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Abstract  i

Abstract 
 

Optimising Parasitoid Learning as a Strategy to Enhance the Biological 

Control of Aphids in Protected Environment 

Chantal Jazzar 

Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) 

are important cosmopolitan pests of vegetables and ornamentals in greenhouses. They are 

responsible for direct and indirect plant damage. Through extensive feeding, M. persicae 

and M. euphorbiae can interfere in quite dramatic ways with the growth processes of the 

plant. Indirect damage is linked to their proficiency in viral transmission. Because of their 

hidden feeding habit on the underside of the leaf, insecticidal control of those aphids with 

conventional sprayers is not warranted. M. persicae and M. euphorbiae resistance to 

several groups of insecticides has been observed. Therefore, the avenues of research are 

now directed towards green and sustainable control strategies. Most popular is the use of 

natural enemies such as parasitoids and predators.  

In a permanently changing environment, it is by no means an easy task to distinguish 

potentially important events from negligible ones. Yet, to survive, every animal has to 

continuously face that challenge. The capacity to learn through experience and then modify 

her responses to prevailing environmental cues equips a foraging parasitoid with 

behavioral plasticity. Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) is a 

generalist parasitoid of aphids using associative learning to locate hosts from distance. 

Aphidophagous systems are subject to diversified guilds of natural enemies. Intraguild 

predation (IGP) occurs when one species in a predatory guild feeds on another predatory 

species within the guild. IGP is ubiquitous among aphid antagonists.  

The general objective of this study is to enhance the control of M. persicae and M. 

euphorbiae through the manipulation of the learning ability of the A. abdominalis wasp. 

Specific objectives are (i) to study if learning is implicated in the host recognition and 

handling of the wasp through aphid species switching, (ii) to examine if Aphelinus female 

learns predation risks and the resulting antipredator behaviors, (iii) to investigate the direct 

(IGP) and indirect (behaviorally mediated) effects of pairing Aphelinus wasp with 

Chrysopa carnea (Stephens) (Neuroptera: Chrysopidae) predator.  
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Sweet pepper Capsicum annuum (L.) leaf discs sustaining one of the aphid species were 

used. The behavioral decisions of the foraging females were traced with a multiple video 

camera set up for an ensuing analysis with the “Observer Video Pro” software system. The 

combination of the two protagonists’ trial was conducted in microcosms each housing a 

single pepper plant in a growth chamber.  

When switching the aphids between patches, M. persicae and M. euphorbiae experienced 

Aphelinus showed similar reproductive success on M. persicae or M. euphorbiae patches. 

Handling of successive hosts improved the host handling skills of the females after 

alternating or conserving the aphid species between patches. 

When assessing the learned recognition of predation threat, predator naïve and predator 

experienced A. abdominalis displayed similar behavioral decisions and oviposition success 

in patches with or without the L2 C. carnea. Antipredator behaviors (e.g. leaving the patch 

or depressed oviposition) were trivial. It seems more adaptive for the Aphelinus wasp to 

respond to predation risk through associative learning rather than through sensitization. 

The aphid species was found to promote the mutual interactions between the two 

antagonists.  

The effect of combining A. abdominalis and C. carnea on M. persicae or M. euphorbiae 

population reduction was dependent on predator induced behavioral changes of the aphids. 

This induced antipredator response is species specific. Indirect fitness costs (lower 

reproductive success) were more important than direct IGP (mummy destruction or adult 

killing) in shaping the outcome of A. abdominalis-C. carnea interactions.  

Results of this study clearly indicate that A. abdominalis averted any suboptimal behavior 

mostly due to learning about the foraging environment. Thus Aphelinus made the optimal 

decision by exploiting patches maintaining the switched aphid host, handling both hosts 

more efficiently due to experience and foraging in the presence of a benign L2 C. carnea.  

IGP interactions have direct and indirect effects on the parasitoid, the indirect effects 

appear to be more detrimental that the direct ones under certain conditions. Exploiting 

learning in integrated pest management programs is a credit but it should be considered 

within the food web context.   

Keywords: learning, Myzus persicae, Macrosiphum euphorbiae, Aphelinus abdominalis, 

Chrysopa carnea, antipredator behavior, intraguild predation. 
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Zusammenfassung 
 

Die Optimierung des Lernverhaltens von Parasitoiden als Strategie zur 

Verbesserung der Biologischen Blattlausbekämpfung unter Glas  

Chantal Jazzar 

Myzus persicae (Sulzer) und Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) 

sind wichtige kosmopolitische Schädlinge an Gemüse- und Zierpflanzen in 

Gewächshäusern. Sie sind für direkten und indirekten Schaden an den Pflanzen 

verantwortlich. Auf Grund ihrer beträchtlichen Nahrungsaufnahme können M. persicae 

und M. euphorbiae die Wachstumsprozesse der Pflanzen deutlich beeinflussen. Indirekter 

Schaden kann dabei durch die Übertragung von Viren entstehen. Wegen ihrer versteckten 

Lebensweise auf der Unterseite des Blattes ist die Bekämpfung mit Insektiziden dieser 

Blattläuse mit konventionellen Applikationsgeräten nicht immer gewährleistet. Außerdem 

sind Resistenzen von M. persicae und M. euphorbiae gegenüber mehreren Gruppen von 

Insektiziden beobachtet worden. Aus diesem Grund richtet sich die breite Forschung 

besonders auf umweltfreundliche und nachhaltige Bekämpfungsstrategien. Dabei ist die 

populärste Strategie die Verwendung von natürlichen Feinden wie beispielsweise 

Parasitoiden und Prädatoren. 

In einer sich permanent verändernden Umgebung oder Umwelt ist es auf keinen Fall eine 

leichte Aufgabe, potentiell wichtige Ereignisse von unwesentlichen zu unterscheiden. 

Doch um zu überleben, muß sich jedes Tier ununterbrochen dieser Herausforderung 

stellen. Die Fähigkeit durch Erfahrung zu lernen und entsprechend Antworten zu aktuellen 

Umweltreizen zu modifizieren, stattet einen nach Futter suchenden Parasitoiden mit der 

Verhaltensweise der Formbarkeit aus. Aphelinus abdominalis (Dalman) (Hymenoptera: 

Aphelinidae) ist als Generalist ein Parasitoid von Blattläusen, der durch assoziatives 

Lernen seinen Wirt aus Entfernung zu finden vermag. Aphidophage Systeme unterliegen 

unterschiedlichen Gilden natürlicher Feinde. Intraguild predation (IGP) kommt vor, wenn 

eine räuberische Art auf einen weiteren Räuber trifft und sich beide von der gleichen Beute 

ernähren. IGP ist unter Antagonisten von Blattläusen weit verbreitet. 

Die allgemeinen Ziele dieser Forschungsarbeit sind, die Bekämpfung von M. persicae und 

M. euphorbiae mit Hilfe der Schlupfwespe A. abdominalis durch die Manipulation ihrer 

Lernfähigkeit zu verbessern. Im Speziellen wurde hierbei untersucht, (i) ob Lernen an der 
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Wirtserkennung und - handhabung beteiligt ist, (ii) ob Aphelinus abdominalis - Weibchen 

Prädationsrisken und die daraus resultierenden Anti-Prädatoren-Verhaltensweisen erlernen 

und (iii) ob direkte und indirekte (verhaltensvermittelte) Effekte bei der Paarung der 

Schlupfwespe Aphelinus mit dem Prädator Chrysopa carnea (Stephens) (Neuroptera: 

Chrysopidae) entstehen. 

In Mikrokosmosversuchen in Klimakammern, jeweils bestückt mit einer Pflanze des 

Paprika, Capsicum annuum L., wurden die Kombinationen der Versuchsprotagonisten 

durchgeführt. Blattscheiben des Paprika, auf denen sich jeweils eine der Blattlausarten 

befanden, wurden hierbei benutzt. Die Verhaltensentscheidungen der nach Futter 

suchenden Schlupfwespenweibchen wurden mit einem multiplen Videokamerasystem 

verfolgt, das nachfolgend für die Analyse mit der "Observer Video Pro" Software diente.  

Beim Austausch zwischen den Blattläusen zeigten Aphelinus-Weibchen gleiche 

Vermehrungserfolge in M. persicae oder M. euphorbiae Versucheinheiten, wenn die 

Schlupfwespe zuvor in M. persicae oder M. euphorbiae–Einheiten Erfahrungen machen 

konnten. Die Fähigkeiten im Umgang der Weibchen mit dem Wirt verbesserten sich mit 

der Handhabung aufeinanderfolgender Wirte, nachdem die Weibchen zwischen den 

Versucheinheiten ausgetauscht oder darin gehalten wurden.  

Des Weiteren wurde die Prädatorenbedrohung auf A. abdominalis analysiert. Hierbei 

zeigten Prädatoren-erfahrene und Prädatoren-unerfahrene A. abdominalis ähnliche 

Verhaltensentscheidungen und Ovipositionserfolge in Versuchseinheiten mit und ohne den 

L2-Larven von C. carnea. Das Anti-Prädatoren-Verhalten (z.B. das Verlassen der Einheit) 

war unbedeutend. Es scheint für die Aphelinus Schlupfwespe angepasster zu sein, auf das 

Prädationsrisiko durch assoziatives Lernen zu reagieren, als durch Sensibilisierung. 

Hierbei fördern die Blattlausarten die gegenseitigen Wechselwirkungen zwischen den zwei 

Antagonisten. 

Die Auswirkungen der Kombinationen aus A. abdominalis und C. carnea auf die 

Reduktion der Populationen von M. persicae oder M. euphorbiae war abhängig von der 

durch Prädatoren ausgelösten Verhaltensänderungen der Blattläuse. Dies bedeutet, dass die 

Anti-Prädatoren-Verhaltensweisen  durch die Art bestimmt ist. In der Darstellung des 

Ergebnisses der Wechselwirkungen zwischen A. abdominalis und C. carnea waren die 

indirekten Kosten der Fitness (z.B. niedriger Fortpflanzungserfolg) bedeutsamer als die der 

direkte IGP (Mumiezerstörung oder Erwachsenentötung). 
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Die Ergebnisse dieser Arbeit zeigen eindeutig, daß A. abdominalis unspezifische, 

suboptimale Verhaltensweisen in der Regel wegen des Lernens unterbindet, die Umgebung 

nach Nahrung abzusuchen. So traf Aphelinus Schlupfwespen beim Ausbeuten der 

Versucheinheiten die optimalen Entscheidungen, den gewechselten Blattlauswirt 

beizubehalten, auf Grund der gemachten Erfahrungen beide Wirte effizienter zu handhaben 

und in der Gegenwart eines gütigen L2 C. carnea weiter nach Futter zusuchen. IGP-

Wechselwirkungen haben direkte und indirekte Wirkungen auf den Parasitoiden, wobei 

unter bestimmten Vorraussetzungen die indirekten schädlicher, als die direkten Wirkungen 

zu sein scheinen. Das Erforschen von Lernvermögen ist eine wertvolle Aufgabe in 

Integrierten Pflanzenschutzprogrammen, die auch innerhalb des Kontextes der 

Nahrungsnetzwerke betrachtet werden sollte.  

 

Stichwörter: Lernen, Myzus persicae, Macrosiphum euphorbiae, Aphelinus abdominalis, 

Chrysopa carnea, Anti-Prädatoren-Verhaltensweisen, Intraguild Predation. 
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1. General Introduction 
 

Aphids are an extremely successful group, which occurs throughout the world, with the 

greatest number of species in temperate regions. They are small and inconspicuous. 

However, they frequently become so numerous that the number of individuals feeding on 

the leaves and shoots per acre of ground is 2000 million (Dixon, 1973). Many species are 

agricultural pests. Several generations are born a year. They have a high reproductive rate. 

Their complex life cycles and polymorphism enable them to optimally exploit their host 

plants and respond adaptively to every contingency of their environment. They can migrate 

great distances up to 1300 Km and in the temperate regions few plants species are without 

a specific aphid (Dixon, 1973).  

 

Aphids originated from the Archescytinidae in the Carboniferous era, or early Permian, 

280 million years ago (Heie, 1967). A conspicuous evolution of aphids was later associated 

with the appearance of flowering plants, the Angiosperms. Those constitute the host plants 

of most currently present aphids, although some aphids live on Gymnosperms and a few 

species attack ferns and mosses (Dixon, 1973).  

 

Aphids belong to the superfamily Aphidoidea, within the order Homoptera, the plant-

sucking bugs. The Aphidoidea are all soft-bodied insects, whose wings if present are 

membranous. They are sap feeders. Aphids are characteristic by the viviparous 

parthenogenetic mode of reproduction of the females i.e. they give birth to live offspring 

without fertilization. The asexual females can be apterous or alate. The initial advantage of 

apterousness is an increase in fecundity because the development and maintenance of wing 

musculature possibly competes with the development of embryos for the limited amount of 

nitrogen available to the aphid (Dixon, 1973). 

 

Host alternation is common amongst aphids. It is an adaptive strategy to benefit from an 

incessant supply of nutritionally favorable foliage, which is either growing or senescent 

(Dixon, 1973). This host alternation tactic sustains the continuity of the aphid colony. 

When a dense aphid population develops on the plant, some of the alates escape from the 

large accumulation of predators and parasitoids. Those winged females move to an enemy 

free plant to establish a new colony.     

1 
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The green peach aphid Myzus persicae (Sulzer) is a highly polyphagous aphid. Its winter 

host is peach, Prunus persica. Although some eggs overwinter on peach, overwintering is 

usually in the mobile stages on herbaceous plants, weeds and brassicas. The summer hosts 

are very numerous and spread over 40 plant families. M. persicae numbers reach a peak in 

July. This aphid does not form massive colonies, but tends to move when crowded by 

walking to infest other parts of the same or neighboring plants. Redistribution in late 

summer to other crops or wild herbaceous plants is followed by a return migration to 

winter hosts in late September and early October.  

M. persicae is considered a noxious virus vector. Its wide host range grants this aphid a 

proficiency in transmitting more than 120 plant viruses. Some of the more important 

viruses transmitted include Potato leaf roll virus, Beet western yellows virus, Beet mild 

yellowing virus, Pea enation virus and Lettuce mosaic virus.  

 

The potato aphid Macrosiphum euphorbiae (Thomas) is a key pest of the Solanaceae 

plants, especially potato. Firstly introduced into Europe in 1917, this species is very 

polyphagous and cosmopolitan. It rarely overwinters as eggs on Rosa spp., but 

predominantly spends winter in the mobile stages on weeds, potato sprouts in store houses, 

and on lettuce under glass. In early May/June alate morphs are produced and migrate to 

potato and other crops. In the summer, M. euphorbiae alternates among over 200 plant 

species in more than 20 plant families. M. euphorbiae is of little importance in the field as 

a vector of potato viruses. Conversely, in hot dry weather, M. euphorbiae population rapid 

build up can reduce plant growth, thereby lowering yields. Leaves become twisted and 

cupped as a result of feeding by clusters of aphids on the underside of the foliage (Howard 

et al., 1994). The excreted honeydew supports the growth of sooty mold fungi and thus 

affects the marketability of the fruit. M. euphorbiae can transmit over 50 plant viruses, 

mainly of the non-persistent variety, but with less efficiency than M. persicae. In particular 

it is known to transmit Potato leaf roll virus, Beet mild yellowing virus, Beet yellows virus 

and Lettuce mosaic virus. 

 

Chemical control of aphids is not warranted and is difficult to achieve because of poor 

under foliage coverage when insecticides are applied with conventional sprayers (Howard 

et al., 1994). M. persicae has documented resistance to 71 synthetic chemical insecticides 

(Georghiou and Lagunes-Tejada, 1991). M. euphorbiae insecticide resistant phenotypes 

were recently observed (Foster et al., 2002). Although a number of tomato, eggplant and 
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pepper cultivars express a level of resistance to some aphid-transmitted viruses, there is no 

apparent resistance to aphid attacks.  

 

Biological control offers an environmentally benign and sustainable strategy to suppress or 

mitigate aphid effects through the use of natural enemies. Aphidophagous systems 

constitute attractive preys for diversified guilds of antagonists. Those include the larvae of 

lacewings and most ladybeetles, the larvae of some hoverflies and cecidomyid larvae. 

Certain birds also eat aphids, especially when these are abundant or when other food is 

scarce (Dixon, 1973). Aphids are also the hosts of hymenopterous parasitoids and 

pathogenic species (Minks and Harrewijn, 1988). The hymenopterous parasitoids insert 

their eggs into the body of the aphids and the parasitoid larva develops within the hosts 

finally killing it. The parasitoid larva glues the skin of the dead aphid to the surface of the 

leaf and then spins a cocoon within it. This cocoon, together with the skin of a dead aphid 

is called a “mummy”. Only one parasitoid reaches maturity in each parasitized aphid.  

 

Parasitoids are broadly considered as pest specialists whereas predators are classified as 

generalists. Specialists attack one or few prey species and their dynamics are thus tightly 

linked to those of their hosts. This close relationship with a host species may allow a 

specialist to mount a strong numerical response and thereby control the host population 

(e.g. Murdoch, 1994). In contrast, generalists feed on a cocktail of species and thus 

respond less strongly to density fluctuations of any single prey species. Recently, two 

avenues of research focus on the enhancement of pest control using natural enemies. The 

first deals with parasitoid behavioral improvement through learning. The second tackles 

the implementation of multiple natural enemy species to combat a specific pest.  

 

In the past decade, awareness has grown the importance of learning in the life history of 

insects in several taxa. However tiny an insect is and however small its brain, insects are 

able to learn (Bleeker, 2005). Learning is a change in the behavior as a result of 

experience. Associative learning is one of the ways through which parasitoids can optimize 

their host search (Vet et al., 1991). Most parasitoids species employ classical Pavlovian 

conditioning. In this conditioning, the relationship between two stimuli, the unconditioned 

stimulus (US) and the conditioned stimulus (CS), is learned (Kupfermann, 1991). The US 

is a biologically meaningful stimulus to which the parasitoid exhibits innate response. The 

CS is a neutral stimulus to which the parasitoid has limited or no responsiveness. A 
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rewarding US like food results in appetitive conditioning. A noxious stimulus can also be 

used as US, resulting in defensive conditioning (Kupfermann, 1991). Therefore associative 

learning is not only limited to food or host finding but possibly to risk assessment and 

predator avoidance. In parallel, there are energetic costs related to formation and 

maintenance of memory (Dukas, 1999; Mery and Kawecki, 2005) and ecological costs to 

learning (Bleeker, 2005). Learning takes time and is vulnerable to mistakes. Hence it is 

likely that when innate behavior can suffice learning is not favored. According to Roitberg 

et al. (1993), learning is adaptive when a large number of decisions have to be made.  

 

A major constraint on the evolution of efficient host searching mechanism in parasitoids is 

the continuous selection on hosts for inconspicuousness to avoid being detected by 

predators or parasitoids. Although direct cues from hosts are highly reliable, they are 

difficult to detect (Vet and Dicke, 1992). In contrast stimuli from plant are more detectable 

but less reliable indicators of hosts’ presence (Vet and Dicke, 1992). To solve the 

reliability-detectability problem, many parasitoids recruit the odors that the plants emit in 

response to herbivory to locate their host from distance. Depending on the diet breadth of 

the host, the parasitoids respond to the plant odors innately or learn them. It is likely that 

parasitoids using hosts that are restricted to one or several similar plant species are innately 

attracted by the induced plant odor (Vet and Dicke, 1992). However, parasitoids attacking 

hosts foraging on several unrelated plants differing in odor composition and are variably 

available in space and in time are assumed to learn the induced plant odors (Vet and 

Dicke, 1992). Steidle and van Loon (2003) modifying the concept of dietary specialization 

and infochemical use in carnivores according to the present literature found that the innate 

use of infochemicals occurs in all carnivores regardless of dietary specialization.  

