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ABSTRACT

Long memory and nonlinear time series have both been extensively applied in em-

pirical studies on the business cycle and other macroeconomic time series leading to

di�erent economic implications. This dissertation considers the problem of confusion

between long memory and several nonlinear processes. Chapter 1 demonstrates inabil-

ity of standard methods to distinguish between these two phenomena. The analysis is

done through intensive simulation study. Chapter 2 discusses theoretical explanations

about the sources of the confusion.

The following two chapters introduce new tests to distinguish between long memory

and several processes. Chapter 3 considers a new test to distinguish between long

memory and ESTAR nonlinearities. We develop the test based on two approaches, and

use directed-Wald to overcome the problem of restricted parameter under alternative

hypothesis. New critical values are provided and intensive simulation study is done

to assess the test performance in �nite sample size. Moreover, we apply the test to

real exchange rate data.

Furthermore, we propose a new test against spurious long memory in chapter 4.

The test is developed based on the invariance principle of estimated long memory

parameters to aggregation. The test performance in �nite sample size is evaluated

through simulation study. It indicates that the test has good power, and is able to

detect spurious long memory in German stock returns.

Keywords: spurious long memory, nonlinear, directed-Wald, aggregation.



KURZFASSUNG

Eine langfristige Abhängigkeitsstruktur (sog. "lange Gedächtnis"), und nicht lineare

Zeitreihen wurden ausführlich in empirischen Studien über Konjunkturzyklen sowie

anderen makroökonomischen Zeitreihen angewendet und führen zu unterschiedlichen

ökonomischen Implikationen. Die vorliegende Dissertation befasst sich mit der Prob-

lematik derVerwechslung zwischen einem "langen Gedächtnis" und verschiedenen

nichtlinearen Prozessen. In Kapitel 1 wird gezeigt, dass es mit Standardmethoden

nicht möglich ist, zwischen diesen beiden Phänomenen zu unterscheiden. Die Analyse

wird mit Hilfe einer intensiven Simulation durchgeführt. Im zweiten Kapitel werden

theoretische Erklärungen für die Ursache der Verwechselung diskutiert.Im zwei letzte

Kapitel werden neue Tests vorgestellt, mit denen zwischen einem "langen Gedächtnis"

und verschiedenen Prozessen unterschieden werden kann.

In Kapitel 3 wird ein neuer Test eingeführt, mit dem zwischen einem "langen Gedächt-

nis" und ESTAR Nichtlinearitäten unterschieden werden kann. Der von uns entwick-

elte Test basiert auf zwei Ansätzen und verwendet einen directed-Wald Test, um das

Problem beschränkter Parameter bei der Alternativhypothese zu beseitigen. Es wer-

den neue kritische Werte geliefert und eine intensive Simulation durchgeführt, um die

Test-Performance für einen begrenzten Stichprobenumfang abzuschätzen. Auÿerdem

wenden wir diesen Test für Daten von realenWechselkursen an.

Darüber hinaus entwickeln wir in Kapitel 4 einen neuen Test um ein unechtes "langes

Gedächtnis" zu veri�zieren. Der Test wurde auf Basis des Prinzips der Invarianz

von geschätzten Parametern des "langen Gedächtnisses" zu aggregation entwickelt.



Test-Performance der begrenzten Stichprobengröÿe wird anhand einer Simulation aus-

gewertet. Dabei wird deutlich, dass der Test ein hohes Potential hat und in der Lage

ist, unechte "lange Gedächtnisse" in den Renditen deutscher Aktien aufzudecken.

Schlagwörter: lange Gedächtnis, nicht linear, directed-Wald, aggregation.
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Chapter 1

SUMMARY

This dissertation deals with the problem of confusing between long memory and

some common classes of nonlinear time series process. It essentially contains of four

contributions to the problem. The dissertation pursuits also three major goals. One is

to assess the ability of existing methods to distinguish long memory from the nonlinear

processes. The second goal is to identify the sources of the confusion, and the last is

to develop tests which are able to distinguish long memory and nonlinear processes.

The outline of each chapter is described as follows. The second chapter deals with

the �rst goal. Through an intensive simulation study, we show that speci�c nonlinear

time series models such as SETAR, LSTAR, ESTAR and Markov switching, which

are common in econometric practice can hardly be distinguished from long memory

by standard methods such as the GPH estimator for the memory parameter or lin-

earity tests either general or against a speci�c nonlinear model. We show by Monte

Carlo that under certain conditions, the nonlinear data generating process can have

misleading either stationary or non-stationary long memory properties. This problem

is thus known as confusion between long memory and nonlinear processes.

Chapter 3 identi�es the sources of the confusion by exploring some theoretical ex-

planations. We describe the asymptotic behavior of the process in terms of the au-

tocovariance and the autocorrelation function, and support the theoretical evidences

by providing some Monte Carlo simulations. The existence of long memory in these

nonlinear processes is induced by the nature of the process in certain conditions. In
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addition, the GPH estimator itself is biased.

Most of the contributions in the dissertation transpire in the forth and �fth chapter.

In chapter 4, we develop a Wald type test to distinguish between long memory and

ESTAR nonlinearity by using a directed-Wald statistic to overcome the problem of

restricted parameters under the alternative. The test is derived from two basic model

speci�cations, where the �rst is the standard model based on an auxiliary regression

and the second allows the parameter γ to appear as a nuisance parameter in the

transition function. A simulation study indicates that both approaches lead to tests

with good size and power properties to distinguish between stationary long memory

and ESTAR. Moreover, the second approach is shown to have more power.

As an empirical application, we apply the test to the problem addressed by Cheung

and Lai (2001). They faced di�culties in distinguishing long memory and nonlinear

mean reversion in the case of bilateral real exchange rate against Japan YEN. In

this thesis, we consider several cases including real exchange rates of developed and

developing countries. The proposed tests are able to provide a solution to the problem.

Given the fact that nonlinear adjustment towards PPP more likely holds in developing

countries, the tests are able to capture this phenomena. We apply also a test proposed

by Baillie and Kapetanios (2008) to detect any neglected nonlinearity in long memory

processes and the result is consistent with ours.

Finally, the last chapter discusses a new simple test against spurious long memory.

The test statistic is developed based on the invariance of long memory parameters

to aggregation, combined with the idea of testing for a change in the long memory

parameter. By using the local Whittle estimator, the statistic takes a maximum

value among combinations of paired aggregated series. Simulations show that the

test performs well in �nite samples, and is able to distinguish long memory from

spurious processes with excellent power. Moreover, the empirical application gives
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further evidence that the observed long memory in German stock returns is spurious.
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Chapter 2

CAN STANDARD TESTS DISCRIMINATE BETWEEN

COMMON NONLINEAR TIME SERIES MODELS AND

LONG MEMORY?
1

2.1 Introduction

Long memory attracts attention among practical and theoretical econometricians in

the recent years. In econometrics it is mainly applied to model �nancial time series

such as volatilities of stock returns and exchange rate dynamics. However, so far

it is not clear whether the evidence of long-range dependencies in economic time

series is due to a real long memory or whether it is because of other phenomena

such as structural breaks. Recent works show that structural instability may produce

spurious evidence of long memory. Diebold and Inoue (2001) show that stochastic

regime switching can easily be confused with long memory. Davidson and Sibbertsen

(2005) prove that the aggregation of processes with structural breaks converges to a

long memory process. For an overview about the problem of misspecifying structural

breaks and long-range dependence see Sibbertsen (2004b). These papers consider

regime switching in the sense of a structural break in the mean of the process. There

can be many other ways of regime switching leading to the various nonlinear models

such as TAR, STAR or Markov switching. Here the regimes are di�erent short memory

processes, usually of an autoregressive type. Therefore, regime switching in the sense

1 Co-author: Prof. Dr. Philipp Sibbertsen, Leibniz Universität Hannover Germany. This paper
is available as Discussion Paper no. 380 of the discussion paper series of the Faculty of Economics
at Leibniz Universität Hannover.
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of nonlinear model building is substantially di�erent from the long memory versus

structural break case. It is not clear whether nonlinear regime switching processes

can produce spurious long memory in the sense that standard tests cannot distinguish

between these two models. Carrasco (2002) shows that simply testing for structural

breaks might lead to a wrong usage of linear models although the true data generating

process is a nonlinear Markov switching model.

Granger and Ding (1996) pointed out that there are a number of processes which can

also exhibit long memory, including generalized fractionally integrated models arising

from aggregation, time changing coe�cient models and nonlinear models as well.

Granger and Teräsvirta (1999) demonstrate that by using the fractional di�erence

test of Geweke and Porter-Hudak (1983), a simple nonlinear time series model, which

is basically a sign model, generates an autocorrelation structure which could easily

be mistaken to be long memory. However, these examples are hardly comparable

with nonlinear models used in economic practice. There is by now a huge literature

on nonlinear modeling in economics. This literature mainly contains of TAR, STAR

and Markov switching models which prove useful especially for modeling exchange

rate behaviour. In this paper, we concentrate on these model classes and show by

Monte Carlo that they can hardly be distinguished from long memory by standard

methodology. In order to do this, we estimate the long memory parameter by applying

the Geweke and Porter-Hudak (1983) (further on denoted by GPH) estimator to the

nonlinear SETAR, LSTAR, ESTAR and Markov switching model. It turns out that

not accounting for the nonlinear structure will bias the GPH estimator and give

evidence of long memory.

On the other hand, we generate linear long memory time series and apply linearity

tests to them. We apply the general Teräsvirta's Neural Network test of Teräsvirta et

al. (1993) as well as linearity tests constructed specially for the considered nonlinear

models. It turns out that none of these tests can correctly specify the linear structure
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of the long memory process. All of these tests are biased towards a rejection of

linearity. As a result, nonlinearity and long-range dependence are two phenomena

which can easily be misspecifed, and standard methodology is not able to distinguish

between these phenomena. In this respect we extend the earlier study of Andersson

et al. (1999).

This paper is organized as follows. Section 2.2 presents brie�y the concept of long

memory, an overview of the nonlinear time series models used in this paper is given

in section 2.3. The results of our Monte Carlo study are presented in section 2.4 and

2.5 and section 2.6 concludes.

2.2 Long memory, GPH estimator and rescaled variance test

Long memory or long-range dependence means that observations far away from each

other are still strongly correlated. A stationary time series yt, t = 1, . . . , T exhibits

long memory or long-range dependence when the correlation function ρ(k) behaves

for k →∞ as

lim
k→∞

ρ(k)

Cρk2d−1
= 1 (2.1)

Here Cρ is a constant and d ∈ (0, 0.5) denotes the long memory parameter. The

correlation of a long memory process decays slowly that is with a hyperbolic rate.

For d ∈ (−0.5, 0) the process has short memory. In this situation the spectral density

is zero at the origin and the process is said to be anti-persistent. For d ∈ (0.5, 1)

the process is non-stationary but still mean reverting. Further discussion about long

memory can be found for example in Beran (1994).

A popular semi-parametric procedure of estimating the memory parameter d is the

GPH estimator introduced by Geweke and Porter-Hudak (1983). It is based on the
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�rst J periodogram ordinates

Ij =
1

2πT
|

T∑
t−1

yt exp(iλjt)|2 (2.2)

where λj = 2πj/T , j = 1, . . . , J and J is a positive integer smaller than T . The

idea is to estimate the spectral density by the periodogram and to take the logarithm

on both sides of the equation. This gives a linear regression model in the memory

parameter which can be estimated by least squares.

The estimator is given by −1/2 times the least squares estimator of the slope pa-

rameter in the regression of {log Ij : j = 1, . . . , J} on a constant and the regressor

variable

xj = log |1− exp(−iλj)| =
1

2
log(2− 2 cosλj). (2.3)

By de�nition the GPH estimator is

d̂GPH =

−0.5
J∑

j=1

(xj − x̄) log Ij

J∑
j=1

(xj − x̄)2

(2.4)

where x̄ = 1
J

J∑
j=1

xj. This estimator can be motivated using the model:

log Ij = logCf − 2dxj + log ξj (2.5)

where xj denotes the j-th Fourier frequency and the ξj are identically distributed

error variables with −E[log ξj] = 0.577, known as Euler constant. Besides simplicity

another advantage of the GPH-estimator is that it does not require a knowledge about

further short-range dependencies in the underlying process. Referring to Hurvich et

al. (1998) to get the optimal MSE, we include T 0.8 frequencies in the regression

equation.

As an alternative to the GPH estimator we also apply a nonparametric V/S test

proposed by Giraitis et al. (2003) to the series. It tests the short memory process
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under null hypothesis against alternative of long memory process. The V/S statistic

has better power properties than either the R/S statistic by Mandelbrot and Wallis

(1969) or the modi�ed R/S of Lo (1991). De�ning S∗k =
∑k

j=1(yj − ȳ) as the partial

sums of the observations with the sample variance V̂ ar(S∗1 , ..., S
∗
T ) = T−1

∑T
j=1(S

∗
j −

S̄∗T )2, the V/S statistic is given by

QT = T−1 V̂ ar(S
∗
1 , ..., S

∗
T )

ŝ2
T,q

(2.6)

with

ŝ2
T,q =

1

T

T∑
j=1

(yj − ȳT )2 + 2

q∑
j=1

ωj(q)γ̂j. (2.7)

In (2.7), ωj(q) = 1 − j
q+1

are the Bartlett weights. The classical R/S statistic of

Mandelbrot and Wallis (1969) corresponds to q = 0. We consider the statistic for

several di�erent values of q including the optimal q proposed by Andrews (1991).

2.3 Nonlinear time series models

Nonlinear time series models have become popular in recent years and are widely used

in applied macro-econometrics. This paper analyzes three types of models that are

most commonly used in nonlinear modeling particularly in modeling economic and

�nancial time series. These include self exciting threshold autoregressive (SETAR),

smooth transition autoregressive (STAR) and Markov switching models. These are

regime switching models. They share the property of being mean reverting with a

long memory process and they also mimic the persistence of long range dependent

models by exhibiting only short-range dependencies. Therefore, these models are

natural candidates to be misspeci�ed with long memory. In the following they are

brie�y introduced.

The SETAR model by Tong (1983) has been widely considered in the econometric

literature as it is a very simple though extremely �exible nonlinear time series model.
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Unlike the simple autoregressive processes, SETAR model allows the model parame-

ters to change according to the value of threshold variable yt−l:

yt = Xtφ
(j) + ε

(j)
t , cj−1 ≤ yt−l < cj (2.8)

where Xt = (1, yt−1, yt−1, ..., yt−p), φ = (µ, φ1, φ2, ..., φp)
′, j = 1, 2, ..., k and −∞ =

c0 < c1 < . . . < ck = ∞. In essence, the k − 1 nontrivial thresholds (c1, c2, ..., ck−1)

divide the domain of the threshold variable into k di�erent regimes. In each di�erent

regime, the time series yt follows a di�erent autoregressive model. In the threshold

variable, the delay parameter l being a positif integer and the lagged value yt−l deter-

mine the dynamic or regime of yt. Tong (1990) gives a thorough discussion of these

models.

The smooth transition autoregressive (STAR) model is a regime switching model

similar to the SETAR model but allowing for a smooth transition between the regimes.

It has been considered in detail for example by Teräsvirta (1994). Generally, a STAR

process of order p is de�ned by

yt = Xtφ[1−G(st; γ, c)] + XtθG(st; γ, c) + εt, (2.9)

where Xt = (1, yt−1, . . . , yt−p) is an ((p + 1) × 1) vector containing lagged values

of yt and φ = (φ0, φ1, . . . , φp)
′ and θ = (θ0, θ1, . . . , θp)

′ are parameter vectors of the

same dimension. εt is a Gaussian white noise, G(st, γ, c) is the transition function

governing the movement from one regime to another and st is a transition variable so

that st = yt−l.

According to Taylor, Peel and Sarno (2001), the transition variable is commonly

chosen to be lagged by one period that is l = 1. This is what we use in this paper

as well. The variable γ determines the degree of curvature of the transition function

and c is a threshold parameter.

The exponential transition function can be written as:

G(st; γ, c) = 1− exp{−γ(st − c)2} (2.10)



10

with γ > 0. Generally speaking, the transition function could be either a logistic

function (resulting in LSTAR), or an exponential function (resulting in ESTAR).

And the logistic transition function can be written as:

G(st; γ, c) =
1

1 + exp(−γ(st − c))
. (2.11)

The parameter γ controls the degree of nonlinearity. If γ is small, both transition

functions switch between 0 and 1 very smoothly and slowly. If γ is large, both

transition functions switch between 0 and 1 more quickly. As γ →∞, both transition

functions become binary. However, for logistic function, the model reduces to SETAR

model, while for exponential function, the model does not nest the SETAR model as

a special case. The logistic function is monotonic and the LSTAR model switches

between two regimes smoothly depending on how much the transition variable st is

smaller than or greater than the threshold c. The exponential function is symmetrical

and the ESTAR model switches between two regimes smoothly depending on how far

the transition variable st is from the threshold c. A survey about recent developments

related to STAR models can be found in van Dijk et al. (2002).

The last class of regime switching models we consider in this paper are Markov switch-

ing models developed by Hamilton (1989). In this model class, nonlinearities arise

as discrete shifts between the regimes. Most importantly these shifts are breaks in

the mean of the process. By permitting switching between regimes, in which the

dynamic behavior of series is markedly di�erent, more complex dynamic patterns can

be described.

The general form of the model is given by

yt = µst + Xtφst
+ εt (2.12)

where Xt = (yt−1, yt−2, ..., yt−p), φst is the p x1 vector of AR coe�cients , εt follows

N(0, σ2
st
) and st is an m-state Markov chain taking values 1, . . . ,m, with transition
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matrix P. The switching mechanism is controlled by an unobservable state variable

that follows a �rst order Markov chain. Thus, the probability that the state variable

st equals some particular value j depends on the past only through the most recent

value st−1:

P{st = j|st−1 = i, st−2 = k, . . .} = P{st = j|st−1 = i} = pij (2.13)

The transition probability pij gives the probability that state i will be followed by

step j.

Investigating whether nonlinear models can be misspeci�ed as long memory contains

two steps. First, we show that nonlinearity leads to a bias in estimators for the

memory parameter. Second, we show that standard linearity tests reject the null of

a linear process when the data exhibits long-range dependence.

2.4 Testing for long memory

A popular research strategy to see if a time series exhibits long-range dependencies

is to estimate the memory parameter by means of the GPH estimator and perform a

t-test based on this estimator to prove the signi�cance of the results. Therefore, we

apply the GPH estimator to various nonlinear models of the before mentioned model

classes in order to see if this research strategy might lead to misleading results. In

addition to the GPH test we apply another popular long memory test, the V/S test,

to the series in order to check the robustness of the results. All nonlinear models

considered in our Monte Carlo study are stationary and short-range dependent in the

sense that the central limit theorem still holds (for a more extensive discussion of

this point see Davidson (2002)). The autoregressive order is chosen to be one. Each

model is simulated with 1000 replications and di�erent sample sizes of T = 250 and

T = 600 after discarding the �rst 200 observations to minimize the e�ect of the initial

value of the simulated series. The error terms are modeled to be nid(0,1).
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For our simulation experiments we at �rst consider the simple 2 regimes SETAR

process as follows:

yt =

 φ1yt−1 + εt if yt−1 ≤ 0

φ2yt−1 + εt if yt−1 > 0
(2.14)

and we restrict our consideration on stationary nonlinear processes. We use φ1 = −φ2.

The following table presents the GPH estimator in order to see whether the GPH

estimator is biased towards long memory2. In all tables, asterisk in t− stat indicates

that the value of d is signi�cantly greater than zero with 5% signi�cant level.

Table 2.1: GPH estimator for the SETAR process

T = 250 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 -0.004 -2.546 -0.002 -1.566

0.2 0.010 5.387* 0.009 5.910*

0.3 0.034 15.257* 0.021 14.044*

0.4 0.066 32.371* 0.048 31.662*

0.5 0.113 51.318* 0.086 53.698*

0.6 0.167 73.903* 0.142 87.910*

0.7 0.256 108.909* 0.219 126.815*

0.8 0.375 148.920* 0.341 183.324*

0.9 0.536 203.808* 0.529 287.374*

It can be seen that the GPH estimator indicates either stationary or non-stationary

long memory for the SETAR process. In most cases the GPH estimator is in the

stationary long memory region. Only for φ1 = −φ2 = 0.1, the GPH estimator is not

2We use J = T 0.8 as number of frequencies employed for the estimation as Hurvich et al. (1998)
proved that this rate results in an optimal MSE. However, we did also the simulation with J = T 0.5

as originally proposed by Geweke and Porter-Hudak (1983) for a comparison. The results indicate
that the GPH estimator might be biased towards long memory for a higher amount of frequencies
used. This is in line with the �ndings of Davidson and Sibbertsen (2009).
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signi�cantly di�erent from zero according to the t-statistic. The memory parameter

increases with the autoregressive parameter. Increasing the sample size does not

reduce the bias signi�cantly.

