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Summary 

Despite numerous studies on in vivo function of plant nonspecific lipid transfer 

proteins, their respective role is still quite unclear. This study was conducted to grasp 

the in vivo function of this puzzling nsLTP in apple (Malus domestica cv. Elstar).  

In the case of apple scab disease in apple (M. domestica cv. Elstar) caused by the 

fungus Venturia inaequalis, it has been demonstrated recently (Gau et al., 2004) that 

the protein level of nsLTP has declined to undetectable level in the apoplast after 

infection with V. inaequalis. The same result has been observed after application of 

the non-pathogenic antagonist Pseudomonas fluorescens Bk3 on the leaves of apple 

trees (Kürcüoglu et al., 2004). This finding indicates that nsLTP is implicated in the 

infection process. However, the exact role of nsLTP in this scenario is still unclear.  

Southern blot analysis showed that nsltp of M. domestica susceptible cultivar Elstar 

as well the apple scab resistant cultivar Remo is a multigene family, at least ten 

copies have been detected in this study. Monitoring the transcript level via Northern 

blot and radioactive labeled probe of nsltp revealed that the transcript level of the 

susceptible cultivar Elstar has drastically declined after infection within one day. For 

further investigations, the cDNA of nsltp of both cultivars Elstar and Remo was 

amplified by RT-PCR, cloned and sequenced.  

Sequence analysis revealed that apple nsltp like other plant species nsltp has eight 

conserved cysteine residues and it is free of tryptophan. Moreover, the first 24 amino 

acids in the N-terminal domain represent a putative leader sequence which is 

responsible for navigation of nsLTP to the secretory pathway. This was confirmed via 

particle bombardment and transient expression of the GFP tagged mature nsLTP. 

Deletion of the putative leader sequence resulted in the failure of mature nsLTP to 

enter the secretory pathway. In contrast it is expressed in the cytosol. Remarkably 

transient expression of nsLTP in fusion with GFP showed that nsLTP seems to be 

localized in different cell compartments, but mainly associated with the envelope 

membrane of the chloroplast. However GFP fluorescent signals could be detected in 

bodies like vesicles and probably in mitochondria, peroxisomes. Interestingly, under 

light conditions nsLTP has been localized exclusively in the chloroplast of the guard 

cell. Sequence evaluation of M. domestica nsLTP predicted a putative 

phosphorylation site that was confirmed through immunoblot using antibodies against 
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phosphorylated tyrosine residues. This finding indicates that nsLTP has a paramount 

key element that enables it to play a pivotal role in the plant cell.  

The upstream region of nsltp was amplified from the susceptible cultivar Elstar and 

the resistant cv. Remo by using Genome Walker Kit. Screening the nucleotide 

sequence of the upstream regions for the cis-acting regulatory elements showed that 

these regions are very rich in light responsive elements. Ten motifs have been 

recorded in both susceptible and resistant apple cultivars.  Promoter activity studies 

on these upstream regions using particle bombardment and DsRed revealed that 

both of them could drive the expression machinery for the DsRed marker gene under 

light conditions. However in the case of Remo the expression was higher than in 

Elstar. These results confirmed the close relation between the presence of the light 

responsive elements predicted by computer program and chloroplast localization on 

one hand and the light dependence of the promoter activity on the other hand.    

Based on our observations it can be suggested that nsLTP might act as a transporter 

for lipid in vivo. Since lipids can be involved in several fundamental functions within 

the plant cell, nsLTP can also be involved in the same functions. In general nsLTP 

could be involved in photosynthesis, signal transduction, vesicle trafficking, secretion, 

cytoskeletal rearrangement, growth and development, seed germination, organ 

differentiation, pollination, responses to biotic and abiotic stresses and programmed 

cell death.  

 
Key words: apoplast, non-specific lipid transfer protein, Malus domestica, Venturia 

inaequalis, green fluorescent protein, red fluorescent protein. 
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Zusammenfassung 

Die vielfältigen in vivo Funktionen des nicht-spezifischen Lipidtransproteins 

(nsLTP) in Pflanzen sind trotz intensiver Untersuchungen nach wie vor unklar. 

Für das Apfelschorf suszeptible Kultivar Malus domestica cv. Elstar konnte gezeigt 

werden, dass während der Infektion mit dem pilzlichen Pathogen Venturia 

inaequalis das nsLTP im Apoplasten der Pflanzen auf einen nicht nachweisbaren 

Spiegel sinkt (Gau et al. 2004). Die gleichsinnige Beobachtung über die Abnahme 

des nsLTP nach der Applikation des nicht-pathogenen Antagonisten 

Pseudomonas fluorescens Bk3 wurde von Kürcüoglu et al. 2004 gezeigt. Diese 

Ergebnisse lassen vermuten, dass das nsLTP in den Infektionsprozess involviert 

ist, jedoch ist die exakte Rolle des nsLTP immer noch unklar. 

Die Southern Blot Analyse ergab, dass das nsltp in den Apfelschorf-suszeptiblen 

und resistenten Kultivaren Elstar und Remo mit mindestens zehn Kopien vertreten 

ist und somit zu einer Multigen-Familie gehört. Untersuchungen des 

Transkriptlevels mittels Northern Blot Analyse mit einer radioaktiv markierten 

Sonde des nsltps zeigten, dass einen Tag nach der Infektion der Transkriptlevel 

des nsltps drastisch gesunken ist. Um dieses Ergebnis zu bestätigen wurde die 

cDNA des nltps aus beiden M. domestica cv. Elstar und Remo mittels PCR 

amplifiziert, geklont und sequenziert. 

Die Sequenzanalysen zeigten, wie aus anderen Pflanzenarten bekannt, ein 

tryptophanfreies nsLTP mit acht konservierten Cysteinresten. Weiterhin zeigten 

die ersten 24 Aminosäuren der N-terminalen Domäne eine putative 

Leadersequenz, welche verantwortlich für die Weiterleitung des nsLTP in den 

sekretorischen Transportweg ist. Die zelluläre Lokalisation des nsLTP wurde durch 

transiente Expression des mit GFP markiertem nsLTP untersucht. Die 

Eliminierung der putativen Leadersequenz führte dazu, dass das nsLTP nicht zum 

sekretorischen Transportweg weitergeleitet wurde, stattdessen aber im Cytosol 

lokalisiert blieb. Die Experimente über die transiente Expression des GFP 

markierten nsLTP zeigten weiterhin, dass das mit GFP markierte nsLTP im 

Gegensatz  zu der vorhergesagten apoplastidären Lokalisation mit verschiedenen 

Zellkompartimenten  assoziiert ist. Hauptsächlich war es mit der Envelop-

Membran des Chloroplasten assoziiert aber auch in Vesikeln, Mitochondrien und 

Peroxisomen. Interessanterweise wurde das nsLTP unter Lichtbedingungen 
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ausschließlich in die Chloroplasten der Schließzellen transportiert. Die durch 

Sequenzevaluierung vorhergesagte Tyrosinphosphorylisierungstelle wurde in 

einem Immuno-Blot mit Antikörpern gegen phosphorylisierte Tyrosinreste bestätigt 

und deutet auf eine mögliche regulatorische Rolle des nsLTP in der Pflanzenzelle 

hin. 

Die up-stream Region von dem suzeptiblen Kultivar Elstar und dem resistenten 

Kultivar Remo wurde mit dem Genome Walker Kit amplifiziert. Das Screening der 

Nucleotidsequenzen der up-stream Region nach cis-aktiven regulatorischen 

Elementen zeigte, dass diese Region eine hohe Anzahl an lichtregulierten 

Elementen aufweist. Jeweils zehn Motive wurden in beiden Kultivaren Elstar und 

Remo gefunden. Die nachfolgenden Untersuchungen über die Promotoraktivität 

dieser up-stream Region mittels transienter Expression mit dem DsRed 

Reportergen ergaben, dass beide Apfelsorten in der Lage waren, das DsRed - 

Markergen unter der Kontrolle der up-stream Region der Kultivare Elstar und 

Remo unter Lichtbedingungen zu exprimieren. Die Expression in Remo war jedoch 

stärker als in Elstar. Diese Ergebnisse bestätigen die enge Beziehung zwischen 

der großen Anzahl lichtabhängiger Elemente die mitttels Datenanalyse gefunden 

wurden und der Assoziation des nsLTP mit dem Chloroplasten. Auf diesen 

Beobachtungen basierend könnte man annehmen, dass nsLTP in vivo als 

Transporter für Lipide dient. Da Lipide in vielen verschiedenen und grundlegenden 

Prozessen der Pflanzenzelle eine Rolle spielen, kann man annehmen, dass das 

nsLTP in die gleichen Prozesse involviert ist. Weiterhin könnte das nsLTP in 

Prozessen wie der Photosynthese, der Signaltransduktion, den Vesikelprozessen, 

der Sekretion, der Reorganisation des Cytoskeletts, des Wachstums und der 

Entwicklung, der Samenkeimung, der Organdifferenzierung, der Bestäubung, bei 

biotischem und abiotischem Stress sowie im programmierten Zelltod eine Rolle 

spielen. 

 

Stichworte: apoplast, non-specific Lipid Transfer protein, Malus domestica, 

Venturia inaequalis, green fluorescent protein, red fluorescent protein. 
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1 Introduction 

1.1 Apple and apple scab disease 

Apple (Malus domestica) is one of the most widely grown fruits in the world, and 

susceptible to several fungal and bacterial diseases, among which scab is the most 

severe and economically important. The major economic loss by apple scab is 

attributed to the reduction in fruit quality of scabbed fruits. But the disease can affect 

the tree in several ways. For example, severe infection of leaves will cause 

defoliation and subsequently reduction in tree vigor, which may restrict or prevent the 

fruit bud formation for the next year (MacHardy 1996). Under some circumstances, 

the losses from apple scab can be 70 percent or more of the total fruit value (Agrios 

1997). 

Although cultivars exhibit different degrees of susceptibility, none is immune 

(Komjanc et al., 1999). Apple scab exists worldwide, however it is more severe in 

areas with cool, moist spring and summers (Agrios 1997). In regions with semiarid 

conditions, scab lesions may be so few as to be undetected in most years. The first 

report of apple scab was from Sweden in 1819, and it was nearly 15 years before a 

second report, from Germany was published (MacHardy 1996). 

 

The causal agent of apple scab is the highly sophisticated fungus Venturia 

inaequalis. A taxonomic classification of fungi includes V. inaequalis in the 

subdivision Ascomycotina, class Loculoascomycetes, order Pleosporales, and family 

Venturiaceae. Loculoascomycete fungi have bitunicate asci and the ascocarp is an 

ascostroma. In the Pleosporales, the ascocarp is a peritheciod pseudothecium that 

contains cylinderical asci and persistent pseudoparaphyses. Including the genus 

Venturia into the family Venturiaceae is based on pseudothecium and ascospore 

characteristics. 

 

This fungus attacks exclusively members of the genus Malus, cultivated varieties of 

apple as well as crab apple (MacHardy 1996).  

The life cycle of V. inaequalis (Figure 1.1) begins with overwintering of the pathogen 

as an immature pseudothecia in the dead leaves on the ground of apple orchards. In 

late winter and spring, pseudothecia become mature, and the discharge of the 

ascospores as a primary inoculum, may continue for 3 to 5 weeks after petal fall. 



Introduction 

 2

During this period, buds start to open, initiating vulnerable sites for the primary 

infection. Ascospores germinate and cause infection when kept wet at temperature 

ranging from 6 to 26 °C the fungus grows between the cuticle and the outer cell wall 

of the epidermal cells. Lesions appear within 8 to 15 days, contributed to the 

production of enormous numbers of conidia by the subcuticular mycelium, causing 

rupture of the cuticle layer.  

 

 
Figure (1.1): Life cycle of Venturia inaequalis 

Source: (Agrios 1997) 

These conidia continue to cause secondary infections during wet weather throughout 

the growing season. After infected leaves fall to the ground in autumn, the mycelium 

invades the interior of the leaf tissues forming pseudothecium, which maintain the 

fungus through the winter (Agrios 1997). 
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1.2 Apoplast and fungal growth 

A crucial point in this life cycle, unlike obligate fungal parasites, V. inaequalis does 

not develop haustoria to obtain nutrients, nor does it grow intercellularly in host tissue 

forming subcuticular stroma (Figure 1.2). However, the cell wall breakdown by cell 

wall degrading enzymes provides a portion of these nutrients. As well as the 

extracellular melanoprotein that is produced by the fungus itself causes modification 

of the plant solute transport mediated possibly by membrane damage (MacHardy 

1996). These growth sites represent a part of the apoplast. 
 

 
Figure (1.2): Growth pattern of V. inaequalis within the host tissues 

 

The term ''apoplast'' was coined by the German botanist Ernst Münch in 1930 to 

describe the dead compartment in the plant body. Now, this dead compartment 

includes the interfibrillar and intermicellar space of the cell walls, the xylem as well as 

the gas and water filled intercellular space in its entirety. The border of the apoplast is 

formed by the outer surfaces of plants. Solutes or microorganisms adhering to these 

surfaces are not, however, apoplastic (Sattelmacher 2001). It has been suggested to 

consider the apoplast as the internal environment of the plant body. Like animal cells 

those of plants are surrounded by a liquid medium in the apoplast that is defined as 

apoplastic fluid. This internal environment has several important functions in our 

bodies; likewise, the apoplast is important and has numerous functions for plant 

development and performance (Sakurai 1998).  

Apoplast forms a continuous, yet structured space between plant cells and 

constitutes a considerable part of the plant’s body, namely between 5 and 10% of the 

plant’s mass (Winter et al., 1993). The apoplast fluid is made up by the transpiration 

stream and its chemical composition is most likely achieved via water-, ion-, and 
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protein transporters (Hoson 1998; Sakuria 1998; Sattelmacher 2001) that may have a 

tissue-specific distribution. More recently, evidence has been obtained that the 

apoplast has an important function during plant defence and contains quite a number 

of proteins. More than 200 proteins (Robertson et al. 1997) are exported from the 

interior of the cells to their outside mostly via the endoplasmic reticulum and the 

plasma membrane, but also via different, and not completely unravelled routes via 

the plasma membrane as suggested for yeast (Gozalbo et al., 1992). 

The apoplast responds to various environmental signals in diverse ways. Before the 

final response is induced, plant must perceive such stimuli, transform the signals, and 

transduce them to the site of reaction. It has been suggested that the apoplast is 

involved in the response as well as in the perception and transduction of 

environmental signals with the plasma membrane. The mechanism by which the 

response of the apoplast to environmental signals is brought about is summarized by 

Hoson in1998 (Figure 1.3). 

 

Figure (1.3): Schematic representation of the apoplast response to environmental signals.        

Source: (Hoson 1998) 

Various environmental signals as well as microorganisms are recognized by a 

specific receptors located in the plasma membrane or within the symplast. This 
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recognition process triggers a cascade of signals through the cytosol destinated to 

the nucleus. Within the nucleus, these signals activate specific genes to be 

expressed; the products of these genes can be transported to the apoplast via 

exocytosis. The transportation process leads to change the apoplast components 

that modify the apoplast environment and activity as a final response to the signals.       

 

1.3 Interaction between V. inaequalis and apple within the apoplast 

To understand more about the interaction between host and pathogen, it was 

necessary to analyze the protein contents in the apoplast as a first line of defense in 

the plant. The protein content and composition of this fluid were analysed by SDS 

PAGE (Figure 1.4). This analysis lead to the finding that a group of newly 

synthesized and/or highly expressed proteins have been exported to the apoplast 

after infection (Gau et al., 2004). The isoelectric focusing gel electrophoresis 

revealed that the majority of the apoplastic proteins have an acidic isoelectric point. 

The sequences of these newly synthesized and highly expressed proteins were 

determined by electron spray ionisation quadrupole time of flight mass spectroscopy 

(ESI-Q-TOF). Homology research in databases confirmed the presence of ß-1,3-

glucanase, chitinase, thaumatin-like protein and a cysteine protease. This group  of 

proteins belongs to pathogenesis-related proteins family (PRs). These results were 

corroborated by Western blot detection against some of these proteins. In contrast to 

these observations, non-specific lipid transfer protein with 9 kD molecular mass has 

declined drastically to non-detectable level within the first week after infection. The 

comparison with the intercellular washing fluid (IWF) of resistant apple cultivar (M. 

domestica cv. Remo) that bears resistance against apple scab, powdery mildew, and 

fire blight with uninfected susceptible cultivar (M. domestica cv. Elstar), showed a 

large difference between both of them. Moreover and more interestingly the protein 

pattern of the resistant cultivar showed high homology to those of the IWF from the 

infected susceptible cultivar Elstar. This observation indicates the constitutive 

expression of at least some of the pathogenesis-related genes in the resistant 

cultivars.  
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The main interest was to focus on the role of nsLTP in the infection process and to 

elucidate the possible in vivo function or functions of this puzzling protein in apple. As 

well as to answer the question; why the level of nsLTP has been declined to 

undetectable level in the apoplast of the susceptible apple cultivar leaves after 

infection with the fungus V. inaequalis.   

  

1.4 Plant lipid transfer proteins (LTPs) 

Plant lipid transfer protein has been discovered by Kader in 1975. Since this time 

several groups are investigating this group of proteins. Different approaches have 

been adopted to elucidate the possible function or functions for this enigmatic group. 

Until now the clear image of LTP is missing from the impressive number of articles 

regarding plant lipid transfer protein. Generally LTPs have the ability to transfer lipids 

between membrane vesicles in vitro (Yamada 1992; Bourgis and Kader 1997). 

Particularly nsLTPs exhibit a broad range of binding affinities to several classes of 

Figure (1.4): Preparative SDS-PAGE separation of apoplastic fluid from M. 
domestica cv. Elstar healthy leaves, V. inaequalis infected Elstar leaves and 
healthy Remo. Arrows indicate bands that were analyzed by ESI-QTOF mass 
spectrometery for further analyses. Each lane was loaded with 50 µg protein 
(Gau et al., 2004). 
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phosphlipids and/or glycolipids and lack any specificity toward fatty acids or cutin 

monomers (Helmkamp 1986; Wirtz and Gadella 1990; Douliez et al., 2001). The 

nsLTP group has been identified in different plant species including monocots, dicots 

and gymnosperms (Kader 1996). 

In the case of scab disease in apple (M. domestica cv. Elstar) caused by V.  

inaequalis, it has been suggested recently (Gau et al., 2004) that the nsLTP might be 

implicated in the infection process. However, the exact role of nsLTP in this scenario 

is elusive. Different functions beside lipids transfer have been proposed for nsLTP, 

including involvement in epicuticular wax biosynthesis (Sterk et al., 1991) and 

antimicrobial function (Molina et al., 1993; Segura et al., 1993; Cammue et al., 1995; 

Nielsen et al., 1996; Kristensen et al., 2000). On the other hand the in vivo function of 

nsLTPs is considered to be controversial (Canevacini et al., 1996).  In addition, it has 

been shown that nsLTPs can be induced in response to different environmental 

stress factors, such as cold and drought stress (Ouvrard et al., 1996), heat shock and 

salt stress (Torres-Schumann et al., 1992). The spatial, developmental, drought and 

ABA-induced expression of three nsltp family members in tomato were documented 

(Treviňo and O`Connell 1998). In strawberry nsLTP was identified in response to 

ABA, wounding and cold stress (Yubero-Serrano et al., 2003). 

Interestingly, the expression profile of nsLTPs was documented for different organs in 

different plant species as tissue-specific and developmentally regulated (Sterk et al., 

1991; Fleming et al., 1992; Thoma et al., 1994). During the development of tracheary 

elements (TE) in zinnia, secretion of a TED4 protein that encoded for ltp into the 

medium, inhibit proteasome activity to protect the neighbouring cells. The depletion of 

TED4 protein from the culture medium results in an increase in mortality of other 

living cells (Endo et al., 2001).  

Recently, ltp in Euphorbia lagascae seedling were found at high concentration in the 

inner region close to the cotyledon, and a smaller amount in the outer region of the 

endosperm (that must undergo programmed cell death). It has been proposed that ltp 

are involved in the recycling of endosperm lipids, or protecting the growing 

cotyledons from proteases released during programmed cell death PCD (Eklund and 

Edqvist 2003). 
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1.5 Structure of plant LTP 

The number of amino acids residues varies from 91 to 95 of the mature plant LTP 

(Kader 1996). They lack of tryptophan and have eight conserved cysteine residues 

that are engaged in four disulfide bridges formation. Investigations on wheat LTP 

using different approaches revealed that this protein mainly constitutes from helical 

segments which connected by disulfide bridges (Simorre et al., 1991; Désormeaux et 

al., 1992). Based on nuclear magnetic resonance (1H NMR) data a model of wheat 

LTP has been built (Gincel et al., 1994), this model has been checked by 

crystallographic studies on wheat and rice (Pebay-Peyroula et al., 1992; Hwang et 

al., 1993). Structural studies of LTP revealed that the four helices form hydrophobic 

cavity, which runs through the protein (Lee et al., 1998). This cavity can 

accommodate fatty acids, acyl-CoA or phospholipids as shown in Figure 1.5 (Pons et 

al., 2003). The binding activity of plant LTP toward fatty acids lack specificity (Edqvist 

and Farbos 2002). This unspecificity was contributed to the involvement of non-

specific van der Waals interactions that causes flexibility of the ligand-binding activity 

(Han et al., 2001).   

 
 

 

 

 

Figure (1.5): Model representation of the ns-LTP2 structure 
from wheat: Positively charged residues are coloured blue 
and negatively charged residues are coloured red; the 
phospholipid is represented in licorice mode. It can be seen 
how the terminal glycerol group sticks out of the molecular 
surface and how the basic residues surround the phosphate 
group in yellow (Pons et al., 2003). 

http://www.jbc.org/content/vol278/issue16/images/large/bc1234107005.jpeg
http://www.jbc.org/content/vol278/issue16/images/large/bc1234107005.jpeg
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1.6 nsLTP as allergene 

In human healthy diet, fruits are considered to be a key element. However, in some 

individuals it can cause sever allergic reactions. Generally food allergy resulted from 

the improper reaction of the immune system toward specific protein, and once 

sensitized, the individual prone to allergic syndromes by homologous proteins of 

other food via cross reactivity (Gao et al., 2005). Interestingly, nsLTPs have been 

characterized as true plant food allergens not correlated with birch pollinosis 

(Fernandez-Rivas et al., 1997; Pastorello et al., 1999a; Sánchez-Monge et al., 1999; 

Asero et al., 2000). nsLTP belongs to food allergy class in which the immune reaction 

takes place in the gastrointestinal tract (Gao et al., 2005). This classification reflects 

the stability of nsLTP to proteolytic attack and food processing to reach the 

gastrointestinal immune system. Moreover, it has been reported that nsLTPs are 

insensitive to oxidative attack that usually destroys the allergenicity of birch pollen-

related fruit allergens (van Ree 2002). Regarding heat, it has been also suggested 

that LTP is heat stable (Asero et al., 2000; Lindorff-Larsen et al., 2001). In many 

species, nsLTP has been identified as allergen, including peach (Pastorello et al., 

1999b; Ballmer-Weber 2002), apple (Pastorello et al., 1999a; Diaz-Perales et al., 

2002a), apricot (Pastorello et al., 2000a, 2000b), plum (Pastorello et al., 2001), 

cherry (Scheurer et al., 2001), hazelnut (Pastorello et al., 2002), walnut (Pastorello et 

al., 2004), chestnut (Diaz-Perales et al., 2000), grape (Pastorello et al., 2003), maize 

(Pastorello et al., 2000a), asparagus (Diaz-Perales et al.,2002b), and lettuce (Asero 

et al., 2000; Miguel-Moncín et al., 2003).  

 

1.7 Distribution and localization of nsLTPs 

The nsLTP group has been identified in different plant species including monocots, 

dicots and gymnosperms (Kader 1996). Interestingly the abundance of LTP was high 

in young broccoli leaves (Pyee et al., 1994). Similar observation has been reported in 

tobacco (Fleming et al., 1992), in barley (Molina and Garcia-Olmedo 1993), sugar 

beet (Nielsen et al., 1996), and apple (Koutb 2003).  

In animal, nsLTP has been purified form bovine, rat, and human with a molecular 

weight of 14 kD and isoelectric point from 8.6 to 9.6 (Bloj and Zilversmit 1977; Crain 

and Zilversmit 1980; Noland et al., 1980; Poorthuis et al., 1981; Traszkos and Gaylor 

1983; Westerman and Wirtz 1985; van Amerongen et al., 1987).  
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Plant nsLTP, in contrast with mammalians they exhibit a large variation in their 

primary structure, with a similarity between 30 to 50 % (Tchang et al., 1988).  

Regarding localization, in general plant LTPs have been purified from the 

extracellular medium e.g. barley LTP was found to be secreted into aleurone cell 

culture (Mundy and Rogers 1986), several isoforms of grapevine LTP have been 

purified from the extracellular medium of somatic embryo culture (Coutos-Thevenot 

et al., 1993). In addition immunocytochemical studies revaled the localization of LTP1 

was localized in the cell wall in Arapidopsis (Thoma et al., 1993), barley (Molina et 

al., 1993), partial localization to the cell wall in castor bean (Tsuboi et al., 1992), in 

the cell wall of epidermal cells of maize coleoptiles (Sossountzov et al., 1991).   

 
1.8 Mode of action of LTP 

It is clear that LTPs facilitate the movement of phospholipids between membranes. 

The question now is how this group of proteins performs this activity? One 

mechanism has been suggested for the phosphatidylcholine-specific LTP from 

mammalian cells, which suggests a phospholipids-LTP complex that per se interacts 

with the membrane and replaces its bound phospholipids by another molecule from 

the membrane (Wirtz, 1991). Comparable events have been proposed for plant LTP 

(Kader et.al, 1982; 1984). Despite the apparent similar mode of action between 

animal and plant nsLTP, there is no sequence homology in the amino acids (Wirtz 

1991). Another model for action has been suggested that LTPs contain a 

hydrophobic cavity that can accept one acyl chain but not a phospholipids molecule 

(Shin et al., 1995). This binding activity facilitates the extraction of the phospholipid 

when LTP interacts with membrane surface (Figure 1.6).   
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1.9 nsLTP substrates 

In the vegetative plant cell, lipids constitute around 5 to 10 % of the dry weight, and 

almost all of this weight is localized in the membranes (Ohlrogge and Browse 1995). 

The most abundant lipids in most cells those are derived from the fatty acids and 

glycerolipid biosynthetic pathway (Ohlrogge and Browse 1995). Moreover fatty acids 

are the precursor for cutin and epicuticular wax synthesis that protect the plant 

against biotic and abiotic stresses (Schnurr et al., 2002). Unlike animals and fungi 

plant fatty acids synthesis mainly takes place within the plastid. Therefore plants 

must have mechanisms to export fatty acids from plastid to other sites in the cell.  In 

general lipids represent the structural basis for cell membranes and fuel for 

metabolism. Particularly lipids in plant play a fundamental role in different cellular 

processes including photosynthesis, signal transduction, vesicle trafficking, secretion, 

cytoskeltal rearrangement (Welti and Wang 2004), growth and development, seed 

germination, organ differentiation, pollination and responses to biotic and abiotic 

stresses (Wallis and Browse 2002; Wang 2002; Farmer et al., 2003; Lindsey et al., 

2003; Meijer and Munnik 2003; Sperling and Heinz 2003). The lipid transfer activity of 

plant lipid transfer protein is clear in vitro but the same activity in vivo still speculative.  

 

Figure (1.6): Diagrammatic representation for the 
postulated mode of action of plant lipid transfer protein 
(Kader 1996). 
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1.10 Putative functions proposed for plant LTP 

Based on the in vitro activity of LTP for transferring lipids between donor and 

acceptor it has been hypothesized in several reviews that LTPs could be involved in 

different functions, where lipid movement is thought to be important (Kader et al., 

1982; Arondel and Kader 1990; Yamada 1992). 

It has been suggested that LTPs are implicated in different biological functions 

including cutin formation, embyrogenesis (Sterk et al., 1991), defense reactions 

(Garcia-Olmedo et al., 1995), adaptation to different environmental stresses (Plant et 

al., 1991; Hughes et al., 1992; White et al., 1994) and PCD (Eklund and Edqvist 

2003). Kader 1996 in his review suggested possible in vivo functions for plant LTPs 

presented below in Figure (1.7), however this diagram was crowded by question 

marks.  