 

A body of studies have shown improved parasitoid performance due to learning 

(e.g. Lewis and Tumlinson, 1988; Lewis and Martin, 1990; Mölck et al., 2000; Papaj and 

Vet, 1990; Turlings et al., 1993; Wajnberg, 1989). Parasitoids learn to respond to 

kairomones or visual cues associated with the substrate of their prey (Dukas and 

Duan, 2000; Gandolfi et al., 2003; Kerguelen and Cardé, 1998; Steidle, 1998; Vet and 

Groenewold, 1990) Associative learning is also implicated in the host-evaluation process, 

as parasitoids reject fewer potential hosts after experiencing a poor environment, and in 

some cases learn to discriminate hosts that are already parasitized (Roitberg et al., 1992; 

van Baaren and Boivin, 1998). A reward such as an oviposition in a suitable host 
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constitutes a reinforcement that is strong enough to influence the persistence of the learned 

experience. But the often erratic performance of parasitoids is limiting their use as pest 

control agents. The ability of females to locate and attack hosts is a key component of how 

well a given parasitoid population performs. Thus the variation in this host location ability 

even of females having a complete pre-release experience with the plant host complex 

could be a major source of inconsistent results in biological control with parasitoids (Lewis 

et al., 1990). Therefore a possible candidate to compensate for irregular parasitoid 

performance is the use of multiple antagonists such as a predator and a parasitoid.  

 

In agricultural system the deployment of natural enemy complexes as opposed to a single 

enemy strategy has been a controversial issue in the management and biological control of 

insect pests. In arthropod food webs, many predators are generalists and they may not 

restrict their diets to herbivore species but feed also on other antagonists. Generalist 

predators are therefore expected to engage in intraguild predation (IGP). This is defined as 

the killing and eating of species that otherwise use similar resource and are thus potential 

competitors (Polis et al., 1989). IGP is a ubiquitous phenomenon among aphidophagous 

predators. Temporal and spatial distributions of aphids promote IGP interactions 

(Lucas, 2005). Between parasitoids and predators, IGP interaction is asymmetrical in favor 

of the predator. The predator is always the IG-predator, the parasitoid the IG-prey and the 

common resource, the aphid, is the extraguild prey. This raises the possibility of relatively 

ineffective generalists disrupting efficient pest control by specialists (e.g. Snyder and 

Yves, 2001). Predation affects prey behavior (Lima and Dill, 1990; Lima, 1998). Because 

of the adaptive flexibility in the prey behavior in response to a changing risk of predation 

(that is antipredator decision making), the predator may have large impacts on the 

ecological system independent from actual predation (Lima, 1998). This impact is termed 

behaviorally mediated non-lethal predator-prey interactions (Lima, 1998). For example, to 

reduce the risk of predation, prey individuals may alter activity time or location and degree 

of mobility (Abramsky et al., 1996; Coll and Izraylevich, 1998; Kotler et al., 1991). Thus 

antipredator decision making has costs. The immediate cost of antipredator behavior is 

lowered energy intake, which translates into non-optimal foraging and reduced resource 

utilization (Lima and Dill, 1990; Lima, 1998). Therefore, the ability to accurately assess 

the risk of predation should be beneficial and the costs associated with antipredator 

behaviors should act as a driving force to develop efficient risk assessment systems 

(Helfman, 1989). Since predation fluctuates in space and in time and not all predators are 
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equally dangerous, it seems more adaptive to the prey to respond to the risk of predation 

through associative learning rather then through sensitization. Predators and prey can use 

odors associated with the presence of other con or heterospecifics on the patches for 

avoiding competition or IGP (Lima and Dill, 1990). Additionally, chemically labelled diet 

of the predator (e.g. concentration of conspecific alarm cues) endows the prey the capacity 

to distinguish dangerous from harmless predators (e.g. Dicke and Grostal, 2001; Kats and 

Dill, 1998; Mirza et al., 2006).  

 

Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) is a solitary polyphagous 

endoparasitoid of aphids. The parasitoid is generalist at the plant and the herbivore level. 

The wasp attacks M. persicae and M. euphorbiae in greenhouses and Sitobion avenae (F.) 

and Metopolophium dirhodum (Walker) on cereals. The female associatively learns to 

locate hosts from distance (Mölck et al., 2000). Aphelinus wasps are synovigenic i.e. 

continue to mature eggs throughout part or all of their adult life. The females practice 

destructive host feeding to meet their protein, amino acids and vitamin needs necessary to 

sustain egg maturation. Like other aphelinids, aphid excreted honeydew or nectar offers a 

source of sugar to the foraging females (Vigianni, 1984).  

 

The general objective of this study is to exploit the learning feature of A. abdominalis 

parasitoid to enhance M. euphorbiae and M. persicae control.  

First, we inspected if the infochemicals used by Aphelinus females to recognize and accept 

the two hosts M. euphorbiae and M. persicae offered in alternation are innate and share 

common general components. In addition, we traced the behavioral responses they elicit. 

Also, we investigated if learning to handle one aphid species improves the handling skills 

of the other species.  

Second we investigated the learned recognition of Aphelinus wasps of predation risk. 

Therefore, the females were paired with Chrysopa carnea (Stephens) (Neuroptera: 

Chrysopidae) predator in a patch or third in a microcosm setup sustaining either of the 

aphid hosts. We examined the learning of Aphelinus parasitoids to adjust their behavioral 

responses to predation cues through constant informational update. We studied whether the 

type of interaction between the two protagonists is direct (IGP) or indirect (behaviorally 

mediated).
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Switching Aphid Species: General Chemicals Betray the     

Prey Identity to a Generalist Parasitoid 

 

2.1. Abstract 

Learning has been shown to play a vital role in the parasitoids’ host finding, recognition 

and handling, thus in their reproductive success. The generalist Aphelinus abdominalis 

(Dalman) (Hymenoptera: Aphelinidae) associatively learns to recruit plant synomones for 

host habitat location. The overall goal of this study is to test whether A. abdominalis wasp 

innately uses general components (chemical similarities) to recognize new hosts by the 

naïve parasitoids or by parasitoids that have already a foraging experience but on a 

different host. We also aim to demonstrate that A. abdominalis alternatively trained on two 

of her hosts, Myzus persicae (Sulzer) or Macrosiphum euphorbiae (Thomas), eventually 

learns to handle both of them efficiently.  

We tested first naïve wasps on patches harboring either M. persicae or M. euphorbiae 

aphids. Then the experienced females collected from each patch were offered on a second 

patch the same or the switched aphid host. The behavioral decisions of the parasitoids were 

traced with a multiple video camera set up for an ensuing analysis with the “Observer 

Video Pro” software system. We have categorized the females’ behavioral states into 

rewarding and non-rewarding. Rewarding behaviors are those linked to physiological 

needs of the wasps. They include oviposition, host feeding and honeydew feeding. Non- 

rewarding behaviors are related to the handling of the host. They comprise searching, 

contact, oviposition attempts, standing and patch leaving.   

Results reveal that M. euphorbiae and M. persicae experienced females achieved similar 

reproductive success (percent mummy formed) on M. euphorbiae and M. persicae patches. 

Those wasps showed no behavioral discrimination when performing host and honeydew 

feeding behaviors irrespective of the host species on the second patch.  

Within a patch sustaining one of the aphid hosts, we found an overall similarity in the 

frequency and time spent with the rewarding behaviors between the naïve Aphelinus and 

the Aphelinus having a foraging experience with the switched aphid species. This result 

highlights that A. abdominalis may rely on cues shared by both aphid species triggering 

their innate recognition and thus acceptance.  

In a patch hosting a specific aphid species, we recorded little improvement in the 

rewarding behaviors between naïve Aphelinus and the Aphelinus experienced with the 

2 
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same aphid species. Consequently, our results agree with the concept that rewarding 

behaviors are influenced by the parasitoid’s physiological state rather then by learning. 

Comparison of non-rewarding behaviors between naïve and experienced wasps 

demonstrated that experienced Aphelinus exhibited an improvement in host handling after 

alternating or conserving the aphid species between the patches. Experienced A. 

abdominalis learned how to save time in contact, oviposition attempts and pausing 

behaviors contrasted with the naïve wasps. The biological significance of those results is 

discussed. 

 

2.2. Introduction  
Foraging for hosts in insect parasitoids is divided into three steps: host habitat location, 

host location and host recognition and acceptance resulting in oviposition 

(e.g. Vinson, 1976; Vinson, 1998). Parasitoids enjoy behavioral plasticity allowing them to 

make optimum use of the prevailing foraging opportunities (Powell et al., 1998) through 

learning. Learning is the process of acquiring knowledge about the world 

(Kupfermann, 1991). Associative learning is a form of classical conditioning through 

which the wasps innately recognize host derived stimuli (kairomones) upon contact and 

they associate these stimuli with surrounding stimuli (plant synomones) to which originally 

they show no or limited responsiveness (Turlings et al., 1993). Consequently, the more 

detectable plant synomones are used for host habitat location, and the more reliable stimuli 

such as host kairomones, not easily modified by adult experience (Vet and Dicke, 1992), 

are used for host location and acceptance (Vinson, 1976; Vinson, 1998). After a female has 

encountered a potential host, she evaluates its suitability and nutritive quality by 

antennation and ovipositor probing (Mackauer et al., 1996). If the host is perceived to 

exceed the female’s response threshold and is deemed suitable for larval development it is 

accepted and an egg is deposited (Henry et al., 2005).  

In addition to classical conditioning, insects learn how to handle their prey more efficiently 

as they gain experience (Chittka and Thomson, 1997). This learning to handle the prey is 

referred to as operant learning and is extensively studied in the flower handling skills of 

honeybees.  It has been suggested that bees are limited in their ability to learn the handling 

of more than one flower type quickly and accurately. In other words, the “know-how” of 

handling one flower morphology may interfere with the ability to handle a second one 

(Darwin, 1876). But studies have found that bees that are trained on two motor tasks in 
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alternation eventually learn to execute both of them efficiently (Chittka et al., 1997; 

Dukas, 1995).  

A body of literature has recently explored the role of infochemicals as foraging cues 

deployed by generalist natural enemies (e.g. Steidle et al., 2001a; Steidle et al., 2001b; 

Steidle et al., 2003; Steidle and van Loon, 2003). It is assumed for generalist natural 

enemies that parasitoids innately use general components that are common for all hosts or 

host plants (Vet and Dicke, 1992) to find and recognize a host not encountered before. In 

line with this hypothesis, Godfray (1994) assumed that chemical similarities between hosts 

determine the host range of parasitoids.  

 Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) is a solitary endoparasitoid 

reported to accept a number of cereal aphid species as hosts, e.g. Sitobion avenae (F.) and 

Metopolophium dirhodum (Walker) (Kalina and Stary, 1976), and Myzus persicae (Sulzer) 

and Macrosiphum euphorbiae (Thomas) on sweet pepper, aubergine, tomato etc. in 

greenhouses (e.g. Colombo and Fasce, 1994). Thus, A. abdominalis can be considered 

generalist on both the plant and the herbivore level. Furthermore, the parasitoid through 

associative learning exploits infochemicals for host habitat location (Mölck et al., 1999; 

Mölck et al., 2000).  

The general objective of this study is to test the hypothesis that generalist parasitoids 

deploy innate cues to recognize new hosts by the naïve parasitoids or by parasitoids that 

have already a foraging experience but on a different host (Steidle et al., 2001b). We also 

aim to prove that a generalist parasitoid trained on two of her hosts alternatively ultimately 

learns to handle both of them efficiently.  

Our model system consists of the parasitoid Aphelinus abdominalis foraging in sweet 

pepper leaf discs sustaining either Myzus persicae or Macrosiphum euphorbiae as aphid 

hosts.  

The specific objectives are first, to investigate the innate response of Aphelinus female to 

both aphid hosts. The second objective is to examine the effect of experience on potential 

behavioral improvement of the parasitoid. Therefore, we can explore 1) if A. abdominalis 

may rely on cues shared by both aphid species triggering their innate recognition and thus 

acceptance and if so 2) is the female able to show improved handing skills when compared 

to the naives? The third objective is to detect if switching host species between patches 

affects the behavioral states of the experienced A. abdominalis wasps. We try to tackle two 

questions: will a previous foraging experience on a different host impose on the parasitoid 

fitness costs? One way to answer this question is to inspect if the oviposition success of 
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experienced females expressed as percent mummy formed statistically diverges when 

switching the aphid species. The next question is: will a previous foraging experience on a 

host different from the one currently offered on the patch develop the handling skills of the 

wasp due to the parasitoid’s handling of successive hosts?  

 

2.3. Materials and Methods 

Rearing 

Sweet pepper (Capsicum annuum L., cv. “Mazurka”) plants and eggplants (Solanum 

melongena L., cv. “Ecavi”) (Solanaceae) were grown in the nursery of the Institute of Plant 

Diseases and Plant Protection (Leibniz University of Hannover, Germany) at a temperature 

of 20ºC, 60-70 % rh and 16:8 L:D regime. Aphid cultures were kept in climatic chambers 

in gauze cages at a temperature of 20 ± 1ºC, 16:8 L:D photophase and 60 % rh. M. persicae 

was exclusively reared on sweet pepper plants whereas a mixture of sweet pepper and 

eggplants was offered to M. euphorbiae to enhance colony proliferation and alate 

production. A stock culture of the grain aphid S. avenae feeding on wheat (Triticum 

aestivum L.) (Triticae) was supplied to generate A. abdominalis mummies. The rearing on 

the wheat system for the parasitoid cultures was chosen to prevent any interference of pre-

adult or emergence related experience with the oviposition experience treatment following 

Mölck et al. (2000). After pupation, mummies were harvested and transferred into fine 

gauze-covered acrylic cylinders that were placed on plastered pots. Emerged wasps were 

supplied with 15 % sucrose solution at 16:8 L:D photoperiod, 22 ± 1°C and 90 % rh until 

their experimental deployment.  

 

Aphid preparation 

Ten to twelve alate M. persicae or M. euphorbiae collected from the stock culture were 

clip caged overnight on a sweet pepper plant to generate synchronized progeny. The 

subsequent day, eight L1 of each aphid species were transferred using a fine Kolinsky 

hairbrush to a patch made of a 2 cm diameter sweet pepper leaf disc which was laid over a 

similar diameter piece of cotton imbibed with water. The wet cotton carrying the leaf disc 

was immersed in a thick film of water in a 3 cm diameter Petri-dish. The water film was 

intended to obstruct the free movement of the antagonist or the aphids from the leaf disc. 

The patches were placed in 13×15×5 cm plastic containers whose cover and sides were 

perforated and replaced with fine mesh to facilitate ventilation. The containers were kept 
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for three days in climatic chambers at a temperature of 20 ± 1ºC, 16:8 L:D photoperiod and 

60 % rh. At the fourth day, the aphids reaching the L3 nymphal stage were used in the 

experiment. 

 

Parasitoid treatments 

Parasitoids with different types of experiences (Figure 2.1) were tested when they were 

three to seven day old. Naïve parasitoids were obtained by collecting the wasps from the 

stock culture. Throughout the experiment, the behavioral decisions of the parasitoids were 

recorded with a multiple video camera set up described by Meyhöfer (2001) for an ensuing 

analysis with the Observer Video-Pro software system (Noldus Technology, 1997). Sixteen 

cameras were used simultaneously, allowing the recording of eight replications per 

treatment for naïve females and four replications per treatment for experienced ones.  

8 L3 
M. euphorbiae

8 L3 
M. persicae

+

+

+

2 hours recording session

2 hours pause

2 hours recording session

2 hours pause

2 hours recording session
2 hours recording session

8 L3 M. euphorbiae

8 L3 M. persicae

+

8 L3 M. euphorbiae

+

+

8 L3 M. persicae

Naive A. abdominalis

M. euphorbiae 
experienced

Naive A. abdominalis

M. persicae
experienced

 
Figure 2.1. Types of experiences of Aphelinus abdominalis females and leaf-disc host 

complexes used in the different treatments. 
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Behavioral decisions of naïve females: expression of innate responses  

To study the innate behavioral responses to the aphid prey, naïve wasps obtained from the 

stock culture were transferred to a sweet pepper leaf disc sustaining either eight M. 

persicae or eight M. euphorbiae. A two-hour video recording session permitted to trace the 

behavioral states of those females. Then each wasp was collected and given a two-hour 

resting period isolated from any infochemical source under ambient laboratory conditions. 

This pause was necessary to manipulate the mechanism of sensitization and desensitization 

to chemicals associated with hosts and patches so that the experienced females respond 

adaptively on the second patch (Thiel and Hoffmeister, 2004) (Figure 2.1).  

 

Behavioral decisions of experienced females 

We have undertaken two types of behavioral comparisons for experienced wasps. The first 

aims to study the effects of host learning. Hence we made a within patch behavioral 

comparison between naïve and experienced Aphelinus. The second is to examine the 

effects of switching the aphid species on the behavioral decisions of the parasitoid. 

Therefore, we made a within and between patches behavioral comparisons of experienced 

females. 

 

Effects of host learning 

Within an aphid patch, we have contrasted the behaviors of 1) naïve Aphelinus versus 

wasps experienced with the same aphid species, and 2) naive Aphelinus relative to wasps 

experienced with the switched aphid species (Figure 2.1). The Aphelinus experienced with 

the alternate aphid species is naïve with respect to the offered host. The behavioral 

decisions of this experienced wasp will be the result of the information gained on the 

previous patch interacting with the information acquired on the second patch. If Aphelinus 

recognizes and accepts the switched aphid as the naïve, this represents a first indicator of 

common cues between the hosts eliciting innate responses in the female.  

 

Effects of switching the aphid species 

M. persicae or M. euphorbiae experienced Aphelinus were released on M. persicae and M. 

euphorbiae patches for another two hour recording session (Figure 2.1) and the behaviors 

of the experienced females within and between patches were compared. The purpose of 

this behavioral comparison is to provide a second indicator supporting the hypothesis that 

Aphelinus accepts the two aphid hosts based on chemical similarities between them. For 
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example, if a M. persicae experienced female foraging in a M. euphorbiae patch exhibits 

similar behavioral states as a M. persicae experienced female foraging in a M. persicae 

patch, it is highly probable that the female wasp chemically recognizes the two species as 

a “single host”.  

In the first and second types of comparisons, we test whether handling of successive hosts 

improves the host handling skills of the wasps even when the hosts are switched. 

 

Data compilation  

While foraging in the patch, A. abdominalis displayed two categories of behavioral states: 

rewarding and non-rewarding.   

Rewarding behaviors are mostly induced by the physiological needs of the wasp and are 

hardly modified by learning. Those include, 1) oviposition, 2) host feeding referring to the 

consumption of the host hemolymph exuding from a wound made by the female ovipositor

 and 3) honeydew feeding defined as the wasp’s intake of the aphid honeydew droplets 

deposited on the leaf surface. At the end of each recording session, the leaf discs were 

stored in a climatic chamber at a temperature of 20ºC, 90 % rh for eight days until 

mummification. The number of black aphid mummies, when observed, was noted.  

Non-rewarding behaviors are those behaviors related to the operant learning capabilities of 

the wasp, namely learning to perform a behavioral sequence quickly and accurately to 

obtain a reward. Non-rewarding behaviors are as follows, 1) searching, included all the 

displacements on the leaf disc from one location to another, 2) contact, the parasitoid 

approaches to the vicinity of the aphid and antennation, 3) oviposition attempts, the 

parasitoid turns around and attacks the aphid with her ovipositor, 4) standing, the female 

pauses motionless, and 5) patch leaving.   

 

Statistical analysis 

Behavioral observations yielded three basic types of measures. The dependent variables are 

latency (measured in seconds), which is the onset of the first occurrence of the behaviour, 

frequency (measured / 2h) and percent total duration allocated to a specific behavior.  

For data gathered from the frequency and percent total duration variables, the number of 

replications of naïve females performing a certain behavior ranged between eighteen and 

twenty-one (each female being a replicate) and for experienced ones between eight and 

eleven. For data collected from the variable latency, the number of replications for naïve 

wasps executing a certain behavior ranged between two and twenty-one and for 
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experienced ones between one and eleven. When sample size was insufficient to carry out 

an ANOVA, the percent of the individuals responding to the behavior was calculated. 

When the sample size was large enough and the factors’ analysis by ANOVA could be 

conducted, the data for the parameters frequency and latency were √ (x+0.5) transformed 

whereas percent total duration data were arcsine transformed to normalize the data. The 

data were analyzed using the PROC GLM procedure in SAS to determine single or 

interaction effects of factors (SAS Institute, 1999).  