As the GPH estimator is computed by means of the periodogram it seems useful to

compare the periodograms of the nonlinear process and the long memory process.

The upper panel of �gure 2.4 in the appendix presents a sample ACF plot and the

periodogram of the SETAR model with φ1 = −φ2 = 0.8. The lower panel shows

the ACF and the periodogram of a long memory process with the same memory

parameter d = 0.341 as estimated above. The periodograms of these two DGPs do

not show much signi�cant di�erence. The periodogram of the nonlinear process seems

to be more �at near the origin. However, the ACF of the SETAR model shows even

more pronounced correlations than the ACF of the long memory process indicating

also long term correlations in the nonlinear time series model.

In order to check the robustness of these results we also apply the V/S test for these

DGPs. We do this for several values of q = 0, 5, 10, 25 and the q following Andrews

(1991). They are denoted by q1, q2, q3, q4 and q5 respectively. It should be kept in

mind when interpreting the simulation results below that by construction of the V/S-

test the rejection probability decreases for an increasing value of q. Table 2.2 presents

the rejection probabilities of the V/S test. All rejection probabilities are given to the

5% level.

For q1, which is the classical R/S test, the test tends to reject the null hypothesis too

often under both sample sizes. The rejection probability increases with an increasing

autoregressive parameter. Using small lags (q1, q2 and q3) the test has a strong bias

towards rejecting the nonlinear short memory null hypothesis. The longer the lag

q, the lower is the probability to reject the null in general as we expected. We see

that q4 has the lowest probability compared to the others. Interestingly, q5 which is
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Table 2.2: Rejection probabilities of V/S test for the SETAR process

T = 250 T = 600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.050 0.045 0.034 0.012 0.040 0.054 0.050 0.047 0.031 0.037

0.2 0.061 0.047 0.031 0.010 0.049 0.069 0.055 0.049 0.038 0.040

0.3 0.084 0.040 0.034 0.005 0.041 0.082 0.053 0.050 0.043 0.044

0.4 0.112 0.050 0.036 0.008 0.041 0.107 0.055 0.049 0.034 0.052

0.5 0.148 0.049 0.040 0.011 0.055 0.172 0.066 0.060 0.032 0.063

0.6 0.230 0.065 0.048 0.006 0.047 0.260 0.072 0.049 0.036 0.063

0.7 0.408 0.071 0.046 0.013 0.061 0.424 0.103 0.074 0.043 0.076

0.8 0.687 0.138 0.071 0.012 0.037 0.645 0.142 0.075 0.039 0.085

0.9 0.944 0.309 0.130 0.019 0.019 0.969 0.321 0.177 0.053 0.084

Note: the critical value of V/S test are 0.2685, 0.1869 and 0.1518 for the signi�cant level of 1%, 5% and 10% respectively.

considered to be the optimal q rejects the null hypothesis with a probability of around

5% and therefore gives reasonable values.

After considering SETAR models, we examine STAR models. As the results for

LSTAR models are in line with our �ndings for ESTAR models, we only present

the results for the latter. We use the transition variable st = yt−1 and c = 0. The

degree of non-linearity in the ESTAR model is determined by the parameter γ in the

transition function. Thus, we use two values of γ to examine the behavior of the GPH

estimator depending on the transition function. The parameters under consideration

are γ = 0.5 and γ = 5. The model equation for the ESTAR series is given by:

yt = φ1yt−1 − (φ1 − φ2)yt−1F (yt−1, γ) + εt. (2.15)

Table 2.3 and 2.4 show that the GPH estimator is biased towards long memory either

stationary or non-stationary depending on the parameter settings for the ESTAR
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Table 2.3: GPH estimator for the ESTAR process (γ = 0.5)

T = 250 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.000 1.334 0.021 0.113

0.2 0.012 7.737* 0.014 4.876*

0.3 0.034 15.871* 0.028 13.412*

0.4 0.049 23.445* 0.042 17.774*

0.5 0.080 37.723* 0.067 28.802*

0.6 0.116 49.399* 0.097 38.926*

0.7 0.179 70.451* 0.154 55.025*

0.8 0.261 91.278* 0.245 69.956*

0.9 0.415 123.204* 0.420 87.820*

Table 2.4: GPH estimator for the ESTAR process (γ = 5)

T = 250 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.031 11.932* 0.024 14.552*

0.2 0.077 30.850* 0.064 36.535*

0.3 0.138 54.923* 0.109 62.995*

0.4 0.204 78.543* 0.171 98.303*

0.5 0.285 111.537* 0.239 140.235*

0.6 0.371 181.198* 0.324 182.790*

0.7 0.478 227.128* 0.429 242.483*

0.8 0.605 141.125* 0.561 309.304*

0.9 0.767 290.485* 0.734 404.768*

model. Furthermore, even doubling the sample size (increasing the sample from 250

to 600) does not decrease the bias signi�cantly. These results are also robust against

changing the γ parameter in the transition function. This con�rms the simulation



16

results of Choi and Wohar (1992) which investigate the performance of the GPH

estimator if the DGP is a stationary AR(1) process. The GPH estimator is seriously

biased with an increasing value of the autoregressive parameter, even for a relatively

large sample size.3

Figure 2.5 in the appendix shows the ACF and periodogram of an ESTAR process

with γ = 5, φ1 = −φ2 = 0.6 and a true long memory process generated by using the

according memory parameter as estimated above (d = 0.342). All periodogram show

a clear long memory behavior which is shown by the negative slope of the �tted line.

However,the ESTAR process shows the most pronounced peak in the periodogram

near the origin indicating some long memory behavior. The sample ACFs can hardly

be distinguished. However the ACF of the true long memory process seems to decay

hyperbolically for the �rst few lags.

The tables below give the results for the V/S test for ESTAR processes with both γ.

Table 2.5: Rejection probabilities of V/S test for ESTAR (γ = 0.5)

T = 250 T = 600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.055 0.044 0.039 0.004 0.044 0.056 0.054 0.051 0.043 0.050

0.2 0.071 0.040 0.042 0.009 0.051 0.080 0.058 0.042 0.040 0.058

0.3 0.086 0.042 0.038 0.009 0.061 0.089 0.057 0.042 0.035 0.056

0.4 0.115 0.053 0.036 0.006 0.051 0.114 0.060 0.041 0.035 0.053

0.5 0.150 0.051 0.037 0.009 0.044 0.151 0.070 0.047 0.038 0.064

0.6 0.198 0.059 0.037 0.009 0.044 0.225 0.076 0.055 0.042 0.055

0.7 0.321 0.069 0.042 0.011 0.072 0.331 0.081 0.066 0.049 0.068

0.8 0.496 0.122 0.054 0.005 0.056 0.572 0.138 0.059 0.042 0.063

0.9 0.788 0.289 0.114 0.007 0.066 0.895 0.344 0.163 0.058 0.092

3Choi and Wohar (1992) consider a stationary AR(1) process and use T 0.5 frequencies for their
simulation.
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Table 2.6: Rejection probabilities of V/S test for ESTAR (γ = 5)

T = 250 T = 600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.102 0.044 0.03 0.008 0.05 0.087 0.05 0.049 0.038 0.058

0.2 0.154 0.065 0.052 0.013 0.051 0.154 0.072 0.054 0.043 0.057

0.3 0.221 0.051 0.033 0.006 0.052 0.277 0.068 0.048 0.036 0.065

0.4 0.396 0.082 0.061 0.01 0.06 0.362 0.07 0.051 0.042 0.069

0.5 0.511 0.094 0.062 0.015 0.069 0.536 0.09 0.057 0.031 0.06

0.6 0.679 0.124 0.063 0.017 0.048 0.722 0.139 0.078 0.05 0.058

0.7 0.849 0.179 0.082 0.019 0.044 0.858 0.189 0.107 0.052 0.063

0.8 0.969 0.29 0.139 0.027 0.042 0.978 0.339 0.168 0.064 0.064

0.9 0.998 0.587 0.335 0.056 0.025 1 0.665 0.387 0.144 0.06

Again, the classical R/S test fails to detect the short memory property for all consid-

ered nonlinear processes. Similar to the results of the V/S test for SETAR processes,

the rejection probability increases with the autoregressive parameter. For the lag

length q5 the null hypothesis is rejected with a probability around 5% though usu-

ally a bit higher in almost all cases. For the lag length q4 the test shows a better

performance but the probability still reaches values above 5% for high autoregressive

parameters and a large sample size. This seems also to be rather an artefact of the

V/S statistic. Interestingly, changing the transition functions does not change the

rejection probability.

Finally, we investigate the behavior of the GPH estimator when the true DGP is a

Markov switching model. The DGP in this section is simulated based on the general

Markov switching process:

yt =

 φ1yt−1 + εt if st = 1

φ2yt−1 + εt if st = 2
(2.16)
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with εt ∼nid(0,1). In line with other considered nonlinear models, we set φ1 = −φ2 in

all of our simulations in order to generate a stationary nonlinear process. The transi-

tion probabilities are taken from Hamilton (1989), which are P = (0.9, 0.1; 0.25, 0.75).

Table 2.7: GPH estimator for Markov switching processes

T = 250 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.024 11.871* 0.015 10.281*

0.2 0.058 27.790* 0.044 28.647*

0.3 0.090 40.437* 0.082 52.273*

0.4 0.123 51.219* 0.127 79.053*

0.5 0.158 61.040* 0.183 112.041*

0.6 0.195 70.967* 0.240 144.956*

0.7 0.232 80.574* 0.313 179.855*

0.8 0.269 91.512* 0.391 214.038*

0.9 0.304 97.464* 0.477 249.671*

The GPH estimator does not show any surprising result. It is biased towards sta-

tionary long memory and increases with the autoregressive parameter but with a

relatively slow rate. However, the bias increases with the sample size for a very small

amount in contrast to the other processes. These results therefore con�rm Smith

(2005) who shows that the GPH estimator is substantially biased for a stationary

Markov switching process which does not contain long memory.

To investigate the impact of the transition probabilities to the GPH estimator, we

consider another Markov process by considering the various transition probabilities

given above and the parameter setting φ1 = −φ2 = 0.9. We use this autoregressive

parameter, since it leads to a higher bias of the GPH estimator and therefore shows

the relevant e�ect more clearly. Table 2.8 presents the results for the considered
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process.

Table 2.8: GPH estimator for the Markov switching process

T = 250 T = 600

p11 = p22 d t− stat d t− stat

0.1 -0.136 -61.264 -0.444 -223.591

0.2 -0.109 -45.272 -0.331 -156.937

0.3 -0.070 -27.990 -0.221 -102.034

0.4 -0.043 -16.533 -0.117 -52.100

0.5 -0.006 -2.408 -0.008 -3.733

0.6 0.034 11.958* 0.100 43.945*

0.7 0.076 26.163* 0.223 100.850*

0.8 0.120 39.935* 0.345 150.018*

0.9 0.173 58.814* 0.480 198.999*

Note that when p11 = p22 = 0.5 it implies that p11 + p22 = 1 and thus there is no

persistence in the Markov process because the probability that st switches from state

1 to state 2 is independent of the previous state. This is a rather simple switching

model. From the table we see that for some values of the transition probabilities

above 0.5 (close to one), they are biased towards stationary long memory and the

process is detected as to be short memory when the transition probability is less than

0.5. It is natural since as the parameters approach the non-ergodicity point (when

p11 and p22 are equal one), the AR component gets more persistent and causes the

dominant component of the GPH bias (see Smith (2005) for details).

Similar to the other nonlinear models, periodogram which is generated from the

Markov switching model does not show much di�erence than those of the true long

memory process (see �gure 2.6 in the appendix). On the other hand we see that the

ACF of the Markov switching model does not decay as slow as the true long memory
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process.

Table 2.9: Rejection probabilities of the V/S test for Markov switching processes

T = 250 T = 600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.065 0.041 0.03 0.008 0.045 0.064 0.052 0.045 0.037 0.047

0.2 0.109 0.047 0.034 0.007 0.047 0.12 0.066 0.057 0.041 0.049

0.3 0.147 0.05 0.034 0.009 0.038 0.128 0.062 0.05 0.038 0.059

0.4 0.227 0.062 0.039 0.009 0.048 0.229 0.088 0.067 0.038 0.058

0.5 0.306 0.077 0.046 0.006 0.037 0.321 0.099 0.068 0.049 0.083

0.6 0.431 0.116 0.067 0.015 0.041 0.462 0.121 0.079 0.056 0.095

0.7 0.551 0.138 0.055 0.008 0.05 0.607 0.177 0.108 0.069 0.099

0.8 0.723 0.175 0.087 0.013 0.052 0.759 0.196 0.101 0.05 0.157

0.9 0.873 0.3 0.137 0.019 0.03 0.893 0.35 0.172 0.069 0.174

From table 2.9 we see that the result of the V/S test has a similar tendency as the

previous results. However, for Markov switching models the rejection probabilities

for q5 are relatively higher and reach 0.174 for a sample size of T = 600. This is in

contrast to our �ndings before and very likely due to the mean shifting property of

the Markov switching model.

Our results show that the GPH estimator fails to distinguish between long memory

and standard short memory models used in the economic practice. It seems to be a

useful research strategy not to simply rely on the GPH estimator but also to apply

the V/S test to the data. The V/S test used with the optimal lag length q5 proves

to be quiet robust against nonlinear alternatives and seems therefore to be a suitable

choice when the researcher is in doubt whether the long memory in his data might be

spuriously caused by some nonlinearities.
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2.5 Testing linearity

In this section we apply a general linearity test, namely the Neural Network test of

Teräsvirta et al. (1993), as well as speci�c linearity tests constructed to test the null

hypothesis of linearity against the alternative of a speci�c nonlinear structure, namely

SETAR or STAR. We compute the rejection probabilities of the 5% signi�cance level

with 10000 replications and various sample sizes T = 100, 500, 1000 and 1500.

First, we use a portmanteau test in order to test for a SETAR type nonlinearity.

For a detailed discussion of this test, see Petrucelli and Davies (1986). This test was

also considered by Chan and Ng (2004) who show that the test is not robust against

misspeci�cation of the model. It is also not robust against outliers. Figure 2.1 shows

the rejection probabilities of this test when the true DGP is long memory. If the

DGP is a pure long memory processes (Figure 2.1(i)) the probability to reject the null

hypothesis of linearity reaches a maximum of 0.165. The probability increases with

higher values of the memory parameter and larger sample sizes. The same tendency

appears when the DGP follows an ARFIMA(φ, d, 0) process, this is a long memory

process with an additional autoregressive root. The rejection probability increases

with an increase of the autoregressive parameter. For a value of 0.8 the rejections

probabilities are already close to 1 even for moderate sample sizes. This is due to

an increase of the persistence of the process induced by the positive autoregressive

parameter. However, we clearly see that the portmanteau test is not able to capture

the linearity of the long memory DGP.
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Figure 2.1: Rejection probabilities of linearity test against SETAR model (i) DGP is
ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is ARFIMA(0.8,d,0)

As a second test we consider a linearity test against the STAR alternative. The

test is a Lagrange Multiplier type test proposed by Luukkonen et al. (1988). It

is based on a third-order Taylor approximation of the transition function. By this
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procedure, testing against ESTAR is not distinguishable from testing against LSTAR,

when a second-order logistic transition function is employed (see also Saikkonen and

Luukkonen (1988)). Figure 2.2 below presents the results of the test.
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Figure 2.2: Rejection probabilities of linearity test against STAR model (i) DGP is
ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is ARFIMA(0.8,d,0)
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If the DGP is a pure long memory process, the results are similar to those of Andersson

et al. (1999). The rejection probability increases with the value of the memory

parameter and with the sample sizes. The same results are obtained for an ARFIMA

(φ, d, 0) - process with a small autoregressive parameter (φ = 0.2). The rejection

probability reaches a value of up to 0.25 in our study. Interestingly, for the same

process but with a higher autoregressive parameter (φ = 0.8) the rejection probability

decreases with sample size. It actually collapses even under the nominal size of the

test.

Finally, we apply the neural network based linearity test proposed by Teräsvirta et al.

(1993). This test is a special neural network model with a single hidden layer. This

test is a Lagrange Multiplier (LM) type test derived from a neural network model

based on the "dual" of the Volterra expansion representation for nonlinear series.

Let consider Figure 2.3 for the results of this test. The results are similar to those

of the STAR test considered before. For a pure long memory DGP as well as for

an ARFIMA (φ, d, 0) - process with a small autoregressive parameter (φ = 0.2), the

values of the rejection probability increase with d and with the sample size. Again,

for an increasing autoregressive parameter the rejection probability collapses under

the nominal size of the test and converges to zero. Since the two tests are Lagrange

multiplier test, which involves the estimation of the autoregressive parameter to com-

pute the statistic, the higher AR and d parameter are confounded as a simple AR(1)

parameter. This leads to a higher sum of squared errors (SSE0) in the denominator

and the statistic tends to not reject the null hypothesis.
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Figure 2.3: Rejection probabilities of linearity test against Neural Network model
(i) DGP is ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is
ARFIMA(0.8,d,0)
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2.6 Conclusion

In this paper we show by Monte Carlo that popular nonlinear models such as TAR,

STAR and Markov switching models can easily be misspeci�ed as long memory. We

estimate the memory parameter for various speci�cations of the above models and

�nd that the GPH estimator is positively biased indicating long-range dependence.

However, applying the V/S test with an optimal lag-length as suggested by Andrews

(1991) seems to give reasonable results. On the other hand do linearity tests reject

the null hypothesis of linearity when the true data generating process exhibits long

memory with a rejection probability tending to one. The rejection probabilities in-

crease with the memory parameter. This e�ect is more pronounced for tests against

a speci�c alternative such as TAR or STAR. The more general neural network test

shows a favorable behavior. However, a strong autoregressive root can collapse the

rejection probabilities.

Therefore, nonlinear models can easily be misspeci�ed as long-range dependence and

vice versa by using standard methodology. Methods for distinguishing between these

two phenomena are subject to future research.
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Figure 2.4: Sample periodograms and ACF plots (i) SETAR process (ii) Long memory
with d = 0.341
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Figure 2.5: Sample periodograms and ACF plots (i) ESTAR process (ii) Long memory
with d = 0.342
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Figure 2.6: Sample periodograms and ACF plots (i) Markov switching process (ii)
Long memory with d = 0.391
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Chapter 3

A STUDY ON "SPURIOUS LONG MEMORY IN

NONLINEAR TIME SERIES MODELS"
1

3.1 Introduction

In this paper we discuss the asymptotic behavior of nonlinear processes which are

able to create spurious long memory. In the recent years econometric research ad-

dressed the problem of �nding spurious long memory when the data contains struc-

tural breaks. A growing literature proposed models which are able to capture both

phenomena, as well as developed tests to distinguish between long memory and struc-

tural changes. Granger and Hyung (2004) notice that a linear process with breaks

can mimic long memory. For an overview about structural breaks and long memory,

see Sibbertsen (2004b) or Banarjee and Urga (2005).

However, long memory can appear in various processes. Granger and Ding (1996)

demonstrate that some processes can generate long memory as for instance processes

containing an aggregation scheme, time changing coe�cient models and possibly non-

linear time series. For the existence of long memory in aggregated processes see also

Robinson (1978). Leipus and Surgailis (2003) show that random coe�cient autore-

gressive models may exhibit long memory, in the sense that the covariance function

decays hyperbolically.

1This chapter is co-authored with Prof. Dr. Philipp Sibbertsen, Leibniz Universität Hannover
Germany. It was originally published in Applied Mathematical Science (2008), 2(55), 2713-2734.
Publication within this thesis with kind permission of Hikari. ltd.
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Breidt and Hsu (2002) consider extensively a class of nearly long memory time series.

They consider regime switching with a dynamic mean structure, and show that spe-

cial cases such as random level shift, AR(1) and random walk have similar properties

than a long memory process. Morever, Leipus et al. (2005) discuss the long memory

properties and large sample behavior of partial sums in a renewal regime switching

scheme. Parke (1999) introduces an error duration representation for fractional in-

tegration. Gourieoux and Jasiax (2001) study how processes with infrequent regime

switching, which is binary process may generate a long memory e�ect in the autocor-

relation function. Other related discussions about the relation of long memory and

nonlinearity can be found in Deo et al. (2007) and Davidson and Sibbertsen (2005).

In this paper, we consider whether Markov switching and threshold models can exhibit

long-range dependencies. These models are very popular in empirical applications

and have been identi�ed to create similar empirical characteristics as a long memory

process. We study the asymptotic behavior of these nonlinear processes and perform

a simulation study to support the theory. We describe in which sense nonlinear time

series can create a spurious long memory behavior.