 
 
 Figure (1.7): Diagrammatic representation shows the possible 

in vivo functions of plant lipid transfer proteins (Kader 1996). 
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Aim of the research 

Despite the intensive investigations on plant nonspecific lipid transfer proteins 

(nsLTPs), their in vivo function is still elusive. It has been reported that the protein 

level of nsLTP of apple scab susceptible cultivar Malus domestica cv. Elstar has 

been found to decline to undetectable level in the apoplast after infection with 

Venturia inaequalis, the causal agent of apple scab (Gau et al., 2004). Concomitantly 

the nsLTP has not been detected in the apoplast of the apple scab resistant cultivar 

M.  domestica cv. Remo.  

The main task for the current study is to grasp the in vivo function of nsLTP in M. 

domestica and its implication in the infection process. To achieve this goal the copy 

number of this gene will be deterimend via southern blot analysis as well as the 

transcript level of nsltp will be investigated before and after infection in the 

susceptible apple cultivar Elstar.  

Furthermore, the cDNA of nsltp will be amplified, cloned and sequenced. Sequence 

evaluation will also be done for the retrieved sequence. In most of the cases the 

function of a protein is closely correlated with the localization, therefore the 

subcellular localization study of this protein will be done with the transient expression 

of the nsLTP in fusion with GFP by using particle bombardment transformation.  

In an attempt to understand the regulation pattern of nsltp, the upstream regions from 

susceptible and resistant apple cultivars will be isolated and analyzed. Promoter 

activity will be confirmed via insertion of these upstream regions as artificial 

promoters for DsRed and transient expression experiment under different conditions. 

The upstream region as well as the transcriped region of nsltp will undergoes 

methylation analyses to determine if the epigenetic information has influence on the 

regulation pattern of nsltp.  

Biochemical characterization of the nsLTP will be done to study the phosphorylation 

status of the amino acid residues (serine, therionine and tyrosine) as one of the most 

important characters of the posttranslational modifications in protein synthesis. This 

is an attempt to investigate the impact of the posttranslational modifications on the in 

vivo function/s of nsLTP. 
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2 Materials and Methods  

2.1 Artificial infection of apple trees 

2.1.1 Plant propagation  

Apple trees (Malus domestica) were cultivated as described by Gau et al., (2002). 

Three different cultivars were used for cultivation including M. domestica cv. Elstar, 

Gloster, Holsteiner Cox, and Remo. The original in vitro cultures were kindly provided 

by Dr. I. Szankowski. These sterile and genetically identical plants were subcultured 

regularly on media see table 2.1. After six weeks plants were transferred to rooting 

media containing 1 x Murashige & Skoog medium (Murashige and Skoog 1962) 

including vitamins, 3 % sucrose, 1.5 µM indolebutyric acid and 0.7 % plant agar. After 

rooting, the plants were planted into soil and adapted to greenhouse conditions. 

Apple trees were grown in the green house at approximately 24 °C and light-dark 

cycle about 12 h. During this period the plants were illuminated with fluorescent tubes 

(Radium white) at approximately 80 µmoles m-2 s-1 under a light/dark regime of 12 h. 
 

 Perales Medium Cl-Medium Puite& Shaart Medium 

MS-medium+Vitamins 1 X MS 1 X MS 1 X MS modified 

Sucrose 3 % 3 % 3 % 

Myoinositol 0.01 % 0.01 % 0.01 % 

BAP 3.1 µM 4.4 µM 3.1 µM 

NAA 0.5 µM - - 

GA3 2.8 µM - - 

IBA - 0.5 µM - 

Plant agar 0.8 % 0.8 % 0.8 % 

pH 5.8 5.8 5.8 

Apple cultivar Gloster Holsteiner Cox Elstar 

 

Table (2.1): Media used for in vitro cultivation of different apple M. domestica cultivars. 
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2.1.2 Propagation of Venturia  inaequalis  

A strain of Venturia inaequalis, isolated from leaves of M. domestica cv. Elstar in 

Biologische Bundesanstalt (Dossenheim, Germany) and designated as a strain no. 

15, (kindly provided by Dr. K. Schulze) was cultivated as previously reported by 

Parker et. al.,(1995). Cellophane membranes with approximately 8 cm in diameter 

were soaked in distilled water overnight and autoclaved. Subsequently, PDA medium 

was prepared and pH value was adjusted to 5.6. After autoclaving, approximately 20 

ml of the hot medium was poured in each Petri dish. After solidification, the agar 

surface was covered with a sterile cellophane membrane. Finally each plate was 

inoculated with 0.5 ml of conidial suspension and incubated at 18 °C in the dark for 

one week. 

 
PDA medium: 39.0 g potato dextrose agar (Duchefa, Netherlands) per liter distilled 

water. 

 
2.1.3 Conidia harvest  

Cellophane membranes were removed from the PDA plats surface under sterile 

conditions, and transferred to 250 ml bottle. Afterwards 50 ml sterile distilled water 

was added to the membranes and shaken for 5 min at 270 rpm. The suspension was 

filtered through a nylon membrane filter (69 µm pore size) and adjusted to a 

concentration of 105 conidia per ml as determined by a hematocytometer. 

 
2.1.4 Inoculation of apple trees 

Apple trees (M. domestica cv. Elstar) were grown in the green house under the 

previously described conditions. The trees were sprayed with the conidial suspension 

of V. inaequalis (1x 105 conidia per ml) on both upper and lower leaves surfaces. For 

mock infection, other apple trees were sprayed by distilled water. Subsequently, the 

inoculated plants were kept for three days at 100 % relative humidity, under 

transparent plastic tents at 19 °C (to facilitate the penetration of conidia for cuticle 

layer). After three days the plastic tents were removed. 
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2.1.5 Isolation of the intercellular washing fluid (IWF)  

For the isolation of IWF the infiltration/centrifugation technique (Hogue and Asselin 

1987) with slight modifications was used. The leaves were cut from the trees by a 

razor blade and its weight was determined. The harvested leaves were submerged in 

PBS buffer or water in a plastic box, and covered with a sieve.  Infiltration with PBS 

buffer was done for 4 min. Leaves were dried with tissue papers and inserted into 

homemade holder as illustrated in Figure 2.1. Centrifugation was done for 5 min at 

100 xg in an HS-4 rotor (Sorvall) to remove the excess of liquid. Subsequently, the 

IWF samples were collected by centrifugation step at 4 °C for 20 min at 700 xg. The 

obtained apoplastic washing fluid was stored at –20 °C. 

 

PBS buffer: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.5 mM KH2PO4. 

 

2.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) 

2.2.1 Determination of protein concentration by Bradford method 

Calibration curve was prepared by using a standard protein sample BSA (Bovine 

Serum Albumin, Sigma). Afterwards 20 µl from IWF samples were added to 80 µl 

PBS buffer, and 100 µl PBS buffer in a separate tube as a blank. One ml of Bradford 

reagent was added to each sample and as well as the blank, mixed very well and 

after 5 min the absorbance was measured by spectrophotometer at 595 nm 

according to Bradford (1976). The corresponding concentrations were calculated by 

the aid of calibration curve. 

 

Bradford reagent: 100 mg Coomassie Brilliant Blue G-250 (CBB) was dissolved in 

50 ml 96 % Ethanol and 100 ml 85 % H3PO4, Fill up to 1 liter with distilled water. After 

dissolving of CBB the solution were filtrated through a paper filter (Schleicher& 

Schull, Dassel, Germany). 
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2.2.2 Gel preparation  

As described by Schägger and von Jagow (1987), nine percent separating gel was 

prepared by mixing gel contents and poured it into the gel cassette (size 8 x 6 x 

0.075 cm). For polymerization the separating gels were covered with n-butanol. After 

polymerization the isobutanol was removed, and the gel cassette was fixed into 

electrophoresis cell. The contents of 4 % stacking gel were mixed and poured above 

separating gel. A comb with ten teeth was immersed in the stacking gel. After 

polymerization of the stacking gel, cathode buffer was added and the comb was 

removed. The wells were washed by cathode buffer and samples were loaded to the 

wells. The gel was let run at 25 mA by using electrophoresis power supply (EPS 600, 

Pharmacia, Sweden). 

 

Figure (2.1): Homemade holder for apoplastic fluid isolation from leaves; A: Holder 
without plant leaves; B: holder with plant leaves before fixing; C: Fixed plant leaves 
within the holder; D: Holder with plant leaves, ready for centrifugation. 
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Separating gel contents 9 % (20 ml) Stacking gel contents 3 % (6.5 ml) 

6.67 ml  3X Gel buffer  

2.67 m 100 % glycerol  

4.5 ml  Acrylamide solution 1 

6.05 ml Distilled H2O 

10 µl  TEMED  

100 µl  10 % APS* 

1.6 ml  3X Gel buffer  

0.86 ml Acrylamide solution 2 

4.0 ml  Distilled H2O 

4 µl  TEMED 

40 µl  10 % APS* 

 
 

*Freshly prepared. 

 
Sample buffer 2X: 124 mM Tris pH 6.8, 20 % glycerol, 10 % 2-mercaptoethanol, 10 

% SDS, and 0.02 % Coomassie Brilliant Blue G. 

Gel buffer 3X: 2.9 M Tris, 0.3 % SDS, adjust pH to 8.45 with HCl 

Acrylamide solution 1: 40 % acrylamide and 1.6 % bisacrylamide. 

Acrylamide solution 2: 30 % acrylamide and 0.8 % bisacrylamide. 
 
Anode buffer 10X: 2 M Tris, pH 8.9, fill up with distilled water. 
Cathode buffer 10X: 1 M Tris, 1 M Tricin, 1 % SDS, pH 8.25, and fill up with distilled 

water. 

 
2.2.3 Gel staining  
After separation, the gel was stained with CBB solution overnight with shaking. The 

gel was washed several times with de-staining solution until protein bands appeared. 

 
Coomassie Brilliant Blue solution: 0.01 % CBB R-250, 10 % Acetic acid, and 40 % 

Methanol in distilled H2O. 

Destaining solution: 10 % Acetic acid, and 40 % Methanol in distilled H2O. 

 

 

 

 

 



Materials and Methods 

 

 

19

2.3 Protein samples preparation for mass spectrometry (Jensen et al., 1998) 

2.3.1 Washing and destaining  
The target bands were excised from SDS gel by using a scalpel. Excised gel pieces 

were put in reaction tubes and washed two times for 15 min with shacking with 

double volume of deionized water/acetonitrile 1:1 (v/v). Washing solution was 

discarded and gel pieces were incubated for 5 min in one volume acetonitrile at RT. 

Acetonitrile solution was replaced by one volume of 100 mM ammoniumbicarbonate 

and tubes were mixed and incubated for 5 min at RT. After addition of one volume 

acetonitrile to ammoniumbicarbonate, tubes were mixed and again incubated for 15 

min at RT with shaking. The whole liquid was removed and gel pieces were dried 

under speed vacuum.  

 

2.3.2 In gel digestion  

The dried gel pieces were gradually quenched by adding 10 µl trypsin (10 ng/µl in 50 

mM ammoniumbicarbonate) and incubated in ice for 10 min. Quenching step was 

repeated several times until saturation of gel pieces with trypsin solution. The excess 

of trypsin solution was discarded and gel pieces were soaked in excess of 25 mM 

ammoniumbicarbonate solution. Samples were incubated overnight at 37 °C. 

 

2.3.3 Extraction of peptide fragments from gel  

After overnight digestion, samples were shortly centrifuged and the supernatant was 

removed. Afterwards gel pieces were sonicated by using ultrasonic for 2 min and the 

resultant liquid was collected in a new tube. Gel pieces were incubated for 20 min in 

one volume 25 mM ammoniumbicarbonate with shaking. After addition of one volume 

acetonitrile and incubation for 15 min under shaking, mixture was sonicated for 2 min. 

The supernatant was collected in the same reaction tube. Gel pieces were incubated 

two times for 15 min in 5 % (v/v) formic acid/ acetonitrile (1:1) and liquid was 

collected in the same tube. The whole collected supernatant was centrifuged und 

vacuum for 10-15 min at 60 °C.  Finally samples with volume 10-15 µl were ready for 

sequence and stored at -20 °C. 
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2.3.4 Sequencing 

The extracted solutions were combined and concentrated with ZipTips C18 

(Millipore). De novo sequencing was done on a quadrupole/time-of-flight hybrid mass 

spectrometer (Q-TOF2 Micromass, Waters, Manchester, United Kingdom) in positive-

ion mode. Amino acid sequences were identified by homology search by using the 

program PeptideSearch (EMBL, Heidelberg, Germany). 
 

2.4 Detection of nsLTP phosphorylation by immunological assay 

2.4.1 Protein electro-blotting  

After separation, gel was disassembled and subsequently assembled in the transfer 

cassette in the following order; cathode side, plastic support with holes, scotch-brite 

pad, 1 layer of Whatman 3 mm filter paper, protein gel, PVDF* membrane (Schleicher 

& Schull, Dassel, Germany), one layer of 3 mm filter paper, scotch-brite pad, plastic 

support with holes and anode side. The cassette was submerged in the electro-

transfer buffer within the electro-blotting cell. Blotting was done for 1 h at 400 mA at 

10 °C. The procedure was done according to Towbin et al. (1979). 

 
* Treated with methanol for 3 sec, 5 min in water and 5 min in transfer buffer. 

Transfer buffer: 10 mM NaHCO3, 3 mM Na2CO3, 0,01 % SDS, 20 % Methanol, pH 

9.9. 

 
2.4.2 Membrane development  

After the transfer of protein onto the NC membrane, membranes were incubated for 1 

h with agitation in the blocking solution. The membranes were incubated overnight at 

4 °C with agitation with 10 ml of the first antibody (rabbit polyclonal anti-

phosphoserine, rabbit polyclonal anti-phosphothreonine and mouse monoclonal anti-

phosphotyrosine (ZYMED®Laboratories Inc.) 1: 10000 diluted in 5 % nonfat powder 

milk). The membranes were washed two times for 10 min with PBST buffer. 

Membranes were incubated with 10 ml of the second antibody (IgG anti rabbit and 

anti-mouse coupled with alkaline phosphatase, Sigma, Munich, Germany) with the 

dilution 1: 20000 in blocking solution for 1 h. Membranes were washed shortly for two 

times for, followed by four times for 6 min. Equilibration of the membranes was done 
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by incubation with 10 ml TMN buffer for 2 min.  Finally membranes were developed 

with 10 ml of TMN buffer containing 0.4 mM NBT and 0.3 mM BCIP as a final 

concentrations. After the desired intensity was produced, the development was 

stopped by washing the membranes excessively with distilled water. 

 
PBST buffer: PBS buffer with 1% tween 20 

TMN buffer: 100 mM Tris, 5 mM MgCl2, 100 mM NaCl, pH 9.5. 

Blocking solution: 5 % nonfat dry milk and 0.05 % Tween-20 in PBS buffer. 

NBT stock solution: 61 mM Nitro Blue Tetrazolium in 70 % DMF. 

BCIP stock solution: 115 mM 5-Bromo-4-chloro-3-indolylphosphate in 70 % DMF.  

 

2.5 Isolation of nsltp cDNA 

2.5.1 Isolation of the total RNA 

Approximately 5 g of stored leaves samples at -80 °C after IWF collection were 

ground well in liquid nitrogen in precooled mortar and pestle. The obtained powder 

was mixed with 15 ml of prewarmed (50 °C) lysis buffer and 15 ml of PCI solution and 

shaken for 20 min. The mixture was centrifuged for 20 min at 13000 xg. The 

supernatant was removed and mixed with 15 ml of PCI solution and again 

centrifuged for 20 min at 13000 xg.  Supernatant was mixed with 0.75 % volume of 8 

M LiCl and stored overnight at 4 °C. Solution was centrifuged for 20 min at 13000 xg 

and 4 °C. After removal of the supernatant, pellet was mixed with 5 ml distilled water, 

500 µL 3 M Na-acetat pH 5.2 and 5 ml of cold (-20 °C) 96% ethanol, and stored for 1 

h at –20 °C. After centrifugation for 20 min at 4 °C and 13000 xg, the pellet was 

washed with 10 ml 70 % ethanol (-20 °C) and centrifuged again for 20 min. 

Supernatant was carefully removed and pellet was dried by speed vacuum. 

Eventually the pellet was dissolved in 1 ml autoclaved distilled water and kept at –80 

°C until use. 

 
Lysis buffer: 600 mM NaCl, 20 mM EDTA, 4% SDS, 100mM Tris-Cl pH 8. 
PCI: 25 volume Phenol: 24 volume Chloroform: 1 volume Isoamylalcohol, by 100 mM 

Na-Acetat pH 4.5 and stored in dark at 4 °C. 
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2.5.2 Determination of quantity and purity of DNA and RNA 

DNA and RNA isolations were diluted 1:100 and the absorptions were measured at 

230 nm 260 nm and 280 nm. DNA and RNA concentrations were determined by the 

following formulas; 

 

E260 x 50 x dilution factor = μg DNA / μl 

    1000 

E260 x 40 x dilution factor = μg RNA / μl 

               1000 

 

The quotients E260/E280 and E260/E230 give information about contamination with 

proteins and polysaccharides respectively. A quotient between 1.8 and 2 shows a 

sufficient purity. 

 
2.5.3 Determination of RNA pattern in agarose gel 

1.5 % agarose gel was used for this purpose. An appropriate amount of agarose was 

melted in autoclaved water 1 min in a microwave (600 W). After cooling down to ~ 60 

°C, 1% MOPS, pH 7.0 and 3.4 % Formaldehyd were added. Afterwards, solution was 

poured into the gel cassette. From each RNA sample, 2 µl were taken and mixed with 

18 µl Northern-Mix. The mixture was centrifuged and incubated at 65 °C for 15 min. 

Samples were chilled in ice, centrifuged and loaded to the gel. Samples were 

electrophortically separated after addition of 1x MOPS as a running buffer. RNA was 

visualized in UV light. 

 
MOPS 10X: 0.2 M MOPS, 0.05 M sodium acetate and 0.01 M EDTA, pH 7.0 

Northern Mix: 5 ml Solution 1 + 1 ml Solution 2 + 40 µl Ethidiumbromid, 5 mg/ml. 

Solution 1: 1x MOPS pH 7, 6.5 % Formaldehyd, 50 % Formamid. 

Solution 2: 0.25 % BPB, 0.25 % Xylene Cyanol, 50 % Glycerol, 1 mM EDTA, pH 8.0 

 

2.5.4 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

RT-PCR was performed by using peqGold M-MuLV Reverse Transcriptase RNase H- 

(Peqlab-Biotechnologie GmbH, Germany). Appropriate amounts of RNA samples 
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were mixed (0.005-0.25 µg/µl total RNA, final concentration) with 1 µl of Oligo (dT)23 

primer (0.5µg/µl) and 1 µl deoxynucleotide mixture (500 µM each dNTP as a final 

concentration). Afterwards an appropriate volume of water was added to make the 

final volume 10 µl. The subsequent steps were carried out in the thermocycler (PTC 

200, Biozym, Oldendorf, Germany). The reaction mix was incubated initially at 70 °C 

for 10 min and then chilled at 0 °C.  A second reaction mix consisted of 2 µl of 10x 

buffer for M-MuLV-RT, 1 µl RNase inhibitor (20u/µl), 1 µl M-MuLV reverse 

transcriptase and 6 µl of water was added to the first reaction. The first strand of 

cDNA was built by incubation the mixture at 50 °C for 50 min. For PCR, the first 

reaction mix was prepared using  5 µl of cDNA template from RT- reaction, 10 pmol 

of each primer (nsLTP forward 5’-ATG GCT AGC TCT GCA GTG AC-3’ 4 µl 2.5 mM 

dNTP mix  and sterile distilled water to make up to 25 µl per reaction. Afterwards, a 

second reaction mix containing one unit of red Taq polymerase (Sigma, Munich, 

Germany), 5 µl of 10 x  complete buffer and 19.5 µl of sterile distilled water per 

reaction was added to the first reaction mix at 80 °C (hot start). The whole reaction 

was denatured initially for 3 min at 94 °C. The thermocycler was adjusted as follows 

for 36 cycles: denaturation at 94 °C for 30 sec, annealing at 46-56 °C for 1 min, 

extension at 72 °C for 2.5 min and a final extension for 3 min at 72 °C for proof- 

reading. 

 

Forward primer for nsltp: 

Reverse primer for nsltp: 

5′-ATG GCT AGC TCT GCA GTG AC-3′ 

5′-TAC TTC ACG GTG GCG CAG TT-3′ 

 

2.5.5 Agarose gel electrophoresis 

1.5 % agarose gel was used for purification of cDNA. An appropriate amount of 

agarose was melted in 1x TAE electrophoresis buffer for 1 min in a microwave (600 

W). After cooling down to ~ 50 °C, solution was poured into the gel cassette. For 

each 10 µl aliquots of  sample 5 µl sample buffer was added and separated at 100 V 

for 30-45 min in an electrophoresis apparatus (BioRad, Munich, Germany ) using 1 x 

TAE as buffer system. DNA ladder 100 bp (Gene Ruler, Fermentas, Munich, 

Germany) was used as size standard. Gel was incubated for 30 min in ethidium 

bromide solution (0.5 µg /ml). Nucleic acids were visualised in UV light. 
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TAE buffer (50x): 40 mM Tris, 10 mM sodium acetate, 1 mM EDTA, with acetic acid 

adjust the pH to 7.8. 
 
2.5.6 Purification of PCR products  

E.Z.N.A. Cycle-Pure Kit (PeQLab-Biotechnologie GmbH) was used to purify the PCR 

products. PCR products were purified before cloning to remove any contaminants 

that may affect the cloning step. To the total volume of PCR products 4-5 volumes of 

CP buffer were added. Subsequently, 750 µl of the mixture was loaded to the column 

fitted to a collecting tube and centrifuged at RT for 1 min at 16000 xg.  DNA-wash 

buffer (with 1.5 volumes of ethanol) 750 µl was added to the column and was 

centrifuged for 1 min at 16000 xg.  This step was repeated. In all the centrifugation 

steps the solution collected in the collecting tubes was discarded.  The column was 

centrifuged again to dryness. The dried column was placed on a sterile reaction tube 

and 50 µl of sterilized distilled water was added directly on to the membrane of the 

column, incubated at RT for 2-3 min and centrifuged at 16000 xg to elute DNA. 

 
2.5.7 Cloning of nsltp cDNA in pNEB193 

The cDNA of nsltp was cloned in plasmid vector (pNEB193, New England Biolabs). 

Linearization of the plasmid and ligation were done in one step, by mixing a purified 

plasmid and PCR products with 1:3 ratio. Then restriction enzyme SmaI, T4 ligase, 

1x reaction buffer, 0.5 mM ATP and 1 mM DTT were added to the reaction tube. The 

volume was adjusted to 20 µl by sterile distilled water. Reaction tubes were incubated 

overnight at 4 °C. 

 
2.5.8 Electrocompetent E. coli cells 

One ml of overnight culture on LBG medium was inoculated in 250 ml LBG medium, 

and incubated at 37 °C with shaking. The optical density was measured at 600 nm 

(0.5 – 0.6). Culture was cooled down in ice for 15 min. After centrifugation for 10 min 

at 4000 xg, the pellet was resuspended in 5 ml distilled water, and subsequently filled 

up to 250 ml with distilled water. Centrifugation was done again for 10 min at 4000 

xg, and the pellet was resuspended in 250 ml distilled water (this step was repeated 

once again). Pellet was resuspended in 25 ml 15 % glycerol and centrifugation was 
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done for 30 min at 4000 xg. Finally the pellet was mixed with 1.5 volume of 15 % 

glycerol, and 100 µl aliquots were stored at – 80 °C. 

 
LBG (per liter): 10 g NaCl, 10 g tryptone, 5 g yeast extract, 1 g glucose, pH 7.5. 
 

2.5.9 Transformation of E. coli  

100 µl of electrocompetent cells were mixed with 3 µl ligate in a precooled 

electroporation cuvette. Electroporation was done in BTX cell at 1.25 kV. After 

electroporation, 900 µl LB medium without antibiotic were added to cell suspension 

and incubated for 90 min. Eventually, bacterial cells were cultivated on LBA plates 

containing appropriate antibiotic for selection. 

 
LBA (per Liter): 10 g NaCl, 10 g tryptone, 5 g yeast extract, 20 g agar, pH 7.5. 

 

2.5.10 Screening the transformed colonies 

Several white and as well as blue colonies were picked and subcultured overnight in 

liquid LB medium in the presence of 100 µg/ml ampicillin. Afterwards, plasmid was 

isolated from these cultures by using HB-lysis. 

 

2.5.11 HB-lysis and plasmid preparation 

For isolation of the plasmid, 1.5 ml of overnight culture was centrifuged for 2 min at 

16000 xg. Pellet was resuspended in 300 µl Buffer 1, and another 300 µl Buffer 2 

were added. The mixture was incubated for 5 min at room temperature. After mixing 

with an additional 300 µl Buffer 3, mixture was incubated for 10 min in ice. Afterwards 

mixture was centrifuged for 10 min at 16000 xg and RT. The supernatant was 

transferred and recentrifuged for 10 min at 16000 xg. From this supernatant, 800 µl 

were mixed with 700 µl 2-Propanol and centrifuged for 30 min at 16000 xg. Pellet 

was incubated with 500 µl cold 70 % ethanol for 2 min subsequently centrifugation 

was done for 10 min at 16000 xg and RT. After drying the pellet with speed vacuum, 

pellet was resuspended in 50 µl distilled water. Plasmid DNA was dissolved at 50 °C 

for 10 min, and stored at – 20 °C. 
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Buffer 1: 50  mM Tris-Cl pH 8.0, 10 mM EDTA. 

Buffer 2: 200 mM NaOH, 1 % SDS. 

Buffer 3: 2.55 M K-Acetat pH 4.8 (adjust with acetic acid). 

 

2.5.12 Sequencing 

Plasmids which harbouring the right fragments were digested by using restriction 

enzymes from the MCS of the vector. After selection of the right plasmid, the plasmid 

preparation was sent to a company for sequencing (Sequence Lab, Göttingen, 

Germany).  

 

2.6 Northern blot analysis 

The total RNA from apple plants was extracted as described in (2.5.1). RNA from 

mock infected Elstar plants was taken as a control. Leaves from artificially infected 

plant were harvested at different intervals; 1, 3, 5 days, 1 and 2 weeks. Harvested 

materials were immediately frozen in liquid nitrogen and stored at -80 °C for RNA 

extraction. Ten microgram from the total RNA were separated on 1.5 % RNA agarose 

gel according the description in (2.5.3). The separated RNA was blotted to a nylon 

membrane as described for southern blot in (2.7.5). Membranes were fixed at 80 °C 

for 2 h and used after blocking for hybridization or kept in dark at room temperature 

for later use.  

 

2.6.1 Radioactive labeling 

Around 50 ng of PCR products of nsltp extracted by phenol/chloroform were mixed 

with 10 µl random primer. Mixture was boiled in water bath for 5 min and then 

centrifuged for few seconds. 10 µl of 5X buffer and 5 µl of radioactive dCTP32 were 

added to the mixture. After addition of 1 µl of Klenow enzyme, reaction tube was 

incubated for 30 min at 37 °C. The reaction was stopped by adding 2 µl of stop-Mix 

and followed by 100 µl TNE buffer.  

 
TNE buffer: 10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA. 
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2.6.2 Separation of the labeled probe 

Column for separation was prepared by using 1 ml Sephadex G50 in TE buffer and a 

filter in the bottom with 35 µm for pore diameter. The column was centrifuged at 1500 

xg for 5 min in reaction tube and the flow through was discarded.  One washing step 

was done by 100 µl TNE buffer and centrifugation at 1500 xg for 5 min. Labeling 

reaction was loaded to the column and centrifugation at 1500 xg was done for 5 min 

in a new reaction tube. The collected sample was immediately used for hybridization. 

 
Prehybridization solution (100 ml): 5 ml 100X Denhard solution, 25 ml 20X SSPE, 

2 ml 10 % SDS, 2 ml Salmon sperm DNA (10 mg/ml). 

Hybridization  solution: 10 ml prehybridization  solution, radioactive probe. 

100X Denhard: 2 % PVP 10, 2 % BSA (filter sterilized), 2 % Ficoll 400. 

20 X SSC: 0.3 M Na-Citrat pH 7.0, 3 M NaCl. 

20 X SSPE: 3.6 M NaCl, 0,2 M NaH2PO4, 20 mM EDTA, pH 7.4. 

 
2.6.3 RNA-cDNA hybridization    

Membranes were incubated with the prehybridization solution for 2h at 60 °C. 

Hybridization was done with the radioactive labeled probe in 20 ml of hybridization 

solution at 55 °C overnight. The hybridized membranes were washed two times 50 ml 

of 2X SSC, 0.2 % SDS at RT for 15 min. Again membranes were washed two times 

with 50 ml of 1XSSC, 0.2 % SDS.  

