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Abstract

Background: Recent studies have shown the potential suitability of magnesium
alloys as biodegradable implants. The aim of the present study was to compare the
soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo.

Methods: A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel
(S316L), as a control, were investigated. Screws of identical geometrical conformation
were implanted into the tibiae of 40 rabbits for a postoperative follow up of two,
four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the
screw head and thus embedded in paraffin and histologically and
immunohistochemically assessed. Haematoxylin and eosin staining was performed to
identify macrophages, giant cells and heterophil granulocytes as well as the extent of
tissue fibrosis and necrosis. Mouse anti-CD79a and rat anti-CD3 monoclonal primary
antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections
was performed by applying a semi-quantitative score.

Results: Clinically, both implant materials were tolerated well. Histology revealed that
a layer of fibrous tissue had formed between implant and overlying muscle in
MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its
interface to the implant. In MgCa0.8 implants cavities were detected within the
fibrous tissue, which were surrounded by the same kind of cell type. The thickness of
the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually
decreased in S316L. In contrast, a decrease could only be noted in the first weeks of
implantation in MgCa0.8, whereas parameters were increasing again at the end of
the observation period. B-lymphocytes were found more often in MgCa0.8 indicating
humoral immunity and the presence of soluble antigens. Conversely, S316L displayed
a higher quantity of T-lymphocytes.

Conclusions: Moderate inflammation was detected in both implant materials and
resolved to a minimum during the first weeks indicating comparable biocompatibility
for MgCa0.8 and S316L. Thus, the application of MgCa0.8 as biodegradable implant
material seems conceivable. Since the inflammatory parameters were re-increasing at
the end of the observation period in MgCa0.8 it is important to observe the
development of inflammation over a longer time period in addition to the present
study.
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Background
To date, stainless steel and titanium are routinely used for internal fracture fixation

[1,2]. Besides their high mechanical stability, which is advantageous for rigid fixation of

fractured bones, adverse effects such as stress-shielding that result in weakening of the

bone and delayed bone healing have been discussed in connection with their use [3].

Further the occurrence of delayed-type hypersensitivity, a cell mediated immune

response, has been reported [4]. For these reasons, implant removal is commonly

required after fracture healing is completed [5]. To avoid a second surgery and addi-

tional inconveniences for the patient as well as unnecessary treatment expenses, it is

preferable to choose biodegradable implants. Currently, degradable polymers are avail-

able for a variety of non-load bearing applications [6]. However, they have not proven

to be successful in osteosynthesis of weight bearing bones [5].

Previous studies have shown the potential suitability of magnesium alloys for an

application as biodegradable implants [7-12]. As magnesium alloys have mechanical

properties, which are similar to that of cortical bone [13] and a significant higher stabi-

lity and Young’s modulus than polymers [14], they could be promising candidates for

osteosynthesis of weight bearing bones.

The development of biodegradable implants demands an appreciation of the cellular

and tissue responses that are associated with their implantation and in vivo degrada-

tion, because they determine the biocompatibility [15]. The response of the host tissue

is initiated by the surgical procedure [15] and the presence of the biomaterial itself,

which affects the tissue chemically, physically and mechanically [16], and may be

divided into three phases [15]. The first phase (so-called early phase) occurs within the

first two weeks. It is characterised by initiation, resolution and organisation of the

acute and chronic inflammatory host response to the degrading biomaterial [15]. The

second phase is dominated by immuno-inflammatory cells, predominantly macro-

phages, which infiltrate the implantation site. The development of a fibrous capsule is

initiated. The process is further enhanced and accompanied by neovascularisation of

the capsule during the third phase of the host response [15]. Intensity and duration of

the second and third phase reactions are dependent on the degradation rate of the bio-

material [15].

Magnesium alloy implants generally displayed good biocompatibility in vivo[17,18].