To investigate the innate responses of the wasps to aphid derived cues, interspecific prey 

comparison of the behaviors of naïve A. abdominals females was conducted using 

Bonferroni T test in SAS version 8 (SAS Institute, 1999). 

To study the effects of host learning on the foraging behaviors of the female A. 

abdominalis, comparison of the behavioral decisions between naïve and experienced wasps 

was conducted on M. persicae and M. euphorbiae patches. Whenever significant 

interactions were observed between factors, the level of one factor was compared at each 

level of the other factor with either M. persicae or M. euphorbiae as herbivore victim using 

Dunnett’s two-sided test in SAS version 8 (SAS Institute, 1999). 

To examine whether switching preys alters the behavioral decisions of A. abdominalis, the 

behavioral states of the experienced females within and between prey species were 

compared. Whenever significant interactions were observed between factors, means at 

different levels of the respective factor were compared using Tukey’s multiple means 

comparison procedure in SAS version 8 (SAS Institute, 1999).   

Within an aphid species, the number of mummies generated from the different treatments 

was collected and the percent mummy formation calculated and arcsine transformed before 

being subjected to statistical analyses. Analysis was carried out using Tukey’s multiple 

means comparison procedure in SAS version 8 (SAS Institute, 1999).   

A significance level of α = 0.05 was used in all analyses. Data are presented as 

means ± SE.  

 

2.4. Results  
Behavioral repertoire of female Aphelinus abdominalis on the sweet pepper patch  

Visual observations agreeing with the video recordings showed that the parasitoid starts 

immediately after release in the patch with searching and drumming until encounter with 

the host. Thereafter, four behaviors are displayed: the female inspects the host with her 
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antennae or contact behavior, instantly followed by turning around and attacking the aphid 

with her ovipositor, a behavior termed oviposition attempts. The host could be either 

accepted for oviposition with a mean duration ranging from 5.05 min (± 0.69 SE) to 

10.16 min (± 3.44 SE), or used as a food source with an average time spent in host feeding 

ranging from 14.7 min to 50.11 min (± 22.30 SE). Some females were also observed to 

feed on the aphid honeydew as a nutrient rich alternative with a mean duration ranging 

from 4.11 min (± 0.59) to 10.20 min (± 1.72 SE). The female parasitism also exhibited a 

lengthened period (≥ 1 min) of immobility, or a shorter phase (< 1 min) of preening after a 

host or honeydew meal, a behavior described as standing, and finally, patch leaving 

behavior. 

 

Behavioral decisions of naïve females: expression of innate responses  

Results elucidate that naïve parasitoids oviposited 46 minutes earlier in M. euphorbiae than 

in M. persicae (ANOVA df = 1, F = 15.07, P = 0.0008). The naïve A. abdominalis 

oviposited three times more frequently (Figure 2.2) and invested 3.5 fold higher proportion 

of time to oviposit in M. euphorbiae than in M. persicae (Figure 2.3).    

Moreover, naïve wasps performed host and honeydew feeding behaviors at similar 

frequencies between the two aphid species (Figure 2.2). Naïve parasitoids allocated equal 

proportion of time to host feeding behavior on M. euphorbiae or M. persicae, but spent 9 

fold higher proportion of time with feeding on M. persicae produced honeydew 

(Figure 2.3) despite that the latency of honeydew feeding was similar between M. 

euphorbiae and M. persicae patches (ANOVA df = 1, F = 0.77, P = 0.410). 

Considering the non-rewarding behaviors, no difference in the behavioral activities 

between the two aphid species was detected (Table 2.1) except that naive parasitoids in M. 

euphorbiae patches 29.33 min (± 6.60 SE) displayed oviposition attempts 18 minutes 

earlier than naïve females in M. persicae patches 47.63 min (± 7.96 SE).  
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Figure 2.2. Mean frequency (± SE) of rewarding behaviors of female Aphelinus 

abdominalis in Myzus persicae or Macrosiphum euphorbiae patches.  
The experienced females forage in patches harboring the same or the alternate aphid species.  

Bars followed by the italic lower case represent between patch comparison of naïve females.  

Bars followed by the bold lower case represent within patch comparison of naïve vs. experienced wasps.  

Bars followed by upper cases represent within and between patches comparison of experienced females.      
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Figure 2.3. Total foraging time (± SE) spent with rewarding behaviors of female 

Aphelinus abdominalis in Myzus persicae or Macrosiphum euphorbiae patches.  
The experienced females forage in patches harboring the same or the alternate aphid species.  

Bars followed by the italic lower case represent between patch comparison of naïve females.  

Bars followed by the bold lower case represent within patch comparison of naïve vs. experienced wasps.  

Bars followed by upper cases represent within and between patches comparison of experienced females.       

 

 

 



 Chapter 2. Switching Aphid Species   18 

 

Table 2.1. Summary of ANOVA results showing the non-rewarding behavioral states 

of naïve Aphelinus abdominalis females foraging in patches harboring eight late L2 

early L3 nymphs of Macrosiphum euphorbiae or Myzus persicae prey.  

 

Behavior Variable df F P 

Frequency 1 1.57 0.219 

Latency - - - 

 

Searching 

Percent total duration 1 0.14 0.711 

Frequency 1 0.56 0.458 

Latency 1 1.01 0.323 

 

Contact 

Percent total duration 1 2.58 0.117 

Frequency 1 0.02 0.876 

Latency 1 4.19 0.048 

 

Oviposition attempts 

Percent total duration 1 2.53 0.120 

Frequency 1 2.94 0.095 

Latency 1 4.09 0.051 

 

Standing 

Percent total duration 1 0.71 0.406 

 
 

Behavioral decisions of experienced females  

 

Effect of host learning   

To study if host learning is implicated in the foraging decisions of the parasitoids, 

comparison of naive versus M. persicae and M. euphorbiae experienced females in M. 

persicae or M. euphorbiae patches was undertaken.  
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Rewarding behaviors  

We have categorized rewarding behaviors as those behaviors that support life history traits 

of the parasitoid and thus realize fitness. Those behaviors are: oviposition, host feeding and 

honeydew feeding.  

 

Oviposition behavior 

In Macrosiphum euphorbiae patches  

Experience with the host has not affected the initiation of laying an egg i.e. latency of 

oviposition between naïve and experienced wasps when M. euphorbiae (ANOVA df = 2, 

F = 0.54, P = 0.590) was the herbivore victim on the patch. Furthermore, no significant 

difference in the mean frequency of oviposition (ANOVA df = 2, F = 0.99, P = 0.382) 

(Figure 2.2) and in the time spent with oviposition behavior (ANOVA df = 2, F = 2.68, 

P = 0.082) (Figure 2.3) was found between naive and experienced parasitoids.  

 

In Myzus persicae patches 

Naïve and M. persicae or M. euphorbiae experienced females displayed a similar latency 

of oviposition (ANOVA df = 2, F = 2.78, P = 0.083) in M. persicae patches.  

On the other hand, a higher frequency of oviposition behavior (ANOVA df =2, F = 3.62, 

P = 0.038) (Figure 2.2) and longer time spent with oviposition activity (ANOVA df = 2, 

F = 6.70, P = 0.0035) (Figure 2.3) were detected. Particularly, M. persicae experienced 

females displayed a three fold more frequent oviposition behavior 2.63 (± 1.22 SE) in M. 

persicae host compared to the naives 0.72 (± 0.19 SE) (P = 0.027) (Figure 2.2). 

Furthermore, those females spent about 3.5-fold higher mean proportion of time in 

oviposition activity 8.71 % (± 1.84 SE) in M. persicae as opposed to the naïve wasps 

(P = 0.0043) (Figure 2.3). M. euphorbiae experienced females 1.64 (± 0.47 SE) oviposited 

in M. persicae host as frequently as the naïve wasps 0.72 (± 0.19 SE) (P = 0.222) 

(Figure 2.2) but allocated three fold the proportion of the foraging time in oviposition 

behavior 7.78 % (± 1.93 SE) compared to naive Aphelinus 2.38 % (± 0.67 SE) (P = 0.027) 

(Figure 2.3).  

 

Host feeding behavior  

In Macrosiphum euphorbiae patches  

No naïve females host fed when M. euphorbiae was the herbivore offered. In parallel, the 

frequency of host feeding had a significant impact on the experienced females in M. 
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euphorbiae patches (ANOVA df = 2, F = 3.88, P = 0.029). In particular, the mean 

frequency of host feeding of M. euphorbiae experienced females 0.50 (± 0.27 SE) is 

significantly higher than that of the naives overlooking this behavior (P = 0.037) whereas 

the mean frequency of host feeding of M. persicae experienced females 0.40 (± 0.27 SE) is 

comparable to that of the naives (P = 0.088) (Figure 2.2). Naive and experienced wasps 

were found to allocate a similar duration of time to host feeding behavior in the presence of 

M. euphorbiae (ANOVA df = 2, F = 3.01, P = 0.061) (Figure 2.3).  

 

In Myzus persicae patches 

The latency of host feeding was similar between naïve and M. persicae or M. euphorbiae 

experienced females (ANOVA df = 2, F = 6.83, P = 0.051) with M. persicae as prey. 

Naïve and experienced parasitoids host fed at equivalent frequencies (ANOVA df = 2, F = 

2.65, P = 0.086) (Figure 2.2) and spent a comparable duration of time with host feeding 

behavior (ANOVA df = 2, F = 2.46, P = 0.101) (Figure 2.3) in M. persicae patches.    

 

Honeydew feeding behavior 

In Macrosiphum euphorbiae patches  

A comparison between naïve and experienced wasps revealed that no M. persicae 

experienced females consumed M. euphorbiae produced honeydew. In parallel, 9.52 % 

naïve parasitoids fed on this sugar resource significantly earlier than 10 % M. euphorbiae 

experienced ones 8.36 min (± 0.26 SE) vs. 119.68 min, respectively, (ANOVA df = 1, F = 

10353.0, P = 0.0063) (Figure 2.2). Moreover, naive and M. persicae or M. euphorbiae 

experienced wasps displayed similar frequency (ANOVA df = 2, F = 0.48, P = 0.623) 

(Figure 2.2) and percent duration of the foraging time (ANOVA df = 2, F = 0.48, 

P = 0.622) (Figure 2.3) to feeding on M. euphorbiae produced honeydew.  

In Myzus persicae patches 

In M. persicae patches, naïve wasps performed honeydew feeding behavior significantly 

more frequently then M. persicae experienced females (P = 0.038) (Figure 2.2). 

Consequently, naïve wasps spent a significantly higher proportion of the foraging time to 

feeding on M. persicae produced honeydew than M. persicae experienced females 

(P = 0.037) (Figure 2.3). In addition, naïve wasps collected M. persicae ejected honeydew 

more frequently than M. euphorbiae experienced wasps (P = 0.020) (Figure 2.2). Hence, 

those naives devoted a significantly higher proportion of their foraging time to feeding on 

honeydew relative to M. euphorbiae experienced wasps (P = 0.020).  
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Non-rewarding behaviors  

We have defined four behavioral states as non-rewarding behaviors. Those behaviors are 

related to handling the host to obtain a reward. They include the search for a host followed 

by antennation or contact behavior, aphid attack with the ovipositor or oviposition 

attempts, standing and patch leaving. To study the effect of operant learning on host 

handling skill improvement, we compared the naïve to each experienced wasps (M. 

persicae or M. euphorbiae experienced) within a M. euphorbiae or a M. persicae patch 

(Figure 2.1).  

In Macrosiphum euphorbiae patches  

Results reveal that the onset of the parasitoid searching on the patch, the frequency of 

searching and the time spent in searching activity were comparable between naïve and M. 

persicae or M. euphorbiae experienced females (Table 2.2).  

The parasitoid experience with a specific aphid species (M. persicae or M. euphorbiae) 

significantly influenced the latency and time allocated in contacting the M. euphorbiae 

aphid, but not the frequency (Table 2.2). We found that M. euphorbiae experienced 

females had their first contact with the M. euphorbiae aphids around 5 minutes earlier than 

the naïves, 3.05 min (± 1.58 SE) vs. 7.77 min (± 1.88 SE) respectively, (P = 0.027), and 

the M. persicae experienced parasitoids around 7 minutes earlier that the naives, 

7.77 min (± 1.88 SE) vs. 0.87 min (± 0.18 SE), respectively, (P = 0.002). The naives spent 

about 1.5 fold higher proportion of the foraging time contacting M. euphorbiae as 

compared to the M. persicae experienced females, 54.89 % (± 3.47 SE) vs. 37.80 % 

(± 4.68 SE), respectively, (P = 0.016). The 1.3 fold higher proportion of time in contacting 

M. euphorbiae host between naives and M. euphorbiae experienced parasitoids was close 

to significance 54.89 % (± 3.47 SE) vs. 40.95 % (± 5.63 SE), respectively, (P = 0.058).  

Naïve and M. euphorbiae or M. persicae experienced females exhibited similar frequency 

and time spent in oviposition attempts in M. euphorbiae but displayed a significantly 

different latency of this behavior (Table 2.2). M. euphorbiae experienced females attacked 

M. euphorbiae prey with their ovipositor approximately 18 minutes earlier than the naives 

11.48 min (± 5.98 SE) vs. 29.33 min (± 6.60 SE), respectively, (P = 0.010), whereas the M. 

persicae experienced parasitoids performed their first oviposition attempt in the M. 

euphorbiae aphid 27 minutes earlier than the naives 2.26 min (± 0.44 SE) vs. 29.33 min 

(± 6.60 SE), respectively, (P = 0.0002). 
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When evaluating the pausing behavior of the parasitoid, we found that being a naïve or an 

experienced A. abdominalis resulted in a significant impact on the latency, frequency, and 

proportion of time spent motionless (Table 2.2).  

The parasitoids revealed a trend in the latency to stand still: experienced wasps tend to 

stand later than the naives. The naives stood almost 20 minutes before the M. euphorbiae 

experienced females, 14.08 min (± 3.21 SE) vs. 34.89 min (± 12.40 SE), respectively, (P = 

0.114), and about 17 minutes earlier than the M. persicae experienced parasitoids, 14.08 

min (± 3.21 SE) vs. 34.14 min (± 8.89 SE), respectively, (P = 0.059).  

Furthermore, naïve wasps paused 3 times more frequently than M. euphorbiae experienced 

females, 5.19 (± 0.62 SE) vs. 1.60 (± 0.60 SE), respectively, (P = 0.001). Those naives 

allocated a 3 fold higher proportion of the foraging time to standing as compared to M. 

euphorbiae experienced females, 9.53 % (± 1.69 SE) vs. 3.09 % (± 1.59 SE), respectively, 

(P = 0.006). In addition, the naïve Aphelinus paused 2.7 times more frequently than M. 

persicae experienced parasitoids, 5.19 (± 0.62 SE) vs. 1.90 (± 0.78 SE), respectively, (P = 

0.002). Those naïve Aphelinus devoted 3 fold higher proportion of the foraging time 

to standing behavior in comparison to M. persicae experienced parasitoids, 9.53 % (± 1.69 

SE) vs. 3.06 % (± 1.29 SE), respectively, (P = 0.008) in a patch sustaining M. euphorbiae 

host.  

We found that 9.09 % (1/11) M. persicae experienced A. abdominalis departed from the 

experimental patch at a latency of 9.70 seconds. 

In Myzus persicae patches  

The latency, frequency and percent duration of the searching activity were statistically 

alike between naïve and M. persicae or M. euphorbiae experienced wasps (Table 2.3).  

Being a naïve foraging Aphelinus or an experienced one only significantly influenced the 

onset of M. persicae contact but had no effect on the frequency or total time allocated in 

the contact behavior (Table 2.3). In a M. persicae patch, M. euphorbiae experienced 

females contacted M. persicae host 9 minutes earlier than the naïve 

females, 1.32 min (± 0.36 SE) vs. 10.62 min (± 2.49 SE), (P = 0.0002), respectively, and 

M. persicae experienced wasps about 9.9 minutes ahead of the naïve parasitoids, 0.70 min 

(± 0.37 SE) vs. 10.62 min (± 2.49 SE), respectively, (P = 0.0001).  

The latency and the time spent in oviposition attempts behavior but not the frequency of 

the behavioral state “M. persicae attack”were significantly different between naive and 

experienced A. abdominalis (Table 2.3). M. euphorbiae experienced females launched their 

first oviposition attempt around 40 minutes earlier than the naïve Aphelinus, 8.37 min  
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(± 2.85 SE) vs. 47.63 min (± 7.96 SE), respectively, (P = 0.0001), and M. persicae 

experienced parasitoids about 45 minutes prior to the naïve wasps, 1.95 min (± 0.72 SE) 

vs. 47.63 min (± 7.96 SE), (P = 0.0001), respectively.  

 

Table 2.2. Summary of ANOVA results showing within patch comparisons of non-

rewarding behavioral states between naïve and Myzus persicae or Macrosiphum 

euphorbiae experienced Aphelinus abdominalis females when offered patches 

sustaining eight late L2 early L3 nymphs of Macrosiphum euphorbiae prey. 

 
Behavior Variable df F P 

Frequency 2 0.08 0.928 

Latency 2 - - 

 

Searching 

Percent total duration 2 0.49 0.617 

Frequency 2 0.27 0.763 

Latency 2 7.62 0.0017 

 

Contact 

Percent total duration 2 4.92 0.013 

Frequency 2 0.45 0.641 

Latency 2 10.92 0.0002 

 

Oviposition attempts 

Percent total duration 2 2.88 0.068 

Frequency 2 10.23 0.0003 

Latency 2 3.78 0.036 

 

Standing 

Percent total duration 2 7.36 0.002 

 
 

Contrasted with naïve Aphelinus, M. euphorbiae experienced females allocated twice the 

proportion of time to attack M. persicae prey, 13.52 % (± 3.24 SE) vs. 5.93 % (± 1.45 SE), 

respectively, (P = 0.025), whereas naive and M. persicae experienced females invested 

identical proportion of the foraging time in performing this behavioral state (P = 0.083).  

The pausing frequency in a M. persicae patch was the only variable carrying statistical 

significance between naïve and experienced wasps (Table 2.3). The naives stood still 3 
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times more frequently than the M. persicae experienced females, 1.26 (± 0.56 SE) vs. 3.67 

(± 0.65 SE), (P = 0.016), respectively, but displayed a similar frequency of immobility as 

M. euphorbiae experienced wasps foraging in M. persicae patches (P = 0.109). 

12.5 % (1/8) M. persicae experienced A. abdominalis departed from M. persicae patches at 

a latency of 40.35 minutes.  

 

Table 2.3. Summary of ANOVA results showing comparisons of non-rewarding 

behavioral states between naïve and Myzus persicae or Macrosiphum euphorbiae 

experienced Aphelinus abdominalis females when offered patches sustaining eight late 

L2 early L3 nymphs of Myzus persicae prey. 

 
Behavior Variable df F P 

Frequency 2 0.51 0.603 

Latency 2 2.52 0.095 

 

Searching 

 Percent total duration 2 2.30 0.116 

Frequency 2 0.63 0.541 

Latency 2 15.55 <.0001 

 

Contact 

Percent total duration 2 2.58 0.091 

Frequency 2 0.13 0.877 

Latency 2 24.61 < 0001 

 

Oviposition attempts 

Percent total duration 2 4.24 0.023 

Frequency 2 4.53 0.018 

Latency 2 1.19 0.318 

 

Standing 

Percent total duration 2 1.28 0.290 
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Effects of switching the aphid species  

We compared M. persicae and M. euphorbiae experienced females within and between M. 

persicae and M. euphorbiae patches. The purpose is to investigate whether switching aphid 

species between patches affects the behavioral decisions of the A. abdominalis female. If 

no significant behavioral modifications occur, it is possible to postulate that A. abdominalis 

innately uses general chemical components common for all hosts to recognize and accept 

the hosts. Furthermore, we test whether the “know-how” of host handling is improved as 

the parasitoid handles successive hosts.  