 
2.6.4 Autoradiography 

Radioactivity signals were detected by overlaying a Kodak® X-Omat LS film on the 

membrane overnight at -80 °C. T Films were incubated in the developing solution for 

1 min and washed by water. Finally membranes were fixed in the fixation solution for 

3 min. 

 

2.7 Southern blot analysis 

2.7.1 Genomic DNA extraction   

Around 2 g of leaf materials from M. domestica were harvested and ground in a pre 

cooled mortar in the presence of liquid nitrogen. The fine powder was transferred 



Materials and Methods 

 

 

28

equally into six 2ml tubes. Preheated 800 µl CTAB buffer were added to each tube 

mixed and incubated for 30 min at 65°C. Eight hundred µl of CI Mix were gently 

mixed to avoid genomic DNA sharing. Samples were centrifuged for 10 min at 10000 

xg. Thereafter the aqueous phase was transferred into a new tube, this step was 

repeated several times to obtain a clear sample. For DNA precipitation 2/3 volume of 

a precooled at -20°C isopropanol was added and gently mixed. Afterwards samples 

were incubated overnight at 4°C. Centrifugation for 10 min at 13000 xg was done. 

Supernatant was removed and pellet was washed by 200 µl WB. The washing buffer 

was carefully removed and pellet was resuspended in 200 µl TE buffer supplemented 

with RNase A (final concentration 10 µg/ml). After incubation for 30 min at 37°C, 100 

µl of 7.5 M ammonium Acetate and 750 µl Ethanol were added and gently mixed. At 

room temperature samples were centrifuged for 10 min at 13000 xg and 

subsequently the supernatant was completely removed and pellet was resuspended 

in a suitable volume of sterile distilled water. 

 
CTAB-buffer: 3 % CTAB, 1.4 M NaCl,  0.2 % ß-Mercaptoethanol*, 20 mM EDTA, 

100 mM Tris-HCl pH 8,0, 1,0 % PVP-40. 

* Add CTAB and ß-Mercaptoethanol after autoclaving. 

Cl Mix: 24 ml Chloroform,  1 ml Isoamylalcohol. 

Wash buffer (WB): 76 % Ethanol, 10 mM Ammoniumacetate. 

TE-buffer: 10 mM Tris-HCl. pH 8,0, 1 mM EDTA. 

RNase A: 10 mg/ml Stock solution in distilled water. 
 
2.7.2 Genomic DNA digestion  

Around 50 µg extracted genomic DNA were digested with restriction enzymes in 500 

µl assay for 2 h at 37 °C. Afterwards digestion assay was vortexed at low speed, 

centrifuge for few seconds and incubated overnight at 37 °C.  

 
2.7.3 Precipitation of digested DNA  

Digested DNA was precipitated by adding 50 µl Na-actate pH 5.2 and 800 µl cooled 

96 % Ethanol. The mixture was centrifuged for 10 min at 16000 xg. Pellet was 

washed with 70 % Ehanol at 16000 xg for 5 min. To dry the pellet, tubes were 
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incubated for 20 min at 37 °C. Dried pellet was dissolved in appropriate volume of TE 

buffer at 4 °C overnight. 

 
2.7.4 Separation of DNA on agarose gel 

Dissolved DNA was mixed with the loading buffer and loaded in 0.8 % agarose. Gel 

was let to run overnight at 20 mA.  

 

2.7.5 DNA transfer to nylon membrane 

The stained DNA separated fragments were denatured by washing two times for 20 

min by the denaturation solution with gentle agitation. After washing the gel by 

distilled water, it was neutralized by washing two times for 20 min with the 

neutralization solution and again washed by distilled water. The blotting cassette was 

assembled in the following order; 3 mm filter paper, DNA gel, nylon membrane, three 

layers of 3 mm filter paper, around 10 cm of tissue papers. The cassette was put on 

one layer filter paper that was submerged in both ends in 20X SSC solution. Above 

the tissue papers, around 500 g weight was put to facilitate the capillarity transfer 

overnight at room temperature. Membranes were fixed at 80 °C for 2 h in oven. 

Membranes were used immediately for hybridization or kept in dark at room 

temperature for later use. 

 

Denaturation buffer: 1.5 M NaCl, 0.5 M NaOH. 

Neutralization buffer: 1 M Tris-HCl pH 8.0, 2 M NaCl. 

20 X SSC: 0.3 M Na-Citrat pH 7.0, 3 M NaCl. 

 

2.7.6 DNA labeling 

The nsltp was amplified by PCR and subsequently the products were extracted by 

phenol/chloroform. Around 1 µg of purified DNA were denatured by boiling in water 

bath at 95 °C for 10 min and immediately cooled in ice. To the freshly denatured DNA 

2 µl of 10X DIG high prime, 4 µl of 5X decamer nucleotides as a random primer and 1 

µl of Klenow enzyme were added. The total volume was adjusted to 15 µl by distilled 

water. Mixture was incubated for 20 h at 37 °C. 
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2.7.7 PCR DIG labeled probe synthesis 

The full length of nsltp including the upstream region was amplified by using PCR 

DIG probe synthesis Kit (Roche, Penzberg, Germany). By using forward and reverse 

primers of nsltp (2.5.4) the PCR reaction mixture was prepared according to Kit 

instructions. 
 

2.7.8 Hybridization 

Membranes were placed in the hybridization tubes DNA-side in and incubated with 

20 ml of the prehybridization solution for 2 h in rotor oven at 40 °C. Solution was 

discarded and membranes were incubated overnight with 20 ml of the hybridization 

solution DIG labeled probe 3:1 PCR DIG probe and Klenow DIG probe in the 

prehybridization solution at 42 °C. Labeling process was tested by agarose gel, the 

labeled material should have a larger size than the nonlabeled one.   

 
Prehybridization solution (High-SDS-Formamid-solution) 100 ml: 41 ml 100 % 

deionized formamid, 16.6 ml 30 X SSC, 5 ml 1 M Sodium phosphate pH 7.0, 20 ml 

10 % Blocking solution, 1 ml 10 % N-Laurylsarcosine, 16,5 ml 40 % SDS. 

Hybridization solution: DIG labeled probe in prehybridization solution 

30 X SSC: 4.5 M NaCl, 0.45 M Na-Citrat. 

  
2.7.9 Visualization of the probe-target hybrids 

 After hybridization, membranes were washed with 100 ml of 2X SSC/0.1 % SDS two 

times for 5 min at room temperature. Solution was discarded and membranes were 

again washed two times with 100 ml of 0.5X SSC/0.1 % SDS for 15 min at 68 °C. 

Membranes were washed once for 5 min with 100 ml of washing buffer. To quench 

the membrane background, membranes were incubated with blocking solution for 30 

min at room temperature. After discarding of the blocking solution, membranes were 

incubated with 50 ml Anti-Digoxigenin-AP 75 mU/ ml in blocking solution for 30 min. 

Membranes were equilibrated with 20 ml of the detection buffer for 5 min. Detection 

of the membranes was done by distribution of around  20-60 drops (1-2 ml) of CDP-

Star diluted 1:100 in detection buffer on a membrane. Membranes were put between 
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two plastic sheets. After removing the excess of detection solution, plastic sheets 

were sealed avoiding any air bubbles.  

 
Maleic acid buffer: 0.1 M Maleic acid, 0.15 M NaCl, pH 7.5 (adjust with solid NaOH). 

Washing buffer: 0.1 M Maleic acid, 0.15 M NaCl; pH 7.5, 0,3 % (v/v) Tween 20. 

Blocking solution: 10 X Blocking reagent diluted 1:10 in Maleic acid buffer. 

Detection buffer 1 X: 100 mM Tris, 100 mM NaCl, pH 9.5. 

 
2.7.10 Autoradiography 

Chemiluminescent signals were detected by overlaying Kodak® X-Omat LS film on 

the membrane for appropriate time at RT. Films were incubated in the developing 

solution for 1 min and washed by water. Finally membranes were fixed in the fixation 

solution for 3 min. 

 

2.8 Determination of nsltp intron/exon structure by PCR 

To achieve this goal, a standard PCR reaction was done by using the genomic DNA 

from different apple cultivars as a template. In one reaction tube 1 µl from diluted 

DNA, forward and reverse primer and mixture of dNTPs (10 mM) were added and 

subsequently the whole volume was completed to 26 µl by distilled water. In another 

reaction tube, 5 µl of 10X PCR reaction buffer and 2 µl Taq polymerase were added 

and volume was filled to 25 µl with distilled water. Contents of both tubes were mixed 

immediately before launching PCR. The whole reaction was denatured initially for 3 

min at 94 °C. The thermocycler was adjusted as follows for 36 cycles: denaturation at 

94 °C for 30 sec, annealing at 46-56 °C for 1 min, extension at 72 °C for 1.5 min and 

a final extension for 3 min sec at 72 °C for proof- reading. Subsequently 5 µl of the 

PCR reaction were separated on 1.5 % agarose gel, stained in Ethidium bromide and 

finally analyzed under UV light. 
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2.9 Upstream regions amplification 

The upstream regions in two different apple cultivars (Elstar and Remo) were 

amplified by using Universal Genome WalkerTM Kit, (BD Bioscieces Clontech, USA). 

The principal of this kit is presented in Figure 2.2. DNA from apple tissue was 

extracted as described in (2.7.1).  

 
2.9.1 Genomic DNA digestion 
Around 2.5 µg genomic DNA were mixed with 8 µl restriction endonulase (DraI, 

EcoRV, PvuII and StuI) in presence of the suitable buffer. The total assay volume 

was adjusted by deionized water to 100 µl. After incubation of the tubes at 37 °C for 2 

h, the mixture was vortexed at low speed for 5-6 sec. Again tubes were incubated at 

37 °C overnight (16-18 h). To check the complete digestion of genomic DNA 5 µl 

were run on a 0.5 % agarose gel. 

 
2.9.2 Genomic DNA purification 

To each digestion assay 95 µl phenol 80 % equilibrated to pH 8.0 were added and 

vortexed at low speed for 5-6 sec. Tubes were spun briefly to separate the aqueous 

and organic phases. The aqueous phase was transferred into a new tube and the 

organic phase was discarded. After addition of 95 µl of chloroform, tubes were shortly 

vortexed and briefly spun. Again the upper layer was transferred into new tube. For 

DNA precipitation two volumes (190 µl) of ice cold 95 % ethanol and 1/10 volume 

(9.5 µl) of 3 M NaOAc pH 5.2 were added and vortex was done at low speed for 5-6 

sec. Centrifugation was done at 16000 xg for 10 min. Subsequently, supernatant was 

removed and pellet was washed by centrifugation in 100 µl of ice cold 70 % ethanol 

for 5 min at 16000 xg. The supernatant was decanted and pellet was air dried and 

dissolved in 20 µl TE buffer pH 7.5. Vortex at low speed was done for 5-6 sec and 1 

µl from the mixture was run on 0.5 % agarose gel to determine the approximate 

quantity of purified DNA. 
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Figure (2.2): Schematic diagram shows principal steps in Genome Walker Kit. 
 

 
2.9.3 Ligation of genomic DNA to Genome Walker adaptor 

To construct each library, 4 µl of digested purified DNA were mixed with 1.9 µl 

GenomWalker adaptor (25 µM), 1.6 µl 10X ligation buffer and 0.5 µl T4 DNA ligase (6 

units/µl). Mixture was incubated at 16 °C overnight. The reaction was stopped by 

incubation at 70 °C for 5 min.  
 

 

 
Figure (2.3): Adaptors and adaptors primers sequence used in Genome Walker Kit. 
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2.9.4 PCR-based DNA walking in GenomWalker libraries 

To amplify the upstream region and as well as the down stream region, different 

primers according to the recommendations provided by the company, two gene 

specific primers for nsltp (GSP1 and GSP2) were designed by using Primer package. 

In order to amplify more from the upstream region, the same procedure has been 

repeated by using the corresponding gene specific primers for upstream II region.  

 

Upstream I GSP1: 

Upstram I GSP2: 

Upstream II GSP1: 

Upstram II GSP2: 

Downstream GSP1: 

Downstream GSP2: 

5'-CAT GAG CAA CGC TCA CCG CCA TGC ACA A-3' 

5'-AGC AAG GTT GGT CAC TGC AGA GCT AGC C-3' 

5'-GAA TAG TCG AAC TAA GGG TAT TGT GGT C-3' 

5'-CAA CTT TTG TGG CCA CGT TTA CGT GTT T-3' 

5'-CCA GAC TGC TTG CAA CTG CCT GAA GAA T-3' 

5'-CTC CAC CAA CTG CGC CAC CGT GAA GTA G-3' 

 

 

2.9.4.1 Primary PCR 

The primary PCR master mix was prepared as follow: 

37.8  µl deionized H2O 

 5       µl 10X Tth PCR Reaction Buffer 

 1       µl dNTP (10 mM for each) 

 2.2    µl Mg (OAc)2 (25 mM) 

 1       µl adaptor primer 1 (10 µM) 

 1       µl gene specific primer 1 (10 pmole) 

 1       µl of each DNA library 

 1       µl Advantage Genomic Polymerase Mix (50X) 

  

50     µl 

 

Tubes were mixed by vortexing without introducing bubbles. The thermocycler (PTC 

200, Biozym, Oldendorf, Germany) was programmed as follow: 
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• 7 cycles 

   94 °C  25 sec 

   72 °C  3 min 

• 32 cycles 

   94 °C  25 sec 

   67 °C  3 min 

• 67 °C for an additional 7 min after the final cycle. 

 

To analyze the primary PCR products, 10 µl were run on 1.5 % agarose gel. 

 

2.9.4.2 Secondary PCR 

The secondary PCR master mix was prepared as follow: 

39     µl deionized H2O 

 5       µl 10X PCR Reaction Buffer 

 1       µl dNTP (10 mM for each) 

 1       µl adaptor primer 2 (10 µM) 

 1       µl gene specific primer 2 (10 pmole) 

 1       µl Each DNA library 

 2       µl Taq polymerase   

50     µl 

 

Tubes were mixed by vortexing without introducing bubbles. The thermocycler was 

programmed as in the primary PCR. Ten µl of the PCR products were analyzed on 

1.5 % agarose gel. 

 
2.9.4.3 PCR products cloning and sequencing 

The obtained fragments by secondary PCR were immediately ligated in pGEM T-

vector. Three µl of the PCR products were mixed with 1 µl pGEMT-vector and 1 µl of 

T4-DNA ligase in presence of ligation buffer. The ligation assay was incubated 

overnight at 4 °C. From this ligation 3 µl were used to transform E. coli strain XL1-

Blue and subsequently the blue-white screening was done as described in (2.5.10). 

To confirm the positive transformed colonies, plasmid was isolated and digested by 

NcoI and NotI and subsequently the right plasmid was sent for sequencing. 
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2.10 Promoter activity test 

2.10.1 PCR amplification of the upstream region 

The forward and reverse primers* were designed containing BamHI and EcoRI 

restriction sites. Genomic DNAs of Elstar and Remo were used as a template for 

PCR. The essential elements for promoter were amplified as fragments with the size 

351 bp and 357 bp for Elstar and Remo respectively. The amplified fragments were 

purified from agarose gel as described in (2.5.6). The purified upstream regions were 

cloned in pGEMT vector as intermediate step. After blue white screening, the right 

clones were digested with BamHI and EcoRI.  

 

*Elstar forward primer: 

*Elstar reverse primer: 

*Remo forward primer: 

*Remo reverse primer: 

5′ TCC CTT AGA ATT CAA AAT AG 3′ 

5′ AAA AGC TTA AAA AGG ATC CG 3′ 

5′ GGG CTG GTC CTC GAA TTC AC 3′ 

5′ GTG TAT GAG TAA TGG ATC CG 3′ 

 

2.10.2 Insertion of the upstream region in front of DsRed marker gene 

The vector pe35AscloptRed containing the DsRed gene (kindely provided by Prof. 

Dr. E. Maiß) was digested by BamHI and EcoRI to remove the double 35S promoter. 

The digested upstream regions from pGEMT vector were ligated with the linerazied 

pe35AscloptRed vector by using T4-DNA ligase.  Transformation of E. coli strain was 

done by using 3 µl from the ligation assay and electroporation at 1.25 kV. The right 

clones were selected and used for particle bombardment and transient expression in 

apple leaves. 

 

2.10.3 Negative control plasmid 

For negative control preparation, the double 35S promoter was removed from the 

pe35AscloptRed vector by digestion with BamHI and EcoRI. The linear plasmid was 

purified from agarose gel. To religate the linear plasmid, the two sticky ends were 

filled by treatment with Klenow enzyme in the presence of dNTPs for 30 min. Klenow 

enzyme was inactivated by incubation of the reaction assay for 15 min at 85 °C. The 
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treated linear plasmid was incubated overnight at 4 °C with T4-DNA ligase in 

presence of 5X ligation buffer containing PEG, ATP and DTT. After transformation, 

the right plasmid was selected and used as a negative control.  

 

2.11 Subcellular localization of nsLTP 

2.11.1 Overexpresion of nsltp in E. coli  

2.11.1.1 Amplification of nsltp  

To amplify the nsltp, the vector pNEB 193 harboring the nsltp was used as a template 

for PCR by forward and reverse primers containing an EcoRI site for the direct 

integration into the pMal c2X expression vector. Subsequently PCR products were 

purified as described in (2.5.6).   

 

2.11.1.2 Cloning of nsltp  

The vector pMAL-c2X was lineraized by using XmaI to insert nsltp downstream from 

the maIE gene, which encodes for maltose binding protein (MBP).  PCR product with 

blunt ends was ligated with the linear pMAL-c2X by using T4-DNA ligase in presence 

of DTT, ATP and PEG. 3 µl from the ligation assay were used to transform Epicurian 

Coli® BL21-CodonPlusTM (DE3)-RIL (Stratagene, Netherlands). Blue-white screening 

and digestion were done to select the right clone.  

 

2.11.1.3 Insert orientation  

Since the PCR amplified nsltp has blunt ends, it was necessary to confirm the 

orientation of the gene in the expression vector. To prepare sample for sequence, 

around 3 µg of plasmid DNA in reaction tube were dried in a speed vacuum. Tubes 

was closed, labeled and sent for sequence. Retrieved sequence was checked by 

computer program to determine the orientation. 

 

2.11.1.4 Expression of nsltp in E. coli BL21-CodonPlusTM (DE3)-RIL 

The nsltp was expressed in fusion to maltose binding protein as inclusion bodies in 

the cytocol. According to the protocol provided by the company, 10 µl from E. coli 

stock culture stored at -80 °C were inoculated in 10 ml LB medium (containing 100 
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µg/ml ampicillin and 34 µg/ml chloramphenicol) and incubated overnight at 37 °C. In 

the second day 2.5 ml from the overnight culture were centrifuged and the 

supernatant was discarded. Pellet was resuspended in 1 ml NZY medium containing 

the two antibiotics. This 1 ml was inoculated in 250 ml NZY medium containing the 

same antibiotics and incubated at 37 °C. The OD was measured at several intervals 

at 600 nm until it reached to 0.5. Subsequently the expression system was induced 

by addition of 1 mM IPTG and the culture was incubated at 37 °C overnight.  

 
NZY Broth (per liter): 5 g NaCl, 2 g MgSO4.7H2O, 5 g yeast extract, 10 g NZ amine 

(casein hydrolysate), pH 7.5. 

 

2.11.1.5 Bacteria harvest  

Bacterial culture was centrifuged for 15 min at 6000 xg. Pellet was resuspended in 20 

ml 20 mM Hepes pH 7.0. To minimize the damage of protein contents those released 

from bacterial cell by chemical treatment, bacterial suspension was passed through 

the French Press two times at 20000 psi. To remove the cell debris the solution was 

centrifuged for 15 min at 900 xg. The supernatant was again centrifuged for 30 min at 

10000 xg and dialyzed overnight at 4 °C against dialysis buffer containing 20 mM 

HEPES, 1mM ß-mercaptoethanol and PMSF. 

 

2.11.1.6 Chromatography and elution  

Column with 1 cm diameter was filled (around 6 cm) with amylase resin and 

equilibrated with the dialysis buffer. Subsequently, the supernatant was loaded to the 

equilibrated column and let to flow through. Protein concentration was measured by 

photometer. The flow through was collected and stored at -20 °C. Afterwards column 

was washed three times by dialysis buffer. The expressed protein was eluted by 

application of 10 mM maltose and 2 ml fractions were collected and stored at -20 °C. 

 
2.11.1.7 Antisera production against the recombinant protein 

A polyclonal antiserum against the recombinant protein (nsLTP in fusion with the 

MBP) was raised in goat as described in Singh et al., 2005. An appropriate amount of 

the recombinant protein (500 µg) was dialyzed against 10 mM sodium phosphate 
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buffer (pH 7.0) in the presence of 0.05 % SDS. After dilution with an equal volume of 

Freund's complete adjuvance, the emulsion was divided into two equal parts and 

injected subcutaneously into a goat and after three weeks into the hingleg muscles. 

The bleeding was has been done after the second immunization by three weeks. 

 

2.11.1.8 Determination the produced antibody specificity 
To determine the specificity of the produced antibody that was raised in goat against 

the recombinant protein nsLTP in fusion with the maltose binding protein (MBP), IWF 

samples from young and old healthy apple leaves were collected and used for 

western blot. The procedure was done as described in 2.4 with some modifications 

including the use of antigoat peroxidase (with dilution 1:20000) as a second antibody, 

development of the membrane. For development membranes were incubated with 5 

ml mixture 1:1 of solutions A and B for 1 minute. The membrane was dried and the 

light emission was detected by using a CCD-camera. 

 

Solution A: 1 ml 250 mM Luminol in DMSO, 0.44 ml 91 mM p-cumaric acid in 

DMSO, 10 ml 1 M Tris pH 8.5 fill up to 100 ml with distilled water. 

Solution B: 10 ml 1 M Tris pH 8.5, 61 µl 30% H2O2 fill up to 100 ml with distilled 

water. 

 

2.11.2 Transient expression of nsltp in fusion with GFP  

2.11.2.1 N-terminal fusion of the nsltp with GFP 

The vector pBSK that harboring the EGFP gene was kindly provided by PD Dr. Jutta 

Papenbrock. Two clones were provided, one as an N-terminal fusion and the other 

one as a C-terminal fusion. The cassette for N-terminal fusion was as follow –HindIII- 

2x35S promoter- "MCS"- GFP- polyA- EcoRI- in pBSK. On the other hand the 

cassette for C-terminal fusion was as follow; -HindIII-2x35S promoter-GFP-"MCS"-

polyA-EcoRI- in pBSK. In both cases the MCS was having BglII and NcoI as a 

restriction sites (Figure 2.4). 
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2.11.2.1.1 PCR amplification of nsltp 

To amplify the full length of nsltp, two specific primers* with NcoI and BglII restriction 

sites were designed by using Primer package. To enhance the activity of the 

cleavage close to the end, we added additional nucleotides around the restriction 

sites to have the activity of 90 % for BglII and 75 % for NcoI. PCR was performed and 

subsequently PCR products were used for further steps. 

 

* nsltp full length forward primer: 

* nsltp full length reverse primer: 

* nsltp mature forward primer: 

* nsltp mature reverse primer: 

* nsltp truncated forward primer: 

* nsltp truncated reverse primer: 

5' GGT ACC CAT GGC TAG CTC TG 3' 

5' CCA GAT CTC ACG GTG 3' 

5' GTT GCC ATG GCC ATA AC 3' 

5' CCA GAT CTC ACG GTG 3' 

5' GGT ACC CAT GGC TAG CTC TG 3' 

5' GGT AGA TCT GCT CTA CTT GTA GG 3' 

 

 
 
 

 

Figure (2.4): Map of Bluescript vector with EGFP under the control 
of double 35S promoter. This vector has been used for C-terminal 
fusion with EGFP gene. 
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2.11.2.1.2 Cloning of nsltp in pBSKGFPN-terminal 

To facilitate this cloning step an intermediate step was introduced, 3 µl of pure PCR 

fragment were ligated in pGEMT-vector in presence of ligation buffer and T4 DNA 

ligase. Ligation assay was incubated overnight at 4 °C. 

An appropriate volume of the ligation assay (3 µl) was used for transformation of 

XL1-Blue as descried in (2.5.10). After blue-white screening, the right colony was 

cultivated overnight in LB medium with ampicillin 100 µg/ml at 37 °C. Plasmid 

preparation was done according to (2.5.11). 

 

2.11.2.1.3 Vector backbone and nsltp purification 

The vector pBSKGFPN-terminus clone and as well as the pGEMT-vector that harbors 

the nsltp were digested with NcoI and BglII in the presence of 2X of Tango+ buffer 

(Fermentas, Munich, Germany). To purify the linear vector and nsltp from the 

digestion assay, the corresponding DNA fragments were extracted by Gel Extraction 

kit (The Geneclean II® Kit Bio 101 Inc.). DNA fragments were excised from ethidium 

bromide-stained agarose gel with a sharp scalpel under long-wave UV light. One 

volume of gel was melted in three volumes of 5 M NaI solution at 50 °C for 5 min. 

The solution was incubated with 10 µl of glassmilk suspension for 5 min with gentle 

shaking. Suspension was centrifuged for 5 sec and supernatant was removed. Pellet 

was washed three times by 700 µl of ice cold NEW WASH. Eventually to elute DNA, 

pellet was resuspended in 20 µl sterile distilled water and incubated at 55 °C for 2 

min. Centrifugation for 30 sec was done and supernatant was carefully collected. 

 

2.11.2.1.4 N-terminal ligation of nsltp with GFP and transformation of E. coli 

The right clone of pGEMT-vector containing nsltp was digested with BglII and NcoI. 

Fragment corresponds to nsltp was purified from agarose gel. A ligation assay was 

prepared, with tacking into consideration the ratio between the backbone and the 

insert (1:3). Transformation and screening were done. 
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2.11.2.2 C-terminal fusion of the nsltp with GFP 

 In this case, PCR products of nsltp were precipitated and purified as described in 

(2.5.6). Purified products were directly subjected to enzymatic digestion overnight 

with NcoI and BglII in the presence of 2X of 10X Tango+ (Fermentas, Munich, 

Germany) at 37 °C. The digestion assay was separated on 1.5 % agarose and band 

was excised from the gel and DNA was extracted using sigma kits. Column was firstly 

equilibrated by 100 µl sterile distilled water and centrifugation for 5-6 sec. Water was 

collected and removed from the tube. The excised agarose was loaded to the column 

and immediately centrifugation was done for 10 min at maximum speed. Diluted 

collected DNA was concentrated by speed vacuum.    

 
2.11.2.3 Preparation of samples for sequencing 

After selection of the right clone, a plasmid preparation was done for this clone. The 

purified plasmid was subjected to enzymatic digestion by using NcoI and BglII. After 

confirmation of nsltp presence in the construct via enzymatic digestion, around 3 µg 

of the undigested purified plasmid were dried in a speed vacuum in 1.5 ml tube. On 

the other hand, around 120 pmole of GFP primer* were also dried by the manner. 

The tubes were labeled and closed by parafilm and finally sent for sequencing. 

 
 
*GFP primer for sequence 
GFP reverse primer for GFPN-terminal fusion: 
 

5'-GCT TGC CGT AGG TGG CAT CGC CCT-3' 
 
GFP forward primer for GFPC-terminal fusion: 
 

5'-CTG GAG TTC GTG ACC GCC GCC GG-3' 
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2.11.2.4 Particle bombardment preparations 

Plant materials 

Leaves from different cultivars of apple Malus domestica. cv. Elstar, Holsteiner Cox 

and Gloster were harvested from greenhouse and in vitro plants for testing the 

efficiency of transient expression. 

 
2.11.2.4.1 Gold particle solution (Micro-carrier) preparation 

Forty mg from gold particle (Bio-Rad) with a diameter of 0.4 to 1.2 µm were 

suspended in 1 ml 96 % Ethanol and centrifuged for short time. Supernatant was 

removed and gold particles were washed two times in 1 ml 96 % Ethanol and once in 

1ml of distilled water. Finally gold particles were resuspended in 1 ml sterile distilled 

water and divided into 50 µl aliquots and stored at -20°C. 

 
2.11.2.4.2 Coating gold particles with DNA 

One tube of gold particles was thawed and Ultra-sonicated for 10 min. Appropriate 

amounts of plasmid DNA (2-5 µg) were added, and immediately vortexed very well 

was done to ensure a good contact in between DNA and particles. Drop by drop an 

aliquot of CaCl2-Solution was added. Promptly one sperimidine aliquot was added 

and the solution was mixed by vortexing for 1 min. After short centrifugation for 5-6 

sec, the supernatant was removed and subsequently particles were washed two 

times with 250 µl 96 % Ethanol. Eventually particles were resuspended in 85 µl 96 % 

Ethanol and stored at 4°C. 