However, the results of different studies are difficult to compare as the host reactions

are not only tissue-, organ- and species-dependent, but also influenced by the size and

shape of the implant [15]. The degradation process of a magnesium implant is further

influenced by the alloy composition [19,20]. Alloying with calcium is known to

enhance the corrosion resistance and mechanical properties of pure magnesium. Binary

magnesium calcium alloys with a calcium concentration of 0.6 - 0.8 wt% showed the

slowest corrosion rate [21]. With regard to internal fracture fixation, there is necessity

to investigate the host reactions of magnesium alloy bone screws at their interface to

surrounding tissues. The interface of a screw can be divided into three parts: bone,

bone marrow and soft tissue surrounding the screw head, e. g. overlying skeletal mus-

cle. The examination of the bone-implant interface of threaded magnesium calcium

alloy pins revealed enhanced osteogenesis and the formation of a fibrous capsule after

implantation into rabbit femora [22,23]. Adverse host reactions were not observed

[22,23]. The magnesium calcium alloy MgCa0.8 showed good biocompatibility in the
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bone [23,24]. To the best of the authors’ knowledge, detailed studies on the soft tissue

biocompatibility of MgCa0.8 are not listed in the current literature.

Therefore, the aim of the present study was to investigate the soft tissue biocompat-

ibility of the biodegradable magnesium calcium alloy MgCa0.8. To quantify the soft tis-

sue biocompatibility of MgCa0.8, host reactions to MgCa0.8 and to commonly used

surgical steel, as a control, were investigated in vivo at the interface to skeletal muscle.

Methods
Implants

A biodegradable magnesium calcium alloy with a calcium content of 0.8 wt%

(MgCa0.8) and commonly used stainless steel 316L (S316L), as a control, were investi-

gated in the present study. Both implant materials were used for the fabrication of cor-

tical bone screws (Figure 1). The MgCa0.8 alloy was produced from pure magnesium

(99.8 wt% Mg; Dead Sea Magnesium Ltd, Beer-Sheva, Israel) and the commercially

available MgCa30 alloy (30 wt% Ca; Timminco Limited, Toronto, Canada) as pre-

viously described [25]. The screws were machined in several steps from extruded bar

stocks by turning on a lathe. The feedstock had a diameter of 20 mm for MgCa0.8 and

12 mm for S316L. Separated cylinders were centered and clamped in a CNC-turning

center to turn the outer contours of the screw blanks consisting of screw shaft (major

diameter: 4.0 mm, length: 6.0 mm) and screw head (head diameter: 8.0 mm). Subse-

quently, the thread profile (length: 5.0 mm, core diameter: 3.0 mm, pitch (P): 1 mm,

thread shape according to ISO 5835) was tapped on the blank in multiple consecutive

steps. To keep the mechanical loads applied on the blank minimal during threading, a

maximum cutting depth (ap, max) of ap, max = 0.1 mm for magnesium workpieces and

ap, max = 0.05 mm for steel bolts was used. Finally the bolts were disconnected and the

head geometry was finished by grinding slots with a maximum depth of 1 mm

manually.

To remove fabrication process residua the implants were cleaned with acetone and

demineralised water. MgCa0.8 was sterilised by exposure to gamma radiation (25 kGy,

6 - 8 h; BBF-Sterilisationsservice GmbH, Kernen, Germany); S316L was sterilised routi-

nely in an autoclave (121°C, 2.3 bar, 60 - 70 min).

Animal model and study design

The animal experiment was authorized according to the German Animal Welfare Act

and registered as number 07/1305. Forty adult, female New Zealand White Rabbits

with a mean body weight of 3.81 ± 0.34 kg were randomly assigned to two groups. In

Figure 1 MgCa0.8 bone screws, which were implanted into rabbit tibiae. The slotted screw head had
diameter of 8.0 mm.
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the first group, MgCa0.8 screws (n = 48) were implanted into both tibiae of 24 rabbits.