 

Rewarding behaviors 

Oviposition behavior  

M. euphorbiae experienced females displayed a similar latency (ANOVA df = 3, F = 0.33, 

P = 0.803), frequency (ANOVA df = 3, F = 1.23, P = 0.315) (Figure 2.2) and time spent 

with oviposition activities (ANOVA df = 3, F = 1.72, P = 0.181) (Figure 2.3) as M. 

persicae experienced A. abdominalis whether foraging in a M. euphorbiae or a M. persicae 

patch.  

Oviposition success is evaluated as the percent of mummy formed. Since the effect of the 

treatment and the interaction terms between the host and the treatment were not 

statistically significant (Table 2.4), the analysis was conducted based on the factor host. 

We found that the oviposition success of M. euphorbiae and M. persicae experienced 

females was not significantly different when the prey offered was either M. euphorbiae 

(ANOVA df = 2, F = 0.09, P = 0.917) or M. persicae aphid (ANOVA df = 2, F = 1.67, P =

 0.202) (Figure 2.4).  

Host feeding  

No statistical difference between M. euphorbiae and M. persicae experienced females was 

found when comparing the onset of host feeding (ANOVA df = 3, F = 1.41, P = 0.309), the 

mean frequency (ANOVA df = 3, F = 0.18, P = 0.907) (Figure 2.2) and the time spent 

(ANOVA df = 3, F = 0.31, P = 0.814) (Figure 2.3) with this behavioral state when the 

herbivore victim was M. euphorbiae or M. persicae.   
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Figure 2.4. Mean percent mummy formed by Aphelinus abdominalis females with 

different host experience background and released in patches sustaining the same or 

the switched aphid species.  

 

Honeydew feeding 

Insufficient number of replication narrowed the analysis of the behavioral state honeydew 

feeding to the variables frequency and percent total duration. A comparison among 

experienced wasps foraging in M. euphorbiae or M. persicae patches divulged no 

significant difference in the mean frequency (ANOVA df = 3, F = 0.96, P = 0.421) 

(Figure 2.2) and time spent with honeydew feeding behavior (ANOVA df = 3, F = 0.96, 

P = 0.421) (Figure 2.3). 
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Table 2.4. Summary of ANOVA results showing comparisons of percent mummy 

formed by Myzus persicae and Macrosiphum euphorbiae experienced Aphelinus 

abdominalis when offered patches hosting eight late L2 early L3 nymphs of Myzus 

persicae or Macrosiphum euphorbiae prey. 

 

Source of variations df F P 

Host 1 7.00 0.010 

Treatment 2 0.29 0.746 

Host*Treatment 2 0.97  0.382 

 
 

Non-rewarding behaviors  

No behavioral discrimination was found between M. euphorbiae and M. persicae 

experienced females foraging in M. euphorbiae or M. persicae patches (Table 2.5).  
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Table 2.5  Summary of ANOVA results showing within and between patch 

comparisons of non-rewarding behaviors displayed by Myzus persicae and 

Macrosiphum euphorbiae experienced Aphelinus abdominalis when offered patches 

hosting eight late L2 early L3 nymphs of Myzus persicae or Macrosiphum euphorbiae 

prey. 

 

 

2.5. Discussion 

In the present study, we investigated if the generalist aphelinid wasp A. abdominalis uses 

innate cues to recognize new hosts by the naïve parasitoids or by parasitoids that have 

already a foraging experience but on a different host. Moreover, we studied whether the 

handling of one aphid species improves the handling skills of the other species.  

Freshly emerged A. abdominalis without any experience have to rely exclusively on innate 

cues to find a host. In our experiment, naïve females in M. euphorbiae patches exhibited 

similar frequency and percent duration of the foraging time with the behaviors leading to a 

Behavior Variable df F P 

Frequency 3 0.56 0.645 

Latency 3 1.75 0.174 

 

Searching 

Percent total duration 3 0.78 0.512 

Frequency 3 0.59 0.624 

Latency 3 1.42 0.253 

 

Contact 

Percent total duration 3 2.00 0.133 

Frequency 3 0.13 0.940 

Latency 3 1.88 0.151 

 

Oviposition attempts 

Percent total duration 3 1.15 0.342 

Frequency 3 0.28 0.839 

Latency 3 0.17 0.915 

 

Standing 

Percent total duration 3 1.62 0.203 
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reward acquisition (namely search, contact and oviposition attempts) as naives in M. 

persicae patches. This result shows that the wasps not only innately respond to the cues 

emitted from both hosts in a similar manner, but also exhibit similar types of behaviors 

elicited by those cues. Once the host is recognized and accepted, we found that naive A. 

abdominalis oviposited earlier, with a higher frequency and time spent in oviposition 

behavior in M. euphorbiae prey, possibly because A. abdominalis has an inherent 

preference for this aphid species. Honěk et al. (1998) found that the lowest A. abdominalis 

mortality and the heaviest mummy weight were recorded in M. euphorbiae (3.9 %, SE 2.9-

4.9) aphids as compared to Metopolophium dirhodum (15.0 %, SE 12.0-18.7) and 

Rhopalosiphum padi (L.) (45.5 %, SE 41.8-49.2).  

The parasitoids reveal another scenario when comparing the naïve to the experienced 

individuals. In M. persicae patches, the frequency and time spent in oviposition activities 

were higher with M. persicae experienced wasps, thus demonstrating that host experience 

reinforces operant learning i.e. the patterns of prey handling (e.g. Nurindah et al., 1999a) 

and results in a stronger response to the target stimuli (Bjorksten and Hoffman, 1995; 

Papaj and Vet, 1990). For example, we obtained that the time required recognizing the host 

decreased as the parasitoid handled successive hosts. Experienced females were more 

active foragers than naïve Aphelinus because they stood later than the naives, had a lower 

frequency and spent less time in the standing behavior relative to the naïve wasps.  

Moreover, experienced Aphelinus started the external host examination process through 

antennation (Nurindah et al., 1999b) or contact behavior earlier than the naive A. 

abdominalis. Subsequently the females launched earlier the process of internal host 

recognition (Nurindah et al., 1999b) through the oviposition attempt behavior to assess the 

suitability of the host (Henry et al., 2005). Host acceptance is ultimately contingent upon 

chemical cues that are examined during ovipositor probing (Michaud and Mackauer, 1994; 

Nurindah et al., 1999a). Thus, experienced parasitoid contrasted with the naïve ones 

learned how to save in the time required completing the handling sequence prior to 

obtaining an oviposition reward i.e. in contact, oviposition attempts and pausing behaviors.  

In M. persicae and M. euphorbiae patches, frequency and time allocated to oviposition 

were alike between the naive Aphelinus and the Aphelinus experienced with the switched 

aphid species (Figures 2.2 & 2.3). The response of the experienced wasp similar to the 

innate response of the naïve female may be due to priming (Turlings et al., 1993). 

M. persicae and M. euphorbiae aphids have different defensive strategies upon parasitoid 

attack: M. euphorbiae retreats its stylets and leaves the feeding location whereas M. 
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persicae remains at its feeding site and kicks. Nevertheless, we found that when switching 

the aphid species on the second patch, the experienced forager has shown a similar 

capacity to handle both aphid species. The latency, frequency and percent total duration of 

the host handling sequence were alike for both hosts. Thus, Aphelinus trained on each 

aphid species learned to handle both of them efficiently.  

Furthermore, M. euphorbiae and M. persicae experienced females displayed similar 

frequency and time spent with oviposition activities in M. euphorbiae or M. persicae 

patches (Figures 2.2 & 2.3). Besides, the oviposition success of those wasps on each patch 

was not significantly different when switching the aphid species (Figure 2.4). Therefore, 

experienced wasps foraging in the presence of the alternate aphid species have acquired an 

experience type which is positive. Agreeing with the concept that the innate use of 

infochemicals occurs in all carnivores regardless of dietary specialization (Steidle and van 

Loon, 2003), it is possible that A. abdominalis uses general chemical cues present in all her 

host species to recognize an aphid as host. Le Ralec et al. (2005) offering A. abdominalis 

the two hosts S. avenae and M. persicae and the non-host Aphis gossypii Glover found that 

the reactive distance or the distance at which a host could be perceived did not appear to 

differ between host and non-host aphids. Those authors suggested that host species 

recognition seems not to be achieved from a distance. Hence, it is argued that for host 

recognition, A. abdominalis mostly relies on non-volatile cuticular kairomones derived 

from the aphid body and perceived at a distance of 3-4 mm (Le Ralec et al., 2005). 

Hymenopterous parasitoids are equipped with mechanisms that enable them to deal with 

the dichotomy between searching for hosts and food foraging (Wäckers et al., 2002). Those 

mechanisms are expressed relative to their physiological needs (Wäckers, 1994). Overall, 

our results show that the foraging Aphelinus invested more in current reproduction i.e. 

oviposition than in future reproduction i.e. host feeding. For example, the frequency and 

time spent with the host feeding behavior were statistically alike between naïve and 

experienced Aphelinus particularly in M. persicae patches (Figures 2.2 & 2.3). In addition, 

within and between M. persicae and M. euphorbiae patches, the experienced Aphelinus 

host fed at a similar frequency and allocated similar time performing this 

behavior (Figures 2.2 & 2.3). A. abdominalis are experimentally used when having a full c

omplement of mature eggs (3-7 days old) so the motivation to lay an egg is higher than to 

feed on a host (Heimpel and Rosenheim, 1995). We found that in M. persicae patches, 

55.56 % naïve Aphelinus oviposited relative to 5.56 % performed host feeding. One 

hundred percent M. persicae experienced Aphelinus oviposited in M. persicae whereas 
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37.5 % host fed on this aphid. One hundred percent M. euphorbiae experienced wasps 

oviposited in M. persicae compared to 30 % exploiting this prey as a food source. In M. 

euphorbiae patches, 71.43 % of the naive Aphelinus oviposited while none host fed. 90 %  

M. euphorbiae experienced females laid an egg in M. euphorbiae host when 30 % host fed. 

73.73 % M. persicae experienced Aphelinus oviposited in M. euphorbiae in parallel to 

27.27 % feeding on this prey species. Consequently, the tendency to oviposit that we 

observed might have been triggered by the high initial female egg load interacting with the 

parasitoid’s assessing the L3 nymphal stage of the aphid as a high quality host. Within the 

four hour recording session, females having oviposited might have not experienced 

increased egg limitation triggered by a decreasing egg load. Therefore, under our 

experimental conditions, host feeding was not a requirement for egg replenishment.  

We obtained that the sucrose fed females might have mostly exploited the kairomonal 

effect of honeydew (e.g. Grasswitz and Paine, 1993; Green and Ayal, 1998; Shaltiel and 

Ayal, 1998) possibly to heighten their innate searching behavior (Bouchard and Cloutier 1

984; Budenberg, 1990; Budenberg et al., 1992) and as a directive (Green and Ayal, 1998) 

and arresting (Grasswitz and Paine, 1993) cue to the aphid aggregation but rarely as rich 

source of energy because the experimental females were satiated. But when fed upon, 

honeydew had a noteworthy impact. This relevance of honeydew was shown through the 

significant frequency and time spent with feeding on M. persicae produced honeydew 

between naïve and experienced wasps overlooking this behavior (Figures 2.2 & 2.3). We 

have not found such an importance of honeydew feeding in M. euphorbiae patches. This 

result can be attributed either to the physiological needs of the females or to the lower 

nutritious quality of M. euphorbiae produced honeydew.  

Within the four-hour experimental recording, switching the aphid species between patches 

caused minimal departure from the patch. Since the assessment of a host’s value by a 

parasitoid is governed by her recent foraging experience (Mackauer et al., 1996), under our 

trial conditions, the data show first, that both species are given the same value, and second, 

that A. abdominalis has not modified her original patch quality estimate and categorizes the 

first patch of equal value to the second one. This finding is to be verified by giving the 

female the opportunity for patch leaving by choice.  

To conclude, switching M. persicae and M. euphorbiae between patches has not affected 

the foraging responses of Aphelinus females. Though the females have not learned to 

improve the rewarding behaviors dictated by the physiological state of the animal, they 

have learned how to efficiently handle the host when compared to the naive wasps. 
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Furthermore, experienced wasps displayed similar successful parasitism when the aphid 

hosts were alternated. Therefore, we admit the hypothesis that the generalist A. 

abdominalis relies on the common occurrence of chemical cues used for host recognition 

and acceptance.   
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Two Protagonists on Aphidophagous Patches: Effects of 

Learning and Intraguild Predation 

 
3.1. Abstract  

In aphidophagous systems, parasitoid and predator guilds frequently display an asymmetric 

form of intraguild predation (IGP). Not all predators are equally dangerous. Therefore, 

defensive responses to non-threatening predators may result in lost foraging opportunities. 

We used sweet pepper patches sustaining Macrosiphum euphorbiae (Thomas) or Myzus 

persicae (Sulzer) aphids as a model system to trace the foraging behaviors of the aphelinid 

parasitoid Aphelinus abdominalis (Dalman) when confronted with L2 Chrysopa carnea 

(Stephens). We standardized the females by comparing behavioral reactions of host-

experienced wasps. We split the IGP interactions into two categories. First, we presented a 

scheme delineating the bidirectional protagonists’ interactions. Second, we investigated the 

effect of learned recognition of the predator on the rewarding and non-rewarding behaviors 

of the parasitoids. Finally, we explored whether the extraguild prey species promotes IGP 

in the antagonists’ mutual interactions and the rewarding behaviors. The parasitoids’ 

conditioning treatments are as follows: predator naive or predator experienced wasps 

foraging in a patch with or without C. carnea. Results reveal that presence of, or 

experience with the predator has not affected Aphelinus foraging activities. We propose 

three hypotheses to discuss the behavioral and ecological implications of our findings. 

Predation fluctuates in space and in time. Accordingly, the wasps exhibited a constant 

update of information regarding the relative predation risk. The predator induced mobility 

of M. euphorbiae yielded higher frequency of reciprocal antagonists’ contacts. Besides, it 

has motivated the female for a higher frequency and allocation time for oviposition in M. 

euphorbiae host. 

 

3.2. Introduction  

The foraging behavior of animals is shaped by energetic costs and by the risk from natural 

enemies (Krebs and Davies, 1987). Intraguild predation (IGP) defined as a predation event 

where a member of the guild preys upon another member of the same guild is a ubiquitous 

phenomenon among aphidophagous predators (Lucas, 2005). When predators and 

parasitoids are implicated in intraguild interactions, the IGP is unidirectional that is the 

parasitoid is always the intraguild prey (IG prey) and the predator is the intraguild predator 

3 
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(IG predator) (e.g. Lucas, 2005; Meyhöfer and Klug, 2002). Therefore, the failure to 

respond to an IG predator can cost the IG prey its life or that of her progeny, but 

responding to non threatening predators often comes at a relatively high cost to the prey 

through loss of feeding sites, decreased reproduction and/or high energy investment (Dicke 

and Grostal, 2001; Lima and Dill, 1990). Thus, the ability to accurately assess the risk of 

IGP should be beneficial, and the costs associated with antipredator behaviors should act as 

a driving force for the IG prey species to develop efficient risk assessment systems 

(Helfman, 1989). The prey should also develop the capacity to avoid a potentially lethal 

confrontation (Grostal and Dicke, 1999). There is a condition dependent plasticity of prey 

responses to predators (Mathis et al., 2003). Plasticity might be beneficial if the risk of 

predation is not always constant that is when the vulnerability of the prey to the predator 

may not be the same at all life stages (Mathis et al., 2003). For example, prey might 

outgrow the handling limits of some predators (e.g. Mathis et al., 2003) or may develop 

defenses such as toxins that provide protection (Pettersson et al., 2005).  

The optimization of prey response suggests that recognition of predation risk through 

chemical information is crucial for the fitness of many animals (e.g. Dicke and Grostal 

2001; Ferrari and Chivers, 2006; Grostal and Dicke, 1999; Kusch et al., 2004; Mathis et 

al., 2003; Persons and Rypstra, 2001) and facilitates learned recognition of novel predators 

(Ferrari and Chivers, 2006). The chemical signature of a predator may be direct such as 

kairomones (e.g. Dicke and Grostal, 2001) or indirect for instance information from 

disturbed /injured (alarm pheromones) or dead conspecifics (e.g. Dicke and Grostal, 2001; 

Ferrari and Chivers, 2006; Grostal and Dicke, 1999). In addition, a body of literature 

shows that the predator’s diet serves as an indirect cue uncovering the identity of the 

predator to the prey (e.g. Chivers et al., 1996; Dicke and Grostal, 2001; Kortet and 

Hedrick, 2004; Meng et al., 2006) because it provides information about the proclivity of a 

predator to feed on a particular prey type (Persons and Rypstra, 2001). 

The prey can assess the level of immediate threat (Ferrari and Chivers, 2006, Schmitz et 

al., 2004). A single prey species responds differently to different predator species or 

predator behavior (Schmitz et al., 2004). Different predator avoidance behavior may then 

represent different degrees of risk aversion resulting from the amount of information prey 

have about predators (Sih, 1992). 

Predator size can be an important indicator of threat for some species (Kusch et al., 2004). 

For example, the two co-occurring wolf spiders Pardosa milvina (Hentz) and Hogna 

helluo (Walckenaer) engage in size structured IGP. Adult female Pardosa varies 
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antipredator responses towards kairomones produced by Hogna that varies in size. This 

was manifested by a decrease in the activity in the presence of kairomones from Hogna of 

equal or larger size but showed no change in the presence of a blank control or from single 

Hogna smaller than itself (Persons and Rypstra, 2001).  

Though the parasitoid-predator interaction is assymetrical (e.g. Lucas, 2005; Meyhöfer and 

Klug, 2002), the presence of an extraguild prey mitigates the intensity of the IGP (e.g. 

Hindayana et al., 2001; Lucas, 2005). 

Our present research is aimed at investigating the effect of on patch learning of the 

predator’s presence on the foraging behavior of the parasitoid. Our general hypothesis 

addresses the following question: can the IG prey learn the level of risk associated with a 

particular predation threat? Our tritrophic system is the aphelinid wasp Aphelinus 

abdominalis (Dalman) (Hymenoptera: Aphelinidae) as IG prey, the second larval stage 

(L2) Chrysopa carnea (Stephens) (Neuroptera: Chrysopidae) as IG predator, the two aphid 

species Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Homoptera: 

Aphididae) as extraguild preys, and a sweet pepper leaf disc sustaining one of the two 

herbivores.  

Three specific objectives were the focus of this study. First, to examine the “predator 

inspection” phenomenon, which may serve the parasitoid to gain information about the 

type of predator encountered (Magurran and Girling, 1986) or the predator’s readiness to 

attack (Licht, 1989). Therefore, we have presented an outline of the mutual behavioral 

interactions between the parasitoid and the predator. Second, to investigate how the female 

Aphelinus processes the circuit of information gained on patches of different qualities. 

Thus, we have compared behavioral reactions of predator naïve or predator experienced 

Aphelinus in patches bearing or free from C. carnea. Third, we have highlighted the effect 

of the extraguild prey species on the IGP interactions when presenting the rewarding 

behaviors and the parasitoid-predator interactive behaviors.  

 

3.3. Materials and Methods 

Rearing 

Sweet pepper (Capsicum annuum L., cv. “Mazurka”) plants and eggplants (Solanum 

melongena L., cv. “Ecavi”) (Solanaceae) were grown in the nursery of the Institute of Plant 

Diseases and Plant Protection (Leibniz University of Hannover, Germany), at a 

temperature of ca. 20ºC, 60-70 % rh and 16:8 L:D photoperiod. Aphid cultures were kept 



Chapter 4. Effects of Intraguild Predation and Prey Antipredator Behaviors 36  

 

in climatic chambers in gauze cages at a temperature of 20 ± 1ºC, 16:8 L:D photophase, 

and 60 % rh. M. persicae was exclusively reared on sweet pepper plants whereas a mixture 

of sweet pepper and eggplants was offered to M. euphorbiae to enhance colony 

proliferation and alate production. A stock culture of the grain aphid Sitobion avenae (F.) 

feeding on wheat (Triticum aestivum L.) (Triticae) was sustained to generate A. 

abdominalis mummies. After pupation, mummies were harvested and transferred into fine 

gauze-covered acrylic cylinders that were placed on plastered pots. Emerged wasps were 

supplied with 15 % sucrose solution at 16:8 L:D photoperiod, 22 ± 1°C and 90 % rh until 

their experimental deployment. The lacewing predator (C. carnea) was supplied by Katz 

Biotech Company (Germany).  

