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II 

Kurzfassung 

 

Die vorliegende Arbeit berichtet sowohl über die theoretischen Entwicklungen als auch die 

innovativen experimentellen und numerischen Methoden, die für die Vorhersage von 

Verweilzeitverteilungen, Strömungs- und Druckfeldern in Q-Sartobind
®
 Membrane Adsorber 

Systems mittels Computational Fluid Dynamics (CFD) notwendig sind. 

Es wird gezeigt, wie durch den Einsatz von Rasterelektronmikroskopie und 

Röntgenstrahlungsmikrotomographie wichtige Hinweise über den Transport und die 

Adsorption von gelösten Stoffen innerhalb der porösen Struktur von Q-Sartobind
®
 

Membranen gewonnen werden können. Mit Hilfe dieser strukturellen Untersuchung wurden 

geeignete und implementierbare makroskopische Modelle (CDE- und dual porosity Modell) 

ausgewählt. Weiterhin wurde eine experimentelle Einrichtung entwickelt, die die einfache 

Messung von eindimensionalen Verweilzeitverteilungen ermöglicht. Die resultierenden 

Kurven wurden mit der eindimensionalen analytischen Lösung der oben erwähnten Modelle 

gefittet. Dabei wurde eine Optimierungsmethode implementiert, die gleichzeitig nicht 

Membran gebunden Dispersionseffekte  entfernt und die entsprechenden Transportparameter 

für adsorptive und nicht-adsorptive Stoffe schätzt. 

Anschließend wurden die dreidimensionalen Formulierungen der ausgewählten Modelle 

hergeleitet und in dem open-source CFD-Code Code_Saturne implementiert. Die 

entsprechenden CFD Simulationen haben die erfolgreichen Vorhersagen von 

Verweilzeitverteilungen von niedermolekularen Stoffen (Aceton) mit Hilfe des dual porosity 

Modells und von hochmolekularen Stoffen (Rinderserumalbumin) mit Hilfe des CDE-

Modells ermöglicht. Die Implementierung des Transportmodells wurde durch die Einführung 

eines Adsorptionsterms erweitert und Verweilzeitverteilungen von Benzoesäure unter 

bindenden Bedingungen wurden vorhergesagt. Die Vorhersage von Strömungs- und 

Druckfeldern haben die Detektion und die Lokalisierung von nicht strömungsoptimierten 

Strömungsumlenkungen und Totvolumina ermöglicht. 

Schlagworte: Membranadsorber, Chromatographie, Fluiddynamik
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Abstract 

 

The present work reports the theoretical developments as well as the innovative experimental 

and numerical methods necessary for the prediction of flow fields, pressure fields, residence 

time distributions (RTD) of adsorptive and non adsorptive solutes (proteins and metabolites) 

in Q-Sartobind
®
 Membrane Adsorber Systems using Computational Fluid Dynamics (CFD). 

It first demonstrates how Scanning Electron Microscopy and X-ray microtomography may be 

used to understand the transport and the eventual adsorption of solute within the porous 

structure of Q-Sartobind
®
 membranes. According to this structural analysis, appropriate and 

implementable averaged macroscopic transport models (CDE and dual porosity models) have 

been selected. Furthermore, an experimental setup, which enables the easy measurement of 

one dimensional RTD‘s, was developed and the measured curves were fitted using the one 

dimensional analytical solutions of the above mentioned transport models. In this regard, an 

optimization method, which simultaneously removes extra membrane dispersion effects and 

estimates the corresponding transport parameters for adsorptive and non adsorptive solutes, 

has been implemented.  

Finally, the three dimensional forms of the selected transport models have been formulated 

and implemented in the open source CFD code Code_Saturne using the estimated transport 

parameters. The corresponding CFD simulations enabled successful predictions of residence 

time distributions of the low molecular weight compound acetone using the dual porosity 

model and the high molecular weight compound Bovine Serum Albumin using the CDE 

model. Furthermore, the implementation of the transport models has been extended by adding 

an adsorption term and RTD‘s of benzoic acid under adsorptive conditions have been 

predicted. Additionally, the prediction of flow fields allowed the detection and localization of 

imperfect flow distributions.  

Keywords: membrane adsorber, chromatography, fluid dynamics 
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1 Introduction 

Downstreaming in biotechnology involves a series of separation steps with the final goal of 

attaining the highest purity of the product at a maximum rate of recovery. Most of these 

separation steps are chromatographic processes using physical interactions (ion exchange, 

hydrophobic interactions and reverse phase), stereochemical recognition (affinity 

chromatography) and size exclusion (gel filtration). The scale-up of biotechnological 

processes is an important key step for the industrial production of biological molecules and 

membrane chromatography represents a suitable technology for the transfer of bench scale 

purification protocols to the production scale. This considerable advantage leads to the 

increasing role of chromatographic membranes for large scale isolations and purifications of 

biomolecules (monoclonal antibodies, food proteins, viruses …). 

Millipore (USA), Pall (USA) and Sartorius-Stedim Biotech GmbH (Germany) are the main 

providers of chromatographic devices based on adsorptive membranes. The present work 

exclusively investigates Q-Sartobind
®
 Membrane Adsorber Systems. These are the anion-

exchange chromatographic devices developed by Sartorius-Stedim Biotech GmbH. 

Furthermore, the terms ―adsorption‖ and ―binding‖, frequently used in this thesis, always refer 

to the reversible and specific adsorption of anions from a liquid mobile phase on a positive 

charged stationary phase via electrostatic interactions. 

The first Q-Sartobind
®
 Membrane Adsorber Systems were derived from filtration systems and 

therefore not optimized for chromatographic purposes. During the last decade, experimental 

prototyping has been intensively used for the improvement of Sartobind
®
 Membrane 

Adsorber Systems in order to reduce dead zones and achieve a plug flow. The limits of 

experimental prototyping, in terms of product design and flow optimization, are almost 

reached and there is a real need for more precise development techniques. Due to considerable 

developments in the last two decades, modern CFD (Computational Fluid Dynamics) methods 

are now able to solve problems in very complex geometries and have been proposed as a new 

technique for the further optimization of such chromatographic devices. 

The main object of the present work was the development of a CFD model enabling the 

prediction of residence time distributions (RTD‘s) of adsorptive and non-adsorptive 
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compounds in Q-Sartobind
®
 Membrane Adsorber Systems. This project has been divided into 

the four following objectives: 

1) The chromatographic performances of Q-Sartobind
®
 Membrane Adsorber Systems 

were characterized in terms of heights of theoretical plates (HETP) and peak 

resolution. Simultaneously, a set of experimental data was generated, which was 

necessary for the ―validation‖ of the future CFD model. 

2) A structural characterization of the corresponding membrane was performed using 

scanning electron microscopy (SEM) and X-ray microtomography. Additionally, 

adsorption isotherms have been measured and fitted with the Langmuir adsorption 

model. The severest limitation for the successful achievement of accurate CFD 

predictions was the mathematical description of the transport phenomena occurring in 

Q-Sartobind
®
 membranes.  

3) On the basis of the results obtained from the second step, the third milestone aimed to 

find out appropriate mathematical models for the description of the transport 

phenomena occurring in Q-Sartobind
®
 membranes. Because CFD is based on 

continuum mechanics, only macroscopic transport models came into consideration. 

The convection-dispersion equation (CDE) and the dual porosity model have been 

found to fulfil these requirements and their capability to fit measured RTD‘s under 

adsorptive and non-adsorptive conditions for high and low molecular weight 

compounds was evaluated. 

4) The three dimensional geometry of a Q-Sartobind
®

 Membrane Adsorber System has 

been then created and meshed. Using the transport parameters estimated in the frame 

of previous milestone, CDE and dual porosity models for adsorptive and non 

adsorptive compounds were implemented in the open source CFD code Code_Saturne. 

Finally, predicted and measured RTD‘s were compared, which enabled to find out 

transport models for low and high molecular weight non-adsorptive compounds. 
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2 Chromatographic performances of Q-Sartobind
®

 Membrane 

Adsorber Systems 

2.1 Objectives 

This first part is dedicated to the systematic characterization of Sartobind
®
 Membrane 

Adsorber Systems in terms of chromatographic performances. Such a study has not been yet 

reported in the literature and the present contribution aims to partially compensate this 

deficiency. In this regard, an apparatus, that enables automatic injections of tracer pulses 

through Membrane Adsorber Systems and their monitoring, has been developed. The 

influences of bed thickness, bed height and linear flow velocity on the following 

chromatographically relevant parameters have been investigated:  

- Heights of Theoretical Plate (HETP) have been determined for adsorptive and non 

adsorptive tracers. This determination was performed from measured residence time 

distributions (RTD). 

- Separation resolution of adjacent peaks during the isocratic separation of BSA and 

benzoic acid. 

The chromatographic performances of Membrane Adsorber Systems and column 

chromatography have been then compared. Beside this characterization, the second objective 

of this chapter was the generation of a set of experimental data, which has been used for the 

evaluation of the accuracy of CFD simulations. 

2.2 Theoretical Background 

2.2.1 Height of Theoretical Plate (HETP) 

The concept of theoretical plates is commonly used to describe chromatographic performance. 

It assumes that the solute, during its passage through the column, is always in equilibrium 

with the mobile and stationary phases. However, as the solute is continuously passing from 

one phase to the other, equilibrium between the phases never occurs. In order to accommodate 

this non-equilibrium condition, a technique was introduced, which considers the column to be 
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divided into a finite number of plates. The plates have a specific length and the solute will 

spend a finite time on each plate. The plate is chosen to be of such size as to give the solute 

sufficient residence time to establish equilibrium with the two phases. Consequently, the 

smaller the plate is found to be, the faster will equilibrium be achieved and the more plates 

will be in the column.   

The theoretical plate concept is widely used to characterize the performance of a 

chromatographic column. All peaks in a chromatogram show roughly the same plate number 

and this number can be consequently considered as an inherent characteristic of the column 

used. 

 

The definition of the ―theoretical plate number‖ is based on the statistical theory: 

 

2

2

1




PN , 

 

where µ1 and µ2 are the mean and variance, so called first absolute and second central 

moments of the RTD. 

As the plate number is approximately proportional to the column length L, column quality can 

also be expressed in terms of theoretical plates per meter column or HETP which is defined 

by 

 

PN

L
HETP  , 

 

where L is the column length and Np is the Number of theoretical plates. 
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According to the theory originally developed by van Deemter et al., the plate height (HETP) 

for column is equal to the sum of three independent contributions according to the following 

equation: 

uC
u

B
AHETP  , 

 

where A is the Eddy diffusion (describes peak broadening resulted from the packed column 

geometry), B – longitudinal diffusion, C – resistance to mass transfer and u – linear velocity. 

A plot of the van Deemter equation shows a minimum at certain flow rate (Fig. 2.1). 

There is an ―optimal‖ flow rate at which a minimal HETP value is achieved and, 

consequently, maximal plate number is obtained. In conventional chromatography of 

macromolecules, the optimal flow rate is often impractically low. This is due to the third 

component of the equation (C
.
u), which dramatically affects the HETP minimum and depends 

on various kinetic parameters such as the slow transfer of the molecules into and out of the 

pores within the stationary phase. 

 

Fig. 2.1 Plot of the three terms in the Van Deemter equation and their sum 

ideal  mobile phase velocity u [cm/sec] 

velocity  

 

minimum HETP 

H
E

T
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2.2.2 Resolution of two components 

The resolution RS is a measure of the degree of separation efficiency of two adjacent peaks. It 

is frequently employed and defined by 

  2/21

1,2,

WW

tt
R

RR

S



  

where tR = peak position an W = width of the elution curve at the baseline. The subscripts 1 

and 2 refer to components 1 and 2, respectively.  

2.2.3 Protein chromatography with Membrane Adsorbers 

Conventional chromatographic supports are made from porous beads packed into a column, 

making chromatographic process very dependent on the molecular diffusion into the pores 

inside of the beads, the preferential solute flows and the pressure drop. To circumvent these 

difficulties, a variety of novel chromatographic processes have been considered. That is for 

example monolithic stationary phase columns (Zhou et al., 2002), non-porous beads (Lee, 

1988) or perfusion chromatography packings (Afeyan et al., 1991). However, these media are 

generally expensive and the solute binding capacity is greatly reduced, since binding can now 

only take place on the external surfaces. Moreover, the problem of high pressure drop still 

persists. 

In contrast to conventional columns, membrane adsorbers are supposed to reduce diffusion 

problems, because solutes should theoretically access the total inner surface area of the 

macroporous structure by convection (Fig. 2.2).  

The binding efficiency of membrane adsorbers is generally independent of the feed flow-rate 

over a wide range and therefore very high flow-rates may be used. Moreover, the pressure 

drop is significantly lower than with packed beds. Membrane adsorbers can be used until the 

desirable properties (i.e. hydraulic permeability, binding capacity, selectivity and resolving 

power) are maintained and then disposed, that eliminates the requirement for cleaning and 

equipment revalidation. 
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As with conventional resins, all kind of ligands (ion exchange, bioaffinity) can be coupled to 

the membranes inner surface leading to an adsorption of the target protein at the pore wall 

(Roper and Lightfoot, 1995; Thömmes and Kula, 1995; Kökpinar O et al., 2006). The main 

advantage of the membrane chromatography mentioned in the literature is the fact, that the 

interaction between a solute (protein) and a matrix (immobilized ligand) does not take place 

in the dead-end pores of particle, but mainly in the throughout pores of a membrane (Fig. 2.2). 