This paper is organized as follows: section 3.2 discusses some basic characteristics

of long memory processes, section 3.3 discusses the estimation of the long memory

parameter and the possible sources for a bias of the GPH estimator. The existence

of spurious long memory in nonlinear processes is discussed in section 3.4 and section

3.5 concludes.

3.2 Characteristic of long memory processes

Long memory or long range dependence means that observations far away from each

other are still strongly correlated. The correlations of long memory processes decay

slowly that is with a hyperbolic rate.
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Long memory can be de�ned in di�erent ways. The de�nition is always related to

the asymptotic behavior of the process. In this paper we use those de�nitions of long

memory which are used later for our considerations.

De�nition 1: Let yt be a stationary process for which the following holds. There

exists a real number d ∈ (0, 1/2) and a constant Cρ > 0 such that

lim
τ→∞

ρ(τ)

τ 2d−1
= Cρ

then yt is called a stationary process with long memory.

From the de�nition above, it is known that the correlations of a long memory process

decay with a hyperbolic rate. They are not summable. If de�nition 1 gives a de�nition

for long memory in terms of the asymptotic decay of the autocovariance function, the

equivalent de�nition below uses another characteristic of long memory in terms of the

shape of the spectral density.

De�nition 2: Let yt be a stationary process for which the following holds. There

exists a real number d ∈ (0, 1/2) and a constant Cf > 0 and a frequency λ0 ∈ [0, π]

such that

lim
λ→λ0

f(λ)

|λ− λ0|−2d
= Cf

then yt is called a stationary process with long memory.

Both de�nitions are equivalent as the spectral density links to the autocovariance

function via a Fourier transformation. Another related de�nition is the asymptotic

behavior of the variances of partial sums:

De�nition 3: Let yt be a stationary process and denote by σy(T ) the variance of

the partial sums ST =
∑T

t=1 yt. If the variance σy(T ) has the following asymptotic

behavior

σy(T ) ∼ O(T 2d−1), when T →∞
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with d ∈ (0, 1/2), then yt is called a stationary process with long memory.

In order to give a more severe understanding of the de�nitions above, �gure 3.1 shows

an example of a typical path of a long memory time series and the autocorrelation

function of this long memory process with parameter d equal to 0.4 . It can be seen

that the autocorrelations are signi�cant even after 50 lags and that they decay slowly.
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Figure 3.1: Long memory process with d=0.4. (i) time series plot (ii) autocorrelation
function

3.3 Modeling long memory and bias of the GPH estimator

ARFIMA models introduced by Granger and Joyeux (1980) and independently by

Hosking (1981) are a popular class of long memory processes. They allow for a

fractional degree of integration in order to generalize the class of ARIMA models.
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ARFIMA Model are de�ned as follows:

φ(B)(1−B)dyt = ψ(B)εt

where B is the backshift operator, φ(B) and ψ(B) are the AR and MA polynomials

respectively and εt is a white noise process.

The operator (1−B)d can be written as:

(1−B)d =
∞∑

j=0

dΓ(j + d)

Γ(1 + d)Γ(j + 1)
, (3.1)

The spectral density of an ARFIMA process behaves like a constant Cf times |λ|−2d

near the origin. Thus the process exhibits long range dependence for 0 < d < 1/2,

where d characterizes the memory parameter (see Beran (1994) for details).

GPH estimator proposed by Geweke and Porter-Hudak (1983) is the most popular

method to estimate the memory parameter. Let us consider the following J peri-

odogram ordinates

Ij =
1

2πT
|

T∑
t−1

yt exp(iλjt)|2

where λj = 2πj/T , j = 1, ..., J and J is the bandwidth frequency, which is a positive

integer smaller than T .

The GPH method estimates the memory parameter by least square estimator from a

linear regression model of {log Ij} on a constant and the regressor xj de�ned as

xj = log |1− exp(−iλj)| =
1

2
log(2− 2 cosλj).

In other words, the linear regression can be written as

log Ij = logCf − 2dxj + log ξj (3.2)

where xj is the j-th Fourier frequency and the ξj are identically distributed error

variables with −E[log ξj] = 0.577 known as Euler constant. From this, the GPH
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estimator is given by

d̂p =

−0.5
J∑

j=1

(xj − x̄) log Ij

J∑
j=1

(xj − x̄)2

(3.3)

where x̄ is the mean of the Fourier frequency x de�ned as x̄ = 1
J

J∑
j=1

xj.

A short memory process is characterized by the value of d = 0. Thus, whenever

the data generating process is short memory but creates a positive estimate of the

memory parameter means that the GPH estimator has to be biased. Next we are

interested in the possible sources of the bias. The term in (3.3) can be arranged as

follows:

dp = d̂+

∑J
j=1(xj − x̄) log Îj/Ij∑J

j=1(xj − x̄)2
(3.4)

where d̂ is the GPH estimator and Îj is the estimated periodogram. Due to the fact

that short memory process is characterized by the memory parameter equal to zero,

thus the bias of GPH estimator is:

bias(d̂) = E(d̂)

= dp −
∑J

j=1(xj − x̄)E(log Îj/Ij)∑J
j=1(xj − x̄)2

From the last expression above, it is clear that there are two sources of bias. The

�rst term dp represents the bias induced by the short memory components and the

second arises from the fact that the log periodogram is a biased estimator of the log

spectrum (see Smith (2005) for details). To get a clear illustration about the bias of

the GPH estimator, see Agiakloglou et al. (1993) and Choi and Wohar (1992). They

provide an illustration for biases of the GPH estimator for simple AR(1) and MA(1)

process.
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3.4 Spurious long memory in nonlinear processes

We restrict the consideration in this paper to Markov switching and threshold models.

There are several ways to show that the properties of such short memory processes

can resemble long memory by means of the autocovariance function, the conditional

mean, the variance of partial sums and the autocorrelation function as well as the

spectral density.

The behavior of the periodogram as an estimator of the spectral density is one char-

acteristic which might look similar for di�erent processes in �nite samples. Figure 3.2

and 3.3 present the spectral density and periodogram of a long memory, SETAR and

Markov switching process respectively. Note that the long term behavior of a process

is speci�ed by the small frequencies of the periodogram. For long memory processes

the spectral density has a pole at the origin.
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Figure 3.2: Plot spectrum of long memory, threshold and Markov switching process
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Figure 3.3: Plot periodogram of (i) long memory process (ii) Markov switching process
(iii) Threshold process

From the �gures it is clear that the periodogram as well as the spectrum of the

processes are hardly to distinguish. They are identical and �at near the origin.

The following subsections discuss the asymptotic behavior of the processes as well

as the simulation results giving evidence of long memory in the considered nonlinear

processes. Firstly, a simulation study applies the GPH estimator with the original

bandwidth frequency proposed by GPH, which is J = T 0.5.

3.4.1 Markov switching models

In this paper we consider a simple two-state Markov switching model. The parameters

of the process are time varying and are governed by an unobservable random variable

st. Lets de�ne the following �rst order Markov switching model with an AR(1) process
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in each regime (Hamilton(1989)):

yt =

 µ1 + φ1yt−1 + σ1εt if st = 1

µ2 + φ2yt−1 + σ2εt if st = 2
(3.5)

The model above can be written as:

yt = µst + φstyt−1 + σstεt (3.6)

where µst , φst and σst are parameters under corresponding states st for st = 1, 2.

The states represent di�erent situation in a time series for instance expansion and

recession, congestion and non-congestion, and so forth. The process st is a Markov

chain, characterized by a transition probability P given by the following matrix:

P =

 p11 1− p11

1− p22 p22

 (3.7)

The properties of Markov switching models have been widely considered in recent

papers. Yao and Attali (2000) give a su�cient condition for geometric ergodicity of

Markov switching autoregressive models. Geometric ergodicity ensures the existence

of stationary distribution, meaning that if y0 is drawn from any stationary distri-

bution, then yt is also stationary and geometrically β-mixing. Higher moments of

Markov switching process can be found in Timmermann (2000).

By assuming that the chain is irreducible and recurrent, and that there exists a

stationary probability for the chain as matrixP, Liu (2000) demonstrated the inability

of the Markov switching model to generate long memory behavior. The following

theorem formalizes the result:

Theorem 1: If the Markov chain is stationary, then the Markov chain regime switch-

ing model is in the class of short memory models.

Proof: see Liu (2000)
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The result is based on the behavior of the covariance which indicates that the process

is short memory. The asymptotic behavior of the process is always used to identify

long memory. Guégan and Rioublanc (2003) derived the autocovariance function for

model (3.5). They employ the following assumptions:

(1): The process (εt)t is a strong white noise and all its moments exist

(2): (st)t is an irreducible, aperiodic and stationary Markov chain

(3): The process (εt)t is independent of (st)t

(4): ‖ ΦP ‖< 1, with Φ = diag(φ1, φ2)

(5): There are an integer h ≥ 1 and a nonempty subset K1 = {k1, ..., kt1} of the state

space K = {1, 2} such that

min
i∈K,j∈K1

q
(h)
ij = θ > 0

where q
(h)
ij is the (i, j)th element of the matrix (Ph)′, where P is de�ned in (3.7).

Assumption (1)− (3) are needed to develop the unique strict stationarity condition,

and assumption (4) and (5) imply that the stable unconditional probabilities πi =

P[st = i], i = 1, 2 exist and can be expressed as πi = limh→∞ q
(h)
ij , i = 1, 2. Then,

it can be shown that the convergence speed of the autocovariance function for the

process yt follows the theorem below:

Theorem 2: Let yt be the process de�ned in (3.5), by assuming that the assumption

(1)− (5) hold, then the autocovariance function γ(τ) of the process yt converges to 0

with the rate O(τvτ ), when τ →∞, with 0 < v < 1.

Proof : see Guégan and Rioublanc (2003).

The theorem gives the rate of decay of the autocovariance function and con�rms that

the process de�ned in (3.5) asymptotically behaves as a short memory process in

terms of the autocovariance function.

Below we present simulation results to con�rm whether Markov switching processes
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as de�ned in (3.5) can be detected as long memory process or not. For all of our

simulation settings, we use 1000 replications with sample size equal to T = 200 and

T = 600 and parameter σ1 = σ2 are set to be one. For the �rst simulation in table

3.1 we generate a data set following model (3.5) with the parameters µ1 = 0.5 and

µ2 = −0.5 and p11 = p22 = 0.1. Di�erent sample sizes are considered to assess the

consistency of the estimator.

Table 3.1: GPH estimator for Markov switching process (3.5) with p11 = p22 = 0.1

T = 200 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 -0.064 -8.419 -0.0347 -6.755

0.2 -0.066 -8.569 -0.0457 -8.324

0.3 -0.069 -8.815 -0.0416 -7.910

0.4 -0.067 -8.793 -0.0319 -6.102

0.5 -0.079 -10.089 -0.0383 -6.865

0.6 -0.082 -10.559 -0.0416 -7.770

0.7 -0.070 -10.039 -0.0394 -7.439

0.8 -0.084 -10.940 -0.0346 -6.459

0.9 -0.083 -11.003 -0.0496 -9.512

From the table above, it can be seen that for all cases, the GPH estimator indicates

that the considered Markov process is a short memory process. This is also supported

by the value of the t-statistic indicating that the estimator is not signi�cantly di�erent

from zero. However, note that the results in table 3.1 are obtained by setting the value

of the transition probability p11 = p22 = 0.1.

Since the transition probabilities are a key element for Markov processes which are

considered as "persistence" parameter, it is necessary to do further investigations by

using other values. The higher the value of the transition probability pii the longer
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the process is expected to remain in state i and the process becomes more persistent.

Let us consider the following table, which contains the results when the same param-

eters of data generating process are used as above but now with p11 = p22 = 0.9.

We expect that the GPH estimator will be biased towards long memory since these

parameters leads to a higher persistence of the Markov switching process and long

memory itself is also a persistent process.

Table 3.2: GPH estimator for the Markov switching process (3.5) with p11 = p22 = 0.9

T = 200 T = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.1194 15.691* 0.0527 9.722*

0.2 0.1158 15.968* 0.0553 10.902*

0.3 0.1178 16.119* 0.0531 10.233*

0.4 0.1219 16.727* 0.0598 11.311*

0.5 0.1292 16.821* 0.0541 9.933*

0.6 0.1468 19.313* 0.0639 11.772*

0.7 0.1765 22.311* 0.0763 14.830*

0.8 0.2272 28.447* 0.0928 16.970*

0.9 0.3358 39.529* 0.1367 23.436*

Note: The asterisk indicates signi�cance at 5% level

Now, a value of the transition probability leads to a positively biased GPH estimator.

Table 3.2 shows that all values are in the range of stationary long memory, for T = 200

and T = 600. The t-statistic indicates that the estimator d is signi�cantly greater

than zero. This means that in certain cases, Markov switching process can exhibit

long memory depending on the value of the transition probability. This result shows

that instead of the autocovariances there should be other asymptotic properties of

Markov switching processes (3.5) which resemble long memory and depend on the



42

transition probability parameter.

To assess the behavior of the GPH estimator against sample size, we see that the

value of d decreases with increasing sample size. This permits easy assessment of

the extent to which the problem of bias diminishes with increasing sample size. This

�nding is consistent with the result of Agiakloglou et al. (1993).

Model (3.5) is a general Markov switching model and it contains several special cases.

Therefore, we now discuss whether some of these representations do behave asymp-

totically like a long memory process. One of the processes which attract many con-

siderations in the literatures is regime switching in the mean de�ned as follows, ∀t:

yt =

 µ1 + εt if st = 1

µ2 + εt if st = 2
(3.8)

Thus, the the ij-th element of P gives the probability of moving from state i (at

time t− 1) to state j at time t. The process (3.8) is called as mean switching model

where yt switches from µ1 to µ2 and εt is Gaussian white noise with variance one,

independent of the Markov chain st.

Model (3.8) is a candidate for a Markov switching process which is able to create a

spurious long memory. Andel (1993) showed that the autocovariance function of a two

state model such as (3.8) is similar to the autocovariance function of an ARMA(1,1)

process. It is well known that ARMA processes are short memory with geometrically

decaying autocorrelation functions. However, certain ARMA processes have autocor-

relation functions which decay slowly enough to resemble long memory. The following

lemma provides the autocorrelation function of the process (Guegan and Rioublanc

(2005)):

Lemma 1: The autocorrelation function ρ(τ) of the process yt de�ned by (3.8) is
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equal to

ρ(τ) =
(µ1 − µ2)

2(1− p11)(1− p22)r
τ

(2− p11 − p22)2[π1µ2
1 + π2µ2

2 + 1− (π1µ1 + π2µ2)2]
(3.9)

where r = −1 + p11 + p22, π1 = 1−p22

2−p11−p22
and π2 = 1−p11

2−p11−p22
are the non conditional

probabilities.

From the lemma above, the autocorrelation function ρ(τ) can be written as ρ(τ) =

Aµi,pii
rh, with Aµi,pii

is de�ned as the following:

Aµi,pii
=

(µ1 − µ2)
2(1− p11)(1− p22)

(2− p11 − p22)2[π1µ2
1 + π2µ2

2 + 1− (π1µ1 + π2µ2)2]
, i = 1, 2.

The levels µi and the transition probabilities pii determine the decay of the autocor-

relation function with the rate of convergence is rτ = (−1 + p11 + p22)
τ .

Having r as de�ned above implies that for any value of transition probabilities pii will

yield on r in the range of -1 and 1. r will close to 1 if the transition probabilities are

high and therefore, the autocorrelation function decreases slowly. In other words, if

jumps are rare relative to sample size, then the process has a behavior similar to that

of a long memory process. Otherwise, when r is close to 0 (the case of p11 + p22 close

to 1), the autocorrelation function will decay faster and shows the characteristic of a

short memory process.

Consistent to the Lemma above another behavior of such Markov switching process

is examined in Diebold and Inoue (2001). They point out that the variance of partial

sums of the Markov switching process (3.8) matches those of long memory processes

under certain conditions. The following proposition holds:

Proposition 1: Assume that (a) µ1 6= µ2 and that (b) p11 = 1 − C1T
−δ1 and p22 =

1−C2T
−δ2, with δ1, δ2 > 0 and 0 < C1, C2 < 1, then the variances of the partial sums

of yt grow at a rate corresponding to I((1/2) max(min(δ1, δ2)− |δ1 − δ2|, 0)).

Proof: see Diebold and Inoue (2001).
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By introducing those assumptions, they use the sample size to normalize the distance

between the parameters p11 and p22 and the non-ergodic values. From this, Diebold

and Inoue (2001) determine that the variance of the partial sums of yt has the same

order as the variance of the partial sums of fractionally integrated process for any

value of δ1, δ2 > 0.

The tables below provide simulation results for the presence of long memory in the

regime switching in mean process. The data generating process is based on di�erent

values for the mean and di�erent settings of the transition probabilities following the

lemma above. We consider mean value of µ1 = 0.5 and µ2 = −0.5 for the �rst, and

µ1 = 5 and µ2 = −5 for the second simulation.

Table 3.3: GPH estimator for Markov switching process (3.8) with µ1 = 0.5 and
µ2 = −0.5

T = 200 T = 600

p11 = p22 d t− stat d t− stat

0.1 -0.0465 -6.321 -0.0389 -7.131

0.2 -0.0521 -6.992 -0.0346 -6.597

0.3 -0.0570 -7.850 -0.0283 -5.511

0.4 -0.0618 -8.499 -0.0325 -6.148

0.5 -0.0551 -7.674 -0.0295 -5.620

0.6 -0.0418 -5.591 -0.0303 -5.687

0.7 -0.0461 -6.134 -0.0291 -5.267

0.8 -0.0015 -0.199 -0.0172 -3.249

0.9 0.1093 14.701* 0.0522 10.211*

In line with the result of the previous simulations, long memory appears in the case

of high transition probabilities. The table below presents the simulation result by

setting µ1 = 5 and µ2 = −5 to asses the behavior against µ.
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Table 3.4: GPH estimator for Markov switching process (3.8) with µ1 = 5 and µ2 =
−5

T = 200 T = 600

p11 = p22 d t− stat d t− stat

0.1 -0.0509 -7.212 -0.0373 -7.030

0.2 -0.0639 -8.507 -0.0404 -7.584

0.3 -0.0515 -6.596 -0.0299 -5.588

0.4 -0.0592 -7.780 -0.0353 -6.544

0.5 -0.0678 -8.348 -0.0256 -4.804

0.6 -0.0396 -5.293 -0.0291 -5.512

0.7 -0.0212 -2.880 -0.0315 -5.839

0.8 0.0537 6.976* -0.0133 -2.481

0.9 0.2442 31.549* 0.1137 20.892*

The results suggest that a higher distance of the means leads to a higher possibility

that long memory appears. For instance, the GPH estimator is biased towards long

memory for p11 = p22 = 0.8 with a higher µ. Changing the transition probabilities

yields to a consistent result with the previous experiment, where a higher pii results

in a higher probability that the GPH estimator is biased towards long memory.

The discussion about the bias of the GPH estimator leads to the question whether it

is possible to reduce it and how the bandwidth frequency J has to be chosen. For the

mean switching process, Smith (2005) extends the results above to derive the limiting

value of the GPH estimator dp for a particular value of δ, and shows that the choice

of J will in�uence the GPH estimator.

Theorem 3: Consider the Markov switching process in (3.8), let p11 = 1 − C1T
−δ
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and p22 = 1− C2T
−δ, and J = θT γ, where δ = 1− γ, then

lim
T→∞

dp = 1− 0.25
∞∑

m=0

(−1)m(
2πθ

(C1 + C2)
)2m(0.5 +m)−2.

Proof: see Smith (2005)

The theorem implies that d has the limiting value which lies in (0, 1) and therefore

supp11+p22∈(0,1) dp does not converge to zero as T →∞. Note that the function

∞∑
m=0

(−1)m(
2πθ

(C1 + C2)
)2m(0.5 +m)−2

is special function called as the Lerch transcendent function evaluated at (−((2πθ)/(C1+

C2))
2, 2, 0.5). This function generalizes the zeta function.

The fraction (C1+C2)
2θ

can be written in terms of J as

(C1 + C2)

2θ
= (T (1− p11) + T (1− p22))/2J.

Thus, by setting di�erent values of J will yield on the values of d in the range be-

tween zero and one, which characterize long memory. To see the behavior of the bias

depending on the bandwidth selection, the table below presents the GPH estimator

by allowing for several choices of J dependent on γ.