 

Aphid preparation 

Ten to twelve alate M. persicae or M. euphorbiae collected from the stock culture were 

caged overnight on a sweet pepper plant to generate synchronized progeny. The 

subsequent day, twelve L1 of each aphid species were transferred using a fine Kolinsky 

hairbrush to a patch made of a 2 cm diameter sweet pepper leaf disc, which was laid over a 

similar diameter piece of cotton imbibed with water. The wet cotton carrying the leaf disc 

was immersed in a thick film of water in a 3 cm diameter Petri-dish. The water film was 

intended to obstruct the free movement of the antagonists or the aphids from the leaf 

disc. The patches were placed in 13×15×5 cm plastic containers whose cover and sides 

were perforated and replaced with mesh to facilitate ventilation. The containers were kept 

for three days in climatic chambers at a temperature of 20 ± 1ºC, 16:8 L:D regime 

and 60 % rh. At the fourth day, the aphids reaching the L3 nymphal stage were used in the 

experiment.  

 

Handling of the predator and the parasitoid 

Naïve 3-7 day old A. abdominalis were collected from the stock culture and transferred to 

the sweet pepper leaf discs sustaining M. persicae or M. euphorbiae as herbivore victim. 

The treatments are presented in Figure 3.1. To guarantee Aphelinus females’ motivation for 

egg laying, they were allowed to forage for 15 minutes before L2 C. carnea were 

introduced. In a preliminary trial, we examined the suitability of L3 C. carnea to be used in 

the main experiment. Video assessment of the results revealed that in M. euphorbiae 

patches with both antagonists, 75 % of the female parasitoid left the patch by jumping 
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and/or flying and 25 % were exterminated by the L3 C. carnea. Since we needed the 

biological material in subsequent treatments, we opted for the L2 stage. 

To standardize the Aphelinus’ experience with respect to the extraguild prey, we have 

released naïve female Aphelinus on aphid patches with or without the L2 C. carnea. On 

this first patch, all the females gained experience with the extraguild prey but some of them 

were predator naive while others were predator experienced. Then we have collected those 

wasps and subjected them to a second patch bearing or lacking the L2 C. carnea. The 

parasitoids’ behavioral reactions in this second patch were the focal point of our research.  
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Figure 3.1. Schematic representation of the experimental treatments. 
Naive Aphelinus abdominalis were released in Macrosiphum euphorbiae or Myzus persicae patches with or 

without the second larval stage (L2) of the predator Chrysopa carnea. The parasitoids were allowed to forage 

for two hours. The collected Aphelinus were all host experienced but some were predator naïve while others 

were predator experienced. Those Aphelinus females were given a two-hour resting period. Afterwards, they 

were offered for two hours a second foraging opportunity in the presence or absence of L2 C. carnea. 
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Recording and quantification of the two protagonists’ interactions 

The behavioral reactions of A. abdominalis rivalling with L2 C. carnea in M. persicae or 

M. euphorbiae patches were recorded with a multiple video camera set up described by 

Meyhöfer (2001) and later analyzed with the Observer Video-Pro system (Noldus 

Technology, 1997). Sixteen cameras were used simultaneously and two recording sessions 

were held. In the first session, the behavioral decisions of naïve Aphelinus were traced. For 

each aphid species, four replications per treatment were jointly recorded. All of the 

Aphelinus wasps gained experience with the aphid host but some were predator naïve 

while others predator experienced (Figure 3.1). The Aphelinus females were collected and 

allowed to rest for two hours isolated from any infochemical source under ambient 

laboratory conditions. This pause was necessary to manipulate the mechanism of 

sensitization and desensitization to chemicals associated with hosts (Thiel and Hoffmeister, 

2004) and opponents (Vet, 1999). Consequently, the Aphelinus wasps were able to respond 

adaptively on the second patch. The next recording session was done to depict the 

behaviors of the Aphelinus parasitoids in patches harboring or free from L2 C. carnea. 

Thus, predator naïve and predator experienced Aphelinus were released in patches with or 

without C. carnea (Figure 3.1). For each extraguild prey species (M. persicae or M. 

euphorbiae), two replications per treatment per recording session could be concurrently 

recorded. Six consecutive recording sessions were conducted at different dates. The 

number of replications ranged from 19-22 for the recording sessions prior to the pause of 

the Aphelinus and from 9-11 for the ones ensuing the Aphelinus resting period (Figure 3.1). 

At the end of each recording session, the patches sustaining the aphids were kept inside a 

climatic chamber at a temperature of 20 ± 1ºC until mummification. After seven days, 

black mummies appear. The number of mummies, when observed, was noted.  

 

Data compilation 

We split the behavioral observations of the foraging Aphelinus females into two chief 

categories: parasitoid predator interactive behaviors and parasitoid prey behavioral 

repertoire.  

Parasitoid predator interactive behaviors 

The Aphelinus parasitoid and L2 C. carnea sharing a common aphid resource exhibited 

bidirectional interactions. We defined two different behavioral states for the parasitoid and 

two events for the predator. 
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The behavioral states of the parasitoid are 1) contact predator (physical contact and 

antennation) and 2) oviposition attempts in the predator (the female attacks the predator 

with ovipositor insertion). The predatory events are 1) predatory attack (predator directly 

attacks the parasitoid with its mandibles) and 2) predatory contact (implies nearby physical 

contact with the parasitoid).  

Parasitoid prey behavioral repertoire 

While foraging in the patch, A. abdominalis displayed two categories of behavioral states: 

rewarding and non-rewarding. Rewarding behaviors are mostly induced by the 

physiological needs of the wasps. They have a direct impact on the parasitoid fitness. 

Rewarding behaviors include oviposition, host feeding referring to the consumption of the 

host hemolymph by the adult wasp, and honeydew feeding defined as the female’s intake 

of the aphid honeydew droplets deposited on the leaf surface. 

Non-rewarding behaviors are related to the operant learning capabilities of the wasp, 

namely learning to perform a behavioral sequence quickly and accurately to obtain a 

reward. Non-rewarding behaviors are as follows, 1) searching (the parasitoid moves), 2) 

contact aphids (starts with the parasitoid approaching to the vicinity of the aphid and 

antennation), 3) oviposition attempts (the parasitoid turns around and attacks the aphid 

with her ovipositor), 4) standing (the parasitoid is motionless) and 5) patch leaving.   

 

Measurement of the protagonists’ behavioral observations 

Behavioral observations yielded two basic types of measurements. The dependent 

variables are frequency (measured /2h) and percent duration spent with the behavioral 

states. To study the influence of the learning recognition of the predator on the parasitoid’s 

foraging activities, we have standardized the Aphelinus females with respect to aphid host 

learning. Hence, we have compared behavioral reactions of host experienced Aphelinus in 

patches sustaining or devoid of L2 C. carnea. Those Aphelinus females have two 

experience levels with the predator: they are either predator naïve or predator experienced 

wasps (Figure 3.1).     

 

Statistical analysis 

To normalize the data distribution, frequency and percent total duration variables were 

√ (x+0.5) and arcsine transformed, respectively, before any statistical analyses. To 

determine the significance of single and interaction effects of three factors (i.e., two levels 

of predator, two host species, two parasitoid experience levels with the predator) on the 
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frequency and percent duration of a given behavior, a three-way ANOVA was conducted 

using the PROC GLM procedure in SAS (SAS Institute, 1999). To study if learning 

recognition of the predator affects Aphelinus performance when exposed to L2 C. carnea, 

factorial combinations of the parasitoid experience with the predator and the predator 

(presence or absence) were expressed as none (i.e., no encounter, predator naïve Aphelinus 

foraging in a patch without L2 C. carnea), encounter as experienced (predator naïve 

Aphelinus foraging in a patch with L2 C. carnea), encounter as naïve (predator 

experienced Aphelinus foraging in a patch without L2 C. carnea), and encounter as naive 

and experienced (predator experienced Aphelinus  foraging in a patch with L2 C. carnea) 

(Figure 3.1). Whenever deficient number of observations was obtained for a particular 

behavior for a given factor, ANOVA analysis was reduced to a two-way analysis by 

dropping the factor with insufficient number of observations. In case of a significant 

interaction between factors, different levels of a factor were compared at a given level of 

the second factor; otherwise, data were pooled. When a significant effect of a factor is 

detected by means of ANOVA, the dependent variable means at different levels of the 

respective factor were compared using Tukey’s multiple means comparison procedure.  

The number of mummified aphids in the presence or absence of C. carnea was recorded 

and percent mummy formation was calculated. The percentage values were arcsine 

transformed before being subjected to statistical analyses. 

In all analyses, a 0.05 alpha level was used and data are presented as means ± SE.   

 

3.4. Results  
At first, we have hypothesized that direct confrontations of the two protagonists may 

confer the Aphelinus parasitoid with learned recognition of C. carnea predator. Therefore, 

we have presented a scheme delineating the bidirectional parasitoid-predator interactive 

behaviors. 

Because predation level is not fixed and fluctuates in space and time (Lima and 

Dill, 1990), a continuous learning process could keep up to date the actual threat of a given 

predator (Ferrari and Chivers, 2006). Thus, we have evaluated the development of such 

responses to the predator through the comparison of behavioral decisions of predator naïve 

and predator experienced Aphelinus in patches with or without C. carnea.  

IGP between natural enemies of aphids cannot be fully evaluated without referring to the 

aspect of aphid behavior (Brodeur and Rosenheim, 2000). Therefore, we have inspected 
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whether the extraguild prey species promotes IGP interactions when presenting the 

rewarding behaviors and the parasitoid predator interactive behaviors. We presume that 

those two categories of behavioral reactions are relevant in showing the learned 

recognition of the predator.  

 

Parasitoid predator interactive behaviors  

This comparison aims to present a detailed scheme of the mutual interactions between A. 

abdominalis and L2 C. carnea. We assume that the physical presence of the predator in the 

patch is an important mediator of “menace” learning process. In the presence of C. carnea, 

we compare the behavioral reactions of predator naïve and predator experienced Aphelinus 

wasps (Figure 3.1). Therefore, per aphid species, we contrast the frequency and percent 

total duration spent in contact predator, oviposition attempts in the predator, predatory 

contacts and predatory attack behaviors. Consequently, we can assess whether the predator 

naive parasitoids learn to recognize the predator and if so, whether the intensity of their 

antipredator responses match those of the predator experienced Aphelinus.  

One hundred percent predator naïve (average duration 11.4 s ± 1.15 SE) and 100 % 

predator experienced Aphelinus (average duration 13.5 s ± 2.77 SE) contacted the L2 C. 

carnea when the extraguild prey was M. euphorbiae. In parallel, 77.8 % predator 

experienced (average duration 22.4 s ± 6.99 SE) and 90.9 % predator naïve Aphelinus 

(average duration 16.5 s ± 6.26 SE) contacted L2 C. carnea in a M. persicae patch. A 

comparison between predator naïve and predator experienced Aphelinus revealed no 

significant difference in the mean frequency (Table 3.1) (Figure 3.2) and the percent 

duration of time spent in contact predator behavior when the host is M. euphorbiae 

(ANOVA df = 1, F= 0.38, P = 0.547) or M. persicae (ANOVA df = 1, F = 0.48, P = 0.500) 

(Figure 3.3).  

Oviposition attempts in the predator behavior was restricted to 9.09 % predator naïve 

Aphelinus (mean duration 32.7 s) and 11.11 % predator experienced Aphelinus (mean 

duration 6.5 s) in M. persicae patches. Predator naïve Aphelinus attacked C. carnea as 

frequently as predator experienced Aphelinus (ANOVA df = 1, F = 0.02, P = 0.889) 

(Figure 3.2). Predator naive Aphelinus spent 0.035 % (± 0.035 SE) of the foraging time 

attacking C. carnea in M. persicae patches whereas predator experienced Aphelinus 

invested 0.010 % (± 0.010 SE) time displaying this behavioral state in the presence M. 

persicae prey (Figure 3.3).   
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C. carnea contacted 81.82 % predator experienced and 90.91 % predator naive Aphelinus 

when the herbivore victim was M. euphorbiae, and 77.78 % predator experienced and 

63.64 % predator naïve Aphelinus with M. persicae as the offered host. The results divulge 

no significant difference in the mean frequency of predatory contact between predator 

naïve and predator experienced Aphelinus (Table 3.2) (Figure 3.2).   

In M. euphorbiae patches, C. carnea attacked 36.36 % predator experienced and 45.45 % 

predator naïve Aphelinus. When the extraguild prey was M. persicae, C. carnea attacked 

22.22 % predator experienced and 45.45 % predator naïve Aphelinus.  

No statistical difference in the mean frequency of predatory attack was found between 

predator naïve and predator experienced Aphelinus in M. euphorbiae (ANOVA df = 1, 

F = 0.63, P = 0.436) or in M. persicae (ANOVA df = 1, F = 1.40, P = 0.251) patches 

(Figure 3.2). 
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Table 3.1. Summary of ANOVA results of mean frequency of Aphelinus abdominalis 

contact predator in a patch sustaining twelve L3 aphids as affected by the species of 

the aphid host and the parasitoid experience with the predator. 

 

 

 

 

 

 

Contact predator behavior:  parasitoid approaches the predator and antennation. 

The parasitoids were offered either Myzus persicae or Macrosiphum euphorbiae hosts.  

 Parasitoid experience with predator implies predator naïve or predator experienced (Figure 3.1). 

 

Table 3.2. Summary of ANOVA results of mean frequency of predatory contact 

behavior in a patch sustaining twelve L3 aphids as affected by the species of the aphid 

host and the parasitoid experience with the predator.  

 
 

 

 

 

 
Predatory contact behavior: predator is physically in the vicinity of the parasitoid. 

The parasitoids were offered either Myzus persicae or Macrosiphum euphorbiae hosts. 

 Parasitoid experience with predator implies predator naïve or predator experienced (Figure 3.1). 

 

 

Source of variation df F P  

Host 1 4.50 0.041 

Parasitoid experience 1 0.97 0.330 

Host * Parasitoid experience 1     0.00   0.952 

Source of variations df F P  

Host  1 9.27   0.004 

Parasitoid experience 1 0.18 0.678 

Host * Parasitoid experience 1 0.00   0.962 
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Figure 3.2. Mean (± SE) frequency /2 hours of mutual interactive behaviors of 

predator naive or predator experienced Aphelinus abdominalis and L2 Chrysopa 

carnea foraging in patches sustaining twelve L3 Macrosiphum euphorbiae or Myzus 

persicae.  
Predator naïve implies encounter with the predator as host experienced (Figure 3.1). 

Predator experienced implies encounter with predator as naive and host experienced (Figure 3.1). 

Parasitoid experience level with the predator had no effect on any behavior at a given aphid species.  

Capital letters indicate the effect of the aphid species on the behavior of the Aphelinus abdominalis wasp or 

on the Chrysopa carnea predator.  

(n) indicates the number of replications per treatment.  

 

 

 

 

Frequency /2 hours of parasitoid-predator interactive behaviors
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Figure 3.3. Average time (% /2 hours) (± SE) spent in mutual interactive behaviors 

between predator naïve and predator experienced Aphelinus abdominalis and the L2 

Chrysopa carnea in patches sustaining twelve L3 Macrosiphum euphorbiae or Myzus 

persicae.  
Predator naïve implies encounter with the predator as host experienced (Figure 3.1). 

Predator experienced implies encounter with predator as naive and host experienced (Figure 3.1). 

The parasitoid experience level with the predator had no significant effect on any behavior for both aphid 

species. 

The species of the aphid had no significant effect on the behavior of Aphelinus abdominalis parasitoid.   

(n) indicates the number of replications per treatment.   

 

Parasitoid prey behavioral repertoire 

To standardize the experience level of the females, we have compared the behavioral states 

(rewarding and non-rewarding) of Aphelinus parasitoids, which are aphid experienced but 

are either predator naïve or predator experienced (Figure 3.1). Those females were allowed 

to forage in patches with or without L2 C. carnea. Our aim is to investigate, 1) the effect of 

predator learning on the foraging behavior of the Aphelinus wasps, and 2) whether a 

Average time (% /2 hours) of parasitoid-predator interactive behaviors
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continuous learning process would keep the Aphelinus prey up to date regarding the actual 

threat of a given L2 C. carnea predator. 

Rewarding behaviors  

Results reveal that predator naive Aphelinus displayed comparable mean frequency as 

predator experienced Aphelinus in the oviposition behavior in patches free from or 

sustaining C. carnea when the extraguild prey was either M. euphorbiae (ANOVA df = 3, 

F = 1.53, P = 0.223) or M. persicae (ANOVA df = 3, F = 0.51, P = 0.679) (Figure 3.4). 

Furthermore, predator naive Aphelinus invested a similar proportion of time to oviposit in 

M. euphorbiae (ANOVA df = 3, F = 1.69, P = 0.185) or in M. persicae (ANOVA df = 3, 

F = 0.47, P = 0.703) as predator experienced Aphelinus in patches with or without C. 

carnea (Figure 3.5). Also, predator naïve and predator experienced Aphelinus yielded a 

statistically comparable oviposition success in the presence or absence of C. carnea 

(ANOVA df = 7, F = 1.72, P = 0.420) (Figure 3.6).    

In M. euphorbiae patches with or without C. carnea, predator experienced Aphelinus 

exhibited a similar frequency (ANOVA df = 3, F = 0.53, P = 0.661) (Figure 3.4) and 

allocation time (ANOVA df = 3, F = 0.63, P = 0.603) (Figure 3.5) as predator naïve 

Aphelinus to the host feeding behavior. Similarly, in M. persicae patches bearing or free 

from C. carnea, predator experienced Aphelinus host fed as frequently as predator naïve 

Aphelinus (ANOVA df = 3, F = 0.80, P = 0.502) (Figure 3.4) and spent a comparable time 

with host feeding behavior as predator naïve Aphelinus (ANOVA df = 3, F = 0.47, 

P = 0.704) (Figure 3.5). 

Predator experienced Aphelinus performed honeydew feeding behavior in patches 

harboring or lacking C. carnea as frequently as predator naïve Aphelinus when 

M. euphorbiae (ANOVA df = 3, F = 1.46, P = 0.241) or M. persicae (ANOVA df = 3, F = 

0.89, P = 0.456) was the extraguild prey (Figure 3.4). Furthermore, in patches with or 

without C. carnea, predator experienced Aphelinus invested a similar proportion 

of time as predator naïve Aphelinus in collecting M. euphorbiae (ANOVA df = 3, F = 0.94,

 P = 0.430) or M. persicae (ANOVA df = 3, F = 0.85, P = 0.475) honeydew droplets 

(Figure 3.5). 
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Figure 3.4. Mean frequency /2 hours (± SE) of rewarding behaviors of predator naive 

and predator experienced Aphelinus abdominalis females foraging in patches 

sustaining twelve L3 Macrosiphum euphorbiae or Myzus persicae with or without the 

L2 Chrysopa carnea predator.  
Predator naïve implies encounter with the predator as host experienced or no encounter (Figure 3.1) 

Predator experienced implies encounter with predator as naive and host experienced, or as host experienced 

(Figure 3.1). 

Parasitoid experience level with the predator had no effect on any behavior at a given aphid species.   

Capital letters indicate the effect of the aphid species on the behavior of the parasitoid. 

(n) indicates the number of replications per treatment.  

 

 

 

Frequency /2 hours of rewarding behaviors 
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Figure 3.5. Average time (% /2 hours) (± SE) spent by predator naive and predator 

experienced Aphelinus abdominalis females with rewarding behaviors in patches 

sustaining twelve L3 Macrosiphum euphorbiae or Myzus persicae with or without the 

L2 Chrysopa carnea predator.  
Predator naïve implies encounter with the predator as host experienced or no encounter (Figure 3.1). 

Predator experienced implies encounter with predator as naive and host experienced, or as host experienced 

(Figure 3 1). 

Parasitoid experience level with the predator had no effect on any behavior for both aphid species. 

Capital letters indicate the effect of the aphid species on the behavior of the parasitoid. 

