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Abstract 

 The sulfur concentration at FeS- and anhydrite-saturation was determined in hydrous 

basaltic melts (primitive Etna basalt of the 2001-2002 eruption) at T = 1050-1250°C, P = 200 

MPa and fO2 ranging between FMQ and FMQ+2.2. Experiments at 1050°C were performed by 

using Au sample containers. Since sulfur is highly corrosive to noble metal commonly used as 

sample container material (eg., AuPd, Pt) for hydrous experiments at T >1050°C, a double 

capsule technique was developed for conduction of experiments at 1150-1250°C. Therefore an 

OL sample container closed with an OL piston (made of single crystal San Carlos olivine) was 

embed in an AuPd-capsule, which closed the experimental system. Due to Fe/Mg exchange 

reactions with the OL container/piston, the MgO content of the product melts increase almost 

linear as a function of temperature from ~5.5 wt.% MgO at 1050°C to ~13.5 wt.% MgO at 

1250°C, allowing the simulation of temperature evolution for an olivine-saturated basaltic melt.  

 The precipitation of FeS was observed at FMQ to FMQ+0.3 and anhydrite precipitated at 

FMQ+1.4 to FMQ+2.2. The S concentration in the melt increases almost linear with temperature 

from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 

wt.% S at anhydrite-saturation, if T increases from 1050-1250°C. When fO2 decreases from 

FMQ+1 to FMQ+0.5 the S solubility decreases for ~25 rel.% at high temperatures (1150-

1250°C) and for ~35 rel.% at 1050°C. When fO2 increases from FMQ+1 to FMQ+1.5 the S 

solubility increases for about 30 rel.% at high temperatures (1150-1250°C) and for about 45 

rel.% at 1050°C. The fact that the increase in S solubility is higher by changing fO2 from 

FMQ+1 to more oxidizing can be explained by the increase of sulfate species and their high 

contribution to the total S solubility. 

A simple empirical model for the estimation of magmatic temperatures, the sulfur 

solubility and fO2 in olivine-saturated basaltic magmas was designed by using the melt MgO 

content as a temperature index. Applied to natural melts of Mt.Etna representing fO2 ~FMQ+1 



 

  

(Métrich & Clochiatti, 1989) the magmatic temperature and the sulfur solubility at FMQ+1 was 

estimated to be ~1025-1125°C and ~0.25-0.4 wt.% S for juvenile S-rich melts and ~1025°C and 

≤ ~0.1 wt.% S for partially degassed melts. Since juvenile S-rich melts representing lower T 

(~1025-1050°C) contain up to 0.35 wt.% S and partly degassed melts (T < ~1050°C) contain ≤ 

~0.2 wt.% S the magmatic system of Mt.Etna possibly reflects slightly higher fO2 than FMQ+1. 

 Fluid saturated sulphur- and chlorine partitioning experiments were conducted at 1050°C 

between Cl-H2O- and Cl-S-H2O fluid and primitive basaltic melts of Mt.Etna at 100 and 200 

MPa and ~FMQ+0.5 to FMQ+4 and between Cl-H2O- or S-H2O fluid and dacitic melts of 

Krakatau at 200 MPa and ~FMQ+0.5. At the investigated range of system composition sulfur 

and chlorine show a non-ideal partitioning-behavior. 

 In Cl-free/poor systems the sulfur content at FeS-saturation (FMQ+0.5) was determined 

to be 0.04 wt.% S in the dacitic melts and range between 0.09 ± 0.01 to 0.13 ± 0.01 wt.% S in the 

basaltic melts. The S content at anhydrite saturation in the Cl-poor basaltic melt is 0.85 ± 0.02 

wt.% S at FMQ+2 and 0.74 ± 0.01 wt.% S at FMQ+4 and 200 MPa and 0.60 ± 0.01 wt.% S at 

FMQ+2.5 and 0.64 ± 0.01 wt.% S at FMQ+4 and 100 MPa.  

 The maximum chlorine concentration, observed at highest Cl content in the system (~3-

3.6 wt.% Cl) in the sulfate-poor and S-free melts, was determined to be 2.26 ± 0.02 wt.% Cl at 

200 MPa and 2.20 ± 0.04 wt.% Cl at 100 MPa in the basaltic melts and 1.42 ± 0.03 wt.% in the 

dacitic melts (at 200 MPa). The sulfur partitioning coefficients between fluid and melt (Kd’S) in 

the basaltic melt systems range between ~1 and 96 ± 16 at 200 MPa and ~1 to 73 ± 12 at 100 

MPa in sulfate dominated systems (FMQ+2 to FMQ+4) and ~164 ± 16 to 236 ± 32 at 200 MPa 

in the sulfide dominated system (FMQ+0.5). In the dacitic melt systems Kd’S range between 532 

± 38 and 745 ± 47 at FMQ+0.5. These results are in contrast to those of Keppler (2010) 

obtaining constant Kd’S of sulfur in haplogranitic melts (at fixed P-T-X- and redox conditions), 

indicating an ideal partitioning-behavior of sulfur in such simplified melt system. 



 
 

 

 The partitioning coefficients of chlorine (Kd’Cl) range between ~0 and 19 ± 2 in the 

basaltic melt systems for all P and fO2 investigated and between ~0 and 34 ± 5 in the dacitic melt 

systems. 

 Mutual effects of chlorine and sulfur were observed in the sulfate-dominated systems 

(FMQ ≥+2). The addition of chlorine decreases the S content in the melt for about 0.1-0.2 wt.% 

at highest Cl content in the system (3-3.6 wt.% Cl), where the maximum decrease of about 23-27 

rel.% is observed at anhydrite-saturation and FMQ+4. The chlorine concentration in the melt 

decreases, if the sulfur content in the system is higher than 0.5 wt.% S, where the maximum 

decrease of ~35 rel.% is observed at high S- and Cl contents in the system (~2 wt.% S and ~3 

wt.% Cl) and high fO2 (FMQ+4). 

 In the sulfate-bearing systems chlorine significantly decreases the CaO concentration 

(and to a minor content Na2O and K2O) in the melt, which can be explained by the increasing 

solubility of CaSO4 in Cl-bearing aqueous fluids as quantified by Newton & Manning (2005) 

and Webster et al. (2009). An enrichment of Ca2+ in the fluid is indicated by the observed strong 

parabolic increase in Cl melt content with increasing Cl concentration in the system, being more 

pronounced compared to S-free or sulfate-poor systems. 

 The S/Cl ratio in the fluid was correlated to the S concentration in the coexisting melt 

with respect to a fixed Cl melt content, being almost constant at 0.15-0.2 wt.% Cl in the melts of 

Mt.Etna. This correlation was applied to in situ measured S/Cl ratios of emitted gases at 

Mt.Etna’s 2002-2003 eruption (Aiuppa et al., 2004). S/Cl ratios during passive degassing of S/Cl 

~7 require a melt S content of ~0.3 wt.% S, which is similar to that of juvenile S-rich melts. A 

S/Cl ratio of ~0.4-2 representing higher explosive stages, require a melt S content of ~0.1-0.2 

wt.% S, which is similar to that of the partly degassed melt melts (e.g. Spilliaert et al., 2006a, 

2006b).  

Keywords: Sulfur, Chlorine, Volatile partitioning, Basaltic melt, Magma degassing 



 

  

 

 

 

 

 

 

 

 

 



 
 

 

Zusammenfassung 

 Die Schwefelkonzentrationen in wasserhaltigen basaltischen Schmelzen (primitiver 

Basalt des Etna der Eruption 2001-2002) wurden unter Sättigung von FeS und Anhydrit 

experimentell bei T = 1050-1250°C, P = 200 MPa und fO2 von FMQ bis FMQ+2.2 bestimmt. 

Für alle 1050°C Experimente wurde Gold (Au) als Kapselmaterial verwendet. Aufgrund der 

hohen Korrosivität von Schwefel gegenüber den meisten als Kapselmaterial für wasserhaltige 

Experimente oberhalb 1050°C verwendeten Edelmetallen (z.B., AuPd, Pt), wurde eine 

Doppelkapsel-Technik in Experimenten bei 1150-1250°C angewendet und weiterentwickelt. 

Dabei dienten OL-Container., verschlossen mit einem OL-Stempel (hergestellt aus San Carlos 

Olivin Einkristallen) als Probenbehälter, die in AuPd-Kapseln eingeschweißt wurden. Aufgrund 

von Fe/Mg-Austauschreaktionen zwischen Schmelze und OL-Container/-Stempel, steigt der 

MgO-Gehalt der Schmelzen annähernd linear mit der Temperatur von ~5.5 Gew.% MgO bei 

1050°C bis ~13.5 Gew.% MgO bei 1250°C an. Hierdurch können Temperaturänderungen in OL-

gesättigten Schmelzen simuliert werden.  FeS-Sättigung der Schmelze wurde bei FMQ bis 

FMQ+0.3 und Anhydrit-Sättigung der Schmelze bei FMQ+1.4 to FMQ+2.2 beobachtet. Die 

Schwefelkonzentration der Schmelze steigt annähernd linear mit der Temperatur von  0.12 ± 

0.01 bis 0.39 ± 0.02 Gew.% S bei FeS-Sättigung und von 0.74 ± 0.01 bis 1.08 ± 0.04 Gew.% S 

bei Anhydrit-Sättigung im T-Intervall von 1050-1250°C an.  

 Es wurde die Änderung der Schwefelkonzentration unter um ±0.5 log Einheiten 

variierender fO2 ausgehend von FMQ+1 abgeschätzt. Eine Verringerung der fO2 von FMQ+1 auf 

FMQ+0.5 bewirkt eine Verringerung der Schwefellöslichkeit von ~25 rel.% bei hohen 

Temperaturen (1150-1250°C) und ~35 rel.% bei 1050°C. Ein Anstieg der fO2 von FMQ+1 auf 

FMQ+1.5 erhöht die Schwefellöslichkeit um ~30 rel.% bei hohen Temperaturen (1150-1250°C) 

um ~45 rel.% bei 1050°C. Die größere Änderung der Schwefellöslichkeit ausgehend von 



 

  

FMQ+1 hin zu oxidierenderen Bedingungen kann durch die Zunahme von Sulfat-Spezies und 

deren großen Beitrag zur Schwefellöslichkeit erklärt werden (Jugo et al., 2009, subm.).  

 Es wurde ein vereinfachtes empirisches Modell erstellt, um magmatische Temperaturen, 

die Schwefellöslichkeit und die fO2 in olivingesättigten basaltischen Systemen abzuschätzen. 

Hierzu wurde der MgO-Gehalt der Schmelze als Temperaturindex benutzt. Die Anwendung 

dieses Models auf die natürlichen, relativ oxidierenden Schmelzen des Etna (FMQ+1, Métrich & 

Clochiatti, 1989) ergibt Temperaturen und Schwefellöslichkeiten von ~1025-1125°C und ~0.25 

bzw. 0.4 Gew.% S für die juvenilen schwefelreichen Schmelzen, sowie ~1025°C und ≤ ~0.1 

Gew.% S für teilentgaste Schmelzen. Aufgrund der hohen Schwefelkonzentrationen natürlicher 

Schmelzen des Etna bis zu 0.35 Gew.% S bei ~1025-1050°C und bis zu 0.2 Gew.% S bei ~1025-

1050°C, kann für das magmatische System des Etna eine höhere fO2 als FMQ+1 angenommen 

werden. 

 Fluidgesättigte Schwefel- und Chlor-Verteilungsexperimente bei 1050°C wurden 

zwischen Cl-H2O- bzw. Cl-S-H2O-Fluid und primitiver Schmelze des Etna Basalt bei 100 und 

200 MPa und ~FMQ+0.5 bis FMQ+4 sowie zwischen dazitischer Schmelze des Krakatau und 

Cl-H2O- bzw. S-H2O-Fluid bei 200 MPa und~FMQ+0.5 durchgeführt. Die Verteilung von 

Schwefel und Chlor zwischen Fluid und Schmelze zeigt ein nicht lineares Verhalten. 

 Die S-Konzentration bei FeS-Sättigung (FMQ+0.5) in Cl-freien/-armen Systemen wurde 

auf 0.04 Gew.% S in dazitischen Schmelzen und 0.09 ± 0.01 bis 0.13 ± 0.01 Gew.% S in 

basaltischen Schmelzen bestimmt. Die S-Konzentration bei Anhydrit-Sättigung in Cl-armen 

basalischen Schmelzen ergibt Gehalte von 0.85 ± 0.02 Gew.% S bei FMQ+2 und 0.74 ± 0.01 

Gew.% S bei FMQ+4 und 200 MPa,  sowie 0.60 ± 0.01 Gew.% S bei FMQ+2.5 und 0.64 ± 0.01 

Gew.% S bei FMQ+4 und 100 MPa.  

 Die maximalen Cl-Konzentrationen von 2.26 ± 0.02 Gew.% Cl bei 200 MPa und 2.20 ± 

0.04 Gew.% Cl bei 100 MPa in basaltischen Schmelzen und 1.42 ± 0.03 Gew.% in dazitischen 



 
 

 

Schmelzen (200 MPa) wurden unter geringen Sulfatkonzentrationen in der Schmelze oder in S-

freien Schmelzen bei den höchsten untersuchten Cl-Gehalten im System (~3-3.6 Gew.% Cl) 

beobachtet. Der Verteilungskoeffizient von Schwefel (Kd’S) in basaltischen Systemen variiert 

zwischen ~1 bis 96 ± 16 bei 200 MPa und zwischen ~1 bis 73 ± 12 bei 100 MPa in Sulfat-

reichen Systemen (FMQ+2 to FMQ+4) und von ~164 ± 16 bis 236 ± 32 bei 200 MPa in Sulfid-

reichen Systemen (FMQ+0.5). In dazitischen Systemen variiert Kd’S zwischen 532 ± 38 and 745 

± 47 bei FMQ+0.5. Diese Ergebnisse stehen im Gegensatz zu den von Keppler (2010) erhaltenen 

konstanten Werten für Kd’S (bei konstanten P-T-X- und Redoxbedingungen) in 

haplogranitischen Schmelzen, was auf ein ideales Verteilungsverhalten von Schwefel in einem 

solchen vereinfachten System hinweist. 

 Der Verteilungskoeffizient von Chlor (Kd’Cl) wurde auf ~0 bis 19 ± 2 in basaltischen 

Systemen für alle untersuchte P- und and fO2-Bedingungen und auf ~0 bis 34 ± 5 in dazitischen 

Systemen bestimmt. 

 Eine gegenseitige Beeinflussung von Chlor und Schwefel wurde ausschließlich in Sulfat-

reichen Systemen (FMQ≥+2) beobachtet. Hier führt die Zugabe von 3-3.6 Gew.% Cl in das 

System zu einer Abnahme der in der Schmelze gelöstem Schwefel von 0.1-0.2 Gew.% S, bei 

einer maximalen Abnahme von ~23-27 rel.% unter Anhydrit-Sättigung bei FMQ+4. 

 Schwefel (als Sulfat) beeinflusst die Konzentration von Chlor in der Schmelze bei >0.5 

Gew.% S im System. Die maximale Abnahme der Cl-Konzentration von ~35 rel.% wurde bei 

hohen S- und Cl-Gehalten im System (~2 Gew.% S and ~3 Gew.% Cl) und hoher fO2 (FMQ+4) 

beobachtet. 

 In Sulfat-reichen Systemen führt die Zugabe von Chlor zu einer signifikanten Abnahme 

der Gehalte an CaO (in geringerem Maße auch Na2O und K2O) der Schmelze, was mit erhöhter 

Löslichkeit von CaSO4 in chlorhaltigen wässrigen Lösungen erklärt werden kann, wie z.B. von 

Newton & Manning (2005) und Webster et al. (2009a) quantitativ bestimmt. Es wird 

angenommen, dass ein erhöhter Ca2+- Gehalt im Fluid zu einem verstärkt ausgeprägt 



 

  

parabolischem Anstieg der Cl-Konzentration in der Schmelze mit steigender Cl-Konzentration 

im System, verglichen zu S-freien oder Sufat-armen Systemen, führt.  

 Das S/Cl-Verhältnis im Fluid wurde mit der S-Konzentration der koexistierenden 

Schmelze korreliert, unter Berücksichtigung eines konstanten Cl-Gehaltes in der Schmelze, 

zutreffend für natürliche Schmelzen des Etna (0.15-0.2 Gew.% Cl). Angewendet auf in situ 

gemessene S/Cl-Verhältnisse der während der 2002-2003 Eruption des Etna freigesetzten Gase 

(Aiuppa et al., 2004) ergibt sich für Phasen passiver Entgasung (S/Cl ~7) eine S-Konzentration 

der Schmelze von ~0.3 Gew.%, übereinstimmend mit dem S-Gehalt juveniler S-reicher 

Schmelzen, und für Phasen höherer Explosivität (S/Cl ~0.4-2) eine S-Konzentration der 

Schmelze von ~0.1-0.2 Gew.% S, übereinstimmend mit dem S-Gehalt teilentgaster Schmelzen 

(Spilliaert et al., 2006a, 2006b).  

Schlagworte: Schwefel, Chlor, Volatile, Basalt, magmatische Entgasung 
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Chapter I:  Temperature dependence of sulfide and sulfate  solubility  

 in olivine-saturated basaltic magmas at 200 MPa 

1. Introduction 

The knowledge of S solubility depending on T, P, fO2 and cH2O being relevant for 

storage conditions of most basaltic magma chambers (e.g., 1050-1250°C, 100-500 MPa, fO2 

~FMQ to FMQ+3, 1-6 wt.% H2O) requires experimental simulation of natural conditions and 

data on equilibrium partitioning of S between fluid and melt. Numerous fundamental 

experimental studies were published concerning the sulfur solubility in basaltic-like melts (e.g., 

Haughton et al., 1974; Katsura & Nagashima, 1974; Wendtland, 1982; Luhr, 1990; Holzheid & 

Grove, 2002, O’Neill & Mavrogenes, 2002; Jugo et al., 2005a, Liu et al., 2007; Moune et al., 

2009), but none of them cover the wide range of storage conditions relevant for most basaltic 

magmas. The main reasons for the scarcity of data are experimental difficulties by handling 

(hydrous) S-bearing systems that are highly corrosive to the noble metal containers for 

experimental samples, generally used at high T and P. 

  Thus, the available sample capsules are limited to material being less reactive to S: e.g., 

(1) graphite (allowing only fO2 < ~FMQ -2); (2) Au (limiting T to ≤ ~1050°C, because of Au 

melting point ~ 1064°C, 1 atm); (3) AuPd (only allows short run-durations ≤ ~4 h, not sufficient 

to attain equilibrium conditions); (4) olivine (OL) capsule made out of a single crystal OL 

(challenging to keep close in hydrous S-bearing systems). This encouraged us to develop an 

approach allowing conduction of hydrous S-bearing experiments by using OL-capsules, because 

they promise to be mostly successful in terms of material failure. Therefore, we developed a 

“mini-autoclave” made of an olivine piston fitting tightly into an olivine capsule which works as 



6  

a sample container (San Carlos olivine). Such a design minimizes direct contact and reaction 

between S-bearing phases and noble metal capsule. 

 The main objective of this work was investigation of the effect of temperature (ranging 

from 1050 to 1250°C) on S solubility at both reducing (~FMQ) and oxidizing (~FMQ+2) 

conditions, because of two aspects: (1) S in silicate melts occurs mainly as sulfide (S2-) at 

reduced conditions (≤ ~FMQ) and as sulfate (S6+) at oxidizing conditions (≥ ~FMQ+2) (Carroll 

and Rutherford, 1988; Wallace and Carmichael, 1994; Jugo et al, 2005b, subm.) (2) the large 

expected difference between sulfide and sulfate solubility (being about ~4-10 times higher for 

sulfate (S6+)) (e.g., Carroll & Rutherford, 1985, 1987; Luhr, 1990; Jugo et al., 2005a, Parat et al., 

2008). Moreover, the investigated temperature range represents conditions in magmatic systems 

undergoing progressive cooling and differentiation. Thus, the obtained results will provide 

quantitative constraints on the geochemical behavior of sulfur in natural basaltic systems.   

2. Experimental methods 

2.1 Starting materials 

2.1.1 Glass composition and preparation  

The starting material was prepared from a natural rock sample from the 2001 eruption of 

Mt.Etna (collected at the S-side near Rifugio Sapienzia, 1892 m a.s.l. and provided by Max 

Wilke). The sample represents primitive trachybasaltic lava erupted from the upper vents as 

described by Métrich et al. (2004). The same composition has been already used in former 

studies focused on the solubility of H2O-Cl- and H2O-Cl-F-bearing fluids as well as on the S 

speciation in basaltic magmas (Stelling et al., 2008; Chevychelov et al., 2008b; Jugo et al., 

subm., respectively). 
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 The natural rock sample was crushed in a steel mortar and fused in a platinum crucible 

for 3 h at 1600°C in an a 1-atm furnace. The obtained melt was quenched by placing the crucible 

in a water bath. To ensure homogeneity, the quenched melt (glass) was crushed again, ground in 

an agate mortar, refused for 0.5 h at the same conditions and subsequently quenched in a water 

bath. The glass was subsequently ground and sieved to a grain size <200 µm.  

 Since the experiments were planned for hydrous conditions, the starting glass was pre-

saturated with H2O. The dry glass powder was loaded together with distilled water (~10 wt.% 

bulk H2O) in Au80Pd20 capsules and run in an internally heated pressured vessel (IHPV) at 200 

MPa, 1200°C and at log fO2 ~FMQ+4.2, which represents the intrinsic redox conditions imposed 

by the IHPV and prevailing in the water-saturated system (Berndt et al., 2002; Schuessler et al., 

2008). The capsules were run for about 4 h and rapidly quenched. The synthesized and quenched 

glass was again crushed in an agate mortar and sieved to a grain size <200 µm. Water 

concentration was determined by Karl-Fischer-Titration (KFT, Behrens, 1995) to be 4.77 ± 0.03 

wt.%.  

Table 1: Chemical composition of the anhydrous and hydrous starting glass (in wt.%) 
SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 Cl S Total A/CNK H2O

anhydrous composition (n = 20): 

48.26 
(33) 

1.77 
(07) 

16.37 
(23) 

10.46 
(43) 

0.17 
(07) 

5.96 
(18) 

10.81 
(34) 

3.45 
(15) 

1.96 
(09) 

0.59 
(02) 

0.06 
(00) 

b.d. 99.84 
(70) 

0.60 n.d.

hydrous composition* (n = 15): 

45.92 
(25) 

1.73 
(04) 

15.92 
(20) 

10.04 
(38) 

0.18 
(03) 

5.70 
(14) 

10.28 
(26) 

3.33 
(11) 

1.90 
(06) 

0.55 
(04) 

0.06 
(00) 

b.d. 96.08 
(67) 

0.60 4.77
(03)

*hydrous composition normalized to 100: 

48.03 
(26) 

1.81 
(05) 

16.65 
(20) 

10.50
(40) 

0.18 
(03) 

5.96 
(15) 

10.76
(27) 

3.49 
(12) 

1.99 
(06) 

0.57 
(05) 

0.06 
(00) 

b.d. 100 0.60 - 

Notes: n is the number of analyses. Number in parenthesis is 1 σ standard deviation of the mean. FeOtot is the total iron 
content. A/CNK is the molar ratio of Al2O3/(CaO + Na2O + K2O). H2O content was determined by Karl-Fischer-Titration 
(KFT). 
 

The chemical compositions of both starting glasses, i.e., anhydrous (used for 1050°C 

experiments) and hydrous (used for experiments in OL containers at 1150-1250°C, see below) 

were determined by electron microprobe analysis (Table 1).  
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2.1.2 Sulfur source 

Three different sources of S were used in the experiments: (1) sulfide-saturated systems 

were investigated using FeS or PdS as sulfide-bearing source material; (2) sulfate-saturated 

systems were studied using CaSO4 as sulfate-bearing source, and (3) elemental S was added to 

the system in the experiments at 1050°C. The mass of initially added sulfur was in the range 

from 0.38 to 0.70 mg sulfur-equivalent for FeS or PdS, 0.59-0.69 mg for CaSO4 and 0.94 to 0.97 

mg elemental S, resulting in initial bulk sulfur concentrations ranging from 1.20 to 3.16 wt.% 

(with respect to the total mass of starting glass material, charged in the olivine container, and to 

the mass of added S). The experimental starting masses and mass relations are reported in    

Table 2. 

 
Table 2: Starting mass relations in experimental charges 

 m m m  m c c c m bulk bulk fluid fluid 
Run# glass H2Oincl H2Oadded S source S source PdO FeO CaO S S H2O XS XH2O
 [mg] [mg] [mg]  [mg] [wt.%] [wt.%] [wt.%] [mg] [wt.%] [wt.%] molar molar
0_15_2 ox 43.65 - 5.19 S 0.94 - - - 0.94 1.89 10.43 0.09 0.91 
0_15_2 red 46.71 - 6.11 S 0.97 - - - 0.97 1.80 11.36 0.08 0.92 
              
S2 29.54 1.41 - PdS 1.87 4.04 - - 0.43 1.38 4.49 0.15 0.85 
S8 30.65 1.46 - FeS 1.04 - 1.70 - 0.38 1.20 4.61 0.13 0.87 
S18 27.16 1.30 - FeS 1.13 - 2.07 - 0.41 1.46 4.58 0.15 0.85 
S19 31.14 1.49 - FeS 1.56 - 2.48 - 0.57 1.74 4.54 0.18 0.82 
S20 30.13 1.44 - FeS 1.69 - 2.76 - 0.62 1.94 4.52 0.19 0.81 
S21 30.45 1.45 - FeS 1.75 - 2.82 - 0.64 1.98 4.51 0.20 0.80 
S23 31.69 1.51 - CaSO4 2.89 - - 3.44 0.68 1.97 4.37 0.20 0.80 
S24 31.18 1.56 - CaSO4 2.95 - - 3.56 0.69 2.04 4.36 0.21 0.79 
S26 16.17 0.81 - CaSO4 2.51 - - 5.53 0.59 3.16 4.13 0.30 0.70 

Notes: m is the weighed mass. c is the concentration in wt%. Bulk S is the concentration of S, taking the total loaded mass 
of starting material into account. H2Oincl is the mass of H2O included in the water presaturated starting glass. H2Oadded is the 
mass of added H2O by using dry starting glass. S source is the sulphur source material used for the experiments. XS and 
XH2O are the molar ratios of bulk S/(bulk S + bulk H2O) or bulk H2O/(bulk H2O + bulk S), respectively. 

2.2 Experimental techniques 

Owing to a very aggressive nature of S and S-bearing phases (fluids or melts) which 

easily react with the noble metal capsules, two different experimental approaches have been used 

in this study. At temperature of 1050°C, the experiments have been conducted in Au capsules 

that can withstand reaction with S even at relatively high amounts of charged sulfur. At 
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temperatures above the melting point of gold (i.e., more than ~1060°C at 200 MPa), a new 

technique has been developed and applied. The basaltic glass powder and S starting material 

were loaded in olivine (OL) containers sealed in outer Au80Pd20 capsules as described in detail 

below.   

2.2.1 Preparation of Au capsules for 1050°C experiments 

At 1050°C, one sulfide-saturated and one CaSO4-saturated experiment were performed.  

About 45 mg of anhydrous basaltic powder were charged together with ~0.95 mg elemental S 

and ~5-6 mg deionised H2O into Au-capsules (length of 15 mm, inner/outer diameter 2.8/3.2 

mm). The total initial amount of added volatiles was ~12 and 13 wt.% and the load amount of S 

was 1.8 and 1.89 wt.% S, respectively with respect to the total charge mass (Table 2). The 

capsules were weighed before and after welding and stored for > 6 h at ~110°C and 1 atm in a 

drying furnace allowing check for possible leeks by subsequent weighting. 

2.2.2 Double-capsule technique for HT/HP- experiments 

A few experimental studies were published using OL containers to minimize reaction of 

experimental charge with capsule material, e.g., Ehlers et al. (1992) and Gaetani & Grove 

(1999), both at 1atm; Holzheid & Grove, 2002 (at 0.9-2.7 GPa) and Brey et al., 2008 (at 6-10 

GPa), both in piston cylinder apparatus. The experiments of Gaetani & Grove (1999) and 

Holzheid & Grove (2002) were S-bearing and anhydrous. To the best of our knowledge OL 

containers have not been successfully applied to volatile-rich (H2O and S) systems at high 

temperatures and moderate pressures of 200 MPa so far. 