Table 3.5: GPH estimator for Markov switching processes with di�erent γ

T = 200 T = 600

γ d t− stat d t− stat

0.2 -0.2248 -5.832 -0.1702 -6.709

0.3 -0.0942 -4.870 -0.0798 -5.565

0.4 0.0273 2.447* -0.0282 -3.501

0.5 0.1146 15.349* 0.0517 9.761*

0.6 0.1612 31.313* 0.1241 34.135*

0.7 0.1591 41.960* 0.1652 67.397*

0.8 0.1443 54.140* 0.1564 96.904*

0.9 0.1277 57.340* 0.1294 109.160*
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The estimation cannot be carried out for γ = 0.1 as the bandwidth is too short. The

results in table 3.5 clearly show that the estimated value of d changes with a changing

value of γ. In this case γ = 0.5 and γ = 0.8 correspond to the value suggested by

Geweke and Porter-Hudak (1983) and Hurvich et al. (1998), respectively. Hurvich et

al. (1998) show that J = T 0.8 results in a minimal mean squared error(MSE). The

table below presents the value of the GPH estimator with the same parameter setting

as in table 3.3 and 3.4, but using γ = 0.8.

Table 3.6: GPH estimator for Markov switching processes (3.8) with µ1 = 0.5,µ2 =
−0.5 and γ = 0.8

T = 200 T = 600

p11 = p22 d t− stat d t− stat

0.1 -0.0231 -8.213 -0.0095 -5.580

0.2 -0.0289 -10.468 -0.0133 -7.626

0.3 -0.0310 -11.340 -0.0170 -9.853

0.4 -0.0264 -9.390 -0.0162 -9.331

0.5 -0.0130 -4.841 -0.0049 -2.808

0.6 0.0150 5.470* 0.0119 6.742*

0.7 0.0464 16.272* 0.0408 23.532*

0.8 0.0905 32.745* 0.0880 52.817*

0.9 0.14601 56.887* 0.1577 98.305*
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Table 3.7: GPH estimator for Markov switching processes (3.8) with µ1 = 5,µ2 = −5
and γ = 0.8

T = 200 T = 600

p11 = p22 d t− stat d t− stat

0.1 -0.1609 -58.384 -0.0864 -51.630

0.2 -0.1636 -58.137 -0.0903 -53.559

0.3 -0.1425 -51.357 -0.0806 -45.587

0.4 -0.0923 -31.657 -0.0588 -35.777

0.5 -0.0110 -3.841 -0.0072 -4.043

0.6 0.0900 32.191* 0.0685 39.630*

0.7 0.2217 78.366* 0.1761 108.502*

0.8 0.3932 142.849* 0.3297 187.361*

0.9 0.6002 217.947* 0.5523 314.112*

Comparing table (3.3) with (3.6) and table (3.4) with (3.7) leads to the conclusion that

the choice of the bandwidth frequency is important in order to determine the bias.

Using γ = 0.8, the GPH estimator will frequently be biased towards long memory.

Using γ = 0.5 results in a lower bias but it is considered as ine�cient as it is not MSE

optimal. Moreover, if we see the nature of the process the closer the process is to

ergodicity, the higher is the persistence and the process will resemble long memory.

We can say that the choice of γ = 0.8 gives a better explanation of the nature of the

process in terms of persistency.

3.4.2 Threshold models

Threshold models di�er from Markov switching models on the way to create jumps

from one state to another. Threshold models assume that the shifts between the

regimes are observable and not exogenous. There are two di�erent types of threshold
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models, namely SETAR and STAR models. The di�erence between them is that the

regime switching in a SETAR model is based on a discontinuous function, whereas

in STAR models it is based on continuous function. Threshold models especially the

TAR model have a close relationship to the Markov switching process in a certain case

(see Carrasco (2002) and Gourieroux (1997)). However, In case of the delay parameter

equal to one, threshold models are not Markov switching because the Markov chain

(indicator) function is not exogenous.

In this part we describe the existence of spurious long memory generated by threshold

models. Point of departure is the following SETAR representation:

yt = F1(yt−1,Φ)(1− I(yt−l > c) + F2(yt−1,Φ)(I(yt−l > c)) + εt, (3.10)

where the functions F1 and F2 are autoregressive processes depending on the past

values of yt and εt. The process εt is white noise and I an indicator function. The

model (3.10) becomes a STAR model and the regime changes smoothly by setting the

indicator function to a continuous function, G(yt−l, γ, c). If the function F1 and F2

are short memory, then the process in (3.10) is short memory.

In the case that one state has long memory, the process is long memory. Investigations

on the existence of long memory in the processes is done by examining the stationarity

conditions of the processes. Let us consider the SETAR (2,1) process, a simple SETAR

with two regimes and autoregressive order one in each regime as described below:

yt =

 φ0,1 + φ1,1yt−1 + εt if yt−1 ≤ c

φ0,2 + φ1,2yt−1 + εt if yt−1 > c
(3.11)

The delay parameter in the model above is set to be one. Chan (1993) and van Dijk,

et al. (2002) de�ne the stationary conditions of (3.11) as follows:

1. A su�cient condition for stationarity : max |φ1,1|, |φ1,2| < 1.
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2. Necessary and su�cient conditions for stationarity:

- φ1,1 < 1, φ1,2 < 1, φ1,1φ1,2 < 1,

- φ1,1 = 1, φ1,2 < 1, φ0,1 > 0

- φ1,1 < 1, φ1,2 = 1, φ0,2 > 0

- φ1,1 = 1, φ1,2 = 1, φ0,2 < 0 < φ0,1

- φ1,1φ1,2 < 0, φ0,2 + φ1,2φ0,1 > 0

From the conditions above, stationarity depends on the setting of the autoregressive

parameters. A non-stationary behavior can appear in one regime whereas the process

is still globally stationary, which can lead to a confusion with long memory.

The following tables present simulation results on spurious long memory in threshold

models. Let us consider the case, where the necessary and su�cient conditions for

the stationarity above are ful�lled. Under the �rst condition, the results are given

in chapter 2 showing that the GPH estimator is biased towards long memory. To

investigate the second condition, we set the parameters for the data generating process

in table 3.8 as φ1,1 = 1, φ1,2 = 0.1, and c is set to be zero.

Table 3.8: GPH estimator for TAR processes with φ1,1 = 1 and φ1,2 = 0.1

T = 200 T = 600

φ0,1 d t− stat d t− stat

0.1 0.8249 207.604* 0.8441 307.957*

0.2 0.7678 162.380* 0.7121 231.900*

0.3 0.5928 125.017* 0.5913 183.095*

0.4 0.4956 106.163* 0.4812 147.967*

0.5 0.4069 94.433* 0.3885 129.739*

0.6 0.3306 76.876* 0.3094 105.290*

0.7 0.2723 65.739* 0.2421 88.749*

0.8 0.2157 53.311* 0.1889 74.089*

0.9 0.1723 45.949* 0.1459 60.820*
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From the table, we can see that the mixing parameter in case of global stationarity

can generate a long memory behavior. To know how this behavior depends on the

choice of the autoregressive parameter φ1,2, we do simulation by setting φ1,2 = 0.9.

This shows that the more persistent the autoregressive part of the process is (a higher

value of φ close to unity), the higher is the possibility that long memory will appear.

This can be seen from the table below.

Table 3.9: GPH estimator for TAR processes with φ1,1 = 1 and φ1,2 = 0.9

T = 200 T = 600

φ0,1 d t− stat d t− stat

0.1 0.8165 237.264* 0.7954 309.919*

0.2 0.8040 258.839* 0.7696 347.590*

0.3 0.7979 260.175* 0.7633 366.930*

0.4 0.7911 262.086* 0.7518 396.365*

0.5 0.7869 266.074* 0.7433 419.715*

0.6 0.7848 283.256* 0.7436 402.063*

0.7 0.7842 266.810* 0.7383 426.123*

0.8 0.7799 280.985* 0.7360 427.559*

0.9 0.7811 275.666* 0.7340 428.562*

All GPH estimators are biased towards long memory. This result is also consistent

under condition (3). Below you �nd the result under condition (4), where φ1,1 =

1, φ1,2 = 1 with various values of φ0,1 and φ0,2.
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Table 3.10: GPH estimator for TAR processes with φ1,1 = 1, φ1,2 = 1

T = 200 T = 600

φ0,1 = −φ0,1 d t− stat d t− stat

0.1 0.9208 299.877* 0.9364 487.486*

0.2 0.8590 251.864* 0.8479 376.124*

0.3 0.7759 205.877* 0.7429 300.329*

0.4 0.6733 172.456* 0.6406 244.489*

0.5 0.5805 148.509* 0.5377 199.488*

0.6 0.4871 129.712* 0.4448 169.450*

0.7 0.4034 106.050* 0.3629 144.674*

0.8 0.3330 91.155* 0.2915 121.350*

0.9 0.2728 73.922* 0.2317 98.254*

Again, all GPH estimators are biased towards long memory, either stationary or non-

stationary. The results above are obtained under the bandwidth J = T 0.8. Using

J = T 0.5 might give di�erent result. However, we examine only J = T 0.8 due to

reasons mentioned in the previous subsection.

Now consider a special case of SETAR models given in Dufrenot et al. (2005) as

follow:

yt =

 (1−B)−dε
(1)
t if yt−1 ≤ c

ε
(2)
t if yt−1 > c

(3.12)

The similar model was considered by Guégan (2004). This model has the speci�c

characteristic that one regime has long memory dynamics and the other has weak

dependencies. The switching in the regimes determines the autocovariance function

and the spectral density of the process. The autocovariance function of (3.12) can be

expressed as

γ(τ) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
τ 2d−1, as τ → +∞ (3.13)
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which is not summable and the spectrum has the following representation

f(λ) ∼ Cλ−2d+, as λ→ 0 (3.14)

where C is a positive constant. We see that at zero frequency the spectrum f goes to

in�nite. This indicates that long memory dominates asymptotically. The existence of

long memory is induced by the switching behavior across the two regimes. If regime 1

is more frequently visited by the observations than regime 2, then the autocorrelations

will decay slowly and the spectral density at frequencies near zero will have high

values. The opposite condition results to the short memory process.

3.5 Conclusion

This paper has been written to give the reader a clear description in a structural

way about the existence of spurious long memory in some nonlinear processes which

are most interesting in practice. The paper makes the following contributions. First,

general Markov switching model as well as mean shift process can mimic long memory.

This mimicking phenomena emerges under certain settings of the parameters. Long

memory processes more likely emerge in case of transition probabilities close to unity,

indicating that the process is becoming more persistent. Second, threshold models are

clearly able to generate spurious long memory under locally or globally stationarity

conditions especially if the process is highly persistent. Third, the GPH estimator

itself introduces a bias and the choice of the bandwidth frequency plays an important

role in generating spurious long memory. The bias decreases with an increasing sample

size.
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Chapter 4

TESTING FOR LONG MEMORY AGAINST ESTAR

NONLINEARITIES
1

4.1 Introduction

Long memory and nonlinear time series have both been extensively applied in empir-

ical studies on the business cycle and other macroeconomic time series leading to dif-

ferent economic implications. However, several studies provided theoretical evidence

that long memory can easily be confused with nonlinear regime-switching processes.

Granger and Ding (1996) pointed out that a number of processes can be mistaken

as long memory although providing only nonlinear features. Granger and Teräsvirta

(1999) demonstrated that a simple nonlinear time series model can mimic linear prop-

erties whereas Andersson et al. (1999) found that on the other hand linear time series

can mimic nonlinear properties as well. Diebold and Inoue (2001) proved analytically

that stochastic regime switching can easily be confused with long memory. Davidson

and Sibbertsen (2005) argued that the aggregation of processes with structural breaks

converge to long memory.

Recently, several approaches to combine the two phenomena long memory and short

memory nonlinearity appeared. For instance, van Dijk et al. (2000) and Smallwood

(2005) developed the FI-STAR model, a joint model which covers long memory and

nonlinear STAR processes. Tsay and Härdle (2008) propose a new Markov switching

1 Co-author: Prof. Dr. Philipp Sibbertsen, Leibniz Universität Hannover Germany
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model which allows the switching autoregressive component in the regimes to have

a certain degree of fractional integration. Another Markov switching long memory

model was examined by Heildrup and Nielsen (2006). Meanwhile, Goldman and Tsu-

rumi (2006) developed the TARFIMA model, a simultaneous model which contains

of threshold autoregression and long memory.

These aforementioned models are joint models combining long memory and a speci�c

nonlinear process. Less attention has been addressed to the issue of distinguishing

between long memory and nonlinearities. This is of interest when it is not clear to

the practitioner whether a data set under investigation contains long memory or has

a short memory nonlinear structure or whether both is present. Especially when

the underlying nonlinear structure is unknown it is di�cult to apply a speci�c joint

model. Another major drawback is that long memory and nonlinear models are non-

nested, which complicates the analysis. To the best of our knowledge, Kapetanios and

Shin (2003) is the only approach which tries to solve the problem of distinguishing

between the two phenomena, by assuming that the memory parameter is known.

Unfortunately, the results of their simulation study indicated that the test does not

have sophisticating power properties.

Baillie and Kapetanios (2007) provide a framework of simultaneously modeling long

memory and nonlinearity. They, furthermore, suggest tests on neglected nonlinearity

in the sense that they test whether a given long memory process has an additional

nonlinear component. The problem is that a neglected nonlinearity component arti-

�cially creates a strongly biased estimate for the memory parameter and, therefore,

falsely indicates long memory. Using this biased estimate in their testing framework

decreases the power of their tests signi�cantly. Therefore, a test barely considering

the problem of distinguishing between these two phenomena is still of interest.

In this paper we suggest a test which is able to distinguish between long memory
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and a speci�c nonlinear time series process, namely ESTAR-processes. By using the

basic idea of Kapetanios and Shin (2003), we propose a new test which is basically

developed by using a standard Wald statistic and provide the adjusted critical values

for our testing problem. The hypothesis is de�ned to be long memory under the null

against ESTAR under the alternative. Since this involves a restricted parameter under

the alternative, using a standard Wald test is inappropriate. Therefore, we suggest

a directed-Wald statistic proposed by Andrews (1998) to overcome this problem.

Furthermore, we consider two di�erent approaches to develop the test statistic. The

results indicate that the supremum statistic of the second approach is more powerful

than the standard approach.

The paper is organized as follows. Section 4.2 introduces the theoretical framework.

In section 4.3 the test statistics and their asymptotic distributions are derived. A

simulation study showing the �nite sample properties of our tests is given in section

4.4, and section 4.5 illustrates an empirical application to exchange rates. Section 4.6

concludes and all proofs are given in the appendix.

4.2 The model

In this section we introduce the considered processes, namely long memory and non-

linear ESTAR processes. The model speci�cation which is used to construct the test

statistic refers to Kapetanios and Shin (2003) (denoted by KS hereafter). We propose

two tests derived from two di�erent approaches. The �rst one is similar to KS which

uses a Taylor expansion to obtain an auxiliary regression on which the test is based.

However, our regression di�ers from that in KS to some extents. For the second ap-

proach, we consider a model with an unidenti�ed parameter in the transition function

and take a supremum statistic.
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4.2.1 Long memory process

Fractional integration (FI) models were �rst introduced by Granger and Joyeux

(1980). Our work is based on the following simple model:

(1− L)dut = φ(L)−1εt = yt, (4.1)

where t = 1, . . . , T , L is the lag operator, εt is an iid error term with variance σ2 and

�nite fourth moments and yt is a short memory process such as a stationary invertible

ARMA (p,q) whose partial sums converge to a Brownian motion Y (r) (see de Jong

and Davidson, 2000). ut is a long memory process with a certain degree of fractional

integration d and the fractional di�erence operator is de�ned by

(1− L)d =
∞∑

j=0

dΓ(j + d)

Γ(1 + d)Γ(j + 1)
. (4.2)

The value of d is 0 < d < 1/2 for a stationary long memory process and 1/2 < d < 1

for a non-stationary long memory process.

Model (4.1) can be written as an in�nite moving average process in terms of yt

ut =
∞∑

j=0

ajyt−j, (4.3)

where aj = Γ(d+1)
Γ(j+1)Γ(d−j+1)

(−1)j. Equivalently, it can be written as an in�nite autore-

gressive process

ut =
∞∑

j=1

bjut−j + yt (4.4)

with bj = − Γ(j−d)
Γ(j+1)Γ(−d)

. By de�ning

zt =
t∑

j=1

bjut−j, (4.5)

we can write term (4.4) as

ut = yt + zt or yt = ut − zt. (4.6)



58

Following Kapetanios and Shin (2003), we use (4.6) to derive the test statistic in the

next section. Consider the scaled partial sum process

S[rT ] =

[rT ]∑
t=1

ut, r ∈ (0, 1],

where ut is de�ned by (4.1) with d 6= 1/2, we have that (see Marinucci and Robinson

(1999))

c−1/2T−(d+1/2)S[rT ](r) ⇒ Yd(r),

where c is a constant such that var(ST ) ∼ cT 2(d+1/2) and Yd(r) is a fractional Brownian

motion with d ∈ (0, 1/2) or d ∈ (1/2, 3/2) respectively. "⇒" denotes weak conver-

gence in distribution. A detailed discussion regarding the fractional Brownian motion

can be found in Mandelbrot and Van Ness (1968). Beran (1994) gives an overview

over the concept of long memory.

4.2.2 ESTAR model

Exponential Smooth Transition Autoregressive (ESTAR) models were introduced by

Granger and Teräsvirta (1993). A survey of recent developments in ESTAR modeling

can be found in van Dijk et al. (2002). A simple ESTAR model can be written as:

yt = α1yt−1{1− exp(−γy2
t−l)}+ α2yt−1 + εt, (4.7)

where yt is a stationary process and α1, α2 and γ are unknown parameters. The

parameter γ controls the degree of nonlinearity and determines the speed of transition

between the two extreme regimes, and yt−l in the transition function is the transition

variable with lag l ≥ 1. As frequently applied in the literature, we set the delay

parameter l equal to 1, therefore yt−l = yt−1
2.

2Taylor, Peel and Sarno (2001) provide an overview about the motivation to choose "l" equal to
one related to empirical applications.
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4.3 Testing long memory against ESTAR

As we pointed out in the previous section, we apply two di�erent approaches to

develop the test statistic. The �rst approach applies a �rst order Taylor expansion

to the transition function of ESTAR model in order to obtain an auxiliary regression.

This approach is standard when considering tests for ESTAR processes. The second

approach allows the parameter γ in the transition function to be unidenti�ed by

applying a supremum statistic. By using this approach, we expect that the test has

a higher power, since we do not use linear approximations for non-linear processes.

Let us write the general model speci�cation as:

ut = α1F (yt−1) + α2zt + εt, (4.8)

t = 1, ..., T with ut and zt are de�ned as in the previous section. The error εt is

allowed to be a general stationary process such as a stationary strong mixing process.

The following assumption formalize the condition for εt.

Assumption 1 :

Let εt be a stationary strong mixing sequence with Eε2t = σ2 for all t and supt ‖εt‖4 <

∞.

This assumption is necessary to derive the limit distribution of our test in the next

section and to have a consistent estimator of the error variance, that is σ2
T →p σ

2 with

σ2
T = (1/T )

∑T
t=1 ε

2
t . The test statistic is derived from (4.8) by using two di�erent

approaches which depend on F (yt−1). In other words, we de�ne the model as fol-

lows. For the �rst approach, applying a �rst order Taylor expansion to the transition

function F (yt−1) yields

ut = α1y
3
t−1 + α2zt + εt. (4.9)
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In this case, F (yt−1) = y3
t−1. For the second approach, F (yt−1) is originally de�ned as

yt−1{1− exp(−γy2
t−1)}, which yields

ut = α1yt−1{1− exp(−γy2
t−1)}+ α2zt + εt. (4.10)

We test the null of long memory against the alternative of an ESTAR process using

the models (4.9) and (4.10). Our null hypothesis is:

H0 : α1 = α2 = 0 (4.11)

and is tested against the alternative of:

H1 : α1 6= 0, α2 = 1 (4.12)

Under the null, we can also write

ut = εt, (4.13)

which is a simple long memory model and under the alternative hypothesis we have

the ESTAR model

yt = α1F (yt−1) + εt (4.14)

with the corresponding function F (yt−1). We discuss the test statistic and its limit

distribution in the following subsections.

4.3.1 Test statistic and limit distribution

We propose a standard Wald test to test the null (4.11). We know that model (4.10)

with a given γ is linear in the parameter α = (α1, α2)
′ and so is the model (4.9).

Therefore, we can estimate the parameter α by OLS and obtain the least square

estimator

α̂ = (X′X)−1(X′U) (4.15)
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with U = [u1, u2, ..., ut]
′, X =


F (y0) z1

...