In a second group with 16 rabbits, S316L screws (n = 32) were implanted into both

tibiae. Surgery was performed under general anaesthesia induced by intramuscular

injection of ketamine-hydrochloride (10 mg/kg; Ketamin 10%, CP-Pharma Partner

HGmbH, Burgdorf, Germany) and medetomidin (0.125 mg/kg; Domitor®, Pfizer

Pharma GmbH, Berlin, Germany). After endotracheal intubation anaesthesia was main-

tained by isoflurane delivered in oxygen (2.5 - 3.5 vol% isoflurane; Isoba®, Essex

Pharma GmbH, Munich, Germany; oxygen flow: 0.5 - 1.0 l/min). Both hind limbs were

clipped and aseptically prepared for surgery. The skin was incised latero-distal of the

tibial tuberosity and the cranial tibial muscle was carefully retracted from the tibia.

After predrilling with a 3.5 mm burr and tapping the screws were inserted unicortically

into the lateral aspect of the tibia slightly proximal of the fibula insertion. In doing so,

the screw head was placed underneath the cranial tibial muscle. Finally, the tibial fas-

cia, the subcutis and cutis were closed separately using absorbable suture material

(Polysorb®, Covidien AG, Dublin, Ireland).

Radiographs were taken immediately after surgery to document correct implant pla-

cement. In order to monitor changes at the implantation site, such as gas formation or

changes of bone or screw morphology, additional weekly radiographs were taken as a

follow up. Physical examinations of both hind limbs were performed every day. Anti-

biotic and analgesic medication was continued for ten days (enrofloxacin, 10 mg/kg,

Baytril® 2.5% s. c. once daily, Bayer Animal Health GmbH, Leverkusen, Germany;

meloxicam, 0.15 mg/kg s.c. once daily, Metacam®, Boehringer Ingelheim Pharma

GmbH & Co. KG, Ingelheim am Rhein, Germany). Six animals of MgCa0.8 and four

animals of S316L were followed up for two, four, six and eight weeks respectively.

Histology and immunohistochemistry

At the end of the investigation period, all animals were anesthetised with ketamine-

hydrochloride (20 mg/kg; Ketamin 10%, Pharma Partner GmbH, Hamburg, Germany)

and xylazine (5 mg/kg; Xylazin 2%, Serumwerk Bernburg AG, Bernburg, Germany) and

euthanized by intracardial injection of pentobarbital (230 mg/kg; Narcodorm®, CP-

Pharma HGmbH, Burgdorf, Germany). The tibialis cranialis muscle was explanted

directly after sacrifice. One part of the cranial tibial muscle, which was directly adja-

cent to the screw head (Figure 2), was fixated in 4% paraformaldehyd for 24 - 48 h to

produce cross sections of the periimplant soft tissue interface. After paraffin

Figure 2 Explanted cranial tibial muscle of a rabbit after implantation of MgCa0.8 for 6 weeks. The
former position of the screw head is marked by the black circle. To obtain cross sections of the central
implantation site for histological and immunohistochemical studies, the muscle was cut into halves first,
then one piece of the distal part was embedded in paraffin. The vertical black lines indicate which part of
the muscle was used.
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embedding 2 - 3 μm thick sections were processed using a RM 2255 microtome (Leica

Microsystems GmbH, Wetzlar, Germany) and mounted on SuperFrost® Plus slides

(Menzel-Gläser, Menzel GmbH & Co KG, Braunschweig, Germany). Three cross sec-

tions of each sample were stained with haematoxylin and eosin (H. E.) for histological

studies.

An additional group of sections was prepared for immunohistochemical staining.

One section of each sample was stained for B-lymphocytes, another for T-lymphocytes.