  For a successful application of OL containers in volatile-rich systems following 

requirements must be maintained: (1) OL container should sustain high pressure and temperature 

without cracking; (2) OL container should be relatively well sealed to avoid/minimize loss of 

volatiles from the system; (3) temperature and pressure inside the OL container must be the same 



10  

as the outside conditions applied in the experiment; (4) the possible reaction between OL 

container and investigated silicate melt should not produce any exotic phases or dramatic 

unexpected changes in melt composition.  

To satisfy all those requirements, we have developed a “mini-autoclave”, composed of an 

olivine piston fitting tightly into the olivine container as illustrated in Fig.1. Olivine powder was 

placed outside the OL container to serve as a medium transducing pressure from Au80Pd20 

capsule wall of the capsule to the OL piston.  

Fig.1: Photograph of the AuPd capsule (1) (a), the 

OL container (2) and the OL piston (3); sketch of the 

double-capsule setup and illustration of the piston 

moving as a function of P inside and outside the 

container (b); photograph of a longitudinal cut 

capsule, after the experimental run (c); BSE-picture 

of the sealing melt-seam located between OL piston 

and the wall of the OL container (d); “top” and 

“bottom” describe the orientation of the double-

capsule during the experimental run (b-d). 

  

 

 

 

  

 

 Such a design allows compensation of volume change inside the olivine container due to 

movement of the piston depending on the difference in pressure inside the container and 

superimposed pressure at pressurization and heating stage of the experiment. On the other hand, 

it minimizes the migration of fluids, in particular S, from the inner part of the container, and 

hence, the reaction of S with outer Au80Pd20 capsule. The cracking of the OL container is not a 

serious problem until no fluid escape occurs through such cracks, which was not observed in our 

experiments. Desired temperature can be easily achieved inside the containers due to small size 
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of the capsules, sufficiently high thermal conductivity of olivine, and long run duration. Because 

we investigated basaltic composition in our study, the use of olivine containers provided 

conditions corresponding to olivine-saturated basaltic magmas which are typical for many 

basaltic volcanoes. Hence, the formation of exotic phases is not expected, whereas possible 

changes in melt and olivine compositions with changes in temperature should represent 

compositional evolution of olivine-saturated basalts. Thus, the simulated systems can be used as 

a direct manifestation of natural basaltic magmas. Moreover, the olivine-melt assemblage ideally 

represents the melt inclusions trapped in olivine phenocrysts that are usually used to investigate 

magma storage conditions. 

2.2.3 Olivine containers:  Preparation and loading sequence  

The olivine containers and pistons were drilled out from natural Mg-rich single-crystal 

olivine (San Carlos olivine with a forsterite number (Fo#) of 90-96 (where Fo# is the molar 

proportion of Mg / (Fe + Mg), in %). The typical size of the containers was 4.8 mm (outer 

diameter), 3 mm (inner diameter), 8 mm length and 5.5 mm inner borehole length. The OL 

pistons were 4 mm long with a diameter of 2.9 mm. The OL containers were firstly filled with 

the S source (PdS, FeS or CaSO4) and subsequently with 20-45 mg H2O-saturated basaltic glass 

powder. After charging, they were closed with the OL piston and inserted into outer Au80Pd20 

capsules (15-20 mm in length with an outer/inner diameter of 5.4/.5.0 mm). Finally, the OL 

containers were covered by OL powder. The loading sequence and preparation procedure are 

illustrated in Fig. 1.  

 Since OL containers were not completely sealed by closing the OL piston, S could 

potentially escape from OL containers and react with the outer noble metal capsule leading to 

experimental failure. Hence several charging procedures were tested to optimize separation of S 

from the outer Au80Pd20 capsule. In the first test, additional basaltic glass powder was placed 

outside at the seam between piston and OL capsule, to produce a sealing “silicate melt plug” 
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during heating to the experimental temperature. It turned out however, that at the experimental 

conditions small amounts of melt from the inner part of the OL container moved along the seam 

between piston and the wall of OL container providing a self-sealing material which increases 

the distance for possible S diffusion from the inner space of the container to the outside part of 

the double capsule assemblage, and hence, preventing reaction with Au80Pd20 capsule and 

keeping S activity in the system almost constant (Fig. 1d). Our successful runs show that the 

system silicate melt-S-source-fluid within OL containers reaches local equilibrium and remains 

quasi-closed (at least no S loss from the Au80Pd20 capsules was observed) after up to 46 hours of 

the experiments. Thus, these test experiments have demonstrated that an additional plug 

composed of glass powder is not required.  

Another test was conducted in attempt to separate the sample powder from the S source 

material (e.g., FeS) in order to: (1) increase the migration distance for S to escape from the 

container; (2) minimize possible contamination of the melt with Fe or Ca from the S sources. To 

do this, an olivine disc was placed in between the FeS and glass powder. Although the run 

durations in these experiments were relatively long (e.g., 46 h at 1200°C), the experimental 

glasses, separated from FeS by OL disk, showed inhomogeneous distribution of S concentrations 

decreasing from the separating disk to OL piston (e.g., from ~1200 to 300 ppm S along a 

distance of ~1.5 mm). On the contrary, in the experiments with direct contact between silicate 

melt and FeS, S concentrations were systematically higher and showed quite homogeneous 

distribution along the sample (e.g., ~3000 ± 300 ppm S at 1150 and 1200°C). Thus, the 

separation of the melt and S source by OL disk was not successful indicating that another 

approach should be developed, if necessary.  

 Finally, it must be noted that the OL piston should be closed from the bottom of the OL 

container, oriented vertically as shown in Fig.1b-d. This will limit the ability of S-bearing fluids 

to escape by buoyancy difference between fluid and silicate melt during the run. 
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Mostly homogeneous, inclusion- and impurity-poor natural OL crystals were used for 

container and piston material. This is of major importance with respect to resistance against 

directional stresses, in particular occurring at experimental pressurization, heating and 

quenching. The outer Au80Pd20 capsules were welded shut by graphite arc welding, keeping the 

capsules cooled in a water bath. The welded double capsules were checked for leaks before and 

after the experiments by cooling in a refrigerator and subsequently throwing them into boiling 

water. Thus, it was possible to localize very tiny leaks, even if they are invisible under the 

binocular, by the formation of gas bubbles from the expanding gas inside. 

2.3 Experimental runs 

A suitable apparatus simulating most geologic relevant conditions of the upper crust (e.g., 

for magma storage and conditions at magma ascent) is an internally heated gas pressure vessel 

(e.g., Holloway, 1971; Holloway et al., 1992; Roux & Lefèvre, 1992; Berndt et al., 2002). The 

experiments were conducted in two different types of vertically mounted IHPV: one IHPV was 

pressurized with pure Ar gas as a pressure medium, where the intrinsic redox conditions 

correspond to log fO2 ~FMQ+4.2 at water saturated conditions (Berndt et al., 2002; Schuessler et 

al., 2008). The other vessel allows addition of desired amounts of H2 to the Ar gas. The partial 

pressure of H2 in the vessel can be monitored by a Shaw-membrane during the run (Table 3). All 

experiments were conducted at pressure of 200 MP. Pressure was controlled by a calibrated 

digital pressure transducer (Burster Type 8221) with an uncertainty of 1 MPa. Temperatures of 

the experiments were varied as 1050, 1150, 1200 and 1250°C and controlled over a length of 

~30 mm using four S-type (Pt-Pt90Rh10) thermocouples (a detailed description of the sample 

holder and the vessel is given by Berndt et al., 2002). Observed temperature fluctuations were 

less than 5°C in all experimental runs. However, the estimated error in temperature is within +/-

10°C. Run durations were 6-46 h for OL-container runs (1150 to 1250°C) and 72 h for runs in 
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Au capsules at 1050°C (Table 3). All experiments were stopped by rapid quench technique with 

a cooling rate of ~150°C/s (Berndt et al., 2002).  

3. Analytical methods 

After experimental runs, the capsules were mounted in epoxy and a slice was cut 

longitudinally through the centre (thickness ~1 mm). This slice, representing a vertical section of 

the double capsule setup (as shown in Fig. 1c), was fixed on an object plate and polished to a 

thin section used for optical microscopy and electron microprobe analysis. The thin sections for 

microprobe analysis of the product glasses, obtained in the Au-capsule runs, where prepared by 

taking three pieces of each sample to ensure representativeness.  

The experimental products were composed of silicate glasses, FeS, PdS or PdFeS, CaSO4 

and fluid phase. The presence of fluid was indicated by at least one of the following criteria: (1) 

weight loss after opening the capsule, (2) the smell of H2S by opening the capsules after runs at 

reduced conditions, (3) vesicles observed in the glass of OL-container runs or (4) “wet” fluid 

being still present inside the Au capsules. The exact composition of the fluid was not determined 

due to small or sometimes negligible amount of the fluid after experiments and due to the fact 

that the fluid phase was unquenchable. The compositions of glasses, OL containers/pistons, FeS 

and CaSO4 were determined using electron microprobe, KFT and FTIR methods. 

3.1 Electron microprobe analyses (EMPA) 

 All electron microprobe analyses were conducted using Cameca SX 100 electron 

microprobe at the Institute for Mineralogy, Leibniz University of Hannover. For all analyses the 

acceleration voltage of the electron beam was set to 15 kV. 
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3.1.1 Glass analysis 

 Experimental glasses were analysed using a 20 µm defocused beam. For analysis of main 

elements, the beam current was adjusted to 4 nA and counting times of peak and background 

were 8 s for Si, Ti, Al, Mg, Ca, Fe and Mn and 4 s for Na and K in order to minimize migration 

of alkalis. A systematic analytical study demonstrated that no alkali loss occurs at these 

analytical conditions for the same glass composition (Stelling et al., 2008). Sulfur, Cl and P2O5 

were analysed at 40 nA beam current and with counting times for peak and background of 60 s 

for S, Cl and P resulting in a detection limit of about 60, 80 and 300 ppm, respectively. Sulfur 

concentrations were measured using SKα peak position determined by the method described 

below in §3.2. The chemical composition of the product glasses is listed in Table 3. 

Table 3: Experimental conditions, listing of run products and chemical composition of product glasses (in wt.%)  
  Sulfide-saturated runs                     Sulfate-saturated runs         

Run# 0_15_2 
red  S2  S8  S18  S19  S20  S21  0_15_2 

ox  S23  S24  S26  

n 14  30  20  15  16  15  15  14  15  17  40  
Capsule 
type: Au   OL   OL   OL   OL   OL   OL   Au   OL   OL   OL   
T [°C] 1050  1200  1200  1200  1150  1150  1250  1050  1200  1250  1150  
PH2 [bar] 8.9  i.c.  i.c.  i.c.  i.c.  i.c.  i.c.  i.c.  i.c.  i.c.  i.c.  
S6+/ΣS* 0.16  0.66  0.16  0.08  0.16  0.11  0.08  0.95  0.82  0.82  0.71  
log fO2 
[bar]* -9.7  -6.8  -7.8  -8.2  -8.4  -8.6  -7.6  -7.8  -6.5  -5.9  -7.3  

Δ FMQ* 0.3  1.3  0.3  0.0  0.3  0.1  0.0  2.2  1.7  1.7  1.4  
P [MPa] 193  200  200  200  200  200  200  200  200  200  200  
run-time 
[h] 54  22  24  24  56  56  38  54  24  18  35  
SiO2 46.68 (38) 46.98 (51) 45.93 (26) 45.79 (26) 46.03 (43) 46.2 (03) 45.38 (33) 48.16 (38) 43.51 (44) 43.74 (44) 45.57 (04) 
TiO2 1.67 (05) 1.63 (05) 1.58 (07) 1.53 (04) 1.61 (05) 1.64 (06) 1.41 (06) 1.63 (04) 1.41 (06) 1.32 (05) 1.62 (07) 
Al2O3 16.05 (26) 14.96 (24) 14.53 (22) 14.47 (02) 15.05 (26) 15.26 (18) 13.19 (21) 16.23 (21) 12.82 (15) 12.16 (28) 15.08 (18) 
FeOtot 7.72 (42) 9.02 (52) 10.01 (35) 9.77 (43) 10.38 (28) 10.19 (36) 10.71 (46) 6.83 (42) 9.28 (36) 9.42 (34) 9.14 (34) 
MnO 0.17 (02) 0.17 (02) 0.30 (04) 0.14 (08) 0.13 (07) 0.24 (08) 0.21 (08) 0.16 (02) 0.16 (11) 0.16 (08) 0.17 (09) 
MgO 5.56 (15) 9.85 (24) 9.61 (19) 10.49 (17) 8.47 (02) 8.24 (16) 13.47 (26) 5.45 (17) 12.03 (02) 13.61 (27) 7.62 (24) 
CaO 10.31 (27) 9.67 (24) 9.34 (02) 9.32 (34) 9.81 (03) 9.87 (35) 8.41 (25) 8.96 (02) 11.1 (24) 10.74 (21) 14.41 (28) 
Na2O 3.50 (18) 3.07 (22) 3.04 (16) 2.94 (21) 3.09 (23) 3.07 (19) 2.58 (23) 3.15 (17) 2.36 (21) 2.39 (18) 2.59 (18) 
K2O 1.84 (07) 1.77 (09) 1.72 (08) 1.62 (13) 1.80 (09) 1.80 (09) 1.48 (01) 1.72 (12) 1.32 (05) 1.36 (07) 1.5 (07) 
P2O5 0.51 (03) 0.55 (02) 0.49 (02) 0.48 (02) 0.49 (03) 0.52 (02) 0.46 (02) 0.48 (06) 0.43 (02) 0.43 (02) 0.48 (03) 
Cl 0.06 (00) n.d.  n.d.  0.06 (00) 0.06 (00) 0.07 (00) 0.05 (00) 0.04 (00) 0.04 (00) 0.04 (01) 0.06 (01) 
S 0.12 (01) 0.22 (00) 0.30 (04) 0.30 (03) 0.31 (06) 0.27 (07) 0.39 (02) 0.74 (01) 1.04 (03) 1.08 (04) 0.75 (04) 
Total 94.17 (78) 97.9 (111) 96.71 (69) 96.91 (62) 97.23 (72) 97.38 (72) 97.74 (101) 93.54 (08) 95.49 (78) 96.45 (68) 99.00 (68) 
A/CNK 0.61  0.61  0.61  0.61  0.61  0.61  0.62  0.7  0.5  0.49  0.47  
MFM 6.16  7.98  8.57  9.07  8.03  7.88  11.13  4.94  10.43  11.65  8.19  
Mg# 61.9  72.3  67.5  69.4  64.0  63.5  72.4  69.2  76.5  78.3  67.9  
Fe3+/ΣFe          0.22 (03) 0.23 (03)  0.31 (03) 0.29 (03)  
H2O KFT 
[wt.%] 4.84 (10)          5.48 (08)      

H2O b.d. 
[wt.%] 6.0 (7) 2.8 (1) 3.4 (6) 3.5 (5) 3.2 (6) 3.1 (6) 2.8 (9) 6.6 (7) 4.8 (7) 3.9 (6) 1.4 (7) 

H2O IR 
[wt.%] 5.85 (18) 1.71 (16) 1.71 (15) n.d.  n.d.  n.d.  n.d.  n.d.  2.72 (25) 2.62 (24) 0.88 (08) 

Phases gl, 
FeS  

gl, 
PdS, 

PdFeS 
 gl, 

FeS  gl, 
FeS  gl, 

FeS  gl, 
FeS  gl, 

FeS  gl, 
anh, spl  gl, 

anh  gl, anh  gl, anh  

Notes: PH2 is the measured hydrogen pressure in the vessel by the shaw membrane-technique; i.c. means intrinsic redox-
conditions prevailing in the vessel without adding H2 to the Ar gas (FMQ+4.2 at water saturation). The S6+/ΣS ratio was 
determined by S Kα peak shift (Carroll & Rutherford, 1988), detailed description in the text. log fO2 [bar] derived from S6+/ΣS 
ratios using the method of Wallace & Carmichael (1994) (detailed description is given in the text). ΔFMQ is log fO2 [bar] relative 
to that of the FMQ-buffer reaction. MFM is the compositional parameter (Liu et al., 2007) describing the melt based upon cation 
mole fractions: MFM = Na + K + 2(Ca + Mg + Fe2+) / [Si x (Al + Fe3+)]. Mg# is the Mg-number: molar Mg/(Mg+Fe2+) ratio x 100. 
For MFM and Mg#, Fe2+ and Fe3+ were calculated by Kress & Carmichael (1991) with fO2 derived from S6+/ΣS ratio. Fe3*/ΣFe is 
the ratio of Fe3+ to total Fe, determined by Mössbauer spectroscopy. * Error of S6+/ΣS ratio is about 0.13 resulting in an error of 
fO2 on ~0.8 log units for the reduced glasses (~FMQ) and ~0.4 for the oxizing glasses (~FMQ+1.5) (detailed description in the 
text).   
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3.1.2 Analysis of OL containers 

 All OL containers were analysed in order to determine compositional changes due to 

potential chemical reactions with either silicate melt, or S-source, or S-bearing fluid. To do this, 

analytical traverses with a 5 µm step and with a total length of 50 µm were measured across to 

the interface between OL container/piston and silicate glasses. The analyses of OL were 

performed using a focused beam, 15 nA beam current for measurement of Si, Ti, Al, Mg, Ca, Fe, 

Mn, Na and K and 40 nA for analysing S (if any), respectively. Counting times of peak and 

background were 4 s for Na and K, 10 s for S and 8 s for all other elements. 

3.1.3 FeS, PdS and CaSO4 analysis 

 Analyses of sulfides were conducted using three different settings. FeS phases were 

analysed either, for (1) Fe and S only and in some cases for (2) Fe, S and in addition for Na, Si, 

Al, Ca, K, Ti, Mg and Mn to provide accuracy of analyses, in particular for phases smaller than 

10 µm. The third setting was applied for measurements of PdFeS phases focussing on the 

determination of (3) Fe, S and Pd. For all three settings, the beam was focused and adjusted to 15 

nA for analysing Fe, Pd, Si, Ti, Al, Mg, Ca, Fe, Mn, Na and K and 40 nA for analysing S, 

respectively. The counting times on peak and background were 10 s for S and Pd, 4 s for Na and 

K and 8 s for all other elements. Only one anhydrite crystal was analysed quantitatively using the 

same beam setup as for OL analyses. All other sulfates have been qualitatively identified by 

EDX analysis. 
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Table 4: Chemical composition of sulfide products (in wt.%) 
Run# 0_15_2 

red  S2  S2 S8 S8 S18 S19  S20  S21 

n 4  9  12 5 4 6 4  8   

S source S   PdS   PdS  FeS FeS  FeS   FeS   FeS   FeS 
product FeS  PdS  PdFeS FeS FeS FeS  FeS  FeS  FeS 

comment*   dark*  light*  
one 

small*  
one 
big*      n.d. 

wt.% at.             
Si n.d.  n.d.  n.d.  n.d.  n.d.  0.04 (02) 0.02 (00) 0.08 (11)  

Ti n.d.  n.d.  n.d.  n.d.  n.d.  0.03 (01) 0.01 (00) 0.04 (02)  

Al n.d.  n.d.  n.d.  n.d.  n.d.  0.01 (01) 0.00 (01) 0.02 (04)  

Fetot 60.08 (76) 0.62 (68) 4.56 (154) 54.71 (145) 59.25 (157) 60.05 (93) 60.04 (18) 60.33 (76)  

Mn n.d.  n.d.  n.d.  n.d.  n.d.  0.12 (3) 0.15 (02) 0.10 (06)  

Mg n.d.  n.d.  n.d.  n.d.  n.d.  b.d.  b.d.  0.03 (04)  

Ca n.d.  n.d.  n.d.  n.d.  n.d.  0.07 (07) 0.02 (01) 0.08 (07)  

Na n.d.  n.d.  n.d.  n.d.  n.d.  0.08 (07) 0.05 (04) 0.04 (06)  

K n.d.  n.d.  n.d.  n.d.  n.d.  0.06 (04) 0.06 (02) 0.06 (05)  

Pd n.d.  76.82 (99) 84.00 (203) 0.05 (04) 0.29 (40)      

S 37.17 (87) 23.77 (22) 12.18 (333) 32.21 (126) 35.61 (111) 34.85 (57) 35.60 (26) 34.34 (86)  

Total 97.25 (127) 101.21 (48) 100.74 (91) 86.97 (261) 95.15 (128) 95.32 (127) 95.96 (21) 95.12 (113)  

Fe# 48.1 (60)    49.4 (56) 48.9 (116) 49.7 (35) 49.2 (24) 50.2 (53)  
logfS2  
(B, L) -0.08  1.80   0.62    0.29  0.28  0.09  0.51 

Notes: Fetot total Fe as Fe2+. Fe# is the molar ratio of Fetot/(Fetot + S) x 100, assuming all iron is present as 
Fe2+; * comment describes the product sulfide phase, where: “dark” and “light” means the gray-scale 
intensity in BSE-picture at one sulfide-bleb (intergrown phase, described in the text); “one small” and “one 
big” means analysis of one FeS each sized  < ~ 20 µm and ~ 600 µm, respectively; log fS2 (B; L) is log fS2 
[bar], calculated by Bockrath et al. (2004) and Liu et al. (2007).  

3.2 Determination of sulfur speciation in the glasses 

In order to determine sulfur speciation in silicate glasses, we followed the “classical” 

approach of Carroll & Rutherford (1988) who proposed to use wavelength dispersive 

spectrometry (WDS) of the electron microprobe to analyse proportions of S species in silicate 

melts: 
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where ∆ λ (S Kα)glass and ∆ λ (S Kα)CaSO4 are shifts in peak position of S Kα in the sample and in 

the sulfate standard (CaSO4, anhydrite), respectively, relative to the peak position of S Kα in 

sulfide standard (FeS, pyrrhotite).  

To determine S Kα peak shift, we measured λ with a LPET-crystal (where 2 d = 8.75 Å) 

over a sinθ range of 0.61308 to 0.61507 every 0.00001 sin θ (200 steps) with a dwell time of 

1000 ms. The S peak position λ (S Kα) of the standards CaSO4 and FeS were measured three 

times each before the analysis of each sample using an automatic peak search routine of the 
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Cameca software (beam conditions: 15 kV acceleration voltage, 15 µA beam current and 2 µm 

defocused beam). The peak search on the glass samples was conducted with an acceleration 

voltage of 15 kV, 40 µA beam current and 20 µm defocused beam. The electron beam was 

continuously moved over the sample to minimize the beam damage and artificial reduction of the 

S which may occur, in particular, at high-intensity beam energies (Wilke et al., 2008). At least 

three measurements were done for each sample to prove reproducibility of the method. 

Peak positions were determined by fitting a four parameter Gaussian function, where the 

determined errors for each fit were about 0.02-0.03 λ Å x 10-3. For each sample, λ (S Kα) was in 

the range from 0.18 to 0.44 Å x 10-3. Thus, taking the whole range of S-peak position between 

CaSO4 and FeS standard, averaged to 3.32 ± 0.18 Å x 10-3, into account, total errors in S6+/ΣS 

ratios are about 0.13, which is approximately 2 times higher than those determined by Carroll & 

Rutherford (1988) and Wallace & Carmichael (1994). This difference might be due to the 

different measurement strategies (continuous movement of the sample vs. scanning and 

measuring stepwise; difference in the beam current density). 

For the quantitative analysis of S concentrations in silicate glasses, we used the 

determined peak positions of S Kα for each individual sample. 

3.3 Determination of oxygen fugacity in the experiments 

The analytical approach on S speciation in glasses can be used to calculate the oxygen 

fugacity prevailing in the system using the empirical model of Wallace & Carmichael (1994): 
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6

loglog                     (2), 

where XS
6+ = S6+/ΣS; XS

2- = 1 - S6+/ΣS; T is temperature in K; a, b, and c are regression 

coefficients (a = 1.02, b = 25410 K, and c = -10.0). According to the uncertainty in determination 
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of S speciation, the error of calculated fO2 is about 0.8 log units for reduced glasses (~FMQ) and 

about 0.4 log units for the oxidizing ones (~FMQ+1.5). 

 3.4 Determination of sulfur fugacity in FeS-saturated experiments 

The fS2 for the FeS-saturated experiments was calculated by the method of Bockrath et al. 

(2004) modified by Liu et al. (2007) with extension to a thermodynamic pressure correction. It 

must be noted that this model is valid at fO2 in the range from FMQ-1.5 to FMQ-2.5, because the 

fO2 was calibrated in the system buffered by graphite and CO-CO2 gas mixture. Hence, the 

applicability to the redox conditions of this study is not validated.  Determination of fS2 from the 

composition of FeS as proposed by Toulmin & Barton (1964) was difficult, because of large 

compositional variations in the quenched FeS phases (Table 4). However, in experiment at 

1050°C (exp.0_15_2 red, no FeS was added as a S-source) we obtained small FeS globules 

yielding NFeS = 0.96 ± 0.01 (NFeS is the molar fraction of FeS in pyrrhotite FeS-FeS2) resulting in 

log fS2 [bar] ~ -1.0 ± 0.9 (Toulmin & Barton, 1964). This value is comparable within the 

uncertainty with log fS2 [bar] value of ~ -0.1 ± 0.5 determined using the model of Bockrath et al. 

(2004) corrected by Liu et al. (2007).  

3.5 Determination of H2O concentration in the glasses 

 The concentration of dissolved H2O in all run product glasses was determined by 

application of the “by-difference” method (e.g., Devine et al., 1995). During each analytical 

EMPA session, the total analytical sum of every analysis was calibrated against analyses of a 

series of basaltic glasses with known water contents (Berndt et al., 2002). The errors of this 

approach are relatively large and are about 0.5 wt% H2O. The glasses synthesized in Au capsules 

were also measured by Karl-Fischer-Titration (KFT), which is a coulometric quantitative method 
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to analyse the total mass of H2O contained in the glass (Behrens, 1995). It must be noted that the 

H2O concentrations of glasses, containing anhydrous phases (e.g., anhydrite, spinel) might be 

slightly underestimated. The methodological uncertainties of KFT analyses are estimated to be 

about 1-2 % relative (0.06 to 0.02 wt.% absolute) for the analysed samples (Table 3).  

 The H2O concentrations in most of the samples were also measured by IR spectroscopy, 

using an IR microscope Bruker A594 connected to an FTIR spectrometer Bruker IFS88. Double-

polished glass sections (200 μm thickness) were analysed in the Near-Infrared region and the 

absorption bands at ~4500 cm-1 and at ~5200 cm-1 were used to determine the concentrations of 

OH-groups and molecular H2O, respectively. For the calculation of water species concentrations 

we used an approach described in detail by Ohlhorst et al. (2001). For samples S18, S19 and 

S20, it was not possible to record reliable spectra because the sample glass of run S18 was 

mingled with fine grained FeS and IR-transmittance of glasses obtained at runs S19 and S20 

were to low.  

4. Results 

4.1 Description of experimental products 

 All experimental products consist of hydrous, S-rich glasses varying significantly in 

composition regarding MgO, FeO, CaO and K2O concentrations. Depending on S-source 

material, melts in OL-container runs coexisted with: (1) FeS or PdS/PdFeS phases (if FeS or PdS 

added), presumably liquids at experimental conditions owing to their rounded shapes and (2) 

anhydrite (if CaSO4 added) as illustrated in Fig. 2a,b. In the Au-capsule runs (elemental S 

added), FeS phase was present at reduced conditions (~FMQ+0.3), while anhydrite and ~ 3 

vol.% spinel crystallized at oxidized conditions (~FMQ+2.2) as shown in Fig. 2c,d. In the OL-
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container runs, anhydrite was observed as spinifex textured phase. The coexistence of FeS- or 

PdFeS globules with melts and fluid bubbles in the experimental products indicate that S was 

partitioned between fluid, silicate melt and FeS/PdFeS liquid (hereafter PdFeS is described as 

PdS).  

A presence of the free fluid in the systems was ensured by weight loss after piercing of 

the capsule and by the strong smell of H2S in some reduced runs. In addition, weight loss of 

opened capsules after drying for > 1h at 110°C confirms that fluid was present in part as a liquid 

in the quenched capsules.  