F (yt−1) zt

. The Wald statistic for the null of

α = 0 is

W = α̂′[V ar(α̂)]−1α̂. (4.16)

The Wald test above is normally used under the condition that the parameter α is

unrestricted under the alternative hypothesis. Since the parameter α2 in (4.12) is

restricted (α2 = 1), the classical Wald test is no longer an optimal test. To overcome

this problem, we use a directed-Wald statistic proposed by Andrews (1998). This test

is designed for testing hypotheses with one or more restricted parameters under the

alternative.

Let us de�ne that H0 : α2 = 0 and H1 : α2 = A, with A = 1. Then, the directed-Wald

statistic, DW is given by:

DW(c) = (1 + c)(−1/2)exp

(
1

2

c

1 + c
W

)
Φ(A,

c

1 + c
α̂2,

c

1 + c
V ar(α̂2)) (4.17)

with c being a scalar relative weight given to alternatives that are close to the null

against alternatives that are away from the null. Andrews (1998) provides a procedure

for choosing the value of c and presents a simulation study for several values of c. This

suggests that the power of the directed-Wald test does not vary much with c, for c 6= 0,

which implies that the choice of c is not crucial. Since Andrews (1998) found that

c = ∞ is optimal for all cases, we set c = ∞ for our directed-Wald test and therefore,

(4.17) reduces to:

DW(∞) = W + 2 log[Φ(A, α̂2, V ar(α̂2))]. (4.18)

Here, Φ(.) represents a normal probability density function de�ned as Φ(A, µ, σ2) =
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P (V ∈ A), where V ∼ N(µ, σ2). For notational simplicity, we suppress the subscript

∞.

Let us now discuss the asymptotic distribution of both approaches. The asymptotic

distribution is derived from the continuous mapping theorem of Kurtz and Protter

(1991), the functional central limit theorem and weak convergence to stochastic inte-

grals of Davidson and de Jong (2000) and theorem 30.13 of Davidson (1994).

4.3.2 First approach

In this section, we derive the limit distribution of the statistics (4.16) and (4.18), which

is mainly characterized by the approximation y3
t−1 of F (yt−1). By using assumption

1, we obtain theorem 1 below (all proofs are given in the appendix):

Theorem 1: Under the null hypothesis that ut is long memory, α̂OLS is a consis-

tent estimator of α = 0 and converges to its true value with the rate of convergence

diag(T 3/2, T (1/2+d)) when 0 < d < 0.5 and diag(T 3/2, T (1−d)) when 0.5 < d < 1. Its

asymptotic distribution is T 3/2 0

0 T (1/2+d)

 α̂1

α̂2

⇒ Q−1
1 Q2 if 0 ≤ d < 0.5 (4.19)

 T 3/2 0

0 T (1−d)

 α̂1

α̂2

⇒ Q−1
1 Q2 if 0.5 < d < 1 (4.20)

with Q1 and Q2 de�ned as

Q1 =


∫ 1

0

Y (r)6dr

∫ 1

0

Y (r)3dZd(r)∫ 1

0

Y (r)3dZd(r)

∫ 1

0

Zd(r)
2dr

 (4.21)
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Q2 =


∫ 1

0

Y (r)3dY ∗(r)∫ 1

0

Zd(r)dY
∗(r)

 , (4.22)

where Y (r) and Y ∗(r) are standard Brownian motions and Zd(r) is a function of the

fractional Brownian motion as de�ned in the appendix.

Theorem 1 shows that the OLS estimator has a nonstandard limit distribution which

depends on the value of d. The convergence rate of the estimator di�ers between

stationary and non-stationary long memory. The asymptotic distribution of the Wald

and directed-Wald statistic follows directly from theorem 1:

Theorem 2: Under the null that ut is long memory, the limit distribution of the

Wald statistic is

W ⇒W ≡ Q′
2Q

−1
1 Q2 (4.23)

and the limit distribution of the directed-Wald statistic with α2 = A under the alter-

native is given by

DW ⇒ [W + 2 log Φ(A,B,V)] (4.24)

with B and V as de�ned in the appendix. Under the alternative, the statistic diverges

implying the consistency of the test.

4.3.3 Second approach

Similar to the procedures applied for the �rst approach, we need to de�ne F (yt−1)

as F (yt−1, γ) = yt−1{1 − exp(−γy2
t−1)}. The test statistic is nonstandard since γ

is unidenti�ed under the null. To overcome this problem, Davies (1987) proposed a

supremum statistic, which maximizes the test with respect to the nuisance parameter.

Andrews and Ploberger (1994) showed that the supremum test is optimal. Other tests
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using sup-Wald statistics can be found among others in White (1982) and Carrasco

(2002).

For γ in the range of Γ, our directed-Wald test can be written as

DW = sup
γ∈Γ

DWγ = sup
γ∈Γ

{
1

σ̂ε
2 {α̂

′(X ′X)α̂}+ 2 log[Φ(A, α̂2, V ar(α̂2))]

}
, (4.25)

where σ̂ε
2 is the error variance of the OLS estimator and γ = [γ, γ] ∈ R+ is such that

0 < γ < γ < γ.

To derive the limit distribution of the test statistic for model (4.10), we need an

additional assumption:

Assumption 2: Suppose that F (yt−1, γ) is continuously di�erentiable with respect to

γ and supt ‖ supγ∈Γ |F
′
(yt−1, γ)|‖2 <∞ where F

′
(yt−1, γ) = ∂F (yt−1,γ)

∂γ
.

Assumption 2 is necessary to assure stochastic equicontinuity implying weak conver-

gence. More details about this assumption can be found in Park and Shintani (2005).

They discuss further conditions for the transition function, including di�erentiability

with respect to γ. By using assumption 1 and 2, we obtain the following theorem.

Theorem 3: Under the null that ut is long memory, α̂OLS is a consistent estimator

of α = 0 and converges to its true value with the rate diag(T 1/2, T (1/2+d)) when 0 <

d < 0.5 and diag(T 1/2, T (1−d)) when 0.5 < d < 1. Its limit distribution is T 1/2 0

0 T (1/2+d)

 α̂1

α̂2

⇒ Q1(γ)
−1Q2(γ) if 0 ≤ d < 0.5 (4.26)

 T 1/2 0

0 T (1−d)

 α̂1

α̂2

⇒ Q1(γ)
−1Q2(γ) if 0.5 < d < 1 (4.27)
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with Q1(γ) and Q2(γ) are

Q1(γ) =

 (1− 2µγ + ψγ)

∫ 1

0

Y (r)2dr (1− µγ)

∫ 1

0

Zd(r)dY (r)

(1− µγ)

∫ 1

0

Zd(r)dY (r)

∫ 1

0

Zd(r)
2dr

 (4.28)

Q2(γ) =

 (1− µγ)

∫ 1

0

Y (r)dY ∗(r)∫ 1

0

Zd(r)dY
∗(r)

 , (4.29)

where µγ and ψγ are de�ned as µγ = E{exp(−γy2
t−1)} and ψγ = E{exp(−2γy2

t−1)}

respectively, Y (r) and Y ∗(r) are standard Brownian motions and Zd(r) is a function

of the fractional Brownian motion as de�ned in the appendix.

Theorem 3 di�ers from theorem 1 regarding to Q1 and Q2 which depend on γ. The

limit distribution of the Wald and directed-Wald statistic are given in theorem 4.

Theorem 4: Under the null that ut is long memory, we have for the Wald statistic

Wγ ⇒Wγ ≡ Q2(γ)
′Q1(γ)

−1Q2(γ) (4.30)

and for the sup-directed-Wald statsitic for α2 = A we have

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ

[Wγ + 2 log Φ(A,B,V)] (4.31)

with B and V as de�ned in the appendix. Under the alternative, the statistic diverges

implying the consistency of the test.

The pointwise convergence derived above is not su�cient for establishing uniform

stochastic convergence of the limit distribution of the sup-Wald test. Therefore, we

need to prove stochastic equicontinuity, a condition that ∀ε, there exists a δ > 0 such

that

lim sup
T→∞

Pr

[
sup
γ∈Γ

sup
γ′:|γ−γ′|<δ

|W (i)
γ −W

(i)
γ′ | ≥ ε

]
< ε. (4.32)
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The proof of the stochastic equicontinuity condition is obtained under the assumption

that γ ∈ Γ.

Theorem 5 Under assumption 2, the test statistic supWγ is stochastically equicon-

tinuous over Γ.

Since the directed-Wald test contains the Wald test as a special case for a certain

weight de�ned by the second term in (4.31), theorem 5 implies the stochastic equicon-

tinuity of the directed-Wald test.

4.4 Monte Carlo

In this section, we carry out a Monte Carlo simulation to study the size and power

properties of the test in �nite sample sizes. We showed that the optimal test has a

nonstandard distribution, therefore the critical values have to be simulated, which is

done by generating long-memory series of length 5000 to which the test is applied.

The number of replications is 10000.

Particularly for the second approach, the value of γ is set to be in the interval γ ∈

(0.01, 2.5). The supremum is obtained by a grid search with steps of 0.01. A large γ

leads to a �at transition function.

The critical values of the tests are given in table 4.1 and 4.2.
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Table 4.1: Critical values of the test for the �rst approach

Sign. Level d=0.1 d=0.2 d=0.3 d=0.4

90% 2.7142 2.7613 2.8309 2.8814

95% 3.6190 3.7288 3.9006 4.0122

99% 6.2231 6.4725 6.6618 6.7120

Sign. Level d=0.6 d=0.7 d=0.8 d=0.9

90% 2.9104 3.0629 3.3821 4.0680

95% 4.2318 4.7160 5.1209 5.5649

99% 6.7710 7.1023 8.0160 9.5548

Table 4.2: Critical values of the test for the second approach

Sign. Level d=0.1 d=0.2 d=0.3 d=0.4

90% 3.5076 3.5720 3.6016 3.6213

95% 4.7613 4.8242 4.8506 4.9001

99% 7.5855 8.0604 8.0640 8.1321

Sign. Level d=0.6 d=0.7 d=0.8 d=0.9

90% 3.7478 3.9201 4.1683 4.3124

95% 4.9909 5.2931 5.4705 5.9658

99% 7.8707 8.8037 9.1337 11.3395

We �rst study the size of the test when the data generating process has station-

ary long memory with d = 0.1, 0.2, 0.3, 0.4 and non-stationary long memory with

d = 0.6, 0.7, 0.8, 0.9. For each experiment, we do 1000 replications and compute the

rejection probability for the 5% and the 10% signi�cance level. The sample sizes are

100 and 250. Tables 4.3 and 4.4 contain the results of the size experiment.
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Table 4.3: Size of the directed-Wald test for the �rst approach

Sign. level T d=0.1 d=0.2 d=0.3 d=0.4

5% 100 0.092 0.085 0.058 0.067

250 0.065 0.072 0.065 0.061

10% 100 0.148 0.157 0.111 0.120

250 0.120 0.126 0.140 0.123

Sign. level T d=0.6 d=0.7 d=0.8 d=0.9

5% 100 0.070 0.050 0.046 0.041

250 0.063 0.046 0.048 0.037

10% 100 0.115 0.105 0.088 0.094

250 0.116 0.107 0.093 0.086

Note: the data generating process is long memory as in (1)

Table 4.4: Size for the directed-Wald test for the second approach

Sign. level T d=0.1 d=0.2 d=0.3 d=0.4

5% 100 0.071 0.083 0.077 0.085

250 0.069 0.071 0.057 0.069

10% 100 0.131 0.148 0.136 0.136

250 0.128 0.119 0.120 0.121

Sign. level T d=0.6 d=0.7 d=0.8 d=0.9

5% 100 0.055 0.043 0.042 0.035

250 0.055 0.048 0.050 0.055

10% 100 0.098 0.100 0.090 0.091

250 0.105 0.094 0.104 0.121

Note: the data generating process is long memory as in (1)

The rejection rates in table 4.3 and 4.4 do not di�er signi�cantly and have a similar
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tendency. For a higher sample size (T = 250), the rejection rate converges to the

nominal size. Stationary long memory tends to over-rejection, whereas non-stationary

long memory tends to under-rejection. Nevertheless, the values are very close to the

nominal size, which indicates that the tests are correctly sized in general, although

there are little size distortions for the smaller sample size.

In the second experiment, we study the power of the test. The data generating process

is an ESTAR process

yt = α1yt−1{1− exp(−γy2
t−1)}+ α2yt−1 + εt (4.33)

with εt ∼ N(0, 1). The error term follows a standard normal distribution. We discard

the �rst 100 observations to minimize the e�ect of initial values. We set the parameter

α2 = 1 and α1 ∈ {−1.5,−1,−0.5,−0.1} with various γ and γ ∈ {0.01, 0.05, 0.1} 3.

Before we do the power experiment, we have to check whether the aforementioned

parameter settings for the ESTAR process (4.33) are of interest in the sense that they

can be mistaken as long memory. Therefore, the memory parameter is estimated by

means of any consistent estimators. In this paper, we use the GPH estimator proposed

by Geweke and Porter-Hudak (1983). The following table provides the estimated long

memory parameter for our DGPs.

3These parameter setting was extensively examined for example in Rothe and Sibbertsen (2006),
Kapetanios et al. (2003). Imposing α2 = 1 leads to a globally stationary ESTAR process, which
has a unit root process in one regime.
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Table 4.5: Mean and con�dence interval of the estimated d̂ by GPH

parameters T = 100 T = 250

α1 γ mean(d̂) mean(d̂)

-1.5 0.01 0.6586
[0.6022;0.7150]

0.4448
[0.4197;0.4699]

0.05 0.2977
[0.2289;0.3566]

0.1481
[0.1201;0.1760]

0.1 0.1398
[0.0807;0.1990]

0.0684
[0.0427;0.0941]

-1 0.01 0.7069
[0.6518;0.7619]

0.5135
[0.4879;0.5392]

0.05 0.4196
[0.3664;0.4279]

0.2153
[0.1880;0.2426]

0.1 0.2650
[0.2078;0.3221]

0.1163
[0.0896;0.1431]

-0.5 0.01 0.8226
[0.7678;0.8775]

0.6332
[0.6089;0.6576]

0.05 0.5943
[0.5403;0.6483]

0.3637
[0.3374;0.3900]

0.1 0.4494
[0.3925;0.5063]

0.2569
[0.2295;0.2842]

-0.1 0.01 0.9280
[0.8789;0.9851]

0.8708
[0.8452;0.8964]

0.05 0.8543
[0.7974;0.9112]

0.7113
[0.6842;0.7384]

0.1 0.8018
[0.7511;0.8652]

0.6352
[0.6090;0.6615]

Table 4.5 shows the mean of the estimated fractional integration order as well as the

95% con�dence interval. All values are obtained by 1000 replications. We see from

the table that under those parameter settings ESTAR processes generate spurious

long memory, where the order of fractional integration lies either in the stationary or

in the non-stationary region.

The following table presents the power results for the directed-Wald test. As we

pointed out in the previous section the memory parameter is assumed to be known

or given.
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Table 4.6: Power experiment for the Wald test for the �rst approach

parameters d = 0.1 d = 0.2 d = 0.3 d = 0.4

α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

-1.5 0.01 1.000 1.000 0.999 1.000 0.989 1.000 0.949 1.000

0.05 0.903 0.994 0.749 0.975 0.573 0.828 0.324 0.573

0.1 0.384 0.728 0.230 0.380 0.119 0.169 0.066 0.087

-1 0.01 1.000 1.000 0.999 1.000 0.997 1.000 0.986 0.923

0.05 0.999 1.000 0.956 1.000 0.815 0.986 0.629 0.963

0.1 0.877 0.999 0.732 0.961 0.440 0.781 0.245 0.474

-0.5 0.01 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000

0.05 1.000 1.000 1.000 1.000 0.991 1.000 0.927 0.999

0.1 0.998 1.000 0.991 1.000 0.945 0.999 0.790 0.978

-0.1 0.01 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000

0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000

0.1 1.000 1.000 1.000 1.000 0.998 1.000 0.993 1.000

Table 4.7: Power experiment for the Wald test for the �rst approach

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9

α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

-1.5 0.01 0.557 0.881 0.224 0.493 0.064 0.095 0.022 0.030

0.05 0.073 0.102 0.072 0.067 0.062 0.128 0.099 0.220

0.1 0.088 0.139 0.124 0.255 0.148 0.327 0.168 0.411

-1 0.01 0.657 0.956 0.344 0.693 0.087 0.175 0.017 0.022

0.05 0.162 0.313 0.058 0.092 0.037 0.048 0.042 0.142

0.1 0.047 0.071 0.056 0.073 0.092 0.156 0.111 0.247

-0.5 0.01 0.839 0.990 0.479 0.856 0.151 0.325 0.014 0.046

0.05 0.478 0.801 0.185 0.378 0.045 0.054 0.017 0.027

0.1 0.253 0.564 0.076 0.161 0.036 0.031 0.035 0.062

-0.1 0.01 0.931 1.000 0.719 0.974 0.329 0.668 0.056 0.115

0.05 0.876 0.997 0.607 0.926 0.213 0.470 0.027 0.053

0.1 0.846 0.994 0.541 0.887 0.176 0.411 0.030 0.049

The power of the test using the �rst approach can be seen in table 4.6 and 4.7 for a
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length of T = 100 and T = 250. For stationary long memory, we see that the test has

satisfying power properties. The power tends to decrease by an increasing value of d

and decreasing sample size.

For non-stationary long memory a tendency can be observed. The power decreases

strongly with increasing d. It is satisfying only for a few parameter settings. For d =

0.8 and d = 0.9 for instance, the test has rather low power. This is, however, natural,

since a higher d means that the process is getting more persistent and nonlinear

processes are easily confused with highly persistent processes.

Note that the �rst approach can be seen as a modi�ed version of the test statistic

proposed by Kapetanios and Shin (2003). The standard Wald type test of KS is

denoted as STAR2 in the paper and will be compared with the directed-Wald statistic.

This is done only for non-stationary long memory.

Table 4.8: Power for the KS test

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9

α2 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

-1.5 0.01 0.306 0.719 0.083 0.245 0.010 0.028 0.007 0.007

0.05 0.013 0.027 0.005 0.009 0.024 0.042 0.037 0.127

0.1 0.029 0.051 0.043 0.094 0.056 0.150 0.094 0.253

-1 0.01 0.413 0.873 0.124 0.432 0.021 0.059 0.007 0.006

0.05 0.066 0.133 0.012 0.018 0.015 0.010 0.024 0.062

0.1 0.013 0.018 0.012 0.013 0.019 0.056 0.056 0.149

-0.5 0.01 0.616 0.974 0.264 0.635 0.050 0.133 0.007 0.010

0.05 0.228 0.624 0.051 0.155 0.059 0.006 0.002 0.010

0.1 0.113 0.300 0.017 0.053 0.021 0.003 0.014 0.024

-0.1 0.01 0.816 0.999 0.517 0.914 0.143 0.412 0.029 0.046

0.05 0.715 0.938 0.316 0.793 0.071 0.244 0.009 0.023

0.1 0.656 0.979 0.265 0.705 0.053 0.482 0.005 0.015

Note: the critical values of the test are provided in table 1 of Kapetanios and Shin (2003)

The power in table 4.8 has a similar tendency as in table 4.7. However, it is clear
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that the directed-Wald test outperforms the KS test. The results in table 4.8 are

consistent to the simulation results of KS, which also show that the test has low

power. Therefore, this suggests, that provided the new critical values in table 4.1, the

directed-Wald test has a higher power.

Now, let us consider the power of the test when using the second approach. The

gamma de�ned above (γ ∈ {0.01, 0.05, 0.1}) are the true values of gamma of the data

generating process. To apply our test, we need to de�ne a certain range for gamma

and the statistic will be the supremum over the de�ned range. We use a grid of

γ ∈ (0.01, 2.5) with a step size of 0.01.

Before we proceed, we show a sample plot of the statistic for the respective gammas.

The idea of this plot is to see whether the de�ned interval for γ is correctly speci�ed.
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Figure 4.1: Plot of the test statistic depending on gamma
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The plot is the result of the test applied to an ESTAR process with α1 = −1.5, α2 = 1

and γ = 0.1 for several d values. In the �gure, there are 500 grid points at the x-axis,

which represents the interval of γ, meaning that the 1st point corresponds to γ = 0.01

and the 500th point corresponds to γ = 5. Moreover, we standardize the value of the

statistic in order to have a �gure which covers all d. We see from the �gure that the

supremum is achieved in the interval 0 to 100, and it is very close to the true value

of γ.

Table 4.9 and 4.10 give the results of the power experiment for the second approach.