Despite of several obvious advantages of membrane adsorbers compared to the conventional 

chromatography, there are still some challenges to overcome. The most important ones are 

distorted or poor inlet flow distribution (Roper and Lightfoot, 1995), non-identical (Frey et 

al., 1992) membrane pore size distribution, uneven membrane thickness and scale up (Ghosh, 

2002). If a flow distribution problem is not unique to membrane adsorbers alone and appears 

to be a property of chromatographic process in general (Yuan et al., 1999) and can affect most 

likely only pulse chromatography, pore size distribution can seriously reduce the efficiency of 

adsorbent utilization.  

 

 

 

 

 

 

 

 

 

Fig. 2.2 Simplified schematic representation of solute transport in packed bed chromatography (A) and 

membrane adsorber (B). P – protein, L - ligand 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22K%C3%B6kpinar%20O%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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2.2.4 Sartobind
®
 Membrane Adsorber Systems 

Sartobind
®

 membranes (Sartorius-Stedim Biotech GmbH, Göttingen), appeared on the market 

in the beginning of the last decade and are one of the major representatives of the membrane 

adsorbers at the present time. Initially dedicated to laboratory applications, they were flat 

sheet membranes with a methacrylic polymer grafted onto a macroporous support and bearing 

different ionic groups. In the first generation of Sartobind® membranes synthetic nylon 

support with 0.45 µm nominal pore size was used. This matrix was later replaced by high 

chemically and enzymatically stable polysaccharide (regenerated cross linked cellulose) 

support of 3 µm nominal pore size with very low non-specific adsorption. 

However, the capacity of single adsorptive membranes for preparative recovery was limited. 

To achieve the adsorptive capacities necessary for preparative biological recovery, multiple 

thin sheet disk membranes were stacked and housed in a rigid cylindrical shell, so that surface 

membrane area achieved up to 0.5 m
2
. For the further scale-up a cylindrical module geometry 

was developed, which makes the design of large scale plants with membrane areas up to 100 

m
2
 feasible.  

Sartobind® Membrane Adsorber Systems consists of a membrane (Fig. 2.3), reeled to form a 

hollow cylinder, with screens of stainless steel on the inner and outer sides, which are 

embedded in plastic caps on both ends. Modules have different heights – 3, 6, 12, 25 and 50 

cm and different bed thicknesses -15, 30 and 60 membrane layers (2, 4 and 8 m
2
 nominal 

membrane area, respectively). They all have the same outer diameter and fit into the same 

housings.  
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Fig. 2.3 Cross sectional drawing of a Sartobind® Membrane Adsorber System. 

Despite of the clear advantages of membrane chromatography and, namely, Membrane 

Adsorber Systems for large-scale protein purification, existing limitations are still to be 

solved. The proper understanding of the transport phenomena as well as strict control of 

homogeneity of the microstructure can rationalize the design of the membrane 

chromatographic process and consequently improve the process efficiency. 

2.3 Materials and methods 

2.3.1 Chemicals 

If not indicated otherwise all chemical reagents were obtained from Merck (Darmstadt, 

Germany). 

2.3.2 Sartobind® Membrane Adsorber Systems 

Sartobind® Membrane Adsorber Systems used in this work have been directly provided by 

Sartorius-Stedim Biotech GmbH (Göttingen, Germany). In all Membrane Adsorber Systems 

(Tab. 2.1), stabilized regenerated cellulose membrane with an average thickness of 275 µm 

and a nominal pore size higher than 3µm, coupled with a strong basic anion exchanger 

(quaternary ammonium Q) has been used. All membranes were taken from one production 

Inlet distributor 

Outlet distributor 

External channel  

Internal channel 

Membrane 

Membrane 
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charge (Membrane charge number 19-00861354). Housings and cores were made out of 

polyoxymethylene or stainless steel. 

Tab. 2.1  Properties of Sartobind® Membrane Adsorber Systems used in this work  

Module reference Bed 

height 

[mm] 

#Number 

membrane 

layers 

Bed 

thickness 

[mm] 

Bed 

volume 

[ml] 

Nominal 

membrane 

area [cm²] 

Abbreviation 

 91-Q-05K-15-12 120 15 4 140 0.5 12_15 

91-Q-05K-30-12 120 30 8 288 1.0 12_30 

91-Q-05K-60-12 120 60 16 533 2.0 12_60 

91-Q-01K-15-03 30 15 4 35 0.1 03_15 

91-Q-02K-15-06 60 15 4 70 0.2 06_15 

91-Q-10K-15-25 250 15 4 280 1.0 25_15 
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2.3.3 Experimental setup for RTD’s and retention measurements 

For RTD‘s and retention measurements, an apparatus, that enables automatic injections of 

tracer pulses through Membrane Adsorber Systems and their monitoring, has been developed 

and calibrated. Tab. 2.2 shows the instrumentation used and a flow diagram (Fig. 2.4) 

illustrates the interconnection of process equipment and the instrumentation used for process 

monitoring. The filling of the injection loop has been performed using hydrostatic pressure 

drop.  

In this work, measurements have been performed by injecting a pulse of adsorptive or non 

adsorptive tracer through different Membrane Adsorber Systems. These measurements have 

been performed by Antonina Lavrentieva in the frame of her Master thesis (Lavrentieva 

2008). Resulting Input and Output signals have been monitored photometrically at 280 nm 

and recorded with a time step of 0.2 s. The volume of the used injection loops has been set to 

7 % of the corresponding bed volumes. 

2.3.4 Determination of HETP values  

As tracers, a 5% (w/w) acetone solution in 30 mM sodium acetate buffer (pH 5.2, IS 50 mM) 

or 20 mM potassium phosphate buffer (PPi) ( pH 7.2, IS 175 mM) and  a BSA (10 g/L, 

Kraeber GmbH & Co, Ellerbeck, Germany) solution in 30 mM sodium acetate buffer (pH 5.2, 

IS 50 mM) or 20 mM PPi buffer ( pH 7.2, IS 175 mM) have been used. RTD‘s have been 

measured at three different linear velocities and the corresponding HETP values have been 

determined by calculating first and second moments of these RTD‘s. HETP values shown in 

the present thesis have been averaged from three runs. 
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Tab. 2.2 Equipment used for the experimental setup 

 

Equipment 

 

Model and Manufacturer 

Flowmeter 
MAGFLO® Flowmeter Type MAG 3000 

(Danfoss, Danemark) 

UV Detector 
AF44VEQHNT1C4-C(Wedgewood technology 

inc., USA) 

Manometers 
Sartorius-Stedim Biotech GmbH (Göttingen, 

Germany) 

Pump Sartorius®Sartojet (Göttingen, Germany) 

Valves 0330 C 4,0 FKM VA (Burkert, Germany) 

Sartobind
®
 Membrane Adsorber Systems 

Sartobind
®
Q (Sartorius-Stedim Biotech GmbH, 

Göttingen, Germany) 

2.3.5 Determination of Peak resolution 

Peak resolution of the isocratic separation of a mixture of BSA (10g/L, Kraeber GmbH & Co, 

Ellerbeck, Germany) and benzoic acid (3.2 g/L) in 200 mM sodium acetate buffer (IS 82 mM, 

pH 4.5) has been estimated. Resolution of adjacent peaks (Rs) has been calculated with the 

help of the ―ACD SpecManager‖ software (Advanced Chemistry Development, Inc., Canada). 

Resolution values shown in the present thesis have been averaged from three runs. 
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Fig. 2.4 Piping and instrumentation diagram of the dispersion measurement system 

2.3.6 Injection of tracer pulses 

For the injection of tracer pulses through Membrane Adsorber Systems, four 3-way automatic 

valves have been used. In order to achieve a proper pulse injection, an injection procedure 

consisting of the four following steps has been developed using Labview: 
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“Loading + Bypass”. 5 sec. During this step, the injection loop was filled with the sample solution (driving 

force in this case was the gravity) (red line), the main buffer stream flowed via the bypass (blue line)  
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“End of Loading + Bypass”. 5 Sec.  At this step, loading was finished (red line), the main buffer stream 

still flowed via the bypass (blue line)  
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 “Injection”. 45 Sec.  During this step, the loaded loop was connected with the main buffer stream and the 

sample passed through the Membrane Adsorber System.  

                     

Waste

Module

Buffer

P-9

Sample

Waste

UV

UV

1.Valve 3.Valve

4.Valve

2.Valve

Filter

Pump

                     

Waste

Module

Buffer

P-9

Sample

Waste

UV

UV

1.Valve 3.Valve

4.Valve

2.Valve

Filter

Pump

 

 “Bypass”. 5 Sec.  At this step, the main buffer stream went again via the bypass in order to rinse the 

system module (blue line). 

                     

Waste

Module

Buffer

P-9

Sample

Waste

UV

UV

1.Valve 3.Valve

4.Valve

2.Valve

Filter

Pump

                     

Waste

Module

Buffer

P-9

Sample

Waste

UV

UV

1.Valve 3.Valve

4.Valve

2.Valve

Filter

Pump

 



 Chromatographic Performances of Q-Sartobind
®
 Membrane Adsorber  Systems 

 

16 

 

2.4 Results and discussion 

2.4.1 Height of Theoretical Plates (HETP) 

In the frame of these investigations, two different tracers have been used: 

- Acetone was used as a non-adsorptive tracer in order to reflect dispersion effects 

strictly due to hydrodynamic processes occurring in the distributors, the channels and 

in the membrane pores. 

- Bovine Serum Albumine (BSA, pI = 4.9) was used as an adsorptive tracer under two 

different binding conditions. At pH 7.2 (20 mM PPi, IS 175 mM), the surface of BSA 

is mostly deprotonated and consequently negatively charged. So binding under these 

conditions mostly took place due to a ‗pH effect‘. At pH 5.2 (30 mM sodium acetate, 

IS 50 mM), the surface of BSA was not fully deprotonated and still exhibited positive 

charges and was slightly negatively charged. Under these conditions, binding occurred 

via an ‗ionic strength effect‘.  

2.4.1.1 Influence of bed thickness 

Three modules with a bed height of 120 mm and bed thicknesses of 4, 8 and 16 mm have 

been investigated at 3 different linear flow velocities. The corresponding results are shown in 

Fig. 2.5 and Fig. 2.6. Bed height and bed thickness are shown in Fig. 2.9. 

Janson and Jönsson (1998) performed HETP measurements on chromatographic columns and 

reported that the HETP value was proportional to the column length. Indeed, for a given linear 

velocity the solute spends more time in the porous medium and is longer subject to dispersion 

effects when the column length is increased.  

In this study, the column length was represented by the bed thickness and it was consequently 

expected that the HETP value increases with bed thickness. This expectation has only been 

fulfilled when an adsorptive tracer was injected. The discrepancies obtained by injecting a 

non adsorptive tracer may only be explained by more disordered hydrodynamic processes 

occurring in the membrane stack of the module with 30 layers. This may be related to stronger 
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structural fluctuations in this membrane stack than in the other ones. These structural 

discrepancies seemed to be compensated when adsorption equilibrium was present.   

 

 

 

 

 

Fig. 2.5 Height of Theoretical Plate (HETP) values (Q- Sartobind
®
 Membrane Adsorber Systems) as a 

function of the linear flow velocity for three different bed thicknesses: 4 mm (12_15), 8 mm (12_30) and 16 

mm (12_60). Bed height was 120 mm.  (A) – acetone as a non adsorptive tracer and (B) –Bovine Serum 

Albumin as an adsorptive tracer. 20 mM PPi  buffer (pH 7.2, IS 175 mM). 

 

 

 

 

Fig. 2.6 Height of Theoretical Plate (HETP) values (Q- Sartobind
®
 Membrane Adsorber Systems) as a 

function of the linear flow velocity for three different bed thicknesses: 4 mm (12_15), 8 mm (12_30) and 16 

mm (12_60). Bed height was 120 mm.  (A) – acetone as a non adsorptive tracer and (B) –Bovine Serum 

Albumin as an adsorptive tracer. 30 mM sodium acetate buffer (pH 5.2, IS 50 mM). 
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A B 



 Chromatographic Performances of Q-Sartobind
®
 Membrane Adsorber  Systems 

 

18 

 

2 3 4 5 6 7 8

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

Linear Velocity [cm/min]

 03_15

 06_15

 12_15

H
E

T
P

 [
c
m

]

2 3 4 5 6 7 8

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

Linear Velocity [cm/min]

 03_15

 06_15

 12_15

H
E

T
P

 [
c
m

]

Additionally to hydrodynamic processes, BSA, as an adsorptive tracer, also reflected 

dispersion effects due to the adsorption equilibrium taking place in the membrane. The 

magnitude of HETP values estimated by injecting BSA were therefore about twice higher 

than the magnitude of HETP values obtained by injecting a non adsorptive tracer. No 

differences in HETP values have been observed by comparing the different binding effects of 

BSA. 