Fig.2: BSE-pictures of two OL capsule 

runs (a,b): exp. S 20, 1150°C, ~FMQ+0.1, 

FeS added (a) and exp. S23, 1200, 

FMQ+1.7, CaSO4 added (b). Each 

experiment show similar condensed S-

bearing phase than added as S-source: FeS 

(a), anhydrite (b). BSE-pictures of two 

Au-capsule runs (c,d): exp. 0_15_2 red, 

1050°C, ~FMQ+0.3 (c); exp. 0_15_2 ox, 

1050°C, ~FMQ+2.2 (d). In both 

experiments elemental sulfur was added 

as S-source. The condensed S-bearing 

phases were FeS at ~FMQ+0.3 (c) and 

anhydrite at ~QFM+2.2, with coexisting 

spinel (d).  

 

4.2 Composition of S-bearing phases and Fe-oxides 

The chemical composition of all analysed S-bearing phases is listed in Table 4. All 

obtained FeS phases are solely composed of Fe and S (with respect to main elements).  The 

lowest molar Fe/S-proportion, expressed as Fe# (where Fe# = 100 * Fe / [Fe + S]), is 48.1 ± 0.6 
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as observed in experiment at 1050°C, whereas FeS phases at higher temperatures in OL-

containers have slightly higher Fe# in the range from 49 to 50 (± 1).  However, taking total 

average sum of FeS ~ 95-97 into account and considering that we used natural rock sample in the 

experiments, FeS phases may contain other siderophile elements (e.g., Ni, Pd, Pt) that were not 

analysed. Furthermore, Energy Dispersive X-ray analysis (EDX) indicates that FeS phases 

contain noticeable amounts of oxygen but these amounts can not be quantified by EDX. 

Intergrowths of PdS and PdFeS phases observed in the experiment S2, where PdS was added as 

S-source presumably indicate that sulfide phases are affected by phase unmixing during quench 

(e.g., observed by Holzheid & Grove, 2002; Ballhaus et al., 2006; Brenan, 2008). The molar 

Pd/S-ratio (Pd# = 100 * Pd / [Pd + S]) is determined to be Pd# = 48.3 ± 0.4  and the PdFeS phase 

contains about 62 ± 2 wt.% Pd, 7 ± 1 % wt.% Fe and 31 ± 1 wt.% S. 

 Sulfate-bearing phases were determined qualitatively by EDX analyses, because of 

analytical uncertainties in measurements of µm-size spinifex structures of CaSO4. Peak positions 

of recorded EDX-spectra indicate that these phases are composed solely of Ca, S and O and 

hence are suggested to be anhydrite. 

 Only a single crystal of Fe-oxide (spinel) was found together with anhydrite phase in 

experimental products produced at 1050°C and oxidizing conditions. The spinel is composed of 

6 wt.% Al2O3, 3 wt.% TiO2, 8 wt.% MgO and 75 wt.% FeO (FeO as total iron). 

4.3 Composition of OL containers 

The diffusive concentration gradients of Mg and Fe (expressed as forsterite content, i.e., 

Fo# = 100 x Mg / (Mg + Fe) [molar]) are observed in the walls of the OL containers up to 

distances of 20 ± 5 µm from the OL-melt interface (Fig. 3a).  
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Fig.3: The forsterite content shown as Fo# (with Fo# = 100 x Mg/(Fe+Mg) [molar]) in the OL-capsules at different 

distances to OL-glass interface (a) and Fo# at a distance <5 µm to OL-glass interface (b). The uncertainty of the 

position of the electron beam-spot shown in (a) was about 5µm (indicated by less accurate OL-analyses for a 

distance <5µm to the glass interface). The vertical gray dashed line illustrates the position of OL-melt interface 

within the uncertainty of 5µm. 

 

Thus, due to reaction between OL and melt, olivine rims become generally enriched in 

FeO (e.g., 4-11 wt.% FeO at exp. S26) and depleted in MgO (e.g., observed maximum in exp. 

S26: 53 to ~48 wt.% MgO) towards the OL-glass interface. The composition of OL in most 

experiments remains almost constant at distances > 20 ± 5 µm and corresponds to the initial 

composition of San Carlos olivine used for OL containers. At the interface with basaltic glass, 

the Fo# changes as a function of experimental temperature (Fig. 3b) and the most significant 

change in OL composition is observed in low-temperature runs (at 1150°C). It is remarkable that 

Fo# in anhydrite-saturated systems is in general about 1-2 units higher than in FeS-saturated 

systems indicating differences in the activity of Fe as a function of redox conditions. 

4.4 Major element composition of experimental glasses 

 The major element compositions of experimental glasses are reported in Table 3. All 

samples have homogeneous glass composition. It varies from basalt to trachybasalt and the main 

compositional variations are observed for MgO, FeO, CaO and K2O due to variations in 
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experimental temperature, added S-source and the material of the sample container (OL or Au) 

as reported in Table 3.  

All glasses produced in OL containers are enriched in MgO (~8-14 wt.% MgO in OL 

containers vs. ~6 wt.% MgO in the starting glass). The MgO content correlates positively with 

temperature showing an approximately linear relationship (Fig. 4a).  

 

Fig.4: Concentrations of MgO (a), FeO (b), CaO (c), K2O (d) and Na2O (e) in the product glasses shown in 

dependence of temperature. The red dashed lines represent the concentration of the respective melt component in the 

Etna basalt starting glass. Note that the crossed symbols at 1050°C represent Au-capsule runs.   
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Melts in low temperature runs (1050°C) were significantly depleted in FeO for ~20 rel.% 

(FeS-saturated) and ~ 30 rel.% (anhydrite-saturated) as shown in Fig.4b. The lower FeO 

concentrations are due to formation of Fe-bearing phases like FeS and Fe-oxides (FeS at 

reducing conditions and spinel at oxidizing conditions). However, the FeO concentrations (10 to 

11 wt.% FeO) in the glasses with added FeS are quite similar to that of the starting glass (~10.5 

wt.% FeO), whereas glasses with added anhydrite are depleted in FeO by ~5-10 rel. %. The 

concentration of CaO in experimental glasses decreases with temperature in FeS-saturated 

experiments. Figure 4c, illustrates that at 1050°C the CaO content is similar to that of the starting 

material (11 wt.% CaO), whereas at 1250°C the glass contains about 20 rel. % less. On the 

contrary, the anhydrite-saturated glasses are either significantly enriched in CaO up to ~35 rel.%, 

if CaSO4 was used as a S-source (OL-container runs) or depleted for about ~9 rel.% in CaO 

content, if elemental S was added as shown in Fig. 4c. Although the absolute CaO concentrations 

are different, trends of decreasing CaO with increasing temperature are observed for both FeS- 

and CaSO4-saturated systems (Fig.4c).  

It is noteworthy, that the highest CaO concentration is observed in the system with the 

highest added amount of CaSO4 (exp. S26, 1150°C) (CaO-enrichment of about ~ 35 rel. %, as 

mentioned before). Most of the product glasses are depleted in K2O and K2O concentration 

negatively correlates with temperature. The lowest concentrations of K2O (1.4-1.5 wt.% K2O, 

depletion of ~ 25 rel.%) is observed in glasses coexisting with anhydrite phase (exp. S23, 

1200°C and exp. S24, 1250°C). At 1050°C, the K2O concentrations are similar to that of the 

starting glass. A similar trend as for K2O is observed for Na2O. At 1050 °C, Na2O concentrations 

are similar to that in the starting glass and Na2O decreases by ~25 rel. % with T in glasses 

coexisting with anhydrite phase.   



26  

4.5 Concentrations of dissolved H2O 

The H2O concentrations of product glasses are listed in Table 3. The H2O concentrations 

determined using “by difference” method range from 1.4 ± 0.7 (in S24 sample) to a maximum of 

6.0 ± 0.7 (exp. 0_15 red) and 6.6 ± 0.7 wt.% H2O (exp. 0_15 ox) in experiments conducted in the 

Au-capsules. However, H2O concentrations determined by FTIR and KFT are about 1-2 wt.% 

less when compared with the “by difference” data (Fig. 5). It should be noted, that the bulk H2O 

concentrations in Au-capsule runs (~11 wt.% bulk H2O) was more than 2 times higher than that 

for OL-container runs (~ 4.7 wt.% bulk H2O), where H2O pre-saturated starting glass was used 

(Table 1). 

 

Fig.5: Measured H2O concentrations of experimental 

glasses by KFT (Karl-Fischer-Titration) and FTIR 

(Fourier-Transformation Infrared Spectroscopy) plotted 

vs. H2O concentrations determined by the “by 

difference”-method using electron microprobe analyses 

(EMPA). 

 

 

 

 

 Furthermore, in OL-container runs the anhydrite-saturated glasses (~3.9 ± 0.6 wt.% H2O 

in exp. S24 and ~4.8 ± 0.7 wt.% H2O in exp. S23; except 1.4 ± 0.6 wt.% H2O at S26) contain 

about 1-2 wt.% more H2O than the FeS-saturated ones (from 2.8 ± 1.0 wt.% H2O in exp. S2 to 

3.5 ± 0.5 H2O in exp. S18). The H2O concentration profiles in the sealing-melt plug and in the 

sealing-melt seam (as illustrated in Fig.1d) were measured for exp. S2 and S8 using “by-

difference” method to determine the extent of possible water loss from the OL container (Fig. 
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6a). The measured water concentrations show similar values, although in the exp. S8, the glass 

plug has slightly higher H2O contents than the glass inside the OL-container (5.3 ± 0.7 vs. 3.4 ± 

0.6 wt.% H2O, respectively). Furthermore, H2O concentrations increase in outward direction 

(Fig.6a). This indicates that outside the sample chamber H2O was not in equilibrium with the 

hydrous S-rich fluid phase.  

 

Fig.6: Measured profiles along the sealing-melt seam (exp. S2: PdS-saturated and S8: FeS-saturated) up to the 

sealing-melt plug (S8). Both experiments were performed at 1200°C, 48 h run duration. The H2O concentrations 

were determined by the “by difference”-method using the EMPA (a). The S-concentrations in the glasses were also 

measured within the same profiles (b) “distance from inside” means the distance from the analyzed point from the 

profile start at the beginning of the sealing-melt seam close to the end of the sample chamber.   

4.6 Redox conditions in the experiments 

 The experimental redox conditions (fO2) were estimated from the ∆ λ (S Kα) peak shift as 

described above and the results are listed in Table 3. The FeS-saturated glasses are significantly 

more reduced than the anhydrite-saturated ones. The S6+/ΣS ratio ranges between 0.08 and 0.16 

in FeS-saturated glasses resulting in calculated variations of log fO2 in the range from ~FMQ to 

FMQ+0.3 (± 0.4 log units) and between 0.71 and 0.95 in anhydrite-saturated glasses resulting 

in log fO2 values in the range from ~FMQ+1.4 to FMQ+2.2 (± 0.2 log units). In addition, for the 

experiment 0_15 red, the logfO2 was determined to be ~FMQ+0.3, whereas the fO2, calculated 

from the measured partial pressure of hydrogen (PH2) using Shaw membrane of the IHPV, was 
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~FMQ+0.7 (assuming water-saturated conditions). The S6+/ΣS ratio of the PdS-saturated glass 

(exp. S2) was determined to be 0.66 resulting in log fO2 ~FMQ+1.2 (± 0.2 log units) and thus, 

reflecting more oxidizing conditions than that of the FeS-saturated experiments. 

 The fugacities of sulfur range from about -0.1 to 0.6 at FeS-saturation (calculated by 

Bockrath et al., 2004, corrected by Liu et al., 2007) as reported in Table 4. 

4.7 Concentrations of dissolved S in basaltic glasses - dependence on 

 T and fO2 

 In order to check the possible loss of S from the OL container, S concentrations were 

measured in the sealing-melt plug outside the OL container (as described above) in exp. S8 (FeS-

saturated). The concentration of sulfur in the glass of the sealing-melt plug was below detection 

limit. The concentration profiles measured in the sealing-melt seam in inward to outward 

direction at exp. S2 (PdS-saturated) and exp. S8, both conducted at 1200°C, are illustrated in 

Fig.6b. Starting at the beginning of the seam close to the sample chamber, the S concentration in 

exp. S2 decreases for a distance of about 1200 µm (about 1/3 of piston length) from 0.22 to 0.08 

wt.% S. The S concentration in exp. S8 decreases from 0.30 ± 0.04 wt.% S to the values below 

detection limit over a length of about 2400 µm (while the total profile length was 4800 µm). 

Thus, although S diffuses from the interior of OL containers through the sealing-melt seam, the S 

loss is a relatively slow process even at high temperatures. Due to the small sectional area of the 

melt seam (~0.46 mm²) being about ~7 % to that of the sample chamber it is expected that the 

total mass of potential S-loss should be low. Therefore an attainment of local equilibrium inside 

the container can be assumed.  

The S concentrations of product glasses range between 0.12 ± 0.01 and 1.08 ± 0.04 wt.% 

S and they are strongly dependent on run temperature and oxidation state of the glass shown in 

Fig.7a and 7b, respectively (see also Table 3).  



29 

 

Fig.7: S concentration of experimentally obtained FeS-saturated, anhydrite-saturated and PdS-saturated basaltic 

glasses vs. experimental temperature (a) and fO2 (by S Kα peak shift) in Δlog FMQ [bar] (b).  

 

At anhydrite-saturated conditions (i.e, at logfO2 from ~FMQ+1.4 to FMQ+2.2), S 

concentrations in melts are about 4-5 times higher, than that at FeS-saturated conditions 

(~FMQ). At both conditions, S concentration in glass correlates positively with temperature 

(Fig.7a). In FeS-saturated glasses, S concentration increases linearly from 0.12 ± 0.01 to 0.39 ± 

0.02 wt.% S with increasing temperature from 1050°C to 1250°C. In anhydrite-saturated 

systems, a similar temperature dependence is observed with S concentration in the glass 

increasing from 0.74 ± 0.01 wt.% S at 1050°C to a maximum of 1.08 wt.% S at 1250°C. The 

PdS-saturated glass obtained at 1200°C contains slightly lower S content when compared with 

the FeS-saturated glass at the same temperature (0.22 vs. 0.30 ± 0.04 wt.% S, respectively). It is 

noteworthy, that the oxidation state of PdS-saturated glass was determined to be about 1 log 

higher than that of the FeS-saturated glass at 1200°C (Fig.7a). The reproducibility of the 

experimental data on S solubility was verified by two duplicated FeS-saturated runs conducted at 

1150°C and 1200°C. The basaltic glasses obtained at both temperatures show S concentrations 

within the uncertainty of analytical methods (i.e., 0.27 ± 0.01 and 0.31 ± 0.01 wt.% S at 1150°C; 

0.30 ± 0.04 and 0.30 ± 0.03  wt.% S at 1200°C) as evident from Fig.7a.  
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5. Discussion 

To our knowledge, we present the first experimental data for sulfide and sulfate solubility 

in hydrous basaltic melts in the temperature interval from 1050 to 1250°C being relevant for 

storage conditions of most natural basaltic magmas (e.g., for Mt.Etna magma: Archambault & 

Tanguy, 1976; Clocchiatti & Métrich, 1984; Métrich 1985; Kamenetzkiy et al., 1986; Métrich & 

Clochiatti, 1989). 

5.1 Attainment of equilibrium: Fe-Mg exchange reactions between OL 

 containers and basaltic melts  

 The achievement of local equilibrium conditions between OL (capsule, piston, disk) and 

melt phases at OL-melt interface is indicated by the observation that KD
Fe-Mg/OL-melt values (KD

Fe-

Mg/OL-melt = [XOL
FeO * Xmelt

MgO] / [Xmelt
FeO * XOL

MgO], [molar]) are calculated to be in the 

relatively narrow range between 0.25 and 0.34 as illustrated in Fig. 8. The KD
Fe-Mg/OL-melt values 

converge at the interface to the value of ~0.3 which is in agreement with the prediction of Roeder 

& Emslie (1970) for the OL – melt equilibrium.  

 
Fig.8: Distribution coefficient of Fe and Mg between OL and melt KD

Fe-Mg/OL-melt calculated by Roeder & Emslie 

(1970) (KD
Fe-Mg/OL-melt = [XOL

FeO * Xmelt
MgO] / [Xmelt

FeO * XOL
MgO], [molar]) as a function of distance to OL-melt 

interface (a) and as a function of temperature at OL-melt interface (b); other symbols s. Fig.3. 
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 However, KD
Fe-Mg/OL-melt varies with temperature, fO2 (Fig.8) and melt composition. 

Using the model of Toplis (2005) which provides correction for KD
Fe-Mg/OL-melt according to the 

melt SiO2, Na2O and K2O concentrations, H2O content, T and P, the calculated KD
Fe-Mg/OL-melt 

values are in the range from 0.27 to 0.28 at FeS-saturation and from 0.26 to 0.29 at anhydrite-

saturation. These values agree with the data from previous experimental crystal-melt equilibrium 

studies (KD
Fe-Mg/OL-melt of ~0.25-0.35) using basaltic compositions (e.g., Gaetani & Grove, 1998; 

Gaetani & Watson, 2002; Berndt et al., 2005; Feig et al., 2006, 2010; Botcharnikov et al., 2008). 

For instance, Berndt et al. (2005) proposed an expression for the relationship between Fo# of OL 

and Mg# of the melt (Mg# melt = exp[(Fo# + 71.8)/37.54]) which can be satisfactorily applied to 

our data. Thus, we can conclude that the investigated systems provide constraints on the 

equilibrium solubility of sulfide and sulfate in olivine-saturated magmas as a function of 

temperature.  

5.2 Sulfide and sulfate solubility in OL-saturated basaltic magmas  

5.2.1 S concentration of the FeS-saturated melts as a function of T, fO2 and fS2 

 The concentration of S in basaltic melts coexisting with FeS increases with increasing 

temperature, oxygen and sulfur fugacities as illustrated in Figs.9, 10 and 11, respectively. The 

obtained data are compared with experimental results on sulfur solubility in basaltic melts from 

other studies showing a general agreement on the effects of T, fO2 and fS2 on concentrations of 

dissolved S. It must be emphasized that the difference in T dependence of S solubility between 

the results of our study at 200 MPa and the data obtained at 1 GPa in graphite-bearing systems 

(Jugo et al., 2005a; Liu et al., 2007), as shown in Fig.9, can be explained simply by the 

difference in the redox conditions (Fig.10). 
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Fig.9: S concentration of experimentally obtained FeS-saturated and anhydrite-saturated basaltic glasses vs. 

experimental temperature. Data of Jugo et al. (2005a) and Liu et al. (2007) are mainly anhydrous, data of Moune et 

al. (2009) contain ~2 and ~6 wt.% H2O. The dashed lines are “guides to the eye” illustrating the increase of S 

solubility with temperature being approximately similar in our study for both FeS-saturation and anhydrite-

saturation (~0.15 wt.% S/100°C), where the T-dependence on S solubility for FeS-saturated data of Liu et al. (2007) 

(small grey filled dots) is less. I is noteworthy, the FeS-saturated data of Jugo et al. (2005a) at 1300°C (small open 

gray dots) fit to data of Liu et al. (2007). The grey ellipse covers data of Jugo et al. (2005a) for anhydrite saturation. 

 

 It is noteworthy that there is a theoretically slight positive effect of P on fS2 (~0.3 log 

units higher at 1 GPa compared to 200 MPa (Liu et al., 2007)), however the lower absolute 

values of S concentration and the different slope of the trend can be in contrast attributed to the 

negative pressure effect on sulfide solubility (Mavrogenes and O'Neill, 1999). At the moment, it 

is not possible to unambiguously distinguish between the effects of both factors, i.e., fO2 and P. 

It must be also noted that the experiments in piston cylinder apparatus (Jugo et al., 2005a; Liu et 

al., 2007) were conducted in graphite-saturated systems, implying that carbon species may affect 

the fugacity of S species in the system and hence, S solubility in the melt. Such an effect is 

confirmed by the general positive trend of S concentration versus fS2 shown in Fig.11. Moreover, 

based on the experimental data on sulfide solubility in basaltic melts of Mt.Etna (Liu et al., 2007) 

and Hekla volcano (Moune et al., 2009) it was suggested that at given conditions water can have 

a positive effect on concentrations of dissolved S (Moune et al., 2009). 

 



33 

log fS2 [bar] 
-2 -1 0

S 
m

el
t [

w
t.%

]

0.0

0.1

0.2

0.3

0.4

0.5 1150 °C
1200 °C
1250 °C
1050 °C

Liu et al. (2007)
1150-1430°C
(0.5-1 GPa)
FeS-saturated

Moune et al. (2009)
1050C (300 MPa)
~ 6 wt.% H2O

~ 2 wt.% H2O

1150°C
1200°C
1250°C

1050°C

*

S6+/ΣS ~1 S6+/ΣS ~0 

sulfide-sulfate
transition 

Fig.10: S solubility in basaltic melts as a 

function of fO2. Also plotted are data for 

Etna basalt of Liu et al. (2007) and 

Botcharnikov et al., subm. and Jugo et al. 

(2005a) for picrobasalt-basalt and Moune 

et al. (2009) for Hekla basalt. Based on 

the data of Botcharnikov et al., subm., we 

estimated the increase in S solubility with 

fO2 at fixed T, as represented by the 

dashed lines.  

 

 

 

Fig.11: S concentration at FeS-saturation 

in basaltic melts as a function of fS2, 

calculated by Bockrath et al. (2004) 

corrected by Liu et al. (2007). Data are 

shown for our experiments and those of 

Liu et al. (2007) and Moune et al. (2009); 

* fS2 additionally calculated by the method 

of Toulmin & Barton (1964) to be -1.0 ± 

0.9  (exp. 0_15_2 red, 1050°C, 

~FMQ+0.3). 

 

  

 Our S solubility data at 1050°C, 200 MPa and logfO2 ~FMQ+0.3 (exp. 0_15_2 red with 

4.84 ± 0.10 wt.% H2O) are similar to the data of Moune et al (2009) at 1050°C, 300 MPa and 

logfO2~FMQ for Hekla basalt containing ~2 wt.% H2O but significantly lower than that for 

basalt containing ~6 wt.% H2O (Fig.9). The observed difference in the data obtained at similar 

conditions can be attributed to the difference in the compositions of investigated basaltic melts, 

i.e., Hekla basalts are significantly enriched in FeO (11.5-14.4 wt.% FeO) when compared with 

the basalt from Mt.Etna (10.5 wt% FeO). This may explain the higher S solubility because Fe 

concentration of the melt is known to be a factor positively influencing S solubility at given 

S6+/ΣS ~0 
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conditions (e.g., O’Neill & Mavrogenes, 2002). Nevertheless, the fact that most basalts from the 

studies of Jugo et al. (2005a) and Liu et al. (2007) with the same or similar FeO content were 

nominally water-free can explain in part the observed lower solubility values of S in water-poor 

melts. 

 

5.2.2 S concentration in the melt at PdS-saturation 

 The determined S concentrations in melts at given T (1200°C) is about 30 rel. % lower at 

PdS-saturation than at FeS-saturation , although the PdS-saturated experiment shows higher 

S6+/ΣS ratio (~66 ± 13 % vs. ~8-16 ± 13 %). A possible reason for lower S concentrations at PdS 

saturation can be a difference in fS2 imposed by the PdS–saturated system related to the FeS- 

saturated system. This is confirmed, for instance, by the experiments of Mysen & Popp (1980) 

who adjusted fS2 in the system by using PtS-Pt-, Ag2S-Ag- and Cu2S-Cu-buffer assemblages. 

Although it was not possible to determine the fS2 in PdS-saturated system, we can suggest that it 

was sufficiently lower than that in FeS-saturated systems explaining lower S solubility.  

5.2.3 S concentration in the melt at anhydrite-saturation 

The CaSO4-saturated basalts also show a positive dependence of S solubility on 

temperature with a trend parallel to that in FeS-saturated systems (Fig.9). There are only few 

data in the literature on sulfate solubility in basaltic magmas. Jugo and coauthors (2005a) 

reported S solubility values after experiments at T = 1300-1325°C and P=1 GPa. However, as 

illustrated in Figs.9 and 10, their data show an extremely wide scattering from 1 to 1.8 wt% S at 

given conditions. This scattering can be presumably attributed to the fact that authors used AuPd 

capsules in experiments with duration of 2 to 6 h only. Despite the high temperature of the runs, 

these short-time experiments seem to be insufficient to achieve equilibrium in terms of S 

partitioning between coexisting phases. Thus, the actual equilibrium S solubility at high 
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temperatures (>1250°C) and pressures (>200 MPa) is still needed to be determined. 

Consequently, the application of recent models on anhydrite solubility in basaltic magmas, based 

on those experimental data (e.g., Jugo, 2009; Li & Ripley, 2009), should be done with caution 

(see also §5.4).  

5.3 Sulfur speciation and redox conditions of sulfide- and sulfate-

 saturated melts   

The observed higher solubility of S in anhydrite-saturated magmas in comparison with 

that of the FeS-saturated magmas is attributed to a generally higher solubility of S sulfate species 

in most silicate melts (e.g., Carroll and Rutherford, 1987, 1988; Luhr, 1990; Jugo et al.., 2005a,b; 

submitted) except some exotic silica-rich compositions as reported by Scaillet and Macdonald 

(2006). Several recent studies have proven that S is present in silicate melts as two main species 

S2- and S6+ (e.g., Wilke et al., 2008; Evans et al., 2009; Metrich et al., 2009; Jugo et al., subm.), 

whereas other species (e.g., Metrich et al., 2002) are analytical artifacts or they are present in 

negligible amounts (e.g., Wilke et al., 2008). The transition from sulfide- to sulfate-dominated 

speciation of S in silicate melts with increasing fO2 occurs over a very narrow range of redox 

conditions. The entire species transformation in melts completes in the range of logfO2 between 

FMQ to FMQ+2 (Jugo et al., subm. and references therein).  

The results of this study indicate that the transition from FeS-saturation to anhydrite-

saturation occurs at log fO2 from ~FMQ+0.3 (± 0.4 log units) to ~FMQ+1.4 (± 0.2 log units) as 

illustrated in Fig.12. It must be noted that both S-bearing phases can coexist at the redox 

conditions of sufide-sulfate transition as observed in many natural volcanic rocks  [e.g., dacites-

trachyandesites of Pinatubo (Westrich & Gerlach, 1992), trachyandesites of El Chichón volcano 

(Luhr, 1984), andesites of the Fish Canyon System (Huerto Andesite), San Juan Volcanic Field 

(Parat et al., 2005)]. Moreover, coexisting FeS and anhydrite were reproduced in experiments 
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with El Chichón trachyandesite (Carroll & Rutherford, 1987) and with Huerto andesite (Parat et 

al., 2008).  

Because our data on log fO2 were calculated from the determined S speciation, we made 

an attempt to estimate the redox conditions by an independent method. The ratios of Fe3+ to total 

iron (Fe3+/ΣFe) in the sample glasses were determined for the two FeS-saturated runs (exp. S20, 

S21) and for the two anhydrite-saturated runs (exp. S23, S24) using Mössbauer milliprobe at 

Bayerisches Geoinstitut (Bayreuth, Germany). The analytical technique is described in detail by 

Botcharnikov et al. (2005). The Fe3+/ΣFe ratios were measured to be 0.22 and 0.23 ± 0.03 in 

glasses at FeS-saturation (S20, S21, respectively) and to be 0.31 and 0.29 ± 0.03 at anhydrite-

saturation (S23, S24). Based on the determined Fe3+/ΣFe, the oxygen fugacity was calculated 

using the equation of Nikolaev et al. (1996) and the model of Kress and Carmichael (1991). The 

calculated fO2 values are reported in Table 5 and plotted in Fig.12. It is remarkable that the 

model of Nikolaev et al. (1996) predicts redox conditions similar to those calculated from the S 

speciation data (eq.2) for the FeS-saturated systems, whereas the model of Kress and Carmichael 

(1991) shows better agreement for the systems saturated with anhydrite.  

 
 
Table 5: Comparison of fO2 determined by S (Kα) peak shift 
at EMPA and calculated fO2 using the models of Nikolaev et 
al. (1996) and Kress & Carmichael (1991) based on Fe3+/Fetot-
ratio (Fe/ΣFe) determined by Mössbauer spectroscopy. 