Mouse anti-CD79a (HM 47/A9, Acris Antibodies GmbH, Herford, Germany) and rat

anti-CD3 (CD3-12, AbD Serotec, Düsseldorf, Germany) were selected as monoclonal

primary antibodies [26]. After deparaffinisation in a descending series of ethanol, endo-

genous peroxidase was blocked with H2O2 (0.5% in ethanol) for 30 minutes at room

temperature (RT). The sections were then pretreated in boiling sodium citrate buffer

(pH 6.0) in the microwave (800 W, 20 min) to demask antigen epitopes. Non-specific

binding was reduced by incubation with normal goat serum (1:5) diluted in phosphate-

buffered saline (PBS, pH 7.1) for 20 min at RT. The primary antibodies were diluted in

PBS containing bovine serum albumin (BSA, 1%). A dilution of 1:800 was used for

CD79a, 1:4000 for CD3. Incubation was done overnight in humidified chambers at 4°

C. Subsequently, biotinylated secondary antibodies were applied (1:200, 30 min, RT):

goat anti-mouse antibodies (Biotinylated Anti-Mouse IgG (H+L), Vector Labs, Burlin-

game, CA) for CD79a and goat anti-rat antibodies (Biotinylated Anti-Rat IgG (H+L),

Vector Labs, Burlingame, CA) for CD3. Following, the avidin-biotin-peroxidase com-

plex system (Vectastain® Elite ABC Kit, Vector Labs, Burlingame, CA) was added. After

an incubation of 30 min at RT peroxidase activity was visualised using 3,3-diaminoben-

zidine-tetrahydrochloride (DAB, 0.05%) and H2O2 (0.03%) in PBS. Counterstaining was

performed with haemalum (20 sec). Finally, the sections were rehydrated in an ascend-

ing series of ethanol and cover-slipped with Roti®-Histokit II (Carl Roth GmbH & Co,

Karlsruhe, Germany). Positive control sections (rabbit lymph nodes) and negative con-

trol sections, in which the antibody was replaced by PBS, were included in all staining

runs.

All sections were examined repeatedly with an optical light microscope (Axio Imager

Z1, Carl Zeiss MicroImaging GmbH, Germany) to obtain an impression of the most

prominent changes. The following parameters were selected for evaluation: fibrous

encapsulation, i. e. the grade and thickness of periimplant fibrosis, and the amount of

necrosis and tissue cavities occurring within the fibrous tissue. Furthermore, the occur-

rence of immuno-inflammatory cells was evaluated. Macrophages, giant cells and het-

erophil granulocytes as well as B- and T-lymphocytes were counted. The final

evaluation was carried out three times by one observer applying a semi quantitative

score (Table 1). The mean score value was calculated for each sample.

Statistical analysis

Statistical analysis was performed with SPSS 17.0 software package (SPSS Inc., Chicago,

USA). Non parametrical tests (Mann-Whitney-Tests) were calculated to determine dif-

ferences between the two implant materials for each evaluated parameter at each time

point. The level of significance was defined as p < 0.05.
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Results
Clinical and radiological outcome

Clinically, both implant materials were well tolerated. All animals showed mild wound

swelling and reddening resulting from postoperative haematoma, which completely

resolved not later than 14 days after surgery. Neither infections nor suture intolerance

occurred during the postoperative follow up. Mild unilateral hind limb lameness was

found in three cases and cured after treatment with meloxicam (0.15 mg/kg; Meta-

cam®, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany)

administered for four to five days. New bone development could be radiographically

detected near the screw head in all animals of both material groups (Figure 3), which

increased in size as well as in radiographic density throughout the follow up. Clinically

and radiographically, periimplant emphysema was detected in MgCa0.8 only (Figure 3).

One week postoperatively the radiographic examination revealed a radiolucent gas

margin surrounding the screw head of all MgCa0.8 implants except for three. In these

three cases periimplant gas was detected for the first time after two, four and five

weeks respectively. Throughout the follow up, gas shadows increased in size as periim-

plant gas accumulated to form a bubble around the screw head. In two cases periim-

plant gas bubbles dissolved without a special treatment five and six weeks

postoperatively. In all other cases periimplant gas bubbles were noted throughout the

remaining follow up.