2.4.1.2 Influence of bed height 

Three modules with a bed thickness of 4 mm and bed heights of 30, 60 and 120 mm have 

been investigated at 3 different linear flow velocities. The corresponding results are shown in 

Fig. 2.7 and Fig. 2.8.  

The magnitude of HETP values estimated under binding and non-binding conditions were 

unexpectedly similar. According to this observation, hydrodynamic processes present in these 

modules had the major contribution to the total dispersion and dispersion effects related to the 

adsorption equilibrium appeared to be negligible. 

 

 

 

  

 

Fig. 2.7 Height of Theoretical Plate (HETP) values (Q- Sartobind
®
 Membrane Adsorber Systems) as a 

function of the linear flow velocity for three different bed heights: 30 mm (03_15), 60 mm (06_15) and 120 

mm (12_15). Bed thickness was 4 mm.  (A) – acetone as a non adsorptive tracer and (B) –Bovine Serum 

Albumin as an adsorptive tracer. 20 mM PPi  buffer (pH 7.2, IS 175 mM). 

A B 
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Furthermore, HETP values were found to decrease with the bed height and therefore with the 

flow area. By increasing this flow area, the contribution of dispersive effects due to structural 

heterogeneities of the membrane should increase and more strongly affect the total dispersion. 

The reverse trend was therefore expected and the observed relationship may not be 

exclusively explained by membrane related dispersion effects. 

 

 

 

 

 

 

Fig. 2.8 Height of Theoretical Plate (HETP) values (Q- Sartobind
®
 Membrane Adsorber Systems) as a 

function of the linear flow velocity for three different bed heights: 30 mm (03_15), 60mm (12_15) and 120 

mm (12_15). Bed thickness was 4 mm.  (A) – acetone as a non adsorptive tracer and (B) –Bovine Serum 

Albumin as an adsorptive tracer. 30 mM sodium acetate buffer (pH 5.2, IS 50 mM). 

Fig. 2.9 (B) is a photograph of the cores used in the frame of this investigation. The upper part 

of these cores corresponds to the inlet distributor, which was similar and therefore created the 

same mixing zone for all 4 mm thick modules. After having been subject to this mixing zone, 

solutes were further transported into the internal channel, where the mixing intensity strongly 

decreased.  

A B 
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Fig. 2.9 Schematic representation of a Sartobind
®

 Membrane Adsorber System (A) and photograph of the 

cores of the Membranes Adsorber Systems, used in the experiment: 30 mm, 60 mm and 120 mm long (B). 

Upper part of the cores is the inlet distributor which creates a mixing zone and is indicated with black 

arrows. 

In the shortest modules, most of the membrane surface area was exposed to the above 

mentioned mixing zone so that total dispersion was dramatically affected by the relative 

contribution of the inlet distributor. In contrast to short modules, the membrane surface area 

in higher modules was only partially exposed to this mixing zone and its relative contribution 

to total dispersion became weaker leading to lower HETP values. 

2.4.1.3 Influence of linear flow velocity 

In most of the measurements, HETP values have been found to increase with the linear flow 

velocity. According to the HETP theory, the third term of the van Deemter equaton is defined 

as the product of the linear flow velocity by the resistance to mass transfer between stationary 

and mobile phase. This term reflects the dependency of HETP values on the linear flow 

velocity. In column chromatography, because of the necessary diffusion into porous beads via 

film diffusion, a certain resistance to mass transfer is always present even under non binding 

conditions and HETP values mostly increase with the linear flow velocity as shown in Fig. 

2.10. 

  A B 

Bed 
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Bed 

height 



 Chromatographic Performances of Q-Sartobind
®
 Membrane Adsorber  Systems 

 

21 

 

Solute transport in Membrane Adsorber Systems is theoretically characterized by the absence 

of film diffusion in dead end pores, so that a resistance to mass transfer may only exist under 

binding conditions. This inconsistency may be related to the existence of dead end pores 

inside of Q-Sartobind
®
 Membranes. This would explain the observed dependency of HETP 

values on the linear flow velocity under non binding conditions. 

2.4.1.4 Comparison with Column Chromatography 

According to Fig. 2.10, the magnitude of the measured HETP values is very similar to the 

values measured with various chromatographic columns (Gel filtration and ion-exchanger 

under non binding conditions). The major difference resides in the achieved linear flow 

velocities, which are much higher when working with Membrane Adsorber Systems. 

 

Fig. 2.10 HETP versus linear mobile phase velocity u for various gel filtration columns and for ion-

exchange gel columns at high ionic strength where the ion-exchange gels act as gel filtration 

chromatographic media (from Yamamoto et al. (1988)): Mb, OA, and BSA, Myoglobin, Ovalbumin, and 

bovine serum albumin respectively. 

2.4.2 Peak Resolution  

Peak resolution of the isocratic separation of BSA and benzoic acid has been measured. Under 

the chosen elution conditions, BSA acted as non adsorptive tracer and benzoic acid as an 

adsorptive tracer.  

As expected, peak resolution (Fig. 2.11) increased with bed thickness (at constant bed height), 

e.g. increasing the bed thickness by four times resulted in approximately three time higher 
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resolution. It is conceivable that an increase of bed thickness statistically compensates the 

structural heterogeneities from membrane layer to membrane layer and leads to a structurally 

more homogeneous membrane stack and fully developed laminar flow. Consequently, a 

sharper separation has been achieved. For the above mentioned reasons (see section 2.5.1.3), 

peak resolution has been found to increase unexpectedly with bed height.   
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Fig. 2.11 Resolution of the isocratic separation of BSA (10g/L) and benzoic acid (3.2 g/l) in 200 mM 

sodium acetate buffer (pH4.5, IS 82 mM) versus linear flow velocity for different Q- Sartobind
®
 

Membrane Adsorber Systems. Investigation of bed thickness: linear flow velocity: 4.2 cm/min and bed 

height: 120 mm. Investigation of bed height: linear flow velocity: 5.1 cm/min and bed thickness was 4 mm 

(15 layers). 

2.5 Conclusion 

The investigation of Sartobind
®
 Membrane Adsorber Systems in terms of HETP values and 

resolution revealed new issues about the technical design of inlet distributors and especially 

about the membrane structure by suggesting the existence of dead end pores inside of Q-

Sartobind
®

 membranes.  
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Fig. 2.12 shows the RTD measured with a Sartobind
®
 Membrane Adsorber System by 

injecting a non adsorptive tracer (acetone). This RTD is characterized by a very strong 

asymmetry with a steep increase and a peak tailing. This shape may be due to a heterogeneous 

flow distribution in channels and distributors as well as a more complex transport phenomena 

occurring in the porous membrane e.g. enclosing dead end pores. 
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Fig. 2.12 Residence time distribution of acetone in a Q-Sartobind
®
 Membrane Adsorber System (bed 

height 3cm, bed thickness 4 mm). Buffer was 30 mM sodium acetate (IS 50 mM, pH 5.2) and flow rate was 

set to 0.68 L/min (linear velocity 7.75 cm min
-1

). 

The future CFD model should not only predict the flow distribution in Membrane Adsorber 

Systems but also solute transport phenomena occurring in these devices. Predictions of solute 

transport in distributors and channels may be easily performed by solving the convection-

diffusion equation in the considered mesh of finite volumes. The severest problem is to find 

an appropriate transport model, which enables an accurate description of solute transport in 

Sartobind
®

 membranes. This problem was the object of the third chapter of the present thesis. 
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3 Investigation of structure and adsorption behaviour of Q-

Sartobind
®
 membranes  

3.1 Objectives 

As mentioned in the previous chapter, the limitation for the successful prediction of RTD‘s 

using CFD was the choice of an appropriate transport model, which could predict the 

transport phenomena occurring Q-Sartobind
®
 membranes. 

Therefore, information about the macroporous structure of the Q-Sartobind
®
 membrane and 

its adsorption behaviour had to be obtained. Following this aim, different techniques and 

methods have been applied: 

- Scanning Electron Microscopy (SEM) 

- X-ray microtomography 

- Measurement of adsorption isotherms 

3.2 Theoretical background 

3.2.1 Scanning Electron Microscopy (SEM) 

In this form of microscopy, a focused electron beam scans across the sample. The incident 

beam interacts with the surface of the sample emitting different types of electrons. These can 

be primary, secondary, auger, and back scattered electrons which are then collected and 

focused to be viewed as an image by using an appropriate detector. 

3.2.1.1 Detection of secondary electrons (Everhart-Thornley Detector ETD) 

Special requirements on the sample are needed when working with this kind of detector. 

Sample must be electrically conductive, at least at the surface, and electrically grounded to 

prevent the accumulation of electrostatic charge at the surface. They are therefore coated with 

an ultrathin coating of electrically-conducting material, commonly gold, deposited on the 

sample by low vacuum sputter coating.  
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3.2.1.2 Environmental Scanning Electron Microscopy (ESEM) 

This method allows the observation of samples in low pressure environments with high 

relative humidity and sputter coating is not necessary. This method is especially useful for the 

observation of non-metallic and biological materials. Despite recent developments, the degree 

of resolution obtained with sputter coating and ETD detectors has not been yet achieved with 

ESEM methods. 

3.2.2 X-ray microtomography 

X-ray microtomography is a well known method for the investigation of materials. During the 

scanning procedure, the sample rotates around an axis that is perpendicular to the beam and a 

series of radiographs (typically in the order of 1000) is recorded for different angular 

positions. Despite the existence of commercial laboratory microtomographs, the best images, 

in terms of spatial resolution, signal-to-noise ratio and quantitative exploitation, are obtained 

using synchrotron radiations which result from a high intensity and parallel incoming beam. 

The particularity of this imaging method is the absence of a magnification step. It means that 

the spatial resolution mostly results from the effective pixel size of the detector. The range of 

pixel sizes available at the European Synchrotron Radiation Facility (ESRF in Grenoble, 

France) is from 0.3 µm to 30 µm. Actions are currently taken to enhance the spatial resolution 

to 100 nm range. The total acquisition time is in the few seconds (‗fast tomography‘) to 1 

hour range, and the recorded data is often several Gigabytes. Microtomography may be 

coupled with phase contrast imaging, either in a qualitative way (‗edge enhancement‘) or, 

more quantitatively, including phase retrieval (‗holotomography‘). After the scanning 

procedure, reconstruction algorithms enable the observation of the tridimensional image in 

form of a set of cross sectional radiographs. 

X-ray microtomography is also a well established method for the characterization of porous 

media and for the visualization of the flow in porous media (Wildenschild et al. 2002, 

Culligan et al. 2004). Wildenschild et al. (2005) has used X-ray microtomography for the 

visualization of water flow in a sample of porous material (sand). 



 Investigation of structure and adsorption behaviour of Q-Sartobind
®
 membranes 

 

28 

 

3.2.3 Langmuir adsorption model and chromatographic retention 

Several models have been suggested for the description of the distribution of sample 

components between the stationary and the mobile phases. The most common and the 

simplest nonlinear isotherm model is the two-parameter Langmuir model (Langmuir, 1918). 

The main assumptions of this model are: 

- One molecule adsorbs on one site and the number of sites is limited 

- The adsorption is reversible 

- There are no lateral interactions between adsorbed molecules  

- Molecules adsorb by building a monolayer 

Langmuir isotherm describes the adsorption by equating adsorption and desorption rates: 

QkQQCk
dt

dQ
da  )( max , 

where C is the concentration of compound in the mobile phase, ka is an adsorption equilibrium 

constant, kd a desorption constant, Qmax is the maximal number of bounding sites, Q is the 

number of occupied bounding sites and (Qmax – Q) is the number of  free bounding sites on 

the surface. 

Assuming steady state, the following relationship between adsorbed and bulk concentrations 

can be used for the prediction of adsorption isotherms: 

CK

C
QQ

lang 
 max , 

where Klang is the Langmuir constant and represents a measure for the affinity of the sorbent 

to the stationary phase. Despite the fact that the assumptions involved in Langmuir isotherms 

are seldom satisfied in the case of protein adsorption (Norde, 1986), it provides fittings in 

good agreement with many systems.  
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3.3 Materials and methods 

3.3.1 Scanning Electron Microscopy 

SEM imaging has been performed using FEI Quanta 200F FEG-SEM scanning electron 

microscope (FEI, Hilsboro, Oregon, USA). 

3.3.1.1 Sample preparation 

Membrane samples have been washed with deionised water and dried for 30 min at 30°C. 

Perpendicular and tangential cuts have been performed using a freezing microtome (Leica 

CM30505 cryostat and Leica CE/CN knife holder, Leica Microsystems Nussloch GmbH).  

For investigations using ETD detector, Sputter coating (K550 Sputter Coater, Emitech Ltd.) 

has been performed with gold (approx. 150 Angstroms thin layer) at 35 mA during 3 min 

under vacuum (0.01 mbar). 

3.3.1.2 Investigation of membrane swelling 

This investigation has been performed in ESEM mode. Peltier elements have been used in 

order to cool down the samples at 2°C. A pressure range between 130 and 2600 Pa has been 

used (1-30 Torr). The sample humidity has been controlled by changing the partial pressure 

inside of the chamber. 