EMPA N K & C  MössbauerRun# 
ΔQFM ΔQFM ΔQFM  Fe3+/ΣFe 

FeS-saturated     
S20 0.1 (8) 0.1 0.8 (5) 0.22 (3) 

S 21 0.0 (8) 0.3 1.2 (5) 0.23 (3) 

anhydrite-saturated     
S23 1.7 (3) 1.1 1.9 (10)* 0.31 (3) 

S24 1.7 (3) 0.9 1.7 (10)* 0.29 (3) 

Notes: ΔQFM is the log fO2 [bar] relative to that of the QFM-buffer 
reaction. N is the result of the equation of Nikolaev et al. (1996). K & C 
is the result by the equation of Kress & Carmichael (1991). Fe3*/ΣFe is 
the ratio of Fe3+ to total Fe. *error can exceed 1 log unit at fO2 > ~FMQ 
+1. 
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Fig.12: Comparison of fO2 deriving from S6+/ΣS ratios (S6+/ΣS ratios via S Kα peak shift-method given by Carroll 

& Rutherford, 1988 and fO2 calculated by the method of Wallace & Carmichael, 1994) and fO2 calculated by the eq. 

of Nikolaev et al. (1996) (crossed diamonds) and Kress & Carmichael (1991) (bottom filled diamonds) using 

Fe3+/ΣFe ratios determined by Mössbauer spectroscopy. Note that our data show a good correspondence to the S-

speciation curve provided by Jugo et al. (subm.) deriving from XANES analysis, where the grey triangles represent 

experimental data used for calibration of the curve. Also shown is the S-speciation curve of Jugo et al. (2005b) 

obtained by S Kα peak shift (thin gray dashed curve).  

 

Thus, owing to a common large deviation of the modelled fO2 values from those 

determined experimentally (about 1 logarithmic unit; see comparison of the data by Partzsch et 

al., 2004), we can conclude that the estimates on fO2 from Mössbauer data are in general 

agreement with the calculations from S speciation by equation (2). 

Furthermore, our data show a good correspondence with the recent experimental data and 

the model provided by Jugo et al. (subm.). It was demonstrated that the S speciation data 

obtained by S (Kα) peak shift method using EMPA may overestimate S6+/ΣS ratio at logfO2 < 

~FMQ+0.7 and significantly underestimate S6+/ΣS ratio at logfO2 above ~FMQ+1 due to the 

beam damage. The new trend of S speciation as a function of logfO2 curve was derived from the 

measurements by XANES and can be expressed as (Jugo et al., subm.):  
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 S6+/ΣS = 1/(1+10(2.1-2ΔFMQ))                (3), 

Both the EMPA and the XANES curves are plotted in Fig.12 to illustrate the difference between 

actual and apparent speciation of S. It must be noted that the data obtained in our study agree 

within the uncertainties with the new model derived from XANES analysis demonstrating, 

however, a tendency to overestimate and underestimate the S6+/ΣS ratio at reducing and 

oxidizing conditions, respectively. The better agreement with the model is attributed presumably 

to the analytical technique used in this study, i.e., to the fact that the electron beam was 

continuously moved over the glass sample to minimize the imposed beam damage. This 

approach obviously shows reliable results. 

5.4 Redox and temperature control on S solubility in basaltic magmas 

Several models were proposed in the literature in attempt to predict the solubility of S in 

natural magmas. However, due to a relatively small number of available data covering a wide 

range of magmatic conditions and compositions, the calibration and hence the success of the 

models is significantly limited. Figure 13 illustrates the comparison between measured and 

predicted concentrations of dissolved sulfur using two recent models (Liu et al., 2007; Li & 

Ripley, 2009) for sulfide- and sulfate-saturated basaltic magmas. Both models significantly 

underestimate S concentrations in sulfide-saturated basaltic liquids (Fig.13a), whereas the model 

of Li & Ripley (2009) overestimates S content in anhydrite-saturated magmas (Fig.13b). The 

observed significant discrepancy between the experimental data and the models indicates that the 

models should be recalibrated for more accurate predictions of S solubility.  
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Fig.13: Comparison between the measured S concentration in our sulfide- and sulfate saturated melts and the 

predicted concentrations of dissolved sulfur by using the models of Liu et al. (2007) and Li & Ripley (2009) for 

sulfide-saturated (a) and the model of Li & Ripley (2009) for sulfate-saturated basaltic magmas.  

 

The experimental data obtained at different temperatures and for different melt 

compositions, illustrated in Fig.10, show solubility trends as a function of fO2 and temperature. 

The trends for our data are interpretative and they are constrained following the general logic in 

the evolution of trends from other studies, mainly from the recent work of Jugo et al. (subm.). 

This diagram clearly illustrates (1) an exponential increase in S solubility with fO2 and (2) a 

strong positive dependence of the S concentration on temperature. The exponential shape of the 

trends is attributed to a rapid change in S speciation at sulfide-sulfate transition and to the 

significantly higher sulfate solubility in melts when compared with that of sulfide, as discussed 

above. This compilation of the data gives estimates on the effects of temperature and redox 

conditions on the behavior of S species in basaltic melts and provides general constraints on the 

solubility laws of S, necessary to evaluate conditions and to interpret magmatic processes in 

natural systems.  
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5.5 Application of the experimental data to natural magmatic systems 

Our results demonstrate that at geologically relevant storage conditions of basaltic 

magmas (i.e., T ~1050-1250°C, P ~ 200-300 MPa and ~1-6 wt.% H2O dissolved in the melt) the 

solubility of sulfide and sulfate in basaltic melts is strongly dependent on T and fO2. For 

instance, cooling a S-saturated basaltic magma for about 100°C in the T range from 1050°C to 

1250°C at constant fO2 is expected to reduce S concentration in the magma by ~0.15 wt.% S 

(Figs. 9 and 10). Such a dramatic decrease in S solubility will trigger precipitation of S-rich 

mineral or melt phases or/and effective S degassing from the magma. The processes of S release 

from the melt will be even enhanced due to progressive magma crystallization with decreasing 

temperature because S solubility decreases with change in melt composition from basalt to 

rhyolite. This scenario of magma evolution at Hekla volcano was discussed in detail by Moune 

et al. (2009) based on the experimental solubility data and composition of melt inclusions. It was 

shown that S content of sulfide under-saturated basalts increased with differentiation to basaltic 

andesite until the sulfide saturation was reached. With further magma evolution, S concentration 

in the melt was controlled by sulfides and later by magma degassing (Moune et al., 2006, 2009). 

Moreover, since the solubility of S is also a function of redox conditions, the variation in fO2 for 

about 0.5 log units around FMQ+1 will change S solubility depending on the direction of the fO2 

change. At high temperatures (1150-1250°C), the S solubility decreases by about ~ 25 rel.% and 

decreases for about 35 rel.% at 1050°C by changing fO2 from FMQ+1 to FMQ+0.5 (Fig.10). If 

fO2 increases from FMQ+1 to FMQ+1.5 the S solubility increases for about 30 rel.% at high 

temperatures (1150-1250°C) and increases for about 45 rel.% at 1050°C. The fact that the 

increase in S solubility is higher by changing fO2 from FMQ+1 to more oxidizing can be 

explained by the increase of sulfate species and their high contribution to the total S solubility 

(Jugo et al., 2009, subm.)  

The fact that our experiments simulated temperature evolution of olivine-saturated S-rich 

basaltic melts has an advantage for the application of our results to the understanding of 
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magmatic processes in olivine-bearing magmas. Hence, the results are of great importance for 

the interpretation of compositional signatures in olivine-hosted melt inclusions representing 

preserved small volumes of original magmas. In particular, there is a large database on the 

major-element and volatile composition of basaltic melts trapped in melt inclusions in olivines 

from Mt.Etna (e.g., Métrich & Clocchiatti,1989; Métrich et al., 1993, 2004; Spilliaert et al., 

2006; Métrich & Wallace, 2008; Corsaro et al., 2009). Here we provide estimates on the 

temperatures and redox conditions of magmas from Mt.Etna using our experimental data and 

compare them with the data obtained by other methods. 

 

Fig.14: MgO melt as an indicator for T with respect to OL-saturated basaltic melts of Mt.Etna vs. the S solubility at 

FeS-saturation (~FMQ+0.3) and anhydrite-saturation (~FMQ+1.5 to ~FMQ+2) (black lines). The bold grey curve 

represents the S solubility at FMQ+1 (as estimated in our study, Fig.10), where the dotted extensions of curve and 

lines represent the expected trend in S solubility with T decreasing to values below 1050°C. The vertical grey dotted 

lines representing T isotherms in OL-saturated magmas (as described in the text). The bottom filled dots plot for the 

composition of natural Mt.Etna OL-MI (olivine melt inclusions) of the 2001-2002 eruption published by Spilliaert et 

al. (2006a). The ellipse covers volatile-rich primitive MI estimated to be in equilibrium with host OL at T ~1025-

1125°C. The temperature of Mt.Etna’s higher evolved MI and glass embayments depleted in MgO and S, being in 

some cases sulfide-saturated (Metrich et al., 2004) can be estimated to values ≤ ~1000°C. 

 

It must be noted that the analysis of S speciation in melt inclusions is a challenging task 

because of their small size typically in the range of 10-100 μm. It precludes the direct application 
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of the technique when the electron beam of EMPA is continuously moved over the fresh, 

undamaged part of the sample. The XANES facility is difficult to access and this analysis is not 

a routine method yet. Hence, the redox conditions of magmas trapped in melt inclusions can not 

be easily evaluated. In the Fig.14 we propose a simple empirical method for the estimation of 

magmatic temperatures and fO2 in olivine-saturated basaltic magmas. Since MgO content of the 

melt is a direct manifestation of the magma temperature in OL-saturated systems, it can be used 

as a temperature index. Note that the MgO content of our experimental glasses and OL-saturated 

samples investigated by Jugo et al. (subm.) does not show significant variation as a function of 

redox conditions. Thus, vertical lines in Fig.14 can be assumed as representing isotherms in OL-

saturated magmas. The expected change in redox conditions with temperature and MgO of the 

melt is shown as a thick grey line illustrating conditions at log fO2~FMQ+1. This estimate is 

based on the solubility values of S at various T and fO2 and, hence, is valid for S-saturated 

conditions.      

Juvenile volatile-rich melts of Mt.Etna (which are free of condensed S-bearing phases) 

contain about 0.3-0.35 wt.% S and 2.3 wt.% H2O (and 0.2 wt. % CO2). Magmatic T and P of 

primitive volatile-rich magma of Mt.Etna was estimated to be 1100-1150°C and 200-300 MPa, 

respectively (Archambault & Tanguy, 1976; Clocchiatti & Métrich, 1984; Métrich 1985; 

Kamenetzkiy et al., 1986; Métrich & Clochiatti, 1989). Those melts are supposed to exist under 

relatively oxidizing conditions of about FMQ+1 (Métrich & Clochiatti, 1989). Metrich & 

Clocchiatti (1996) determined S6+/ΣS ratios in primitive melts trapped in OL (1989-1990 

eruption) to be ~0.44 ± 0.07 (by S (Kα) peak shift method) which also correspond to FMQ+1. A 

second group of melt inclusions represent partially degassed magma with ~3-5 wt.% MgO and < 

0.15 wt.% S. The concentrations of MgO and S measured in melt inclusions are plotted in 

Fig.14. An evaluation of T and fO2 for the natural data by our empirical method is in excellent 

agreement with the estimates provided by other methods (see above) assuming that parental 

magmas of Mt.Etna were close to S saturation. It is noteworthy that the second group of melt 
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inclusions is plotted at lower MgO and S contents indicating lower temperatures and fO2 

moderately varying around FMQ+1. The very low concentrations of S may indicate magma 

degassing processes. Slightly more reduced conditions than FMQ+1 for strongly S-degassed 

melts is confirmed by the presence of sulfides (Metrich et al., 2004). A good agreement between 

the predictions of our empirical method and the predictions from other methods imply that such 

an approach can be used to evaluate the temperatures and redox conditions of S-rich OL-

saturated magmas between 1000 and 1300°C and logfO2 between ~FMQ and FMQ+2. The only 

information which is required are the data on concentrations of MgO and S in basaltic melts. 

6. Conclusions 

Our developed double capsule technique with an OL sample container closed with an OL 

piston successfully works as a barrier for hydrous S-rich fluids. Due to Fe/Mg exchange 

reactions between OL container/piston and the melt, the MgO concentration of the product melts 

were strongly dependent on temperature increasing almost linear from ~5.5 wt.% MgO at 

1050°C  to ~13.5 wt.% MgO at 1250°C. This allowed us to constrain the sulfur solubility of 

natural OL-saturated melts undergoing processes of magmatic cooling.  

 We determined the sulfur concentration at anhydrite-saturation (FMQ+1.4 to FMQ +2.2) 

to be about 2.5 to 6-times higher than the S content at FeS-saturation (FMQ to FMQ+0.3). The 

sulfur content increases almost linear with temperature from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at 

FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 wt.% S at anhydrite-saturation, if T increases 

from 1050-1250°C. Both, our data for the S-concentration (at comparable temperature) and the 

observed T dependence on S solubility at FeS-saturation is about 2 to 3-times higher than data of 

former studies (Jugo et al., 2005a; Liu et al., 2007), which can be explained by the ~2 log units 

higher fO2 and the 2.5 to 5-times lower P for our experiments.  
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 The most recent model concerning the sulfate content at anhydrite-saturation in silicic 

melt (Li & Ripley, 2009) could not be satisfactorily applied to our data, because of the scarcity 

of sulfate-solubility data for basaltic melts at geologic relevant P-, T-, redox conditions and melt 

water contents. 

 Since the solubility of S is also a function of redox conditions, the variation in fO2 for 

about 0.5 log units around FMQ+1 will change S solubility depending on the direction of the fO2 

change, where the increase in S solubility is higher by changing fO2 from FMQ+1 to more 

oxidizing conditions, which can be explained by the increase of sulfate species and their high 

contribution to the total S solubility (Jugo et al., 2009, subm.) 

 We estimated the sulfur solubility as a function of MgO content in the melt at three 

different redox conditions at fO2 ~FMQ+0.3 (reducing conditions), ~FMQ+1 (moderate 

oxidizing conditions) and ~ FMQ+1.5 to FMQ+2 (oxidized conditions). This allowed us to 

constrain the temperature, the sulfur solubility and the fO2 (if the S content in the melt is known) 

of natural melts in the OL-bearing magmatic systems. Thus, we determined the magmatic 

temperature and the sulfur solubility of the moderate oxidized (FMQ+1) OL-bearing melts of 

Mt.Etna, yielding T ~1025-1125°C and respectively ~0.25-0.4 wt.% S for juvenile S-rich melts 

and T lower ~1025°C and ≤ ~0.1 wt.% S for the more evolved S-depleted melts. The S content 

of the juvenile S-rich melts, representing lower T (up to 0.35 wt.% S at ~1025-1050°C) and the 

S-content of the more evolved S-depleted melts (≤ ~0.2 wt.% S) is slightly higher than our 

estimated values for sulfur-saturation. Hence, we assume the magmatic system of Mt.Etna 

reflects slightly higher fO2 than FMQ+1, except for strongly S-depleted FeS-bearing melts, 

which presumably reflect lower fO2 than FMQ+1. 
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Chapter II: Sulphur and chlorine partitioning between aqueous fluid  

 and silicate melt at 1050°C 

1. Introduction 

Numerous experimental studies concerning the solubility and partitioning of mixed 

volatiles between hydrous fluid and silicate melt have been limited to binary volatile systems 

such as S-H2O (e.g., Carroll & Rutherford, 1985, 1987; Luhr et al., 1990; Clemente et al., 2004; 

Parat et al., 2005, 2008; Scaillet & McDonald, 2006; Keppler, 2010) and Cl-H2O (e.g., Métrich 

& Rutherford, 1992; Webster, 1992; Kravchuk & Keppler, 1994; Webster et al. 1999; Signorelli 

& Carroll, 2000, 2001, 2002, Webster et al., 2001; Stelling et al., 2008). The effect of pressure 

and temperature on the chlorine solubility and on the chlorine partitioning between aqueous fluid 

and silicate melt is difficult to constrain, because the melt components (e.g., alkalis) tend to 

partition into an aqueous fluid in a larger extend, if the chlorine concentration increases (e.g., 

Candela & Piccoli, 1995; Williams et al., 1995, 1997; Student and Bodnar, 1999; Stelling et al., 

2008). Thus, the fluid complexity increases with increasing chlorine concentration in the melt. 

The liquid-vapor relations in the system metal chloride-H2O at elevated pressure and temperature 

were investigated by numerous studies e.g., Bischoff & Rosenbauer (1985, 1988), Bodnar et al. 

(1985), Bischoff & Pitzer (1989) and Driesner et al. (2007a, 2007b) for NaCl-H2O, Bischoff et 

al., (1996) for CaCl2-H2O, Duan et al., (2006) for CaCl2-MgCl2-H2O, Gunter et al. (1983), Chou 

(1987), Chou et al. (1992) and Sterner et al. (1992) for NaCl-KCl-H2O. All of these studies have 

shown that fluid-unmixing occurs at certain temperature, pressure and fluid composition and the 

critical pressure is shifted to higher values, if the complexity of the fluid composition increases 

(e.g., Gunter et al., 1983, Chou, 1987, Chou et al., 1992; Sterner et al., 1992; Duan et al., 2006). 

The field of fluid immiscibility is characterized by the coexistence of a low dense H2O-rich Cl 
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vapour phase and high dense Cl-rich brine, where the Cl activity at subcritical conditions 

remains constant. The strong dependence of fluid properties due to P, T and fluid composition 

results in a strong P- and T-dependence of the partitioning-behavior of chlorine between Cl-H2O 

fluid and (natural multicomponent) silicate melt.  

 Recent experimental studies on multiple Cl-bearing systems have been limited to Cl-C-O-

H-silicate melt (e.g., Botcharnikov et al., 2007; Alletti et al., 2009), Cl-F-O-H-silicate melt (e.g., 

Mathez & Webster, 2005; Chevichelov et al., 2008a, 2008b; Webster et al., 2009a). Studies 

concerning S- and Cl-bearing systems have been limited to H-C-O-S-silicate melt (Nicholis & 

Rutherford, 2006) or Cl-S-O-H-silicate melt (Botcharnikov et al., 2004; Webster et al., 2009b). 

Botcharnikov et al. (2004) and Webster et al. (2009b) observed a significant decrease in Cl melt 

concentrations by adding S to the system for rhyolitic and phonolitic to trachytic melt 

composition. To the best of our knowledge, no experimental study concerning S and Cl 

partitioning between hydrous fluid and basaltic melt is published so far. Although this is of 

major interest for interpretation and prediction of magmatic degassing for example at Mt.Etna 

(e.g., Métrich et. al., 1993, 2004; Aiuppa et al., 2002, 2004, 2008; Spilliaert et al., 2006a, 2006b) 

and other volcanic systems (e.g., Devine et  al., 1984; Symonds, 1994; Francis et al., 1995; Self 

& King 1996; Thordarson et al. 1996; Edmonds et al. 2001, 2002; De Hoog et al. 2001; Webster 

et al., 2001; Oppenheimer, 2003, 2006). 

2. Experimental techniques 

2.1 Starting glass 

The chemical composition of the basaltic starting material is listed in Chapter I, Table 1. 

The composition of the dacitic starting glass (Table 6) corresponds to a natural sample (sample 
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KRA-076) of Krakatau volcano (1883 eruption) given by Mandeville et al. (1996) assigned as 

andesite. 

 

Table 6: Chemical composition of the synthetic dacitic starting glass, corresponding to the natural sample no. 
KRA-076 of Krakatau volcano (1883 eruption) given by Mandeville et al. (1996) (in wt.%), n = 20:  

SiO2 TiO2 Al2O3 FeOtot MnO MgO CaO Na2O K2O P2O5 Total A/CNK 

65.28 
(44) 

0.94 
(05) 

16.51 
(19) 

5.49 
 (32) 

0.15 
 (12) 

1.48  
(08) 

4.48  
(20) 

4.27  
(23) 

1.97 
 (10) 

0.38  
(01) 

100.95 
(62) 0.97 

Notes: n is the number of analyses. Number in parenthesis is 1 σ standard deviation of the mean. FeOtot is the total iron content. 

A/CNK is the molar ratio of Al2O3 / (CaO + Na2O + K2O). 

2.2 Sample preparation 

The preparation of the Etna basalt starting glass is described in Chapter I (§ 2.2). The 

dacitic starting glass of Krakatau was synthesized by fusing a mixture of SiO2, TiO2, Al2O3, 

Fe2O3, Mn3O4, MgO, CaCO3, Na2CO3, K2CO3 and (NH4)H2PO4 at 1600 °C for 3 h in an 1 atm 

furnace. The obtained melt was subsequently quenched in a water bath, ground, remelted for 1 h, 

ground again and sieved to a grain size < 200 µm.  

2.3 Experimental methods 

All experiments were performed under fluid saturated conditions with an initial total fluid 

concentration (bulk concentration) of ~ 11-13 wt.% for 200 MPa experiments and ~ 9-11 wt.% 

for 100 MPa experiments, providing mainly constant amounts of dissolved fluid in all 

experimental runs (the bulk concentration considers the total charge mass of sample powder and 

fluid). Au-capsules (length of 15 mm, inner/outer diameter 2.8/3.2 mm) were loaded with ~ 40-

50 mg of sample powder, various amounts of elemental sulfur, ranging from 0-0.95 mg S (0-2 

wt. % bulk S) and ~ 5-6 mg H2O or HCl (aq) solution for 200 MPa experiments and ~ 4-5 mg 

HCl (aq) for 100 MPa experiments. Cl concentration of aqueous HCl-solutions ranged between 

1.05-29.4 wt. % Cl and were determined using a Mettler DL25 Titrator. Hence, the loaded 
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amounts of bulk Cl were 0.05-3.5 wt.%, respectively. The loaded mass of S and Cl where chosen 

by obtaining bulk S and Cl concentrations of ~0.2, 0.5, 1.0 and 1.7-1.9 wt.% bulk S and ~0.06, 

0.18, 0.6, 1.8 and 3.5 wt.% bulk Cl in 200 MPa experiments and with respect to less HCl charge 

for 100 MPa experiments ~0.05, 0.15, 0.55, 1.4 and 3.0 wt.% bulk Cl, respectively (already 0.06 

wt.% Cl in the starting glass, Table 1). The capsules were closed by electric arc welding (under 

cooling with water). To ensure leak tightness and homogeneous fluid distribution, the capsules 

were heated for > 6 h at ~ 110 °C in an oven. Starting mass relations are shown in Table 7.  

 Four to five capsules were run simultaneously in an IHPV at T=1050°C and pressure of 

200 MPa and 100 MPa, being relevant for magmatic storage conditions of volatile-rich juvenile 

melt and for slightly more evolved S-depleted melts of Mt.Etna, respectively (e.g., Metrich et al., 

2004, Spilliaert et al., 2006a, 2006b). The oxidation state of Mt.Etna magma was determined to 

be relatively oxidized at ~FMQ+1 (Métrich & Clochiatti, 1989, 1996) or between ~FMQ+1 to 

~FMQ+2 (as determined in Chapter I). Thus, the oxygen fugacity in our experiments was chosen 

to be oxidizing (~FMQ+1 and ~FMQ+4.2) and relatively reducing (~FMQ). Where FMQ+4.2 (at 

water saturation) is the intrinsic fO2 imposed by the vessel (Berndt et al., 2002). An oxygen 

fugacity of FMQ and FMQ+1 was adjusted by adding H2 to the Ar gas. This allowed us to 

determine the expected effect of fO2 on S/Cl partitioning, caused by the strong influence of fO2 

within sulfide-sulfate transition on sulfur solubility (as discussed in Chapter I). 
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Table 7: Starting mass relations of experimental runs 
 m m m c Cl m m m m bulk bulk bulk bulk fluid 

Run # glass S HCl HCl H2O Cladded Clinit. Cltot S Cl H2O fluid X S X Cl X H20 

 [mg] [mg] [mg] [wt.%] [mg] [mg] [mg] [mg] [wt.%] [wt.%] [wt.%] [wt.%] molar molar molar 

200 MPa Etna basalt              

0_02_2 40.07 0.08 - - 5.03 - 0.02 0.02 0.18 0.05 11.13 11.36 0.01 <0.01 0.99 

0_05_2 39.87 0.20 - - 5.04 - 0.02 0.02 0.44 0.05 11.17 11.66 0.02 <0.01 0.98 

0_10_2 41.03 0.44 - - 4.88 - 0.02 0.02 0.95 0.05 10.53 11.52 0.05 <0.01 0.95 

0_15_2 40.90 0.85 - - 5.27 - 0.02 0.02 1.81 0.05 11.21 13.06 0.08 <0.01 0.92 

                

01_02_2 40.75 0.08 5.07 1.05 5.02 0.05 0.02 0.08 0.17 0.17 10.93 11.27 0.01 0.01 0.99 

01_05_2  41.24 0.21 4.82 1.05 4.77 0.05 0.02 0.08 0.45 0.16 10.31 10.92 0.02 0.01 0.97 

01_10_2 40.87 0.46 4.97 1.05 4.92 0.05 0.02 0.08 0.99 0.17 10.62 11.77 0.05 0.01 0.95 

01_15_2 39.10 0.87 4.80 1.05 4.75 0.05 0.02 0.07 1.94 0.16 10.61 12.71 0.09 0.01 0.90 

                

05_02_2 41.21 0.08 4.79 5.09 4.55 0.24 0.02 0.27 0.17 0.58 9.87 10.62 0.01 0.03 0.96 

05_05_2 40.06 0.22 5.31 5.09 5.04 0.27 0.02 0.29 0.48 0.65 11.05 12.18 0.02 0.03 0.95 

05_10_2 41.93 0.44 5.07 5.09 4.81 0.26 0.03 0.28 0.93 0.60 10.14 11.66 0.05 0.03 0.93 

05_15_2 41.51 0.88 5.25 5.09 4.98 0.27 0.02 0.29 1.85 0.61 10.46 12.91 0.09 0.03 0.89 

                

15_02_2 40.55 0.08 5.47 14.37 4.68 0.79 0.02 0.81 0.17 1.76 10.16 12.09 0.01 0.08 0.91 

15_05_2 40.74 0.24 5.51 14.37 4.72 0.79 0.02 0.82 0.52 1.75 10.15 12.41 0.03 0.08 0.90 

15_10_2 40.22 0.44 5.50 14.37 4.71 0.79 0.02 0.81 0.95 1.76 10.20 12.91 0.05 0.08 0.88 

15_15_2 40.05 0.86 5.46 14.37 4.68 0.78 0.02 0.81 1.85 1.74 10.08 13.67 0.09 0.08 0.84 

                

30_02_2 43.38 0.08 5.55 29.42 3.92 1.63 0.03 1.66 0.16 3.38 7.99 11.53 0.01 0.18 0.81 

30_05_2 45.53 0.21 5.76 29.42 4.07 1.69 0.03 1.72 0.41 3.34 7.89 11.64 0.02 0.18 0.80 

30_10_2 42.31 0.43 5.82 29.42 4.11 1.71 0.03 1.74 0.89 3.58 8.46 12.92 0.05 0.17 0.78 

30_15_2 44.79 0.95 5.81 29.42 4.10 1.71 0.03 1.74 1.84 3.37 7.95 13.16 0.10 0.16 0.74 

                

0_15_2 ox 43.65 0.94 - - 5.19 - 0.03 0.03 1.89 0.05 10.43 12.36 0.09 <0.01 0.91 

01_15_2 ox 47.62 0.86 5.44 1.05 5.38 0.06 0.03 0.09 1.59 0.16 9.98 11.73 0.08 0.01 0.91 

05_15_2ox 41.81 0.89 5.38 5.09 5.11 0.27 0.03 0.30 1.85 0.62 10.62 13.09 0.09 0.03 0.89 

15_15_2ox 46.03 0.93 5.43 14.37 4.65 0.78 0.03 0.81 1.77 1.54 8.88 12.19 0.09 0.08 0.83 

30_15_2 ox 46.45 0.92 6.02 29.42 4.25 1.77 0.03 1.80 1.72 3.37 7.96 13.04 0.09 0.16 0.75 

                

0_15_2 red 46.71 0.97 - - 6.11 - 0.03 0.03 1.80 0.05 11.36 13.21 0.08 <0.01 0.92 

01_15_2 red 39.89 0.83 5.00 1.05 4.95 0.05 0.02 0.08 1.81 0.17 10.82 12.80 0.09 0.01 0.91 

05_15_2 red 42.16 0.88 5.20 5.09 4.94 0.26 0.03 0.29 1.82 0.60 10.23 12.65 0.09 0.03 0.89 

15_15_2 red 43.07 0.94 5.56 14.37 4.76 0.80 0.03 0.82 1.90 1.66 9.60 13.16 0.09 0.08 0.83 

30_15_2 red 40.85 0.83 5.50 29.42 3.88 1.62 0.02 1.64 1.76 3.48 8.23 13.46 0.09 0.16 0.75 