Table 1 Scoring system for the histological and immunohistochemical evaluation

Evaluated parameter Grade Score

(A) Fibrosis absent 0

minor 1

mild 2

moderate 3

severe 4

(B) Tissue cavities absent 0

minor 1

mild 2

moderate 3

severe 4

(C) Necrosis absent 0

minor 1

mild 2

moderate 3

severe 4

(D) Cellular infiltrations: Cells of each type per field of view: Score

• Macrophages 0 0

• Giant cells 1 to 5 1

• Heterophil granulocytes 6 to 10 2

• B-lymphocytes 11 to 15 3

• T-lymphocytes 16 to 20 4

>20 5

To determine (A) the grade of fibrosis, i. e. thickness and dimension of the periimplant fibrous capsule, and (B) the
amount of tissue cavities within the fibrous tissue, the sections were analysed at a magnification of 50× (eyepiece 5×,
lens 10×). A magnification of 400× (eyepiece 40×, lens 10×) was used to evaluate (C) the amount of necrosis and (D) the
amount of different cellular infiltrations. Therefore, ten randomly chosen microscopic fields of view, that were located
within the periimplant fibrous tissue, were analysed and the mean score value was calculated for each section.
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The dissection of the cranial tibial muscle showed that MgCa0.8 and S316L provoked

a similar tissue response. In both implant materials, a layer of soft tissue had formed

around the screw head, which was adherent to the overlying muscle. Strong adhesion

of the periimplant soft tissue or the cranial tibial muscle tissue to the surface of the

screw head was not observed.

Histological evaluation

A layer of fibrous tissue was noted in histological specimens of MgCa0.8 (Figure 4A)

and S316L (Figure 4B) that had formed between the screw head and the overlying

muscle. It was demarcated by a single layer of synoviocyte-like cells, predominantly

cubic or columnar cells with acidophilic cytoplasm, at its implant interface. The sur-

face of the cells consisted of acellular, fibrinoid-like eosinophilic material consistent

with apocrinic secretion. The thickness of the fibrous layer changed throughout the

follow up. Two weeks after surgery a moderately developed fibrous tissue layer was

detected in MgCa0.8 and S316L (median score: 3.0; p = 0.79) (Figure 5A). The

Figure 3 Radiographs of two rabbit tibiae four weeks post operation. (A) Medio-lateral projection of a
rabbit tibia with an implanted MgCa0.8 screw. (B) Magnification corresponding to the white rectangle in
(A). (C) Cranio-caudal projection of the same tibia. New bone (white arrows) and accumulation of gas
(white triangles) are clearly observable at the implantation site of MgCa0.8. (D) Medio-lateral projection of a
rabbit tibia with an implanted S316L screw. (E) Magnification corresponding to the white rectangle in (D).
(E) Cranio-caudal projection of the same tibia. At the implantation site of S316L only new bone (white
arrows) is detectable.
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thickness gradually decreased in S316L (median score: 1.0 after eight weeks). On the

contrary, a gradual decrease was only noted within the first six weeks in MgCa0.8

(median score: 3.0 after four weeks, median score: 2.0 after six weeks). After eight

weeks the amount of fibrous tissue was increasing again (median score: 3.0). A signifi-

cant difference between MgCa0.8 and S316L could only be noted after eight weeks (p

< 0.001).

Cavities were solely detected within the fibrous tissue of MgCa0.8 implants and were

lined with the same kind of synoviocyte-like cell layer detected at the fibrous tissue

implant interface (Figure 6). Compared to the entire fibrous layer the tissue around the

cavities did not show any changes of its morphology. Throughout the follow up the

size and quantity of the tissue cavities slightly varied decreasing from week two (med-

ian score: 2.0) to week four (median score: 1.0) and re-increasing at the end of the

implantation period (median score: 2.0 after six and eight weeks) (Figure 5B).