3.3.2 Adsorption of monoclonal conjugates 

Membrane samples have been loaded with monoclonal anti-hCG gold conjugates 

(BBInternational, Cardiff, UK). These gold conjugates are protein-coated gold nanoparticles 

(40nm). Nanoparticles were coated with monoclonal antibodies (Monoclonal anti Beta HCG 

CGC clone 1). For sample preparation, the following procedure has been applied: 

1:100 dilution of stock suspension in 20mM Tris buffer pH 9.0 was prepared. Membrane 

samples were incubated in 5ml of the diluted suspension for 1 hour under stirring. After 

loading, the membrane samples were washed in 5ml of 20mM Tris buffer pH 9.0 under 

stirring for 30 s. Imaging has been performed using large field detection (LFD) in a pressure 

range of 10-200 Pa. 
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3.3.3 Investigation of saturated samples using X-ray microtomography 

The experiments were carried out on the ID 19 beamline at the ESRF (European Synchrotron 

Radiation Facility in Grenoble, France). An appropriate method for the analysis of saturated 

Q-Sartobind
®
 membrane samples has been developed in collaboration with the ESRF. 

Membrane samples were saturated with deionized water. Samples have been then deposed on 

top of a capillary and short acquisition times were used to avoid light-matter interactions. 

Membrane samples were squares with a surface area of approx. 1 mm². At such high 

resolution (pixel size of 0.56 micron), the camera field of view is only 600 x 600 µm² and 

local X-ray microtomography was so necessary. It means that the size of the samples were 

larger than the camera field of view. The following parameters were set on the ID19 

beamline: 

- X-ray energy: 15 keV 

- A set of 600 projection images was taken over 180° at 0.1s exposure time per image 

- Pixel size: 0.56µm 

- Distance between sample and detector: 50mm 

- Total scan time: 3minutes 

3.3.4 Measurement of adsorption isotherms 

Circular pieces of membrane with a total surface area of 0.5 cm
2
 were used. Adsorption 

isotherms of Bovine Serum albumin (BSA) and Benzoic acid on Q-Sartobind
®
 membranes 

were measured (Tab. 3.1). 

One membrane piece was immersed in 1.8 mL of Sample solution. Incubation was performed 

at 20°C under stirring for 10 hours.  
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Tab. 3.1 Buffers and tracers concentrations, used for the adsorption isotherm measurement 

Buffer Tracer, Concentrations [mg/mL] 

20 mM potassium phosphate, IS 175 mM, pH 7.2 BSA; 0, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0  

30 mM sodium acetate, IS 50 mM, pH 5.2 BSA; 0, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0 

200 mM sodium acetate, IS 82 mM, pH 4.5 Benzoic acid; 0, 0.2, 0.4, 0.8, 1.56, 3.2, 6.4 

 

After incubation, BSA or Benzoic acid concentrations were measured photometrically at 

280nm.  

3.4 Results and discussion 

3.4.1 Structural characterization of Sartobind
®
 membranes 

3.4.1.1 Investigation using Scanning Electron microscopy coupled with 

ETD detection 

Sartobind
®

 membranes are made of reinforced cross linked cellulose and manufactured by 

evaporative casting. For reinforcement purposes, a polyester fleece (Fig. 3.1) with a coarse 

structure (average pore diameter of approx. 100-200 µm) assures the mechanical membrane 

stability. At process begin, the polyester fleece is layered with a colloidal cellulose casting 

solution and then transported on a conveyor through the casting machine. A certain amount of 

polar solvents present in this solution assures the solubility of cellulose. 

During evaporative casting, due to a conditioned gaseous phase and a controlled conveyor 

temperature, solvents evaporate out of the casting solution until cellulose precipitates by 

forming a porous network (primary porous structure).   

 



 Investigation of structure and adsorption behaviour of Q-Sartobind
®
 membranes 

 

32 

 

 

 

 

 

 

 

 

  

Fig. 3.1 SEM micrograph of polyester fleece used for the reinforcement of Sartobind
®
 membranes (sputter 

coated with gold, ETD detector, magnification – 600x). Average pore diameter is 100-200 µm. 

This phase inversion leads to a syneresis and therefore newly formed pores are filled with the 

remaining casting solution. Due to precipitation, the cellulose concentration in the casting 

solution drastically decreased.  Further evaporation removes the solvents out of the pores and 

the remaining cellulose precipitates by forming a secondary finer porous structure. 

In regard to this process description, the aim of this evaporative casting process may be 

considered as the refining of the fleece porosity over two steps. Porosity refining is necessary 

for the achievement of a high future adsorption area. According to this process description, a 

homogeneous membrane structure may only be achieved when the following conditions are 

fulfilled: 

- The primary porosity is homogeneously distributed. 

- The secondary porosity is formed homogenously inside of the primary structure. 

The anion exchange functionality of Q-Sartobind
®
 membranes is performed by a polymeric 

impregnation. This process step occurs after the evaporative casting and resulting structural 

changes could not be observed with SEM or X-ray microtomography. 
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Polyester fleece Primary porosity 

Secondary porosity 

 It is common practice in membrane technology to differentiate gas side and conveyor side of 

a membrane. The gas side corresponds to the interface between casting solution and gaseous 

phase during the evaporative casting. The conveyor side is the lower side of the membrane, 

which is in contact with the conveyor during the process. 

Fig. 3.2 shows micrographs of the gas side of a Q-Sartobind
®
 membrane. Polyester fleece, 

primary and secondary porosities can be clearly recognized. The primary porosity appears to 

be homogeneously distributed and a heterogeneous repartition of the secondary porosity is 

observed in terms of strong fluctuations of pore diameters (from approx. 1 to 20 µm). Pores 

may be consequently classified in two classes: large and small depending on their diameter 

scale. Liquid flow would preferentially take place through the large pores.   

 

 

 

 

Fig. 3.2 SEM micrograph of Sartobind


Q membrane (sputter coated with gold, ETD detector, 

magnification – magnification: (A) - 5000x, (B) – 2500x). 
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Gas side Conveyor side 

Cross-sectional micrographs of Sartobind


Q membrane (Fig. 3.3) show an expected 

composite membrane structure with two structurally distinct layers. The upper part (gas side) 

of the membrane consists of an approx. 50 µm thick cellulose layer with a relative fine 

porosity. This can be considered as the active layer of the membrane, where adsorption 

mainly occurs and where the highest flow resistance is expected. The lower part of the 

membrane (approx. 200 µm) mostly corresponds to the polyester fleece partially filled with 

cellulose. This layer is characterized by a relative coarse porosity and mainly has a 

mechanical stabilizing function. Along the membrane depth, pores may be also classified in 

two size classes: large and small. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 SEM cross sectional micrograph of Q-Sartobind


 membrane (Sputter coated with gold, ETD 

detector, magnification – 1000x) 
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3.4.1.2 Investigation using X-ray microtomography 

While SEM investigations require the achievement of cut using e.g. microtomes, X-ray 

tomography enables the fully three dimensional visualization of porous samples without 

affecting the sample integrity. Fig. 3.4 shows radiographs obtained by X-ray 

microtomography at different depths, where zero depth corresponds to the gas side of the 

membrane. Considering a top-down analysis, a progressive deterioration of the porous 

homogeneity is observed. At zero depth, primary and secondary porosities can be recognized 

and seem both to be homogeneously distributed resulting in an apparent homogeneous pore 

scale. In the middle of the above mentioned active membrane layer (Depth = 32 µm), the 

radiograph reveals first signs of heterogeneity. At this depth, polyester fibers and pores with a 

higher diameter scale become visible. Near of the interface between active layer and polyester 

fleece (Depth = 52 µm), a very heterogeneous and wide pore size distribution appears. 

Approximately one half of this membrane cross section is covered by a fine porosity and the 

other half by a much coarser porosity. At depths lower than 50 µm, one can clearly recognize 

the network of polyester fibers. Despite the coarse porosity of this network, extreme 

fluctuation of pore diameter scale cannot be observed. 
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Fig. 3.4 Radiographs of Q-Sartobind
® 

(with water saturated) membranes at different depths using X-ray 

microtomography (carried on the ID 19 beamline at the ESRF, Grenoble, France), X-ray energy: 15 keV, 

pixel size: 0.56µm. Zero depth corresponds to the gas side of the membrane. 

Fig. 3.5 shows the cross sectional structure of a Q-Sartobind
®
 membrane at different lengths. 

The composite structure of the membrane can be recognized and X-ray images are similar to 

SEM micrographs shown in Fig. 3.3. Structural variations along the membrane length are 

visible and the proportion of the active layer seems to be constant.  

Primary porous structure Secondary porous structure 

Polyester fibers 
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Fig. 3.5 Radiographs of Q-Sartobind
®
 membranes (with water saturated) at different lengths using X-ray 

microtomography (carried on the ID 19 beamline at the ESRF, Grenoble, France), X-ray energy: 15 keV, 

pixel size: 0.56µm 

3.4.2 Investigation of membrane swelling 

Performing SEM in ESEM mode (Environmental Scanning Electron Microscopy) enables 

imaging at different water partial pressures. It is so possible to decrease the membrane water 

content of a saturated membrane by lowering the water partial pressure inside of the specimen 

chamber. When water has been fully removed out of the pores (Fig. 3.6), a slightly 

constriction of the membrane structure is observed by further drying. This swelling of the 

polymeric structure does not seem to affect the porous organization of the membrane.  

 

Fig. 3.6 SEM micrographs of Q-Sartobind


 membrane (GSED detector, ESEM mode, magnification – 

1600x) during drying, water pressure has been progressively reduced from A to D. 

A B C D 
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3.4.3 Adsorption behavior of Q-Sartobind
®
 membranes 

3.4.3.1 Adsorption of monoclonal conjugates on Q-Sartobind
®
 membranes 

Beside diffusion and convection, mass transport in adsorptive membranes is also affected by 

adsorption phenomena. In this regard, an accurate adsorption model is necessary in order to 

complete the prediction ability of the future CFD simulations. The first step of the presented 

approach was the localization of the adsorption sites in Q-Sartobind
®
 membranes and the 

evaluation of their interactions with proteins. Therefore, the adsorption at saturation 

concentration of monoclonal conjugates has been imaged via LFD (Large Field Detector) 

coupled SEM. Monoclonal conjugates (40 nm nanoparticles) have been used to facilitate the 

visualization of protein adsorption and so reduce the necessary magnification. 

The binding of conjugates resulted from electrical interactions between the negatively charged 

antibodies at the set pH value with the anion-exchange membrane and was so comparable 

with the adsorption mechanism of proteins. Previous investigations under non-binding pH 

values have shown the absence of unspecific adsorption of monoclonal conjugate on Q-

Sartobind
®

 membranes. Adsorbed conjugates were mainly visualized on the secondary porous 

structure. The upper micrograph (Fig. 3.7) shows the structure of a pore where adsorption 

could be observed. Monoclonal conjugates seem to be adsorbed homogeneously by building a 

well ordered monolayer.  
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Fig. 3.7 SEM micrographs of Sartobind


Q membrane using a LFD detector, magnification – 

magnification: (A) – 10 000x, (B) – 100 000x. The adsorption of monoclonal conjugates (diameter 40 nm) 

may be observed in B. 
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3.4.3.2 Measurement of adsorption isotherms 

Additionally, adsorption isotherms of Q-Sartobind
®
 membranes have measured with BSA and 

benzoic acid. These measurements have been then fitted using the analytical formulation of 

the Langmuir adsorption isotherm. The Langmuir adsorption model is a well established 

model for the description of solute adsorption in chromatography (Gebauer, 1996). The curve 

fittings obtained (Fig. 3.8) are in good agreement with the measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Adsorption isotherms for BSA in 20 mM potassium phosphate buffer, IS 175 mM, pH 7.2 (A), 

BSA in 30 mM sodium acetate buffer, IS 50 mM, pH 5.2 (B) and benzoic acid in 200 mM sodium acetate 

buffer, IS 82 mM, pH 4.5 (C). Continuous lines correspond to fittings performed with Langmuir 

adsorption model. 
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According to the Langmuir equation, at low concentration the concentration C becomes 

negligible compared to the Langmuir constant Qmax and adsorption isotherms become nearly 

linear. Fig. 3.9 shows the linear fitting of adsorption measurements at lower concentration 

ranges. Maximum values of the plotted concentration ranges correspond to the tracer 

concentrations injected during the experiments described in the previous chapter. Therefore, 

adsorption isotherms can be assumed to be linear at the investigated concentration range. This 

assumption considerably simplifies the implementation of adsorption mechanisms in the 

future CFD model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Adsorption isotherms for BSA in 20 mM potassium phosphate buffer, IS 175 mM, pH 7.2 (A), 

BSA in 30 mM sodium acetate buffer, IS 50 mM pH 5.2 (B) and benzoic acid in 200 mM sodium acetate 

buffer, IS 82 mM,  pH 4.5 (C), Continuous lines correspond to linear fittings. 

A B 

C 
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3.5 Conclusions 

SEM and X-ray microtomography have been shown to be very beneficial tools in getting a 

better understanding of the composite structure of Q-Sartobind
®
 membranes, which consist of 

an active layer (approx. 20% of total membrane thickness) and  a supporting layer (80% of 

total thickness). 