                

100 MPa Etna basalt              

0_02_1 41.37 0.09 - - 4.26 - 0.02 0.02 0.20 0.05 9.32 9.56 0.01 <0.01 0.99 

0_05_1 42.47 0.20 - - 4.53 - 0.03 0.03 0.42 0.05 9.60 10.07 0.02 <0.01 0.98 

0_10_1 51.15 0.51 - - 5.20 - 0.03 0.03 0.90 0.05 9.15 10.09 0.05 <0.01 0.95 

0_15_1 37.47 0.77 - - 3.88 - 0.02 0.02 1.83 0.05 9.21 11.09 0.10 <0.01 0.90 

                

01_02_1 40.16 0.07 3.93 1.05 3.89 0.04 0.02 0.07 0.16 0.15 8.81 9.11 0.01 0.01 0.98 

01_05_1 41.30 0.24 3.95 1.05 3.91 0.04 0.02 0.07 0.53 0.15 8.59 9.26 0.03 0.01 0.96 

01_10_1 41.29 0.42 4.18 1.05 4.14 0.04 0.02 0.07 0.91 0.15 9.01 10.07 0.05 0.01 0.94 

01_15_1 41.24 0.84 4.14 1.05 4.10 0.04 0.02 0.07 1.82 0.15 8.86 10.82 0.10 0.01 0.89 
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Table 7: Continued 
 m m m c Cl m m m m bulk bulk bulk bulk    

Run # glass S HCl HCl H2O Cladded Clinit. Cltot S Cl H2O fluid X S X Cl X H20 

 [mg] [mg] [mg] [wt.%] [mg] [mg] [mg] [mg] [wt.%] [wt.%] [wt.%] [wt.%] molar molar molar 

05_02_1 41.87 0.08 4.50 5.09 4.27 0.23 0.03 0.25 0.17 0.55 9.19 9.91 0.01 0.03 0.96 

05_05_1 41.49 0.20 4.35 5.09 4.13 0.22 0.02 0.25 0.43 0.53 8.97 9.93 0.03 0.03 0.95 

05_10_1 40.53 0.42 4.19 5.09 3.98 0.21 0.02 0.24 0.93 0.53 8.81 10.26 0.05 0.03 0.92 

05_15_1 41.59 0.86 4.58 5.09 4.35 0.23 0.02 0.26 1.83 0.55 9.24 11.61 0.10 0.03 0.88 

                

15_02_1 41.99 0.08 4.48 14.37 3.84 0.64 0.03 0.67 0.17 1.44 8.24 9.84 0.01 0.08 0.91 

15_05_1 44.69 0.22 4.63 14.37 3.96 0.67 0.03 0.69 0.44 1.40 8.00 9.84 0.03 0.08 0.89 

15_10_1 40.91 0.39 4.37 14.37 3.74 0.63 0.02 0.65 0.85 1.43 8.19 10.47 0.05 0.08 0.87 

15_15_1 40.56 0.79 4.30 14.37 3.68 0.62 0.02 0.64 1.73 1.41 8.07 11.20 0.10 0.08 0.83 

                

30_02_1 52.63 0.11 5.58 29.42 3.94 1.64 0.03 1.67 0.19 2.87 6.75 9.81 0.01 0.18 0.81 

30_05_1 40.18 0.19 4.74 29.42 3.35 1.39 0.02 1.42 0.42 3.14 7.42 10.98 0.03 0.18 0.80 

30_10_1 41.11 0.39 4.69 29.42 3.31 1.38 0.02 1.40 0.84 3.04 7.17 11.05 0.05 0.17 0.78 

30_15_1 37.88 0.77 4.39 29.42 3.10 1.29 0.02 1.31 1.79 3.05 7.20 12.04 0.10 0.16 0.74 

                

0_15_1 ox 42.24 0.81 - - 4.29 - 0.03 0.03 1.71 0.05 9.06 10.82 0.10 <0.01 0.90 

01_15_1 ox 38.44 0.88 3.86 1.05 3.82 0.04 0.02 0.06 2.04 0.15 8.85 11.02 0.11 0.01 0.88 

05_15_1 ox 41.50 0.84 3.87 5.09 3.67 0.20 0.02 0.22 1.82 0.48 7.95 10.24 0.11 0.03 0.86 

15_15_1 ox 43.99 0.88 4.44 14.37 3.80 0.64 0.03 0.66 1.78 1.35 7.71 10.84 0.11 0.07 0.82 

30_15_1 ox 48.09 0.93 4.92 29.42 3.47 1.45 0.03 1.48 1.72 2.74 6.44 10.89 0.11 0.16 0.73 

                

200 MPa Etna basalt              

0-1050 56.67 - - - 5.99 - 0.03 0.03 - 0.05 9.56 9.61 - <0.01 1.00 

1-1050 52.78 - 5.86 5.09 5.56 0.30 0.03 0.33 - 0.56 9.48 9.99 - 0.03 0.97 

2-1050 55.56 - 5.63 9.77 5.08 0.55 0.03 0.58 - 0.95 8.30 9.20 - 0.05 0.95 

3-1050 51.49 - 6.25 20.43 4.97 1.28 0.03 1.30 - 2.26 8.61 10.82 - 0.12 0.88 

4-1050 53.19 - 6.50 29.42 4.59 1.91 0.03 1.94 - 3.25 7.69 10.89 - 0.18 0.82 

                

200 MPa Krakatau dacite             

KRA 0_0 53.60 - - - 9.75 - - - - - 15.39 15.39 - - 1.00 

KRA 05_0 56.81 - 5.84 5.09 5.54 0.30 - 0.30 - 0.47 8.85 9.32 - 0.03 0.97 

KRA 10_0 57.27 - 6.50 9.77 5.87 0.63 - 0.63 - 1.00 9.20 10.19 - 0.05 0.95 

KRA 20_0 54.48 - 6.39 20.43 5.08 1.31 - 1.31 - 2.14 8.35 10.50 - 0.12 0.88 

KRA 30_0 54.01 - 6.89 29.42 4.86 2.03 - 2.03 - 3.33 7.98 11.31 - 0.17 0.83 

                

KRA 0_0 49.24 - - - 5.40 - - 9.88 - - 9.88 9.88 - - 1.00 

KRA 0_2 50.24 0.10 - - 5.37 - - 9.82 0.18 - 9.64 9.82 0.01 - 0.99 

KRA 0_5 50.44 0.30 - - 5.24 - - 9.90 0.54 - 9.36 9.90 0.03 - 0.97 

KRA 0_10 50.62 0.56 - - 5.10 - - 10.06 1.00 - 9.06 10.06 0.06 - 0.94 

KRA 0_15 52.46 0.80 - - 4.97 - - 9.91 1.37 - 8.54 9.91 0.08 - 0.92 

Notes: m is the mass. c Cl is the concentration of Cl in HCl in wt.%; m Cladded is the mass of Cl contained the added 
mass of HCl solution; m Clinit. is the mass of Cl in the starting material due to the initial Cl concentration of 0.06 wt.% Cl 
in the starting glass; m Cltot is the sum of m Cladded and m Clinit.. Bulk S, Cl and H2O is the concentration of S, Cl and H2O 
in wt.%, respectively, with respect to the total loaded starting mass. Bulk fluid is the total sum of bulk S, Cl and H2O in 
wt.%. X S, X Cl and X H2O is the molar ratio of S, Cl and H2O, respectively in the bulk fluid (defined to be solely 
composed of the volatile components S and/or Cl and H2O added to the system). 
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PH2 at experiments using an Ar-H2 mixture was monitored by the shaw-membrane technique. 

Run durations were 24 to 72 h. All experiments were stopped by quenching the samples rapidly 

using the rapid quench-technique as described by Berndt et al. (2002).  The sample capsules 

were subsequently weighed and thus checked for leaks as indicated by significant weight loss. 

Only those runs were assigned to be successful, where the loss of weight was below 0.05 mg. 

The experimental run conditions are assigned in Table 8.  

 In addition six Cl partitioning experiments were performed in Au80Pd20 capsules at 200 

MPa, 1200°C and ~FMQ+1 using the Etna basaltic starting material and pure AgCl or AgCl-

H2O/HCl mixture as Cl source. The experimental procedure was similar to that of the PtCl4-

charged experiments given by Stelling et al. (2008). Since our study focuses on ternary Cl-S-

H2O-fluid systems, these experiments will be not described in detail. However, in the following 

these data are shown, because they provide useful information about the partitioning-behavior of 

chlorine. The starting mass relations, the chemical composition of product glasses and the 

composition of product fluids for the AgCl- or AgCl-H2O/HCl-charged experiments (in the 

following assigned as AgCl-data) are listed in the Appendix at Table D, E and F. 
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3. Analytical methods 

3.1 Electron microprobe analysis (EMPA) 

The experimental products were composed of homogeneous glass and in some 

experiments FeS, anhydrite (anh), spinel (spl), clinopyroxene (cpx) and olivine (OL). The 

chemical composition of experimental product glasses, minerals (spl, cpx and OL) and FeS was 

determined by EPMA. Anhydrite was qualitatively identified by EDX. The H2O concentration in 

product glasses was measured by KFT and FTIR.  

3.1.1 Analysis of glasses, FeS and mineral phases 

EMPA of experimental glasses and mineral phases (OL, cpx and spl) was performed at 

the same beam conditions and counting times given in Chapter I §3.1. FeS phases were measured 

at 15 nA beam current and 8 s counting times of peak and background for Fe, Si, Ti, Al, Mg, Ca, 

Fe, Mn, Na and K and 40 nA beam current and 10 s counting times of peak and background for 

S analysis. The chemical composition of run products is given in Table 8 (product glasses), 

Table 10 (FeS) and in the Appendix: Table A, B and C (Ol, cpx and Fe-oxides, respectively). 

3.2 Determination of sulfur speciation and fO2 

The S6+/ΣS ratio in most of the S-rich product glasses was determined by ∆λ(S Kα) peak 

shift method using EMPA (Carroll & Rutherford, 1988), where fO2 was calculated using the 

S6+/ΣS ratios after Wallace & Carmichael (1994). A detailed description and the quantification of 

errors for the values of S6+/ΣS ratio and fO2 is given in Chapter I §3.2.  
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3.3 Determination of H2O concentration in the glasses 

The concentration of the dissolved H2O in all run product glasses was determined by 

Karl-Fischer-Titration (KFT) and FTIR spectroscopy as described in Chapter I (§3.3). Glass 

densities in g/l for dacitic product glasses were calculated, using the equation of Yamashita et al. 

(1997), modified in terms of density-water content relationship given by Ohlhorst et al. (2001): 

 ( ) ( )6.6251528.11 ±+±−= watercρ         (4),   

where the standard deviation is 6.6 g/l; Cwater in wt.%. 

 It s noteworthy, although all glasses analyzed where nearly bubble free, some glasses (in 

particular at 100 MPa runs) contain up to ~10 vol.% anhydrous mineral phases (visually 

approximated at BSE images). Thus, the H2O concentrations in these glasses are underestimated 

at KFT analysis for approximately ~10 rel.%  (0.4 wt.% H2O) at a maximum (considering vol.% 

and wt.% minerals being similar). The large uncertainties of approximated mineral contents do 

not allow for correction of KFT-data (absolute uncertainty of about 0.03-0.17wt.% H2O). The 

experimental run conditions, specification and proportions of mineral- and S-bearing phases and 

the chemical composition of product glasses are listed in Table 8.  

3.4 Determination of fluid composition 

Fluid properties at experimental conditions will not be preserved after quenching and 

equations of state for a multicomponent S-Cl-O-H fluid is hitherto not satisfactorily verified. 

Thus in the following “fluid” will be used in terms of a simplified single fluid, defined to be 

solely composed of the volatile components S and/or Cl and H2O added to the system.  

 Since partial extraction of alkalis (e.g., CaO, K2O and Na2O) from the melt into the fluid 

is expected (e.g., Candela & Piccoli, 1995; Williams et al., 1995, 1997; Student and Bodnar, 

1999; Stelling et al., 2008), the fluid composition could not be reliably measured due to the small 

amounts (~2-3 µl) remaining in the capsules. The calculated loss of melt components to the fluid 
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was in most cases below the corresponding errors of EMPA. Thus, the fluid composition was 

determined by mass balance calculation taking the dissolved mass of S, Cl and H2O into account 

(H2O in the glass by KFT): 
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The mass (in mg) of S, Cl and H2O in the fluid ([S], [Cl] and [H2O], respectively) was calculated 

by subtracting Smelt, Clmelt and H2Omelt from the loaded mass (bulk mass) of each component. We 

defined a fluid number, assigned as Cl# fluid (chlorine number), S# fluid (sulfur number) and 

H2O# fluid (H2O number) denoting the fluid composition as the weight proportion of S, Cl and 

H2O in the fluid: 
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The partitioning coefficient of Cl (Kd’Cl), S (Kd’S) and H2O (Kd’H2O) is the ratio of weight 

proportion of Cl, S and H2O in the fluid and the weight proportion in the melt: 
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 The fluid composition in terms of Cl# fluid, S# fluid and H2O# fluid, the partitioning 

coefficients Kd’Cl, Kd’S and Kd’H2O as well as the S/Cl ratios in the fluid and the S/Cl ratios in 

the melt (in wt.) are listed in Table 9. The fluid numbers and Kd’ values do not account for the 

occurrence of Anh and FeS at sulfur saturation, since the precise amount of these phases is not 

known. Hence, this does not allow mass balance of sulfur between melt, fluid and S-bearing 

phases. In the following it is shown, that the anhydrite-saturated experiments follow general 

observed trends for melt and fluid composition, indicating the calculated fluid composition is not 

significantly affected by the presence Anh. The Kd’S values for the FeS-saturated melts 

containing the roughly estimated maximum of ~1 vol.% FeS (Table 8) should be overestimated 

for ~20-30 % in the Etna basalt resulting in Kd’S ~120-180 and for 35-50 % in the Krakatau 

dacite resulting in Kd’S ~270-500.  

Table 9: Listing of the product fluid compositions in terms of Cl# fluid, S# fluid and H2O# fluid, the partitioning 
coefficients Kd’Cl, Kd’S and Kd’H2O and the S/Cl ratios in the product fluids and the product melts (in wt.): 
      Kd'  Kd'  Kd'  S/Cl  S/Cl  

Run # S#  Cl#  H2O#  S  Cl  H2O  fluid  melt  
0_02_2 0.01 (<0.01) <0.01 (<0.01) 0.99 (0.14) 3.8 (0.5) 0.2 (<0.1) 19.0 (2.6) 50.8 (7.0) 2.7 (0.4) 
0_05_2 <0.01 (<0.01) <0.01 (<0.01) 1.00 (0.06) 1.0 (0.1) 0.5 (<0.1) 19.0 (1.3) 17.7 (1.2) 8.1 (0.5) 
0_10_2 0.05 (<0.01) <0.01 (<0.01) 0.95 (0.06) 6.9 (0.4) 0.3 (<0.1) 18.4 (1.1) 310.2 (19.2) 12.7 (0.8) 
0_15_2 0.14 (0.01) <0.01 (<0.01) 0.86 (0.04) 16.0 (0.8) 2.5 (0.1) 16.8 (0.8) 118.0 (5.7) 18.1 (0.9) 
            
01_02_2 <0.01 (<0.01) <0.01 (<0.01) 1.00 (0.13) 1.3 (0.2) 0.9 (0.1) 19.2 (2.6) 1.5 (0.2) 1.0 (0.1) 
01_05_2  0.01 (<0.01) <0.01 (<0.01) 0.99 (0.06) 2.3 (0.1) 0.5 (<0.1) 18.8 (1.2) 11.1 (0.7) 2.5 (0.2) 
01_10_2 0.05 (<0.01) <0.01 (<0.01) 0.95 (0.03) 6.9 (0.3) 1.1 (<0.1) 18.2 (0.9) 28.6 (1.4) 4.5 (0.2) 
01_15_2 0.16 (<0.01) <0.01 (<0.01) 0.84 (0.02) 19.5 (0.6) 2.8 (0.1) 17.4 (0.6) 39.0 (1.4) 5.7 (0.2) 
            
05_02_2 0.01 (<0.01) 0.01 (<0.01) 0.98 (0.13) 13.6 (1.8) 1.5 (0.2) 19.3 (2.6) 1.6 (0.2) 0.2 (<0.1) 
05_05_2 0.02 (<0.01) 0.02 (<0.01) 0.96 (0.05) 4.6 (0.3) 3.2 (0.2) 18.4 (1.0) 1.0 (0.1) 0.7 (<0.1) 
05_10_2 0.06 (<0.01) 0.01 (<0.01) 0.93 (0.03) 10.3 (0.3) 1.4 (<0.1) 17.4 (0.6) 7.6 (0.3) 1.1 (<0.1) 
05_15_2 0.15 (<0.01) 0.02 (<0.01) 0.83 (0.01) 18.6 (0.4) 3.2 (0.1) 16.7 (0.4) 9.1 (0.2) 1.6 (<0.1) 
            
15_02_2 <0.01 (<0.01) 0.06 (0.01) 0.94 (0.12) -  4.2 (0.5) 16.8 (2.2) -  0.1 (<0.1) 
15_05_2 0.03 (<0.01) 0.06 (<0.01) 0.91 (0.04) 8.2 (0.4) 3.7 (0.2) 15.5 (0.8) 0.5 (<0.1) 0.2 (<0.1) 
15_10_2 0.05 (<0.01) 0.06 (<0.01) 0.89 (0.03) 7.2 (0.3) 3.8 (0.2) 16.1 (0.7) 0.9 (<0.1) 0.5 (<0.1) 
15_15_2 0.18 (<0.01) 0.07 (<0.01) 0.74 (0.02) 23.1 (0.6) 5.4 (0.1) 12.7 (0.3) 2.4 (0.1) 0.6 (<0.1) 
            
30_02_2 0.04 (0.01) 0.34 (0.05) 0.63 (0.09) 95.7 (15.6) 15.2 (2.2) 10.6 (1.6) 0.1 (<0.1) <0.1 (<0.1) 
30_05_2 0.04 (<0.01) 0.32 (0.02) 0.64 (0.04) 12.5 (0.8) 13.9 (0.8) 11.4 (0.7) 0.1 (<0.1) 0.1 (<0.1) 
30_10_2 0.08 (<0.01) 0.32 (0.01) 0.60 (0.02) 14.3 (0.6) 14.3 (0.7) 10.3 (0.5) 0.2 (<0.1) 0.2 (<0.1) 
30_15_2 0.24 (0.01) 0.29 (0.02) 0.47 (0.03) 37.8 (2.8) 14.7 (0.9) 8.2 (0.5) 0.8 (0.1) 0.3 (<0.1) 
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Table 9: Continued 
      Kd'  Kd'  Kd'  S/Cl  S/Cl  

Run # S#  Cl#  H2O#  S  Cl  H2O  fluid  melt  
0_15_2 ox 0.18 (0.01) <0.01 (<0.01) 0.82 (0.04) 24.0 (1.3) 4.0 (0.3) 15.7 (0.8) 101.8 (5.5) 17.0 (0.9) 
01_15_2 ox 0.15 (0.01) 0.01 (<0.01) 0.85 (0.03) 19.4 (0.7) 4.0 (0.2) 16.0 (0.6) 27.5 (1.1) 5.7 (0.2) 
05_15_2ox 0.17 (<0.01) 0.02 (<0.01) 0.81 (0.02) 23.8 (0.7) 4.8 (0.1) 14.6 (0.5) 7.3 (0.2) 1.5 (<0.1) 
15_15_2ox 0.21 (0.01) 0.11 (<0.01) 0.68 (0.02) 32.5 (1.1) 10.5 (0.3) 12.5 (0.4) 2.0 (0.1) 0.6 (<0.1) 
30_15_2 ox 0.21 (0.01) 0.30 (0.01) 0.49 (0.01) 35.8 (1.3) 17.4 (0.5) 8.9 (0.3) 0.7 (<0.1) 0.3 (<0.1) 
            
0_15_2 red 0.20 (0.02) <0.01 (<0.01) 0.80 (0.06) 163.7 (16.4) 0.3 (<0.1) 16.6 (1.3) 1090.5 (87.3) 2.2 (0.2) 
01_15_2 red 0.20 (0.02) <0.01 (<0.01) 0.80 (0.08) 236.4 (32.5) 0.7 (<0.1) 18.4 (1.9) 180.1 (18.3) 0.5 (0.1) 
05_15_2 red 0.22 (0.01) 0.01 (<0.01) 0.77 (0.04) 172.8 (13.4) 1.7 (0.1) 16.0 (1.0) 22.6 (1.4) 0.2 (<0.1) 
15_15_2 red 0.25 (0.03) 0.05 (0.01) 0.70 (0.08) 225.1 (37.0) 3.1 (0.4) 14.3 (1.7) 5.5 (0.7) 0.1 (<0.1) 
30_15_2 red 0.23 (0.02) 0.20 (0.01) 0.57 (0.04) 210.4 (21.3) 8.8 (0.7) 12.9 (1.0) 1.2 (0.1) <0.1 (<0.1) 

 
0_02_1 0.01 (<0.01) <0.01 (<0.01) 0.99 (0.13) 8.6 (1.3) -  29.0 (4.0) -  2.3 (0.3) 
0_05_1 0.02 (<0.01) <0.01 (<0.01) 0.98 (0.09) 6.3 (0.6) -  27.5 (2.6) -  8.9 (0.9) 
0_10_1 0.07 (<0.01) <0.01 (<0.01) 0.93 (0.07) 13.7 (1.3) 0.2 (<0.1) 26.8 (2.0) 487.7 (37.2) 14.0 (1.3) 
0_15_1 0.17 (0.01) <0.01 (<0.01) 0.83 (0.04) 34.4 (1.8) 1.6 (0.1) 30.4 (1.7) 204.5 (11.4) 2<0.1 (1.1) 
            
01_02_1 <0.01 (<0.01) <0.01 (<0.01) 1.00 (0.22) 1.3 (0.3) 1.0 (0.3) 29.6 (6.6) 1.3 (0.3) 1.1 (0.2) 
01_05_1 0.05 (<0.01) <0.01 (<0.01) 0.95 (0.05) 15.6 (1.0) 0.1 (<0.1) 24.1 (1.4) 253.7 (14.6) 2.8 (0.2) 
01_10_1 0.07 (0.01) <0.01 (<0.01) 0.93 (0.13) 13.3 (1.9) 2.4 (0.5) 28.2 (4.1) 21.0 (3.0) 4.9 (0.7) 
01_15_1 0.18 (<0.01) <0.01 (<0.01) 0.82 (0.02) 30.3 (1.0) 2.9 (0.1) 24.2 (0.7) 48.5 (1.4) 6.3 (0.2) 
            
05_02_1 -  0.02 (<0.01) 0.98 (0.14) -  4.1 (0.6) 28.5 (3.8) -  1.0 (0.1) 
05_05_1 -  <0.01 (<0.01) 1.00 (0.09) -  0.2 (<0.1) 29.6 (2.7) -  0.8 (0.1) 
05_10_1 0.07 (<0.01) 0.02 (<0.01) 0.91 (0.03) 12.7 (0.6) 4.4 (0.2) 27.5 (1.3) 3.6 (0.2) 1.2 (0.1) 
05_15_1 0.17 (<0.01) 0.02 (<0.01) 0.81 (0.02) 32.5 (1.1) 6.1 (0.2) 23.9 (1.2) 7.3 (0.4) 1.7 (0.1) 
            
15_02_1 0.02 (<0.01) 0.05 (0.01) 0.93 (0.14) 45.5 (7.3) 3.9 (0.6) 25.3 (3.8) 0.5 (0.1) <0.1 (<0.1) 
15_05_1 0.03 (<0.01) 0.04 (<0.01) 0.93 (0.07) 9.1 (0.9) 3.4 (0.3) 24.8 (2.1) 0.7 (0.1) 0.3 (<0.1) 
15_10_1 0.08 (0.01) 0.08 (0.01) 0.84 (0.05) 19.6 (1.6) 7.6 (0.6) 23.0 (1.7) 1.0 (0.1) 0.5 (<0.1) 
15_15_1 0.20 (0.02) 0.10 (0.01) 0.70 (0.05) 49.4 (4.1) 12.6 (1.3) 18.9 (1.6) 2.0 (0.2) 0.6 (0.1) 
            
30_02_1 0.04 (<0.01) 0.20 (0.03) 0.76 (0.10) 73.0 (11.8) 8.9 (1.2) 19.5 (2.6) 0.2 (<0.1) <0.1 (<0.1) 
30_05_1 0.05 (<0.01) 0.22 (0.02) 0.73 (0.07) 22.7 (2.4) 10.4 (1.1) 18.4 (1.7) 0.2 (<0.1) 0.1 (<0.1) 
30_10_1 0.10 (0.01) 0.22 (0.01) 0.68 (0.04) 31.1 (2.2) 11.3 (0.7) 17.2 (1.0) 0.5 (<0.1) 0.3 (<0.1) 
30_15_1 0.21 (0.01) 0.23 (0.01) 0.56 (0.02) 47.3 (2.0) 14.1 (0.6) 15.8 (0.6) 0.9 (<0.1) 0.4 (<0.1) 
            
0_15_1 ox 0.17 (0.01) <0.01 (<0.01) 0.83 (0.05) 26.1 (1.6) 4.0 (0.3) 21.8 (1.4) 94.4 (6.0) 14.4 (0.9) 
01_15_1 ox 0.23 (0.02) 0.01 (<0.01) 0.76 (0.06) 38.1 (2.9) 4.6 (0.5) 19.2 (1.5) 41.4 (3.2) 6.3 (0.5) 
05_15_1 ox 0.22 (0.01) 0.02 (<0.01) 0.76 (0.05) 36.8 (3.1) 6.9 (0.5) 19.0 (1.3) 9.0 (0.6) 1.4 (0.1) 
15_15_1 ox 0.21 (0.03) 0.09 (0.01) 0.70 (0.08) 40.3 (6.7) 10.4 (1.3) 18.9 (2.4) 2.4 (0.3) 0.7 (0.1) 
30_15_1 ox 0.22 (0.02) 0.25 (0.02) 0.53 (0.05) 51.2 (6.0) 18.9 (1.7) 14.8 (1.3) 0.9 (0.1) 0.3 (<0.1) 
            
0-1050 -  0.01 (<0.01) 0.99 (0.03) -  <0.1 (<0.1) 19.2 (0.7) -  -  
1-1050 -  0.02 (<0.01) 0.98 (0.06) -  4.0 (0.4) 18.7 (1.6) -  -  
2-1050 -  0.06 (<0.01) 0.94 (0.07) -  7.8 (0.8) 18.2 (1.9) -  -  
3-1050 -  0.12 (0.01) 0.88 (0.06) -  6.3 (0.6) 16.0 (1.6) -  -  
4-1050 -  0.32 (0.03) 0.68 (0.05) -  14.2 (1.6) 12.2 (1.4) -  -  
            
KRA 0_0 -  -  1.00 - -  -  17.4 (0.4) -  -  
KRA 05_0 -  0.04 (<0.01) 0.96 (0.05) -  9.0 (0.7) 16.8 (1.3) -  -  
KRA 10_0 -  0.07 (<0.01) 0.93 (0.05) -  8.2 (0.6) 15.8 (1.2) -  -  
KRA 20_0 -  0.27 (0.02) 0.73 (0.05) -  20.4 (1.9) 12.1 (1.1) -  -  
KRA 30_0 -  0.49 (0.05) 0.51 (0.05) -  34.2 (4.7) 8.4 (1.2) -  -  
            
KRA 0_0 -  -  1.00 - - - -  17.5 (1.8) -  -  
KRA 0_2 0.04 (<0.01) -  0.96 (0.10) - - -  17.0 (1.9) -  -  
KRA 0_5 0.11 (0.01) -  0.89 (0.06) 541.6 (84.6) -  15.7 (2.5) -  -  
KRA 0_10 0.20 (0.01) -  0.80 (0.02) 531.6 (38.2) -  14.9 (1.1) -  -  
KRA 0_15 0.29 (0.01) -  0.71 (0.02) 744.9 (47.1) -  12.9 (0.8) -  -  

Notes: m is the mass. S#, Cl# and H2O# ist the S, Cl or H2O ratio (in wt.) in a simplified single fluid, defined to be solely 
composed of the volatile components S and/or Cl and H2O (detailed description is given in the text). The partitioning coefficient of 
Cl (Kd’Cl), S (Kd’S) and H2O (Kd’H2O) is the ratio of weight proportion of Cl, S or H2O in the fluid and the weight proportion of Cl, 
S or H2O in the melt, respectively; S/Cl fluid is the ratio (in wt.) of S and Cl content in the fluid and S/Cl melt is the ratio (in wt.)  of 
the S and Cl concentration in the melt. 
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4. Results 

4.1 Description of experimental products 

All experimental products contain hydrous glass and fluid phase, indicated by the 

occurrence of vesicles and a weight loss after piercing the capsule accompanied by the intensive 

smell of H2S in the S-bearing reduced runs. The composition of all product glasses was 

trachybasaltic to basaltic using Etna basalt starting glass and dacitic using Krakatau dacite 

starting glass (Table 8). Most glasses contained mineral- or S-bearing phase (cpx, OL, spl, anh or 

FeS). The mineral content range between ~0-6 vol.% for glasses obtained at 200 MPa and ~1-10 

vol.% for glasses obtained at 100 MPa. At all reduced runs (~FMQ+0.7) FeS (Chapter I, Fig. 2a) 

was stable. In the moderate oxidized H2-buffered runs (~FMQ+2 to ~FMQ+3 or slightly below 

~FMQ+4.2) mainly spinifex anhydrite and in one glass (intrinsic fO2 ~FMQ+4.2) subhedral 

anhydrite was present (exp. 01_15_1 ox) (Fig. 15a,b) (where given fO2 derive from monitored 

PH2 (Shaw-membrane), from the intrinsic redox conditions or by approximation between the 

monitored PH2 and the PH2-load to the vessel (detailed description is given in the following 

§4.2).  