Table 4.9: Power experiment for the Wald test for the second approach

parameters d = 0.1 d = 0.2 d = 0.3 d = 0.4

α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

-1.5 0.01 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000

0.05 1.000 1.000 1.000 1.000 0.954 0.952 0.735 0.995

0.1 0.973 0.975 0.802 0.816 0.484 0.876 0.191 0.396

-1 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05 1.000 1.000 1.000 1.000 0.997 1.000 0.949 0.963

0.1 0.998 1.000 0.990 0.994 0.996 0.999 0.638 0.861

-0.5 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.998

0.1 1.000 1.000 0.994 0.999 0.998 1.000 0.973 0.990

-0.1 0.01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.05 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.999

0.1 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000
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Table 4.10: Power experiment for the Wald test for the second approach

parameters d = 0.6 d = 0.7 d = 0.8 d = 0.9

α1 γ T = 100 T = 250 T = 100 T = 250 T = 100 T = 250 T = 100 T = 250

-1.5 0.01 0.720 0.979 0.294 0.666 0.069 0.150 0.030 0.026

0.05 0.100 0.186 0.042 0.042 0.081 0.147 0.180 0.439

0.1 0.078 0.097 0.146 0.284 0.250 0.253 0.433 0.877

-1 0.01 0.851 0.997 0.457 0.837 0.111 0.265 0.034 0.020

0.05 0.268 0.595 0.063 0.100 0.035 0.042 0.090 0.211

0.1 0.071 0.093 0.039 0.072 0.093 0.187 0.210 0.480

-0.5 0.01 0.921 1.000 0.618 0.941 0.202 0.467 0.029 0.051

0.05 0.629 0.961 0.390 0.538 0.053 0.098 0.025 0.035

0.1 0.430 0.801 0.102 0.254 0.036 0.027 0.045 0.102

-0.1 0.01 0.962 1.000 0.807 0.955 0.408 0.775 0.083 0.146

0.05 0.946 1.000 0.698 0.974 0.277 0.662 0.064 0.092

0.1 0.928 1.000 0.633 0.958 0.235 0.543 0.103 0.077

Table 4.9 shows, that the test has considerable power for stationary long memory

process and is more powerful compared to the results for the �rst approach. The

power reaches almost 1 for all parameter settings. In line with the results of the �rst

approach, the power tends to decrease by increasing the value of d and decreasing the

sample size. However, we can see that for all cases, the power of the second approach

is much higher than the �rst one and of course, higher than using the standard Wald

type test. This result is due to the fact that the �rst approach uses a linearization of

the nonlinear transition function. The price for such linearizations is a power loss.

4.5 Empirical application

In this section we apply the directed-Wald test to real exchange rate data. Many

studies found evidence of mean reversion in real exchange rates which can be either

due to long memory (see Diebold et al. (1991), Cheung (1993)) or a nonlinear ES-

TAR behavior (see Taylor et al. (2001) and references therein). We examine real
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exchange rates of several countries against the Japanese YEN. The choice of this case

is motivated by a previous study of Cheung and Lai (2001). They investigated the

Japanese YEN based real exchange rates of several developed countries and found a

confusion between long memory and nonlinear processes. Another study about JPY

bilateral real exchange rates is Chortareas and Kapetanios (2004).

We consider the bilateral real exchange rates of 22 countries against the Japanese

YEN. We use quarterly data spanning from 1970Q1 to 1998Q4, which is the same

period as considered in Baillie and Kapetanios (2007). Our data is taken from Datas-

tream. These countries are: Austria, Canada, Belgium, Denmark, France, Italy,

Malaysia, Korea, New Zealand, Netherland, Portugal, Spain, Sweden, Switzerland,

UK, Indonesia, Thailand, the Philippines, Sri Lanka, Germany, Australia and the

US.

Initially we have to show that long memory as well as nonlinear ESTAR can be

detected in the considered rates. To do this, we apply two tests which are frequently

used in empirical studies. We use the HML test proposed by Harris et al. (2008) for

testing long memory. Moreover, we apply the nonlinear unit root test proposed by

Kapetanios et al. (2003) to identify the nonlinearity, which is basically an ESTAR

process. Furthermore, we need to estimate the memory parameter prior to applying

the directed-Wald test. To do this, we estimate the memory parameter by means of

the GPH estimator. Our initial study shows that there are only 14 cases for which

our test is needed4. These 14 cases are given in table 4.11, which contains also the

results of our test.

4This means that only 14 real exchange rates show a long memory behavior regarding the HML
test and a nonlinear ESTAR behavior regarding the KSS test. The others have either long memory
or they are ESTAR or none of them. We omit the results of the tests as well as the estimations
of the long memory parameter for reasons of space. They are available from the authors upon
request
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Table 4.11: Empirical application: real exchange rates

Directed-Wald test Neglected nonlin. test

RER 1st approach 2nd approach ANN TLG

Australia 4.6262 4.6261 11.4680* 11.6677*

Austria 4.0508 4.0507 2.3579 2.3553

Denmark 3.6634 3.6633 0.4437 0.4392

France 6.5467* 6.5464* 2.1239 2.1157

Germany 0.9218 0.9401 1.5767 1.6088

New Zealand 3.4046 3.4045 2.9766 2.9590

Netherland 0.7580 1.0005 3.1358 3.0728

US 2.9123 2.9122 0.5734 1.0531

Korea 61.5143* 61.5141* 10.6546* 10.5552*

Malaysia 18.2643* 18.4827* 8.6063* 8.6649*

Indonesia 74.4015* 76.7220* 11.2909* 11.0694*

Thailand 24.5955* 24.6735* 11.6930* 11.8100*

Philipina 6.1224* 6.1746* 5.4058 5.4071

Srilanka 7.5312* 7.4870* 4.9319 5.2819

No of rejection 7 7 5 5

Note: The (*) represents signi�cance under the 5% level

From this table we see that both directed-Wald tests give consistent results and the

values of their test statistics do not di�er signi�cantly. The test rejects the null in

7 cases at the 5% level of signi�cance. It suggests that the real exchange rates of

the corresponding countries can better be explained as ESTAR than as long-memory

processes. We also note the interesting �nding that long memory appears more likely

in the real exchange rates of developed countries. Meanwhile, ESTAR is mostly found

in developing countries, such as Malaysia, Korea, Thailand, Philippines, Sri Lanka

and Indonesia with the exception France. This �nding is consistent with previous

studies about real exchange rate behavior. Those found that nonlinear adjustments

towards PPP hold more likely in developing countries, due transportation costs and

trade barriers. More details about the sources of nonlinearities in real exchange rates

of developing countries can be found in Bahmani-Oskooee et al. (2008), Sarno and
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Taylor (2001a), Sarno and Taylor (2001b) and Taylor (2003). Another empirical

evidence about the existence of nonlinear ESTAR in developing countries can be

found in Ceratto and Sarantis (2006). Therefore, our results provide an alternative

solution to the puzzle of Cheung and Lai (2001).

In addition to the results from our test, we also apply the test of Baillie and Kapetanios

(2007), denoted BK hereafter, to the real exchange rates to show the consistency

of our results. The test is intended to detect any neglected nonlinearity in long

memory time series by suggesting a simultaneous model such as FI-STAR, FI-GARCH

or TARFIMA. Although our test is not directly comparable to the BK test, it is

interesting to have the results for comparison. For this test, the nonlinear ANN test

of Lee et al. (1993) or TLG test of Teräsvirta et al. (1993) is applied to the short

memory component ŷt after �ltering the long memory ut by using the estimated d̂,

such that

ŷt = (1− L)d̂ut.

Following BK, the third order Taylor expansion is used for the TLG and ANN model

and the delay parameter is set to be one. The long memory parameter is estimated

by maximum likelihood. The results of the test can be seen in the two last columns

of table 4.11. We see that both the ANN and TGL approach give a consistent result

to our �ndings.

From the table, we see also that the results of the directed-Wald test and the BK test

are almost the same. Both are able to detect nonlinearities in the developing countries.

However, given the fact that nonlinear adjustments toward PPP are the case for most

developing countries, the BK test fails to detect the nonlinearity for Philippines and

Sri Lanka at the 5% signi�cance level. Moreover, the neglected nonlinearities detected

by the BK test do not imply an ESTAR speci�cation since the basic model used is

a neural network model. As we pointed out above, this test suggests to model long
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memory and nonlinear structures in a simultaneous model and do not consider the

problem of distinguishing between the two phenomena.

4.6 Conclusions

In this paper we derive Wald-type tests to distinguish between long memory and

ESTAR-type nonlinearities. We test the null hypothesis of a either stationary or non-

stationary long-memory process against the alternative of an ESTAR process. Tests

in the ESTAR framework have so far been based on two ideas. The �rst is linearizing

the transition function of the ESTAR process by means of a Taylor expansion and the

second is to overcome the problem of unidenti�ed parameters by using a supremum

statistics. Therefore, we derive the limit distribution for our Wald-type test under

both situations showing that the supremum statistics has better power properties than

the test based on the Taylor expansion. This is in line with previous �ndings in the

literature. As our testing problem has a restricted parameter under the alternative we

cannot use a standard Wald test but have to apply a directed-Wald test to overcome

this problem. We derive the limit distribution of this test and show that it has �ne

size and satisfying power properties.

We apply our test to real exchange rates of several countries and �nd that mainly

developing countries show an ESTAR behavior. This �nding is also in line with the

results of Baillie and Kapetanios (2007).
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Appendix

In this part, we �rst describe the general outline of the proof of the theorems for both

approaches. De�ne the model:

ut = α1F (yt−1) + α2zt + εt (4.34)

with F (yt−1) = y3
t−1 for the �rst approach and F (yt−1, γ) = F (yt−1) = yt−1{1 −

exp(−γy2
t−1)} for the second. In matrix form, the model can be written as

U = X′α+ ε (4.35)

with U =


u1

...

ut

 , X =


F (y0) z1

...

F (yt−1) zt

 , α = (α1, α2)
′ and ε =


ε1
...

εt

 .

We show pointwise convergence in distribution of the test statistic by �rst examining

the asymptotic distribution of the OLS estimator.

Let us revisit the standard result of Kurtz and Protter (1991) about the continuous

mapping theorem, that for processes Xt
T ≡ XT and Yt

T ≡ YT the following holds:

1. XTYT are Ft− adapted to some σ �eld Ft

2. (XT , YT ) ⇒ (X, Y )

3. If YT is a semi martingale then

∫
XTdYT ⇒

∫
XdY .

Also, from the fractional functional central limit theorem and standard functional

central limit theorem, since ut is a long memory process, we have that

σ−1
T u[Tr] ⇒ Yd(r), (4.36)
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where Yd(r) is a fractional Brownian motion, [rT ] is the largest integer less than or

equal to rT and σ2
T = E(

T∑
t=1

ut)
2. For iid εt we de�ne that

YT (r) = T−1/2σ−1

[Tr]∑
t=1

εt, for 0 ≤ r ≤ 1, (4.37)

where YT (r) in (4.37) converges to a Brownian motion Y ∗(r) with Y ∗(r) = Y (1) when

(4.37) is evaluated at r = 1, σ2 = Eε2t .

From (4.35), the OLS estimate of α is

α̂ = (X′X)−1(X′U). (4.38)

Under the null and with xt = F (yt−1),

α̂− α = (X′X)−1(X′ε) (4.39)

 α̂1

α̂2

 =


T∑

t=1

xtxt

T∑
t=1

xtzt

T∑
t=1

xtzt

T∑
t=1

ztzt


−1 

T∑
t=1

xtεt

T∑
t=1

ztεt

 . (4.40)

We begin with examining the asymptotic behavior of the terms in (4.40) which contain

zt. The other terms will be considered later. In this case, the proof is similar to KS.

Let us summarize it in brief. zt is de�ned by

zt =
t∑

j=1

bjut−j (4.41)

De�ne the function b(r) = b[Tr] for r ∈ (0, 1), and its cumulative sum as β(r) =∫ r

0

b(s)ds. The β can be expressed also as βt =
∑t

i=0 βi, then

σ−1
T z[Tr] =

T∑
i=1

σ−1
T ut−i(βt−i − βt−i−1) (4.42)

Zd(r) =

∫ r

0

Yd(s)dβ(s− r). (4.43)
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Therefore, for stationary long memory with 0 < d < 0.5, we have

T−(1+2d)σ−2
T

T∑
t=1

z2
t ⇒

∫ 1

0

Zd(r)
2dr (4.44)

T−(1/2+d)σ−1
T

T∑
t=1

ztεt ⇒ σ

∫ 1

0

Zd(r)dY
∗(r) (4.45)

and for non-stationary long memory, the rates of convergence are

T−2(1−d)σ−2
T

T∑
t=1

z2
t ⇒

∫ 1

0

Zd(r)
2dr (4.46)

T−(1−d)σ−1
T

T∑
t=1

ztεt ⇒ σ

∫ 1

0

Zd(r)dY
∗(r). (4.47)

Proof of Theorem 1

In this section, we derive the asymptotic distributions of the other terms in (4.40). We

consider �rst the case of stationary long memory. By using the continuous mapping

theorem, we have

T−3/2

T∑
t=1

y3
t−1εt ⇒ σ

∫ 1

0

Y (r)3dY ∗(r) (4.48)

T−3

T∑
t=1

y6
t−1 ⇒ σ

∫ 1

0

Y (r)6dr (4.49)

T−(2+d)

T∑
t=1

y3
t−1zt ⇒ σ

∫ 1

0

Y (r)3dZd(r). (4.50)
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By combining these results, the asymptotic distribution can be written as
T−3

T∑
t=1

xtxt T−(2+d)

T∑
t=1

xtzt

T−(2+d)

T∑
t=1

xtzt T−(1+2d)

T∑
t=1

ztzt

 ⇒ A1Q1A1 (4.51)


T−3/2

T∑
t=1

xtεt

T (−(1/2+d))

T∑
t=1

ztεt

 ⇒ A2Q2 (4.52)

with Q1 and Q2 are de�ned as

Q1 =


∫ 1

0

Y (r)6dr

∫ 1

0

Y (r)3dZd(r)∫ 1

0

Y (r)3dZd(r)

∫ 1

0

Zd(r)
2dr

 (4.53)

Q2 =


∫ 1

0

Y (r)3dY ∗(r)∫ 1

0

Zd(r)dY
∗(r)

 . (4.54)

A1 and A2 are the corresponding variance-covariance matrices de�ned as

A1 =

 σ 0

0 σ

 (4.55)

and

A2 =

 σ2 0

0 σ2

 . (4.56)

Then, from (4.51) and (4.52), for 0 < d < 0.5, the rate of convergence of the OLS

parameter is  T 3/2 0

0 T 1/2+d

 α̂1

α̂2

⇒ Q−1
1 Q2. (4.57)

By similar arguments, it is straightforward to show that for 0.5 < d < 1 T 3/2 0

0 T 1−d

 α̂1

α̂2

⇒ Q−1
1 Q2. (4.58)
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Proof of Theorem 2

The Wald test for the null hypothesis α1 = α2 = 0 is

W =
1

σ̂2
(ε′X)(X′X)−1(X′ε), (4.59)

where σ̂2 is the variance of the OLS estimator of α and σ̂2 →p σ
2. The asymptotic

distribution of the Wald statistic (4.59) follows directly from the results of theorem 1

W ⇒W ≡
{
Q′

2Q
−1
1 Q2

}
. (4.60)

The directed-Wald statistic with c = ∞ is

DW ⇒ {W + 2 log[Φ(A, α̂2, V ar(α̂2))]} . (4.61)

The information matrix of α = (α1, α2)
′ is de�ned as (see Andrews (1998))

I =

 I1 I2

I ′2 I3

 =

 x′x x′z

z′x z′z

 /σ2. (4.62)

For Mx = IT − x(x′x)−1x′, the estimate of α̂2 in (4.40) can be written as

α̂2 = (z′Mxz)
−1z′Mxε (4.63)

and the variance of α̂2 is

V ar(α̂2) = z′Mxz/σ
2 (4.64)

= I3 − I2I−1
1 I ′2. (4.65)

From Q1 and Q2, the asymptotic distributions of α̂2 and V ar(α̂2) are

B ≡
{
(q122 − q112q111q112)

−1(q221 − q112q111q211)
}

(4.66)

V ≡
{
q122 −

q112q112

q111

}−1

(4.67)
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respectively, with q1ij and q2ij are the elements of the matrices Q1 and Q2 at the i-th

row and j-th column. Therefore, the limit distribution of the directed Wald test can

be written as

DW ⇒ {W + 2 log Φ(A,B,V)} . (4.68)

To prove the consistency of the test under the alternative, it is su�cient to examine

only the �rst term of the directed Wald statistic, which is the standard Wald statistic,

since the factor Φ is a weight which convergence to a constant. Let us write

W =
1

σ̂2
(U′X)(X′X)−1(X′U). (4.69)

Note that α̂1 is dominant in (4.23) with a rate of Op(T ), and T−1(X ′X) = Op(1).

Since ut is a long-memory process, then (U ′X) diverges to in�nity at rate Op(T
2+d)

when 0 < d < 0.5 and Op(T
5/2−d) when 0.5 < d < 1. Thereby, it is su�cient to show

that the test statistic diverges to in�nity with a rate of Op(T
2(1+2d)) when 0 < d < 0.5

and Op(T
2(1−d)) when 0.5 < d < 1 and the test is consistent.

Proof of Theorem 3

The second approach was originally applied by Kilic (2003) for testing of a unit root

against ESTAR. The limit distribution of the exponential term is mainly derived from

theorem 4.17 of White (1984). In line with the asymptotics of the �rst approach, we

consider the asymptotics for the case of a stationary long memory. In this part, we

continue to derive the asymptotic distribution of the remaining terms in (4.40).
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1. First term:
T∑

t=1

xtεt =
T∑

t=1

εtyt−1{1− exp(−γy2
t−1)}

This term can be written as

T−1/2

T∑
t=1

εtyt−1{1− exp(−γy2
t−1)}

= T−1/2

{
T∑

t=1

εtyt−1 −
T∑

t=1

εtyt−1{exp(−γy2
t−1)}

}
.

By application of the continuous mapping theorem and weak convergence of

stochastic integrals (see also Chan and Wei (1988), Caceres and Nielsen (2007)),

the asymptotics of each element is

T−1/2

T∑
t=1

εtyt−1 ⇒ σ2

∫ 1

0

Y (r)dY ∗(r) (4.70)

T−1/2

T∑
t=1

εtyt−1{exp(−γy2
t−1)} ⇒ σ2µγ

∫ 1

0

Y (r)dY ∗(r). (4.71)

Then we have

T−1/2

T∑
t=1

εtyt−1{1− exp(−γy2
t−1)} ⇒ σ2(1− µγ)

∫ 1

0

Y (r)dY ∗(r) (4.72)

with µγ = E{exp(−γy2
t−1)}.

2. Second term:
T∑

t=1

xtxt =
T∑

t=1

y2
t−1{1− exp(−γy2

t−1)}2

By employing a similar procedure as for the �rst term, let us write

T−1

T∑
t=1

y2
t−1{1− exp(−γy2

t−1)}2

= T−1

{
T∑

t=1

y2
t−1 − 2

T∑
t=1

y2
t−1{exp(−γy2

t−1)}

}

+ T−1

{
T∑

t=1

y2
t−1{exp(−2γy2

t−1)}

}
,



87

where

T−1

T∑
t=1

y2
t−1 ⇒ σ2

∫ 1

0

Y (r)2dr (4.73)

T−1

T∑
t=1

y2
t−1{exp(−γy2

t−1)} ⇒ σ2µγ

∫ 1

0

Y (r)2dr (4.74)

T−1{
T∑

t=1

y2
t−1{exp(−2γy2

t−1)} ⇒ σ2ψγ

∫ 1

0

Y (r)2dr (4.75)

T−1

T∑
t=1

y2
t−1{1− exp(−γy2

t−1)} ⇒ σ2(1− 2µγ + ψγ)

∫ 1

0

Y (r)2dr (4.76)

with ψγ = E{exp(−2γy2
t−1)}.

3. Third term:
T∑

t=1

xtzt =
T∑

t=1

ztyt−1{1− exp(−γy2
t−1)}

Again, this term can be written as

T−(1+d)

T∑
t=1

ztyt−1{1− exp(−γy2
t−1)}

= T−(1+d)

{
T∑

t=1

ztyt−1 −
T∑

t=1

ztyt−1{exp(−γy2
t−1)}

}
.