 

CaCl2-Solution 

0.3 M CaCl2-Solution was prepared in distilled water and autoclaved. 50 µl aliquots 

were stored at -20°C. 

 
Spermidine 

A spermidine solution with a concentration 0.1 M was prepared in sterile distilled 

water as a stock solution. Then aliquots of 0.01 M in 20 µl were stored at -80°C. 
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2.11.2.4.3 Plasmid preparations 

Plasmid was purified from E. coli XL1-Blue strain via QIAGEN or HB-Lysis 

preparations, in case of HB-lysis plasmid preparation was sometimes treated with 

RNAase and sometimes not.  

 

2.11.2.4.4 Media for transient expression of nsltp in fusion with GFP 

0.5 % plant agar was dissolved in distilled water and autoclaved. Plant agar was 

transferred into Petri dishes and let to solidify. Plates were stored at 4°C. 

Sometimes wetted filter papers were used instead of plant agar. 

 
2.11.2.4.5 Macro-carrier preparation 

Macro-carriers and macro-carrier stainless steel holders were sterilized by soaking in 

96 % Ethanol for short time. Subsequently they were transferred to filter papers and 

covered with Petri dish lids for drying. After drying the macro-carriers were fitted into 

their stainless steel holders. On the other hand the gold particles again were 

sonicated for 3 min. From the upper part of the sonicated particles 5 µl were taken, 

and put in the middle of the macro-carrier. The macro-carriers were let for 5-10 min 

for drying before bombardment. 

 

2.11.2.4.6 Particle-gun shooting 

PDS-1000/He Biolistic®, Particle Delivery System from Bio-Rad was cleaned by 70% 

Ethanol before use. A rupture disk with 1350 psi was loaded in the equipment. The 

macro-carrier launch assembly was assembled by first, laying in place a stopping 

screen followed by an inverted macro-carrier holder, which is held by screwing on the 

launch assembly lid. The launch assembly was slit into place immediately below the 

helium nozzle. Opened Petri dish containing the target, centered, lower side up and 

fixed with plastic stencil leave, was slit onto the third shelf at 6 cm. The chamber was 

closed and the vacuum was pulled until it reached 27-28 inches of Hg, then the 

vacuum was held. The gun was fired until the rupture disk was ruptured, afterwards 

the chamber was vented. Plates containing the bombarded leaves were transferred 

and incubated for 48 h in the growth chamber. For the next shooting, the ruptured 

disk, macro-carrier and stopping screen were replaced. 
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2.11.2.4.7 Microscopy 

After 48 h incubation, a part of the leaf was transferred from Petri dish, placed on a 

glass slide and subsequently covered with 50 % glycerol and then covered with glass 

cover. Slides were examined by using excitation filter 565/30 nm, beam splitter 585 

nm and emission filter 620/60 nm (see table 2.2). 

 
Table (2.2): Filter system for the reporter proteins; filter 09 (487909 – 0000) ZEISS, was 
used for GFP and 41021 for DsRed. 
 
  

Filter system GFP (filter 09) nm DsRed (filter 41021) nm 

Excitation Filter BP 450-490 HQ 565/30 

   Beam Splitter FT 510 Q 585 lp 

Emission Filter LP 520 GQ 620/60 

 

 
2.12 Methylation anlysis of apple nsltp  

The methylation pattern of nsltp was detected via methylation sensitive restriction 

enzymes and southern blot. Around 70 µg genomic DNA of different Elstar and Remo 

samples were used for southern blot using MspI (methylation insensitive) and its 

isoschizemer HpaII (methylation sensitive) and AvaII. The whole procedure was done 

as described in (2.7). Only the purification step for digested genomic DNA was done 

by using phenol/chloroform as described in (2.9.2). 
 

2.13. Bioinformatics tools 

Different bioinformatics tools were used in this study for DNA analysis, including 

DNASTAR, Clonemanger and Primer packages. The retrieved cDNA sequence was 

submitted to the NCBI database http://www.ncbi.nlm.nih.gov/ for homology search 

and vector contamination detection. The net sequences were used for promoter 

predictions by using different packages available. The retrieved sequence of cDNA 

was analyzed by using DNASTAR program. An open reading frame (ORF) was found 

via CLONEMANAGER program. This ORF was translated, and the deduced amino 

http://www.ncbi.nlm.nih.gov/
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acids were used for homology research in the database. Alignment of deduced amino 

acids with different amino acids sequence in different plant species was done by 

DNASTAR program. Protein similarity among several plant species has been done 

by using multiple alignment tools ClustalW available in EMBL 

http://www.ebi.ac.uk/clustalw/#. The amino acids sequence was used to predict the 

protein localization site according to the rules described by von Heijne (1983) by 

PSORT program available in http://psort.ims.u-tokyo.ac.jp/form.html. In order to 

predict the possible phosphorylation sites, deduced amino acids sequence was 

submitted to the NetPhos 2.0 prediction server (Blom et al., 1999; 

http://www.cbs.dtu.dk/services/NetPhos/). For the upstream regions analysis we used 

promoter prediction program that was available in http://www.fruitfly.org, and 

http://genes.mit.edu. To determine the cis-acting regulatory elements those 

distributed in the upstream regions we analyzed these sequences by using the 

PlantCARE database available at http://intra.psb.ugent.be:8080/PlantCARE/. 

http://www.ebi.ac.uk/clustalw/
http://psort.ims.u-tokyo.ac.jp/form.html
http://www.cbs.dtu.dk/services/NetPhos/
http://www.fruitfly.org/
http://genes.mit.edu/
http://intra.psb.ugent.be:8080/PlantCARE/
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3 Results 

3.1 nsLTP in the apoplastic fluid of the resistant apple cultivar Remo  

It has been shown previously that nsLTP declined to undetectable level in the apple 

scab susceptible cvltivar Elstar, therefore It was necessary to confirm whether the 

resistant apple cultivar Remo contains the nsLTP in its apoplastic fluid or not. The 

IWF from young leaves of healthy plants of M. domestica cv. Elstar and Remo was 

collected by infiltration/centrifugation technique (Hogue and Asselin 1987). The IWF 

was collected from the leaves by using water and as well as PBS as extraction buffer. 

SDS PAGE analysis of these four samples (Figure 3.1) revealed that the level of 

nsLTP in the IWF of the resistant cultivar is much less present, in comparison with 

the susceptible cultivar in the case of using PBS for IWF collection. The result 

showed that the level of nsLTP was very high in the susceptible cultivar Elstar when 

water was used to collect the IWF in comparison with water.  On the other hand the 

putative nsLTP band in the resistant apple M. domestica cv. Remo was not detected 

when the PBS was used to collect the IWF. To confirm the SDS PAGE analysis, the 

putative nsLTP band in Remo sample was excised from gel and prepared for 

sequence by mass spectrometry.    

 
 

 

 

Figure (3.1): separation of IWF samples on SDS PAGE; IWF 
from healthy M. domestica cv. Elstar and Remo young leaves 
extracted by water and PBS buffer. Each lane was loaded 
with 50 µg protein based on Bradford determination. 
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The ESI Q-TOF mass spectroscopy analysis revealed that the de novo sequence of the 

tryptic fragments from a 9 kD band from the apoplastic fluid of the resistant apple cv. 

Remo has significant homolgy to the nsLTP from M. domestica (Table 3.1). 
 
 

Figure (3.2): Corresponding amino acids sequences 
which retrieved from mass spectrometry analysis. 
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Table (3.1): ESI Q-TOF mass spectroscopy of tryptic peptide fragments and identification of 
the derived peptide sequences from cv. Remo by homology search. § NCBI accession 
number; # Swiss Prot accession number. 
 

Charge Mass [D] Derived amino  
acid sequence Sequence similarity Organism 

Accession 
number

2+ 925.84 SLSGVNPNTD Mald3 Malus domestica AJ277164.1§ 

2+ 606.2 TTSTSTNTATVK nonspecific lipid transfer protein Malus domestica Q9M5X7# 

 

3.2 Isolation of cDNA of apple nsltp by RT-PCR 

3.2.1 Cloning and sequencing 

By using total RNA preparation from young uninfected leaves and the corresponding 

primers in RT-PCR, we could amplify a fragment of cDNA from the susceptible apple 

M. domestica cv. Elstar and the resistant one Remo with a size approximately 350 bp 

(Figure 3.3). For amplification of this fragment in E. coli, fragment was purified and 

cloned in pNEB 193 vector. After cloning the cDNA of nsltp, the right plasmid was 

purified and sent for sequencing. The retrieved sequences were analyzed by using 

different programs. 

 

Figure (3.3): ns-ltp cDNA on 1.5 % agarose gel after RT-PCR from 
total RNA of M. domestica cv. Elstar and Remo. 
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Figure (3.4): Nucleotide sequence of M. domestica cv. Elstar cDNA and deduced 
amino acid sequence of nsltp. The putative signal peptidesare  underlined. 

Figure (3.5): Nucleotide sequence of M. domestica cv. Remo cDNA and deduced 
amino acid sequence of nsltp. The putative signal peptides are underlined. 
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3.2.2 Sequencing evaluation of nsltp 

An open reading frame was found that contains 349 bps and encodes a protein with 

a calculated molecular mass of 11.4 kD and an isoelectric point 8.79. Homology 

search in database revealed that the amino acid sequence showed homology to 

nonspecific lipid transfer protein of M. domestica cv. Golden Delicious, NCBI 

accession number AF221502 with a similarity 100 %. Amino acid sequence of ns-

LTP exhibits conservation of eight cysteine residues and absence of tryptophan 

residue. PSORT analysis showed that the possible cleavage site of the ns-LTP of M. 

domestica cv. Elstar and Remo could be located after amino acid number 24 (von 

Heijne 1983). Moreover, PSORT analysis revealed that the precursor of ns-LTP does 

not contain H/KDEL (endoplasmic reticulum retention signal) site. This analysis 

showed that the probability of the localization site is 82 % outside the plasma 

membrane. After cleavage of the signal peptide of ns-LTP, the mature protein has a 

predicted molecular mass 9 kD and a calculated isoelectric point 8.9. The isoelectric 

point of ns-LTP is not affected by removing the 24 amino acids of the signal peptides. 
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3.2.3 Alignment of the deduced amino acid sequences from Elstar and Remo 

The deduced amino acid sequences from the susceptible apple M. domestica cv. 

Elstar and from the resistant cultivar Remo as ell as from cultivar Golden delicious 

were aligned by using DNASTAR program. Alignment result shows that amino acid 

sequence of Elstar nsLTP is identical to that of Golden delicious. However there are 

two substitutions have been found within the 115 amino acid residues in the resistant 

cultivar Remo. The first substitution is the serine residue in Elstar has been 

substituted by asparagine in Remo at position 43. The second substitution is the 

amino acid residue glycine in Elstar has been changed to serine in Remo at 60 

(Figure 3.6). 

 

 

 
 

   

 

 

 

 

 

Figure (3.6): Alignment of the deduced amino acid sequences of 
nsLTP from three different apple M. domestica cv. Elstar, Remo 
and Golden delicious. Green colour indicated the substitution. 
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3.3 Apple nsltp is an intronless gene in different apple cultivars 

By the amplification of the cDNA of nsltp, one can not decide whether this gene 

contains an intron or not. To determine the structural pattern of nsltp, the genomic 

DNA of different apple cultivars was extracted and used as a template for PCR. 

Amplification of nsltp was done by using the same primers that have been used in 

RT-PCR. The amplified fragment in all of the tested cultivars has the same size of the 

cDNA that was amplified by RT-PCR with approximately 350 bp (Figure 3.7). This 

result indicates that apple nsltp in M. domestica cv. Elstar, Gloster, Holsteiner Cox 

and Remo has one exon with one open reading frame encoding for 115 amino acids 

therefore it is an intronless gene. 

 

 
 
 
 

 

 

 

Figure (3.7): Amplification of nsltp from cDNA in 
M. domestica cv. Elstar and from genomic DNA 
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3.4 Homology search of the nucleotide sequence of nsltp 

The nucleotide sequence of the retrieved cDNA was submitted with different 

sequences of the cDNA of plant lipid transfer protein to determine the degree of 

homology among different plant species. Multiple alignments of the DNA sequences 

were done by using ClustalW program available in the EMBL. Several plant species 

have been chosen for this analysis in addition to the apple M. domestica cv. Elstar 

and Remo. Results revealed that the plant nsltp within these species has a size 

ranging from 348 bp to 366 bp. (Figure 3.8). 
 
Brassica        ---------ATGGCTGGTCTAATGAAGTTGGCATGCTTGATC---TTCGCCTGCATGAT- 47 

Corylus         ---------ATGGGTAGCCTTA---AGTTGGTATGCGCGGTC---CTCTTGTGCATGAT- 44 

Phaseolus       ---------ATGGCCACCCTCA---ACTCTGCGTGCGTCGTTGCCGTGCTGTGCTTGGT- 47 

Vigna           ---------ATGGCCAGCATCA---AGTGTGCGTGCGTCGTTGCCCTCCTGTGCTTGGT- 47 

Retama          ---------ATGGCAAGCATCA---AGGTTGCATGTGTGGTT---CTGATATGCATGGTT 45 

Citrus          ---------ATGGCTGCCCTCA---AGCTTGTTTCAGCTTTG---GTTCTGTGCATGTT- 44 

Davidia         ATGGGTAGGTCAGGAGTGGTGATTAAGGTGGGTATTGTGGCGGTGCTGATGTGCATGGT- 59 

Vitis           ATGGGTAGCTCCGGAGCTGTGA---AGCTAGCTTGTGTGATGGTG---ATATGCATGGT- 53 

cv. Elstar      ATGGCTAGCTCTGCAGTGACCA---ACCTTGCTTTGGTGGTGGCCT---TGTGCATGGC- 53 

cv. Golden      ATGGCTAGCTCTGCAGTGACCA---AGCTTGCTTTGGTGGTGGCCT---TGTGCATGGC- 53 

cv. Remo        ATGGCTAGCTCTGCAGTGACCA---AGCTTGCTTTGGTGGTGGCCT---TGTGCATGGC- 53 

Pyrus           ATGGCTAGCTCTGCAGTGATCA---AGCTTGCTTTGGTGGTGGCCT---TGTGCATGGC- 53 

Prunus          ATGGCTTACTCTGCCATGACTA---AGCTTGCTTTGGTGGTGGCCT---TGTGCATGGT- 53 

Fragaria        ATGGCTATCTCTACTGCTATGA---AGCTTTCTTTGGTCGCTCTCT---TGTGCATCGT- 53 

Lilium          ---------------------------ATGGCTCGCTCCTCCGCCGTCTGCTTCCTCCTC 33 

Hordeum         ATGGCGGCTCCGAGGGGTGCGG---CACTGGTGCTGGCGATGGTGCTCGCGGCCATGGTG 57 

Triticum        -----------ATGGCTCGCAC---TACAGCTACTAA-GCTCGTGCTGGTCGCCCTGGTG 45 

Oryza           ATGGCCCGTGCACAG-CTGGTG---T-----TGGTCGCCCTCGTGGCAGCGGCTCTGCTC 51 

Zea             ATGGCTCGCACGCAATCTGCCG---TA---GCGGTCGCCGTGGTGGCCGCGGTGCTGCTG 54 

                                                                       *     

Brassica        --CGTGGCCGGTCCAATCACATCGAACGCGGCTCTGAGTTGTGGCACCGTTAGCGGCTAC 105 

Corylus         --GGTGGCCGCACCCGTTGCCCGG---GCGTCCCTGACATGCCCACAGATAAAAGGCAAC 99 

Phaseolus       --GGTGCTGACGGCACCCACTGCACATGCCGCCATCTCCTGCGGCCAGGTCACAAGTTCC 105 

Vigna           --GGTTGCCACCGCACCCACGGCACATGC---CATCACCTGCGGCCAGGTCGCAAGTTCC 102 

Retama          ATGGTGGGTGCTGCACCCATTGCACAGGC---CATAACATGTGGACAGGTGGTCAGCAAC 102 

Citrus          --GGTGACTGGTCCCCTGAGTGCTCAGGC---CATAACATGTGGGCAGGTGAGTGGCTCA 99 

Davidia         --GGTGAGTGCACCCCA---TGCCGAAGCGGCGATAACATGCGGCACGGTGACAGTCAGC 114 

Vitis           --GGTGGCGGCACCGGCGGTTGTGGAAGCAACCGTAACATGTGGTCAGGTGGCATCTGCC 111 

cv. Elstar      --GGTGAGCGT---------TGCTCATGC---CATAACATGTGGCCAAGTGACCAGCAGC 99 

cv. Golden      --GGTGAGCGT---------TGCTCATGC---CATAACATGTGGCCAAGTGACCAGCAGC 99 

cv. Remo        --GGTGAGCGT---------TGCTCATGC---CATAACATGTGGCCAAGTGACCAGCAGC 99 

Pyrus           --TGTCAGCGT---------TGCTCATGC---CATAACATGTAGCCAGGTGAGCGCCAAC 99 

Prunus          --TGTGAGCGTGCCCAT---TGCTCAAGC---CATAACATGTGGCCAAGTGTCCAGCAGC 105 

Fragaria        --GGTTGCTTTGCCCAT---AGCCCAAGC---CATCACCTGCGGCCAAGTAGCGAGTAGC 105 

Lilium          CTCCTCGCCTTCCTCATTGGCACAGCCTCGGCAATCACCTGTGGTCAGGTTGACTCTGAC 93 

Hordeum         GTGGCGCCGCC---TGTGACGGTGCGCGCGGCCATATCGTGCTCGGCGGTGTACAGCACG 114 

Triticum        GCGGCACTCCTCCTTGTAGCCTCCGACGCGGCAATCTCCTGCGGCCAGGTGAGCTCCGCC 105 

Oryza           CTGGCGGGCCCACACACCACCATGG---CCGCCATCAGCTGCGGCCAGGTCAACTCCGCC 108 
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Zea             CTGGCAGCGGCGGCGACGACCTCGGAGGCCGCCATCACCTGCGGGCAGGTGAGCTCCGCC 114 

                                            *     *    **        *           

Brassica        GTGGCACCGTGCATTGGCTACCTGGCCCAGAATGCGCCGGCCCTTCCCAGAGCGTGCTGC 165 

Corylus         CTCACGCCATGCGTGCTCTACCTGA---AGAACGGCGGCGTTCTTCCTCCCTCTTGCTGC 156 

Phaseolus       CTGGCTTCATGCATCCCTTTCCTCA---CGAAAGGTGGGGCGGTGCCAGCGTCATGCTGC 162 

Vigna           CTCACTTCATGCATCCCATTCATCA---CCAAGGGTGGGATCGTGCCGCCGTCATGCTGC 159 

Retama          CTAACCCCATGCATCACATACCTGC---AGAGAGGTGGAGCTGTTCCCGGACAATGCTGC 159 

Citrus          TTGGCACCATGCATCGGTTTCTTGA---GATCGGGCGGCCCTATACCTATGCCATGCTGC 156 

Davidia         CTGGCACCGTGCTTGAACTACCTGA---AGAAGGGTGGTCCGGTGCCGCCAGCCTGCTGC 171 

Vitis           TTGAGCCCGTGCATTAGCTACTTGC---AGAAAGGTGGTGCAGTGCCAGCTGGGTGCTGC 168 

cv. Elstar      CTTGCGCCATGCATTGGCTACGTGA---GGAGTGGCGGAGCTGTCCCTCCAGCTTGCTGC 156 

cv. Golden      CTTGCGCCATGCATTGGCTACGTGA---GGAGTGGCGGAGCTGTCCCTCCAGCTTGCTGC 156 

cv. Remo        CTTGCGCCATGCATTGGCTACGTGA---GGAATGGCGGAGCTGTCCCTCCAGCTTGCTGC 156 

Pyrus           CTTGCACCATGCATTAACTACGTGA---GGAGTGGCGGAGCTGTCCCTCCAGCTTGCTGC 156 

Prunus          CTTGCACCATGCATACCCTACGTGA---GAGGCGGTGGAGCTGTGCCTCCAGCTTGCTGC 162 

Fragaria        ATTTCACCTTGCGTAAACTACGTGA---AGAGTGGCGGCGCTGTCCCTGCCGCTTGCTGC 162 

Lilium          CTCACCTCCTGCCTTGGCTATGCTA---GAAAGGGCGGGGTCATCCCACCGGGCTGCTGC 150 

Hordeum         CTGATGCCGTGCCTG--CAGTACGTGCAGCAG-GGCGGGACGCCGGCCCGGGGCTGCTGC 171 

Triticum        CTTGGCCCGTGCCTTTCCTATGCACGCGGCAACGGCGCCAGCCCGTCTGCGGCCTGCTGC 165 

Oryza           GTGTCGCCCTGCCTCAGCTACGCCCGCGG------GCTCCGCCCGTCGGCGGCCTGCTGC 162 

Zea             ATCGCGCCCTGCCTCTCCTACGCCCGCGGCACGGGGTCCGGCCCCTCCGCGTCCTGCTGT 174 

                 *     * *** *                                *       *****  

Brassica        AGCGGCGTTACTAGTCTA-AACAACCTGGCCCGTACAACCCCAGACCGTCAGCAAGCTTG 224 

Corylus         AAGGGCGTCAGGGCTGTA-AACGACGCCTCCAGGACCACGTCCGACCGCCAGTCCGCTTG 215 

Phaseolus       TCCGGAGTGAGGTCCCTC-AACGCCGCCGCAAAGACCACCCCAGACCGCCAGGTC---TG 218 

Vigna           GCCGGAGTGAAGTCCCTC-AACGCCGCCGCAAAGACCACCCCAGACCGCCAGGCCGTGTG 218 

Retama          AACGGAGTCAAGACACTC-GTGTCGTCTGCTCAGACCACTGCTGATAAACAGACTGCGTG 218 

Citrus          AACGGCGTCAGGTCTCTC-AACGCTGCCGCCAGAACCACACCTGACCGCCAAACTGCATG 215 

Davidia         AACGGAATTAAGTCCCTC-AACGCGGCGGCCAAGACCACAGCTGACCGCCAGGCTGCTTG 230 

Vitis           AGCGGGATTAAGAGCCTC-AACAGCGCGGCCAAGACCACAGGTGATCGCCAGGCCGCTTG 227 

cv. Elstar      AATGGAATCAGAACCATT-AACGGCTTGGCCAGGACCACCGCTGACCGCCAGACTGCTTG 215 

cv. Golden      AATGGAATCAGAACCATT-AACGGCTTGGCCAGGACCACCGCTGACCGCCAGACTGCTTG 215 

cv. Remo        AATGGAATCAGAACCATT-AACAGCTTGGCCAGGACCACCGCTGACCGCCAGACTGCTTG 215 

Pyrus           AATGGAATCAAAACCATT-AACGGCTTGGCCAAGACCACCCCTGACCGCCAGGCTGCTTG 215 

Prunus          AACGGCATTAGGAACGTC-AACAACTTGGCAAGGACCACCCCTGACCGCCAGGCCGCTTG 221 

Fragaria        AACGGAATTAGATCCCTT-AACAGCGCGGCTAAGACCACTGCTGACCGCCAGACCACCTG 221 

Lilium          GCGGGTGTGAGGACCCTT-AACAACTTAGCCAAGACCACTCCTGATCGCCAGACTGCATG 209 

Hordeum         GCCGGCATCCAGAACCTG-CTGGCCGAGGCCAACAACAGCCCCGACCGCCGCACCATCTG 230 

Triticum        AGCGGCGTCAGGAGATTGGCCGGCCAAGTGCAG-ACTGCCGCTGACAAGAAAGCGGCGTG 224 

Oryza           AGCGGCGTCAGGAGCCTC-AACTCCGCCGCCAGCACCACCGCCGACCGCCGCACCGCCTG 221 

Zea             AGCGGCGTCAGGAACCTC-AAGAGCGCCGCCAGCACCGCCGCCGACAGGCGCGCCGCCTG 233 

                   **  *        *                 *        **             ** 

Brassica        CCGTTGCCTTGTAGGAGCCGCTAACGCCTT---GCCTACTATCAACGCTGCCCGTGCAGC 281 

Corylus         CAACTGCTTGAAAGATACAGCCAAAGGCAT---CGCTGGCCTCAACCCTAATCTTGCTGC 272 

Phaseolus       CAACTGCCTGAAATCCGCCGCCGGTGCCAT---CCCTGGATTCAATGCTAACAACGCAGG 275 

Vigna           CAATTGCCTCAAAAGCGAGGCCGGCAGGAT---CGGTGGATTCAATGCTAACAACGCAGC 275 

Retama          CAATTGCCTCAAATCCACTGCTGCTACCAT---CCCTAATATAAATTTTGGGAATGCAGG 275 

Citrus          CAACTGCTTGAAGCAAGCCGCCGGATCAAT---CCCTAACCTCAACCTTAATAATGCTGC 272 

Davidia         TAATTGCCTGAAAACAGCTTCTACCAGCAT---CGCTGGCATCAACCTGAGCTATGCTTC 287 

Vitis           TAAGTGCTTGAAAACCTTTTCTAGTTCCGT---CTCTGGCATCAATTACGGTCTTGCAAG 284 

cv. Elstar      CAACTGCCTGAAGAATCTTGCCGGCAGCAT---CAGTGGTGTTAACCCTAACAATGCAGC 272 

cv. Golden      CAACTGCCTGAAGAATCTTGCCGGCAGCAT---CAGTGGTGTTAACCCTAACAATGCAGC 272 
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cv. Remo        CAACTGCCTGAAGAATCTTGCCGGCAGCAT---CAGTGGTGTTAACCCTAACAATGCAGC 272 

Pyrus           CAACTGCCTGAAGAACCTTGCTGGCAGCGT---CAGTGGTGTTAACCCTGGCAATGCCGA 272 

Prunus          CAACTGCCTGAAACAGCTTTCCGCCAGCGT---CCCCGGAGTCAACCCTAACAATGCCGC 278 

Fragaria        CAATTGCCTCAAACAGGCCTCCGGTGCCAT---CAAAGGACTCAACCCTAACCTTGCAGC 278 

Lilium          CAACTGCCTCAAGTCTCTGGTGAACCCCAG---CCTTGGCCTCAATGCTGCTATCGTCGC 266 

Hordeum         CGGCTGCCTCAAGAACGTCGCCAACGCCGCCCCCGGCGGGAGCGAGATCACCCGCGCCGC 290 

Triticum        CCTGTGCATCAAGAGTGCTGCC------------GGTGGGGTCAAAGAAGGCACGGCCGC 272 

Oryza           CAACTGCCTCAAGAACGTTGCCGGCAGCAT---CAGCGGCCTCAACGCCGGCAATGCCGC 278 

Zea             CAACTGCCTCAAGAACGCCGCCAGGGGCGT---CAGCGGCCTCAACGCCGGCAACGCCGC 290 

                    *** *                                   *          *     

Brassica        TGGACTTCCTAAGGCATGTGGAGTCAACATTCCTTACAAGATCAGCAAAACCACCAACTG 341 

Corylus         TGGCCTCCCCGGCAAGTGTGGTGTCAACATTCCTTACAAGATCAGCCCCTCCACCAACTG 332 

Phaseolus       CATACTCCCGGGCAAGTGTGGCGTCAGCATCCACTACAACATCAGTACCTCCACCAACTG 335 

Vigna           CATACTCCCGGGCAAGTGTGGCGTCAGCATCCCCTACAAGATCAGCACCTCCACCAACTG 335 

Retama          GTCACTCCCTGGCAAATGCGGGGTCAACCTCCCTTACAAGATCAGCCCCTCCACCAACTG 335 

Citrus          TGGTCTTCCAGGAGCTTGTGGAGTCAGCATTCCTTACAAGATCAGCACCTCCACTGACTG 332 

Davidia         CAGCCTCCCTGGCAAATGTGGTGTCAACGTTCCCTACAAGATCAGCCCTAGCACTGATTG 347 

Vitis           TGGGCTTCCGGGCAAGTGTGGTGTCAGCGTTCCTTACAAGATCAGCCCCTCCACTGACTG 344 

cv. Elstar      AGGGCTTCCTGGAAAGTGTGGAGTCAACGTCCCCTACAAGATCAGCACCTCCACCAACTG 332 

cv. Golden      AGGGCTTCCTGGAAAGTGTGGAGTCAACGTCCCCTACAAGATCAGCACCTCCACCAACTG 332 

cv. Remo        AGGGCTTCCTGGAAAGTGTGGAGTCAACGTCCCCTACAAGATCAGCACCTCCACCAACTG 332 

Pyrus           ATCGCTTCCTGGAAAGTGTGGAGTCAACGTCCCCTACAAGATCAGCACCTCCACCAACTG 332 

Prunus          AGCGCTTCCCGGCAAGTGTGGAGTTAGTATTCCTTACAAGATTAGCGCCTCCACCAACTG 338 

Fragaria        TGGGCTTCCAGGCAAGTGTGGAGTCAACGTTCCGTACAAGATCAGCACCTCCACCAACTG 338 

Lilium          CGGCATCCCCGGCAAGTGCGGCGTCAACATCCCCTACCCGATCAGAATGCAGACTGATTG 326 

Hordeum         CGCGCTCCCGTCCAAGTGCAACGTCAACCTCCCCTACAAGATCAGCCCCAGCGTTGACTG 350 

Triticum        AGAGATCCCCTCCAAGTGCCGCGTCAGCGTCCCCTACAAGATCAGCTCAACTGTGAACTG 332 

Oryza           CAGCATCCCCTCCAAGTGCGGCGTCAGCATCCCCTACACCATCAGCCCCTCCATCGACTG 338 

Zea             CAGCATCCCCTCCAAGTGCGGCGTCAGCATCCCCTACACCATCAGCACCTCCACCGACTG 350 

                     * **       **    ** *   * *  ***   ** **           * ** 

 