Fig. 15: BSE-pictures of spinifex anhydrite (exp. 05_15_1) (a) and subhedral anhydrite (exp. 01_15_1 ox) (b).  
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The crystal content of glasses decrease with increasing bulk Cl and bulk S and increases with fO2 

mainly as the spl content increases. At low fO2 (~FMQ+0.7) the crystallinity of basaltic glasses 

is mainly increased by the presence of cpx, OL, FeS and minor spl. 

4.2  Oxidation state of experimental glasses 

The oxygen fugacity, calculated by monitored PH2 at the IHPV runs (fO2 [IHPV]) and fO2 

determined by melt S-speciation (S6+/ΣS ratio, error of ~0.13, detailed description in chapter I) is 

listed in Table 8. It is noteworthy, that in three experimental series at 100 MPa the monitored 

PH2 was significantly below the expected values (exp. 01_02_1 to 01_15_1, 05_02_1 to 

05_15_15 and 15_02_1 to 15_15_1), yielding fO2 [IHPV] to be just below or higher than at 

intrinsic redox conditions. For these series fO2 [IHPV] should be overestimated, because H2 was 

added to the Ar-gas and thus fO2 should be lower than at intrinsic redox conditions (fO2 [IHPV] 

for these series are shown in parenthesis, Table 8). For all other experiments fO2 [IHPV] ranged 

between ~FMQ+0.7 to ~FMQ+0.9 in the reduced series, ~FMQ+1.9 to ~FMQ+2.9 in the 

moderate oxidized series and ~FMQ+4.2 in the most oxidizing series. The fO2 determined by S-

speciation (fO2 [S6+/ΣS]) ranged between ~FMQ+0.3 to FMQ+0.5 (S6+/ΣS = 0.16-0.21) in the 

reduced melts, ~FMQ+1.6 to FMQ+2.6 (S6+/ΣS = 0.78-0.98) in the moderate oxidized melts and 

~FMQ+1.9 to FMQ+2.3 (S6+/ΣS = 0.89-0.95) in the melts at intrinsic fO2 IHPV. As it is shown 

by the S-speciation curve in chapter I (Fig. 24), fO2 can not be calculated accurately by S6+/ΣS 

below ~FMQ and above ~FMQ+2, because S6+/ΣS becomes less dependent on oxygen fugacity, 

if fO2 is below or above that of sulfide-sulfate transition. However, fO2 [S6+/ΣS] in the melts 

performed at intrinsic redox conditions is about 2 log units lower than fO2 [IHPV]. Thus we 

suppose fO2 [IHPV] being more accurate for the oxidized series. In the reduced series fO2 [IHPV] 

and fO2 [S6+/ΣS] are in good agreement (reduced series: ~FMQ+0.7 vs. ~FMQ+0.3 to 

~FMQ+0.5, respectively). In the mediate oxidized series fO2 [IHPV] and fO2 [S6+/ΣS] agree for 
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experiments at 200 MPa (≤0.6 log units difference), where at 100 MPa fO2 [IHPV] is generally 

0.5-1.0 log units higher. Thus, in the following we define fO2 to be (1) FMQ+0.5 for the reduced 

series, (2) FMQ+2 at 200 MPa and FMQ+2.5 at 100 MPa for the H2-buffered moderate oxidized 

series and (3) FMQ+4 at intrinsic fO2 [IHPV]. 

 4.3 Sulfur fugacity at FeS-saturation 

The sulfur fugacity (log fS2 [bar]) in the FeS-saturated melts (Table 10) was determined 

by the equation of Bockrath et al. (2004) modified by Liu et al. (2007) to be -0.05 and -0.20 (for 

exp. 0_15_2 red and 01_15_2 red, respectively) taking fO2 based on [S6+/ΣS] into account and 

calculated to be 0.2 in the whole FeS-saturated series by using the intrinsic fO2 of the IHPV. The 

sulfur yielded values of 0.51 using fO2 [IHPV] (where the given uncertainty of model is ± 0.5 log 

units). Applying the method of Toulmin & Barton (1964) fS2 was determined to be -1.0 ± 0.9 in 

the basaltic melt (exp. 0 _15_2 red) and 0.6 ± 0.3 and 1.2 ± 0.2 for the dacitic melts (exp. KRA 

0_10 and KRA 0_15, respectively). Within error, fS2 determined by both methods are in good 

agreement.  

Table 10: Composition of FeS-phases contained in the basaltic 
and dacitic product glasses (in wt.%):  

Run # 0_15_2 
red  01_15_2

red  05_15_2
red  KRA 

0_10  KRA 
0_15  

n 4  6  8  4  4  

Fe 60.08 (76) 60.02 (67) 60.00 (98) 57.93 (57) 58.30 (20) 

S 37.17 (87) 32.86 (295) 35.03 (400) 37.52 (41) 38.53 (16) 

Total 97.25 (127) 92.88 (288) 95.03 (395) 95.45 (88) 96.82 (18) 

Fe# 0.48 (01) 0.51 (02) 0.50 (03) 0.47 (00) 0.46 (00) 
log fS2 
(B;L):           

[S6+/ΣS] -0.20  -0.05  -  -  -  

IHPV 0.20  0.20  0.20  0.42  0.51  

NFeS 0.963 (012) -  -  0.940 (004) 0.930 (003)
log fS2 
(T&B) -1.0 (9) -  -  0.6 (3) 1.2 (2) 

Notes: Fe# is the molar ratio of Fetot/(Fetot + S) x 100, assuming all iron 
is present as Fe2+; log fS2 (B;L) is log fS2 [bar], calculated by Bockrath et 
al. (2004) and Liu et al. (2007) taking fO2 required in this model from S 
Kα peak shift ([S6+/ΣS]) or derived from monitoring of PH2 in the vessel 
(IHPV). NFeS is the molar fraction of FeS in pyrrhotite FeS-FeS2; log fS2 
(T&B) is log fS2 [bar] calculated by the method of Toulmin & Barton 
(1964).  
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4.4 Major element composition of experimental glasses (melts) 

The major element composition of the glasses is listed in Table 8. The compositional 

variation illustrated in Fig. 16 and Fig. 17 is shown with respect to the S-, Cl- and H2O-free basis 

normalized to 100%. The Cl-bearing melts vary mainly in concentration of alkalis (CaO, Na2O 

and K2O) (Fig.16) and FeO- and MgO content (Fig.17) (Table 8). In contrast, basaltic melts 

obtained at FMQ+0.5 do not show any significant variations in major element composition. The 

Cl-free S-bearing dacitic melts varying mainly in FeO content (exp. KRA0_0 to KRA 0_15) (Fig 

17b, Table 8). 

4.4.1 Concentration of alkalis (Na2O, K2O and CaO) in the melt 

In this study, the Na2O and K2O concentrations in the basaltic melts decrease with bulk 

Cl (ranging from 0.05-3.6 wt.% Cl) for a maximum of 11 rel.% and 20 rel. %, respectively. 

Increasing bulk S (ranging from 0-2.0 wt.% S) leads to a maximum decrease in Na2O for about 

16 rel.% and in K2O of about 12 rel.% (in total Na2O decreases from 3.46 to 2.90 wt.% and K2O 

decreases from 1.96 to 1.52 wt.% with increasing S and Cl). The CaO concentration is not 

significantly affected at lower bulk S (≤ 0.5 wt.% S) or at low fO2 (FMQ+0.5) in the investigated 

range of Cl concentration in the system. At high bulk S (1.7-2.0 wt.% S, anhydrite-saturation) 

CaO decreases with bulk Cl for 15 rel.% at a maximum. At lower bulk S (≤ 1.0 wt.% S) CaO 

decreases for 13 and 15 rel.% at FMQ+2.5 and FMQ+4, respectively and for 12 rel.% at FMQ+2 

(in total CaO decreases from 10.81 to 9.19 wt.%). At 100 MPa and anhydrite-saturation the 

decrease in alkali-concentration at FMQ+2.5 and FMQ+4 is nearly similar, whereas at FMQ+2 

the decrease in alkali concentration is less pronounced (Fig. 16 a-d). In the S-free dacitic melts 

(FMQ+0.5) Na2O and K2O decrease with bulk Cl for about 9 rel.% (Na2O decreases from 4.06 to 

3.69 wt.% and K2O decreases from 1.92 to 1.74 wt.%), whereas the CaO concentration remains 

constant.  



64  

 

Fig. 16: Concentrations of Na2O (a), K2O (b), CaO (c) and the molar Al2O3/(CaO+Na2O+K2O) ratio as a function of 

the total amount of chlorine added to the system (bulk Cl). The alkali concentrations and A/CNK ratios of the 

basaltic and dacitic starting composition are illustrated by the red dashed lines (basalt) and the red dotted lines 

(dacite) or the red dashed-dotted line (basalt and dacite) (Fig.16b). Also shown are S-free data for Etna basalt at 200 

MPa 1150-1250°C using HCl or PtCl as chlorine-source (Stelling et al., 2008) (small gray dots) and at 1200°C by 

using AgCl or AgCl-H2O/HCl mixture as chlorine source (small open grey dots) and at 1050°C for Krakatau dacite 

(exp. KRA 0_0 to KRA 0_15) (open triangles). The S-free data for Etna basalt at 1050°C reported herein (exp. 0-

1050 to 4-1050, small grey filled dots) are published by Stelling et al. (2008). The trends in the decrease of alkali 

concentrations and increasing A/CNK ratio with increasing Cl-concentration in the system are schematically shown 

for the S-free or sulfate-poor melts (short-dashed grey curves) and for the sulfate-bearing melts (long-dashed grey 

curves). 

 

 The variations in alkali contents are shown by the peraluminousity of the melt in terms of 

the A/CNK ratio (A/CNK = molar Al2O3/CaO+Na2O+K2O ratio) (Table 8, Fig.16d). The 

A/CNK ratio of the basaltic melts in this study increase with bulk Cl and bulk S (to the opposite 
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FMQ+2.5 and FMQ+4 (where the A/CNK ratio increases in total from 0.60 to 0.72). It is 

remarkable, that in the S-free dacitic melts A/CNK ratios increase from 0.96 to 1.05 with bulk 

Cl, whereas in both, the S-free basaltic melts and S-bearing basaltic melts at FMQ+0.5 A/CNK is 

not affected by Cl at investigated chlorine concentration in the system. It is noteworthy, that the 

CaO concentration in the sulfate-bearing melts are decreased to a greater extend at bulk Cl of ~3 

to 3.5 wt.% compared to the S-free basaltic melts of Stelling et al. (2008) and the AgCl-data 

(Fig.16c). The decrease of K2O is more likely a function Cl concentration in the system 

(Fig.16b) and the decrease in Na2O (Fig.16a) is effected by both S and Cl concentration in the 

system.   

4.4.2 MgO and FeO concentration in the melt 

 

Fig. 17: Concentrations of MgO (a) and FeO (b) in the basaltic and dacitic melts dependent on the total amount of 

chlorine added to the system (bulk Cl); same symbols as used for Fig.16. In addition the FeO content of the (Cl-free) 

FeS-saturated dacitic melts (crossed triangles) is shown. The change in MgO- and FeO concentrations in the basaltic 

melts compared to the starting compositions is mainly effected by the occurrence of crystalline phases: melts 

coexisted with OL and cpx were depleted in MgO, where the FeS-saturated melts (as indicated by the green dotted 

line) or those coexisting with Fe-oxides (spl) (illustrated by the red dotted line) where depleted in FeO. The increase 

in MgO- and FeO contents in the basaltic melts with up to ~3.5 wt.% bulk Cl is mainly the result of a decrease in 

mineral content with increasing chlorine concentration in the system. It is remarkably shown by the data of Stelling 

et al. (2008) (small gray dots) and by the those (crystal-free) AgCl-data (small open grey dots) (see text for 

description), that for more than 4 wt.% Cl in the system, the FeO content in the basaltic melts significantly decreases 

with a further increase of bulk Cl. The (FeS-free) dacitic melts (open triangles) become depleted in FeO, if bulk Cl 

increases for more than ~1 wt.% Cl in the system (as illustrated for both starting compositions by the gray dashed 

curves). The S-bearing dacitic melts (crossed triangles) are depleted in FeO, if FeS is present. 
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 The MgO concentration in the melt (Fig.17a) mainly decreases with increasing 

abundance of Mg-bearing mineral phases (OL and cpx). Since the crystallinity of the melt 

decreases as bulk Cl and bulk S increase (except at coexistence of a S-bearing mineral phase), 

the decrease in MgO becomes less as bulk Cl and bulk S increase. The lowest MgO content is 

observed at exp. 0_02_1 at 100 MPa (FMQ+2.5) (Fig.17a) (5.12 ± 0.18 wt.% MgO, 14 rel.% less 

than the starting glass), where the crystal content (mainly OL and cpx) is approximately 10 

vol.%. At 200 MPa MgO-bearing mineral phases are less abundant. Except at exp. 01_15_2 red 

(FMQ+0.5) containing ~6 vol.% minerals (FeS, spl, OL, cpx) MgO is decreased for about 12 

rel.%. The MgO content in the dacitic melts (1.39-1.54 ± 0.8-0.11 wt.% MgO; MgO contents of 

the (Cl-free) S-bearing dacitic melts are not graphically shown) was within error mainly constant 

and similar to the MgO content of the starting glass (Fig.17a), which is expected by their low 

crystallinity (mineral content ≤ 1 vol.%).  

 The FeO content in the basaltic melts (Fig. 17b) is mainly decreasing with increasing 

content of Fe-oxides (spl) in the melt (observed at FMQ+2 and above). Since Fe-oxides become 

less abundant with increasing bulk Cl, the decrease in FeO content of the melt becomes less with 

increasing bulk Cl. At low fO2 (FMQ+0.5) FeO mainly decreases due to the precipitation of FeS 

(Fig.17b). In the Cl-free dacitic melts the FeO content decreases with bulk S for about 22 rel.% 

at a maximum. The FeS-saturated basaltic melts (constant bulk S of about 1.8 wt.%) are depleted 

in FeO content for about 16-22 rel.%. In the S-free dacitic melts FeO decreases, if the Cl 

concentration in the system increases to values above ~1 wt.% Cl, whereas the maximum 

decrease in FeO content (20 rel.%) is observed at highest investigated bulk Cl (~ 3.5 wt.% Cl) 

(Fig.17b).  
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4.5 H2O, Cl and S concentrations of melt and fluid phase 

The concentrations of H2O, Cl and S (in wt.%) analysed in the product glasses are listed 

in Table 8. In the investigated range of system composition, the concentrations of H2O, Cl and S 

dissolved in the basaltic melts range between 4.43-5.86 wt.% H2O, 0.05-2.27 wt.% Cl and 0-0.85 

wt.% S at 200 MPa and 2.72-4.01 wt.% H2O, 0.05-2.20 wt.% Cl and 0.05-0.64 wt.% S at 100 

MPa. In the dacitic melts (200 MPa and FMQ+0.5) the H2O, Cl and S contents range between 

5.40-6.11 wt.% H2O, 0-1.42 wt.% Cl (S-free) or 0-0.04 wt.% S (Cl-free). 

 The composition of fluid phase is listed in Table 9 and plotted in Fig.18 in terms of H2O# 

fluid, Cl# fluid and S# fluid. The composition of fluid coexisting with the basaltic melts ranges 

between 47-99 wt.% H2O, 0-32 wt.% Cl and 0-23 wt.% S at 200 MPa and 52-100 wt.% H2O, 0-

25 wt.% Cl and 0-25 wt.% S at 100 MPa. The composition of fluid coexisting with the dacitic 

melts (200 MPa) ranges between 51-100 wt.% H2O and 0-49 wt.% Cl in the S-free system and 

71-100 wt.% H2O and 0-29 wt.% S in the Cl-free system. 

 

Fig. 18: Composition of the fluids accounting 

for the simplified three component fluid 

system Cl-S-H2O coexisting with the basaltic 

and dacitic melts (calculated by mass 

balance, as described in §3.4); same symbols 

as used in Fig.16 and Fig.17. The chlorine-, 

sulfur- and H2O numbers (Cl# fluid, S# fluid 

and H2O# fluid) are the weight proportion of 

Cl, S or H2O, respectively accounting for a 

three component fluid system solely 

composed of Cl-S-H2O.  
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4.5.1 Effect of chlorine on the H2O concentration in the melt 

Fig. 19 illustrates, that the H2O content in the melt slightly increases with the Cl 

concentration in the melt confirming the results Stelling et al. (2008) for crystal-free melts 

(including the S-free experiments: 0-1050 to 4-1050, reported herein).  

 

Fig. 19: Illustration of the slightly positive relationship between Cl content in the melt and H2O content in the melt 

(increasing H2O content with Cl melt to a maximum at ~2-3 wt.% Cl melt) (H2O determined by KFT, Fig19a and by 

IR, Fig.19b). The slightly increase in H2O melt is observed for both P investigated in this study (200 MPa and 100 

MPa). At low Cl concentrations in the melt (in particular at 100 MPa) H2O melt determined by KFT (Fig.19a) is in 

some cases underestimated (for a maximum of approximately 0.4 wt.% H2O, detailed description in §3.3). The IR-

data also exhibit a positive correlation between Cl melt and H2O melt in the investigated range of system 

composition (Fig.19b). The decrease of H2O melt at Cl melt above ~3 wt.% Cl as observed by Stelling et al. (2008) 

(small gray dots) is also indicated by the AgCl-data (small open grey dots) (description is given in the text). The 

dashed grey curve and the dashed gray lines are guides to the eye representing the observed trends; same symbols as 

used in Fig.16.  
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observed for all dacitic melts). The H2O content (by KFT) in the low crystalline basaltic melts at 

FMQ+2 (S-bearing) and FMQ+0.5 (S-free) increases for about 10-15 rel.%, if Cl melt increases 

from about 0.05 to ~1.97-2.26 wt.% Cl (total increase in H2O from 5.13-5.23 to 5.70-5.93 wt.%). 

The H2O concentration in the dacitic melts (by KFT) increase for about 7 rel.% (in total from 

5.73-6.11 wt.% H2O), if Cl melt increases from 0 (Cl-free runs) to 1.42 wt.% Cl.  An effect of 

sulfur on the H2O concentration in the melt was not observed. These data are in good agreement 

to the observed positive correlation between Cl melt and H2O melt with a maximum H2O content 

at about ~2.5 wt.% Cl in the melt (Fig.19a). Our data for the fluid system AgCl-HCl and AgCl-

H2O follow the same trend of Cl melt and H2O melt as observed in this study and to data of 

Stelling et al. (2008) where PtCl4 was used as Cl-source.  

4.5.2  Mutual effects of chlorine and sulfur on S and Cl concentration in the melt 

The Cl and S concentrations in the melt respectively increase non-linear with Cl and S 

content in the system and Cl and S concentration in the fluid phase (Fig.20a-d). This indicates 

non-ideal distribution of Cl and S between melt and aqueous fluid, in agreement to former 

studies (e.g., Webster et al., 1992, 1999; Signorelli & Carroll, 2000, Stelling et al., 2008). Non-

ideal mixing properties of S between silicate melt and hydrous fluid are indicated by few 

experimental studies addressed from rhyolitic to phonolitic-trachytic melt composition (e.g., in a 

Cl-free system: e.g., Parat & Holtz, 2005 (rhyolite at ~FMQ+4); in a Cl-bearing system: e.g., 

Botcharnikov et al., 2004 (rhyolite at ~FMQ+0.7); Scaillet & McDonald, 2006 (rhyolite at 

~FMQ-1.5 to ~FMQ+0.5) and Webster et al., 2009b (phonolites-trachytes at ~FMQ+1.2 to 

FMQ+2.3). 
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Fig. 20: Illustration of the mutual effects of Cl and S (a-d). Fig. 20a,b show the correlation between bulk S (Fig.20a) 

or S# fluid (Fig.20b) on the S concentration in the (dominantly) sulfate-bearing basaltic melts (shown above the 

black dotted line, which separates the sulfate- from the (dominantly) sulfide-bearing systems, indicated by the two 

gray arrows) with respect to increasing chlorine concentration in the system (bulk Cl). The anhydrite-saturated data 

are covered by the red ellipse, where the FeS-saturated data of basalt and dacite are covered by the green ellipse. 

The sulfide-dominated systems of (Cl-free) dacite (crossed triangles) and (Cl-containing) basalt (green dots) show 

significant lower amounts of S dissolved in the melt, compared to the sulfate-bearing system. The dashed and the 
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small dotted curves representing eye-guiding lines for data at 200 MPa and 100 MPa, respectively, where gray 

denotes a Cl-poor system and black denotes a Cl-rich system. The relationship between bulk S and S# fluid on the S 

content in the dacite is shown by the gray long-dashed curve. Fig.20d,e illustrate the relationship between bulk Cl 

(Fig.20d) or Cl# fluid (Fig.20e) on the Cl content in the melt with respect to the S concentration in the system. The 

dashed-dotted curves are guides to the eye representing the data at 100 and 200 MPa for the sulfate-poor systems 

and the S-free system; other line-symbols are the same as in Fig. 20a,b. The red arrows indicate the difference in Cl-

content at anhydrite-saturation for QFM+4 and FMQ+2 (200 MPa) or FMQ+2.5 (100 MPa) (detailed description is 

given in the text at §4.2). The data of the KRA dacite are marked with an eye-guiding line (Fig.20e). It is 

remarkable, that the Cl solubility data for the S-free dacitic melts are comparable to the data of the basaltic melts 

obtained at anhydrite-saturation and 100MPa (at FMQ+4) (red stars). Fig.20c,f display the inverse relationship of S 

and Cl concentration in the melt. Fig.20c shows that the S content mainly in the anhydrite-(sub)saturated melts 

(where the data of anhydrite-saturation can be taken from Fig.20a,b) decrease, if Cl melt increases from 1.4-1.8 

wt.%. It is noteworthy, that the eye-guiding lines for the 200 MPa data are reversing, because S- and Cl 

concentration of the anhydrite-saturated melts at FMQ+4 (red encircled dots) are lower at comparable system 

composition (detailed description is given in the text). Fig.20f illustrates the effect of Cl melt on S melt. S melt 

decreases mainly constant with Cl melt only in the sulfate-bearing systems. The trend of the effect of Cl melt on S 

melt is accentually shown for the anhydrite-saturated data, where the red dashed and the red dotted curve represent 

data at FMQ+4 (at 200 MPa and 100 MPa, respectively) and the black dashed and dotted curves represent data at 

FMQ+2 and FMQ+2.5 (at 200 MPa and 100 MPa, respectively). The S content in the FeS-saturated melts is not 

affected by Cl melt (shown by the green dotted line). 

 

 The correlation between S and Cl concentrations in the system and Cl and S 

concentrations in the fluid and melt phase was investigated for basaltic melt composition at 200 

and 100 MPa at various redox conditions (FMQ+0.5, FMQ+2, FMQ+2.5 and FMQ+4). Fig 20a-

d illustrates, that the relationship between Cl and S is complex and strongly dependent on the 

redox conditions of the system. The concentration of S and Cl in the melt vary inversely with 

one another at oxidizing conditions (≥FMQ+2), where S6+ is the dominating S species (Fig.20f). 

At nearly similar system composition (with respect to slightly lower bulk Cl and bulk H2O at 100 

MPa (Table 7 and described in §2.3) and similar fluid composition (Fig.18), the Cl and S 

concentrations in the melt are in general about 0-15 rel.% lower for Cl and 30 rel.% for S at 100 

MPa compared to 200 MPa (Fig.20a,b). The difference in Cl melt between 100 MPa and 200 

MPa becomes larger with increasing bulk S and S# fluid. At reduced conditions (FMQ+0.5 and 

200MPa) no mutual effects of Cl and S was observed (Fig.20a-d). The Cl and S concentrations 
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in the FeS-saturated melts vary between 0.06-2.24 wt.% Cl (Fig.20b,d) and 0.09-0.13 wt.% S 

(which is about 10-15 rel.% of the S content at anhydrite-saturation at 200 MPa and various bulk 

Cl) (Fig. 20a,c). 

4.5.3 Effect of Cl on the S concentration in the melt 

Fig.20a,b illustrates the effect of Cl concentration in the system and the effect of Cl 

concentration in the melt, respectively on the S concentration in the melt. At fO2 ~FMQ+2 and 

above, increasing bulk Cl at fixed bulk S leads to a significant decrease in S concentration in the 

melt (and a slight increase in S concentration in the fluid, resulting from mass balance 

calculation). At 200 MPa S melt decreases with bulk Cl for a maximum of about 12 rel.% at 

FMQ+2 and 23 rel.% at FMQ+4, observed at anhydrite-saturation. In total the S content at 

anhydrite-saturation decreases from 0.85 to 0.63 wt.% S at FMQ+2 and 0.74 to 0.58 wt.% S at 

FMQ+4, if bulk Cl increases from ~0.05 to 3.5 wt.% Cl (and Cl# fluid increases from ~0 to 0.3). 

It is noteworthy, that at 200 MPa the S concentration (at fixed bulk Cl) in the anhydrite-saturated 

melts is about 9-13 rel.% lower at FMQ+4 that at FMQ+2.  

At 100 MPa and FMQ+2.5 the S content in the melt is decreased to a maximum of about 

27 rel.% at highest bulk Cl (3.0 wt.% Cl) and highest Cl# fluid (0.23), observed at anhydrite-

saturation. At these P- and fO2-conditions the S melt concentration at anhydrite-saturation is 

about 20 rel.% higher at slightly higher bulk Cl (0.15 wt.% and Cl# fluid ~0) compared to lowest 

bulk Cl (0.05 wt.% and Cl# fluid ~0) (in total 0.60 wt.% S vs. 0.50 wt.% S, respectively). 

However, no systematic effect of Cl on the S concentration in the melt for bulk Cl ≤0.55 wt.% 

was observed. Since the composition of these melts follow the general observed trends in main 

element concentration depending on bulk S, bulk Cl and fO2, this deviation from the expected 

systematic relationship of Cl on S content in the melt can not be directly explained by S- and Cl 

enforced alkali extraction and coexistence of mineral phases (Fig.16a-d, Table 8) or by possible 

larger deviation in fO2 from ~FMQ+2.5 (in particular for those runs with lower monitored PH2 
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than expected). However, the maximum decrease of S concentration in the melt is observed at 

anhydrite-saturation, high bulk Cl and high Cl# fluid (decrease in S content of about 32 rel.% (at 

1.41 wt.% bulk Cl and Cl# fluid ~0.10) and 28 rel.% (at 3.05 wt.% bulk Cl and Cl# fluid ~0.23), 

resulting in S contents in the melt of 0.41 and 0.43 wt.% S, respectively) (Fig.20a,c). It is 

remarkable, that at 100 MPa and FMQ+4 the S content in the melt systematically decreases with 

bulk Cl for a maximum of about ~31 rel.% (at 2.74 wt.% bulk Cl and Cl# fluid ~0.25), observed 

at anhydrite-saturation (with a total decrease in S content from 0.64 to 0.44 wt.% S). In contrast 

to lower S contents at anhydrite-saturation observed for FMQ+4 and 200 MPa, the S content at 

anhydrite-saturation at 100 MPa is in general about 7 rel.% higher at FMQ+4 compared to 

FMQ+2.5 (for similar system composition). 