Furthermore, small spots of necrosis (Figure 7) and infiltrations of immuno-inflam-

matory cells (Figure 8, Figure 9) were dispersed within the periimplant fibrous tissue

of both implant materials. Two weeks after surgery moderate amounts of necrotic tis-

sue were detected in MgCa0.8 and S316L (median score: 3.0; p = 0.91) (Figure 5C).

The amount of necrosis was decreasing throughout the follow up in S316L (median

score: 0 after four, six and eight weeks). In MgCa0.8, a decrease in necrotic tissue was

detected after four weeks (median score: 0.5), but at the end of the observation period

the amount of necrosis was increasing again (median score: 1 after six weeks; median

score: 2 after eight weeks). Eight weeks after surgery the degree of necrosis was signifi-

cantly higher in MgCa0.8 than in S316L (p = 0.001).

Furthermore, the quantity of macrophages, giant cells and heterophil granulocytes

that occurred within the periimplant fibrous tissue was evaluated (Figure 8, Fig 9).

Two weeks after surgery moderate numbers of macrophages (median score: 3.0,

MgCa0.8 and S316L) (Figure 5D) and giant cells (MgCa0.8: median score: 3.0; S316L:

median score: 2.5) (Figure 5E) were found in all samples. Heterophils were also

detected in both groups, but in lower numbers than the other cell types (median score:

1.5; MgCa0.8 and S316L) (Figure 5F). The quantity of cellular infiltrations did not sig-

nificantly differ between both implant materials two weeks after surgery (macrophages:

p = 0.38; giant cells: p = 0.24; heterophils: p = 1.00). Throughout the observation

Figure 4 Image sections of cranial tibial muscle cross sections two weeks post operatively (H. E.,
200×). (A) MgCa0.8 implant site and (B) S316L implant site, respectively. Note the fibrous tissue (ft) that
formed between the cranial tibial muscle (m) and the implant site (i) and is surrounded by a layer of
synoviocyte-like cells (sc) at its interface to the implant in both implant materials.

Erdmann et al. BioMedical Engineering OnLine 2010, 9:63
http://www.biomedical-engineering-online.com/content/9/1/63

Page 8 of 17



period the number of evaluated cells gradually decreased in S316L (macrophages: med-

ian score: 1.0; giant cells and heterophils: median score: 0), whereas in MgCa0.8 a

decrease was only noted in the first weeks of implantation. At the end of the observa-

tion period the amount of macrophages (median score: 3.0 after eight weeks), giant

cells (median score: 2.0 after eight weeks) and heterophils (median score: 2.5 after

eight weeks) increased again. A significant difference was determined between the two

material groups for week eight after surgery only (macrophages: p = 0.005; giant cells:

p = 0.003; heterophils: p = 0.001).

Immunohistochemical evaluation

To detect lymphocytes that migrated into the periimplant fibrous tissue, immunohisto-

chemical staining was performed. Immunostaining for CD79a revealed that B-lympho-

cytes only occurred in low numbers in MgCa0.8 and S316L (Figure 10A, Figure 11A).

In MgCa0.8 the amount of B-lymphocytes decreased from week two (median score

1.0) to week four (median score 0.5) and week six (median score 0). Eight weeks

Figure 5 Boxplots of the histological evaluation of cranial tibial muscle cross sections after
implantation of MgCa0.8 (light grey boxplots) and S316L (dark grey boxplots) for two, four, six
and eight weeks (two weeks is represented as M2 for MgCa0.8 and as S2 for S316L, four weeks as
M4 for MgCa0.8 and S4 for S316L, etc.). The boxplots are representing the amount of (A) periimplant
fibrosis, (B) tissue cavities, (C) necrosis, (D) macrophages, (E) giant cells and (F) heterophil granulocytes. Non
parametrical tests (Mann-Whitney-Tests) were calculated to determine differences between the implant
materials. Stars represent significant difference, which was defined as p < 0.05.
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postoperatively a re-increase of B-lymphocytes was noted (median score 1). In S316L a

