 2003). Moreover a 

comprehensive analysis of mRNA expression in rice phloem tissues was performed by Asano 

et al. (2002). Recently, Deeken et al. (2008) were able to identify genes required for long-

distance RNA-signaling, which was performed by a genome-wide expression profiling of 

mRNAs isolated from Arabidopsis phloem tissue of inflorescence stalks and from leaf 

exudates. All these studies were able to perform transcriptomic analyses on these specific 

tissues. The results clearly reflected tissue-specific differences. This tissue-specific expression 

was either proven by in-situ hybridization (Asano et al., 2002) or evaluated by qRT-PCR 

using specific primers for genes which are exclusively expressed in defined regions or cell 

types, respectively. The yield of total tissue-specific isolated RNA is limited by the small 

micro dissected sample volume. Therefore the small amounts of RNA have to be amplified by 

a T7-polymerase based amplification procedure. 

Usually, subsequent to mRNA extraction of particular tissues or cells and the amplification of 

the RNA, microarrays are utilized to study the gene expression on a global scale. However, 

this method requires a priori knowledge of gene sequences. Therefore, this technique can not 

be applied as a tool for the discovery of novel transcripts in buckwheat. Since reliable results 

are usually obtained only for genes that are expressed in high or moderate levels (Liu et al., 

2006) the expression levels of low abundance genes cannot be readily assessed by DNA-

microarray hybridization, as well.  

Experience concerning suppression subtractive hybridization (SSH) technology provides hints 

for particular shortcomings of SSH-based expression analysis. This could be mainly explained 

by a limited number of clones analyzed and preferential amplification of cDNA fragments 

with special characteristics leading to a bias. This influences the obtained results directly and 

recognition of low-abundance transcripts may be impaired. 

SuperSAGE is a new tool in functional Genomics, especially for in-planta analysis. This 

technique uses short cDNA fragments, so called “tags” with a length of 26 bp from a defined 

position in every transcript of a specific population. This defined specific region is excised by 
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an elegant application of serial linker ligation and restriction digestions. Subsequently, these 

tags are connected and cloned in a vector and sequenced in ultra large quantities. An 

cooperation with Peter Winter and Björn Rotter (GenXpro, Frankfurt, Germany) will 

guarantee analysis of at least 1,000,000 tags which is around 10,000 times more information 

of putatively functionally connected genes compared with output obtained by classic SSH 

analysis. The information about differential expression of specific candidate genes is obtained 

by advanced bioinformatic analysis. The quantitative information is obtained by a simple 

count of transcripts and the frequency of each tag directly reflects the abundance of the 

corresponding mRNA (Velculescu et al., 1995) 

Non-model plant species like particularly buckwheat possess numerous important traits not 

available for study in model plants, which emphasises the need for high-throughput transcript 

profiling generally applicable to all crop plants (Ceomans et al, 2005). The above mentioned 

evaluation of specific candidate genes and their particular role in Al translocation and 

tolerance considers a transformation approach to be indispensable. Methods for in vitro 

regeneration of buckwheat have been elaborated more than two decades ago (Bohanec, 1987; 

Adachi et al, 1989 and Yamane 1974) and this represents the prerequisite for a molecular 

approach. After the general susceptibility of buckwheat for Agrobacterium tumefaciens, the 

strain A281 was shown to be the most virulent strain (Nešković et al. 1990). The first 

transformation was performed by using the binary vector system pGA472 (Miljuš-Djukić et 

al., 1992). Since the A. tumefaciens-based transformation is very time consuming, it is 

important to develop an in planta transformation that does not require sterile conditions of 

tissue culture and enable rapid functional gene analysis which is offered by Bratić et al. 

(2007). This technology allows gene expression and functional promoter analysis of specific 

buckwheat genes by using the pCAMBIA2301 and pCAMBIA-PL Vector system coupled 

with a GUS-reporter gene. This vector is electroporated into A. tumefaciens (Strain EHA 105) 

and finally transferred into buckwheat leaves by mild (102 Pa for 20 min) vacuum infiltration. 

Recently, this method has been shown to enhance buckwheat salt resistance via 

overexpression AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, 

following A. tumefaciens transformation. These plants were able to cope with much higher 

NaCl concentrations compared with the wild-type (Chen et al, 2008). These both 

transformation systems allow either a persistent transformation of buckwheat, which produces 

transgenic plants with pin and thrum clones, which were already allowed to cross-pollinate 

(Miljuš-Djukić et al., 1992), or the transient transformation for a short-term functional gene 

expression analysis for example in the root system, where the transformation protocol of 



Outlook 

___________________________________________________________________________ 

 104

Bratić et al. (2007) could be adapted to the infiltration of root systems of buckwheat. 