Brassica        CAACAGTGTGAAATGA----- 357 

Corylus         CAACAACGTGAAGTGA----- 348 

Phaseolus       CGCTACTATCAAGTTTTGA-- 354 

Vigna           CGCTAGTATCAAGTTTTGA-- 354 

Retama          CGCCAGCATCAAGTTCTGA-- 354 

Citrus          CTCTAAGGTCAGGTGA----- 348 

Davidia         CTCCAAGGTGCAGTGA----- 363 

Vitis           CTCCAAGGTGACTTGA----- 360 

cv. Elstar      CGCCACCGTGAAGTAGG---- 349 

cv. Golden      CGCCACCGTGAAGTAA----- 348 

cv. Remo        CGCCACCGTGAAGTAA----- 348 

Pyrus           CGCCACCGTGAAGTAA----- 348 

Prunus          CGCCACCGTGAAGTGA----- 354 

Fragaria        CGCTGCCGTGAAGTGA----- 354 

Lilium          CAACAAGGTGAGGTAA----- 342 

Hordeum         CAACTCGATCCACTGA----- 366 

Triticum        CAATAAGATCTAG-------- 345 

Oryza           CTCCAGGG--AACTAATCTGA 357 

Zea             CTCCAGGGTGAACTAA----- 366 

 

 
Figure (3.8): Multiple alignment of nucleotide sequence of nsltp 
from different plant species. Asterisk means conservative residue. 
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The phylogenetic tree presented in Figure 3.9 can be classified into three major 

group based in their degree of homology in the cDNA of the nsltp nucleotide 

sequences. The first major group includes Brassica napus, Corylus avellana, Citrus 

sinensis, Retama raetam, Phaseolus vulgaris, and Vigna radiate. Interestingly three 

cultivars of apple (M. domestica cv. Elstar, Remo and Golden Delicious) are located 

in a separated group with Davidia involucrate, Vitis vinifera, Fragaria x ananassa 

Prunus persica, Pyrus communis, within the tree. The third major group contains the 

monocotyledonous plants including; Lilium longiflorum, Hordeum vulgare, Triticum 

aestivum, Oryza sativa, and Zea mays.   
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Figure (3.9): Phylogenetic tree of the nucleotide sequences of the nsltp within different plant 
species, using ClustalW method (phylip). Brassica napus (AJ245873); Citrus sinensis (AF369931); 
Corylus avellana  (AF329829); Davidia involucrata  (AY059472); Fragaria x ananassa 
(DQ066731); Hordeum vulgare (AF109195); Lilium longiflorum  (AF171094); Malus domestica cv. 
Golden Delicious (AF221502); Oryza sativa  (AY327042); Phaseolus vulgaris (U72765); Prunus 
persica (AY792996); Pyrus communis (AF221503); Retama raetam (AF439280); Triticum 
aestivum (AY789644); Vigna radiate (AY300806); Vitis vinifera (AF467946);  Zea mays (U66105). 
All accession numbers belong to NCBI database. 
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3.5 Multiple sequence alignment of the amino acid sequence of nsLTP 

To show the degree of relationship among apple nsLTP and different other plant 

species, amino acids sequences from database were used to determine the distance 

between species based on the homology of nsLTP. The phylogenetic tree was built 

by using multiple alignment program ClustalW (Figure 3.10). From this analysis it can 

be concluded that the vast majority of these 33 plant species (monocot, dicot and 

gymnosperm) contain 8 conserved cysteine residues in the nsLTP. Only in three 

species (Zinnia, Capsicum and Picea) the distribution and the number of cysteine 

residues are different. In addition, the length of nsLTP was ranging from 82 to 183 

amino acids. 

 
Arabidopsis       -------------------MAFA--LRFFTCLVLTVCIVAS-----VDAAISCGTVAGSL 34 
Brassica          -------------------MASA--LSFFTCLVLTVCIVAS-----VDAAISCGTVTSNL 34 
Cicer             -------------------MAS---MKVVCVALIMCIVIAP----MAESAITCGRVDTAL 34 
Medicago          ---------------------------------------------------SCGTVTGAL 9 
Euphorbia         MKLKTHIHQSHITRNIIYNMAG---IKVAVLV-VALMVVASG---MYANAITCGQVSSSL 53 
Vigna             -------------------MAS---LKVACMVAVVFMVVVSA---HMAHAITCGQVASSL 35 
cv. Elstar        -------------------MAS---SAVTNLALVVALCMAVS----VAHAITCGQVTSSL 34 
cv. Remo          -------------------MAS---SAVTKLALVVALCMAVS----VAHAITCGQVTSSL 34 
Fragaria          -------------------MAS---STAMKLSLVALLCIVVAL--PIAQAITCGQVASNI 36 
Hordeum           -------------------MARSAATQLVLVAMVAAMLLVAAD-----AAISCGQVSSAL 36 
Triticum          -------------------MARTAATKLVLVALVAAMILAASD-----AAISCGQVSSAL 36 
Sorghum           -------------------MAR----LAVAIAVVAAVVVVLAA-TTSEAAISCGQVSSAI 36 
Zea               -------------------MART--QSAVAVAVVAAVLLLAAAATTSEAAITCGQVSSAI 39 
Oryza             -------------------MAR---AQLVLVALVAAALLLAGP-HTTMAAISCGQVNSAV 37 
Citrus            --------------------------------------------------ITCGQVTGSL 10 
Daucus            -------------------MGVL--RSSFVAMMVMYMVLATTP--NAEAVLTCGQVTGAL 37 
Beta              -------------------MASSAFVKFTCALVMCMMVAAP----LAEA-ITCGLVASKL 36 
Spinacia          -------------------MASSAVIKLACAVLLCIVVAAP----YAEAGITCGMVSSKL 37 
Lycopersicon      -------------------MEMVS--KIACFVLLCMVVVAP----HAEA-LTCGQVTAGL 34 
Solanum           -------------------MEMFG--KIACFVLLCMVVVAP----HAEA-LSCGQVTSGL 34 
Capsicum          -------------------MEMVG--KIACVVLLCMVVVAP----HAEA-LTCGQVQSRM 34 
Nicotiana         -------------------MEIAG--KIACFVVLCMVVAAP----CAEA-ITCGQVTSNL 34 
Atriplex          -------------------MASSVVFKLACAVFMCMLVAAP----HAEA-LTCGQVTSSM 36 
Gossypium         -------------------MASSMSLKLACVAVLCMVVGAP----LAHGAVTCGQVTSSL 37 
Vitis             -------------------MGSSGAVKLACVMVICMVVAAPA---VVEATVTCGQVASAL 38 
Helianthus        -------------------MAK-MAMMVLCAGVTCMVVGAP-----YTEALSCGQVSSSL 35 
Avicennia         ----------------MEGMNKSMCIIVVVAVLAAWVV--P----HGEAAISCGTVASKL 38 
Prunus            ----------------MASSGQLLKLVCLVAVMCCMAVGGP----KAMAAVSCGQVVNNL 40 
Pisum             -------------------MSK---VVLISVMTACMLISSSYG----KATLTCEQVTIWL 34 
Pinus             -----------------MAEKKSRSVSGAVICVCIWACMGVFLHQPASAALDCNTIIQQI 43 
Ricinus           -------------------------------------------------AVPCSTVDMKA 11 
Zinnia            ----------------MAATTTTILLTISFALTNLYFVESAHQTGAPAPAADCSTVILNM 44 
Picea             -----------------MDSRRLKRSGIVCMVLMSMLMLVVCE------DSDNTACLSSL 37 
                                                                               
 
Arabidopsis       APCATYLSKGGL---VPPSCCAGVKTLNSMAKTTPDRQQACRCIQSTAKS--ISGLNPSX 89 
Brassica          APCAVYLMKGGP---VPAPCCAGVSKLNSMAKTTPDRQQACKCLKTAAKN--VN---PSL 86 
Cicer             APCLGYLQG-GPGP-SAQ-CCGGVRNLNSAAVTTPDRQAACNCLKSAAGS--ISRLNANN 89 
Medicago          SPCIAYLRG-GAGP-SPA-CCAGVKRLNAAATTTPDRQAACNCLKSAAGA--ISGLNAST 64 
Euphorbia         APCVNFLKS-GGAP-SPQ-CCNGLGGMVNQAKSTADKQAACNCLKTAAKN--MPGLNPAN 108 
Vigna             APCISYLQK-GGVP-SAS-CCSGVKALNSAASTTADRKTACNCLKNLAGP--KSGINEGN 90 
cv. Elstar        APCIGYVRS-GGAV-PPA-CCNGIRTINGLARTTADRQTACNCLKNLAGS--ISGVNPNN 89 
cv. Remo          APCIGYVRN-GGAV-PPA-CCNGIRTINSLARTTADRQTACNCLKNLAGS--ISGVNPNN 89 
Fragaria          SPCLTYVKS-GGAV-PAA-CCSGIRNLNGMAKTTADRQAACNCLKQAAGG--IKGLNPNL 91 
Hordeum           RPCISYASGNGGIL-PPA-CCSGVKRLAGAAQSTADKQAACKCIKSAAG-----GLNAGK 89 
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Triticum          TPCVAYAKGSGTSP-SGA-CCSGVRKLAGLARSTADKQATCRCLKSVAG-----GLNPNK 89 
Sorghum           ALCLSYARGQGFAP-SAG-CCSGVRSLNSAARTTADRRAACNCLKNAARG--ISGLNAGN 92 
Zea               APCLSYARGTGSGP-SAS-CCSGVRNLKSAASTAADRRAACNCLKNAARG--VSGLNAGN 95 
Oryza             SPCLSYPRG-GSGP-SAA-CCSGVRNLNSAASTTADRRTACNCLKNVAGS--ISGLNAGN 92 
Citrus            APCIVYLRSGG--P-IPVPCCNGVRSLNAAARTTPDRQTACNCLKQAAGS--IPNLNPNN 65 
Daucus            APCLGYLRSQVNVP-VPLTCCNVVRGLNNAARTTLDKRTACGCLKQTANA--VTGLNLNA 94 
Beta              APCIGYLQGAPG---PSAACCGGIKSLNSAAASPADRKTACTCLKSAAT--SIKGINYGK 91 
Spinacia          APCIGYLKGGP----LGGGCCGGIKALNAAAATTPDRKTACNCLKSAAN--AIKGINYGK 91 
Lycopersicon      APCLPYLQGRG----PLGGCCGGVKNLLGSAKTTADRKTACTCLKSAAN--AIKGIDLNK 88 
Solanum           APCLPYLQGRG----PIGGCCGGIKGLLGAAKTPADRKTACTCLKSAAS--AIKGINVGK 88 
Capsicum          TPCLPYLTGSG----PLGRCCGGVKGLLGAAKTPADRKTVCSCLKSAAG--SIGGINVRK 88 
Nicotiana         APCLAYLRNTG----PLGRCCGGVKALVNSARTTEDRQIACTCLKSAAG--AISGINLGK 88 
Atriplex          TPCMSYLTGGGS---PTPACCGGVKSLNSMASTPADRKAACGCLKSAAG--AMTNLNMGN 91 
Gossypium         APCIGYLTGNGAGG-VPPGCCGGIKSLNSAAQTTPDRQAACKCIKSAAA--GISGINYGI 94 
Vitis             SPCISYLQKGGA---VPAGCCSGIKSLNSAAKTTGDRQAACKCLKTFSS--SVSGINYGL 93 
Helianthus        APCISYLTKGGA---VPPACCSGVKSLNSAAKTTPDRQAACGCLKSAYN--SISGVNAGN 90 
Avicennia         APCIPYVTNRG--P-LG-GCCGGVKSLYGLARTTPDRQSVCGCLKSLAS--SY-NVNLGK 91 
Prunus            TPCINYVANGG--A-LNPSCCTGVRSLYSLAQTTADRQSICNCLKQAVNGIPYTNANAGL 97 
Pisum             TPCIPYGTLGGS---VLPLCCQGVHSLNAAYKNGDDRRLACHCVQDRAAL--IPLIDYTR 89 
Pinus             TSCATYLTTGTPVPQEESSCCQGVQSLYGDATTTEEIQQICTCLKNEAIN---YNLNDRA 100 
Ricinus           AACVGFATGKDSKP--SQACCTGLQQLAQTVKTVDDKKAICRCLKASSKS---LGIKDQF 66 
Zinnia            ADCLSYVTAGSTVKKPEGTCCSGLKTVL-----KTDAECLCEAFKNSAQLG--VSLNITK 97 
Picea             SSCAPYLNATTK---PDSSCCSALISVID-----KDSQCLCNLLNSDTVK--QLGVNVTQ 87 
                    *  :             **  :  :        : .  *  .:                
 
Arabidopsis       ASGLPGKCGVSIP----YPISMSTNCNNIK------------------------------ 115 
Brassica          ASSLPGKCGVSIP----YPISMSTNCDTVK------------------------------ 112 
Cicer             AAALPGKCVVNIP----YKISTSTNCATIRV----------------------------- 116 
Medicago          AAGLPGKCGVNIP----YKIST-------------------------------------- 82 
Euphorbia         AESLPSKCKVNIP----YKISFSTNCNSIK------------------------------ 134 
Vigna             AASLPGKCKVNVP----YKISTFTNCANIK------------------------------ 116 
cv. Elstar        AAGLPGKCGVNVP----YKISTSTNCATVK------------------------------ 115 
cv. Remo          AAGLPGKCGVNVP----YKISTSTNCATVK------------------------------ 115 
Fragaria          AAGLPGKCGVSVP----YKISTTTNCAAVK------------------------------ 117 
Hordeum           AAGIPSMCGVSVP----YAISASVDCSKIR------------------------------ 115 
Triticum          AAGIPSKCGVSVP----YTISASVDCSKIH------------------------------ 115 
Sorghum           AASIPSKCGVSVP----YTISTSTDCSRVS------------------------------ 118 
Zea               AASIPSKCGVSIP----YTISTSTDCSRVN------------------------------ 121 
Oryza             AASIPSKCGVSIP----YTISPSIDCSSVN------------------------------ 118 
Citrus            AVGLPRACGVSIP----YKISISTDCSKVR------------------------------ 91 
Daucus            AAGLPARCGVNIP----YKISPTTDCNRVV------------------------------ 120 
Beta              AASLPRQCGVSVP----YAISPNTNCNAIH------------------------------ 117 
Spinacia          AAGLPGMCGVHIP----YAISPSTNCNAVH------------------------------ 117 
Lycopersicon      AAGIPSVCKVNIP----YKISPSTDCSTVQ------------------------------ 114 
Solanum           AAGIPRLCGVNIP----YKISPSTDCSKVR------------------------------ 114 
Capsicum          AAGLPNMCGVNIP----YQISPSTDCTKVQ------------------------------ 114 
Nicotiana         AAGLPSTCGVNIP----YKISPSTDCSKVQ------------------------------ 114 
Atriplex          AASLPGKCGISLP----YPISTSTDCSKVN------------------------------ 117 
Gossypium         ASGLPGKCGVNIP----YKISPSTDCNSVK------------------------------ 120 
Vitis             ASGLPGKCGVSVP----YKISPSTDCSKVT------------------------------ 119 
Helianthus        AASFPGKCGVSIP----YKISPSTDCSKVQ------------------------------ 116 
Avicennia         AAGLPGQCGVNIP----YKISPSTDCSKVH------------------------------ 117 
Prunus            AAGLPGKCGVNIP----YKISPSTDCKSIK------------------------------ 123 
Pisum             INQIGDLCGSKCP----FKVYPSTDCDKVK------------------------------ 115 
Pinus             LQSLPSNCGLQLS----FTITRDIDCSSISL----------------------------- 127 
Ricinus           LSKIPAACNIKVG----FPVSTNTNCETIH------------------------------ 92 
Zinnia            ALALPSACHINAPSATNCGISPGTAVAPALAPIGVGMAPSGAAVAFGPSMAVAPTPASQT 157 
Picea             AMKMPAECGKNVSATQCNKTATSGGSSVGKTPTSTPPPSSATPSTTTITKSNSNAAASVS 147 
                     :   *                                                     
 
Arabidopsis       -------------------------- 
Brassica          -------------------------- 
Cicer             -------------------------- 
Medicago          -------------------------- 
Euphorbia         -------------------------- 
Vigna             -------------------------- 
cv. Elstar        -------------------------- 
cv. Remo          -------------------------- 
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Fragaria          -------------------------- 
Hordeum           -------------------------- 
Triticum          -------------------------- 
Sorghum           -------------------------- 
Zea               -------------------------- 
Oryza             -------------------------- 
Citrus            -------------------------- 
Daucus            -------------------------- 
Beta              -------------------------- 
Spinacia          -------------------------- 
Lycopersicon      -------------------------- 
Solanum           -------------------------- 
Capsicum          -------------------------- 
Nicotiana         -------------------------- 
Atriplex          -------------------------- 
Gossypium         -------------------------- 
Vitis             -------------------------- 
Helianthus        -------------------------- 
Avicennia         -------------------------- 
Prunus            -------------------------- 
Pisum             -------------------------- 
Pinus             -------------------------- 
Ricinus           -------------------------- 
Zinnia            SGSFALAMSTVSVFLSMLLSAYFYSC 183 
Picea             VKMFPVAALVFVAVASVLGLKGPCLR 173 
                                              

 

The phylogenetic tree of different 33 plant species based on the amino acid 

sequence of nsLTP showed that these species are classified into three major groups. 

The first group includes Arabidopsis thaliana, Brassica napus, Pisum sativum, Pinus 

radiate, Ricinus communis, Picea abies, and Zinnia elegans.  On the other hand the 

second group includes Atriplex nummularia, Beta vulgaris, Spinacia oleracea, 

Nicotiana tabacum, Capsicum annuum, Lycopersicon esculentum, Solanum 

tuberosum, Helianthus annuus, Gossypium barbadense, Vitis vinifera, Avicennia 

marina, and Prunus dulcis. The last group also includes Cicer arietinum, Medicago 

sativa, Euphorbia lagascae, Vigna radiata, Fragaria x ananassa, M.domestica cv. 

Elstar, M.domestica cv. Remo, Hordeum vulgare, Triticum aestivum, Oryza sativa, 

Sorghum bicolor, Zea mays Citrus, sinensis, and Daucus carota. In addition the two 

M. domestica cultivars Elstar and Remo were closely related to Fragaria x ananassa. 

Figure (3.10): Multiple alignment of the amino acid sequence of nsLTP from different plant 
species. Asterisk means conservative residue; colon means conservative with small changes. 
Arabidopsis thaliana (AAM66088); Atriplex nummularia (BAC77694); Avicennia marina 
(AAK01293); Beta vulgaris (CAA63407); Brassica napus (AAD09107); Capsicum annuum 
(AAF23460); Cicer arietinum (CAA05771); Citrus sinensis (CAH03799); Daucus carota (P27631); 
Euphorbia lagascae (AAM00272); Fragaria x ananassa (CAC86258); Gossypium barbadense 
(AAN77147); Helianthus annuus (CAA63340); Hordeum vulgare (CAA85484); Lycopersicon 
esculentum (CAA39512); Medicago sativa (AAZ32875); Nicotiana tabacum (CAA44267); Oryza 
sativa (AAB70539);Picea abies (BAA23548); Pinus radiata (AAB80805); Pisum sativum 
(AAF61436); Prunus dulcis (CAA65477); Ricinus communis (S01796); Solanum tuberosum 
(AAM82607); Sorghum bicolor (CAA50660); Spinacia oleracea (P10976); Triticum aestivum 
(AAV28706); Vigna radiata (AAQ74628); Vitis vinifera (AAO33394); Zea mays (AAB06443); Zinnia 
elegans (BAD24657). All accession numbers belong to NCBI database. 
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Figure (3.11): Phylogenetic tree of the amino acid sequences of nsLTP 
within different plant species, using ClustalW method (phylip). 
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3.6 Southern blot analysis 

3.6.1 DIG labeling confirmation  

It was necessary to determine how many copies of nsltp are distributed in apple 

genome therefore southern blot technique was used. After extraction of genomic 

DNA from Elstar, this pure DNA was used as a template for PCR to amplify the nsltp. 

PCR products were diluted 1 to 10 and again used as a template for PCR by using 

the same primers and the U-DIG labeled nucleotide in the nucleotide mixture. It was 

necessary to confirm the DIG labeling process before the hybridization with the 

labeled probe during southern blot. Therefore, after performing the PCR reaction the 

PCR products were checked on 1.5 % agarose gel (Figure 3.12). From this figure 

one could confirm that the probe is already DIG labeled because it has a larger size 

than that nonlabeled due to the incorporation of the DIG-labeled nucleotide. 
 

 
                           

 
 
 

 

 

 

Figure (3.12): DIG labeling confirmation of nsltp from M. 
domestica cv. Elstar before using it as a probe in the 
hybridization in southern blot on 1.5 % agarose gel.  
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3.6.2 Determination of the copy number of the nsltp 

Copy number of nsltp gene in Elstar and Remo was determined by southern blot and 

hybridization. 
Although the nsltp is an intronless gene, different restriction enzymes were used for 

genomic DNA digestion. Three different enzymes BamHI, EcoRI and HindIII were 

used in this study. The result presented in Figure 3.13 showed that at least 6 copies 

of nsltp are located in the susceptible apple cultivar Elstar as well as in the resistant 

one Remo. Moreover in the case of BamHI/EcoRI the pattern showed some 

differences between the susceptible cultivar Elstar and the resistant cultivar Remo. 
 
 

 

 

 

Figure (3.13): Determination of nsltp copy number in M. 
domestica cv.Elstar and Remo by southern blot. Each lane 
was loaded by 50 µg of genomic DNA after digestion with 
restriction enzymes. 
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3.7 Gene expression of nsltp from Elstar during the infection V. inaequalis 

It was shown in Figure 1.4 that the protein level of nsLTP decreased drastically to 

undetectable level in the apoplast after infection of apple leaves with V. inaequalis. It 

was necessary to investigate the plant response to the infection process in short 

intervals. Therefore a time curve experiment was performed by artificial infection of 

apple trees of the susceptible M. domestica cv. Elstar with conidial suspension of V. 

inaequalis. Total RNA was extracted from young leaves from the treated trees at five 

intervals (1, 3, 5, 7, and 14 days) and as well as from the control plant that was 

treated with water. Northern blot was done by using a radioactively labeled probe of 

the nsltp with a size 349 bp. RNA analysis of apple leaves revealed that the transcript 

level of mRNA of nsltp was dramatically declined to undetectable level after one day 

infection (Figure 3.14). The transcript level of nsltp is still undetectable until two 

weeks after infection. However after five days a weak signal has been detected that 

might reflect the discrepancies among the individual responses to the infection 

process. 
 

 

 
 
 

 

 

 

 

 

Figure (3.14): Detection of nsltp by northern blot and radioactive 
labeled nsltp probe C: Control uninfected Elstar; 1, 3, 5, 7 and 14d: 
days after infection with V. inaequalis. A: X-ray membrane; B: 
Ethidium bromide staining for RNA gel before blotting. Each lane 
was loaded by 10 µg total RNA.  
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3.8 Upstream region amplification by Genome walker kit  

To understand more about the structure of the nsltp gene in apple M. domestica cv. 

Elstar and Remo, the upstream sequence was amplified by using Genome walker kit 

according to the manufacture instructions.  This was a primary step to analyze the 

upstream region sequence searching for the cis-acting regulatory elements and as 

well as to study the promoter activity by particle bombardment and transient 

expression of DsRed.  

 

3.8.1 Library construction 

The library was built by digesting the genomic DNA of both Elstar and Remo with four 

different restriction enzymes that produce blunt ends. DNA fragments were purified 

and checked on agarose gel before ligation with the adaptor (Figure 3.15). 
 

 

 

 

 

 

 

 

Figure (3.15): Digested apple genomic DNA by different restriction enzymes; 
A: M. domestica cv. Elstar digested genomic DNA and B: M. domestica  
Remo digested genomic DNA. 2 µl from each digestion assay were loaded in 
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3.8.2 First PCR products of the amplified upstream region 

The first PCR was done by using 1 µl from each library as a template, adaptor primer 

1 and gene specific primer 1. The amplified products that were obtained from the first 

PCR were tested on 1.5 % agarose. No clear bands have been detected in agarose 

gel only just a very weak smear (Figure 3.16).  
 

 

 

 

 

 

 

 

Figure (3.16): Analysis of the first PCR products of the amplified 
upstream regions in M. domestica cv. Elstar and Remo. 10 µl in 
were loaded in each lane on 1.5 % agarose gel. 
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3.8.3 Second PCR products of the amplified upstream region 

The second PCR was performed by using the same PCR program that was used in 

the first PCR. Products were checked on 1.8 % agarose. One pure band has been 

observed in case of EcoRV and StuI in both Elstar and Remo. The size of these 

fragments was almost the same, less than 500 bp (Figure 3.17).  
 

 

 

 

 

Figure (3.17): Analysis of the second PCR products of the amplified 
upstream (I) regions in M. domestica cv. A: Elstar; B: Remo; C: upstream 
(II) region in Elstar and Remo. 10 µl in were loaded in each lane on 1.8 % 
agarose gel; D: Cloning of the amplifed downstream regions from Elstar and 
Remo in pGEMT-vetor after digestion with NcoI and NotI.  
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To gain more information on the upstream region this procedure was repeated with 

only one restriction enzyme StuI and the corresponding gene specific primers (see 

2.11.4). Second PCR results showed that fragment with a size around 250 bp has 

been amplified in both Elstar and Remo as an additional sequence in the upstream 

region (Figure 3.17C). In another step the downstream regions in Elstar and Remo 

were amplified by using StuI and the corresponding primers (2.11.4). Subsequently 

the amplified fragments in the second PCR (around 250 bp in Elstar and a slightly 

larger in case of Remo) were cloned in pGEMT-vector (3.17D) to send for 

sequencing.  
 

3.8.4 Cloning of the upstream region of the nsltp in pGEMT-vector 

The obtained fragments from the second PCR were ligated in pGEMT vector and the 

ligation assay was used for E. coli transformation. Plasmid was isolated from the right 

colony and digested with two restriction enzymes from the MCS. To confirm the 

presence of the upstream region before send for sequencing, the digested plasmids 

were checked on agarose gel (Figure 3.18). 
 