The real imaged membrane structure did not really fit to the theoretical representation of 

adsorptive membranes (with homogeneous pore scale). High contrasts in pore scales have 

been observed inside of the active layer, which could strongly affect mass transport 

phenomena occurring in the membrane. The pore size distribution appears to be bimodal 

within the active layer consisting of a fine and a coarse porosity. This bimodal distribution has 

to be considered by the chosen transport model. A conceivable candidate is the dual porosity 

also called dual region model developed by Coats and Smith (1964) and modified by van 

Genuchten et al. (1989). According to this model, the porous medium is characterized by the 

coexistence of a mobile region and an immobile region. In this case the mobile region would 

represent the coarse porosity. There, solute transport results from: 

- Diffusive and convective mass transport and 

- Mass exchange with the immobile region. 

The immobile region would represent the fine porosity and is characterized by the absence of 

any neither convection nor diffusion. Therefore, solute transport only results from the mass 

exchange within the mobile region. 

Such a model would describe the preferential flow through large pores and their interaction 

with small pores (dead end zones). In terms of residence time distribution, solute transport in 

a dual porosity medium is characterized by early breakthrough resulting from rapid advective 

transport in the mobile region and tailing resulting from the slow diffusive mass transfer 

between the mobile and immobile regions (Neville et al., 2000). Such phenomena have been 

observed in Q-Sartobind
® 

Membrane Adsorber Systems and discussed in the previous 

chapter.  
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Due to the superposition of two continua in a porous medium, this model also allows to 

consider the heterogeneous distribution of the adsorption sites inside of the membrane. 

Adsorption sites have been mostly identified in the secondary porous structure. The 

measurement of adsorption isotherms has shown that linear adsorption isotherms can be 

assumed for the range of tracer concentration used during the experiments presented in 

chapter 2. 
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4 Analysis of tracer transport in Q-Sartobind
®
 membranes  

4.1 Objectives 

This chapter aims to evaluate the applicability of different transport models to describe the 

transport of passive scalars (in this case, tracer concentration) in Q- Sartobind
®
 membranes. 

These models should not only properly describe the transport phenomena occurring in such 

membranes but also be implementable in a CFD code. CFD is based on continuum mechanics 

which consider changes in fluids at a macroscopic scale. In this regard, a robust one-

dimensional numerical approach using averaged macroscopic models has been developed. 

Because of its simplicity and its robustness, the CDE (Convection-Dispersion-Equation) 

model, which describes ―normal‖ or ―Gaussian‖ dispersion, is commonly used for the 

mathematical formulation of transport phenomena occurring in porous media and has been 

therefore chosen as a possible candidate. This model is only valid if the dispersion process is a 

combination of a large number of uncorrelated steps and is not valid if large size flow 

heterogeneities are present or if the medium contains dead volumes. Due to observed high 

contrasts in pore scale and the presumed existence of dead end pores in Q-Sartobind
®
 

membranes (chapter 3), the dual porosity model has been suggested as a second possible 

candidate. 

The present chapter deals with the comparison of the capabilities of CDE and dual porosity 

models to fit RTD‘s measured with Q-Sartobind
®
 membranes. Additionally, dispersion 

parameters (CDE and dual porosity model) have been determined which can be used as input 

parameters for further CFD implementations. In the frame of these investigations, following 

steps have been performed. 

- An experimental setup with optimized flow distribution has been developed and 

enabled the measurement of dispersion curves with Q-Sartobind
®
 membrane stacks 

and the further determination of dispersion parameters using the one-dimensional 

formulations of the above mentioned transport models. 

- An optimization algorithm has been implemented in MATLAB, which allowed the 

fitting of RTD‘s with CDE and dual porosity models. Furthermore, this algorithm 
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enabled the estimation of dispersion parameters by eliminating extra membrane 

dispersion sources. 

- RTD‘s obtained by injecting adsorptive (benzoic acid) and non adsorptive (BSA and 

acetone) tracers at different flow rates have been fitted with CDE and dual porosity 

models and the corresponding dispersion parameters have been determined.  

- Fitting accuracies of CDE and dual porosity models have been compared in terms of 

residuals. Finally, the influence of the superficial velocity on dispersion parameters 

has been discussed 

4.2 Theoretical background 

4.2.1 Convection Dispersion Equation (CDE) 

In porous media, the convection-dispersion equation (CDE) for one-dimensional transport of 

reactive solutes in porous media, that are subject to adsorption is written as 

 

 

where cr is the volume averaged or resident concentration of the liquid, s is the concentration 

of the adsorbed phase, D is the dispersion coefficient, θ is the volumetric water content or 

porosity, vx is the superficial flow velocity, ρb is the bulk density, x is the distance and t is the 

time. 

Solute adsorption by the solid phase is described with a linear isotherm as 

rd cKs   

where Kd is an empirical distribution constant. The CDE model is a so called equilibrium 

deterministic model, in which the porous medium consists of a set of channel or pores with 

the same diameter scale. Its formulation is very close to the formulation of the convection-

diffusion equation. Mass transport in adsorptive membranes has been mainly predicted using 

this model (Gebauer, 1996). 
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4.2.2 Dual porosity model 

In more complex porous media, a physical non equilibrium may occur as a result of a 

heterogeneous flow regime. This equilibrium is often modeled by using a dual porosity (two 

regions) type formulation (Toride et al., 1999). The medium contains two distinct mobile 

(flowing) and immobile (stagnant) liquid regions (Coats and Smith, 1964, van Genuchten and 

Wierenga, 1976). Mass transfer between the two regions is modeled as a first order process.  

For an accurate mathematical description of mass transport phenomena occurring in such 

porous media, mass balances in both regions have to be formulated and lead to the following 

system of partial differential equations (one dimensional, van Genuchten and Wagenet, 1989) 

 

 

 

where the subscripts m and im refer to the mobile and immobile regions, respectively, f 

represents the fraction of adsorption sites that equilibrates with the mobile liquid phase and α 

is a first-order mass transfer coefficient governing the rate of solute exchange between the 

mobile an immobile regions. Note that θ, the total porosity, is equal to θm + θim. According to 

this model, neither convection nor diffusion exists in the immobile region and the dispersion 

coefficient always refers to the mobile region. Solute adsorption by the solid phase is also 

described with a linear isotherm. 
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4.3 Materials and methods 

4.3.1 Chemicals 

If not indicated otherwise all chemical reagents were obtained from Merck (Darmstadt, 

Germany). 

4.3.2 Sample preparation 

Membrane layers were prepared and sealed in so called membrane-containing-pucks. These 

consisted out of 30 circular pieces (diameter 25 mm) of membrane stacked upon each other. 

In addition, two pieces of polypropylene fleece were added on both sides of the membrane 

stacks to ensure homogeneous flow distribution. The stacked membranes were pressed 

between two symmetric Plexiglas forms (Fig. 4.1) and the outer part has been injection-

moulded with silicon. Silicon hardening was achieved by incubation at 60°C for one hour. 

 

Fig. 4.1 Plexiglas form for membrane puck preparation. Three sticks were used for homogenous stacking 

of membranes with 25mm in diameter.  Sequentially another Plexiglas form is connected using the four 

outer screw threads. Then silicone is injected through the four holes seen on the bottom of the outer 

concentric slot.    

Q-Sartobind
®
 Membranes (porosity = 0.72), used to prepare these pucks were taken from the 

same production charge as the membranes, which have been packed in the Membrane 

Adsorber modules described in chapter 2. Standard distributor plates (from MA 75 units, 

Sartorius-Stedim Biotech GmbH, Germany, Göttingen) have been filled with epoxy resin and 

newly milled in order to distribute the solute equally over the membrane surface (Fig. 4.2). 

After successful membrane stacking and silicon injection, distributor plates were added on 

both sides of the pucks, which could be connected to the FPLC capillaries. Homogeneity of 
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flow distribution was checked using an anionic dye (Ponceau S), which was injected through 

the membrane binding to cationic functional. 

 

Fig. 4.2 Flow distributor plates and plastic housing. The left standard distributor plate (from MA 75 

units) was first filled with epoxy resin, newly milled and then placed in a plastic housing (right side). 

Solute flow occurred through the middle orifice of the distributor plate. 

 

 

 

 

 

 

 

Fig. 4.3 Final experimental unit. A membrane containing puck sealed with silicone and distributors 

attached on both sides. They are inserted in a plastic housing and fixed with screws.  

For sealing the whole unit, pucks and distributors were pressed in a plastic housing (Fig. 4.3). 

In order to measure extra membrane dispersion, separate pucks only containing 4 layers of 

polypropylene fleece, so called non-membrane-containing-pucks, were prepared. 
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4.3.3 Dispersion measurement 

Measurements were obtained with fast protein liquid chromatography (FPLC) measuring UV 

absorption (280nm). The applied equipment was the Äkta Explorer 100 system (GE 

Healthcare Bio-Sciences AB, Uppsala Sweden).  

Tracer pulses were injected via a 400µl injection loop and output signals were monitored and 

recorded. As tracers, 5% acetone in 30 mM sodium acetate buffer (IS 50 mM, pH 5.2), BSA 

(10 g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 4.5) and benzoic acid (3.2 g/L) in 

200 mM sodium acetate buffer (IS 82 mM, pH 4.5) were used. For each tracer, total 

dispersion of 9 membrane containing pucks was measured two times at following flow rates: 

0.5, 1.0, 2.0, 4.0, 8.0, 16.0 and 24 mL/min.  

Extra membrane dispersion of two non-membrane-containing-pucks was measured for each 

tracer and at each flow rate. Sources for extra membrane dispersion were: 

- Sample valve 

- Capillaries 

- Fittings 

- UV detector  

- Flow distributors 

- Fleece layers 

4.3.4 Estimation of strictly membrane related dispersion parameters 

Membrane dispersion signals may be interpreted as the response function obtained by the 

deconvolution of extra membrane dispersion signals out of total dispersion signals. In a first 

approach, usual deconvolution methods e.g. Laplace transformation, Fourier transformation 

and multi-dimensional arrays formulation have been performed leading to poor quality 

response functions. 

A second approach had to be envisaged where total dispersion signals (Dtotal (t), measured) 

have been interpreted as the convolution between extra membrane dispersion signals (Dextra 
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(t), measured) and the analytical one-dimensional solution of the corresponding model (CDE 

or dual porosity, hereafter referred to as Cf (t)).  

 

t

extraftotal dtDCtD
0

)()()(   

The estimation of dispersion parameters has been performed by minimizing the following 

objective function O(x,t): 
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Where t represents the time and x is the solution vector containing the dispersion parameters, 

which had to be optimized during the minimization process. This minimization has been 

performed using the large scale algorithm of the MATLAB‘s optimization Tool Box. 

Jacobians were not calculated analytically but approximated by finite difference.  

For the CDE model, the following one-dimensional analytical solution (Toride et al., 1999) 

has been implemented in the corresponding objective function: 
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In this case, the solution vector x consisted of the following dispersion parameters:  

RDvx ,,  

For non-adsorbing-tracers (acetone and BSA), the retardation factor R was set to 1 and only 

the two remaining parameters were optimized. For adsorbing tracer (benzoic acid), v has been 

constrained by the minimal and maximal optimal values obtained with non adsorbing tracers. 

For the dual porosity model, the following one-dimensional analytical solution (Toride et al., 

1999) has been implemented in the corresponding objective function: 

 

 

 

Where the fully developed form was, 
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This analytical solution contains an additional convolution which has been calculated 

numerically for every time step via an explicit Euler method. In this case, the solution vector x 

consisted of the following dispersion parameters:  

 ,,,, RDvx   

For non-adsorbing-tracers (acetone and BSA), the retardation factor R was set to 1 and only 

the four remaining parameters were optimized. For adsorbing tracer (benzoic acid), v was 

constrained by the minimal and maximal optimal values obtained with non adsorbing tracers.  

4.4 Results and discussion 

4.4.1 Assumptions 

In a three dimensional approach, dispersion is described by a dispersion tensor (diagonal 3 x 3 

matrix). Within the frame of these experiments, considerable efforts were devoted to the 

achievement of a homogeneous flow distribution over the membrane surface. In this regard, 

polypropylene fleece layers were added on both sides of the membrane stacks and standard 

distributor plates (from MA 75 units) were filled with epoxy resin and newly milled. As 

above mentioned, homogeneous flow distribution has been checked using an anionic dye 

(Ponceau S).  
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Therefore, it was assumed that transverse concentration gradients were negligible and 

dispersion mainly occurred in the longitudinal direction. This assumption justified the use of 

one-dimensional transport models for the determination of dispersion parameters inside of Q-

Sartobind
®

 membranes. Considering a main flow in x-direction, only the x-component of the 

dispersion tensor, hereafter referred to as dispersion coefficient, was determined. Analytical 

solutions were available for one dimensional models (CDE and dual porosity models) and 

were therefore of great benefit for curve fittings and parameter estimation. 

The numerical approach presented in this chapter is a one dimensional macroscopic approach. 

This means that local microscopic variables have been replaced by a macroscopic average 

defined on a representative elementary volume and membrane stacks have been considered as 

a porous body characterized by a single set of dispersion parameters. The contributions of 

microscopic structural properties of membrane stacks, such as the periodicity of the composite 

structure and the interstitial spaces, to the dispersion have been averaged on the elementary 

volumes. 