Additionally, confirmed differentially expressed genes could be used for in situ hybridization 

(Küpper et al., 2007) e.g. for virus induced gene silencing (VIGS) of roots (Valentine et al., 

2004) or for the expression in ecotypes which were screened for low Al accumulation 

performance. This will clarify the physiological role of candidate genes in Al accumulation of 

buckwheat. 
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Supplemental material 
 

Supplemental material 1. Tabel of screened Fagopyrum genotypes. Run ID represents the number used in the 

graphs. The FAG number is the accession code provided by the gene bank of the Leibniz Institute of Plant 

Genetics and Crop Plant Research (IPK, Gatersleben, Germany). 
Run ID FAG Name Cultivar Origin 

1 21 Fagopyrum tataricum (L.) Gaertn.     

2 26 Fagopyrum tataricum (L.) Gaertn. Welsford   

3 27 Fagopyrum tataricum (L.) Gaertn.     

4 29 Fagopyrum esculentum Moench var. esculentum Amurskaja Sowjetunion 

5 30 Fagopyrum esculentum Moench var. esculentum Bogatyr Sowjetunion 

6 31 Fagopyrum esculentum Moench var. esculentum Belokatajskaja Mestnaja Sowjetunion 

7 33 Fagopyrum esculentum Moench var. esculentum Tarskaja Mestnaja Sowjetunion 

8 35 Fagopyrum esculentum Moench var. esculentum Amurskaja Mestnaja Sowjetunion 

9 38 Fagopyrum esculentum Moench var. esculentum Kazanska Sowjetunion 

10 41 Fagopyrum esculentum Moench var. esculentum Bogatyr Sowjetunion 

11 44 Fagopyrum esculentum Moench var. esculentum Kalininskaja Sowjetunion 

12 45 Fagopyrum esculentum Moench var. esculentum Belorusskaja Belorußland  

13 46 Fagopyrum esculentum Moench var. esculentum Satilovskaja 4 Sowjetunion 

14 47 Fagopyrum esculentum Moench var. esculentum Amurskaja Mestnaja Sowjetunion 

15 48 Fagopyrum tataricum (L.) Gaertn.   Belorußland  

16 49 Fagopyrum tataricum (L.) Gaertn.     

17 50 Fagopyrum tataricum (L.) Gaertn.   China 

18 66 Fagopyrum esculentum Moench var. esculentum   China 

19 67 Fagopyrum esculentum Moench var. esculentum   China 

20 68 Fagopyrum esculentum Moench var. esculentum   China 

21 69 Fagopyrum esculentum Moench var. esculentum   China 

22 70 Fagopyrum esculentum Moench var. esculentum   China 

23 72 Fagopyrum esculentum Moench var. esculentum Serebristaja Sowjetunion 

24 73 Fagopyrum esculentum Moench var. esculentum Alexsandrovskaja Sowjetunion 

25 74 Fagopyrum esculentum Moench var. esculentum Burjatskaja Sowjetunion 

26 75 Fagopyrum esculentum Moench var. esculentum Bogatyr Sowjetunion 

27 76 Fagopyrum esculentum Moench var. esculentum Satilovskaja 4 Sowjetunion 

28 77 Fagopyrum esculentum Moench var. esculentum Slavjanka Sowjetunion 

29 78 Fagopyrum esculentum Moench var. esculentum Odesskaja Sowjetunion 

30 79 Fagopyrum esculentum Moench var. esculentum Kalininskaja Sowjetunion 

31 82 Fagopyrum esculentum Moench var. Emarginatum (Roth) Alef.   China 

32 83 Fagopyrum esculentum Moench var. Emarginatum (Roth) Alef.     

33 84 Fagopyrum esculentum Moench var. Emarginatum (Roth) Alef. Krasnoufimskaja 216 Sowjetunion 

34 85 Fagopyrum esculentum Moench var. Emarginatum (Roth) Alef.     