4.5.4 Effect of S on the Cl concentration in the melt 

Fig.20b,d illustrates the effect of S concentration in the system and the S concentration in 

the melt, respectively on the Cl concentration in the melt. Increasing S concentration in the 

system at fixed bulk Cl leads to a decrease in Cl concentration of the melt. This effect is more 

pronounced at FMQ+4 compared to FMQ+2 and FMQ+2.5. Thus, at 200 MPa Cl melt decreases 

for about 10-12 rel.% at FMQ+2 and for about 10-32 rel.% at FMQ+4, if bulk S increases from 

~0.2 to 2 wt.% S. This results in a total Cl concentration of about 1.97 and 1.75 wt.% Cl at 

highest bulk Cl (~3.5 wt.%) and highest Cl# fluid (~0.3). At low bulk S (~0.2 wt.%) and low S# 

fluid (~0 to 0.01) (not investigated at FMQ+4) the Cl concentration in the melt at FMQ+2 (2.23 

wt.% Cl) is similar to that observed at reduced conditions (FMQ+0.5) for both, S-free and S-

bearing systems (2.26 and 2.24 wt.% Cl, respectively). At 100 MPa the Cl concentration in the 

melt decreases for about 13-26 rel.% at FMQ+2.5 and for about 20-40 rel.% at FMQ+4, if bulk S 

increases from ~0.2 to 2 wt.%. In total the Cl content in those melts obtained at highest bulk Cl 

(~3 wt.%) and highest Cl# fluid (~0.25) is decreased to 1.62 wt.% Cl at FMQ+2.5 and 1.33 wt.% 

Cl at FMQ+4. The maximum observed Cl concentration at 100 MPa, obtained at low bulk S 
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(0.19 wt.%) and low S# fluid (0.04) was determined to be 2.20 wt.% Cl.  It is worthy noted, that 

all S-free basaltic melts reported herein (exp. 0-1050 to 4-1050) (Stelling et al., 2008) containing 

2.26 wt.% Cl at a maximum (at 200 MPa) were below Cl-saturation, which is expected to be 

about 4 wt.% Cl (Stelling et al., 2008).  

4.5.5 Correlation between Cl and S concentrations in the melt 

The direct relationship between Cl melt and S melt is illustrated in Fig. 20c,f. At both 

investigated pressures (200 and 100 MPa) sulfur reduces the Cl concentration in the melt, if (1) 

the Cl concentration in the system is higher than ~0.5-0.6 wt.% Cl (Cl# fluid > ~0.02) and (2) the 

melt is anhydrite-(sub)saturated (Fig.20c).  In contrast chlorine decreases the S concentration in 

the melt approximately linear with increasing Cl concentration in the melt for a maximum of 

about 0.1-0.2 wt.% S independent on P and the S concentrations in the system (Fig.20f). At low 

fO2 (FMQ+0.5) no mutual effects of Cl melt and S melt can be observed. 
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5. Discussion 

5.1  S and Cl partitioning between melt and fluid 

In Fig.21 the partitioning coefficients Kd’S and Kd’Cl are shown as a function of S- and Cl 

concentrations in the melt- (a, c) and the S- and Cl proportions in the fluid phase (Cl# fluid and 

S# fluid) (b, d) at fixed S and Cl concentration in the system. Since we observed non-linear (non-

ideal) mixing properties of Cl and S between fluid and melt (shown in Fig. 20a,b,d,e), Kd’Cl and 

Kd’S increase with increasing Cl- and S concentration in the melt- and increasing Cl- and S 

concentration in the fluid (Cl# fluid and S# fluid), except for Kd’S at low S content in the 

system, as described in the following. The partitioning coefficients of sulfur (a,b) range between 

Kd’S = 1.3 ± 0.2 to 37.8 ± 2.8 in the sulfate-rich systems at FMQ+2 to FMQ+4. In the sulfate-

poor systems Kd’S ranges between 162-236 ± 16 to 37 for the FeS-saturated basaltic melts and 

ranges between 532-745 ± 38 to 65 for the FeS(sub)-saturated dacitic melts. The partitioning 

behavior of sulfur is largely influenced by increasing bulk Cl, if sulfate is the dominating S 

species and the S concentration in the system is low (0.2 wt. % bulk S). Thus, in the sulfate 

dominated systems (FMQ+2 to FMQ+4), Kd’S increases from 1.3 ± 0.2 to 95.7 ± 15.6 at low 

bulk S (0.2 wt.% S) (illustrated by the grey thin dotted curves in Fig.21a,b), if bulk Cl increases 

from 0.05 to ~3.5 wt.% Cl (observed at FMQ+2 and 200 MPa). At higher S concentrations in the 

(sulfate dominated) system the influence of Cl on S partitioning is still significant and Kd’S 

increases systematically at fixed bulk S (mainly independent on P) with increasing bulk Cl (from 

~0.05 to 3-3.5 wt.% Cl) to a maximum of about 200 rel.%. The partitioning coefficients of 

chlorine (Fig.21c,d) increase with Cl melt (Fig.21b) and Cl# fluid (Fig.21d) from Kd’Cl ~0 to 

18.9 ± 1.7 in the basaltic melts and from Kd’Cl ~0 to 34.2 ± 4.7 in the dacitic melts. In general 

chlorine partitions into the fluid to a greater extend at S-rich (sulfate-rich), oxidizing systems 

(~FMQ+2 and above). 
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Fig. 21: Fig. 21a-d show the partitioning coefficients of sulfur and chlorine (Kd’S and Kd’Cl) as a function of the S- 

and Cl concentration in the melt (a, c) and the S- and Cl proportion in the fluid (S# fluid and Cl# fluid) (b, d). 

Fig.21a,b illustrate that Kd’S for the sulfide-bearing systems of (Cl-free) dacite (crossed triangles) and (Cl-bearing) 

FeS-saturated basalt (green dots) are about one and two orders of magnitude higher (for basalt and dacite, 

respectively) than compared to Kd’S of the sulphate-bearing systems. The effect of increasing Cl concentration in 

the system on Kd’S is illustrated by the black arrow, where the grey thin dotted curves represent the changes in 

Kd’S with bulk Cl at fixed S content in the system. It is well demonstrated, that chlorine enforces the S partitioning 

into the fluid being mostly pronounced at low S contents in the system, resulting in low S concentration in the melt 

(a) and comparable high S# fluid (b). In general Kd’S at 100 MPa is about 2-times higher than for comparable 

system compositions at 200 MPa (a, b), where both series at different pressure are separated by the grey dashed-

dotted curve (a), although there is a slight overlap of data between both series, in particular at lower S melt and 

lower S# fluid. The grey thick dotted and the grey thick dashed curves representing data for high bulk Cl and low 

bulk Cl, respectively (a, b). Fig. 21c,d illustrate the effect of sulfur as sulfate on Kd’Cl over the whole range of 

investigated system composition. The grey thin dotted lines follow the trend of Kd’Cl changing with sulfate at 

comparable system compositions (accentuated by the black arrows). The dark grey dashed-dotted curve represents 

data at 100 and 200 MPa for basalt, the grey dotted and the grey dashed curves are eye-guiding lines for the sulfate-

rich (anhydrite-saturated) data at 100 and 200 MPa, respectively (c, d). Also shown are data for KRA-dacite at 200 

MPa (long-dashed grey curve), S-free data of Stelling et al. (2008) at 1050-1250°C and 200 MPa, including HCl and 

PtCl4 as Cl-source (small gray dots) and the AgCl-data (small open grey dots); *Cl# fluid for both AgCl-data were 

set to 1 (as described in the text and in the Appendix Table E); other symbols are explained in Fig. 20. 
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 This effect is most pronounced at highest investigated fO2 (FMQ+4), where Kd’Cl at 

fixed Cl# fluid is in general increased for about 250 rel.% compared to S-rich (dominantly 

sulfide-rich) reduced systems at fO2 ~FMQ+0.5 (with Kd’Cl at FMQ+4 up to 17.4 ± 0.6 (at 200 

MPa) and 18.9 ± 1.7 (at 100 MPa) and Kd’Cl at FMQ+0.5 up to 8.8 ± 0.7 at 200 MPa). At low S 

(sulfate-dominated) concentration in the system, Kd’Cl at 100 MPa and Kd’Cl at 200 MPa at 

fixed system composition and comparable fO2 are mainly similar. At high S (sulfate-dominated) 

concentration in the system (FMQ+4) Kd’Cl increases with Cl melt to a larger extend (~200 %) 

at 100 MPa compared to 200 MPa (c,d). The Cl partitioning-behavior in the system AgCl-

H2O/HCl-fluid and basaltic melt at 1200°C differs significantly from that observed for the 

system HCl-fluid and basaltic melt at 1050-1250°C (Fig.21c) (including data of Stelling et al., 

2008). Thus, Cl seems to partition more preferentially into the melt with up to 2.8 wt.% of 

dissolved Cl in the melt, if an AgCl-H2O/HCl mixture is used as Cl source, instead of HCl. At 

higher Cl concentrations in the melt (≥ 3 wt.% Cl), Kd’Cl of the AgCl-data and those of Stelling 

et al. (2008), where PtCl or PtCl-H2O mixtures were used as Cl source are similar at comparable 

chlorine content in the melt (as illustrated by the grey dashed-dotted curve in Fig.21c,d. It is 

noteworthy, that the amounts of H2O dissolved in the melt for the marked (*) two AgCl-data 

(exp. A-10 and HClA 3, Appendix Table E, F) were higher than the H2O contents initially added 

to the system, indicating that H2O was generated by reducing the melt (e.g., Fe3+ to Fe2+) due to 

equilibration of PH2 between vessel and sample capsule. Since we assume that nearly all H2O at 

these experiments was dissolved in the melt, we defined the chlorine number of the product fluid 

to Cl# fluid = 1. As a result Kd’Cl for both AgCl-data might be overestimated. 
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5.2 Cation extraction from the melt into the fluid 

 The losses of cations (mainly Ca2+, Na+ and K+) from the melt with increasing Cl melt as 

shown in Fig.16 can be well explained by the dissolution of Ca-, Na- or K-sulphates in the Cl-

enriched fluids.  

 

Fig.22: Fig.22a-d illustrates the chlorine enforced cation-extraction from the basaltic melts due to the Cl-enforced 

dissolution of cation-sulfates (CaSO4, Na2SO4 and K2SO4) from the melt into the fluid (as discussed in the text).  

The dashed lines showing the almost linear correlation between the A/CNK ratio (a) or the alkali contents (b-d) and 

the amounts of sulfur dissolved in the melt at fixed S concentrations in the system (same symbols as in Fig. 16). The 

black and red symbols represent data at anhydrite-saturation. The black arrows indicate the increase in Cl# fluid 

ranging from ~0 to 0.25-0.34 for all sulfate-dominated systems and Cl# fluid from ~0 to 0.20 in the FeS-saturated 

basaltic melt; *exp. 0_15_01 at 100 MPa (crystallinity ~3 vol.%): H2O melt (KFT) is about 25-35 rel.% less than for 

other melts obtained at 100 MPa, containing comparable amounts of crystals (~1-3 vol.%); same symbols as in 

Fig.20. 

 
  Newton & Manning determined the solubility of CaSO4 in NaCl-H2O solutions being 

about 200 times higher at XNaCl of 0.3 (or Cl# fluid = 0.3) (5-6 molal) compared to pure H2O 
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(0.03 molal) (at 800°C and 10kbar). Webster et al. (2009b) observed a dramatic increase of 

CaSO4 solubility with increasing X(Na,K)Cl in aqueous fluids determined to be 22 molal at X(Na,K)Cl 

~0.3 (at 904-927°C and 200 MPa) and proposed a strong positive effect of T on the CaSO4 

solubility. Webster et al. (2009b) observed S-bearing fluids stripping alkalis from the melt 

(where they used NaCl and KCl as chlorine source) due to the reaction: 

 2 CaSO4 + NaCl + KCl (+H2O) = 2 CaCl+
aq + NaSO4

-
aq + KSO4

-
 aq(+H2O)             (14), 

where they refered X±
aq to be the charged species dissolved in the aqueous fluids. Since we used 

HCl solutions as Cl source, we suppose following reaction occurring in our sulfate-bearing 

system enforcing the extraction of alkalis mainly CaO (and to a minor content Na2O and K2O) 

from the melt into the fluid: 

 CaSO4 (melt) + (Na,K)2SO4 (melt) + 4HCl aq = CaCl2 aq + 2(Na,K)Cl aq + 2H2SO4 aq     (15). 

 Fig.22 illustrates the approximately linear relationship between Cl-enforced cation loss 

from the melt (also shown in terms of A/CNK ratio, Fig.22a) and decreasing S content in the 

melt due to eq.15. Because the statistical errors of EMPA analyses for Na2O and K2O were 

mostly larger than the observed differences in Na2O and K2O concentrations in the melts, we can 

not provide accurate quantification of Na- and K load from the melt into the fluid. 

 Furthermore, precipitation of anhydrite in our sulfate-saturated melts do not allow for 

precise calculation of Ca contents load to the fluid. However, taking a positive T-dependence on 

CaSO4 solubility in NaCl-H2O solutions together with the solubility data at 800°C (Newton & 

Manning, 2005) and ~900°C (Webster et al., 2009b) into account, we conclude our fluids 

obtained at higher T (1050°C) become significantly enriched in Ca and to a minor extend 

enriched in Na and K with increasing Cl# fluid and increasing S# fluid. 
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5.3 The effect of cation extraction on S and Cl fluid/melt-partitioning 

 

Fig.23: Fig 23. shows the correlation between the chlorine concentration in the fluid (Cl# fluid) and the Cl 

concentration in the melt normalized to the maximum Cl solubility given by the model of Webster & DeVivo 

(2002), by excluding correction terms recommended by the model for our melt compositions (as explained in the 

text). The shown data correspond to the basaltic S-free or sulfate-poor melts (marked with “red”, means data include 

reduced runs at FMQ+0.5, green dots) and the anhydrite-saturated melts (marked with “ox”, means oxidized runs at 

FMQ+2 to FMQ+4), same symbols as in Fig.16. The dashed lines follow our datasets (at 1050°C, 100 and 200 MPa) 

(grey dashed line: S-free or sulfate-poor systems, black dashed line: anhydrite-saturated systems). The black thick 

arrow illustrates the change in the partitioning-behavior of chlorine with increasing Ca2+-load to the fluid, in 

particular occurring at sulfate-rich systems. The dotted grey line illustrates the partitioning-behavior of chlorine in 

the system AgCl-H2O/HCl fluid-basaltic melt at 1200°C and 200 MPa The Figure included on the right is a sketch 

given by Signorelli & Carroll (2000) (modified) illustrating their data for Cl partitioning in the system (Na,K)Cl-

H2O fluid-phonolitic melt at T=860-880°C and a P range of 50-250 MPa (where Cl cont. means the chlorine 

concentration). With respect to the data of Signorelli & Carroll (2000) our data at 1050°C for 100 and 200 MPa 

(HCl as Cl source) indicate the presence of a supercritical fluid (shown by the thin black arrow), whereas the AgCl-

data may represent subcritical fluid properties (fluid-unmixing) (shown by the gray arrow). The strong linear 

increase of the chlorine concentration in the melt at low Cl# fluid is supposed to be the result by the nearly ideal 

partitioning-behavior of chlorine between a single hydrous Cl fluid phase and silicate melt occurring at low P (e.g., 

Shinohara et al., 1989, Shinohara, 1994; Williams et al., 1997; Signorelli & Carroll, 2000; Shinohara, 2009). 
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Fig.23 shows the Cl melt concentration normalized to the maximum solubility calculated for 

each data point by the model of Webster & Vivo (2002). Therefore we excluded correction terms 

recommended by the authors for our melt compositions, because the uncorrected Cl solubility 

ranging between 3.5-4 wt.% Cl for our melts is similar to the experimental determined Cl 

solubility in Etna basalt of ~4 wt.% (Stelling et al., 2008). Fig.23 indicates, that the difference of 

the chlorine partitioning-behavior between the S-free or low sulfate containing melts and the 

anhydrite-saturated melts is more likely the result of changing the fluid properties than changing 

the Cl-solubility due to variations in melt composition. The data Signorelli & Carroll (2000) for 

Cl partitioning between (Na,K)Cl-H2O fluid and phonolitic melt at 860-880°C and P ranging 

from 50 to 250 MPa illustrate, that the partitioning-behavior of chlorine is strongly dependent on 

pressure (at ~constant T) (sketch in Fig.23). The non-linear partitioning-behavior of chlorine for 

our investigated range of system composition at 1050°C and P=100 and 200 MPa is comparable 

to that observed by Signorelli & Carroll (2000) at similar or higher P (200 and 250 MPa) and 

may represent the presence of a supercritical fluid. However, for the in system AgCl-H2O/HCl 

fluid and basaltic melt at 1200°C and 200 MPa the chlorine partitioning-behavior is comparable 

to that obtained by Signorelli & Carroll (2000) at T=860-880°C and low to moderate P (50-150 

MPa), being the result of subcritical fluid properties, where the fluid unmixes into a H2O-rich Cl 

vapor phase and a hydrosaline liquid (or hydrosaline brine) (e.g. Webster, 2004).  

 We would expect the occurrence of fluid unmixing in our sulfate-rich systems, because of 

the significant alkali-extraction from the melt into the fluid (mainly Ca2+, but also Na+ and K+, 

Fig.22b-d), because of two aspects (1) the higher fluid immiscibility for the ternary system H2O-

NaCl-KCl compared to that of the binary systems H2O-NaCl- or H2O-KCl (e.g., Gunter et al., 

1983; Chou et al., 1992; Sterner et al., 1992) and (2) shifting  the critical pressure to higher 

values, due to the increases Ca-load in the fluid (e.g., Bischoff et al., 1996; Duan et al., 2006). 

However, the fluid composition for the experiments of Signorelli & Carroll (2000) obtained at 

higher pressures (200 and 250 MPa) may have been more complex than the ternary system 
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(Na,K)Cl-H2O fluid, because (1) increasing chlorine concentration in the fluid enforces the 

extraction of cation from the melt (e.g., Candela & Piccoli, 1995; Williams et al., 1995, 1997; 

Student and Bodnar, 1999; Stelling et al., 2008) and (2) the solubility of cations in hydrous fluids 

increase with increasing P (e.g. Gunter et al., 1983; Bischoff & Rosenbauer, 1985, 1988; Bodnar 

et al.,1985; Chou, 1987; Bischoff & Pitzer; 1989; Chou et al., 1992; Sterner et al., 1992; Bischoff 

et al., 1996; Duan et al., 2006; Driesner et al., 2007a, 2007b). Thus, we suppose the partitioning-

behavior of chlorine in our sulfate-rich or anhydrite-saturated systems is mainly similar to that 

observed by Signorelli & Carroll (2000) at higher pressure, because of the higher complexity of 

fluid composition for both systems. Our AgCl-data (at 1200°C and 200 MPa) indicate that the 

critical pressure is shifted to higher values in the fluid system AgCl-H2O/HCl compared to that 

of HCl and ± alkali-cations, because Stelling et al.(2008) did not observed any difference in the 

partitioning-behavior of chlorine at 200 MPa and T ranging from 1050-1250°C by using HCl as 

Cl source, where the data of Stelling et al. (2008) at 1050°C are shown in Fig.23 (small gray 

dots).   

 Webster et al. (2009b) determined Cl concentrations in phonolitic to trachytic melts 

coexisting with Cl-S-H2O vapour (S dominantly as sulfate) and saline liquids (e.g., NaCl, KCl, 

CaCl2) decreased to a maximum of 33 rel.% compared to S-deficient systems (at 200 MPa, T = 

896-1022 °C and ~FMQ+1.2 to ~FMQ+2.3). The same authors suggested that the presence of 

sulfur in the melt and fluid phase reduces the Cl activity. A change of Cl activity due to the 

presence of S-bearing hydrous fluid was also mentioned by Botcharnikov et al. (2004) 

suggesting H2S and SO2 complexing with Cl- and hence effecting H2O-Cl mixing properties. We 

suppose the Cl-enforced Ca-cation load to the fluid due to the dissolution of CaSO4 from the 

sulfate-rich melts causes an increase of fluid complexity and significantly effect the Cl activity in 

the fluid.  

 The effect of chlorine on the partitioning behavior of sulfur in our fluid-melt systems 

(Fig.20a,b and Fig.21a,b) can be interpreted to be directly the result of decreasing S 
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concentration in the melt, due to the Cl enforced dissolution of sulfates (mainly CaSO4) from the 

melt into the fluid (Fig.22 and eq.15). This relationship is well demonstrated by the high 

observed Kd’S at low bulk S and high bulk Cl (Fig.21a,b). For this system composition, mainly 

all S (complexed to sulphate) dissolves in the fluid and only a negligible amount of S remains 

dissolved in the melt. The fact, that anhydrite-saturation occurs, even though the S 

concentrations in the melt decreased with bulk Cl (Fig.20a,c) or Cl melt (Fig.20f) may be a result 

in decreasing sulfate capacity of the melt by the Cl enforced extraction of CaO (and Na2O + 

K2O) from the melt (Fig.22a-d, eq.15). 

 However, the partitioning-behavior of sulfur between aqueous fluid and multicomponent 

silicate melts is hitherto not well constrained. Experimental data of Moune et al. (2008) indicate 

linear partitioning of sulfur (dominantly as sulfide) between aqueous fluid and basaltic and 

andesitic melts at 1050°C and 300 and 200 MPa, respectively (but only few S-undersaturated 

data are included in this study). Furthermore, Keppler (2010) determined S partitioning 

coefficients between aqueous fluid and haplogranitic melt at 750-850°C, 50 to 300 MPa and fO2 

ranging from ~FMQ-1 to ~FMQ+3 being constant (indicating ideal partitioning behavior of 

sulfide and sulfate) at given P-, T- and redox conditions with up to 7 wt.% S in the fluid 

(corresponding to S# fluid of 0.07) (where Kd’S ranged in total from 47-468). In contrast, non-

ideal partitioning behavior of sulfur (dominantly as sulfide) between aqueous fluid and rhyolitic 

melts in Cl-bearing systems was observed by Botcharnikov et al. (2004) (at ~FMQ+0.7) (Kd’S 

of 18 to 108) and is indicated by data of Scaillet & McDonald (2006) (at ~FMQ-1.5 to 

~FMQ+0.5). Further non-linear mixing properties of sulfur (dominantly as sulfate) between Cl-

H2O fluid and phonolitic-trachytic melts was observed by Webster et al. (2009b) (at ~FMQ+1.2 

to FMQ+2.3) yielding Kd’S of ~2.4 to 1095. In Cl-free systems non-linear S partitioning (S 

dominantly as sulfate) between aqueous fluid and rhyolitic melts was obtained by Parat & Holtz 

(2005) (at ~FMQ+4). However, the studies cited above indicate, that the partitioning-behavior of 

sulfur between hydrous fluid and natural multicomponent melts is complex. However according 
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to Keppler (2010) obtaining a linear partitioning-behavior of sulfur in a comparably low complex 

fluid-melt system, we suppose, that the mixing properties of sulfur between aqueous fluid and 

silicate melt strongly depend on the complexity of the system composition (total composition of 

fluid and melt). Thus, the S partitioning behavior between aqueous fluid and multicomponent 

natural melts will differ from ideality. 

5.4 Implication to the natural magmatic system of Mt.Etna 

 Variations in the S/Cl ratio of volcanic gases were observed to be directly correlated to 

the volcanic activity for instance at the andesitic magmatic system of the Soufrière Hills volcano 

(Montserrat, West Indies) (Edmonds et al., 2001, 2002), the shoshonitic and potassic alkaline 

system of Vulcano (Vulcano Island, Aeolian Islands, Italy) (Di Liberto et al., 2002) or the 

basaltic system of Mt.Etna (Sicily, Italy) (e.g., Aiuppa et al., 2002, 2004, 2007, 2008).  

 In the case of Mt.Etna it is argued that Mt.Etna’s eruption can be triggered by injection of 

juvenile volatile-rich, S-rich magma (Corsaro et al., 2007, 2009; Métrich et al., 1993; Clocchiatti 

et al., 2004; Andronico et al., 2005; Viccaro et al., 2006, 2008; Spilliaert et al., 2006a,b; Ferlito 

et al., 2008, 2009). During passive degassing stages at Mt.Etna’s 2002-2003 eruption the highest 

S/Cl ratios in the emitted gases were observed (~7, in wt.%). On the contrary those gases emitted 

at high volcanic explosivity yielded S/Cl ratios of ~0.4-2 (Aiuppa et al., 2004). The volatile 

contents of Mt.Etna’s OL melt-inclusion (OL-MI) range between ~0.27-0.35 wt.% S and ~2-3.5 

wt.% H2O for the most primitive OL-MI and between 0.03-0.18 wt.% S and 0.3-1.3 wt.% H2O 

for the more evolved OL-MI and OL-glass embayments, where the Cl concentration increases 

from ~0.15-0.26 wt.% Cl accompanied to the degree of melt evolution (Spilliaert et al., 2006a,b). 

Aiuppa et al. (2002, 2004, 2008) and Spilliaert et al. (2006a,b) interpreted magmatic gas-/fluid 

phases with high S/Cl ratios were released by primitive volatile, S-rich magma, as represented by 

the primitive OL-MI described above (Spilliaert et al, 2006a,b).  
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 Our presented data provide valuable information about the Cl- and S partition between 

basaltic melt and hydrous fluid and allow estimation of the S content in the melt and the oxygen 

fugacity in the system, if the S/Cl ratio of the coexisting fluid is known (considering fluid-melt 

equilibrium and aphyric conditions). Since our experimental pressure (100 and 200 MPa) is very 

close to P-conditions of Mt.Etna’s magma storage (~250 MPa) (e.g., Métrich et al., 2004) and P 

at the onset of initial S degassing (~140 MPa) (Spilliaert et al., 2006b), we compared the S/Cl 

ratios of our fluids with the in situ measured S/Cl- ratios of emitted gases at Mt.Etna (Aiuppa et 

al., 2004) and compared the S concentration of our coexisting melts to the S contents of the 

primitive and the more evolved OL-MI of Mt.Etna.  

 The experimental T (1050°C) is slightly lower than temperatures estimated for the 

primitive Mt. Etnean melts (1100-1150°C) (Clocchiatti & Métrich, 1984; Métrich 1985; 

Archambault & Tanguy, 1976; Kamenetzkiy et al., 1986; Métrich & Clochiatti, 1989). However, 

the OL-saturated data (OL-melt equilibrium) (Chapter I) indicate that the temperature of 

Mt.Etna’s S-rich magma containing ~5.5 wt.% MgO, might be somewhat lower (~1025°C) and 

the more evolved OL-MI  containing less than 5 wt.% MgO indicate to be in equilibrium with 

OL at T about <1025°C (Fig.15, Chapter I). The range of our investigated fO2 of ~FMQ+0.5 

(sulfide-dominated system) and ~FMQ+2 to ~FMQ+4 (sulfate-dominated system) accounts for 

the relatively high oxidation-state of Mt.Etna magma determined to be FMQ+1 (S6+/ΣS ratio of 

~0.44 ± 0.07) and to the high fO2-dependence on the sulfur solubility (and S partitioning) at fO2 

FMQ+1 (e.g., Carroll & Rutherford, 1985, 1987; Luhr, 1990; Jugo et al., 2005a, 2009, subm.; 

Parat et al., 2008; Botcharnikov, subm.). 

Fig.24 illustrates the experimentally constrained correlation between the S/Cl ratio in the fluid 

and the S content in the coexisting melts containing ~0.15 ± 0.02 and 0.5 ± 0.1 wt.% Cl for the 

sulfate-dominated system (~FMQ+2 to ~FMQ+4) and ~0.05-2.24 wt.% Cl for the FeS-saturated 

melts (FMQ+0.5). 
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Fig.24: Correlation between the S/Cl ratio in the fluid and the S concentration in the coexisting melts containing 

~0.15 and ~0.5 wt.% Cl, comparable to Cl-concentrations of natural Mt Etnean melts (0.15-0.26 wt.% Cl) Spilliaert 

et al. (2006a,b). The grey arrows illustrate the observed differences in S/Cl-fluid and S melt between the FeS-

saturated basaltic melts in an sulfide-dominated system at ~FMQ+0.5 (green dots) and the sulfate-dominated 

basaltic melts (black symbols) including anhydrite-saturated data (red symbols). The curves are guiding-lines to the 

observed trends for each series at fixed Cl melt and constant P.  