(n) indicates the number of replications per treatment.  
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Figure 3.6. Percent mummy formed (± SE) by predator naïve or predator 

experienced female Aphelinus abdominalis in patches sustaining twelve L3 

Macrosiphum euphorbiae or Myzus persicae with or without the L2 Chrysopa carnea 

predator.   
Predator naïve implies encounter with the predator as host experienced or no encounter (Figure 3.1). 

Predator experienced implies encounter with predator as naive and host experienced, or as host experienced 

(Figure 3.1). 

Predator naïve and predator experienced Aphelinus displayed similar oviposition success in Macrosiphum 

euphorbiae and Myzus persicae patches with or without Chrysopa carnea (ANOVA df = 7, F = 1.72,  

P = 0.420). 

(n) indicates the number of replications per treatment. 

 

Non-rewarding behaviors 

The presence of L2 C. carnea in M. euphorbiae patches affected the searching activity of 

the foraging Aphelinus wasps (ANOVA df = 1, F = 47.88, P < 0.0001) and the proportion 

of time (ANOVA df = 1, F = 11.13, P = 0.0019) allocated to the searching behavior. 

Predator naïve and predator experienced Aphelinus displayed 2.6 fold higher mean 

searching frequency (Figure 3.7) and invested 1.4 fold higher proportion of time 

(Figure 3.8) in searching for M. euphorbiae aphids in the patch with C. carnea than in the 

patch without C. carnea.  

With M. persicae as extraguild prey, predator naive and predator experienced Aphelinus 

exhibited similar searching frequency (ANOVA df = 3, F = 1.46, P = 0.241) (Figure 3.7) 

Percent mummy formed (± SE) 
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and invested similar proportion of time (ANOVA df = 3, F = 2.54, P = 0.071) (Figure 3.8) 

in searching behavior in a patch with or devoid of C. carnea.  

Foraging in the occurrence of C. carnea had a significant impact on the mean frequency 

(ANOVA df = 1, F = 19.25, P < 0.0001) and the time devoted (ANOVA df = 1, F = 20.71, 

P < 0.0001) to M. euphorbiae contact. With C. carnea in the patch, predator naïve and 

predator experienced Aphelinus contacted M. euphorbiae host 1.5 fold more frequently 

than predator naïve and predator experienced Aphelinus foraging in a C. carnea free patch 

(Figure 3.7). On the other hand, the Aphelinus parasitoids exhibited a different scenario 

regarding the time budged devoted to M. euphorbiae contact behavior. Predator 

experienced Aphelinus rivalling with L2 C. carnea invested a similar proportion of time as 

predator naïve Aphelinus in M. euphorbiae contact behavior in a C. carnea free patch. 

Moreover, predator naïve Aphelinus foraging in the presence of C. carnea spent a 

comparable time in M. euphorbiae contact as predator experienced Aphelinus in a patch 

lacking C. carnea (Figure 3.8).    

Predator naïve and experienced Aphelinus contacted M. persicae in a patch with C. carnea 

as frequently as in a patch lacking C. carnea (ANOVA df = 3, F = 2.66, P = 0.062) 

(Figure 3.7). In contrast, C. carnea presence in the patch (ANOVA df = 1, F = 16.52, 

P = 0.0001) affected the percent duration of M. persicae contact behavior. For example, 

predator naïve Aphelinus foraging in a C. carnea free patch expended 1.5 fold higher 

proportion of time in M. persicae contact than predator experienced Aphelinus confronted 

with the L2 C. carnea (Figure 3.8).   

C. carnea sharing the same M. euphorbiae extraguild prey with predator naïve or predator 

experienced Aphelinus had no significant effect on the mean frequency (ANOVA df = 3, F 

= 0.87, P = 0.465) (Figure 3.7) and percent duration (ANOVA df = 3, F = 0.35, P = 0.786) 

(Figure 3.8) of oviposition attempts in M. euphorbiae host.    

With M. persicae as extraguild prey, being predator naïve or predator experienced had a 

significant impact on the mean frequency of Aphelinus oviposition attempts behavioral 

state (ANOVA df = 1, F = 8.16, P = 0.007). For instance, predator naïve Aphelinus wasps 

foraging in a patch lacking C. carnea displayed 2.8 times more frequent oviposition 

attempts behavior in M. persicae contrasted with predator experienced females competing 

with L2 C. carnea (Figure 3.7). In parallel, predator naïve and predator experienced 

Aphelinus allocated an analogous percent duration of time to oviposition attempts behavior 

in M. persicae patches harboring or free from L2 C. carnea (ANOVA df = 3, F = 0.27, 

P = 0.847) (Figure 3.8). 
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Predator naive and predator experienced Aphelinus in the presence of C. carnea paused 

with similar frequencies as predator naive and predator experienced Aphelinus in the 

absence of C. carnea in M. euphorbiae (ANOVA df = 3, F = 2.29, P = 0.093) or M. 

persicae (ANOVA df = 3, F = 0.73, P = 0.539) patches (Figure 3.7). Furthermore, in the 

presence of C. carnea, predator naive and predator experienced Aphelinus spent an 

equivalent percent of the foraging time motionless as in the absence of C. carnea in M. 

euphorbiae (ANOVA df = 3, F = 0.47, P = 0.706) or in M. persicae (ANOVA df = 3, F = 

1.65, P = 0.195) patches (Figure 3.8).    

No female Aphelinus departed from M. euphorbiae patches. 9.09 % predator naive 

Aphelinus in the presence of C. carnea, 20 % predator experienced Aphelinus in C. carnea 

free patch and 11.11 % predator experienced Aphelinus in a patch with C. carnea left M. 

persicae patches.    
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Figure 3.7. Mean frequency /2 hours (± SE) of non-rewarding behaviors of predator 

naïve and predator experienced Aphelinus abdominalis females in patches sustaining 

twelve L3 Macrosiphum euphorbiae or Myzus persicae with or without the L2 

Chrysopa carnea predator.  
Predator naïve implies encounter with the predator as host experienced or no encounter (Figure 3.1) 

Predator experienced implies encounter with predator as naive and host experienced, or as host experienced 

(Figure 3.1). 

n.s /italic letters indicate non-significant/significant difference between predator naïve and predator 

experienced Aphelinus abdominalis for a given behavior and a given host species. 

(n) indicates the number of replications per treatment. 

 

 

 

 

 

Frequency /2 hours of non-rewarding behaviors 
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Figure 3.8. Average time (% /2 hours) (± SE) of non-rewarding behaviors of predator 

naïve and predator experienced Aphelinus abdominalis in patches sustaining twelve 

L3 Macrosiphum euphorbiae or Myzus persicae with or without the L2 Chrysopa 

carnea predator.   
Predator naïve implies encounter with the predator as host experienced or no encounter (Figure 3.1). 

Predator experienced implies encounter with predator as naive and host experienced, or as host experienced 

(Figure 3.1). 

n.s /italic letters indicate non-significant/significant difference between predator naïve and predator 

experienced Aphelinus abdominalis for a given behavior and a given host species. 

(n) indicates the number of replications per treatment. 

 

Effect of extraguild prey species on intraguild interactions 

This comparison inspects whether the species of the extraguild prey promotes IGP 

interactions, therefore M. euphorbiae experienced Aphelinus were compared to M. 

persicae experienced ones when parasitoid predator interactive behaviors and rewarding 

behaviors are presented.  

Average time (% /2 hours) of non-rewarding behaviors 



Chapter 4. Effects of Intraguild Predation and Prey Antipredator Behaviors 54  

 

Parasitoid predator interactive behaviors 

Results reveal that the foraging Aphelinus displayed 1.8 fold higher mean frequency of 

contact predator behavior in M. euphorbiae relative to M. persicae patches (Figure 3.2). In 

contrast, the percent duration of contact predator behavior was similar in both patches 

(P = 0.301) (Figure 3.3). 

In addition, C. carnea exhibited three times higher frequency of predatory contact behavior 

in M. euphorbiae compared to M. persicae patches (Figure 3.2). The Aphelinus females 

performed oviposition attempts in predator behavior with similar frequencies in M. 

euphorbiae and M. persicae patches (P = 0.142) (Figure 3.2). The predator attacked with 

comparable frequency the Aphelinus foraging in M. euphorbiae and M. persicae patches 

(P = 0.904) (Figure 3.2). 

Rewarding behaviors 

We found that the Aphelinus female exhibits a higher mean frequency (Figure 3.4) and 

endowed a higher proportion of time (Figure 3.5) to oviposition in M. euphorbiae than in 

M. persicae. The Aphelinus host fed on M. persicae as frequently as on M. euphorbiae 

(Figure 3.4) and allocated comparable proportion of time to performing host feeding 

behavior in M. euphorbiae and M. persicae patches. Moreover, the frequency (Figure 3.4) 

and percent total duration (Figure 3.5) of honeydew feeding behavior were not influenced 

by the species of the herbivore victim.  

 

3.5. Discussion 
Any defensive response (including fleeing or migration) by potential prey is costly (e.g. 

Dicke and Grostal, 2001) and frequent responses to cues from sources that have no 

consequences on fitness would be counter adaptive (Dicke and Grostal, 2001). Thus the 

ability to accurately assess the risk of predation should be beneficial (Helfman, 1989).  

In general Aphelinus behavioral reactions (non-rewarding and more specifically rewarding 

ones) were not altered by the presence of the predator in the patch or by experience with 

L2 C. carnea. The parasitoid assessed the values of patches with or free from C. carnea of 

equal suitability. Therefore escape manoeuvres as departure from the patch were minimal. 

For example, predator naive and predator experienced Aphelinus exhibited comparable 

frequency and time allocated for oviposition, host feeding and honeydew feeding activities 

in patches free from or bearing C. carnea. Furthermore, no reduced oviposition success 
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was found between patches with or without C. carnea or between predator naïve and 

experienced Aphelinus. 

We offer three hypotheses to explain this outcome. First, based on her superiority in size, 

Aphelinus female does not validate the relative risk associated with the presence of the L2 

C. carnea threatening enough to display pronounced antipredator responses such as leaving 

the patch or depressed oviposition. In some cases, the intensity of the kairomone-mediated 

antipredator responses may be related to the relative size of the prey compared to the 

predator (e.g. Kusch et al., 2004; Mathis et al., 2003; Persons and Rypstra, 2001). L2 C. 

carnea is less than 0.8 mm long whereas female Aphelinus is about 3 mm long. Those 

results agree with Persons and Rypstra (2001) who found that Pardosa milvina mite tended 

to avoid substrates previously occupied by a Hogna helluo larger than itself, but showed no 

substrate avoidance if the paper had supported a spider or spiders of equal or smaller size 

than itself.  

On the other hand, Meyhöfer and Klug (unpublished data) put the “size related predation 

risk” postulation into question. They used L3 C. carnea (approximately 13 mm long) on 

sweet pepper leaf discs sustaining twenty L2 M. persicae. One minute after the 

introduction of either female Aphidius colemani (Viereck) or Aphidius ervi (Haliday) 

(Hymenoptera: Aphidiidae) the predator was released and the predator-parasitoid 

interactions were recorded with video cameras for the following four minutes. Both 

parasitoids are smaller in size than the L3 C. carnea. Meyhöfer and Klug (unpublished 

data) found that one A. colemani and two A. ervi left the patch by flight in the presence of 

L3 C. carnea. Running away or short take offs from the leaf were the preferred strategies 

to increase distance to the predator. Nevertheless, most females were not influenced at all 

by direct encounters and continued host foraging even in the close vicinity of L3 C. carnea 

(Meyhöfer and Klug, unpublished data). Consequently, one question may be raised: why 

aren’t parasitoids in the current study and in that conducted by Meyhöfer and Klug 

(unpublished data) adjusting their behaviors to decrease the predation risk?  

We propose the second premise. Since on aphidophagous patches the parasitoid is exposed 

to a variety of information from a cocktail of predators belonging to different orders, it 

may not be adaptive to the parasitoids to respond to predator cues through sensitization but 

mostly through associative learning. The learned recognition of a prey exposed to 

generalist predators is synergized through diet-related chemical labelling of the predator. 

A. abdominalis wasp has proven an ability to learn associatively (Mölck et al., 2000). So 

the female should enjoy the general capacity to associate an odor to which she innately 
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responds with predation threat that she learns. This negative association helps to initiate a 

timely escape that increases her survival rate and thus that of her offspring. In cohort with 

this supposition, Dicke and Grostal (2001) proposed that when predator kairomones 

(constituting the learned cues) are not encountered in combination with cues from recently 

killed conspecifics (as innate cues), the predator cues might not represent a real danger. So, 

it would be challenging to verify this hypothesis through the exploration of the response of 

predator naive A. abdominalis, A. ervi or A. colemani on aphid patches in confrontation 

with predators fed intra or interspecific mummies. We hypothesize that the predator naïve 

parasitoids learn to recognize the predator when stimuli from conspecific mummies are 

paired with stimuli from predators. This kind of research would tackle another little 

explored domain: do arthropod preys utilize information about enemy presence from 

heterospecifics mainly when they are sympatric as for example A. ervi and A. colemani? 

Third suggestion, Aphelinus females are foraging in a host rich patch, where the abundance 

of extraguild preys dilutes the threat of IGP. Meyhöfer and Klug (unpublished data) found 

that the L3 C. carnea fed mostly two aphids during the five minutes recording session. Our 

video observations demonstrated that during the two hours recording, L2 C. carnea 

consumed four aphids maximum. We suggest releasing Aphelinus and L2 C. carnea 

antagonists in a patch with half of the prey currently offered and monitor their interactions. 

Aphelinus is a slow moving parasitoid, equipped with an efficient jumping reaction when 

disturbed. This behavior might constitute an alternative to learning, meaning that the 

parasitoid needs not to learn to respond to any threatening situation.   

In general in most behaviors (for example frequency of searching, contact, and oviposition 

attempts in M. persicae patches), and more specifically in the rewarding ones, predator 

experienced Aphelinus in a patch with L2 C. carnea behaved similarly to predator naive 

Aphelinus in a C. carnea free patch. These results suggest that at least with a double 

exposure to the predator, the number of exposure events does not seem to affect the 

intensity of the response. We conclude that the female Aphelinus seems to use a safety 

strategy responding to the predator cues with an intensity that matched her risk assessment, 

following our above mentioned suggestions.  

Furthermore, we have inversed the order of exposure to the predator with predator naïve 

Aphelinus in a patch harboring the C. carnea predator versus predator experienced females 

in a C. carnea free patch. This interplay did not seem to influence the intensity of the 

learned response. We found no statistical significance between the behaviors of the 

mentioned Aphelinus wasps in all the rewarding behaviors and for example, in the 
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frequency and percent duration of oviposition attempts behavior in M. persicae and M. 

euphorbiae patches. This result suggests that Aphelinus females seemed to rely primarily 

on the latest of the predator exposure events to respond to a predator threat. Because 

predation fluctuates in space and time (Ferrari and Chivers, 2006) this response of 

Aphelinus appears to be adaptive. Relying on the most updated information regarding the 

level of threat associated with a given predator reduces unnecessary costs associated with 

antipredator behaviors as for instance leaving the patch. 

The extraguild prey species played a trivial role in promoting the IGP interactions. In M. 

euphorbiae patches, we found higher frequency of contact predator and predatory contact 

behaviors. The antipredator response of the aphid explains this outcome. The M. 

euphorbiae aphid retreats its stylets and moves away from the feeding site to escape C. 

carnea attack. This pronounced aphid mobility offers a higher probability of predator-

parasitoid encounter in their search for the common resource. Furthermore, it makes M. 

euphorbiae more attractive for oviposition (e.g. Cournoyer and Bovin, 2005; Mackauer et 

al., 1996; Michaud and Mackauer, 1995; Turlings et al., 1993) as compared to the more 

quiescent M. persicae.  

To conclude, our study showed that despite the simultaneous presence of the two 

protagonists in the same patch, no lethal effects (interspecific killing) of IGP was found. A. 

abdominalis females often approached the predator up to a certain point as “predator 

inspection” phenomenon (Lima, 1998) but initiated no evasive behaviors. C. carnea are 

active predators with broad habitat domains. Prey facing highly mobile predators may be 

the least risk averse, considering the fitness costs (energetic and survival penalty) 

associated with continuous predator avoidance (Bouskila, 2001). Additionally, the wasp 

has not shown a behavioral alteration due to learning the presence of the L2 C. carnea 

predator. This is not a lack of her ability to express learning of predatory cues. Even tiny, 

short-lived animals are capable of associative learning (e.g. Papaj and Lewis, 1993). Since 

not all predators are equally dangerous (Kats and Dill, 1998), the parasitoid has expressed 

a functional choice dictated by the larval stage of C. carnea i.e. risk assessment through 

previous experience plus information update and the aphid abundance in the patch.  
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Direct and Indirect Interactions Between Aphelinus 

abdominalis and Chrysopa carnea: Effects of Intraguild 

Predation and Prey Antipredator Behaviors 

 

4.1. Abstract 

Intraguild predation (IGP) is defined as the killing and eating of species that use similar, 

often limiting, resources and are thus potential competitors. It constitutes one of primordial 

factors threatening the success of aphidophagous biological control programs exploiting a 

cocktail of protagonists. IGP is asymmetric between parasitoids and predators. In addition 

to the destruction of mummified aphids or killing the adult parasitoid, predators induce 

behavioral changes in the extraguild prey, which can reduce its survival and reproduction. 

The cost of antipredator behaviors may not only have negative impacts on the 

phytophagous prey, but also indirectly affect the inferior parasitoid. Combination of a 

predator and a parasitoid may exert an additive (proportional to individual enemy effect) or 

non-additive (greater or less than expected from the individual enemy effects) pest 

population suppression.  

We investigated the interactions between the aphelinid parasitoid Aphelinus abdominalis 

(Dalman) and the chrysopid predator Chrysopa carnea (Stephens), natural enemies of 

Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) aphids in microcosms 

each housing single sweet pepper plant. Our first objective is to determine the intensity and 

direction of the protagonists’ interactions by comparing the combined and individual 

impacts of both natural enemies over time. The second aim is to assess the direct (mummy 

destruction) or indirect (through extraguild prey behavioral modification) impacts of IGP. 

For that we censused aphid densities and recorded the number of mummified aphids (eaten 

or intact) on days two, five, eight and eleven following treatment application. The 

treatments are: 1) aphid alone (control), 2) A. abdominalis alone, 3) C. carnea alone, and 

4) A. abdominalis and C. carnea.  

Our results revealed that the parasitoid caused little immediate reduction in M. euphorbiae 

and M. persicae population growth over time. Consequently, the aphid density always 

converged with the control. The predator did not inflict density dependent reduction on 

both extraguild prey species except eight days following release. After eight days of 

4 



Chapter 4. Effects of Intraguild Predation and Prey Antipredator Behaviors 59  

 

interaction, the combined treatment effect was additive and synergistic in reducing M. 

euphorbiae and M. persicae population, respectively. In parallel, after eleven days of 

interaction, pairing both natural enemies was synergistic and antagonistic on M. 

euphorbiae and M. persicae suppression, respectively.   

No direct impacts of IGP were apparent. The induced antipredator response is prey 

specific. We found that within five days of interaction, M. euphorbiae antipredator 

behaviors resulted in lower number of mummies formed relative to the mummified M. 

persicae. M. euphorbiae  induced defensive responses caused a decrease in the aphid 

population without an increase in the predator weight gain eight days following the 

antagonists’ release. We conclude that in our system behaviorally mediated prey 

suppression constituted a factor more important than direct IGP in shaping the outcome of 

A. abdominalis-C. carnea interactions in M. euphorbiae microcosms.  

  

4.2. Introduction 
The increased awareness about environmental safety has directed the avenues of scientific 

research towards the blending of benign, reliable and long lasting tactics to combat pest 

problems. A possible but still debatable candidate is whether the introduction of multiple 

natural enemy species leads to more efficient pest suppression than the release of a single 

species. Enemy impacts often attenuate through a diverse network of reticulate species 

interactions (e.g. Ferguson and Stiling, 1996; Finke and Denno, 2003; Rossi, 2004). 