35 87 Fagopyrum esculentum Moench var. esculentum Tokinskaja 356 Sowjetunion 

36 88 Fagopyrum esculentum Moench var. esculentum   Deutschland 

37 89 Fagopyrum esculentum Moench var. esculentum   Deutschland 

38 90 Fagopyrum esculentum Moench var. esculentum   Iran 

39 92 Fagopyrum esculentum Moench var. esculentum   CSFR 

40 93 Fagopyrum esculentum Moench var. esculentum   CSFR 
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41 94 Fagopyrum esculentum Moench var. esculentum   Rußland 

42 95 Fagopyrum esculentum Moench var. esculentum Bogatyr Rußland 

43 98 Fagopyrum tataricum (L.) Gaertn.   Slowakei 

44 99 Fagopyrum tataricum (L.) Gaertn.   China 

45 100 Fagopyrum tataricum (L.) Gaertn.   Belorußland  

46 102 Fagopyrum esculentum Moench var. esculentum   Polen 

47 103 Fagopyrum esculentum Moench var. esculentum   Polen 

48 104 Fagopyrum esculentum Moench var. esculentum Chruszowska Polen 

49 105 Fagopyrum esculentum Moench var. esculentum   Slowakei 

50 106 Fagopyrum esculentum Moench var. esculentum   Slowakei 

51 107 Fagopyrum esculentum Moench var. esculentum   Slowakei 

52 108 Fagopyrum esculentum Moench var. esculentum   Slowakei 

53 109 Fagopyrum esculentum Moench var. esculentum   Slowakei 

54 110 Fagopyrum esculentum Moench var. esculentum   Slowakei 

55 111 Fagopyrum tataricum (L.) Gaertn. Subsp. tataricum   Slowakei 

56 112 Fagopyrum tataricum (L.) Gaertn. Subsp. tataricum   Slowakei 

57 113 Fagopyrum tataricum (L.) Gaertn. Subsp. tataricum   Slowakei 

58 114 Fagopyrum esculentum Moench var. esculentum   Slowakei 

59 115 Fagopyrum esculentum Moench var. esculentum   Slowakei 

60 116 Fagopyrum esculentum Moench var. esculentum   DDR 

61 117 Fagopyrum esculentum Moench var. esculentum   Slowakei 

62 118 Fagopyrum esculentum Moench var. esculentum   Slowakei 

63 120 Fagopyrum esculentum Moench var. esculentum   Slowakei 

64 121 Fagopyrum esculentum Moench var. esculentum   Slowakei 

65 122 Fagopyrum esculentum Moench var. esculentum   Slowakei 

66 123 Fagopyrum esculentum Moench var. esculentum   Slowakei 

67 124 Fagopyrum esculentum Moench var. esculentum   Slowakei 

68 125 Fagopyrum esculentum Moench var. esculentum   Slowakei 

69 126 Fagopyrum esculentum Moench var. esculentum   Slowakei 

70 127 Fagopyrum esculentum Moench var. esculentum   Slowakei 

71 128 Fagopyrum esculentum Moench var. esculentum   Polen 

72 129 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

73 130 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

74 131 Fagopyrum esculentum Moench var. esculentum Steirischer Österreich 

75 132 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

76 133 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

77 134 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

78 135 Fagopyrum acutatum (Lehm.) Mansf. ex Hammer   nn 

79 136 Fagopyrum esculentum Moench var. esculentum   Koreanische DVR 

80 137 Fagopyrum esculentum Moench var. esculentum grano sarceno Italien 

81 138 Fagopyrum esculentum Moench var. esculentum grano sarceno Italien 

82 139 Fagopyrum esculentum Moench var. Emarginatum (Roth) Alef. grano sarceno Italien 

83 140 Fagopyrum esculentum Moench var. esculentum   Italien 

84 141 Fagopyrum esculentum Moench var. esculentum   Italien 

85 143 Fagopyrum tataricum (L.) Gaertn.   Italien 

86 144 Fagopyrum esculentum Moench var. esculentum   Italien 

87 145 Fagopyrum esculentum Moench var. esculentum   Österreich 

88 148 Fagopyrum esculentum Moench var. esculentum   China 

89 153 Fagopyrum esculentum Moench Alex Deutschland 
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90 155 Fagopyrum esculentum Moench   Ungarn 

91 156 Fagopyrum esculentum Moench Aral Niederlande 

92 158 Fagopyrum esculentum Moench Empire Niederlande 

93 159 Fagopyrum esculentum Moench Skorospelaja 81 Sowjetunion 

94 160 Fagopyrum esculentum Moench   Ungarn 
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