median score of 0 was noted for B-lymphocytes two, four, six and eight weeks post-

operatively, as B-lymphocytes were only detected in five samples (16%) throughout the

follow up. The amount of B-lymphocytes was significantly lower in S316L than in

MgCa0.8 two (p = 0.02) and eight weeks (p = 0.001) after surgery. T-lymphocytes also

only occurred in low numbers in MgCa0.8 and S316L (Figure 10B, Figure 11B). In

MgCa0.8 a median score of 0.5 was noted two weeks postoperatively decreasing to a

score of 0 after four and six weeks. Eight weeks after surgery the amount of T-lympho-

cytes re-increased in MgCa0.8 (median score 1.0). S136L showed a median score of 1.0

after two and four weeks decreasing to a median score of 0 after six and eight weeks.

No significant differences between MgCa0.8 and S316L were detected throughout the

whole observation period.

Figure 6 Image section of an MgCa0.8 implant site two weeks postoperatively (H. E., 200×). Within
the periimplant fibrous tissue (ft) a tissue cavity (tc) is clearly observable. The tissue cavity is surrounded by
a synoviocyte-like cell layer (sc).

Figure 7 Image section of an S316L implant site two weeks postoperatively showing moderate
necrosis and mild infiltration with macrophages within a moderately developed fibrous layer (H.
E., 200×). The area of necrosis at the edge of the fibrous tissue is clearly observable. Macrophages are
exemplarily represented by triangles.
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The cranial tibial muscle showed physiological morphology in both groups at all time

points. Tissue cavities, signs of necrosis and enhanced cellular infiltrates that were seen

in MgCa0.8 and S316L implants were restricted to the periimplant fibrous tissue and

its transition to the muscle, but none of these alterations was detected within the mus-

cle tissue itself.

Discussion
The aim of the present study was to assess the soft tissue biocompatibility of MgCa0.8

by quantifying the host reaction at the interface to periimplant skeletal muscle. For

this purpose, the severity of the early inflammatory reactions to MgCa0.8 and com-

monly used S316L, as a control, was compared. Screw shaped implants were inserted

into the tibial bone of rabbits. Thus it was possible to keep the screw head in direct

contact with the overlying cranial tibial muscle. To obtain enough area of contact

between muscle and implant, screws with an exceptionally large screw head were used.

Figure 8 Image section of the periimplant fibrous tissue of an MgCa0.8 screw four weeks
postoperatively (H. E., 400×). Within the fibrous tissue mild infiltrations of giant cells (arrows) and
macrophages (triangles) are detectable.

Figure 9 Image section of the periimplant fibrous tissue of an MgCa0.8 screw eight weeks
postoperatively showing moderate infiltrations of heterophil granulocytes that are clearly
observable due to their lobulated nucleus and red cytoplasmic granules (H. E., 400×).

Erdmann et al. BioMedical Engineering OnLine 2010, 9:63
http://www.biomedical-engineering-online.com/content/9/1/63

Page 11 of 17



The inflammatory host response of the cranial tibial muscle was judged clinically,

radiographically and histologically taking the formation of a fibrous capsule, the

amount of necrosis and the infiltration with immuno-inflammatory cells such as

macrophages, giant cells, heterophil granulocytes and lymphocytes into account. To

specify the inflammatory reactions, the occurrence of B- and T-lymphocytes was evalu-

ated by immunohistochemical staining.

Previous in vivo studies have shown good biocompatibility of MgCa0.8 in bone

[23,24]. Detailed studies on the soft tissue reaction to MgCa0.8 are not described in

the current literature. In the present study MgCa0.8 was clinically tolerated compar-

ably well to the control material S316L. Radiographically a radiolucent gas margin was

detected around the MgCa0.8 screw head indicating the beginning degradation of

MgCa0.8. Hydrogen gas production is well known during the degradation of magne-

sium [27,28]. The gas either diffuses into periimplant tissues and is eliminated by the

blood flow or accumulates in tissue cavities depending on the local gas saturation [29].