Then, the asymptotics of each element is

T−(1+d)σ−1
T

T∑
t=1

ztyt−1 ⇒ σ

∫ 1

0

Zd(r)dY (r) (4.77)

T−(1+d)σ−1
T

T∑
t=1

ztyt−1{exp(−γy2
t−1)} ⇒ σµγ

∫ 1

0

Zd(r)dY (r) (4.78)

and therefore,

T−(1+d)σ−1
T

T∑
t=1

ztyt−1{1− exp(−γy2
t−1)} ⇒ σ(1− µγ)

∫ 1

0

Zd(r)dY (r). (4.79)
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Combining these results, we obtain the following limit distribution
T−1

T∑
t=1

xtxt T−(1+d)

T∑
t=1

xtzt

T−(1+d)

T∑
t=1

xtzt T−(1+2d)

1∑
t=1

ztzt

 ⇒ A1Q1(γ)A1 (4.80)


T−1/2

T∑
t=1

xtεt

T−(1/2+d)

T∑
t=1

ztεt

 ⇒ A2Q2(γ) (4.81)

with Q1(γ) and Q2(γ) are de�ned as

Q1(γ) =

 (1− 2µγ + ψγ)

∫ 1

0

Y (r)2dr (1− µγ)

∫ 1

0

Zd(r)dY (r)

(1− µγ)

∫ 1

0

Zd(r)dY (r)

∫ 1

0

Zd(r)
2dr

 (4.82)

Q2(γ) =

 (1− µγ)

∫ 1

0

Y (r)dY ∗(r)∫ 1

0

Zd(r)dY
∗(r)

 (4.83)

with A1 and A2 de�ned in (4.55) and (4.56) respectively. Furthermore, for 0 < d <

0.5, the rate of convergence of the OLS parameter is T 1/2 0

0 T (1/2+d)

 α̂1

α̂2

⇒ Q1(γ)
−1Q2(γ) (4.84)

and for 0.5 < d < 1 T 1/2 0

0 T 1−d

 α̂1

α̂2

⇒ Q1(γ)
−1Q2(γ). (4.85)

Proof of Theorem 4

The proof of theorem 4 is similar to the proof of theorem 2. The only di�erence is

that the Wald statistic depends on the nuisance parameter γ. The Wald test for the
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null hypothesis α1 = α2 = 0 is

Wγ =
1

σ̂2
(ε′X)(X′X)−1(X′ε), (4.86)

where σ̂2 is the variance of the OLS estimator of α and σ̂2 →p σ
2. The limit distri-

bution of the Wald test follows directly from the results of theorem 3:

Wγ ⇒Wγ ≡
{
Q2(γ)

′Q1(γ)
−1Q2(γ)

}
. (4.87)

Under c = ∞, the directed-Wald statistic is

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ

{Wγ + 2 log[Φ(A, α̂2, V ar(α̂2))]} . (4.88)

Similar to theorem 2, we de�ne the information matrix of α = (α1, α2)
′ by

I =

 I1 I2

I ′2 I3

 =

 x′x x′z

z′x z′z

 /σ2. (4.89)

For Mx = IT − x(x′x)−1x′, the estimate of α̂2 in (4.40) can be written as

α̂2 = (z′Mxz)
−1z′Mxε (4.90)

and the variance of α̂2 is

V ar(α̂2) = z′Mxz/σ
2 (4.91)

= I3 − I2I−1
1 I ′2. (4.92)

From Q1(γ) and Q2(γ), the asymptotic expressions of α̂2 and V ar(α̂2) are

B ≡
{
(q122 − q112q111q112)

−1(q221 − q112q111q211)
}

(4.93)

V ≡
{
q122 −

q112q112

q111

}−1

(4.94)

respectively, with q1ij and q2ij being the elements of the matrices Q1(γ) and Q2(γ) in

the i-th row and j-th column. We see that B and V depend on γ through q. However,
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the term 2 log Φ(A,B,V) is a weight which converges to a constant for any given γ.

Therefore, the limit distribution of the sup-directed Wald is

sup
γ∈Γ

DWγ ⇒ sup
γ∈Γ

{Wγ + 2 log Φ(A,B,V)} . (4.95)

In line with the proof of theorem 2, we need to examine the Wald statistic

Wγ =
1

σ̂2
(U′X)(X′X)−1(X′U). (4.96)

Again, α̂1 is dominant in (4.30) with rate ofOp(T ), and T−1(X ′X) = Op(1). Since ut is

a long memory process, (U ′X) diverges to in�nity at rate Op(T
1+d) when 0 < d < 0.5

and Op(T
3/2−d) when 0.5 < d < 1. The test statistic diverges to in�nity with rate

Op(T
1+2d) when 0 < d < 0.5 and Op(T

2(1−d)) when 0.5 < d < 1 and the test is

consistent.

Proof of Theorem 5

This section proves the stochastic equicontinuity of the supremum Wald test. This

condition is necessary to ensure the weak convergence GT (γ) ⇒ G(γ). We de�ned

that γ ∈ Γ ∈ R+. We examine only one fraction of the statistic which contains γ and

the stochastic equicontinuity will be proved for the following term. Similar arguments

can be applied for the others. Let us de�ne

GT (γ) =
1√
T

T∑
t=1

εtF (yt−1, γ),

with F (yt−1, γ) = yt−1{1−exp(−γy2
t−1)}. The term GT (γ) above is similar to Un(v) of

Seo (2004). Therefore, we follow Seo (2004) in proving the stochastic equicontinuity.
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Let us de�ne F (γ) = F (yt−1, γ). By using assumption 1 and 2, we have

P ( sup
|γ−γ′|≤δ

|GT (γ)−GT (γ′)| > ε) ≤ 1

ε
E sup
|γ−γ′|≤δ

|GT (γ)−GT (γ′)|

=
1

ε
E sup
|γ−γ′|≤δ

| 1√
T

T∑
t=1

εt(F (γ)− F (γ′))|

=
1

ε
E sup
|γ−γ′|≤δ

| 1√
T

T∑
t=1

εtF
′
(γ∗)(γ − γ′)|

≤ δ

ε
E sup

γ∈Γ

1√
T

T∑
t=1

|εt||F
′
(γ)|

≤ δ

ε
sup

t
‖ sup

γ∈Γ
|F ′

(γ)|‖2
1√
T

T∑
t=1

‖εt‖2,

where γ∗ ∈ [γ, γ′]. By using Burkholder's inequality, it can be shown that 1√
T

∑T
t=1 ‖εt‖2 ≤

c1 supt ‖εt‖2, where c1 = 36
√

2. For T → ∞ and small δ, P (sup|γ−γ′|≤δ |GT (γ) −

GT (γ′)| > ε) → 0.
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Chapter 5

A NEW SIMPLE TEST AGAINST SPURIOUS LONG

MEMORY USING TEMPORAL AGGREGATION

5.1 Introduction

Let xt be a linear long memory process characterized mainly by the following condition

ρk ∼ Cρ(k)k
2d−1, as k →∞ (5.1)

for d ∈ (0, 0.5). We consider an aggregated long memory process de�ned as

yt =
m−1∑
j=0

xmt−j =
m−1∑
j=0

Bjxmt (5.2)

where B is backshift operator and m denotes the aggregation level. Chambers (1998),

Man and Tiao (2001) and Souza (2008) show that if xt satis�es (5.1) with d < 0.5,

then its aggregation process yt also satis�es (5.1) with the same fractional integration

order d. This condition implies invariance of the memory parameter to aggregation.

Spurious long memory can arise in many cases, especially in stock market data. It

still has been highly debated whether the observed long memory is real or a spuri-

ous phenomena. Many studies found long memory in the volatility of stock returns

(Heimstra and Jones (1997), Henry (2002), Tolvi (2003) among others). Lobato and

Savin (1998) and the references therein discuss the real and spurious long memory

properties of stock market data. They investigated major causes of spurious long

memory, such as aggregation, nonstationarity and regime switching. By using the

LM type test of Lobato and Robinson (2003), they estimated the memory parameter
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and tested the signi�cance of the parameter to conclude whether the observed memory

is real or spurious. However, it is well known that several processes are able to create

spurious long memory by generating a certain degree of fractional integration (see

Granger and Ding (1996), Granger and Teräsvirta (1999) among others). Therefore,

developing a test which is able to distinguish long memory from spurious processes is

still of interest, which may lead to a proper model choice.

The fact that the memory parameter does not change with aggregation can be used

as a means to distinguish long memory from spurious processes. Ohanissian, Russell

and Tsay (2008) estimate the memory parameter across several aggregation levels and

propose a Wald type test to distinguish these two phenomena. They show that the test

is able to detect several spurious processes in the alternative with considerable power.

Their results are based on the simulation study by examining very large numbers of

observations, meaning that it has a good performance for high frequency data and our

initial study shows that the test looses the power signi�cantly under small and �nite

sample sizes. Furthermore, they use the GPH method of Geweke and Porter-Hudak

(1983) to estimate the memory parameter and the theoretical properties of the test

have been well investigated. However, Teles et al. (1999) proved that using the GPH

estimator of aggregated series for testing long memory has very serious consequences

on the power of the test which may lead to the wrong conclusions, especially by using

a bandwidth frequency of T 0.5.

In this paper, we propose a new test against spurious long memory based on the

invariance principle, in line with the basic idea of Ohanissian et al. (2008). Our test

calculates a value for every pair of aggregation levels and takes the maximum among

the values. This testing procedure has been previously applied by Beran and Terrin

(1996) for testing for changes in the memory parameter. Moreover, we estimate the

long memory parameter by applying the semi-parametric local Whittle maximum

likelihood instead of the GPH estimator. This estimation method has been proved to
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have the smallest bias with a minimum standard deviation (Souza (2007)).

This paper is organized as follows. Section 5.2 discusses the main result including

the proposed test and its asymptotic distribution. Section 5.3 presents the results of

simulation study to assess the test performance in �nite sample size. The empirical

application, ie. the case of German stock returns is given in section 5.4. The proof is

given in the appendix.

5.2 Main result

A stationary ARFIMA(p, d, q) process xt has the following representation:

φ(B)(1−B)dxt = θ(B)εt t = 1, ..., N (5.3)

where B is the backshift operator, φ(B) and θ(B) are the AR and MA polynomials

respectively and εt is a white noise process. The spectral density of (5.3) satis�es

fx(ω) = Cf (ω)|ω|−2d as ω → 0 (5.4)

We aggregate the process xt by a level of aggregation m following (5.2), with m =

2, ...,M . Under the aggregated series yt, the series length becomes n = N/m. Note

that m = 1 corresponds to the original series xt. The spectral density of yt with

memory parameter d satis�es

fy(λ) ∼ m2d+1Cfx(ω)|λ|−2d, as λ→ 0 (5.5)

where λ = 2πjm/N = ωm and the periodogram of yt is given by

Iy(m)(λj) =
1

2πn

∣∣∣∣∣
n∑

j=1

(yj − ȳ) expijλj

∣∣∣∣∣
2

, ȳ =
n∑

j=1

yj/n (5.6)

Our statistic is constructed based on the semi-parametric local Whittle estimator

proposed by Robinson (1995). Let us consider the Gaussian objective function for
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the original series xt:

Q(G, d) =
1

l

l∑
j=1

[
log(Gω−2d

j ) +
ω2d

j

G
Ix(ωj)

]
(5.7)

by which discrete averaging is evaluated over a small bandwidth frequency l < N .

As G can be estimated by Ĝ = 1
l

∑l
1 ω

2d
j Ix(ωj), the memory parameter d can be

estimated by minimizing the following objective function

Q(d) = log

(
1

l

l∑
1

ω2d
j Ix(ωj)

)
− 2d

1

l

l∑
1

logωj (5.8)

Souza (2007) discusses consistency of the estimator for aggregated series. It is worth-

while to summarize it as follows. Under the following regularity conditions:

1. As λ→ 0+, f(ω) ∼ G0 ∈ (0,∞) and −0.5 < ∆1 ≤ d ≤ ∆2 < 0.5.

2. In a neighborhood (0, δ) of the origin, f(ω) is di�erentiable and

d

dω
log f(ω) = O(ω−1) as ω → 0+

3.

xt − E[x0] =
∞∑

j=0

αjεt−j,
∞∑

j=0

α2
j <∞

where E(εt|Ft−1) = 0,E(ε2t |Ft−1) = 1 a.s., t = 0,±1, ..., in which Ft is the σ-

�eld of events generated by εs, s ≤ t, and there exists a random variable ε such

that E(ε2) <∞ and for all η > 0 and some K > 0, P (|εt| > η) ≤ KP (|ε| > η).

4. As N →∞, 1
l
+ l

N
→ 0

5. f(ω) is bounded above and f ′(ω) exists and is �nite in the vicinity of the non-

zero Nyquist frequencies1.

1Nyquist frequency is the frequency with the sampling rate of 2π/N
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6. For some β ∈ (0, 2], as ω → 0+, f(ω) ∼ G0ω
−2d(1 +O(ωβ)), where G0 ∈ (0,∞)

and −0.5 < ∆1 ≤ d ≤ ∆2 < 0.5.

7. In a neighborhood (0, δ) of the origin, α(ω) is di�erentiable and

d

dω
α(ω) = O

(
|α(ω)|
ω

)
, as ω → 0+

where α(ω) =
∑∞

j=0 αje
ijω

8. Condition 3 holds and also E(ε3t |Ft−1) = µ3, a.s.,E(ε4t ) = µ4, t = 0,±1, ... for

�nite constant µ3 and µ4.

9. As N →∞, there exists a β satisfying Condition 6 such that

1

l
+
l1+2β(log l)2

N2β
→ 0

If condition 1 to 5 hold for xt, then it builds the consistency of the local Whittle

estimator for aggregated time series yt. Also, if condition 5 to 9 hold for xt, then the

local Whittle estimator for yt is asymptotically normal such that

√
l(d̂− d)

D→ N(0, 1/4) (5.9)

The readers are referred to Souza (2007) for the proof and the details of these condi-

tions.

Now, consider two objective functions for two aggregated series y(m1) and y(m2) as

follows:

Q(n1, d) = log

(
1

l

l∑
1

λ2d
j Iy(m1)(λj)

)
− 2d

1

l

l∑
1

log λj

Q(n2, d) = log

(
1

l

l∑
1

λ2d
j Iy(m2)(λj)

)
− 2d

1

l

l∑
1

log λj

where Q(n1, d) and Q(n2, d) denote the objective function of the aggregated series yt

with level m1 and m2 respectively. From this, the local Whittle estimator d̂ is de�ned
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by

d̂(m1) = argmin Q(n1; d̂), d̂(m2) = argmin Q(n2; d̂)

We will test the constancy of the estimated memory parameter among several aggrega-

tion levels to prove the invariance principle of the memory parameter to aggregation.

The null hypothesis we attempt to test is that

H0 : d(m1) = d(m2) = ... = d(mM )

The alternative hypothesis is, therefore, de�ned as any violation of the equalities in

H0, i.e at least one pair of aggregated levels, mi and mj, d
(mi) 6= d(mj) where i 6= j.

In this paper, the idea of the test is similar to testing for a change in the long

memory parameter ((see Beran and Terrin (1996), Horváth and Shao (1999), Lee

and Lee (2007)). To test the constancy of the long memory parameter between two

aggregated levels {m1 6= m2}, we propose the following statistic

zm1,m2 =
√
n1 + n2

{
n1n2

(n1 + n2)2

}(
d̂(m1) − d̂(m2)

)
.

The calculation of zm1,m2 involves two levels of aggregated series for all combinations

of the paired m. It means that for any choice of M aggregation level, we have MC2

values of z. In this case, M is chosen such that the aggregated series can still be used

for estimating the long memory parameter. The maximum value is proposed as the

statistical test. Therefore, to test the constancy of the parameter d among several

aggregation levels, we suggest the statistic

χn = max
1≤i,j≤M

|zmi,mj
|, i 6= j

The asymptotic distribution of the proposed test statistic is given in the following

theorem.



98

Theorem 1: Assume 0 < d < 0.5 and the condition 6, 7, 8 and 9 are satis�ed, then

by the asymptotic normality of d̂ we have for m1 6= m2

zm1,m2

D→ σV (t)

in D[0, 1] as T → ∞ and V (t), 0 ≤ t ≤ 1 is a Brownian bridge and
D→ denotes con-

vergence in distribution. Hence, the statistic χn converges to

χn
D→ σ sup

0≤t≤1
|V (t)|, i 6= j

and the variance σ2 is given by

σ2 = E(ε40 − σ4
ε )

(
∞∑

j=0

ajcj

)2

+ σ2
ε

∞∑
l=1

(
∞∑

j=0

{ajcj+l + cjaj+l}

)2

.

From the theorem above, we reject the null hypothesis for large values of χn. In

principle, it is possible to generate the critical values from a sequence of Brownian

bridges V (t) and variances σ2 as written in the theorem. However, it seems that

σ2 has a very complicated form which leads to some di�culties. To avoid this, the

critical values will be determined by using the simulated sampling distribution of χn.

5.3 Simulation

This section carries out simulation studies to obtain the critical values, as well as to

assess the test performance in �nite samples. As we pointed out above, the critical val-

ues are obtained by using the simulated sampling distribution of max1≤i,j≤M |zmi,mj
|.

It is done by generating samples of length 50000 and 10000 replications. The aggre-

gation levels are set to be m = 2, 3, 4, 6, 8, 12, which are commonly used in empirical

applications as suggested by Teles et al. (1999, 2008). In the latter work, they studied

the e�ect of the use of aggregate time series on the Dickey-Fuller test for unit root,

and a new unit root test based on aggregate time series was developed.
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Table 5.1: Quantile of the asymptotic distribution

d sign. level Aggregation level (m)

2 3 4 6 8 12

0.1 90% 0.4542 0.5549 0.6030 0.6872 0.7586 0.7588

95% 0.5258 0.6456 0.7133 0.7740 0.8248 0.8407

99% 0.7098 0.8253 0.8708 0.9034 0.9518 1.0595

0.2 90% 0.5095 0.6351 0.6579 0.7232 0.7454 0.7780

95% 0.5909 0.7203 0.7650 0.8108 0.8454 0.8516

99% 0.8253 0.8708 0.9177 0.9756 0.9784 0.9967

0.3 90% 0.5164 0.6572 0.7160 0.7298 0.7802 0.7953

95% 0.6347 0.7617 0.8025 0.8354 0.8723 0.8849

99% 0.8195 0.9282 0.9832 1.0579 1.0718 1.0534

0.4 90% 0.6111 0.6981 0.7530 0.8083 0.8226 0.8390

95% 0.7037 0.8213 0.8495 0.8982 0.9517 0.9179

99% 0.8732 0.9930 1.0313 1.0782 1.0995 1.0796

Table 5.1 provides the critical values of the test for d = 0.1, 0.2, 0.3, 0.4. We see that

the critical value increases with d and m through the constant σ in theorem 1.

A size experiment is done by evaluating the performance of the test in �nite samples.

In this case, we generate 1000 time series length of 5000. The rejection rate is calcu-

lated based on the critical values in table 5.1. The data generating process (DGP) is a

pure stationary long memory with degree of fractional integration d = 0.1, 0.2, 0.3, 0.4.

Therefore, the DGP does not account for short range dependencies. The model can

be rewritten as

(1−B)dxt = εt t = 1, ..., N.

Table 5.2 presents the mean and standard deviation of the estimated long memory
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parameter for several aggregation levels. It is useful to assess the performance of the

local Whittle estimator.

Table 5.2: Invariance of memory parameter to aggregation

d Aggregation level (m)

2 3 4 6 8 12

0.1 0.1002
(0.0209)

0.1053
(0.0253)

0.1016
(0.0262)

0.1021
(0.0377)

0.1045
(0.0377)

0.0999
(0.047)

0.2 0.2061
(0.0227)

0.2030
(0.0275)

0.2070
(0.0296)

0.2007
(0.0372)

0.2112
(0.0412)

0.2131
(0.0490)

0.3 0.3058
(0.0254)

0.3084
(0.0283)

0.3106
(0.0309)

0.3138
(0.0370)

0.3155
(0.0370)

0.3160
(0.0400)

0.4 0.4088
(0.0220)

0.4143
(0.0244)

0.4135
(0.0308)

0.4163
(0.0336)

0.4160
(0.0405)

0.4238
(0.0527)

Note: The Data Generating Process (DGP) is ARFIMA(0,d,0)

As expected, the estimated memory parameters are very close to the original value.

For instance, under ARFIMA(0,0.1,0), the estimated memory parameters range from

0.0999 to 0.1053. Also, under the DGP ARFIMA(0,0.2,0), the estimated memory

parameters range from 0.2007 to 0.2131, and so they do for ARFIMA with d = 0.3

and d = 0.4. It indicates that the local Whittle estimator is a good approximation for

our test. In line with Souza (2007), the standard deviation of the estimated memory

parameter increases with the aggregation level. The following table presents the result

of size experiment.
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Table 5.3: Size experiment

d nom. size Aggregation level (m)

2 3 4 6 8 12

0.1 0.05 0.059 0.042 0.041 0.049 0.053 0.044

0.1 0.106 0.086 0.103 0.086 0.093 0.096

0.2 0.05 0.058 0.037 0.052 0.043 0.057 0.051

0.1 0.090 0.088 0.098 0.078 0.103 0.085

0.3 0.05 0.055 0.032 0.047 0.054 0.056 0.045

0.1 0.101 0.088 0.070 0.097 0.101 0.078

0.4 0.05 0.042 0.054 0.050 0.046 0.048 0.046

0.1 0.090 0.101 0.092 0.087 0.098 0.094

Note: The Data Generating Process (DGP) is ARFIMA(0,d,0)

From table 5.3, it is obvious that the rejection rate is very close to the nominal value

although some values indicate size distortions, meaning that the test is correctly sized

under the null of long memory.