Intraguild predation (IGP), the consumption of one predator by another predator, enhances 

the reticulate nature of a food web (Finke and Denno, 2003). Predators not only feed on 

herbivorous prey but also either attack each others symmetrically (e.g. Persons and 

Rypstra, 2001) or asymmetrically (e.g. Meyhöfer and Hindayana, 2000; Meyhöfer and 

Klug, 2002), or interfere with another predator’s foraging behavior (Lima and Dill, 1990). 

Predator induced defensive responses are costly (Lima and Dill, 1990; Lima, 1998). A 

rapidly growing body of research on indirect interactions is building appreciation for the 

role of non-consumptive effects in multi-species communities (Nelson et al., 2004). 

Through induced changes in prey behavior, predators can transmit indirect effects upon 

their prey’s resources, competitors and other predators (Nelson et al., 2004). The ultimate 

result is often relaxed predator pressure and diminished top-down control of shared 

phytophagous prey (Snyder and Ives, 2001). Between predator and parasitoid guilds, the 

IGP interaction is always asymmetrical, the parasitoid being the inferior antagonist.  
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IGP is a ubiquitous phenomenon among aphidophagous systems (Lucas, 2005) subject to 

attack by specialist and generalist entomophagous arthropods. Because of their lack of 

specificity, generalists not only feed on the herbivorous preys, but also engage in IGP.    

Thus elucidating the impact of how a complex of predators interact to influence herbivore 

populations is of vital consequence for both population ecology and integrated pest 

management. If two predators do not interact, then their combined impact on the prey 

population will be additive and simply equal the sum of their individual impacts (Snyder et 

al., 2004). If one predator species kills (through IGP) or interferes with another predator’s 

foraging behavior then the enemy interaction is antagonistic and fewer than expected prey 

will be killed by their combined action (Finke and Denno, 2003; Snyder and Ives, 2001). In 

contrast, predator species can interact synergistically when the complex of predator species 

kill more prey in combination than the sum of their individual impacts (Cardinale et 

al., 2003; Losey and Denno, 1998).  

Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) is a solitary endoparasitoid 

reported to accept a number of cereal aphid species as hosts, e.g. Sitobion avenae (F.) and 

Metopolophium dirhodum (Walker) (Kalina and Stary, 1976), and Myzus persicae (Sulzer) 

and Macrosiphum euphorbiae (Thomas) on sweet pepper, aubergine, tomato etc. in 

greenhouses (e.g. Colombo and Fasce, 1994). Chrysopa spp. (Neuroptera: Chrysopidae) 

have long been noted as predators on a wide array of agricultural pests. In addition, they 

have many desirable attributes for use in biological control: they inhabit many diverse 

agroecosystems, they are tolerant to many insecticides (Bartlett, 1964; Lingren and 

Ridgway, 1967; Rajakulendran and Plapp, 1982; Shour and Crowder, 1980), and they are 

easily mass reared (Ridgway et al., 1970). Adults are pollinivorous feeding mainly on 

honeydew from homopteran species and floral nectar (Canard and Principi, 1984). Larval 

stages have a voracious appetite for aphids and mealybugs. They also attack spider mites, 

mite eggs, leafhoppers, small caterpillars, and thrips (Henderson and Raworth, 1991). This 

catholic feeding of Chrysopa carnea (Stephens) may also detract it from biocontrol 

effectiveness due to IGP. C. carnea is a well known IG predator (Meyhöfer and 

Hindayana, 2000; Meyhöfer, 2001; Meyhöfer and Klug, 2002). 

In microcosms housing each a single sweet pepper plant, we examined the effect of pairing 

the predator C. carnea and the parasitoid A. abdominalis on the population dynamics of the 

two aphid species M. euphorbiae and M. persicae over time. We aimed 1) to investigate 

whether a guild combination suppressed aphid population to a greater extent than a single 

enemy species and if so, 2) to decode whether suppression was additive (proportional to 
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individual enemy effects) or non additive (greater or less than expected from the individual 

enemy effects), 3) to study the direct (IGP) and indirect (through induced antipredator 

behavior of the prey) effects on the coexistence of both natural enemies and 4) to examine 

the effect of the extraguild prey species on the IGP interactions. 

 

4.3. Materials and Methods  

Rearing 

Sweet pepper (Capsicum annuum L., cv. “Mazurka”) plants and eggplants (Solanum 

melongena L., cv. “Ecavi”) (Solanaceae) were grown in the nursery of the Institute of Plant 

Diseases and Plant Protection (Leibniz University of Hannover, Germany), at a 

temperature of 20°C, 60-70 % rh and 16:8 L:D photoperiod. Aphid cultures were kept in 

climatic chambers in gauze cages at a temperature of 20 ± 1ºC, 16:8 L:D photo phase, and 

60 % rh.  M. persicae was exclusively reared on sweet pepper plants whereas a mixture of 

sweet pepper and eggplants was offered to M. euphorbiae to enhance colony proliferation 

and alate production. A stock culture of the grain aphid Sitobion avenae (F.) feeding on 

wheat (Triticum aestivum L.) (Triticae) was sustained to generate A. abdominalis 

mummies. After pupation, mummies were harvested and transferred into fine gauze-

covered acrylic cylinders that were placed on plastered pots. Emerged wasps were supplied 

with 15 % sucrose solution at 16:8 L:D cycle, 22 ± 1°C and 90 % rh until their 

experimental deployment.  

 

Experimental plants  

Four to five week old sweet pepper plants were inoculated with twelve to fifteen alate M. 

persicae or M. euphorbiae collected from the stock culture. The aphids were confined 

overnight in a clip cage to generate synchronized progeny. The subsequent day, the alates 

were removed, and the synchronized nymphs were allowed to develop on a single leaf 

enclosed in a 15×25 cm mesh bag (PA-132/40 Nylon, with mesh size 132 µm width and 

nylon size 0.083 mm) supplied by Franz Eckert GmbH (Germany). Five days later, the 

small bag was removed and the initial aphid density was adjusted to seventy aphids of all 

instars. The aphid population was allowed to propagate on the entire plant in a microcosm 

made of two metal wires the length of each is 50 cm. The wires were manipulated to form 

a tent like skeleton of 40 cm height, which was firmly inserted into the pot soil. This frame 

served to maintain a 40×80 cm mesh bag with identical mesh quality as previously 

described. To prevent the escape of aphids and protagonists from the microcosm, the mesh 
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cage was tightly closed with a rubber band at the bottom end of the pot. Each plant was 

placed in a 12×2 cm diameter plastic plate offering a tool to water the plant without 

opening the microcosm. M. persicae and M. euphorbiae infested plants were placed in two 

separate climatic chambers at 16:8 L:D regime, 22 ± 1°C temperature and 60-70 % rh.  

 

Protagonists’ treatments  

Three to seven day old naïve wasps removed from the stock culture were transferred to the 

sweet pepper plants each female singly enclosed in a plastic eppendorf cup and placed on 

the soil inside the microcosm. C. carnea predator was supplied by Katz Biotech AG 

(Germany). One day prior to testing, second larval stages of the predators were singly 

confined in 30 cm diameter plastic arenas covered with a plastic lid. The lid centre is 

perforated and replaced with mesh for ventilation. Each larva was offered a mixed diet of 

about thirty M. persicae, M. euphorbiae and S. avenae aphids. To assess the predator’s 

voracity, each individual was weighted on the test day and the initial weight recorded. 

Similarly, at the end of each treatment date, the predator when recuperated, was weighted. 

The C. carnea larvae were deposited directly on the soil inside the microcosm using a fine 

Kolinsky hairbrush.   

We established four treatments: 1) control (aphids alone), 2) aphids and one female A. 

abdominalis, 3) aphids and one L2 C. carnea, and 4) aphids and a combination one A. 

abdominalis and one L2 C. carnea. Each treatment constituted of twenty plants, every 

plant being a replication. In total, eighty plants per aphid species represented all the 

treatments. We then censused aphid densities at four different dates: on days two, five, 

eight and eleven after treatment application. Thus we were able to follow the impact of the 

C. carnea predator on both aphids and the parasitoid over time. Within each date, the 

plants were subjected to a completely randomized design so that no identical treatments 

between dates neighbor each others. In treatments where the parasitoid was prevalent, the 

plant bearing the aphids was kept after census inside the climatic chamber until 

mummification. After seven days, black mummies appeared. The number of mummies, 

when observed, was noted. The mummies were kept until parasitoid emergence. 

Thereafter, they were checked under the binocular and categorized as 1) emerged, with a 

distinctive hole in the middle or 2) eaten, with two holes on the sides. 
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Statistical analysis  

To evaluate the efficacy of predator alone, parasitoid alone, or combination of the natural 

enemies on the population build up of a given aphid species per distinct date, treatments 

with the protagonists were compared to the control or to each others. Population dynamics 

of aphids over time was followed by comparing the mean number of aphids of a particular 

treatment at different dates of data collection. To examine treatment merit between aphid 

species, the percent reduction was corrected for control data using the following formula 

100*
controlincountAphid

treatmentincountAphidcontrolincountAphidreductionpopulation% −=  

The weight gain of the predator was traced by subtracting the initial weight from the final 

weight recorded at the start and end of the experiment, respectively.  

Count data (i.e., numbers of aphids and numbers of mummies formed) and percent 

population reduction were √ (x+0.5) and arcsine √ transformed, respectively, before being 

subjected to statistical analyses. The data were analyzed using the PROC GLM procedure 

in SAS to determine single or interaction effects of factors (SAS Institute, 1999). 

Whenever significant interactions were observed between factors, the level of one factor 

was compared at each level of the other factor. The significance of individual treatment on 

aphid population reduction was evaluated by comparing the numbers of aphids under 

treatments to the one under no natural enemies using Dunnett’s two-sided test. When 

significant factor effects were detected by means of ANOVA, treatments at different levels 

of the respective factor were compared using Tukey’s multiple means comparison 

procedure. A significance level of α = 0.05 was used in all analyses. Data are presented as 

means ± SE. 

Aphidophagous predators occurring simultaneously in a crop and exploiting the same food 

resource are likely to interact. Therefore, we examined the consequences of combined 

versus single release of A. abdominalis and C. carnea on M. euphorbiae and M. persicae 

population reduction. We have opted to scrutinize the protagonists’ interactions at days 

eight and eleven. We hypothesize that by then, the predator enjoys a voracious feeding 

habit, mummification occurred and thus opportunity for direct effects of IGP is prevalent.  

The additive or non-additive effect (synergism or antagonism) of the predator and the 

parasitoid was assessed by the modified Finney (1964) procedure (McVay et al., 1977; 

Salama et al., 1984) for probit analysis. The expected additive percent population reduction 

(Me) of the combined A. abdominalis-C. carnea treatment was calculated by: Me = Mn + 

Mi (1-Mn), where Mn and Mi are the observed percent population reduction caused by the 
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A. abdominalis and C. carnea alone, respectively. Results from the chi-square 

test, χ2 = (Mni-Me)2/Me, where Mni is the observed percent population reduction caused 

by A. abdominalis-C. carnea combination, were compared to a chi-square tabulated for 1 

df, and α = 0.05. If the calculated chi-square value exceeded the tabulated value, a non-

additive effect (i.e. synergistic or antagonistic) was assumed (Finney, 1964). Furthermore, 

if the difference Mni-Me = D had a positive value, a significant interaction was considered 

synergistic; if D had a negative value, a significant interaction was considered antagonistic.  

 

4.4. Results 

Time related combined and independent impacts of Aphelinus abdominalis and 

Chrysopa carnea on aphid population growth 

To study the time related impact of the natural enemies when used singly or combined on 

the aphid population growth, we have undertaken two types of comparisons: first, we have 

assessed the natural enemy treatments’ effect on the aphid population density per date of 

data collection. Second, we have followed the interactions between each natural enemy 

treatment and the aphid preys throughout the experimental period namely across the dates 

of data collection.  

Treatment effect on aphid density per date of data collection 

We examined aphid-A. abdominalis population dynamics in microcosms in the presence 

and absence of C. carnea. Results elucidate that the mean number of aphids recorded was 

significantly affected by the treatment applied and the date of data collection (Table 4.1). 

In days two and five, none of the natural enemy treatments, single or combined, had M. 

persicae or M. euphorbiae densities that differed from the control. Furthermore, the 

combined or single impact of the protagonists on M. euphorbiae or M. persicae density 

was alike (Figure 4.1).  

At day eight, the mean number of M. euphorbiae detected between the parasitoid and the 

control treatments was similar. The predator and the combined treatment yielded a 

significant decline in the aphid population when compared to the control. Furthermore, 

combining the two protagonists caused the lowest M. euphorbiae population growth. C. 

carnea alone treatment resulted in medium aphid suppression. The highest M. euphorbiae 

density was recorded in the parasitoid treatment (Figure 4.1). In parallel, only when A. 

abdominalis and C. carnea were combined, M. persicae population density was 
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significantly lower than the control or any of the antagonists alone treatment eight days 

following natural enemy release (Figure 4.1).    

At day eleven, the combined treatment inflicted a higher M. euphorbiae population 

reduction than the control or each single beneficial treatment (Figure 4.1). In contrast, the 

mean number of M. persicae recorded at day eleven was not significantly affected by the 

natural enemy presence when the beneficial treatments were compared to the control or 

among each others (Figure 4.1) 

Treatment effect on aphid density across dates of data collection 

We have investigated the impact of each beneficial treatment on the dynamics of the aphid 

population throughout the experimental period, i.e. across dates.  

Results reveal a significant increase in M. euphorbiae density over time in the control 

treatment. The aphid population growth was slow early in the experiment then reached an 

intermediate density on days five and eight to attain the highest peak at the eleventh day. In 

contrast, M. persicae displayed a different scenario: the aphid population build up in the 

control was slow at days two and five but abruptly and significantly increased at days eight 

and eleven (Figure 4.1).  

With the release of the parasitoid singly, a similar outcome in the population dynamics of 

both extraguild preys was traced: after two and five days of parasitoid-prey interactions, A. 

abdominalis initially depressed the mean aphid numbers but this effect diminished with 

time, the aphid densities eventually significantly increasing to converge at eight and eleven 

days after the wasp release (Figure 4.1).  

The noteworthy effects of C. carnea became apparent at different dates scaled to the 

generation time of the predator. C. carnea presence in M. euphorbiae microcosms led to a 

balanced M. euphorbiae population during the course of the experiment and sustained a 

low M. persicae density two and five days following the predator application. A relaxed 

aphid control was translated with a significantly pronounced raise in the density of M. 

persicae eight and eleven days after using the predator (Figure 4.1).  

The combined treatment retained a low M. euphorbiae population with overall similar 

mean aphid densities throughout the trial period (Figure 4.1). M. persicae population 

exhibited a significant linear increase when both protagonists were jointly applied: as the 

time to collect the data expands from two to eleven day period of the antagonists’ 

interactions, the aphid density build up significantly upsurges (Figure 4.1).   
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Table 4.1. Summary of ANOVA results for densities of Macrosiphum euphorbiae or 

Myzus persicae hosts recorded after treatment applications at different dates of data 

collection. 

 

Source of variations df F P 

Treatment  3 18.68 <. 0001 

Date  3 105.10 <. 0001 

Treatment*Date 9 4.29 <. 0001 

Host  1 123.08         <. 0001 

Treatment *Host  3 2.59   0.056 

Date *Host  3 25.58 <. 0001 

Treatment*Date*Host 9 2.19 0.028 

 
Treatments applied are aphid alone as control, Aphelinus abdominalis alone, Chrysopa carnea 

alone, and combination of Aphelinus abdominalis and Chrysopa carnea. 

The dates of data collection are 2, 5, 8 and 11 days after treatment application. 
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Figure 4.1. Mean (± SE) aphid densities collected at different dates (2, 5, 8 and 11 

days after treatment application) as affected by different natural enemy treatments.  
Bars on a given date for a given aphid species followed by the same small letters do not differ significantly.  

Bold small letters serve to compare control vs. treatments with natural enemies.  

Italic small letters serve to compare treatments with protagonists among each others.  

Bars of similar treatments over different dates per aphid species followed by capital letters do not differ 

significantly.      
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Interaction type between the antagonists 

Within eight days, the combination of A. abdominalis and C. carnea was additive for M. 

euphorbiae control (Table 4.2 a) and synergistic for M. persicae population reduction 

(Table 4.2 b). 

Within eleven days, the presence of each natural enemy mutually improved the outcome of 

the other when M. euphorbiae was the extraguild prey. Therefore, the effect of the natural 

enemy combination was synergistic (Table 4.2 c). In contrast, when M. persicae was the 

host, the effect of pairing the two beneficials was antagonistic (Table 4.2 d). 

 

Effect of the extraguild prey species on the performance of the antagonists  

We investigated the impact of the extraguild prey species, M. euphorbiae or M. persicae, 

on the performance of A. abdominalis and C. carnea used singly or in combination over 

time.  

Results illustrate that no significant difference in the mean percent aphid population 

reduction per antagonist treatment between aphid species was detected at days two 

(ANOVA df = 5, F = 0.21, P = 0.956) and five (ANOVA df = 5, F = 0.68, P = 0.645) after 

treatment application.  

In parallel, the aphid species significantly affects the mean aphid percent population 

reduction caused by the protagonist treatments eight and eleven days following the 

beneficials’ release (Table 4.3).   

After a period of eight days, predation alone yielded three-fold higher mean percent M. 

euphorbiae reduction 60.38 % (± 12.20 SE) relative to M. persicae population decline 

19.74 % (± 12.09 SE). The interspecific mean percent aphid decline in the parasitoid alone 

or in the combined treatments was statistically alike (Figure 4.2).  

Following an eleven-day period of interactions, the combined treatment resulted in three 

fold higher mean percent decrease of M. euphorbiae 92.85 % (± 4.29 SE) as compared to 

M. persicae 28.88 % (± 10.36 SE). None of the single antagonist treatments exhibited 

significant means percent reduction between M. euphorbiae and M. persicae preys 

(Figure 4.2).  
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Table 4.2. Interactions between Aphelinus abdominalis and Chrysopa carnea: effects 

on Macrosiphum euphorbiae and Myzus persicae. 

 

 a) Additive effect against Macrosiphum euphorbiae aphid eight days after treatment 

application. 

  

Mni Mn Mi Me χ2 calculated χ2 tabulated 

0.7710 0.3354 0.6038 0.7367 0.0016 0.0039 

  

b) Synergistic effect against Myzus persicae aphid eight days after treatment application. 

 

Mni Mn Mi Me χ2 calculated χ2 tabulated D 

0.5308 0.2656 0.1974 0.4106 0.0352 0.0039 0.1202 

 

 c) Synergistic effect against Macrosiphum euphorbiae aphid eleven days after treatment 

application. 

 

Mni Mn Mi Me χ2 calculated χ2 tabulated D 

0.9285 0.4483 0.5518 0.7527 0.0411 0.0039 0.1758 

 

 d) Antagonistic effect against Myzus persicae aphid eleven days after treatment 

application. 

 

Mni Mn Mi Me χ2 calculated χ2 tabulated D 

0.2888 0.2332 0.3896 0.5319 0.1111 0.0039 -0.2431 

 
Mni = The observed percent population decrease caused by the A. abdominalis- C. carnea               

                         combination. 

Mn = The observed percent population decrease caused by A. abdominalis. 

Mi = The observed percent population decrease caused by C. carnea.               

Me = The expected additive percent population decrease for the combination of the A.   

                        abdominalis-C. carnea treatment. 
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D = Mni-Me (D is positive implies synergism; D is negative implies antagonism).  

χ2 calculated = (Mni-Me)2/Me. 

χ2 tabulated (df = 1; α = 0.05). 

 

Table 4.3. Summary of ANOVA results of percent population decrease of 

Macrosiphum euphorbiae or Myzus persicae hosts as affected by the antagonist 

treatments and the two dates of data collection. 

  

a) 8 days after treatment application  

Source of variations df F P 

Host 1 6.00 0.023 

Treatment 2 4.75 0.020 

Host*Treatment 2 0.98 0.392 

 

 b) 11 days after treatment application 

Source of variations df F P 

Host  1 11.27 0.0030 

Treatment 2 2.19 0.136 

Host*Treatment  2   2.53   0.104 

 
The antagonist treatments are Aphelinus abdominalis alone, Chrysopa carnea alone, or a 

combination of Aphelinus abdominalis and Chrysopa carnea. 
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+

 
Figure 4.2. Mean percent aphid reduction (± SE) as affected by different antagonist 

treatments, host species and treatment application dates.  
For a given date and a given treatment and between aphid species comparison, bars followed by the same 

small letters are not significantly different (Tukey, α = 0.05).  