4.4.2 Dispersion of non adsorptive tracers 

Non-adsorptive tracers with different diffusion coefficients and molecular weights, acetone as 

a low molecular weight compound (56 g/mol, Ddiff: 1.3
.
10

-9
 m²/s) and BSA as a protein (large 

polymer of amino acids, approx. 66000 g/mol, Ddiff: 5.9
.
10

-11
 m²/s), have been used in this 

work. Dispersion measurements obtained with both tracers have been fitted with CDE and 

dual porosity models. Measurement conditions have been taken from the investigations 

performed in chapter 2. 

The developed fitting algorithm worked successfully and high quality fits have been obtained 

with both transport models. All residuals determined in the frame of this investigation were 

lower than 10
-5

. The major advantage of this algorithm is the simultaneous elimination of 

extra membrane dispersion sources via convolution and estimation of strictly membrane-

related dispersion parameters. For non-adsorbing-tracers, CDE and dual porosity models were 

implemented as a two parameters model (v, D) and as a four parameters model (v, D, α, β), 

respectively. 
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The ratio between residuals achieved with CDE and dual porosity fits was used to describe the 

relative accuracy of the dual porosity model compared to the CDE model. The orders of 

magnitude of the accuracies achieved with both models were similar. All investigated flow 

rates showed higher fit accuracies when the dual porosity model was used (Fig. 4.5). A 

maximum has been observed at 16mL/min. 
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Fig. 4.4 Residence time distribution measured with a membrane-containing-puck (diameter 25 mm, 30 

layers, Q-Sartobind
®
). Tracer was BSA (10 g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 4.5), 

flow rate: 16 mL/min. Continuous line shows the fitting obtained with the dual porosity model and 

discontinuous line shows the fitting obtained with the CDE (convection-Dispersion Equation). Extra 

membrane sources have been eliminated during the fitting procedure 

At this critical flow rate, the CDE model still gave an acceptable fitting but failed to perfectly 

fit early breakthrough and peak tailing (Fig. 4.4) while the curve given by the dual porosity 

model nearly overlapped with dispersion measurements. According to this observation, these 

―non-Gaussian‖ anomalies could result from a solute transport limitation between mobile and 

immobile regions. The existence of concentration gradients between both regions would 

explain the preferential convective solute transport through the mobile region (early 

breakthrough) and the solute release from the immobile region into the mobile region (peak 

tailing).  
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A dependency of the impact of these ―non Gaussian‖ anomalies on the flow rate was observed 

and might be related to a diminishing time of solute exchange between both regions with 

increasing flow rates. At increasing subcritical flow rates, decreasing exchange times would 

lead to higher magnitudes of concentration gradients between the two regions. This would 

explain the growing relative accuracies of the dual porosity model reflecting a more distinct 

―dual porosity behaviour‖. At flow rates higher than the critical value, despite high 

magnitudes of concentration gradients, low exchange times would progressively reduce the 

probability for solute molecules to penetrate the immobile region. Consequently, at high flow 

rates, solute transport would increasingly take place in the mobile region and explain the less 

pronounced ―dual porosity behaviour‖ which was observed.   
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Fig. 4.5 Ratio between residuals achieved by fitting dispersion curves with CDE and dual porosity models 

as functions of the flow rate. The ratio was used to describe the relative accuracy of the dual porosity 

model compared to the CDE model. Dispersion measurements have been performed in membrane-

containing-pucks (diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracers were acetone 30 mM sodium 

acetate buffer (IS 50 mM, pH 5.2) and BSA (10 g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 4.5). 

The superficial velocities have been estimated by fitting dispersion curves with the CDE as 

well as with the dual porosity model and their orders of magnitude were consistent with 

calculated hydrodynamic residence times. The superficial velocity strongly contributed to the 

fitting flexibility allowing the models to adjust times of modelled RTD‘s with times of 

measured RTD‘s and to balance the relative contribution of the convective term to total 
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dispersion. Fig. 4.6 and 4.7 show the estimated superficial velocities as functions of the set 

flow rate using CDE and dual porosity models for acetone and BSA.  
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Fig. 4.6 Superficial velocities estimated by fitting dispersion curves with CDE and dual porosity models as 

a function of the set flow rate. Dispersion measurements have been performed membrane containing 

pucks (diameter 25 mm, 30 layers, Q-Sartobind
®

). Tracer was acetone 30 mM sodium acetate buffer (IS 

50 mM, pH 5.2). 

For both tracers, superficial velocities estimated by fitting measurements with the CDE model 

were slightly higher (approx. 7%) than the corresponding values given by the dual porosity 

model. Estimated superficial velocities resulting from dispersion curves measured with BSA, 

as a high molecular tracer, were considerably higher (approx. 20 %) than the velocities 

obtained by injecting the low molecular weight tracer acetone. This observation might be 

explained by a size exclusion effect and is further discussed in 4.5.  
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Fig. 4.7 Superficial velocities estimated by fitting dispersion curves with CDE and dual porosity models as 

a function of the set flow rate. Dispersion measurements have been performed membrane containing 

pucks (diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracer was BSA (10 g/L) in 200 mM sodium acetate 

buffer (IS 82 mM, pH 4.5). 

No significant dependency of dispersion coefficients on the superficial velocity was found for 

fits performed with the dual porosity model and average values of D = 1.18
.
10

-8 
m²/s for 

acetone and D = 2.48
.
10

-8 
m²/s for BSA have been determined. A superficial flow velocity 

dependency of dispersion coefficients estimated according to the CDE model has been 

observed for both tracers (Fig. 4.8) and, compared to the dual porosity model, values were 

approx. 10-100 times higher (from 2.0
.
10

-7
 to 2.0

.
10

-6
 m²/s). In contrast to the CDE model, 

dispersion coefficients given by the dual porosity model were very close to the diffusion 

coefficients of the tracers (acetone 1.3
.
10

-9
 m²/s, BSA 5.9

.
10

-11
 m²/s, Gebauer, 1996).    
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Fig. 4.8 Dispersion coefficients estimated by fitting dispersion curves with the CDE model as a function of 

the superficial velocity. Dispersion measurements have been performed membrane containing pucks 

(diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracers were acetone 30 mM sodium acetate buffer (IS 50 

mM, pH 5.2) and BSA (10 g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 4.5). 

Additionally to the superficial velocity and the dispersion coefficient, the dual porosity gave a 

dimensionless variable for region partitioning β and the first order exchange coefficient 

between both regions α. Constant β –values were estimated over the investigated flow range 

and a porosity of 0.28 were found for the immobile region (θim) by injecting acetone as well 

as BSA. This represented a considerable proportion (approx. 39%) of the total porosity (0.72).  

Fig. 4.9 shows nearly linear increases of the solute exchange coefficient with the superficial 

velocity for both tracers, where an approx. 20% steeper slope has been observed when 

acetone was used as a low molecular weight tracer. According to the dual porosity model, for 

a single diffusive exchange mechanism between both regions, mass exchange from the mobile 

into the immobile region may be formulated as follows. 

   imm

m

diff

imm cc
dxV

AD
cc 




  

Where A is the surface area of the interface between both regions, Vm is the volume of mobile 

region in the considered representative elementary volume, Ddiff is the diffusion coefficient of 
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the corresponding tracer and dx is the distance between the locations where mobile and 

immobile concentrations are considered. According to this formulation, the exchange 

coefficient is not dependent on the superficial velocity and would have remained constant if 

solute transport between the two regions had exclusively been diffusive. 
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Fig. 4.9 First order exchange coefficient versus superficial velocity estimated by fitting dispersion curves 

with the dual porosity model as a function of the superficial velocity. Dispersion measurements have been 

performed membrane containing pucks (diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracers were acetone 

30 mM sodium acetate buffer (IS 50 mM, pH 5.2) and BSA (10 g/L) in 200 mM sodium acetate buffer (IS 

82 mM, pH 4.5). 

Another possibility is to consider the solute exchange between both regions to take place 

through a boundary layer, which thickness would decrease with the superficial velocity. In 

this case, the corresponding exchange coefficient may be written similarly to the above 

equation by substituting dx by the thickness of the boundary layer. According to the literature 

(Gebauer, 1996), the diffusion coefficients of BSA is approximately 50 times lower than 

diffusion coefficient of acetone. In this case, the magnitude of differences between the 

exchange coefficients estimated with BSA and acetone should have been much higher than 20 

%. According to these observations, solute transport between the two regions was probably 

caused by multiple mechanisms (diffusive, dispersive and convective), where convective 

transport may have the major contribution.   
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4.4.3 Dispersion of adsorptive tracer 

Benzoic acid has been used as an adsorbing tracer and measurement conditions have been 

taken from the investigations performed in chapter 2. In this case, CDE and dual porosity 

models were implemented as a three parameter model (v, D, R) and as a five parameter model 

(v, D, α, β, R), respectively. It has been shown in the previous chapter that, in the range of 

tracer concentrations used in this work, the adsorption of benzoic acid on Q-Sartobind
®
 

membranes was following a linear adsorption isotherm. This allowed the use of the above 

mentioned one-dimensional analytical solutions, where adsorption was modeled via a 

retardation factor R.  
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Fig. 4.10 Residence time distribution measured with a membrane containing puck (diameter 25 mm, 30 

layers, Q-Sartobind
®
). Tracer was benzoic acid (3.2 g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 

4.5), flow rate: 16 mL/min. Continuous line shows the fitting obtained with the dual porosity model and 

dotted line shows the fitting obtained with the CDE (convection-Dispersion Equation). Extra membrane 

sources have been eliminated during the fitting procedure. 
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In contrast to the results obtained with non adsorptive tracers, less accurate but still satisfying 

fitting accuracies (residuals lower than 10
-4

) have been achieved (Fig. 4.10). Fittings 

accuracies given by both models had the same order of magnitude with exception of very low 

flow rates, where a maximum relative accuracy has been found (1 mL/min) for the dual 

porosity model (Fig. 4.11). Non Gaussian anomalies could not be clearly observed even at 

flow rates corresponding to the above mentioned maximum relative accuracy. As already 

mentioned in Chapter 2, under binding conditions, the adsorption equilibrium appeared to 

have the major contribution to the total dispersion. 
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Fig. 4.11 Ratio between residuals achieved by fitting residence time distributions with CDE and dual 

porosity models as functions of the flow rate. This ratio was used to describe the relative accuracy of the 

dual porosity model compared to the CDE model. Dispersion measurements have been performed with 

membrane containing pucks (diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracer was benzoic acid (3.2 

g/L) in 200 mM sodium acetate buffer (IS 82 mM, pH 4.5). 

Similarly to the investigation under non-binding conditions, no significant variations of 

dispersion coefficient with the superficial velocity were observed analyzing fits performed 

according to the dual porosity model. An average value of 1.9
.
10

-9
 m²/s has been determined, 

which is also very close to the diffusion coefficient of benzoic acid (9.4
.
10

-9
, Deng et al., 

2005). A linear increase of the dispersion coefficient with the superficial velocity was 

observed for fittings performed with the CDE model (Fig. 4.12) and estimated values were 

approximately 500-1000 times higher than the corresponding diffusion coefficient.  
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Fig. 4.12 Dispersion coefficients estimated by fitting dispersion curves with the CDE model as a function 

of the superficial velocity. Dispersion measurements have been performed in membrane-containing-pucks 

(diameter 25 mm, 30 layers, Q-Sartobind
®
). Tracer was benzoic acid (3.2 g/L) in 200 mM sodium acetate 

buffer (IS 82 mM, pH 4.5). 

Distribution coefficient for linear adsorption distribution Kd have been calculated from the 

corresponding estimated retardation factors. They did not vary with the superficial velocity 

and both models gave similar average values (5.9 m³/kg for the CDE model and 6.0 m³/kg for 

the dual porosity model). A linear increase of exchange coefficients with the superficial 

velocity has been also observed (Fig. 4.13) and estimated values were approximately three 

times higher than the ones estimated by injecting non adsorptive tracers. Due to the 

superposition of two continua in a porous medium, the dual porosity model also allows 

considering the heterogeneous distribution of the adsorption sites inside of Q-Sartobind
®
 

membranes and only 38% of the adsorption sites were found in the mobile region. 
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Fig. 4.13 First order exchange coefficient versus superficial velocity estimated by fitting dispersion curves 

with the dual porosity model. Dispersion measurements have been performed with membrane containing 

pucks (diameter 25 mm, 30 layers, Q-Sartobind
®

). Tracer was benzoic acid (3.2 g/L) in 200 mM sodium 

acetate buffer (IS 82 mM, pH 4.5). 