 

 
 

Figure (3.18): digested pGEMT with NcoI and 
NotI containing the upstream Regions in M. 
domestica cv. Elstar and Remo. 
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The adaptors and gene specific primers and as well as the vector contamination from 

were removed from the retrieved sequences. Results revealed that by this kit 416 bp 

could be amplified by two steps (362 bp and 54 bp) upstream the ATG of the nsltp in 

apple M. domestica cv. Elstar.  In the case of Remo also 525 bp could be amplified 

by two steps (369 bp and 156 bp) upstream the ATG of the nsltp. In addition 352 bp 

could be amplified downstream of the nsltp in M. domestica cv. Remo, but 

unfortunately in case of Elstar the quality of the retrieved sequence was very poor.  
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3.8.5 Gene structure of nsltp in the susceptible apple cultivar Elstar 

 

1 gaatagtcga actaagggta ttgtggtcaa caacttttgt ggccacgttt 

51 acgtatccct tacattttaa aatagagtgt tttcttataa aaaaaagatc 

101 atttttcact gtaaacaaat cataatttga tttatgttcc gacgagtttt 

151 caataacttt aaaatgtaag gagttcaaat taataattca tggaaatgat 

201 tgctgtaaca tgtaattaaa cacgtaaacg tggccacaaa agttgttgac 

251 cacaataccc ttagttcgac tattctttct caatttttgt ctatataagc 

301 accacaccat agtgccttta taactcacta gctactcgag ttttcaaatc 

351 aagttctttc atatccatct ttcatacaca tatttggtaa tccacagcct 

401 ttttaagtca ttaattatgg ctagctctgc agtgaccaag cttgctttgg 

                       M   A  S  S   A  V  T  K   L  A  L  

451 tggtggcctt gtgcatggcg gtgagcgttg ctcatgccat aacatgtggc 
     V  V  A   L  C  M  A   V  S  V   A  H  A   I  T  C  G  

501 caagtgacca gcagccttgc gccatgcatt ggctacgtga ggagtggcgg 
      Q  V  T   S  S  L   A  P  C  I   G  Y  V   R  S  G  

551 agctgtccct ccagcttgct gcaatggaat cagaaccatt aacggcttgg 
    G  A  V  P   P  A  C   C  N  G   I  R  T  I   N  G  L  

601 ccaggaccac cgctgaccgc cagactgctt gcaactgcct gaagaatctt 
     A  R  T   T  A  D  R   Q  T  A   C  N  C   L  K  N  L  

651 gccggcagca tcagtggtgt taaccctaac aatgcagcag ggcttcctgg 
      A  G  S   I  S  G   V  N  P  N   N  A  A   G  L  P  

701 aaagtgtgga gtcaacgtcc cctacaagat cagcacctcc accaactgcg 
    G  K  C  G   V  N  V   P  Y  K   I  S  T  S   T  N  C  

751 ccaccgtgaa gtaatcccgc ggcc 
     A  T  V   K  - 
 

 
 

 

 

 

 

Figure (3.19): Assembled sequence of the coding region of the 
nsltp from Malus domestica cv. Elstar and its upstream region 
(blue coloured). 
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3.8.6 Gene structure of nsltp in the resistant apple cultivar Remo  

 

   1 taatagttag catcatttcc tgaattatta atttgaactc cttacatttt 

51 aaagttattg aaaactcgtc ggaacataaa tcaaattatg atttgtttac 

101 agtgaaaaat gatctttttt ttaaaagaaa acactctatt ttaaaatgta 

151 agggatgtgg tcgacggccc gggctggtcc tctaatccac gcaagtcccc 

201 tttagtccca tttaacttag tccctataca aaccaaacat gggactacag 

251 tctaattcaa tccagtccca gttaacgagg tcaaacaaac gcccccttaa 

301 aatataagga gtacttcaag gttataattc atcgccatga ttgatgtaac 

351 aagtaattaa acacgtaaag cgttgccaca aatttttttg accactatac 

401 ccttcgttca cacgttttct ctcttaattt ttctctatat aagcaccacc 

451 atagtgcctt tacaactcac tagctacacg agtcttcaaa tcaagttctt 

501 tcacatccat tactcataca cacttatggc tagctctgca gtgaccaagc 
                                  M   A  S  S  A   V  T  K  

551 ttgctttggt ggtggccttg tgcatggcgg tgagcgttgc tcatgccata 
      L  A  L   V  V  A  L   C  M  A   V  S  V   A  H  A  I  

601 acatgtggcc aagtgaccag cagccttgcg ccatgcattg gctacgtgag 
       T  C  G   Q  V  T   S  S  L  A   P  C  I   G  Y  V  

651 gaatggcgga gctgtccctc cagcttgctg caatggaatc agaaccatta 
     R  N  G  G   A  V  P   P  A  C   C  N  G  I   R  T  I  

701 acagcttggc caggaccacc gctgaccgcc agactgcttg caactgcctg 
      N  S  L   A  R  T  T   A  D  R   Q  T  A   C  N  C  L  

751 aagaatcttg ccggcagcat cagtggtgtt aaccctaaca atgcagcagg 
       K  N  L   A  G  S   I  S  G  V   N  P  N   N  A  A  

801 gcttcctgga aagtgtggag tcaacgtccc ctacaagatc agcacctcca 
     G  L  P  G   K  C  G   V  N  V   P  Y  K  I   S  T  S  

851 ccaactgcgc caccgtgaag taatcccgcg gccacccccg tttagccgaa 
      T  N  C   A  T  V  K   - 

901 cgctgcgctt atcgggaact atctcttgag tcaaccggta aaacaactat 

951 tcccttgcac acccctgtaa aagatatcaa accgagattt tgggggcccc 

1001 aaattttaaa gggggcccat ccggccccca aaaaacaatt tgtttccccc 

1051 cctgaacccc tcctttaaaa aaaatttttt tttgtcaaaa accccggggg 

1101 gggttgtttt ttccccaatc cccaaaaaaa aaaaaaaatt ttttttgggg 

1151 gggcggggaa aaaaaagagg gtgtgggaaa aaaacacccc caaaaaaaaa 

1201 aaaaaaaagc aagccccccc cccccccccc cccccc  

 

 
Figure (3.20): Assembled sequence of the coding region of the nsltp from 
Malus domestica cv. Elstar, upstream region (blue coloured) and its 
downstream region (red coloured).



Results 

 73

3.8.7. Sequence submission to NCBI database 

A consensus of the full length sequence of the nsltp and its upstream region was built 

by using computer program. Consequently 716 bp and 719 bp for M. domestica cv. 

Elstar and Remo respectively were submitted to the NCB database. The submitted 

sequences have taken the accession numbers; DQ295056 for Elstar and DQ295057 

for Remo. 

  
3.8.8 Alignment of the upstream regions 

The nucleotide sequence of 359 bp for Elstar and 360 for Remo were submitted to 

the NCBI database for two sequences alignments. Results are presented below 

(Figure 3. 21) revealed that there are some nucleotides in the nucleotide sequence of 

Elstar upstream region which have been changed in Remo. At position 25 thyamine 

is changed to cytosine, position 26 thiamine to guanine, 75 thyamine to guanine, 

position 145 cytosine to adinine, position 195 adinine to guanine, position 223 

cytosine to thyamine, position 290 adinine to cytosine, position 312 cytosine to 

thiamine and position 324 thiamine to guanine. One additional region in the sequence 

was not clear in Elstar from position 33 to 41. 
 
Elstar: 1   cccttacattttaaaatagagtgttttcttatnnnnnnn-gatcatttttcactgtaaac 59 
            ||||||||||||||||||||||||  ||||||        |||||||||||||||||||| 
Remo:   1   cccttacattttaaaatagagtgtcgtcttataaaaaaaagatcatttttcactgtaaac 60 
 
                                                                        
Elstar: 60  aaatcataatttgatttatgttccgacgagttttcaataactttaaaatgtaaggagttc 119 
            |||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||| 
Remo:   61  aaatcataatttgagttatgttccgacgagttttcaataactttaaaatgtaaggagttc 120 
 
                                                                        
Elstar: 120 aaattaataattcatggaaatgattgctgtaacatgtaattaaacacgtaaacgtggcca 179 
            ||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||| 
Remo:   121 taattaataattcatggaaatgattgatgtaacatgtaattaaacacgtaaacgtggcca 180 
 
                                                                        
Elstar: 180 caaaagttgttgaccacaatacccttagttcaactattctttctcaatttttgtctatat 239 
            |||||||||||||||||||||||||| ||||||||||||||||| ||||||||||||||| 
Remo:   181 caaaagttgttgaccacaatacccttggttcaactattctttcttaatttttgtctatat 240 
 
                                                                        
Elstar: 240 aagcaccacaccatagtgcctttataactcactagctactcgagttttcaaatcaagttc 299 
            ||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||| 
Remo:   241 aagcaccacaccatagtgcctttataactcactagctactcgagttttcaactcaagttc 300 
 
                                                                        
Elstar: 300 tttcatatccatctttcatacacatatttggtaatccacagcctttttaagtcattaatt 359 
            |||||||||||| ||||||||||| ||||||||||||||||||||||||||||||||||| 
Remo:   301 tttcatatccatttttcatacacagatttggtaatccacagcctttttaagtcattaatt 360 
 
                                                                        
 Figure (3.21): Alignment of the upstream region of the susceptible 

and resistant apple cultivars M. domestica cv. Elstar and Remo. Blue 
coloured nucleotides indicate the substitutions. 



Results 

 74

3.8.9 Analysis of the upstream regions  

Adaptors and gene specific primers were removed and the obtained sequences of 

the upstream regions I and II were assembled to a contiguous nucleotide sequence 

of a 416 bp for Elstar and 525 bp for Remo. Afterwards the resulted nucleotide 

sequences were directly used for computer analysis. 

Promoter prediction was done by using different computer programs, the first 

promoter prediction program that was available in http://www.fruitfly.org gave a score 

0.99 for promoter prediction in both Elstar and Remo. In case of Elstar the predicted 

sequence started at 282 bp and ended at 332 bp in the upstream region with a 

putative transcription start site. The predicted sequence in Remo started at 426 bp 

and ended at 476 bp with a putative transcription start site. In the second part of the 

analysis the GENSCAN program available in http://genes.mit.edu was used for 

promoter prediction. The predicted promoter sequence in Elstar has been given by 

this program was 40 bp in length started at 286 bp and ended at 325 bp. In the 

upstream region of Remo, the predicted promoter sequence was also 40 bp in length 

started at 430 bp and ended at 469 bp. 

To determine the cis-acting regulatory elements that were distributed in the upstream 

regions these sequences were analyzed by using the PlantCARE database available 

at http://intra.psb.ugent.be:8080/PlantCARE/. The predicted cis-acting regulatory 

elements are listed in table 3.2 and 3.3 for Elstar and Remo upstream regions 

respectively. Interestingly in table 3.3 nine motifs involved in light responsiveness 

were predicted in Elstar.  Different single motifs were predicted and involved in 

responsiveness to abscisic acid, ethylene, gibberellin, fungal elicitor, and wound. In 

addition, one motif involved in anoxic specific inducibility was predicted. Two more 

motifs were predicted that are required for endosperm expression. Additionally the 

core promoter region also was predicted. In Remo upstream region the same kind of 

motifs were predicted, but in case of light responsive elements the number of motifs 

was 13 in Remo instead of 10 in Elstar. One additional motif was predicted and 

involved in heat stress responsiveness. 

http://www.fruitfly.org/
http://genes.mit.edu/
http://intra.psb.ugent.be:8080/PlantCARE/
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Table (3.2): "Cis-acting regulatory elements" in the upstream region of nsltp of M. domestica cv. Elstar (PlantCARE, Lescot et al., 2002, accesed in 04.05.2005). 

No. Motif name Organism Position "Core" "Matrix" Sequence Function References 

1 ABRE Arabidopsis thaliana -219 1.000 1.000 tACGTg Involved in the abscisic acid esponsiveness Yamaguchi-Shinozaki and Shinozaki 1994 

2 ACE Petroselinum crispum -40 1.000 0.969 gccACGTtta Involved in light responsiveness Feldbrugge et al., 1996 

3 AT1 Solanum tuberosum -95 1.000 0.859 gatcATTTttca Part of a light responsive module - 

4 Box-W1 Petroselinum crispum -23,-244 1.000 1.000 TTGAcc Fungal elicitor responsive element Rushton et al., 1996 

5 CAAT-box Nicotiana tabacum -18 1.000 1.000 CAAT In promoter and enhancer regions Klotz and Lagrimini 1996 

6 ERE Dianthus caryophyllus -62 1.000 0.875 ATTTtaaa Ethylene-responsive element Itzhaki et al., 1994 

7 G-Box Antirrhinum majus -219 1.000 1.000 CACGta Involved in light responsiveness Arguello-Astorga and Herrera-Estrella 1996  

8 G-box Brassica oleracea -217 1.000 1.000 aacACGTa Involved in light responsiveness Pastuglia et al., 1997 

9 GA Helianthus annuus -92 1.000 0.875 AAAGatca Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

10 GAG Arabidopsis thaliana -72 1.000 0.875 AGAGtgt Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

11 GATA Arabidopsis thaliana -357 1.000 0.875 GATAtga Part of a light responsive  element Arguello-Astorga and Herrera-Estrell, 1996 

12 GC Zea mays -40 0.909 0.877 gcCACGt Involved in anoxic specific inducibility Arguello-Astorga and Herrera-Estrella 1996 

13 GCN4 Oryza sativa -402 1.000 0.934 taaGTCA involved in endosperm expression Washida et al., 1999 

14 Gap-box Arabidopsis thaliana -276 1.000 0.889 AAATtgaga Ppart of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

15 I-box Pisum sativum -290 1.000 1.000 tATATaa Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

16 LAMP Pisum sativum -273 1.000 0.875 CTTTctca Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

17 P-box Oryza sativa -396 1.000 0.857 CCTTttt Gibberellin-responsive element Kim et al., 1992; Washida et al., 1999 

18 Skn-1 Oryza sativa -405 1.000 1.000 GTCAt Required for endosperm expression Washida et al., 1999 

19 TATA-box Oryza sativa -84 1.000 1.000 TATAaaa Core promoter element around  Washida et al., 1999 

20 TATC-box Oryza sativa -52 1.000 0.857 TATCcct Iinvolved in gibberellin-responsiveness Washida et al., 1999 

21 WUN Brassica oleracea -189 1.000 1.000 tCATTtcca wound-responsive element Pastuglia et al., 1997 
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Table (3.3): "Cis-acting regulatory elements" in the upstream region of nsltp of M. domestica cv. Remo (PlantCARE, Lescot et al., 2002, accesed in 04.05.2005). 

 

 

 

No. Motif name Organism Position "Core" "Matrix" Sequence Function References 

1 ABRE Arabidopsis thaliana -360 1.000 1.000 tACGTg Involved in the abscisic acid esponsiveness Yamaguchi-Shinozaki and Shinozaki 1994 

2 ACE Petroselinum crispum -407 1.000 0.963 aaaACGTgtg Involved in light responsiveness Feldbrugge et al., 1996 

3 AE-box Arabidopsis thaliana -425 1.000 0.852 AGAAaaat Part of a module for light response Park et al., 1996 

4 AT1 Solanum tuberosum -101 1.000 0.859 gatcATTTttca Part of a light responsive module - 

5 ATC Arabidopsis thaliana -254 1.000 0.903 ttcaATCC Part of a conserved DNA module involved in 
light responsiveness 

Arguello-Astorga and Herrera-Estrella 1996 

6 Box-W1 Petroselinum crispum -277 1.000 1.000 TTGAcc Fungal elicitor responsive element Rushton et al., 1996 

7 CAAT-box Nicotiana tabacum -338 1.000 1.000 CAAT In promoter and enhancer regions Klotz and Lagrimini1996 

8 ERE Dianthus caryophyllus -44 1.000 0.875 ATTTtaaa Ethylene-responsive element Itzhaki et al., 1994 

9 G-Box Antirrhinum majus -360 1.000 1.000 CACGta Involved in light responsiveness Arguello-Astorga and Herrera-Estrella 1996 

10 G-box Brassica oleracea -368 1.000 1.000 aacACGTa Involved in light responsiveness Pastuglia et al., 1997 

11 GA Helianthus annuus -108 1.000 0.875 AAAGatca Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

12 GAG Arabidopsis thaliana -129 1.000 0.857 AGAGtgt Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

13 GC Zea mays -184 0.909 0.855 tcCACGc Involved in anoxic specific inducibility Arguello-Astorga and Herrera-Estrella 1996 

14 HSE Brassica oleracea -378 0.944 0.956 aAAAAattt Involved in heat stress responsivenes Pastuglia et al., 1997 

15 I-box Pisum sativum -434 1.000 1.000 tATATaa Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

16 LAMP Pisum sativum -179 1.000 0.854 tctaATCCa Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

17 MRE Petroselinum crispum -229 1.000 0.857 AACCaaa MYB binding site involved in light esponsiveness Feldbrugge et al., 1996 
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Table (3.3): Continued "Cis-acting regulatory elements" in the upstream region of nsltp of M. domestica cv. Remo (PlantCARE, Lescot et al., 2002, accesed in 

04.05.2005). 

 

 

 
 
 
 
 

No. Motif name Organism Position "Core" "Matrix" Sequence Function References 

18 P-box Oryza sativa -197 1.000 0.857 CCTTtag Gibberellin-responsive element Kim et al., 1992; Washida et al., 1999 

19 Prolamin-box Triticum aestivum -451 1.000 0.909 tgagttgtAAAGgcact Involved in activation of zein gene 
endosperm development 

Vicente-Carbajosa et al., 1997 

20 Prolamin-box Oryza sativa -455 1.000 0.957 tgtAAAGg Associated with GCN4 - 

21 TATA-box Catharanthus roseus -321 1.000 1.000 TATA Core promoter element  Pasquali et al., 1999 

22 TCCC Spinacia oleracea -416 1.000 0.857 TCTCtct Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 

23 WUN Brassica oleracea -11 1.000 1.000 tCATTtcct wound-responsive element Pastuglia et al., 1997 

24 chs-CMA2a Hordeum vulgare -189 1.000 0.875 GCAAgtcc Part of a light responsive  element Arguello-Astorga and Herrera-Estrella 1996 
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3.9 Promoter activity analysis of the upstream region of nsltp  

3.9.1 Constructs 

Computer analysis of the amplified upstream region by using different prediction 

programs revealed that this region has a predicted promoter activity close to 100%. 

The essential elements regions for promoter activity were amplified from M. 

domestica cv. Elstar and Remo 357 bp and 351bp respectively. The forward and 

reverse primers for PCR were designed containing BamHI and EcoRI restriction 

sites. The amplified two fragments were inserted upstream of the DsRed gene and 

the constructs (Figure 3.22) were used for bombardment. 
 

 

 

* The plasmid pe35AscloptRed was kindly provided by Prof. Dr. Edgar Maiß. 

 

 Figure (3.22): Schematic representation shows steps for cloning of the upstream regions 
in the pe35AscloptRed vector*; removing the double 35S promoter by double digestion 
with EcoRI and BamHI; Klenow treatment and ligation to use it as a negative control 
without promoter; ligation of the upstream regions of M. domestica cv. Elstar and Remo 
instead of the double 35S promoter.  



Results 

 79

For negative control preparation, the double 35S promoter was removed from the 

pe35AscloptRed vector by digestion with BamHI and EcoRI. 
 
 

 
              Figure (3.23): Deletion of the 2X35S promoter from the pe35AscloptRed vector.  

 

3.9.2 Promoter activity in Elstar upstream region of nsltp 

After insertion of the upstream region in front of the DsRed, the plasmid was used in 

particle bombardment of apple leaves. Leaves from M. domestica cv. Gloster were 

used in bombardment because this cultivar showed a high frequency in 

transformation and transient expression.  Bombarded tissues were incubated for 48 h 

in the growth chamber at approximately 24 °C and light-dark cycle about 12 h. During 

this period the plants were illuminated with fluorescent tubes (Radium white) at 

approximately 80 µmoles m-2 s-1 under a light/dark regime of 12 h. In the case of the 

negative control no signals have been detected in the bombarded tissues. On the 

other hand monitoring of the transformed cells by microscopy and DsRed filter when 

the Elstar upstream region was used showed the capability of promoter function in 

this upstream region (Figure 3.24).  
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Interestingly when the same experiment was performed but the bombarded tissues 

were covered in alumonium foil to keep it under dark conditions, no fluorescent signal 

has been detected in the bombarded tissues. These results indicate that the putative 

promoter of nsltp in apple Malus domestica cv. Elstar is only active under light 

conditions. 
 

 

 

 
 

Figure (3.24): Fluorescence of DsRed in different guard and epidermal cells of 
apple M. domestica cv. Gloster after bombardment with pe35AscloptRed vector; 
A: pe35AscloptRed disarmed from the double 35S promoter as a negative 
control; B and C: epidermal and guard cells expressing the pe 35AscloptRed 
vector as a positive control; D-F: different guard cells expressing the Elstar 
upstream region- AscloptRed vector under light conditions; G-I:. Elstar upstream 
region- AscloptRed vector under dark conditions. Bar= 25 µm.  
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3.9.3 Promoter activity in Remo upstream region of nsltp 

The essential promoter elements of the nsltp have been amplified from apple Malus 

domestica cv. Remo and consequently inserted in front of the DsRed in the vector 

pe35AscloptRed. Plasmid was used in particle bombardment of apple leaves. After 

shooting, leaves were incubated for 48 h in the growth chamber at approximately 24 

°C and light-dark cycle about 12 h. During this period the plants were illuminated with 

fluorescent tubes (Radium white) at approximately 80 µmoles m-2 s-1 under a 

light/dark regime of 12 h. Monitoring the signal under microscope by using DsRed 

filter, showed that no signal in case of the negative control. On the other hand when 

the upstream region used, signals have been detected in the transformed cells.  
 

 

  
 

Figure (3.25): Fluorescence of DsRed in different guard and epidermal cells of M. 
domestica cv. Gloster after bombardment with pe35AscloptRed vector; A: 
pe35AscloptRed disarmed from the double 35S promoter as a negative control; B 
and C: epidermal and guard cells expressing the pe35AscloptRed vector as a 
positive control; D-F: different guard and epidermal cells expressing the Remo 
upstream region- AscloptRed vector under light conditions; G-I: Remo upstream 
region- AscloptRed vector under dark conditions. Bar= 25 µm. 
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However, the intensity of the fluorescence and the frequency of the transformed cells 

in case of Remo upstream region were higher than those of Elstar. Again when the 

same experiment was performed but the bombarded tissues were covered in 

alumonium foil to keep it under dark conditions, no fluorescent signal has been 

detected in the bombarded tissues. These results indicate that the putative promoter 

of nsltp in apple M. domestica cv. Remo is only active under light conditions. 
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Figure (3.26): SDS PAGE of the over-expressed nsLTP in fusion with 
Maltose binding protein; M: protein marker; 1: bacterial lysate after 
induction with IPTG; 2: flow through; 3-9: different fractions collected 
from the column. Each lane was loaded with 10 µl of protein sample.   

3.10 Localization of nsLTP in the plant cell 

3.10.1 Overexpresion of nsltp in E. coli 

First, several attempts have done to purify the mature nsLTP from the apoplastic 

samples by SDS PAGE and biotrap and electroelution, but unfortunately none of 

them has succeeded. May be the small molecular mass of nsLTP caused the failure 

of the purification process.  

Therefore, it was necessary to overexpress this protein in E. coli. In attempt to 

produce a recombinant nsLTP the cDNA was inserted in the expression vector 

pMAL-c2X downstream of the maIE gene, which encodes for maltose binding protein 

(MBP). The Epicurian Coli® BL21-CodonPlusTM (DE3)-RIL was used as a host for this 

expression vector. The nsltp was expressed in fusion to maltose binding protein in 

the cytocol. After rapture the bacterial cells by using Frensh press, affinity 

Chromatography and SDS PAGE (Figure 3.26), fusion protein has been treated by 

protease Factor-X. Unfortunately the overexpressed nsLTP could not be cleaved 

from the fusion protein. Therefore we used the whole fusion protein for further studies 

including polyclonal antibody production and as well as metal binding activity test.  
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The recombinant nsLTP was purified by using two different column systems. Pure 

protein was checked in SDS PAGE (Figure 3.27) and subsequently sent for 

polyclonal antibody production from goat. The produced antibody was used to detect 

the protein level of nsLTP in the apoplastic fluid. Unfortunately, the specificity of this 

antibody was not perfect for the in situ localization analysis. A possible explanation 

for this low specificity it might be the proportion of the nsLTP to maltose binding 

protein (9:42 kD). 
 

 

 
 
 
 

 

 

 

 

 

Figure (3.27): SDS PAGE of the column 
purification of the recombinant nsLTP. 
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3.10.1.1 Detection of the antibody specificity 

To determine the degree of specificity of the antibody that has been raised against 

the recombinant protein (nsLTP in fusion with MBP), the produced antibody was used 

to detect the nsLTP in the apoplastic fluid that obtained from apple M. domestica 

leaves. Two different harvest of the antibody with a given numbers 134 and 135 were 

used in different dilutions. Since the nsLTP constitutes around 90 % of the in the 

apoplast of the young tissues, IWF was collected from young leaves of M. domestica 

cv. Elstar and as well as from the old leaves. Western blot was done as described in 

2.11.1.8 Signals were detected by using CCD camera (Figure 3.28). The result 

presented below showed that this antibody could crosslinked with more than one 

protein in the apoplastic fluid. Moreover, the apparent molecular masses of the 

detected proteins are higher than that of the nsLTP. Therefore, based on this result, it 

can be concluded that the produced antibody seems to be nonspecific against 

nsLTP. 

 

 
 

 

 

 

 

 

Figure (3.28): Immunoblot assay for nsLTP detection in the 
apoplastic fluid from M. domestica cv. Elstar Y: young 
leaves; O: old leaves. CBB: Coomassie brilliant blue.  Each 
lane was loaded with 10 µg protein.  
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3.10.2 GFP based analysis and subcellular localization of nsLTP 

3.10.2.1 Constructs design 

In attempt to elucidate the possible localization and function of nsLTP different 

constructs (Figure 3.29) have been used in this study. 

 
 

 

Figure (3.29): Plasmid constructs used for transient expression. Constructs are not drawn 
to scale. A: GFP under the control of 35S promoter as a positive control; B: DsRed under 
the control of 35S promoter as a second positive control; C: GFP in fusion with the transit 
peptide of the small subunit of RubisCO under control of 35 S promoter as a third positive 
control for chloroplast localization; D: N-terminal fusion of nsltp with GFP; E: C-terminal 
fusion of nsltp with GFP; F: C-terminal fusion of the truncated nsltp with GFP; G: N-
terminal fusion of the mature nsltp with GFP Abbreviations used: 35S: 540 bp fragment of 
the cauliflower mosaic virus (CaMV) 35S promoter; nsltp: full length of nonspecific lipid 
transfer protein gene from M. domestica Elstar; GFP: green fluorescent protein gene from 
Aequorea victoria; rbsc: transit peptide of the small subunit of RubisCO; mat: mature 
(signal peptide of the nsLTP was deleted); trun: truncated (11 amino acids were deleted 
from the C-terminal domainof nsLTP ). 
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3.10.2.2 Building the constructs 

The full length, mature and truncated nsltp were amplified by PCR and the 

corresponding primers which contained the suitable restriction sites for cloning in the 

pBSKGFP vector. 
 

 
 

 

 

Figure (3.30): GFP constructs building A: Pure insert and linear 
backbone; B: ligation assay; C: N-terminal and C-terminal fusion of nsltp 
with GFP constructs; D: mature and ligated nsltp in pGEMT-vector. 
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3.10.2.3 Confirmation of the fusion chimera 

It was necessary to confirm that there is no frame shift in the fusion chimera, 

therefore constructs have been sent for sequencing by using GFP specific primers 

and analyzed (see below). 

 

Fusion of nsLTP in N-terminal of GFP 

In this case it was necessary to avoid the stop codon of nsltp to be in the same ORF 

with GFP and subsequently to allow perpetuation of the translation in fusion with 

GFP. Therefore, by using generated reverse primer and mutagenesis PCR, the stop 

codon has been changed to serine residue and the last positive amino acid lysine 

was also replaced by another positive one arginine. That was in attempt to keep the 

structure of nsLTP more or less similar to the wild type (see below).  
    

 

  
 

 

 

 

 

Figure (3.31): Deduced amino acid sequence of the retrieved nucleotide sequence of 
the full length of apple nsltp in fusion with N-terminal domain of GFP. Underlined 
sequence indicates the fusion site and GFP N-terminal domain. 
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Fusion of nsLTP in C-terminal of GFP 

   

 

Fusion of truncated nsLTP in C-terminal of GFP 

 

 

 

 

Figure (3.32): Deduced amino acid sequence of the retrieved nucleotide sequence of 
the full length of apple nsltp in fusion with C-terminal domain of GFP. Underlined 
sequence indicates the fusion site and GFP C-terminal domain. 

Figure (3.33): Deduced amino acid sequence of the retrieved nucleotide sequence of 
the truncated apple nsltp in fusion with C-terminal domain of GFP. Underlined 
sequence indicates the fusion site and GFP C-terminal domain. 
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Mature nsLTP in in N-terminal of GFP  

To avoid the stop codon of nsltp the same procedure was followed as described in 

3.8.2.1 (see below). 
 

 

 
3.10.2.4 Particle bombardment and transient expression  

3.10.2.4.1 N-terminal fusion under dark conditions 

For functional localization of the nsLTP, particle bombardment and transient 

expression of different GFP-nsltp constructs were performed. In all experiments GFP 

under the control of double 35S promoter was used as a first positive control and 

DsRed under the control of 35S promoter was used a second positive control. In 

these two cases the fluorescence detected under microscope was distributed through 

the whole cytosol with a higher density around the nucleus region (Figure 3.35).  