 

 The here presented data demonstrate, that in the range of investigated system 

compositions the natural fluid S/Cl ratios (0.2-7) and the natural S contents of the primitive and 

slightly evolved melts (0.27-0.35 and 0.13-0.18 wt.% S, respectively) have been experimentally 

reproduced only in the sulfate-bearing systems (at ~0.15-0.5 wt.% Cl in the melt). With respect 

to the H2O contents of the natural OL-MI, our data primarily account for the primitive juvenile 

melts, containing similar amounts of H2O than the experimental data at 100 MPa (2.72-4.01 

wt.% H2O, Table 8, Fig.19). However, Fig.24 shows the trend of decreasing S content in the melt 

with decreasing S/Cl-fluid ratio in the fluid as supposed by Aiuppa et al. (2004, 2009) and 

Spilliaert et al. (2006a, 2006b). In Fig.25 the obtained correlation between the S/Cl ratio in the 
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fluid and the S concentration of the coexisting melt are schematically drawn in the field of 

interest.  

 

Fig.25: Similar diagram as shown in Fig.24, magnified to the field of interest by taking the natural in situ measured 

S/Cl ratios in volcanic gases at Mt.Etna’s 2002-2003 eruption by Aiuppa et al. (2004) into account (the light red 

coloured vertical bar illustrating S/Cl ratios of ~0.4-2 correlates to high volcanic explosivity; S/Cl ratios of ~6-7 

correlate to passive degassing stages as indicated by the gray vertical bar). The S content of Mt.Etna’s olivine melt 

inclusions (OL-MI) and glass embayments is shown by the horizontal bars. The gray horizontal bar represents 

primitive volatile-rich OL-MI and the red horizontal bar represents more evolved OL-MI and glass embayments. 

The gray and the red square illustrated the supposed correlation between the S/Cl ratio in the fluid and the S content 

in the melt at passive degassing and stages of high explosivity (e.g. Métrich et al., 1993, Aiuppa et a., 2004, 

Spilliaert et al., 2006a, 2006b). Shown curves are derived from interpolation of data plotted in Fig.24.  

 The experiments show that at a S/Cl ratio in the fluid of ~7 (representing stages of 

passive degassing) is obtained at ~0.25 and 0.3 wt.% S for 100 and 200 MPa, respectively and 

0.15 wt.% Cl in the melt or slightly above ~0.5 and 0.6 wt.% S for 100 and 200 MPa, 

respectively and ~0.5 wt.% Cl in the melt. Our estimated required melt S contents (at 200 MPa 

and 0.15 wt.% Cl dissolved in the melt) completely coincide with the S concentration of 
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Mt.Etna’s primitive volatile-rich, S-rich melts. Taking the estimated S solubility of Etna basalt at 

1050°C and FMQ+1 of ~0.35 wt.% S into account (Chapter I), we conclude primitive Mt. Etnean 

melt containing 0.35 wt.% at a maximum, were close to be sulfur-saturated. However, at sulfur-

saturation these melts are expected to condense S-bearing phases at QFM+1, as observed in the 

more evolved MI, containing ≤~0.15 wt.% S (e.g., Métrich, 1989; Spilliaert et al., 2006b). 

According to data of Spilliaert et al. (2006a) Mt. Etnean S-rich melts become S-depleted, if their 

water content become less than 2 wt.% H2O.  

 Our results for sulfur partitioning show that at fluid saturated conditions, and 0.3-0.4 

wt.% S dissolved in the melt (and Cl melt between 0.15 and 0.5 wt.%), sulfur partitions into the 

fluid in a larger extend at 100 MPa (Kd’S ~12-16) compared to 200 MPa (Kd’S ~2-5). This 

indicates that the onset of S degassing at P ~140 MPa (Spilliaert et al., 2006b) might be caused 

by accompanied degassing of water. Therefore, these melts are expected to release S-rich 

volatiles at fluid saturated conditions, in particular, if P decreases (during magma ascent). 

 Another possibility for S degassing with decreasing P at water saturated conditions may 

be due to the observed positive effect of water on S-solubility as indicated by our experiments 

and those of Luhr (1990) and Moune et al. (2008). Our data show that decreasing S/Cl ratios 

represent degassing of S-depleted more evolved magma. However, the presented model does not 

account for fractional crystallisation, which is expected to enforce the degassing of sulfur 

(without formation of S-bearing solid phase), because (1) the sulfur/melt-proportion increases 

and (2) with increasing melt differentiation the S solubility decreases. Experimental constraints 

of the crystallization path of Mt.Etnas primitive juvenile magma showed that at T ~1060°C and 

P down to ~27 MPa (~1.6 wt.% H2O in the melt, water-saturated conditions) the residual melt 

fraction was about 0.5 and the composition of the residual melts were comparable to that of the 

primitive starting glass (except the product melts were depleted in about 45 rel.% MgO, 

containing ~4 wt.% MgO vs. 7.7 wt.% MgO in the starting glass) (Métrich & Rutherford, 1998). 

The composition of the more evolved OL-MI and OL-glass embayments significantly differ 
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from that of the primitive OL-MI (mainly in higher K2O and lower CaO and MgO contents), 

assuming the S solubility in the more evolved melts should be lower than in the primitive ones. 

Although the dynamics of volcanic degassing are complex (e.g., Sparks, 2003; Corsaro & 

Pompilio, 2004) our data can be applied accurately to the volcanic system of Mt.Etna and 

probably to other basaltic relatively oxidized S-rich volcanic systems.  

6. Conclusions 

 The results of our S- and Cl partitioning experiments at 1050°C between aqueous fluid 

and basaltic melt at 100 and 200 MPa (FMQ+0.5 to FMQ+4) and dacitic melt at 200 MPa 

(FMQ+0.5) show a non-linear partitioning-behavior of chlorine and at fO2 ≥ FMQ+2 a non-

linear partitioning-behavior of sulfur. In a Cl-free/poor system the sulfide saturation at FMQ+0.5 

was determined to be 0.04 wt.% S in the dacitic melts and to be in the range of 0.09 ± 0.01 to 

0.13 ± 0.01 wt.% S in the basaltic melts. The S content at anhydrite-saturation in the Cl-poor 

basaltic melt was 0.85 ± 0.02 wt.% S at FMQ+2 and 0.74 ± 0.01 wt.% S at FMQ+4 at 200 MPa 

and 0.60 ± 0.01 wt.% S at FMQ+2.5 and 0.64 ± 0.01 wt.% S at FMQ+4 at 100 MPa.  

 The maximum chlorine concentration, observed at highest Cl content in the system (~3-

3.6 wt.% Cl) in the sulfate-poor and S-free melts was determined to be 2.26 ± 0.02 wt.% Cl at 

200 MPa and 2.20 ± 0.04 wt.% Cl at 100 MPa in the basaltic melts and 1.42 ± 0.03 wt.% in the 

dacitic melts (at 200 MPa). 

 Four most important observations have been reported. (1) Mutual effects of chlorine and 

sulfur were only observed in the sulfate-dominated systems (fO2 ≥ FMQ+2). (2) The addition of 

chlorine reduces the S content at anhydrite-saturation for a maximum of about 23-27 rel.%, 

observed at FMQ+4 for both investigated pressures. (3) The addition of chlorine to the sulfate-

dominated systems increases the extraction of cations from the melt (mainly Ca2+ and to a minor 



90  

extend Na+ and K+) into the fluid, which can be explained by the increased solubility of cation-

sulfates mainly CaSO4 in Cl-bearing aqueous fluids as quantified by Newton & Manning (2005) 

and Webster et al. (2009b). The partitioning-behavior of chlorine is significantly affected by the 

increased cation-load to the fluid in the sulfate-bearing systems, leading to an increase of fluid 

complexity, which is supposed to influent the chlorine activity in the fluid. (4) The effect of 

chlorine on the partitioning-behavior of sulfur can be explained by decreasing S concentrations 

in the melt, due to the Cl enforced dissolution of sulfates from the melt (mainly CaSO4) into the 

fluid. This effect is most pronounced at low S contents in the system, where mainly all sulfur 

dissolves in the fluid, resulting in a dramatic increase of Kd’S (~10 to 100-fold increase) 

compared to Cl-poor systems containing comparably amounts of sulfur. 

 The results allow to estimate the S concentration in basaltic melts and to constrain the 

oxygen fugacity in the system, if the Cl content in the melt and the S/Cl ratio of the coexisting 

fluid is known. Applied to the natural system of Mt. Etna, the estimated sulfur concentration is 

0.3 wt.% S for a melt being in equilibrium with a fluid representing passive degassing stages of 

Mt.Etna’s 2002-2003 eruption (S/Cl ration of ~7) (Aiuppa et al., 2004), which is completely 

comparable to the S contents of primitive S-rich melts ranging between ~0.27-0.35 wt.% S 

(Spilliaert et al., 2006a, 2006b). Thus, the results confirm the assumption that the S-rich volatiles 

emitted during passive degassing stages origin from primitive S-rich magma (e.g., Aiuppa et al., 

2002, 2004, 2008; Spilliaert et al., 2006a, 2006b). Calculating the S concentration in the melt, 

responsible for lower S/Cl fluid ratios observed at increasing volcanic explosivity (Aiuppa et al., 

2004) yielded values of about 0.1-0.2 wt.% S and thus being similar to the S contents of more 

evolved S-depleted melts (e.g., Métrich et al., 2004; Spilliaert et al., 2006a, 2006b). Although 

our data do not account for magma crystallization and the dynamics of degassing processes, the 

estimated sulfur concentrations are surprisingly accurate and can be therefore applied to other 

relatively oxidized S-rich basaltic volcanic systems.  
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Appendix 

  
Table A: Chemical composition of experimentally produced olivine 

OL                   

Run # 0_15_2 red 01_15_2 red 0_05_1 01_02_1 01_05_1 01_10_1 05_05_1 15_05_1 01_15_1 ox 

n 5  2  7  5  7  6  6  4  5  

SiO2 40.24 (19) 39.88 (01) 39.65 (21) 39.42 (26) 39.78 (12) 39.19 (33) 40.31 (17) 39.79 (17) 39.70 (22) 

TiO2 0.03 (01) 0.03 (01) 0.04 (02) 0.05 (01) 0.04 (01) 0.03 (01) 0.04 (01) 0.04 (01) 0.05 (02) 

Al2O3 0.03 (03) b.d. (01) b.d. (01) 0.04 (01) 0.04 (02) b.d. (01) 0.03 (01) 0.03 (01) 0.10 (12) 

FeOtot 13.62 (38) 14.10 (72) 14.49 (31) 15.27 (73) 13.67 (28) 14.33 (55) 12.08 (58) 11.87 (17) 13.08 (25) 

MnO 0.36 (05) 0.36 (06) 0.33 (05) 0.32 (05) 0.30 (05) 0.33 (04) 0.31 (03) 0.24 (08) 0.24 (04) 

MgO 43.90 (55) 43.04 (80) 44.74 (36) 43.98 (81) 45.61 (36) 44.69 (44) 46.83 (48) 47.30 (17) 46.55 (23) 

CaO 0.31 (03) 0.29 (05) 0.30 (03) 0.33 (04) 0.33 (03) 0.28 (03) 0.31 (02) 0.25 (03) 0.29 (04) 

Na2O b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  

K2O b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  

Total 98.50 (34) 97.73 (05) 99.61 (51) 99.44 (94) 99.79 (38) 98.90 (44) 99.93 (50) 99.54 (52) 100.05 (30) 

Fo# 85.2 (329) 84.5 (572) 84.6 (246) 83.7 (543) 85.6 (232) 84.8 (406) 87.4 (499) 87.7 (152) 86.4 (205) 
KDFe/Mg 

OL-melt 0.28  0.27  0.33  0.36  0.31  0.33  0.30  0.29  0.32  

Notes: n is the number of analyses. Number in parenthesis is 1 σ standard deviation of the mean. FeOtot is the total iron content. 
Mg# is the Mg-number: molar Mg/(Mg+Fe2+) ratio x 100. KD

Fe-Mg/OL-melt is th distribution coefficient of Fe and Mg 
between OL and melt calculated by Roeder & Emslie (1970) (KD

Fe-Mg/OL-melt = XOL
FeO * Xmelt

MgO / Xmelt
FeO * 

XOL
MgO, [molar]). 

 

Table B: Chemical composition of experimentally produced pyroxenes 
cpx                     

Run # 0_15_2 red 01_15_2 red 0_02_1 0_05_1 01_02_1 01_05_1 05_02_1 05_05_1 15_02_1 0_15 _1 red 

n 2  6  7  8  6  7  7  6  6  7  

SiO2 50.27 (08) 50.00 (63) 47.49 (105) 47.51 (73) 47.58 (64) 47.73 (68) 46.92 (38) 46.80 (32) 47.97 (92) 48.28 (94) 

TiO2 1.43 (09) 1.13 (24) 1.44 (12) 1.38 (14) 1.46 (10) 1.41 (22) 1.60 (10) 1.45 (08) 1.23 (20) 1.46 (20) 

Al2O3 5.24 (158) 3.79 (100) 7.02 (229) 5.88 (45) 8.57 (315) 9.73 (454) 8.02 (335) 6.74 (118) 5.37 (77) 5.70 (187)

FeO 4.02 (70) 5.06 (78) 7.76 (124) 7.49 (50) 7.52 (27) 7.44 (44) 7.87 (46) 7.75 (44) 7.58 (98) 6.26 (84) 

MnO 0.08 (01) 0.14 (02) 0.16 (06) 0.14 (06) 0.12 (03) 0.15 (03) 0.15 (05) 0.18 (05) 0.15 (09) 0.15 (07) 

MgO 14.48 (103) 14.62 (68) 12.80 (184) 13.68 (44) 11.97 (244) 10.88 (347) 12.18 (254) 13.33 (83) 14.38 (78) 13.06 (112)

CaO 22.68 (107) 22.83 (62) 21.55 (265) 23.03 (30) 20.41 (375) 18.24 (490) 20.81 (403) 21.74 (121) 22.49 (24) 22.12 (143)

Na2O 0.37 (18) 0.23 (04) 0.50 (22) 0.35 (02) 0.66 (39) 1.03 (69) 0.65 (60) 0.46 (15) 0.34 (03) 0.42 (25) 

K2O 0.27 (32) b.d.  0.25 (42) 0.04 (02) 0.48 (54) 0.73 (70) 0.32 (56) 0.15 (19) 0.06 (02) 0.16 (23) 

Total 98.84 (49) 97.80 (33) 98.96 (172) 99.50 (34) 98.77 (171) 97.35 (218) 98.53 (219) 98.60 (102) 99.57 (42) 97.61 (38) 

Mg# 86.5  83.7 74.6  76.5  74.0  72.3  73.4  75.4  77.2  78.8  

Notes: see Table A. 
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Table C: Chemical composition of experimentally produced Fe-oxides 
spl                       

Run # 0_05_2 0_10_2 01_02_2 01_05_2 01_10_2 01_15_2 15_15_2 0_15_2 ox 01_15_2 ox 05_15_2 ox 15_15_2 ox 

n 5  5  6  4  4  6 6 2  7  6  7  7  

SiO2 0.07 (02) 0.08 (01) 0.09 (11) 0.10 (04) 0.07 (02) 0.06 0.06 0.07 (01) 0.07 (02) 0.06 (02) 0.06 (02) 0.06 (02) 

TiO2 4.73 (28) 4.68 (22) 5.13 (24) 5.28 (28) 5.45 (11) 3.17 3.17 4.71 (02) 3.18 (06) 3.07 (11) 3.13 (05) 3.13 (05) 

Al2O3 5.60 (13) 5.74 (06) 5.54 (06) 5.75 (09) 6.01 (12) 7.02 7.02 7.60 (02) 6.41 (12) 6.38 (10) 6.71 (22) 6.71 (22) 

FeOtot 76.63 (49) 76.28 (53) 75.90 (63) 75.84 (83) 75.88 (43) 74.12 74.12 70.42 (20) 74.60 (49) 74.13 (239) 74.37 (77) 74.37 (77) 

MnO 0.32 (05) 0.32 (06) 0.30 (03) 0.33 (03) 0.26 (05) 0.31 0.31 0.27 (06) 0.34 (06) 0.34 (05) 0.30 (04) 0.30 (04) 

MgO 7.00 (10) 6.62 (07) 6.70 (08) 6.58 (06) 6.43 (13) 7.85 7.85 6.61 (07) 8.05 (14) 8.05 (08) 8.00 (13) 8.00 (13) 

CaO b.d  b.d  b.d  b.d  b.d  b.d b.d 0.02 (0) b.d  b.d  b.d  b.d  

Na2O b.d  b.d  b.d  b.d  b.d  b.d b.d b.d  b.d  b.d  b.d  b.d  

K2O 0.06 (07) 0.08 (03) 0.09 (12) 0.09 (09) 0.07 (04) 0.06 0.06 0.08 (02) 0.09 (07) 0.05 (03) 0.08 (03) 0.08 (03) 

Total 94.47 (54) 93.84 (56) 93.78 (51) 94.01 (82) 94.20 (45) 92.63 92.63 89.83 (32) 92.77 (42) 92.12 (256) 92.67 (86) 92.67 (86) 
 

Table C: continued 
spll                       

Run # 30_15_2 ox 0_02_1 0_05_1 0_10_1 01_02_1 01_05_1 01_10_1 01_15_1 05_02_1 05_05_1 05_15_1 

n 4  7  8  6  4 6  6  8  6  4 6  7  

SiO2 0.10 (03) 0.14 (03) 0.42 (89) 0.06 (02) 0.10 0.53 (91) 0.53 (91) 0.42 (89) 0.06 (02) 0.10 0.53 (91) 0.13 (09) 

TiO2 3.28 (03) 4.61 (08) 4.45 (11) 3.17 (08) 3.28 3.79 (07) 3.79 (07) 4.45 (11) 3.17 (08) 3.28 3.79 (07) 3.97 (05) 

Al2O3 7.75 (14) 7.16 (08) 6.99 (27) 7.02 (12) 7.75 7.01 (35) 7.01 (35) 6.99 (27) 7.02 (12) 7.75 7.01 (35) 7.70 (06) 

FeOtot 73.37 (50) 73.62 (31) 73.80 (98) 74.12 (95) 73.37 73.65 (130) 73.65 (130) 73.80 (98) 74.12 (95) 73.37 73.65 (130) 73.57 (45) 

MnO 0.23 (08) 0.34 (05) 0.34 (08) 0.31 (04) 0.23 0.35 (06) 0.35 (06) 0.34 (08) 0.31 (04) 0.23 0.35 (06) 0.38 (04) 

MgO 7.65 (03) 7.60 (10) 7.32 (21) 7.85 (09) 7.65 8.13 (14) 8.13 (14) 7.32 (21) 7.85 (09) 7.65 8.13 (14) 7.82 (10) 

CaO b.d  0.03 (01) 0.04 (06) b.d  b.d 0.04 (03) 0.04 (03) 0.04 (06) b.d  b.d 0.04 (03) 0.02 (01) 

Na2O b.d  b.d  b.d.  b.d  b.d b.d  b.d  b.d.  b.d  b.d b.d  b.d  

K2O 0.08 (04) 0.26 (05) 0.28 (10) 0.06 (03) 0.08 0.25 (10) 0.25 (10) 0.28 (10) 0.06 (03) 0.08 0.25 (10) 0.21 (06) 

Total 92.48 (55) 93.77 (47) 93.69 (73) 92.63 (96) 92.48 93.83 (49) 93.83 (49) 93.69 (73) 92.63 (96) 92.48 93.83 (49) 93.79 (53) 
 

Table C: continued 

spl                       

Run # 15_02_1 15_05_1 15_15_1 30_02_1 30_05_1 30_15_1 0_15_1 ox 01_15_1 ox 05_15_1 ox 15_15_1 ox 30_15_1 ox

n 7  6  12  4  7  13  7  7  6  5  7  

SiO2 0.21 (14) 0.13 (03) 0.08 (03) 0.07 (01) 0.10 (02) 0.08 (02) 0.06 (03) 0.10 (02) 0.09 (01) 0.07 (03) 0.08 (02)

TiO2 3.66 (03) 3.61 (03) 3.99 (13) 4.12 (03) 3.92 (10) 4.12 (28) 4.09 (06) 4.49 (08) 4.09 (07) 4.41 (05) 4.39 (06)

Al2O3 6.95 (05) 6.95 (09) 7.65 (38) 7.70 (10) 8.35 (08) 8.79 (37) 7.24 (10) 7.75 (11) 7.55 (04) 8.39 (11) 9.15 (11)

FeOtot 73.39 (47) 74.15 (67) 73.81 (68) 72.44 (47) 70.83 (68) 71.13 (106) 75.19 (64) 73.62 (59) 74.05 (53) 73.99 (32) 73.17 (18)

MnO 0.32 (05) 0.28 (03) 0.29 (04) 0.32 (04) 0.25 (03) 0.22 (05) 0.34 (05) 0.36 (06) 0.30 (05) 0.26 (05) 0.24 (04)

MgO 8.30 (10) 8.09 (08) 7.96 (11) 7.85 (07) 7.96 (07) 7.56 (21) 7.59 (08) 7.70 (17) 7.66 (08) 7.38 (08) 7.60 (10)

CaO 0.03 (01) 0.03 (01) b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  b.d.  

Na2O b.d  b.d  b.d  b.d  b.d  b.d  b.d  b.d  b.d  b.d.  b.d  

K2O 0.29 (03) 0.25 (03) 0.15 (06) 0.09 (02) 0.16 (05) 0.12 (04) 0.06 (02) 0.10 (06) 0.13 (04) 0.05 (01) 0.08 (06)

Total 93.16 (49) 93.50 (71) 93.95 (73) 92.63 (47) 91.61 (68) 92.03 (118) 94.58 (70) 94.13 (75) 93.89 (60) 94.56 (36) 94.72 (25)

Notes: see Table A. 
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Table D: Starting mass relations of experimental runs using AgCl or AgCl-H2O/HCl as Cl-source 
 m m m c Cl m m m m bulk bulk bulk   

Run # glass AgCl HCl HCl H2O Cladded Clinit. Cltot Cl H2O fluid X Cl X H20 

 [mg] [mg] [mg] [wt.%] [mg] [mg] [mg] [mg] [wt.%] [wt.%] [wt.%] molar molar 
              

AH-1 26.13 1.27 - - 3.24 0.31 0.02 0.33 1.11 10.91 12.03 0.05 0.95 

AH-2 29.85 2.75 - - 2.57 0.68 0.02 0.70 2.11 7.76 9.87 0.12 0.88 

A-10 21.13 9.39 - - 0.00 2.32 0.01 2.34 9.96 - 9.96 1.00 0.00 

                 

HClA 1 32.28 1.60 3.00 20.43 2.39 0.99 0.02 1.01 2.83 6.75 9.58 0.18 0.82 

HClA 2 26.40 2.65 2.86 29.42 2.02 1.47 0.02 1.49 4.98 6.84 11.82 0.27 0.73 

HClA 3 18.02 3.78 1.40 29.42 0.99 1.34 0.01 1.35 6.61 4.92 11.53 0.41 0.59 

Notes: m is the mass. c Cl is the concentration of Cl in HCl in wt.%; m Cladded is the mass of Cl contained in the 
added mass of HCl solution and AgCl; m Clinit. is the mass of Cl in the starting material due to the initial Cl 
concentration of 0.06 wt.% Cl in the starting glass; m Cltot is the sum of m Cladded and m Clinit.. Bulk Cl and H2O is 
the concentration of Cl and H2O in wt.%, respectively, taking the Ag-free loaded starting mass into account. 
Bulk fluid is the total sum of bulk Cl and H2O in wt.%. X Cl and X H2O is the molar ratio of Cl and H2O, 
respectively in the bulk fluid (defined to be solely composed of the volatile components Cl and H2O). 
 
 
Table E: Experimental run conditions and chemical composition of experimental product glasses using AgCl or 
AgCl-H2O/HCl as Cl-source (in wt.%)  
Run # n SiO2  TiO2 Al2O3  FeOtot  MnO MgO CaO Na2O K2O P2O5 Cl  Total  H2O  

A/ 
CNK

                          KFT  
T=1200°C, P=209 MPa, PH2=8.0 bar, 
log fO2=-7.2/FMQ+0.9, 23 h                       

AH-1** 20 45.80 (39) 1.72 (07) 15.84 (26) 9.19 (40) 0.15 (09) 5.89 (21) 10.29(32) 3.18 (15) 1.81 (09) 0.58 (01) 1.14 (02) 95.59 (74) 4.77**(62) 0.61

AH-2 20 45.12 (55) 1.64 (06) 15.53 (21) 8.93 (33) 0.19 (10) 5.77 (19) 9.84 (20) 3.22 (29) 1.80 (08) 0.58 (02) 2.08 (03) 94.70 (119) 5.63 (06) 0.62

A-10* 17 49.88 (51) 1.85 (06) 17.32 (24) 6.55 (35) 0.09 (08) 6.11 (19) 9.25 (25) 2.13 (18) 0.83 (08) 0.56 (02) 3.70 (05) 98.28 (106) 2.79 (07) 0.82
T=1200°C, P=193 MPa, PH2=6.9 bar, 
log fO2=-7.1/FMQ+1.0, 26 h                       

HClA 1 20 44.78 (33) 1.71 (07) 15.49 (27) 8.59 (12) 0.14 (08) 5.69 (13) 10.16(45) 3.11 (22) 1.65 (08) 0.57 (02) 2.82 (02) 94.72 (65) 5.57 (10) 0.61

HClA 2 19 45.25 (33) 1.71 (06) 15.49 (16) 8.42 (41) 0.17 (07) 5.63 (15) 10.04(18) 2.79 (40) 1.40 (09) 0.58 (03) 3.05 (02) 94.53 (74) 5.55 (13) 0.64

HClA 3* 20 45.92 (35) 1.68 (04) 15.67 (24) 8.33 (42) 0.12 (12) 5.70 (17) 9.76 (28) 2.36 (12) 1.15 (05) 0.59 (01) 3.39 (07) 94.67 (51) 5.53 (09) 0.69

Notes: log fO2 [bar] derives from monitoring of experimental PH2 (Shaw-membrane), ΔFMQ is log fO2 [bar] relative to that of the 
FMQ-buffer reaction; n is the number of analyses. Number in parenthesis is 1 σ standard deviation of the mean. FeOtot is the 
total iron content. H2O KFT is the water concentration in the melt determined by Karl-Fischer-Titration; A/CNK is the molar ratio 
of Al2O3/(CaO + Na2O + K2O); ** water content determined by “by-difference” –method at EMPA.; **Cl# is set to 1 and # H2O is 
set to 0, because the fluid composition could not be determined due to higher amounts of H2O dissolved in the melt than 
initially added to the system, indicating that H2O was generated by reducing the melt (e.g., Fe3+ to Fe2+) due to equilibration of 
PH2 between vessel and sample capsule (see description in the text at §4.6). 

 
 

Table F: composition of product fluids using AgCl or AgCl-
H2O/HCl as Cl-source and partitioning coefficients of Cl 
(Kd’Cl) and H2O (Kd’H2O) between fluid and melt (in wt.) 
   Kd' Kd'  

Run # Cl# H2O# Cl H2O  
        

AH-1 0.01 (00) 0.99 (24) 0.6 (2) 20.8 (71) 

AH-2 0.03 (00) 0.97 (10) 1.6 (2) 17.2 (26) 

A-10* 1.00* (01) 0.00* (00) 27.0 (4) 0.0 (00) 

            

HClA 1 0.04 (02) 0.96 (56) 1.4 (12) 17.2 (14) 

HClA 2** 0.59 (09) 0.41 (06) 19.5 (41) 7.3 (15) 

HClA 3* 1.00* (03) 0.00* (00) 29.5 (11) 0.00 (00) 

Notes: Cl# and H2O# ist the Cl or H2O ratio (in wt.) in a simplified single 
fluid, defined to be solely composed of the volatile components Cl 
and/or H2O (detailed description is given in the text). The partitioning 
coefficient of Cl (Kd’Cl) and H2O (Kd’H2O) is the ratio of weight 
proportion of Cl or H2O in the fluid and the weight proportion of Cl or 
H2O in the melt, respectively. The meaning of the signatures “**” and 
“*” can be taken from Table E. 
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