4.5 Conclusions 

CDE and dual porosity model give quite different representations of the transport phenomena 

occurring in Q-Sartobind
®
 membranes. According to the parameters estimated using the CDE 

model, the membrane might be considered as a porous medium consisting of pores with 

similar diameter scales in which all dispersion sources may be merged in a single dispersion 

coefficient. The latter results from the combination of a large number of uncorrelated steps 

which can be: 

- Velocity variations in pores due to shear flow dispersion 

- Multi-channeling 

- Tortuosity differences 

- Adsorption equilibrium 

The magnitude of the above mentioned dispersion coefficient increases with the superficial 

velocity and is much higher than the corresponding diffusion coefficient.  
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In contrast to the CDE model, flow non equilibrium is taken into account by the dual porosity 

model and convective solute exchange from the mobile region into the immobile region was 

found. Consequently, the representation of the Q-Sartobind
®
 membrane as a porous medium 

consisting of a mobile and an immobile region has to be corrected. Representing such a 

membrane by two coexisting mobile regions characterized by two different classes of pore 

diameter scale and two different flow regimes seems to be more consistent with the 

estimations given by the dual porosity model. Such a bimodal distribution of pore diameter 

has been observed for Q-Sartobind
®
 membranes using imaging methods in chapter 3. 

According to this model, flow predominantly takes place in the high pore diameter scale 

region which corresponds to approximately 60% of the total porosity. Solute dispersion in this 

region appears to be mostly caused by molecular diffusion. The low pore diameter scale 

region corresponds to approximately 40% of the total porosity and flow magnitude there is 

low compared to the high pore diameter scale region. Despite of the higher proportion of 

porosity occupied by the high pore diameter scale region, only 38% of the adsorption sites 

were found in this region. This distribution of adsorption sites between both regions might be 

related to a higher specific surface area in the low pore diameter scale region. 

CDE and dual porosity models both enabled the satisfying fitting of measured dispersion 

curves using adsorptive as well as non-adsorptive tracers. Allowing the superficial velocity to 

be a fitting parameter was, on the one hand, necessary for the achievement of accurate 

fittings. On the other hand, this made the models very flexible and higher superficial 

velocities were estimated when injecting the high molecular weight tracer BSA. This 

inconsistency between both tracers may be caused by a size exclusion effect. It is indeed 

conceivable that BSA, due to its higher hydrodynamic diameter, may not access fine porous 

zones of Q-Sartobind
®
membranes. Such zones have been clearly identified and discussed in 

chapter 3. Furthermore, the CDE model systematically gave slightly higher superficial 

velocities than the dual porosity model. It is consequently not yet possible to know which 

model describes the reality best, and both models should be considered for the 

implementation of tracer transport in the CFD model. This implementation was the object of 

the next and last chapter of this thesis.  
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5 Fluid dynamics in Q-Sartobind
®
 Membrane Adsorber Systems 

using CFD 

5.1 Objectives 

This last chapter demonstrates how flow fields, pressure fields and RTD‘s of adsorptive and 

non-adsorptive tracers in a Q-Sartobind
®
 Membrane Adsorber System might be predicted 

using CFD. It also shows how these predictions may be used to detect eventual flow 

heterogeneities and estimate the quality of the flow distribution in such devices.  

Transport models for passive scalars in porous media are not implemented in most 

commercial and open source CFD codes. It was therefore necessary to use an open source 

CFD code (Code_Saturne) and to modify the implementation of transport of passive scalars in 

its source code. Thanks to the chosen macroscopic numerical approach for the mathematical 

formulation of tracer transport in Q-Sartobind
®
 membranes, CDE and dual porosity models 

have been easily implemented in the core of Code_Saturne. In the frame of these 

implementations, dispersion and adsorption parameters as well as their velocity dependence 

acquired in chapter 4 were used as input parameters.  

Predicted RTD‘s obtained for non-adsorptive tracers have been compared with the 

experimental results presented in chapter 2 in order to evaluate the accuracy of the performed 

CFD simulations. The additional aim of these comparisons was to find out which transport 

model (CDE or dual porosity) is more appropriate for a certain type of tracer. 

5.2 Theoretical Background 

5.2.1 Computational Fluid Dynamics (CFD) 

Computational Fluid Dynamics enables to solve fluid flow problems by solving the 

corresponding governing equations on one or more processors. Due to considerable 

developments in the last two decades, modern CFD codes are now able to solve a wide range 

of problems from simple laminar flows to very complicated multi-phase flows, including heat 

exchange and/or chemical reaction. CFD simulations are continuously gaining in accuracy 

which leads to the progressive establishment of CFD as an engineering tool.  
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The Continuity and Navier-Stokes equations are coupled partial differential equations and 

constitute the governing equations of fluid dynamics. Analytical solutions can only be 

formulated for simple problems, which are not of much practical interest. The numerical 

methods used for CFD require a partition of the computational domain into a finite number of 

subdomains, also called computation cells. This set of cells is called a mesh and the 

corresponding process is called meshing. A certain variation of the dependent variables over 

each cell has to be assumed. This, together with the boundary conditions lead to a system of N 

algebraic equations with N unknowns for each dependent variable, N representing the number 

of cells.  

The Finite Volume Method (FVM) is the more common discretisation practice used in the 

CFD community. In this case, the discretisation is performed using the integral formulation of 

the conservation laws which are then discretised on the computational domain. Linear 

variation of the dependent variables between the cells is assumed. The Finite Volume Method 

allows the use of different types of mesh, where cells can be of arbitrary topology consisting 

of general polyhedral volumes. The FVM practice is conservative and the quantities like 

momentum, mass, energy remain conserved during the calculation process (Juretic, 2004). A 

detailed description of CFD methods and algorithms would exceed the scope of this thesis. 

Versteeg and Malalasekera (2007) gave a very good introduction to the Finite Volume 

Method. Advanced CFD methods and algorithms may be found in Ferziger and Peric (2002). 

5.2.2 Code_Saturne
®
 

Code_Saturne
®
 is EDF‘s general purpose computational fluid dynamics software and consists 

of approx. 500 000 lines in Fortran, C and Python. Developed since 1997 at EDF R&D, it is 

based on a co-located Finite Volume approach. It is therefore possible to use meshes with any 

different cell types (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any type 

of grid (unstructured, block structured, hybrid, conforming or with hanging nodes...). 

Its basic capabilities enable the simulation of either incompressible or expandable flows with 

or without heat transfer and turbulence (mixing length, 2-equation models, v2f, Reynolds 

stress models, Large Eddy Simulations...). Dedicated modules are available for specific 

physics such as radiative heat transfer, combustion (gas, coal, heavy fuel oil), magneto-hydro 
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dynamics, compressible flows, two-phase flows. Parallel code coupling can be performed 

using the FVM library (EDF‘s ―Finite Volume Mesh‖ library, under LPGL licence). 

EDF makes Code_Saturne available as an open source software under the General Public 

Licence GPL since march 2007. It is portable on Linux PCs and UNIX platforms (no 

Windows versions are available).  

5.3 Case setup and model implementation 

5.3.1 Geometry and meshing 

The 3D-geometry (Fig. 5.1) of the Sartobind
®
 Membrane Adsorber System (bed height 3cm, 

bed thickness 4 mm) has been built from 2D technical drawing using the open source CAD 

software Salome-Meca
®
 2008 (provided by EDF, France, Paris). For meshing purposes, the 

software PATRAN
®
 (MSC Software, USA) has been used and the geometry has been divided 

in the three following parts: 

- Inlet distributor 

- Central core 

- Outlet distributor 

Inlet and outlet distributors have been meshed with tetrahedral cells. Because of the high 

pressure gradients occurring in cells corresponding to the porous medium, it was necessary to 

mesh the central core with hexahedral cells. The three parts have been connected by the pre-

processor of Code_Saturne
®
 1.3.2 (ecs) via arbitrary interfaces. The final mesh may be seen 

on Fig. 5.6. The open source visualization software PARAVIEW
®
 (Kitware, USA, New 

York) has been used for post-processing. This software enables the visualization of tetrahedral 

and hexahedral cells. During the creation of arbitrary interfaces, complex polyhedral cells 

occurred which have been properly used by Code_Saturne
®

 1.3.2 for the computation. These 

cells could not be post-processed by PARAVIEW
®
 and it was therefore necessary to disable 

the output of such cells for post-processing purposes inside of the Code_Saturne
®
 1.3.2 core 

(usini1.F). 
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Fig. 5.1 3D geometry of a Sartobind
®
 Membrane Adsorber System (bed height 3cm, bed thickness 4 mm). 

The geometry has been built with the open source software Salome-Meca
®
 2008 (provided by EDF, 

France, Paris). 

5.3.2 Calculation of flow field and pressure field 

The 3D-geometry exhibits internal symmetry and the full geometry were not necessary for the 

computation. The calculation has been therefore performed on one sixth of the total geometry 

(Fig. 5.2) using 4 processors (2 x intel xeon dual core (2x3.2 GHz)). Lateral sides have been 

defined as symmetry boundary faces (symmetry condition). Zero flux condition for pressure 

and Dirichlet conditions for all other variables have been implemented at the inlet. Because 

injection of tracers always occurred under stationary flow conditions with fully developed 

flow, a parabolic velocity profile has been implemented at the inlet (flow rate was 0.68 

L/min). Dirichlet condition for pressure and zero flux conditions for all other variables have 

been implemented at the outlet. Remaining boundary faces have defined as no slipping walls 

(wall law). 

The flow resistance of the porous medium has been implemented as a head loss in form of a 

diagonal resistance tensor using the subroutine uskpdc.F. The k-ω model has been used for 

turbulence computation. 
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Fig. 5.2 Descriptive drawing of the geometry used for CFD computations. One sixth of the geometry has 

been used and lateral sides have defined as symmetry boundary faces. 

5.3.3 Calculation of residence time distributions 

Pressure fields and flow fields have been frozen during the computation of concentration 

fields. This reduced the number of variables to solve and only tracer concentrations were 

calculated. A Dirac pulse of tracer has been implemented at the inlet and the transient 

calculations have been performed with a time step of 0.01s using 4 processors (2 x intel xeon 

dual core (2x3.2 GHz)). Average tracer concentrations at the outlet have been calculated at 

the end of every time step (in the user subroutine usproj.F) and written in a corresponding file 

so that the resulting residence time distributions could have been plotted. 

5.3.4 Implementation of the CDE model 

The 3D-Convection-Dispersion equation may be written as follows:  

  cvcD
t

c
Disp 




  
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The effect of the porosity (0.72) on the transient term for tracer concentrations has been 

implemented by modifying the source subroutine covofi.F.  

Dispersion has not been implemented as a tensor but as a velocity dependent scalar dispersion 

coefficient (in the user subroutine usphyv.F). Consequently, it has been assumed that the three 

diagonal elements of the dispersion tensor had the same magnitude. A linear dependency of 

the dispersion coefficient on the flow velocity has been implemented according to the 

measurements described in chapter 4. The effect of the porosity on the dispersion coefficient 

has been taken into account during this implementation. Outside of the porous medium, 

transport of tracer concentration has been implemented via Convection-Diffusion using the 

diffusion coefficient of the corresponding tracers.  

The variable v in the above mentioned equation corresponds to the superficial velocity. In this 

study, the effect of the porosity on the convective term has not been taken into account and 

linear velocities have been used. This did not affect the mass balance of tracer because mass 

fluxes remained the same when using total surface areas of cell faces. 

Considering tracer adsorption, the CDE may be rewritten as follows: 

    cvcD
t

c
K Dispdb 




   

For the computation of tracer concentrations under adsorptive conditions, a new formulation 

of the transient term has been performed in the source subroutine covofi.F using the 

adsorption parameters determined in chapter 4. 

5.3.5 Implementation of the dual porosity model 

Outside of the porous medium, transport of tracer concentration has been implemented via 

Convection-Diffusion using the diffusion coefficients of the corresponding tracers. The key 

concept of the implementation of the dual porosity model was to define tracer concentrations 

in the different regions as two distinct user scalars cm (concentration in the mobile region) and 

cim (concentration in the immobile region). 3D-mass balance in dual porosity systems is 

described by the following system of partial differential equations:  
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The upper part of this system formulates the mass balance of tracer in the mobile region and 

the corresponding concentration is subject to dispersion, convection and exchange with the 

immobile region. Transient, dispersive and convective terms have been implemented similarly 

to the above described method for the CDE model. Considering an integration over a finite 

volume, the exchange with the immobile region has been implemented as an explicit Sm,t 

source term via the user subroutine ustssc.F as follows:  

  Celltimtmtm VccS    1,1,,  

Tracer concentrations of mobile and immobile regions have been initialized to zero. Vcell is the 

volume of the considered cell and α has been implemented as a velocity dependent first order 

exchange coefficient using the linear dependency determined in chapter 4.  

The lower part of the above system of partial differential equations describes the mass balance 

of tracer in the immobile region. The concentration in this region is a particular user scalar 

which is neither diffused nor convected. In order to consider these features the corresponding 

variables IDIFF and ICONV have been set to zero for this user scalar in the source subroutine 

iniini.F. The value of cim has been calculated at the end of every time step by integrating the 

corresponding differential equation via an explicit Euler method in the user subroutine 

usproj.F. 

Considering tracer adsorption, the 3D-mass balance has to be reformulated in the following 

way: 

 

)()( , immmmmDispm
m

m cccvcD
t

c





 

)( imm
im

im cc
t

c





 

  )()( , immmmmDispm
m

dbm cccvcD
t

c
Kf 




 

   )(1 imm
im

dbim cc
t

c
Kf 




 
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For this purpose, a new implementation of the transient term (in the source subroutine 

covofi.F) has been performed using the adsorption parameters determined in chapter 4. The 

integral for the calculation of cim under adsorptive conditions has been reformulated (in the 

user subroutine usproj.F) and also solved via an explicit Euler method.  