On the other hand when the N-terminal fusion of GFP-nsltp was used for shooting, 

leaves were wrapped in aluminum foile and to keep it in dark incubated for 48 h in the 

growth chamber at approximately 24 °C. The fluorescence pattern was completely 

different than in case of control. This pattern revealed that nsltp was expressed and 

translocated through cytosol to chloroplast, and probably to other compartments 

including mitochondria, peroxisomes and bodies like organelles (Figure 3.36). 

Remarkably the transient expression of GFPN-nsltp in the artificially infected leaves 

Figure (3.34): Deduced amino acid sequence of the retrieved nucleotide sequence of the 
full length of apple nsltp in fusion with C-terminal domain of GFP. Underlined sequence 
indicates the fusion site and GFP N-terminal domain. 



Results 

 91

showed that nsLTP is localized in structures propably the cytoskeletal filaments 

(3.36L), for details see (3.11). 

 

Figure (3.35): Transient expression of GFP and nsltp in apple M. domestica cv. Gloster 
leaves tissues. A-C: fluorescence of GFP in different guard and epidermal cells after 
bombardment with pBSK carrying the GFP as a first control; D-F: fluorescence of DsRed 
in different guard and epidermal cells as a second control; G-I: Transformed guard cell 
bombarded with 1:1 mixture of control DsRed and pBSK carrying GFPN-nsltp under dark 
conditions; G: bright field and high magnified image H: fluorescence o f DsRed; I: 
fluorescence of GFPN-nsltp, indicating the localization of nsLTP in different cell 
compartments (mitochondria and peroxisomes); J and K: transformed guard cells 
bombarded with pBSK carrying GFPN-nsltp under dark conditions, indicates the 
localization of nsltp in the chloroplast and bodies like organelles; L: transformed guard 
cells expressing the GFPN-nsltp under dark conditions in artificially infected leaves with V. 
inaequalis. Bar= 25 µm.  
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Moreover, the DsRed as a second positive control was combined with the N-terminus 

fusion of GFP-nsltp in one experiment to build a clear conclusion. In this experiment 

the expressing DsRed control was localized in the cytosol with a higher density in the 

nucleus region forming a red background and again the fusion appeared in different 

compartments. 

It is noteworthy that all of the above experiments were conducted under dark (leaves 

were covered with aluminum foil to keep it under dark conditions within the growth 

chamber.  

 

3.10.2.4.2 N-terminus fusion under light conditions 

To study the light influence, apple leaves were shot by using the N-terminus fusion 

GFPN-nsltp and incubated for 72 h. It has been found that chloroplasts within the 

injured bombarded guard cell were highly swollen and the fusion protein in this case 

was localized in the chloroplasts within the guard cells (Figure 3.36). The 

fluorescence of GFP in the N-terminus fusion was slightly yellowish.  
 

 

 
 
 

Figure (3.36): Transient expression of GFPN-nsltp under light conditions in apple M. 
domestica cv. Gloster leaves tissues; A: bright field of different guard cells; B: bright field 
and high magnified image of one guard cell showing highly swollen chloroplasts; C: 
fluorescence of GFPN-nsltp, indicating the localization of nsLTP in the swollen chloroplasts. 
Bombarded leaves were incubated in the growth chamber at approximately 24 °C and light-
dark cycle about 12 h. During this period the plant leaves were illuminated with fluorescent 
tubes (Radium white) at approximately 80 µmoles m-2 s-1 under a light/dark regime of 12 h. 
Bar= 25 µm.  
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3.10.2.4.3 C-terminus fusion under light and dark conditions 

In another experiment the nsltp was fused in the C-terminal of GFP. The construct 

was used for bombardment and subsequently leaves were incubated for 48 h. 

Monitoring the fluorescent signals by microscope and GFP filter in the transformed 

cells revealed that the fusion protein has been expressed by cytoplasmic machinery 

and subsequently translocated to the chloroplast (Figure 3.37). On the other hand no 

signals could be detected when the same construct was used for particle 

bombardment under dark conditions. This experiment has been repeated several 

times.   
 

 

 
 
 
 
 
 
 

 

Figure (3.37): A-C: Fluorescence of GFP in different guard and epidermal cells of apple M. 
domestica cv. Elstar after bombardment with pBSK carrying the GFP as a control; D and E: 
two transformed guard cells expressing GFPC-nsltp under light conditions; D: bright field; E: 
fluorescence of GFPC-nsltp, indicating the localization of nsltp in the chloroplasts; F: 
additional two guard cells. G-I: GFPC-nsltp under dark conditions. Bombarded leaves were 
incubated in the growth chamber at approximately 24 °C and light-dark cycle about 12 h. 
During this period the plant leaves were illuminated with fluorescent tubes (Radium white) at 
approximately 80 µmoles m-2 s-1 under a light/dark regime of 12 h. For dark conditions plates 
were covered by aluminum foil. Bar= 25 µm.  
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3.10.2.4.4 Truncated nsltp C-terminus fusion under light conditions 

To determine whether the C-terminal domain in the nsLTP is involved in sorting 

process or not, 11 amino acids were deleted from this domain. The truncated nsltp 

was fused with the C-terminal domain of GFP and the developed construct was used 

for particle bombardment. Transient expression of this fusion protein in apple leaves 

was detected after 48 h. Result showed that the fusion was localized in the 

chloroplasts in the guard cells (Figure 3.38).  
 

 
 
 
 
 
 

 

 

 

 

 

 

 

Figure (3.38): A-C: Fluorescence of GFP in different guard and epidermal cells of apple M. 
domestica cv. Elstar after bombardment with pBSK carrying the GFP as a control; D: and E: 
guard cells expressing GFPC-trun.nsltp under light conditions, indicating the localization of the 
truncated nsLTP in the chloroplast; F: chlorophyll fluorescence in two guard cells as a negative 
control. Bombarded leaves were incubated in the growth chamber at approximately 24 °C and 
light-dark cycle about 12 h. During this period the plant leaves were illuminated with 
fluorescent tubes (Radium white) at approximately 80 µmoles m-2 s-1 under a light/dark regime 
of 12 h. Bar= 25 µm. 
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3.10.2.4.5 Truncated nsltp C-terminus fusion under dark conditions 

The truncated nsltp was fused with the C-terminal domain of GFP and the developed 

construct was used for particle bombardment. After bombardment the leaves were 

covered with aluminum foil and incubated in the growth chamber at approximately 24 

°C. Transient expression of this fusion protein in apple leaves was detected after 48 h 

after bombardment. Result showed that the fusion was localized also in the 

chloroplasts in the guard cells (Figure 3.39). No differences between light and dark 

conditions were detected with this construct.  

 

 
 

 

 

 

3.10.2.4.6 Mature nsltp and N-terminus fusion under light and dark conditions 

A general consensus has been built for nsLTP that they have a putative leader 

sequence responsible for entering the secretory pathway. To verify this consensus 

the first 24 amino acids from the N-terminus domain were deleted by PCR. After 

insertion of the mature nsltp in the N-terminal domain of the GFP plasmid was used 

for particle bombardment. Half of the bombarded samples were covered with 

aluminum foil to keep it under dark conditions in the same growth chamber. Transient 

Figure (3.39): A-C: Fluorescence of GFP in different guard and epidermal cells of 
apple M. domestica cv. Elstar after bombardment with pBSK carrying the GFP as a 
control; D: and E: guard cells expressing GFPC-trun.nsltp under dark conditions, 
indicating the localization of the truncated nsLTP in the chloroplast; F: chlorophyll 
fluorescence in two guard cells as a negative control. Bar= 25 µm. 
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expression of mature nsltp in fusion with N-terminal of GFP showed that the fusion 

protein failed to enter the secretory pathway and localized in the cytosol (Figure 

3.40).  

 

In addition no fluorescence could be detected in the apoplast when the precursor of 

nsLTP was used in fusion with GFP in both N and C-terminus fusion (GFPN-nsltp 

and GFPC-nsltp). 
 

 

Figure (3.40): A-C: Fluorescence of GFP in different guard cells of apple M. domestica cv. 
Gloster after bombardment with pBSK carrying the GFP as a control; D-E: guard cell 
expressing the GFP-mat.nsltp under light conditions; D: bright field and high magnified 
image; E and F: dark field image showing the failure of the mature protein to enter the 
secretory pathway in guard and epidermal; cells; G-I: epidermal cells expressing the GFP-
mat.nsltp under dark conditions. Bombarded leaves were incubated in the growth chamber 
at approximately 24 °C and light-dark cycle about 12 h. During this period the plant leaves 
were illuminated with fluorescent tubes (Radium white) at approximately 80 µmoles m-2 s-1 
under a light/dark regime of 12 h. Bar= 25 µm. 
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3.11 Transient expression of the GFPN-nsltp in response to the infection with 

V. inaequalis under dark conditions 

In an attempt to elucidate the role and the behavior of M. domestica nsLTP toward 

the infection process, leaves of the susceptible apple cultivar Gloster were harvested 

and sprayed with conidial suspension of V. inaequalis. Subsequently these leaves 

were used for bombardment with a plasmid containing the GFPN-nsltp chimera. 

Bombarded leaves were incubated in Petri dishes that were covered with aluminum 

foil for 48 h at 24 C°. The bright field image showed that V. inaequalis conidia started 

to germinate sending their germ tubes bypassing the stomatal pore to penetrate the 

cuticle and subsequently to invade the plant tissues (Figure 3.41A).  On the other 

hand monitoring the GFP signals by microscopy and GFP filter revealed that the 

fluorescence are coming from structures possibly the cytoskeletal filaments within the 

transformed guard cell (Figure 3.41B). 

 
 

 

 
 

 

 

 

 

Figure (3.41): A: Bright field image shows the conidial germination on the lower leaf surface 
of M. domestica cv. Gloster; c: conidia; g: germ tube; s: stomatal aperture. B: One 
transformed guard cell expressing the GFPN-nsltp. Bar= 25 µm. 
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3.12 Protein level of nsLTP and age 

It has been reported that the fully expanded leaves are resistant to Venturia 

inaequalis in all members of the genus Malus (Valsangiacomo and Gessler 1988). 

One question has been arisen is there a possible correlation between nsLTP and the 

ontogenic resistance? To address this question it was necessary to determine 

whether the level of nsLTP in the apoplast is influenced by the age of the plant 

particularly in the susceptible cultivar, three different IWF samples (young, middle 

and old) from healthy M. domestica cv. Elstar were collected by using PBS buffer. 

Soluble protein contents of the apoplastic fluid were separated on SDS PAGE. It is 

noteworthy to mention that same amounts of proteins were used for comparison. 

Result presented in Figure 3.42 revealed that the level of the putative nsLTP with the 

same molecular mass 9 kD has declined by age to almost undetectable level in the 

old leaf tissues.  
 

 

 

 

 
 

 

 

 

 

 

 

Figure (3.42): SDS PAGE for soluble protein in the IWF from 
leaves of M. domestica cv. Elstar with different age; young, 
middle, and old. Each lane was loaded by 50 µg protein (based 
on Bradford determination) and subsequently stained by CBB. 
The corresponding part for nsLTP bands was excised from gel 
by computer program.  
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3.13 Epigenetic information and gene expression  

The finding that the declining of the protein level of nsltp was accompanied by 

decrease of nsltp transcript suggests a transcriptional or posttranscriptional control. 

To confirm this suggestion the DNA methylation has been studied as a key 

epigenetic parameter that can affect the transcription process. To perform this, the 

methylation sensitive restriction endonucleases and southern blot procedure was 

used.  

 

3.13.1 Amplification of the full length of the nsltp and DIG labeling 

After extraction of genomic DNA from Elstar, this pure DNA was used as a template 

for PCR to amplify the full length of nsltp and the upstream region using the 

corresponding primers (forward; 5'-CCC TTA CAT TTT AAA ATA GAG TG-3', 

reverse; 5'-TAC TTC ACG GTG GCG CAG TT-3′). PCR products were diluted 1 

to 10 and again used as a template for PCR by using the same primers and the U-

DIG labeled nucleotide in the nucleotide mixture. The PCR products were checked 

on 1.5 % agarose gel (Figure 3.43). From this figure it can observed that the probe is 

already DIG labeled because it has a larger size than that nonlabeled due to the 

incorporation of the DIG-labeled nucleotide. 

 
 Figure (3.43): DIG labeling confirmation of the full length of nsltp 

from M. domestica cv. Elstar before using it as a probe in the 
hybridization in southern blot on 1.5 % agarose gel.  
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3.13.2 Distribution of the methyl sensitive restriction enzyme sites in nsltp 

For hybridization the full length of nsltp with 716 bp (the upstream region and as well 

as the transcribed region) was used as a probe. This amplified fragment was 

screened for the presence of the methylation sensitive restriction enzymes sites. Four 

different recognition sites were found distributed through out the probe (Figure 3.44).    
 

 
 
 

 

 

The same amount of genomic DNA from young, old, young Elstar leaves infected 

with V. inaequalis, young and old Remo samples were used for this study. The 

methylation insensitive restriction enzyme MspI and its isoschizmer methylation 

sensitive HpaII and another methylation sensitive enzyme AvaII were used to digest 

genomic DNA (Figure 3.45). 

 
 

 
Figure (3.45): Overnight digested genomic DNA on 0.8 % agarose gel; 
1: Young Elstar leaves; 2: Old Elstar leaves; 3: Elstar leaves infected 
with V. inaequalis; 4: Young Remo leaves; 5: Old Remo leaves. 

 Figure (3.44): Diagrammatic map shows sites for methyl sensitive 
endonucleases in the hybridization probe; A: AvaII at 20 and 557 bp; H: HpaII; 
M: MspI at 13 and 605 bp. Map is not drawn to scale. 
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Firstly, methylation analysis presented in figure 3.46 confirmed the previous results 

for southern blot and copy number of nsltp in apple genome. It has been easily 

detected at least more than 10 bands -in case of AvaII at least 14 bands- in both 

Elstar and Remo. Secondly and the most important part of this analysis is the 

confirmation of cytosine methylation through nsltp and its upstream region.  

In this experiment, different plant materials have used from Elstar (healthy young, old 

and young infected with V. inaequalis leaves) and from Remo young and old leaves. 

Interestingly in most of the cases, around six bands disappeared when the 

methylation sensitive isoschizmer was used. Results show that nsltp is highly 

methylated in Remo than in Elstar.  More interestingly despite the same amounts of 

genomic DNA were used (Figure 3.45), in case of infected Elstar very few bands 

were detected in both methylation sensitive and nonsensitive restriction enzymes. 

The methylation pattern in case of AvaII was similar in healthy resistant cultivar 

Remo and susceptible infected cultivar Elstar.   
 

 
 
 

Figure (3.46):  Determination of the methylation pattern in the upstream region and 
as well as the transcribed region of the nsltp. 1: Young Elstar leaves; 2: Old Elstar 
leaves; 3: Elstar leaves infected with V. inaequalis; 4: Young Remo leaves; 5: Old 
Remo leaves. Arrows indicate the putative methylated bands. 
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3.14 Posttranslational modification of nsLTP 

One of the most important posttranslational characters for protein is the addition of 

phosphate group from S-adenosyl methionine (SAM) via protein kinase. This 

phosorylation process is very pivotal for protein function. Because the main aim is to 

explore the function of nsLTP therefore the retrieved DNA sequence was translated 

to the corresponding amino acids. In order to predict the possible phosphorylation 

sites, deduced amino acids sequence was submitted to the NetPhos 2.0 prediction 

server (Blom et al., 1999; http://www.cbs.dtu.dk/services/NetPhos/). Prediction 

analysis revealed that nsLTP has a possible phosphorylated tyrosine residue at 

position 40 with a score 0.937. This score is above the threshold close to the 

maximum score of 1.0.  To confirm computer prediction western blot has been 

performed for the soluble protein contents in the apoplast and membranes were 

detected by antiphosphoserine, antiphosphotheronine and antiphosphtyrosine. In 

cases of serine and theronine no signals could be detected. On the other hand we 

found a high signal in case of tyrosine. Immunoblotting analysis revealed that nsLTP 

is tyrosine phosphorylated in healthy Elstar (Figure 3.47). 
 

 
 

 
Figure (3.47): Immunoblot assay for phosphorylation sites detection in the 
apoplastic nsLTP of M. domestica. The first antibody dilution was 1:1000. In SDS 
PAGE each lane was loaded with 50 µg protein based on Bradford determination. 

http://www.cbs.dtu.dk/services/NetPhos/


Results 

 103

Furthermore when the protein contents in the apoplastic fluid were treated by 

phosphatase, signal in nsLTP still present. This might be attributed to the low 

specificity of the general phosphatase to dephosphate tyrosine residues. 

Interestingly the signal of phosphtyrosine has been detected only in the healthy 

tissues of both susceptible and resistant apple cultivars (Figure 3.48). This result was 

comparable to SDS PAGE and CBB staining results.  
 

 

 

 
 

 

 
 

 

Figure (3.48): Immunoblot assay for phosphorylation sites detection in 
the apoplastic nsLTP of M. domestica. The first antibody dilution was 
1:1000. In SDS PAGE each lane was loaded with 50 µg protein based 
on Bradford determination. 
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4 Discussion 

4.1 The nsLTP and pathogenesis 

The declining of nsltp transcript level in the apple trees after infection with Venturia 

inaequalis after one day and still undetectable until two weeks as observed by 

northern blot analysis. This finding confirms the previous observation by Gau et al., 

2004 on the protein level. The authors found out also the protein level of nsLTP in the 

apoplastic fluid of the leaves of the susceptible apple cultivar Elstar has declined to 

undetectable level after infection by V. inaequalis. These results were in the 

consistence with the finding that was given by Rep et al., (2003). They found out that 

protein level of ltp in tomato xylem sap has declined during Fusarium colonization. In 

another example, it has been reported that the transcript level on nsLTP in the 

inoculated A. thaliana leaves with avirulent strain of Pseudomonas syringae was 

reduced after infection (Maldonado et al., 2002).  

Very recently it has been documented that the protein level of nsltp of apple M. 

domestica cv. Holsteiner Cox  has been declined in the apoplast after application of 

the nonpathogenic antagonist P. fluorescence Bk3 (Kürkcüoglu et al., 2004). This 

finding is in contrast with several previous in vitro studies that were suggesting 

antimicrobial activity for nsLTPs (Terras et. al., 1991; Molina et. al., 1993; Segura et. 

al., 1993; Dubreil et. al., 1998; Kristensen et. al., 2000; Regent and de la Canal 2000; 

Carvalho et. al., 2004; Velazhahan et. al., 2001). On the other hand most of these 

results have been based on in vitro studies. More recently it has been documented 

that plant nsLTP possess antifungal activity by involvement in membrane 

permeablization of the fungal cell (Regente et al., 2005). 

Therefore, if this notion is adopted, it should be expected the increase of nsLTP at 

least on the transcript level. Based on this finding it could be suggested that M. 

domestica nsLTP does not exhibit direct antifungal activities in vivo against V. 

inaequalis.  

In fact this suggestion has been confirmed by analysis of the soluble protein contents 

in the apoplast of the young susceptible and resistant apple cultivars. This analysis 

revealed a higher level of nsLTP in the apoplast of the susceptible apple cultivar 

Elstar than in the resistant cultivar Remo. Consequently, this finding supports the 

idea that apoplastic nsLTP in apple does not posses direct antifungal activity toward 

V. inaequalis, otherwise it should be more in the resistant cultivar than in the 
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susceptible one. More interestingly the nsLTP represent more than 90 % of the total 

protein in the apoplast in both cultivars in these young leaves.   

 
4.2 Southern blot and copy number of the intronless apple nsltp 

The current results showed that nsltp in four different apple cultivars; apple M. 

domestica cv. Elstar, Gloster, Holsteiner Cox and Remo is an intronless gene. This 

finding is in the agreement with the recently published data about nsltp in another 10 

different apple cultivars. Moreover, one of the ltp genes in both barley (White et al., 

1994), and sorghum (Pelèse-Siebenbourg et al., 1994), were found to be intronless 

genes. On the other hand, almost all of the isolated ltps members in plant contain an 

intron, particularly placed in the region corresponding to the C-terminal domain in the 

protein (Kader 1996). This intron varies in length from one gene to another, for 

example 89 bp in rice (Vignols et al., 1994), 114 bp in sorghum (Pelèse-Siebenbourg 

et al., 1994), 115 bp in A. thaliana (Thoma et al., 1994), 133 bp in barley (Skriver et 

al., 1992; Ma et al., 1995), 271 in broccoli (Pyee and Kolattukudy 1995), and 980 bp 

in tobacco (Fleming et al., 1992). 

Southern blot analysis in this study revealed that apple M. domestica has at least 14 

copies of nsltp distributed through out the genome. This result increased the 

complexity that was confirmed suggesting the presence of several ltp: only one in 

carrot and spinach (Bernhard and Somerville 1989; Sterk et al., 1991); at least two 

copies in cotton, maize, Gerbera hybrida, and tomato (Tchang et al., 1988; Torres-

Schumann et al., 1992; Kotilainen et al., 1994; Ma et al., 1995); three in rice (Vignols 

et al., 1994); four in broccoli (Pyee and Kolattukudy 1995); five in sorghum (Pelèse-

Siebenbourg et al., 1994); and seven in barley (White et al., 1994). On the other hand 

the same copy number 14 for ltp was previously reported in loblolly pine (Kinlaw et 

al., 1994). In addition, it has been reported that A. thaliana genome has at least 15 ltp 

and at least six individual nsltp have been found in three chromosomes (Arondel et 

al., 2000). More recently, the linkage map positions and allelic diversity of two nsltp in 

M. domestica was determined. This study confirmed the current finding that apple M. 

domestica nsltp is intronless. Moreover, the recent results revealed that the two nsltp 

in cultivated apple Mal d 3.01 and Mal d 3.02 could be mapped on two homologous 

segments of linkage groups 12 and 4 respectively (Goa et al., 2005). 
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4.3 Promoter activity and light dependency 

Prediction of the cis-acting regulatory elements revealed that these upstream regions 

of nsltp in M. domestica cv. Elstar and Remo are very rich in motifs, particularly in the 

light responsive elements. Insertion of the PCR amplified nsltp upstream regions from 

Elstar and Remo in front of the DsRed reporter gene, could switch on the expression 

machinery during transient expression of this marker gene in M. domestica cv. 

Gloster tissues. However the intensity and frequency of the detected fluorescence in 

the transformed cells were higher in case of Remo nsltp upstream region than those 

of Elstar.  

The expression of DsRed gene was exclusively dependent on light. These findings 

reflect close correlation between the light responsiveness motifs and the dependence 

of promoter activity on light in one side and the chloroplast localization in fusion with 

GFP on the other side. Therefore it can be concluded that M. domestica nsltp is a 

light regulated gene.  

Similar observation has been found in Rhodopseudomonas sphaeroides. A 

cytoplasmic lipid transfer protein was purified from this gram-negative bacterium with 

a molecular mass 27 kD and 5.2 isoelectric point (Cohen et al., 1979; Tai and Kaplan 

1984). Whereas, a non-specific lipid transfer protein with a 56 kD was purified from 

the periplasm in R. sphaeroides (Tai and Kaplan 1985). The latter organism is a 

photoheterotrophic bacterium that forms a cytoplasmic membrane structure 

containing the photosynthetic apparatus (Kaplan 1981). The most interesting finding 

in this bacterium was the clear correlation between light intensity during growth and 

the level of lipid transfer activity. 

In addition, it has been reported that no ltp transcript was detected in the root of 

different plants (Bernhard et. al., 1991; Wirtz 1991; Fleming et. al., 1992; Torres-

Schumann et al., 1992; Weig and Komor 1992; Molina and Garcia-Olmedo 1993; Ma 

et. al., 1995; Pyee and Kolattukudy 1995), only in rice seedling a weak level has 

been detected (Vignols et. al., 1994). On the other hand ltp was actively expressed in 

the aerial parts of the plants including leaves, stem and shoot meristems (Bernhard 

et. al., 1991; Fleming et. al., 1992; Thoma et al., 1993; Molina and Garcia-Olmedo 

1993; Vignols et. al., 1994; Ma et. al., 1995; Pyee and Kolattukudy 1995). 
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These observations can support our finding that the M. domestica nsltp is a light 

dependent gene.    

It has been reported that the release of ROS intermediates (superoxide radicals, 

hydrogen peroxide and hydroxyl radicals) was controlled by light, gibberellin and 

abscisic acid (Schopfer et. al., 2001). It is clear that chloroplast represents a very hot 

source for ROS especially under light condition. 

These results could support the hypothesis for nsLTP that can protect membranes in 

general and particularly chloroplast envelope in this case against damage with free 

radicals. Regarding thylakoid membranes, it has been documented that cabbage 

cryoprotectin as a member of plant nsLTP from cold-acclimated leaves can protect 

nonacclimated spinach thylakoids from freeze-thaw damage (Hincha et. el., 2001).  

 
4.4 Subcellular localization of nsLTP and possible function 

Basically in most of the cases, protein localization is closely correlated with the 

function. This was the basic rationale to trace the nsLTP targeting in fusion with GFP. 

Based on the finding of a putative signal peptide in all members of LTP, Vignols et. 

al., (1994) suggested that LTP could be targeted to a specific intracellular 

compartment and/or secreted. The extracellular localization of LTP has ruled out its 

participation in lipid metabolism, including lipid transfer between intracellular 

membranes. This led to the suggestion for possible existence of at least two different 

populations of LTP. One of them is intracellular and the other is extracellular with 

different functions (Carvalho et al., 2004).  

During the transient expression of nsLTP in the N-terminal fusion with GFP it 

has been observed that the chloroplast within the guard cell is swollen. Similar 

observation has been reported by Gray et al., (2002). He reported that the 

chloroplasts adjacent to the wound-induced lls1 (lethal leaf spot-1 in maize) are 

highly swollen and distorted before any other changes normally associated with dying 

cells. It has also been suggested for LLS1 that may act to prevent the formation of 

the reactive oxidative species or to remove cell death mediator to protect the 

chloroplast and to preclude cell death. Swelling the chloroplast was contributed to the 

loss of differential permeability of its envelope membranes that may result from 

changes within the chloroplast such as photooxidation, change in pH or loss of 

energy production (Wise and Cook 1998; Mostowska 1999). 
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The crucial episode in this scenario is the GFP based analysis which revealed 

that the subcellular localization of the nsLTP is restricted vastly to the swollen 

chloroplast particularly under light conditions and to other organelles in the cell 

probably including mitochondria and peroxisomes under dark conditions in case of N-

terminal fusion. Since this fusion does not contain any motif or transit peptides that 

can direct the fusion toward the chloroplast or other organelles, one question has 

been arisen, why this fusion has been localized in this pattern? However, searching 

for DNA motifs in the nsltp and the upstream region by using Omiga package, 

revealed the presence of 9 motifs that belong to chloroplast binding factor. 

  Intuitively, bombardment of plant leaves by gold particles triggers an oxidative 

stress producing reactive oxygen species (ROS), particularly H2O2 that can damage 

the cell. These ROS exacerbate the potential damage effect of the preexisting ROS 

within the cell. Membranes are highly prone to oxidative stress (Mittler et al., 2004). 

In general plants can protect their membranes enzymatically by the action of specific 

phosphlipid glutathione and nonenzymatically via the potent antioxidant α–tocopherol 

that can be reduced via reduced ascorbic acid (Porfirova et al., 2002; Müller-Moulé et 

al., 2003; Rodriguez Milla et al., 2003). 

In an attempt to prevent or at least minimize H2O2 production in the apoplast after 

bombardment, the Diphenyleneiodonium chloride (DPI) has been used as a powerful 

reversible inhibitor for NADPH oxidase (O'Donnell et al., 1993) and in several studies 

of plant/pathogen interactions (Baker et al., 1998). Unfortunately, it was difficult to 

find the suitable condition for DPI application. On one hand when DPI concentration 

was high it was detrimental for plant tissues. On the other hand, when the DPI 

concentration was low it stimulates an extreme stomatal opening and consequently 

the bombarded tissues were occupied with endophytic bacteria and again this was 

detrimental for tissues (data not shown). 

To address the question one assumption can be given that within the 

chloroplast of the injured guard cell, ROS resulted in a cascade of free radicals that 

initiated programmed cell death. The putative role of nsLTP in this scenario it might 

act as a transporter facilitating the replacement of the impaired membrane lipid or to 

recruit a lipid derived antioxidant molecules in attempt to quench free radicals and 

consequently prevent programmed cell death. A putative antioxidant candidate is α-

tocopherol which is lipid derived potent membrane antioxidant. 
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An alternative interpretation can be given for localization of nsLTP in fusion with the 

GFP in the chloroplast of the guard cells, is the presence of lipid substrate for nsLTP. 