The power experiment is carried out by generating several processes which are able

to create spurious long memory, ie. Markov switching, STOP-BREAK and random

level shift processes. These models can be described as follows:

• Markov-switching process,

xt =

 φ1xt−1 + εt if st = 1

φ2xt−1 + εt if st = 2

with εt ∼ N(0, 1) and the state transition probability p00 and p11.

• STOP-BREAK process,

xt = µt + εt, µt = µt−1 +
ε2t−1

γ + ε2t−1

εt−1
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with εt ∼ N(0, 1).

• Stationary random level shift process,

xt = µt + εt, µt = (1− jt)µt−1 + jtεt

with jt is IID Bernoulli(p), εt and εt are short memory process with mean 0 and

variance σ2
εt

• Nonstationary random level shift process,

xt = µt + εt, µt = µt−1 + jtεt

with jt is IID Bernoulli(p), εt and εt are short memory process with mean 0 and

variance σ2
εt

These models are strong candidates which can easily mislead the properties of long

memory (Granger and Ding (1996), Diebold and Ineoue (2001), Granger and Hyung

(2004), Sibbertsen (2004b), Banerjee and Urga (2005)). We call them model 1, model

2, model 3 and model 4 respectively hereafter. Basically, they are short memory

processes with zero integration order. Therefore, any degree of fractional integration

more than zero observed from these processes are spurious results. For each model,

the considered parameters as well as the result of the power experiment can be seen

in table 5.4, 5.5, 5.6 and 5.7.

In this part, we generate data with two di�erent sample sizes, N = 2000 andN = 5000

with 1000 replications. Note that for N = 2000, it is considered a very small sample

in practice, especially in the context of volatility modeling. Meanwhile, N = 5000 is

a reasonable sample size for this case. Moreover, aggregating 5000 sample size with

level of 12 results on big enough samples required to estimate the memory parameter.

In the table, we present the mean value of the fractional integration order obtained

from a sample size of 5000. A smaller bias is observed for a smaller sample size.

However, we omit the results for the reason of space.
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Table 5.4: Power experiment

Model 1

p00 = p11 = 0.90 p00 = p11 = 0.90 p00 = p11 = 0.90

φ1 = −φ2 = 0.8 φ1 = −φ2 = 0.5 ε1 = N(1, 1), ε2 = N(−1, 1)

m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000

1 0.3470
(0.0251)

- - 0.1031
(0.0193)

- - 0.3281
(0.0154)

- -

2 0.2115
(0.0319)

0.989 1.000 0.0450
(0.0225)

0.799 0.949 0.2712
(0.0211)

0.207 0.878

3 0.1567
(0.0318)

0.994 1.000 0.0366
(0.0271)

0.666 0.940 0.2419
(0.0285)

0.432 0.995

4 0.1178
(0.0376)

0.998 1.000 0.0253
(0.0306)

0.731 0.940 0.1759
(0.0340)

0.680 0.995

6 0.0988
(0.0370)

0.999 1.000 0.0200
(0.0359)

0.722 0.901 0.1299
(0.0337)

0.795 1.000

8 0.0610
(0.0455)

1.000 1.000 0.0120
(0.0407)

0.653 0.870 0.0943
(0.0437)

0.808 1.000

12 0.0411
(0.0495)

1.000 1.000 0.0072
(0.0518)

0.567 0.854 0.0679
(0.0456)

0.852 1.000

Note: The third model speci�cation has parameter φ1 = −φ2 = 0

Table 5.5: Power experiment

Model 2

γ = 180 γ = 90 γ = 40

m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000

1 0.2290
(0.0587)

- - 0.3409
(0.0571)

- - 0.4709
(0.0554)

- -

2 0.2842
(0.0590)

0.608 0.989 0.4055
(0.0655)

0.809 0.985 0.5660
(0.0645)

0.999 1.000

3 0.3353
(0.0658)

0.794 1.000 0.4589
(0.0667)

0.928 0.996 0.6276
(0.0696)

0.998 1.000

4 0.3577
(0.0712)

0.735 1.000 0.5025
(0.0713)

0.957 0.995 0.6708
(0.0738)

1.000 1.000

6 0.4005
(0.0831)

0.779 1.000 0.5586
(0.07613)

0.985 1.000 0.7407
(0.0689)

1.000 1.000

8 0.4458
(0.0781)

0.823 1.000 0.6003
(0.0797)

0.987 1.000 0.7815
(0.0602)

1.000 1.000

12 0.5011
(0.0865)

0.828 1.000 0.6817
(0.0852)

0.987 1.000 0.8417
(0.0569)

1.000 1.000
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Table 5.6: Power experiment

Model 3

p = 0.001 p = 0.01 p = 0.1

m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000

1 0.2596
(0.0919)

- - 0.4931
(0.0738)

- - 0.6581
(0.2208)

- -

2 0.3370
(0.1134)

0.553 0.951 0.5845
(0.0777)

0.955 1.000 0.7238
(0.2788)

- -

3 0.3747
(0.1223)

0.625 0.965 0.6419
(0.0899)

0.986 1.000 0.8070
(0.2468)

- -

4 0.4047
(0.1275)

0.647 0.963 0.6881
(0.0940)

0.985 1.000 0.8022
(0.2980)

- -

6 0.4606
(0.1596)

0.664 0.968 0.7563
(0.0925)

0.992 1.000 0.8770
(0.2527)

- -

8 0.4926
(0.1659)

0.668 0.978 0.8106
(0.09004)

0.983 1.000 0.8797
(0.2782)

- -

12 0.5976
(0.1617)

0.634 0.981 0.8554
(0.1097)

0.990 1.000 0.8747
(0.3131)

- -

Table 5.7: Power experiment

Model 4

p = 0.001 p = 0.01 p = 0.1

m mean(d) reject freq. mean(d) reject freq. mean(d) reject freq.

N=2000 N=5000 N=2000 N=5000 N=2000 N=5000

1 0.2802
(0.0911)

- - 0.4927
(0.0681)

- - 0.7185
(0.0567)

- -

2 0.3374
(0.1109)

0.553 0.941 0.5950
(0.0723)

0.963 1.000 0.8266
(0.0486)

- -

3 0.3875
(0.1048)

0.560 0.964 0.6496
(0.0712)

0.996 1.000 0.8806
(0.0407)

- -

4 0.4064
(0.1277)

0.618 0.972 0.7110
(0.0713)

0.999 1.000 0.9124
(0.0361)

- -

6 0.4587
(0.1445)

0.683 0.973 0.7656
(0.0692)

1.000 1.000 0.9483
(0.0347)

- -

8 0.5258
(0.1254)

0.640 0.975 0.8118
(0.0664)

1.000 1.000 0.9665
(0.0368)

- -

12 0.5757
(0.1398)

0.626 0.980 0.8744
(0.0607)

1.000 1.000 0.9827
(0.0470)

- -

Dealing with the ability of the processes to resemble long memory, we see that all

data generating processes are able to generate fractional integration orders which lie

in the long memory range. It can be seen from the mean values of the long memory
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parameter under m = 1, which corresponds to the original series. Therefore, the

examined parameters are correctly speci�ed. However, the point of consideration in

this paper is not focused on whether the models are able to create spurious long

memory or not, since it has been proved in the aforementioned references. Through

the power experiment, we assess the behavior of the estimated memory parameter to

aggregation and the ability of our test to specify these models into their class, which

is spurious long memory. Since our test involves a pair of aggregation levels, thus we

cannot obtain any value for m = 1. We denote it with "-" in the table.

Let us consider Markov switching processes in table 5.4. The choice of the transi-

tion probabilities mainly refers to previous works which found that the higher the

transition probability pii, the longer the process is expected to remain in state i and

the process becomes more persistent. Under this condition, the process will easily

be confused with long memory (see chaper 2 and chapter 3 for intensive simulation

results). The �rst two parameter settings in model 1 are general Markov switching

processes and the last is Markov switching with iid regimes (MS-IID) and therefore,

φ1 = −φ2 = 0. From table 5.4, under the de�ned parameter settings, the test is able

to specify the Markov switching processes as spurious long memory process with high

power. Only two cases have power lower than 0.5. The power increases with sample

size and shows no monotonic tendency regarding the level of aggregation. However,

we can see that most cases have higher power with higher aggregation level.

Now, we discuss the results for model 2. The STOP-BREAK model was introduced

by Engle and Smith (1999). Similar results as for Markov switching are observed for

this case. Under the three di�erent parameter settings de�ned in table 5.5, the test

is able to detect the model as spurious long memory with satisfying power, both in

small and medium samples. Especially for N = 5000, the power reaches almost one

for all cases. For random level shift processes, either stationary or nonstationary, the

test also performs very well. Under small probabilities for the Bernoulli distribution,
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the estimated fractional integration parameters are biased towards stationary long

memory. For p = 0.1, the memory parameter is biased towards nonstationary long

memory. It indicates that a higher probability leads to a more persistent process.

Since our test is derived under stationary long memory, therefore, this case (nonsta-

tionary long memory with d ≥ 0.5) is out of consideration and the power of the test

cannot be presented. The considered random level shift processes in this paper were

�rstly introduced by Chen and Tiao (1990). Further conditions about the possibility

of these models to resemble long memory have been investigated by Breidt and Hsu

(2002).

Our results in this experiment are consistent with the test proposed by Ohanissian

et al. (2008). Their test is also able to distinguish long memory from the spurious

processes with extremely high power. However, as we pointed out before, their test is

applicable to high frequency data and looses the power signi�cantly in �nite samples.

Therefore, our test �lls this gap by having good performance in �nite sample size.

5.4 Empirical application

The dataset used in this study consists of daily absolute and squared returns for 9

German stock price series, listed in the DAX30. The examined cases are Allianz,

BASF, BAYER, BMW, Commerz Bank, Continental, Deutsche Bank, Siemens and

Volskwagen (VW) spanning from the period of January 1973 to December 2007.

Therefore, we have 9132 observations for each stock. Several previous studies found

long memory in the volatility of German stock returns (Sibbertsen (2004a), Gurgul

and Wojtowiczh (2006)), based on the fact that several estimation procedures such as

GPH, the Whittle estimator or Wavelet estimator give a fractional integration order

within the long memory range. Again, it becomes crucial since several processes are

able to create spurious long memory by having a certain degree of fractional integra-
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tion as discussed in the previous section. Hassler and Olivares (2007) independently

study the daily absolute returns of the German stock price index DAX and found a

signi�cant break in mean, which might be one source of the spurious long memory.
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Figure 5.1: ACF plot of absolute returns

Figure 5.1 and 5.2 depict the autocorrelation function (ACF) of absolute and squared

returns of the considered stocks respectively. We plot the autocorrelations up to 300

lags. The �gures show that the autocorrelations of both absolute and squared returns

are strongly correlated until long lags.
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Figure 5.2: ACF plot of squared returns

They decay slowly with hyperbolic rates and show the property of long memory.

Again, having this property does not provide enough evidence that the processes

are long memory. In chapter 2, we demonstrated that several nonlinear processes

under speci�c parameter settings may produce a similar feature of the autocorrelation

function as under long memory. This similarity holds also for the spectrum of both

processes. Therefore, using only this information may lead to the wrong conclusions.

We apply our test as a formal procedure to detect whether the long memory which can

be observed in German stock returns is real or spurious. The results of the test are

presented in table 5.8 and table 5.9, for absolute and squared returns respectively. In

the tables, we provide the estimated long memory parameter of the aggregated series

under several aggregated levels m. The value in the last column is the statistic |λn|

obtained from applying the test with m = 12. This choice is based on the simulations

which suggest that the test tends to have more power for high aggregation levels.
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Table 5.8 below presents the results of the test for absolute returns.

Table 5.8: Test for absolute returns

stock m |λn|

1 2 3 4 6 8 12

Allianz 0.1959 0.2170 0.2363 0.2426 0.2587 0.2883 0.3272 1.0166*

BASF 0.2365 0.2945 0.3201 0.3201 0.2982 0.3070 0.3475 1.7279*

BAYER 0.2491 0.2880 0.3373 0.3640 0.3872 0.3963 0.4189 1.9809*

BMW 0.2437 0.3015 0.3569 0.3730 0.3894 0.3942 0.4050 2.3434*

Commerz Bank 0.2705 0.3142 0.3534 0.3795 0.3982 0.4335 0.4806 1.8642*

Continental 0.2060 0.2280 0.2460 0.2455 0.2499 0.2763 0.3068 0.8276**

Deutsche Bank 0.2701 0.3398 0.3936 0.3986 0.3966 0.3898 0.4367 2.5551*

Siemens 0.2951 0.3480 0.3766 0.3404 0.4323 0.4709 0.5167 2.3127*

VW 0.2278 0.2829 0.3097 0.3473 0.3440 0.3582 0.3623 2.0418*

Note: the asterisks * and ** refer to the signi�cance levels of 5% and 10% respectively

From the table, we see that for the 5% level of signi�cance the test rejects almost all

cases, except for Continental. Since we have under the alternative hypothesis that

there is a violation to the invariant condition of the estimated memory parameters,

to reject the null hypothesis means that the observed long memory is spurious. Con-

tinental is the only case which seems to have real long memory. It is quiet natural if

we look at the d values under several aggregation levels, they are very close to each

other. For this, we are only able to reject the null of long memory by 10% level of

signi�cance. Now we analyze the results for squared returns, which are given in the

following table
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Table 5.9: Test for squared returns

stock m |λn|

1 2 3 4 6 8 12

Allianz 0.1470 0.1713 0.2020 0.2244 0.2467 0.2675 0.2763 1.6631*

BASF 0.2378 0.2673 0.2783 0.2629 0.2319 0.2389 0.2739 0.8362**

BAYER 0.1422 0.1501 0.1912 0.2911 0.3087 0.2995 0.2601 2.4222*

BMW 0.1994 0.2486 0.3128 0.3268 0.3227 0.3290 0.3191 2.3460*

Commerz Bank 0.2385 0.3029 0.3362 0.3622 0.3646 0.3801 0.4076 2.1151*

Continental 0.2028 0.2290 0.2615 0.2646 0.2555 0.2762 0.3037 1.2861*

Deutsche Bank 0.2326 0.3109 0.3698 0.3631 0.3505 0.3281 0.3399 2.8387*

Siemens 0.2469 0.2842 0.3215 0.3812 0.4020 0.4202 0.4285 2.2959*

VW 0.1757 0.2454 0.2724 0.3049 0.2987 0.2991 0.2968 2.2086*

Note: the asterisks * and ** refer to the signi�cance levels of 5% and 10% respectively.

In line with the result for absolute returns, the test rejects the null of real long

memory. By 5% level of signi�cance, it fails to reject the null only for BASF case.

Therefore, we may say that long memory observed in most of the German stock

returns is a spurious process, both in absolute and squared returns. The existence of

this spurious process could be the result of non-stationarity, regime switching, mean

shift, aggregation, etc. These results thus give new evidence about the behavior of

German stock returns dealing with long memory.

5.5 Conclusion

This paper contributes to the literature on spurious long memory tests by provid-

ing a simple procedure to detect the spurious long memory based on the invariance

principle of the estimated memory parameter under several aggregation levels. The

test performs well in �nite sample size. The empirical application gives evidence of
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spurious long memory in the absolute and squared German stock returns.
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Appendix

This session gives the proof of theorem 1. We start the proof by showing that the

following holds

Q(n)− σW (n) = O(n1/2−ε) a.s << A1 >>

where {W (t), 0 ≤ t <∞} is a Wiener process and ε > 0. By theorem 1.1 of Horváth

and Shao (1999), condition << A1 >> is satis�ed if we can show that there exists

ς > 0, τ > 0, ϑ > 0 satisfying ς + τ > 1/2 and ϑ+ 2ς > 1, such that

(i). a(k) = O(|k|−
1
2
−ς), (ii). b(k) = O(|k|−

1
2
−ϑ), (iii). c(k) = O(|k|−

1
2
−τ ) (5.10)

where c(k) = b(o)a(k) + 2
∑∞

j=1 b(j)a(k − j).

Suppose that the original series xt has the following in�nite moving average represen-

tation:

xt =
∞∑
i=1

αiεt−i (5.11)

where εt is mean zero independent, identical distributed random variable and having

variance σ2
ε . Now, equation (5.2) can be written as

yt =
m−1∑
j=0

Bj

∞∑
i=1

αiεt−i (5.12)

=
∞∑
i=0

aiεt−i (5.13)

where ai =
i∑

j=i−m+1

αj and αj = 0 for j < 0. Before we proceed (i), we �rst need to

show that ai converges in mean square. This condition has been previously examined

by Teles et al. (1999). Nevertheless, let us describe it in brief here since it is very

important for the test.
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Let us de�ne

(1 +B)d =
∞∑

j=0

ϕjB
j (5.14)

where ϕj =

 d

j

 =
Γ(d+ 1)

Γ(j + 1)Γ(d− j + 1)
and satis�es ϕj ∼

Γ(d+ 1)

2π
(−1)j−d−1/2j−(d+1).

From the de�nition of aggregated long memory yt in (2), we have

(1 +B + ...+Bm−1)d =
m−1∏
j=1

(1 + ζjB)d (5.15)

=
m−1∏
j=1

[
∞∑

k=0

ϕkζ
k
j B

k

]
(5.16)

therefore, for d > −0.5,
m−1∏
j=1

[
∞∑

k=0

|ϕkζ
k
j |2
]
< ∞ and this implies that

∞∑
i=0

a2
i < ∞,

which is the basic condition allowing the statistic using aggregated long memory.

Moreover, from equation (5.6), it implies

ak ∼ L(k)k2d−1 (5.17)

as k →∞ for some L slowly varying at in�nity.

To examine (ii), let us de�ne b(k) = 1
4π2

∫ −π

π
eikλf−1(λ, d)dλ and assume that f(λ, d)

and f−1(λ, d) are continuous at all λ and d (Tsay and Chan (2005)) such that

∂f−1(λ, d)

∂d
= O(|λ|−2d) ≈ O(|λ|−2d) (5.18)

Recall the covariance of y as follows

Eyjyk = σ2
xr(j − k) = σ2

x

∫ π

−π

ei(j−k)λdλ. (5.19)

De�ne a Toeplitz matrix Rnxn with the j, k-th entry r(j−k) and a matrix Anxn with

the j, k-th entry b(j−k). Then, by assumption 1 and Parsevals relation, Anxn can be
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de�ned as an inverse of the covariance matrix Rnxn (Fox and Taqqu (1986), Bleher

(1981))

R
(

1

4π2
f−1(λ, d)

)
. (5.20)

By this relation, we intend to get the asymptotic of b(k). Furthermore, by proposition

1 of Souza (2008), the autocovariance of yt is given by

γy(k) ∼ m2σ2
xCρ(k)k

2d−1 +O(k2d−3), as k →∞ (5.21)

From this, it is su�cient to show that

r(k) ∼ L(λ)|k|2d−1, as k →∞ (5.22)

and therefore for 0 < δ < 1/2− d

|b(k)| = O(|k|δ−1), as k →∞ (5.23)

Further details about the autocovariance function of yt, the readers are referred to

Souza (2008).

From (5.18) and (5.24), it is su�cient to have as n→∞,

|c(k)| = O(L(k)k2d−1 +O(L(k)k2d−1+δ)β(δ, d)) (5.24)

= O(L(k)k2d−1+δ) (5.25)

where β(δ, d) is beta function de�ned as β(δ, d) =

∫ 1

0

yδ−1(1− y)2d−1dy.

Now, the condition << A1 >> is satis�ed and we can de�ne a sequence of Brownian

bridges Vn(t), 0 ≤ t ≤ 1 such that

max
0≤s1,s2≤1

T 1/2s1s2

∣∣∣∣{Q(n1, d)

n1

− Q(n2, d)

n2

}∣∣∣∣ D→ sup
0≤t≤1

σ|V (t)| (5.26)

and

sup
0≤s1,s2≤1

|T 1/2s1s2{d̂(m1) − d̂(m2)} − σVn(t)| = Op(T
−1/2) (5.27)

with s1 =
n1

n1 + n2

, s2 =
n2

n1 + n2

and T = n1 + n2 and theorem 1 is proved.
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