 

Intraguild predation effects on the parasitoid  

We studied whether the combined use of C. carnea and A. abdominalis could be 

detrimental over time (within and across dates of data collection) to the parasitoid through 

direct effect of IGP. Overall, our results revealed that C. carnea caused minor mummy 

destruction through mummy consumption. After eight days of parasitoid-predator 
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interactions, 0 % eaten and 100 % emerged were recorded with M. euphorbiae as 

extraguild prey, and 2.63 % eaten and 97.36 % emerged with M. persicae as herbivore 

victim. Eleven days following the paired release of the natural enemies, 0 % eaten and 

100 % emerged were recorded in M. euphorbiae microcosms. 0.45 % eaten and 99.54 % 

emerged were noted in microcosms housing M. persicae aphids. 

Within dates  

The dates of data collection had a significant impact on the mean number of mummies 

formed (Table 4.4). The results revealed that the average number of mummified M. 

euphorbiae in microcosms with or without the predator was alike at two, five, eight and 

eleven days following the combined use of C. carnea and A. abdominalis (Figure 4.3). 

Only after eleven day period, the predator’s presence has yielded a 1.6 lower mean number 

of M. persicae mummies relative to the parasitoid alone treatment, (53.25 ± 6.94 SE) 

versus (85.60 ± 10.89 SE), respectively (Figure 4.3).   

Across dates  

Across dates, a steady increase in the mean number of mummified M. euphorbiae was 

traced in treatments where A. abdominalis was foraging alone or paired with the predator 

(Figure 4.3).  

There was a trend in the mean number of mummified M. persicae in the parasitoid alone 

treatment: low at days two and five, intermediate at day eight, and reaching a peak at day 

eleven following treatment application (Figure 4.3). The combination with the predator has 

not affected A. abdominalis oviposition success in M. persicae over time. A tendency was 

outlined in the mean number of mummies formed: a raise between days two and five, then 

a decrease at day eight followed by a minor increase at day eleven after the antagonists’ 

release (Figure 4.3). 

Effect of extraguild prey species 

The species of the extraguild prey had a significant impact on the average number of the 

mummified aphids formed (Table 4.4). More specifically, results disclose that two days 

following the antagonists’ application, the mean number of mummified M. persicae was 

five fold higher then that of M. euphorbiae in the parasitoid alone treatment, and eleven 

fold higher in the combined treatment (Figure 4.3).   

Comparable mean M. euphorbiae and M. persicae mummy numbers were obtained after 

Aphelinus female has been foraging alone for five days. But in the presence of the 

predator, 2.75-fold higher mean number of mummified M. persicae relative to M. 

euphorbiae mummies was found (Figure 4.3). After eight and eleven days of interactions, 
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the Aphelinus oviposition success in M. persicae and M. euphorbiae preys was comparable 

in the presence and absence of the predator (Figure 4.3).   

 

Table 4.4. Summary of ANOVA results of numbers of mummies formed as affected 

by the treatment, the aphid host and the dates of data collection. 

 
Source of variations df F P 

Treatment  1 3.04 0.086 

Date  3 17.91 <. 0001 

Treatment*Date 3 2.46 0.071 

Host  1 22.06 <. 0001 

Treatment *Host  1 0.19 0.666 

Date *Host  3 0.42          0.740 

Treatment*Date*Host 3 0.10          0.962 

 
The treatments are Aphelinus abdominalis alone or combined with Chrysopa carnea. 

The aphid host are Macrosiphum euphorbiae or Myzus persicae. 

  The dates of data collections are 2, 5, 8 and 11 days after treatment application. 
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Figure 4.3. Mean ± (SE) number of mummies formed as affected by the treatment, 

the dates of data collection and the extraguild prey species. 
The treatments are Aphelinus abdominalis alone or combination of Aphelinus abdominalis and Chrysopa 

carnea. 

The dates of data collection are 8 and 11 days after treatment application. 

*/n.s. significant/no significant difference between with and without predator treatments at a given date for a 

given host species.  

Bars of a given host species at a given predator level for different dates followed by the same small letters do 

not differ significantly.  
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For comparison of the same treatment at a similar date between species, bars followed by capital letters are 

not significantly different (Tukey, α = 0.05).   

(n) indicates the number of replications per treatment. 

 

Predation efficiency of Chrysopa carnea  

To examine the voracity of C. carnea over time, we recorded the weight gain of the 

predator. The predator fed alike in the single or combined treatment (Table 4.5). Therefore, 

data were pooled and the predator weight gain was analyzed across dates (Table 4.5). C. 

carnea showed a steady increase in weight gain with the date of data collection when both 

aphid species were inspected (Figure 4.4). The host identity had also a notable effect on the 

mean predator weight gain (Table 4.5). The consumption of M. euphorbiae or M. persicae 

resulted in a similar weight gain after two, five and eleven day foraging period. Within 

eight days, a diet on M. euphorbiae resulted in a significantly lower mean C. carnea 

weight gain relative to a diet on M. persicae (Figure 4.4).  

 

Table 4.5. Summary of ANOVA results of Chrysopa carnea weight gain as affected by 

the aphid host, the date of data collection, and the presence or absence of the 

Aphelinus abdominalis parasitoid. 

 

Source of variations df F P 

Host 1 8.39 0.006 

Date 3 77.18 <. 0001 

Date *Host 3 2.43 0.076 

Parasitoid 1 0.34          0.565 

Host*Parasitoid 1 0.70 0.407 

Date*Parasitoid 3 1.90            0.141 

Host*Date*Parasitoid 3 2.58          0.064 

 
The aphid host species is either Macrosiphum euphorbiae or Myzus persicae.  

The dates of data collection are 2, 5, 8 and 11 days after treatment application. 
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Figure 4.4. Mean predator weight gain (mg) (± SE) as affected by the days after 

treatment application and the species of the aphid host. 
Since parasitoid presence or absence does not significantly affect the mean predator weight gain, the data 

were pooled among treatments (presence and absence of the parasitoid).  

Small similar letters for a given date and a given aphid species show non-significant difference in the mean 

predator weight gain.  

Capital letters for a given date show non-significant difference in mean predator weight gain between aphid 

species (Tukey’s test, α = 0.05). 

 

4.5. Discussion   
In microcosms housing whole sweet pepper plants, we evaluated the individual and 

combined effects of A. abdominalis parasitoid and C. carnea predator on M. euphorbiae 



Chapter 4. Effects of Intraguild Predation and Prey Antipredator Behaviors 77  

 

and M. persicae population growth over time. We also investigated the type of interaction 

(additive or non additive) between the two antagonists. We assessed the direct (IGP 

through mummy consumption) and indirect (predator induced changes in prey behavior) 

interactions between the two beneficials. Finally we examined whether the species of the 

extraguild prey promotes IGP interactions.  

Our results revealed that within a foraging period of two, five, eight and eleven days, a 

single A. abdominalis has not prevented the mean M. euphorbiae and M. persicae densities 

from increasing steadily and thus converging with the control (Figure 4.1).  

Furthermore, in both aphid species, the number of mummified aphids was steady over time 

in the single or combined antagonist treatments. The dilution effect of the parasitized 

aphids within a continuously increasing aphid population density offers a potential 

explanation to this result.  

Our findings further demonstrate that after an eight-day period, C. carnea reaching the L3 

stage, a voracious aphid consumer, inflicted M. euphorbiae but not M. persicae densities 

significantly lower than the control (Figure 4.1). Two possible reasons, which are not 

mutually exclusive, underlie this result: first, the reproductive capacity of each aphid 

species. M. euphorbiae is less fecund than M. persicae. The number of nymphs produced 

per M. euphorbiae female varies between thirty to fifty as compared to an average fertility 

of eighty nymphs per M. persicae female. Within eight days, the M. persicae population 

density 1641.6 (± 221.74 SE) has reached a six fold higher peak then the M. euphorbiae 

263.5 (± 68.73 SE) one, impractical to be suppressed by a single L3 C. carnea. L3 C. 

carnea is capable of consuming up to 200 aphids per week.  

Second, the antipredator response of the aphid which is species specific. We have recorded 

using a multiple video camera set up and analyzed the behavior of M. euphorbiae and M. 

persicae in patches with or free from C. carnea (Chapter 3). Our video observations 

demonstrated that given an encounter with C. carnea, a M. euphorbiae aphid frequently 

leaves its feeding location and suffers an interruption in its feeding activity. A M. persicae 

aphid remains at its feeding site and suffers consumption.  

Under our experimental conditions, the M. persicae captured at any location on the sweet 

pepper plant will buffer the predation effect by arresting the predator at a specific spot of 

clustered prey availability. This provides other M. persicae females an enemy free niche 

where to sustain the colony. In parallel, M. euphorbiae avoiding consumption suffer costs 

through loss of feeding site and time i.e. lowered energy intake which translates into a 

reduction in reproductive output. Within eight days, the higher M. euphorbiae percent 
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reduction in comparison to M. persicae (Figure 4.2) and the highest mean weight gain of 

C. carnea on M. persicae (Figure 4.4) clearly justify this proposed premise.  

Eleven days after C. carnea release, the predator entered the pupation phase. Therefore, the 

aphid density in both extraguild prey species was released from control and was 

comparable to the aphid alone treatment (Figure 4.1).  

C. carnea caused lethal or direct (mummy consumption) and indirect or non lethal (lower 

number of mummy formation) effects on the parasitoids. Those effects are mediated by 

antipredator behavior of the aphid prey.   

After two and five days of parasitoid-predator interactions, our data prove that the predator 

induced defensive behaviors imposed on the parasitoid fecundity costs. Those were 

expressed in the lowest mean number of mummified M. euphorbiae relative to that of M. 

persicae (Figure 4.3).   

Direct IGP effects were minimal. No M. euphorbiae consumed mummies were found. The 

percent of consumed mummified M. persicae ranged between 2.63 % within eight days 

and 0.45 % at eleven day interaction period. This result is explained by the fact that 

mummies appear seven days following parasitoid release into the microcosms. So starting 

from day eight, the predator is given the opportunity to prey on mummies. But between 

day eight and eleven, most of the predators used were already in the pupal stage.  

Within eleven days, the M. persicae oviposition success was significantly lower in the 

presence of the predator (Figure 4.3). The possibility that C. carnea has killed the 

parasitoid can de discounted as a factor. The combined treatment was replicated four times. 

50 % of the parasitoids were recuperated but 100 % of the plants carried mummies. 

Perhaps, before pupation, the predator has consumed parasitized M. persicae (Meyhöfer 

and Hindayana, 2000; Meyhöfer and Klug, 2002). A. abdominalis prefers the second to 

third larval stages of aphids. Chrysopa like other generalist predators (e.g. Roger et 

al., 2001) may not exhibit any preference for parasitized or unparasitized aphids at a 

similar stage of development but may prefer younger nymphs, regardless of whether or not 

they were parasitized. Furthermore, if there is excess food, C. carnea will kill more preys. 

This excess prey killing of younger nymphs might have negatively impacted the mean 

number of mummified M. persicae formed. 

Within eight days, we obtained that A. abdominalis and C. carnea combination yielded an 

additive effect on M. euphorbiae control and synergistic impact on M. persicae population 

decrease. Within eleven days, treatment combination resulted in a synergistic effect on M. 

euphorbiae decline and an antagonistic outcome on M. persicae reduction relaxing the 



Chapter 4. Effects of Intraguild Predation and Prey Antipredator Behaviors 79  

 

aphid population to build up to a level similar to the control treatment (Figure 4.1). 

Parasitoid-predator interactions have two different modes of actions, behavioral 

interactions and trophic interactions (Meyhöfer et al., unpublished data). Both can shape 

the overall efficiency of the antagonist combination and may contribute to the observed 

effects in our experiment.   

To summarize, the predator has not exerted a density dependent control mainly in M. 

persicae microcosms but caused a reduction in M. euphorbiae population growth by costly 

antipredator behaviors. This has indirectly imposed a reproductive cost on the parasitoid 

reflected by a lower number of M. euphorbiae mummies formed relative to the mummified 

M. persicae.  

No IGP through mummy destruction was detected mainly due to the abundance of the 

extraguild prey diluting the IGP effects (Lucas, 2005; Meyhöfer and Hindayana, 2000) and 

unfavourable conditions favoring predation on mummies. .  

Within eight days our data supports additivity and synergism of predator-parasitoid effects 

on M. euphorbiae and M. persicae respectively, while within eleven days, the effects on M. 

euphorbiae were synergistic and on M. persicae antagonistic.  

Our results show that direct IGP effects, when prevalent, were diluted by the abundant 

extraguild prey density. Behaviorally induced non-lethal effects of C. carnea on M. 

euphorbiae affected the IGP interactions. Hence, the outcome of IGP is not only a function 

of the interactions between the predatory guilds, but also the extraguild prey species plays 

an important role.  
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General Discussion 

 

The increased awareness about side effects of synthetic pesticides has focused the avenues 

of research towards ecologically sound alternatives such as biocontrol agents. In 

aphidophagous systems, the use of predators and parasitoids as natural enemies offers a 

promising approach to combat aphid pests. 

Arthropods live in a chemical world (Dicke and van Loon, 2000; Vet 1999). Like most 

animals, foraging parasitoids have to deal with temporal or spatial changes in resources 

(Vet, 1999). In a challenging environment, flexibility in behavioral response is a necessity 

and learning provides an adaptive mechanism (Papaj, 1993). The use of general host cues 

during foraging including an innate reaction to infochemicals seems to be adaptive for 

carnivores in general, regardless of dietary specialization (Steidle and van Loon, 2003). 

Learning is not only restricted to the host location process, but also is involved in the 

improvement of the host handling skills as the parasitoids handle successive hosts.  

Parasitoids not only base their foraging decisions on external information e.g. the 

chemicals they encounter but also on internal information i.e. experienced based 

information stored in their memory (Vet 1999) and their physiological state (Lewis et 

al., 1990; Turlings et al., 1993). Integration of these resources of information dictates the 

behavioral performance. However, food webs of most ecosystems are reticulate and 

interaction complex (Vet, 1999). Carnivorous species may feed on one another through 

IGP thus eliminating potential competitors. More specifically, interactions between 

predators and parasitoids have two outcomes on the inferior guild, i.e. the parasitoid: 

direct, through IGP and indirect that is behaviorally induced effects of the predators on the 

herbivore. In aphidophagous systems, IGP is a rule rather than an exception. 

With this background, the present study was initiated to explore the potential enhancement 

of M. euphorbiae and M. persicae control through the manipulation of A. abdominalis 

learning capacity from three different angles: (i) conditioning the parasitoid on one aphid 

species and offering her the alternate species (Chapter 2), (ii) combining A. abdominalis 

with L2 C. carnea and investigating the risk assessment capacity of the wasp through 

learning of predatory cues (Chapter 3), (iii) examining the direct (IGP) and indirect 

(behaviorally induced) effects mediated by the extraguild prey species of A. abdominalis-

C. carnea interactions (Chapter 4). 

5 
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Host switching trial between M. persicae and M. euphorbiae revealed no significant effect 

on A. abdominalis mummy production. In addition, the Aphelinus wasps handled 

efficiently the switched aphid species after being trained on a second one (Chapter 2).  

In our experiment, we have displaced any potential pre-imaginal learning due to rearing the 

Aphelinus females on S. avenae. It would be relevant to follow in a host-switching 

experiment, for example, how suitable are the nymphs of M. persicae for parasitoids 

originating from mummified M. euphorbiae and vice versa. Such finding will tackle the 

fitness costs issue resulting from host switching, a domain unexplored in the current study.  

Mölck et al. (2000) found in a wind tunnel choice test, with a M. euphorbiae infested 

pepper and an infested aubergine plant as odor sources, that female Aphelinus trained on 

one of the offered plant host combinations significantly preferred the odor of the learnt 

plant host complex to that of the different plant host complex.  

Since generalist antagonists use general chemical cues present in all their hosts or food 

plants, an interesting question might be investigated with a wind tunnel set up: do the 

synomones emitted by the pepper plant as a response to M. persicae herbivory share a 

chemical similarity with those produced by M. euphorbiae feeding as key indicators of 

host presence from distance? Such results not only reveal the importance of Aphelinus host 

experience background on host location, but also provide an insight into how the parasitoid 

might deal with plant signals induced by two of her aphid hosts.  

If those findings are encouraging, the phenomenon of associative learning in A. 

abdominalis parasitoids may be exploited for purpose of biological control (Duan and 

Messing, 1999; Grasswitz, 1998; Prokopy and Lewis, 1993). Hence, it may be possible to 

condition on single aphid species mass-reared parasitoids prior to their release in the target 

area. When done properly, this may increase strongly the searching efficiency of the 

released insect such that control will be more effective (e.g. Papaj and Vet, 1990) and a 

mixed infestation of both aphid preys will be successfully managed.  

Results from chapter 3 indicate that in IGP interactions associative learning helps the A. 

abdominalis females to offset unnecessary escape behavior by providing accurate 

information about the current predation risk. The behavioral responses and oviposition 

success of predator experienced Aphelinus were similar to those of predator naïve wasps in 

patches with or without the L2 C. carnea. A. abdominalis inspected the predator through 

“contact predator” behavior and in some cases attacking the predator with the ovipositor. 

Nevertheless, Aphelinus exhibited no defensive behavior (e.g. patch leaving or depressed 

oviposition). Further experiments exploiting the associative learning capacity of the wasps 
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should focus on Aphelinus reaction to multiple information sources e.g. direct that is 

presence of the predator and indirect namely conspecific alarm pheromones resulting from 

C. carnea consumption of mummified aphids. Consequently, Aphelinus is expected to 

display more pronounced antipredator behavior than her reaction to a single source of 

information.  

The exchange between L2 and the voracious L3 C. carnea feeding on mummified aphids is 

also important. This type of experiment permits to answer the following questions: can 

Aphelinus determine the degree of threat posed by C. carnea based on the concentration of 

the conspecific alarm pheromone? Is there a threshold of alarm cues likely to represent 

threat above which the females respond and below which they display no or minor 

response? Results of such studies verify the parasitoid’s capacity to relate potential risk to 

recent experience.  

A final step would be to examine the persistence of the learned response in the parasitoid’s 

memory and project this response over timescales relevant to predation risk in the natural 

environment.  

Since there is a flexible interplay between predator and prey, there is a continuum of ways 

that a prey responds to different stages of the same predator species.   

Results of chapter 4 reveal that the IGP interactions between the same Aphelinus individual 

and the C. carnea predator growing over the experimental time scale can be negative 

(antagonistic) or positive (additive or synergistic). Direct predation of C. carnea on the 

aphid prey imposes an immediate cost on the foraging Aphelinus (loss of an oviposition or 

a host feeding opportunity or mummy destruction). The abundance of extraguild prey 

diluted the direct IGP effects of C. carnea on A. abdominalis but not the indirect ones 

mediated by the antipredator behavior of the aphid (Chapter 4). The aphid defensive 

behavior is species specific (Chapters 3 and 4).  

Therefore, a complete understanding of the A. abdominalis-C. carnea interactions requires 

an appreciation of the behaviorally induced non lethal effects of the predator on each of the 

extraguild preys. On one hand, demonstrating the longer term dynamical consequences of 

non-consumptive predator effects will await longer-term experiments spanning multiple 

generations of the predator, parasitoid and the prey. On the other hand, within the time 

scale set for this study, an experiment with different parasitoid: predator densities relative 

to the 1:1 ratio used here could create stronger interactions in a more competitive situation. 
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In conclusion, this study showed that the adaptive value of learning in A. abdominalis 

revolves around two points: first, improved skills in host handling behavior, which is a 

credit for future exploitation for biological control purposes. Second, a flexible predation 

risk assessment, shedding some light on the role of learning of cues associated with active 

predators. Such information helps to assess the efficiency of coexistence of multiple 

natural enemy species and the costs for the success of aphidophagous biological control 

approaches. 
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