Generally, presence of transporter or carrier is correlated with the presence of cargo. 

Obviously leaf membrane lipids are synthesized as a co-operation between 

chloroplast and endoplasmic reticulum (Ohlrogge and Browse 1995). Moreover, fatty 

acids synthesis takes place predominantly in the chloroplast (Hellgren and Sandelius 

2001). Therefore it seems a plausible localization for nsLTP in the chloroplast for 

docking and subsequently facilitates the transfer of lipid cargo to its destination, 

through the cytosol. It has been suggested that phospholipids are carried back from 

Golgi to the ER as individual molecules though the cytosol in order to maintain the 

integrity of the ER by LTPs (Wirtz 1991). 

 
4.5 Evidence for presence of nsLTP in fusion with GFP in the chloroplast 
envelope  

Previously it has been reported that no LTP was detected in the stroma of spinach 

chloroplast (Schwitzguebel and Siegenthaler 1985). In this study it has been found 

that the targeting of nsLTP to the chloroplasts in the guard cell started as a line 

girdled the chloroplast, and gradually this line covers the whole compartment (Figure 

4.1A). This is a plausible evidence for the localization in the chloroplast envelope and 

not inside the chloroplast, because if it is localized inside the chloroplast a fluorescent 

signal coming from inside had to be detected as in case of the transit peptides of the 

small subunit of Ribulose-1,5-bisphosphat-Carboxylase-Oxygenase (RubisCO) in 

fusion with GFP (Figure 4.1B). Therefore it can be suggested that presumably the 

nsLTP might localize in the chloroplast envelope. Moreover, it has been reported that 

LTPs were used as a tool to modify the lipid composition of a membrane and to study 

the consequences of these changes on its properties (Kader 1996). This modification 

has been performed for chloroplast envelope membranes (Miquel et al., 1987). 

Regarding lipid synthesis in the plant, the chloroplast envelope plays a key role in this 

process. It has been reported that the bulk of thylakoid lipids monogalactosyl-

diacylglycerol (MGDG) and digalactocyldiacylglycerol (DGDG) are synthesized in the 

chloroplast envelope (Maréchal et al., 1997). It has been suggested that the 

precursor diacylglycerol (DAG) derives from phosphatidylcholine (PC) synthesized in 

the chloroplast envelope (Mongrand et al., 1997, 2000).     
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One possible explanation can be given for localization of nsLTP in the chloroplast 

envelope, that for docking by lipids that have been synthesized in the envelope and 

transfer it to other destinations within the cell. 

In contrast to animal and fungi which produce fatty acids primarily in the cytosol 

(Ohlrogge and Browse 1995), plant mainly synthesizes fatty acids in the plastid 

stroma (Harwood 1996). These fatty acids are transported to the plastid envelope 

membrane and from there can be either exported to the cytosol or metabolized within 

the two envelope membranes (Maréchal et al., 1997). In addition, it has been also 

demonstrated that the chloroplast envelope membranes synthesize oxylipins from 

hydroperoxides of polyunsaturated fatty acids (Blée and Joyard 1996). Therefore the 

chloroplast envelope represents a hot area containing fatty acids that can easily 

oxidized by ROS. In animals it has been speculated that the mammalian sterol carier 

protein (SCP2) which is identical to mammalian nsLTP protects fatty acids from 

oxidation by ROS in the peroxisomes (Dansen et al., 2004). The same speculation 

could be valid for plant nsLTP in the chloroplast that represents the major source for 

ROS in plant particularly under light conditions. It has been shown that acyl-CoA 

thioesters synthesized on the outer membrane of the chloroplast envelope is avialible 

outside plastids for glycerolipid synthesis in the ER (Joyard and Douce 1977; Joyard 

and Stumpf 1981). Acyl-CoA thioesters have detergent properties that can damage 

the membrane integrity. It has been suggested that both nsLTP (Kader 1996) and 

specific acyl-CoA binding proteins (Hills et al., 1994) could be involved in the removal 

of acyl-CoA thioesters from the vicinity of the outer envelope membrane and 

transport it to the ER for rapid utilization. 

 

 Figure (4.1): A: Targeting the nsLTP in N-terminus fusion with GFP to the 
chloroplast of the guard cells in M. domestica cv. Gloster; B: Targeting of GFP in 
fusion with the transit peptides of the small subunit of RubisCO to the chloroplast 
(under dark conditions) Bar= 25 µm. 
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4.6 The nsLTP of M. domestica cv. Elstar and its localization in the apoplast 

Apparently the in vivo function of nsLTP is not restricted to the apoplast as one 

of the sources for ROS but it extends to the cytosol that harboring the other ROS 

sources including chloroplast, mitochondria and peroxisomes. Rationally, to avoid 

any hazards resulted from any leakage of ROS from cytosolic sources. It is 

noteworthy that the suggestion of localization of nsLTP in the peroxisomes is not the 

first record but it has been reported before in castor bean cotyledons glyoxysomes 

(Tsudoi et al., 1992). Recently, it has been found that LTP of Vigna unguiculata 

seeds localized in the lumen of organelles that has been suggested to be a protein 

storage vacuoles, as well as in vesicles similar to the lipid containing ones and in the 

extracellular space (Carvalho et al., 2004).  

Paradoxically the absence of GFP fluorescent signals in the apoplast does not 

imply the absence of nsLTP from this compartment. It can be attributed to the change 

in pH toward acidity in the apoplast that might affect the GFP fluorescence exhibiting 

a weak undetectable fluorescence (Tsien 1998).  

 
4.7 nsLTP of M. domestica cv. Elstar involved in vesicle trafficking and 

cytoskeleton dynamics 

The transient expression of GFPN-nsltp in the healthy apple leaves under dark 

conditions revealed that nsLTP is localized in some guard cells in bodies like vesicles 

distributed through the cytosol (Figure 4.2A). On the other hand when the artificially 

infected apple leaves were used for bombardment the localization pattern of GFPN-

nsltp was observed in structures that possibly seem to be the cytoskeletal filaments 

(Figure 4.2B). It is known that both plant-pathogens and symbiotic interactions 

implicated in modulation of cell polarity and cellular trafficking in plant cell and 

consequently are associated with the cytoskeleton reorganization (Wasteneys and 

Yang 2004).  Regarding lipids it has been reported that lipids play a key role in 

vesicle trafficking, secretion, cytoskeletal rearrangement (Welti and Wang 2004). 

Recently it has been found that phosphatidylinositol 3- and 4-phosphate control the 

opening and closing of the stomatal pore in Vicia faba and A. thaliana (Jung et al., 

2002), suggesting that the phosphoinositide system is involved in the actin filaments 

reorganization during stomatal movement. Phosphatidylinositol is considered to be a 

potential lipid substrate for the nsLTP. 
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Based on the current observations in this study it could be suggested that nsLTP can 

play a role in vesicle trafficking and cytoskeletal dynamics within the plant cell. These 

speculative functions can be achieved by nsLTP if it can be supposed that the in vivo 

function of nsLTP is to transfer lipids from their source of synthesis to their 

destinations. It seems a plausible interpretation due to the localization of nsLTP in 

fusion with GFP in the chloroplasts of the guard cells. Since the chloroplast in the 

plant cell represents the main source for lipid synthesis in cooperation with the ER. 
  

 

 
 
 

 

 

 

4.8 The leader sequence and C-terminal domain of nsLTP and its roles in 

protein targeting  

The deletion of nucleotide sequence that encodes for the first 24 amino acids from 

the nsltp precursor resulted in failure of mature protein in fusion with GFP to enter the 

secretory pathway or to be localized in any compartment within the cell. 

Subsequently the fusion protein was localized in a similar manner like the control 

GFP, through the whole cytosol with a higher density around the nucleus. This finding 

is in the agreement with the general consensus in the literatures on nsLTPs.  It is 

known that LTPs have an N-terminal leader sequence responsible for the insertion of 

the polypeptide into the lumen of the ER in vitro, and subsequently the secretory 

pathway (Bernhard et al., 1991; Madrid 1991). Based on this observation, it has been 

Figure (4.2): A: Localization of nsLTP in N-terminal fusion with GFP in bodies like 
vesicles in the cytosol of the guard cells of M. domestica cv. Gloster (under dark 
conditions); B: Possible localization of nsLTP in N-terminal fusion with GFP in the 
cytoskeletal filaments of the guard cells of M. domestica cv. Gloster infected leaves 
with V. inaequalis (under dark conditions). The red colour in A represents the 
expression of DsRed in the cytosol as a background positive control. Bar= 25 µm. 
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suggested that LTPs take part in the lipid movements within the lumen of the ER 

(Madrid 1991). Interestingly, the immature nsLTP had a calculated molecular mass 

around 12 kD, but the isolated apoplastic nsLTP has only 9 kD. This observation 

indicates that the N-terminal leader sequence in nsLTP has been deleted from 

protein and subsequently the nsLTP is localized in the apoplast as a mature protein. 

On the other hand when the nucleotide sequence corresponding to the last 11 amino 

acids in the C-terminal domain was deleted, the resultant protein in fusion with the C-

terminus domain of GFP was localized in the chloroplasts in the guard cell under light 

and as well as dark conditions. Since almost the same observation has been 

recorded in the case of N-terminal fusion, it might be concluded that the 11 amino 

acids in the C-terminal domain in the apple nsLTP are not necessary for protein 

targeting to its destinations.  

 

4.9 Epigenetic information and nsltp regulation in susceptible and resistant 
apple cultivars of M. domestica cv. Elstar and Remo 

After infection of apple trees with the fungus V. inaequalis, protein and as well as the 

transcript levels of apple nsltp have been declined drastically. Based on this fact one 

question has been arisen, is nsltp regulated transcriptionaly or posttranscriptionaly? 

DNA methylation analysis with methylation sensitive restriction enzymes (HpaII and 

AvaII) and southern blot revealed that cytosine methylation in the upstream region 

and the structural nsltp play a pivotal role in the regulation process. Reduction of 

number of detected bands when the methylation sensitive isoschizomer HpaII was 

used, give a clear evidence that some sites in the target sequence were methylated 

and subsequently the methylation sensitive restriction enzymes failed to cleave these 

sites. 

Results revealed that the methylation pattern of nsltp was similar in healthy resistant 

cultivar Remo and susceptible infected cultivar Elstar. This finding is in the 

consistence with the previous finding by Gau et al., 2004 on the protein level. The 

authors found out that the protein pattern in the apoplast was similar in both healthy 

Remo and infected Elstar.  This might reflect that the resistant M. domestica cv. 

Remo is always on alert against the potential infection with V. inaequalis.  

It is noteworthy that this is the first time for investigation the role of DNA methylation 

on M. domestica nsltp regulation pattern. Interestingly, our finding is in the agreement 
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with previously demonstrated results, that in the flowering plants, the light regulated 

genes are regulated mainly at the transcriptional level (Silverthorne and Tobin 1984; 

Tobin and Kehoe 1994; Terzaghi and Cashmore 1995). As discussed before it can 

be suggested that nsltp is a light regulated gene, therefore it could be expected that 

nsltp is transcriptionally regulated. Regarding infection and pathogenesis, it has been 

reported that DNA methylation can be altered and subsequently changes specific 

gene activity of the host cell by fungal pathogenic action on plants (Guseinov and 

Vanyushin 1975). Moreover, it has been documented that the amount of 

methylcytosine in stem DNA of alfalfa infected plants is approximately 25 % higher 

than that of the healthy plant DNA (Vanyushin et al., 1979). On the other hand 

regarding to age, it has been shown that DNA methylation level in young seedlings in 

both tomato and A. thaliana, were approximately 20 % lower than in mature leaves 

(Messeguer et al., 1991; Finnegan et al., 1998). It is known that there are several 

genes in plants that are transcriptionally inactive and methylated in the promoter 

and/or coding sequences (Finnegan et al., 1998). It was shown that coding region 

methylation inhibits gene expression in animal cells (Keshet et al., 1985). In 1996 it 

has been suggested that similar mechanisms operate in plant cells (Hohn et al., 

1996).       

 
4.10 nsLTP is developmentally regulated 

The current results showed that the protein level of nsLTP has declined by age 

in the apoplastic fluid. Previously it has been demonstrated that the transcript of ltp1 

has declined with age of the tissue in tobacco (Fleming et al., 1992), in barley (Molina 

and Garcia-Olmedo 1993) and sugar beet (Nielsen 1996). More recently, a higher 

level of nsLTP in the apoplast of the young apple leaves than in older one was 

documented (Koutb 2003). It has been reported that a high ltp1 promoter activity 

occurs in tobacco plant parts that are vulnerable to physical disruption and thus to 

pathogen invasion (Canevascini et al., 1996). Inductively it can be assumed that the 

down regulation of nsLTP in old leaves might implicate in the ontogenic resistance in 

apple. During the flower development; genes of ltp were expressed at early stages 

(Kader 1996). Interestingly, during the development in legume plants by the symbiotic 

bacterium Rhizobium, the transcript level of LT-like protein has elevated in root hairs 

after four days inoculation. On the other hand the transcript level was absent in the 
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differentiated nodules, indicating that the ltp was transiently expressed (Krause et al., 

1994). High transcript levels of ltp were observed in young developing inflorescences 

in carrot (Sterk et al., 1991), and A. thaliana (Thoma et al., 1994), in the sepals of 

unpended flowers of tobacco (Fleming et al., 1992), in flower buds of broccoli (Pyee 

and Kolattukudy 1995), in microspores of rapeseed (Foster et al., 1992), and in 

corolla and carpel of Gerbera hybrida (Kotilainen et al., 1994).         

Even in animals, one member on nsLTP was purified from rat hepatoma 

(Dyatlovitskaya et al., 1978), with a molecular weight 11 kD and isoelectric point 5.2. 

Interestingly, this protein has been found in several carcinoma cell lines as well as in 

fetal rat liver, but it has not been found in adult rat liver (Dyatlovitskaya et al., 1982). 

Based on this result it has been suggested that hepatoma nsLTP may belongs to the 

carcinoembryonic protein family (Wirtz 1991). 

Within the inevitable equation of plant life cycle, plants must keep the balance 

between youth and senescence. The latter is one form of PCD that correlated with 

oxidative stress. Furthermore none of nsLTP has been reported to be induced by 

senescence (Yoshida et al., 2001). Therefore the expression of nsltp must be thriftily 

regulated.  

 

4.11 Tyrosine phosphorylation site and its possible impact on nsLTP 

 The predicted tyrosine phosphorylation site that has been done by computer 

program and confirmed via western blot with antibody against phosphorylated 

tyrosine residue indicates that nsLTP has a key element that enables it to play a 

pivotal role in the plant cell. It is well known that addition or removal of phosphate 

groups to serine, threonine, or tyrosine residues of protein can cause allosteric 

modifications. These modifications result in conformational modulations in protein 

leading to its activation or inactivation (Naz and Rajesh 2004). In general, protein 

phosphorylation plays an essential role in signal transduction from out side to the 

inside of a cell, and it regulates different cellular functions including growth, 

metabolism, proliferation, motility and differentiation (Bonenfant et al., 2003). 

Particularly tyrosine phosphorylation has a paramount importance in animals but in 

plants it has been neglected, because a typical tyrosine kinase was not found in 

plants. However, the activities of protein kinase have been reported in some plant 

species such as pea (Torruella et al., 1986), alfalfa (Duerr et al., 1993), tobacco 
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(Zhang et al., 1996), maize (Trojanek et al., 1996), and coconut (Islas-Flores et al., 

1998). On other hand several protein tyrosine phosphatases (PTPs) have been 

characterized in A. thaliana and other species (Xu et al., 1998; Gupta et al., 1998; 

Fordham-Skelton et al., 1999).  

It has been suggested that tyrosine phosphorylation in plants is strongly involved in 

the regulation of plant embryogenesis and tissue differentiation (Barizza et al., 1999). 

In addition by using several specific PTP inhibitors, it has been demonstrated that 

PTP activity is essential for stomatal closure induced by four different factors 

including ABA, external calcium, darkness and H2O2 (MacRobbie 2002). 

Furthermore, it has been suggested that tyrosine phosphorylation in the transition to 

light state 2 may be an important factor in regulation of photosynthesis (Forsberg and 

Allen 2001). 

For nsLTPs it has been built a general consensus in the literatures that they are 

characterized by their ability to transfer phospholipids between membranes in vitro. 

Regarding to the binding activity of nsLTP, one can suggest that tyrosine 

phosphorylation can modulate this activity. As it has been reported in case of 

calmodulin, that tyrosine phosphorylation modulates the interaction of calmodulin with 

its target proteins (Corti et al., 1999). Moreover it has been observed that lipid 

transfer like proteins from wheat, barley, pine, and Petunia were found to be the 

substrates with various phosphorylation sites for Ca2+-dependet protein kinases 

(Polya et al., 1992; Neumann et al., 1993; Neumann et al., 1995). Furthermore after 

labeling of petunia petals with 35P phosphate, the major labeled protein has an 

apparent molecular mass close to that of LTPs (Neumann et al., 1995). 

 Recently, it has been suggested that H2O2 activates protein tyrosine 

phosphorylation (Rivlin et al., 2004). A lipid derived potent antioxidant α–tocopherol is 

known to modulate tyrosine phosphorylation (Chan et al., 2001). It has been 

observed that tocopherol synthesis takes place in photosynthetic organisms; plants, 

algae, and some cyanobacteria (Sattler et al., 2003). In plants α–tocopherol synthesis 

takes place in the inner membrane of the chloroplast (Soll et al., 1980).  

 Accordingly, it can be hypothesized that the ROS released by bombardment or 

any related situations e.g. pathogen attack act as an alert that activate apoplastic ns 

LTP via tyrosine phosphorylation. The phosphorylated form of nsLTP is responsible 

for impaired phospholipids replacement or recruiting α–tocopherol to protect 
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membranes in the influenced area. In the case of non producing α–tocopherol 

influenced tissues, nsLTP must travel for long distance through the plant.  

In support of this hypothesis, Maldonado et al., (2002) suggested that an 

apoplastic lipid transfer protein interacts with lipid-derived molecules and operates as 

a mobile signal for a long distance in A. thaliana apoplast. Moreover, it has been 

reported that 90 % of the synthesized fatty acids in the nonphotosynthetic tissues and 

developing seeds of all plants are imported from the plastids (Browse et al., 1993). 

 

4.12 Why are plant nsLPTs free of tryptophan? 

Another support to this hypothesis is the lack of tryptophan (Trp) residue from all 

known plant nsLTPs (Kader 1997). A plausible explanation can be given as a 

precautionary strategy for the plant. It has been reported that Trp and tyrosine (Tyr) 

are susceptible to radicalization preferably in the lipophilic environments (Moosmann 

and Behl 2000). Moreover, Trp-derived peroxides were more efficient than Tyr-

derived peroxides in inactivation of thiol-dependant enzymes (Hampton et al., 2002). 

One of these thiol-dependent enzymes is the glutathione reductase that represents a 

key enzyme in the ROS scavenging system. Mammalian nsLTP lacks Tyr residue 

(Dansen et al., 2004). Moreover, it has been speculated that the mammalian sterol 

carrier protein (SCP2) which is identical to mammalian nsLTP protects fatty acids 

from oxidation by ROS in the peroxisomes (Dansen et al., 2004).  

In comparison with mammals plant kept Tyr in their nsLTPs that might be attributed 

to the production of α–tocopherol only by plant and may reflect the cross talk 

between α–tocopherol and Tyr phosphorylation.   

Regarding plants if nsLTPs have Trp residue, any modifications in this amino acid will 

not only affect the function of nsLTP but also on the Trp pool and consequently on 

the synthesis of this protein.  

In addition, allergy analysis provides a peciuliar character for nsLTP supporting our 

hypothesis is the insensitivity of nsLTP as allergen to oxidative attack that destroys 

the allergenicity of birch pollen-related fruit allergens (van Ree 2002). 

Based on our results it can also be suggested that the reported phosphorylation of 

the Tyr residue in M. domestica nsLTP can possibly prevent the oxidation of this 

susceptible residue and consequently circumvent the oxidative damage.  
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4.13 Direct correlation of nsLTP with PCD 

During the development of tracheary elements (TE) in zinnia, secretion of a TED4 

protein that encoded for ltp into the medium, inhibit proteasome activity to protect the 

neighboring cells. The depletion of TED4 protein from the culture medium results in 

an increase in mortality of other living cells (Endo et al., 2001).  

Recently, ltp in Euphorbia lagascae seedling were found with a high amount in the 

inner region close to the cotyledon, and less amount in the outer region of the 

endosperm (that must undergo programmed cell death). It has been proposed that ltp 

are involved in the recycling of endosperm lipids, or protecting the growing 

cotyledons from proteases released during PCD (Eklund and Edqvist 2003). 

 
Several evidences have been accumulated regarding the localization of nsLTP in 

different plant species, around the leaf veins (Sossountzov et al., 1991), in the vessel 

cell wall (Tsuboi et al., 1992), in phloem (Ivashikina et al., 2003), in root xylem (Rep 

et al., 2003) and in the highly lignified area at the tip of the cotyledon (Thoma et al., 

1994). From these observations one can conclude that the localization of ltp is mainly 

close to xylem vessels and close to the cell wall. The common feature in these niches 

for ltp is the presence of lignin. The latter is a major part of the apoplast and its 

synthesis is mediated by free radicals. 

Another character for nsLTP in support of the hypothesis is the insensitivity to 

oxidative attack that destroys the allergenicity of birch pollen-related fruit allergens 

(van Ree 2002). Interestingly, it has been reported that the transgenic plants tobacco 

and A. thaliana expressing barley LTP2 showed a great reduction in the necrotic 

lesions after inoculation with virulent strains of P. syringae (Molina and Garcia-

Olmedo 1997). This result was assessed as a defensive role for LTP2, but from our 

point of view LTP overexpression resulted in prevention of PCD and consequently 

necrotic lesion production. The knockout of A. thaliana acceleratd-cell-death11, that 

is encoding a sphingosine (lipid) transfer protein, resulted in PCD activation 

(Brodersen et al., 2002). 

If the nsLTP can interfere and prevent PCD in the plant cell, it can play a vital role in 

the life cycle of V. inaequalis particularly after penetrating cuticle layer. During this 

critical period nsLTP can delay PCD until the fungus switch on its own mechanism by 

release melanoprotein to the apoplast. Melanoprotein revealed ability to bind iron and 
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therefore interferes with the oxidative stress (Singh et al., 2005). Consequently 

nsLTP can rank as a susceptibility factor especially in the case of biotrophic 

pathogens like V. inaequalis.  

To confirm our hypothesis the current strategy is to transform protoplast or cell 

culture of tobacco or A. thaliana by sense and antisense apple nsltp via 

Agrobacterium gene mediated transfer procedure. Subsequently, the transformed 

cells will undergo PCD induction by application of H2O2.   

 
4.14 Putative lipid replacement therapy in the plant by nsLTP 

In this current study the hypothesis for the in vivo function of at least the intracellular 

population of nsLTP is to protect membranes from the oxidative stress damage 

directly by replacement the impaired phospholipids and/or glycolipids, or indirectly by 

recruiting the membrane antioxidant α–tocopherol from the chloroplast. In support of 

our hypothesis, it has been suggested that a phospholipids-LTP complex in 

mammalian cells interacts with the membrane and replaces its bound phospholipids 

by another molecule from the membrane (Wirtz 1991). Comparable events have 

been proposed for plant LTP (Kader et al., 1982; 1984). More recently analysis of the 

human tear fluid revealed the presence of phospholipid transfer protein in this fluid. 

This finding led to the suggestion that LTP may play a role in the formation of the tear 

film by facilitating phospholipids transfer (Jauhiainen et al., 2005).    

One fundamental question is still to be addressed; whether nsLTP can disturb the 

membrane integrity or not? Interestingly, it has been documented that bovine nsLTP 

is surface active and it is not necessary to penetrate the membrane to commence 

transfer activity (van Amerongen et al., 1989).   

Obviously, the top target for the research activities is the human being. Therefore 

once this hypothesis is true, it would be a great milestone in the human nutrition 

interest, because the nsLTP will be considered as a dagger, on one side it can 

prevent or at least delay programmed cell death but on the other side it can enhance 

cancer.  

Interestingly, plant non-specific lipid transfer proteins have been studied for their 

capability to act as a drug carrier and facilitating the delivery system (Pato et al., 

2001). 
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5 Conclusion 

In spite of the general consensus about the lipid transfer activity of plant nsLTP in 

vitro, it is still a very strong debate around the possible in vivo function/s of this group 

of proteins in the literature. For this reason this current study was conducted in an 

attempt to understand the biological role of this puzzling protein in the plant cell.  

Very recently it has been found that the protein level of M. domestica cv. Elstar 

nsLTP has declined to undetectable level in the apoplastic fluid of the susceptible 

apple cultivar Malus domestica cv. Elstar after infection with Venturia inaequalis. In 

this current study, the transcript level of nsltp has been found to be drastically 

declined to undetectable level in apple tissues after infection with V. inaequalis by 

one day. These findings indicate that nsLTP can play an important role in the 

infection process. The same protein has been detected in the apoplast of the healthy 

resistant cultivar M. domestica cv. Remo however, the level of the detectable protein 

based on the purification method was lower than that of susceptible cultivar Elstar. 

This observation indicates that nsLTP might be involved in the susceptibility to 

diseases directly or indirectly. Moreover apple nsLTP was found to decline by age of 

the leaves and it is known that leaves by age gain ontogenic resistance against 

diseases. Based on these results it could be suggested that apple nsLTP might be 

implicated in the ontogenic resistance in apple. 

This study documented for the first time by using western blot analysis, that apple 

nsLTP has a phosphorylation site located presumably on the tyrosine residue number 

40 in the immature protein. We have also found that aplple nsltp is an intronless gene 

and represented by several copies, at least 10 copies have been found to be 

distributed through apple genome of the susceptible and resistant cultivars. 

Interestingly, this is the first record for plant nsLTP to be localized in fusion with GFP 

in the chloroplast envelope (the main source for lipid production in the plant cell), 

especially under light conditions. Furthermore, nsLTP has found to be localized in 

small vesicles distributed through the cytoplasm. More interestingly, it was observed 

that nsLTP in fusion with GFP has localized in structures probably belong to the 

cytoskeleton. These observations can support the hypothesis that M. domestica 

nsLTP can play an important role in lipid transfer in vivo. 

The upstream regions in both susceptible and resistant M. domestica cultivars have 

shown to be very rich in light responsive elements. Remarkably, the promoter activity 
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studies on these upstream regions revealed that the apple nsltp is a light dependent 

gene. This finding reflects the strong cross talk between the light responsive 

elements within the promoter region and the protein targeting to the chloroplast 

envelope. Investigation on the role of epigenetic information particularly methylation 

pattern of the promoter region and as well as the encoding region on the regulation 

process of nsltp showed that apple nsltp is transriptionally regulated. 

 
From this study different pieces of information could be gathered that can help us to 

suggest that M. domestica nsLTP can also facilitate the lipid transfer in vivo from their 

source of production to their destinations. Therefore, apple nsLTP must be involved 

in all biological functions in those lipids thought to be important including 

photosynthesis, signal transduction, vesicle trafficking, secretion, cytoskeletal 

rearrangement, growth and development, seed germination, organ differentiation, 

pollination, responses to biotic and abiotic stresses and PCD. Interestingly, most of 

these functions have been documented for plant LTPs in the literature, but the 

problem is mostly the researcher focuses only on each function separately.   

 
Again to focus and specify one function regarding to the first finding that the protein 

and as well as the transcript level of nsltp has declined drastically after the infection, 

one can hypothesize that nsLTP can delay PCD via phospholipids transfer and 

membrane repair and/or by recruiting lipid derived antioxidants.   

 
Ultimately, if this notion is true, nsLTP can play a vital role in the life cycle of V. 

inaequalis particularly after penetrating cuticle layer. During this critical period nsLTP 

can delay PCD until the fungus switch on its own mechanism by release 

melanoprotein to the apoplast. Melanoprotein revealed ability to bind iron and 

therefore interferes with the oxidative stress (Singh et al., 2005). Consequently 

nsLTP can rank as a susceptibility factor especially in the case of biotrophic 

pathogens like V. inaequalis.  

For further study it will be very useful to perform radioactive pulse chase experiment 

in order to confirm the lipid transfer activity in vivo. Since the apple nsltp belongs to a 

multigene family represented by at least ten copies distributed through apple 

genome, the RNA interference technique seems to be promising approach to 

investigate the in vivo function of this protein. 
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