5.4 Results and discussion 

5.4.1 Comparison between model predictions and measurements 

In order to estimate the accuracy of the predictions given by the different CFD simulations 

and to know which transport model (CDE or dual porosity) is more appropriate for a certain 

type of tracer, predicted and measured RTD‘s were compared. During the measurements 

(presented in Chapter 2), tracer concentrations were measured at the inlet (input signal) as 

well as at the outlet (output signal) of the investigated Membrane Adsorber System. RTD‘s 

obtained from CFD simulations resulted from a Dirac pulse and had to be convoluted with the 

above mentioned input signals in order to be comparable with the measured RTD‘s. This 

convolution has been performed using MATLAB.  

Fig. 5.3 and Fig. 5.4 show the comparison between measured (from Chapter 2) and predicted 

RTD‘s (after convolution using measured input signals) for a low molecular weight tracer 

(acetone, Fig. 5.3) and a high molecular weight tracer (BSA, Fig. 5.4). The ranges of 

residence times obtained from measurements and calculations appear to be defined by very 

similar extreme values.  

However, CFD predictions using CDE and dual porosity models also considerably differ from 

each other. In case of a low molecular weight compound, the prediction of the CFD 

simulation using the CDE model fails to describe the occurring early breakthrough. Using the 

dual porosity model enables the prediction of this early breakthrough and the calculated RTD 

is in good agreement with the measurement.  

In case of a high molecular weight tracer, the opposite situation is observed and a very 

accurate prediction of the corresponding RTD is obtained by the CFD simulation using the 

CDE model. The prediction obtained using the dual porosity model does not fit with the 

measurement and fails to describe the ―Gaussian‖ behaviour of the measured RTD. 
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CFD predicition with dual porosity model

Fig. 5.3 Comparison between measured and predicted residence time distributions of acetone in a Q-

Sartobind
®
 Membrane Adsorber System (bed height 3cm, bed thickness 4 mm). Predicted curves were 

obtained via CFD calculations using Code_Saturne (EDF, France, Paris). Buffer was 30 mM sodium 

acetate (IS 50 mM, pH 5.2) and flow rate was set to 0.68 L/min. 
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Fig. 5.4 Comparison between measured and predicted residence time distributions of bovine serum 

albumin (BSA) under non adsorptive conditions in a Q-Sartobind
®
 Membrane Adsorber System (bed 

height 3cm, bed thickness 4 mm). Predicted curves were obtained via CFD calculations using 

Code_Saturne (EDF, France, Paris). Buffer was 200 mM sodium acetate (IS 82 mM, pH 4.5) and flow rate 

was set to 0.68 L/min. 
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The RTD‘s resulting from CFD predictions for an adsorptive tracer (benzoic acid) are shown 

on Fig. 5.5. CFD simulations seem to successfully describe the qualitative retardation of 

adsorptive tracers. Lower peak maxima can be observed and result from the contribution of 

the adsorption equilibrium to the total dispersion. The simulation using CDE and dual 

porosity models give very different predictions where RTD‘s predicted by the dual porosity 

model are much narrower than RTD‘s predicted by the CDE model. A comparison between 

measurements and calculated RTD‘s for benzoic acid could not be performed because the 

RTD‘s of benzoic acid have been measured at a different flow rate than the one implemented 

in the presented CFD simulations.  

 

Fig. 5.5 Comparison between predicted residence time distributions of bovine serum albumin (BSA) 

under non adsorptive conditions and benzoic acid under adsorptive conditions in a Q-Sartobind
®
 

Membrane Adsorber System (bed height 3cm, bed thickness 4 mm) using CDE and dual porosity models. 

Predicted curves were obtained via CFD calculations using Code_Saturne (EDF, France, Paris). Flow rate 

was set to 0.68 L/min. 

BSA 

benzoic acid 



 Fluid dynamics in Q-Sartobind
®
 Membrane Adsorber Systems using CFD 

 

78 

 

5.4.2 Pressure and flow fields 

The really good agreements between measurements and CFD predictions for non-adsorptive 

tracers can be considered as a ―validation‖ of the implemented CFD models (using CDE for 

BSA and dual porosity for acetone). This allows the analysis of the predicted pressure and 

flow fields inside of the investigated Q-Sartobind
®
 Membrane Adsorber System (Fig. 5.6).  

  

Fig. 5.6 Mesh and predicted pressure field inside of a Q-Sartobind
®
 Membrane Adsorber System (bed 

height 3cm, bed thickness 4 mm). Flow rate was set to 0.68 L/min and CFD calculation has been 

performed with Code_Saturne (EDF, France, Paris). 

It appears that the porous medium is mostly responsible for the total pressure drop through the 

device. This observation fits with the aim which has been followed by Nußbaumer during the 

conception of these Membrane Adsorber Systems. In his work, he calculated the width of 

internal and external channels in such a way that their pressure drops were negligible 

compared to the pressure drop of the porous medium. A pressure drop of 1.13 was predicted 

by the CFD model which is very close to the pressure drop of 1 bar set during measurements. 
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The predicted field of velocity magnitude may be observed on Fig. 5.7 and enables the 

detection of flow imperfections. The sharp flow deflections strongly affect the flow 

homogeneity which has to be conserved and controlled in such chromatographical devices. 

Furthermore an expected dead zone was observed in the inlet distributor which corresponds to 

a transition between the inlet plate and the tubing.  

  

Fig. 5.7 Predicted field of velocity magnitude inside of a Q-Sartobind
®
 Membrane Adsorber System (bed 

height 3cm, bed thickness 4 mm). Flow rate was set to 0.68 L/min and CFD calculation has been 

performed with Code_Saturne (EDF, France, Paris). 

Due to a higher flow surface area, the velocity strongly decreases inside the porous medium 

and the flow in the internal channel does not appear to be homogeneously distributed over the 

height of the porous medium. Plotting the flow field in term of velocity vectors helps to 

estimate the quality of flow distribution in the internal channel (Fig. 5.8). A swirling in this 

channel creates mixing zone which existence has been suggested and discussed in chapter 2. 

Sharp flow defelections 

dead zone 
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Fig. 5.8 Predicted flow field inside of a Q-Sartobind
®
 Membrane Adsorber System (bed height 3cm, bed 

thickness 4 mm). Flow rate was set to 0.68 L/min and CFD calculation has been performed with 

Code_Saturne (EDF, France, Paris). 

5.4.3 Concentration field 

The visualisation tool PARAVIEW allows performing cuts of geometry. This can be very 

helpful for a more precise analysis of the tracer transport within the porous medium. Fig. 5.9 

shows predicted fields of acetone concentration for different times (top: 1.2 s, bottom: 2.4s) in 

such cuts. Tracer molecules appear to be transported much earlier into the membrane parts 

close to the tubes of the inlet distributor. This heterogeneous distribution was expectable and 

can be related to the heterogeneous flow field observed on Fig. 5.8. Considering an adsorptive 

protein, this behaviour would lead to an early breakthrough, where membrane parts close to 

the distributor tubing would be saturated before parts which are at the middle between two 

tubes of the inlet distributor. 



 Fluid dynamics in Q-Sartobind
®
 Membrane Adsorber Systems using CFD 

 

81 

 

 

 

Fig. 5.9 Predicted fields of acetone concentration for different times (top 1.2 s, bottom 2.4s) inside of a Q-

Sartobind
®
 Membrane Adsorber System (bed height 3cm, bed thickness 4 mm). A Dirac pulse of acetone 

(5 % w/w) has been implemented at the inlet. Geometries correspond to cuts. Flow rate was set to 0.68 

L/min and CFD calculation has been performed with Code_Saturne (EDF, France, Paris). 
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5.5 Conclusions 

The use of a macroscopic numerical approach for the implementation of tracer transport in Q-

Sartobind
®

 membranes in a CFD code based on FVM enabled successful simulations that 

accurately predict residence time distributions of low and high molecular weight tracers. 

Additionally, this work has demonstrated that Code_Saturne is applicable for industrial cases. 

The comparison between measured and predicted RTD‘s has shown, on the one hand, that the 

transport of low molecular weight tracers e.g. acetone or metabolites in Q- Sartobind
®
 

membranes might be modelled using the dual porosity model. On the other hand, high 

molecular weight tracers e.g. BSA or others proteins should be implemented according to the 

CDE model. Low molecular weight tracers seem to be small enough to significantly diffuse 

into the fine porosity and high molecular weight tracers seem to be excluded by the fine 

porosity. This observation is consistent with the higher superficial velocity estimated for BSA 

and the size exclusion effect suggested in the previous chapter. 

Furthermore, CFD has been revealed to be a very helpful tool for the design of module 

housings and the estimation of the quality of flow distribution through the membrane. This 

estimation revealed the existence of flow imperfections due to sharp flow deflections and 

dead zones. 

The experimental and numerical methods presented in this work constitute a very promising 

opportunity for the prediction of residence time distributions and breakthrough curves in Q-

Sartobind
®

 Membrane Adsorber Systems. Nevertheless, the robustness of this approach has to 

be further tested by comparing its results with measurements using different types of modules 

and different types of tracers.  



 Fluid dynamics in Q-Sartobind
®
 Membrane Adsorber Systems using CFD 

 

83 

 

5.6 References 

Archambeau F, Méchitoua N, Sakiz M. 2004. Code_Saturne: a finite volume code for the 

computation of turbulent incompressible flows-industrial applications. Int. J. on Finite 

Volumes.  

Barbe S, Kneer A, Wirtz M, Scheper T. 2008. Predicition of mass transport phenomena in 

Membrane Adsorber Systems (MAS) using a dual porosity model. Code_Saturne user 

conference 2008, 01.12-02.12.2008, R&D EDF Paris (France).  

Barbe S, Kneer A, Wirtz M, Scheper T. 2009. Fluid dynamics in Membrane Adsorber 

Systems, DECHEMA Arbeitsausschuss für Membrantechnik. 15.01.2009, DECHEMA 

HAUS, Frankfurt am Main (Germany).  

Ferziger JH, Peric M. 2002. Computational Methods for Fluid Dynamics (Springer-Verlag 

Berlin Heidelberg). 

Ghosh R, Wong T. 2006. Effect of module design on the efficiency of membrane 

chromatographic separation processes. Journal of Membrane Science, Volume 281, issues 1-

2, 532-540. 

Juretic F. 2004. Error Analysis in Finite Volume CFD. PhD thesis. Imperial College, 

University of London. 

Machado RL, Figueredo A, Carneiro DGP, Castiho LR, Nedronho RA. 2007. CFD-Aided 

Design of Hollow Fibre Modules for Integrated Mammalian Cell retention and Product 

Purification in Cell Technology for Cell Products (book) (Springer Netherlands) 

Rhie CM, Chow WL. 1982. A Numerical Study of a Turbulent Flow past an Isolated Airfoil 

with Training Edge Separation. AIAA paper, 82-0998. 

Rutherford A. 1989. Vectors, Tensors and the Basic Equations of Fluid Mechanics (Dover 

Publications, INC., New York). 

Versteeg HK, Malalasekera W. 2007. An Introduction to Computational Fluid Dynamics, The 

Finite Volume Method (Pearson , Prentice Hall). 



 Summary and perspectives 

 

84 

 

6 Summary and perspectives 

The four steps presented in this thesis progressively lead to the successful development of a 

CFD model for the prediction of RTD‘s in Q-Sartobind® Membrane Adsorber Systems. 

Starting from the observation of measured RTD‘s, the detection of non-Gaussian anomalies 

suggested the existence of dead end pores within the membrane and highlighted the necessity 

of an investigation of the membrane structure using imaging methods. 

This investigation enabled the formulation of a phenomenological approach explaining the 

non Gaussian shape of the measured RTD‘s. According to this approach, CDE and dual 

porosity models were proposed as conceivable candidates for the computation of solute 

transport in Q-Sartobind® Membranes. They are macroscopic transport models and therefore 

well implementable in a CFD Code. They both appeared to properly fit RTD‘s measured with 

stacked membrane sheets (Pucks). The corresponding fitting method was based on a 

convolution coupled optimization method, which simultaneously removed extra membrane 

dispersion effects and estimated the transport parameters by using the one-dimensional 

analytical solution of the investigated model. 

Finally, the three-dimensional forms of these models have been implemented in the open 

source CFD code Code_Saturne. In this frame, the three-dimensional geometry of a 30 mm 

high Q-Sartobind® Membrane Adsorber System has been generated and meshed. The 

comparison between measured and predicted RTD‘s confirmed the prediction of pressure and 

flow fields as well as solute transport for low and molecular weight compounds.  

The robustness of the presented model has to be further investigated especially for higher 

systems, where the heterogeneity of the membrane structure increasingly affects the 

behaviour of RTD‘s. It is therefore expectable that this additional dispersion effect has to be 

taken into account by e.g. implementing height dependant permeability. Due to the analogy 

between solute transport and heat transfer, this model may used for the prediction of heat 

transfer in porous media like metallic foams. 
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