It is not yet examined to which extent the production of hydrogen might influence

surrounding tissues. Previous in vivo studies on other magnesium calcium alloys

reported the formation of gas bubbles in the early implantation period, which dissolved

Figure 10 Image sections of immunohistochemically stained cranial tibial muscle cross sections. (A)
Periimplant fibrous tissue of an MgCa0.8 screw six weeks post operatively (CD79a, 400×). Arrows represent
CD79a positive B-lymphocytes. (B) Periimplant fibrous tissue of an S316L screw two weeks postoperatively
(CD3, 400×). Triangles indicate CD3 positive T-lymphocytes.

Figure 11 Boxplots of the immunohistochemical evaluation of cranial tibial muscle cross sections
after implantation of MgCa0.8 (light grey boxplots) and S316L (dark grey boxplots) for two, four,
six and eight weeks (two weeks is represented as M2 for MgCa0.8 and as S2 for S316L, four weeks
as M4 for MgCa0.8 and S4 for S316L, etc.). The boxplots represent the amount of (A) B-lymphocytes
and (B) T-lymphocytes. Non parametrical tests (Mann-Whitney-Tests) were calculated to determine
differences between the implant materials. Stars represent significant difference, which was defined as p <
0.05.
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after two months without any treatment [22]. In the present study, gas cavities could

be detected at the implantation site of MgCa0.8 clinically and radiographically. In con-

trary to former studies [22] only short implantation times up to eight weeks were

investigated and the gas bubbles did not dissolve within the observation period except

for two cases. The histological examination of the periimplant soft tissue revealed the

presence of tissue cavities as well, which were detected within the fibrous tissue layer

of MgCa0.8 and did not form in S316L. Thus they might be associated with the accu-

mulation of hydrogen. In consistence with the clinical results of the present study, the

tissue cavities were histologically detected in all time groups of MgCa0.8. Nevertheless,

the fibrous tissue around the cavities did not show enhanced cellular infiltrates com-

pared to the entire fibrous layer. Also, no clinically adverse effects were detected due

to the gas production. For that we could strengthen the priory reported thesis [22,30]

that the formation of hydrogen cavities does not seem to affect the host adversely.

Edwards [31] described that repeated subcutaneous injections of air into the subcuta-

neous tissue of rats and mice resulted in the development of tissue cavities that were

lined by a synovial membrane. The tissue cavities that developed during degradation of

MgCa0.8 in the present study were lined by a layer of cells resembling synoviocytes.

The interface of the periimplant fibrous tissue to MgCa0.8 and S316L was demarcated

by the same kind of synoviocyte-like cell layer. Previous studies described synovial

metaplasia, which was defined as a distinct membraneous proliferation of synoviocyte-

like cells, at the tissue implant interface as a common response to biomedical implants

[32,33]. The mechanisms of synovial metaplasia development remain uncertain, but

mechanical factors have been suggested to play an important role [31,33]. It is likely

that the development of synovial metaplasia in the present study was the result of

repeated mechanical stress of the fibrous tissue by the implant and/or the gaseous

accumulations.

The formation of fibrous tissue is a key part of the host response and is well known

for conventional osteosynthesis implants [34-36]. Even well integrated implants might

be surrounded by an intervening fibrous tissue layer [37]. In the present study a mod-

erately developed fibrous layer formed at the soft tissue interface of MgCa0.8 and

S316L. The cranial tibial muscle, which was in direct contact to the screw head,

showed a physiological morphology. Within the fibrous layer adjacent to the implants

low to moderate amounts of immuno-inflammatory cells and small necrotic spots were

diffusely dispersed. To judge the severity of host reactions it is as important to analyse

the dimension of the fibrotic layer as well as to evaluate the amount of occurring cells

[38]: a highly developed layer with many inflammatory cells is a sign for encapsulation,

whereas a moderate extent of fibrosis with few inflammatory cells, as detected in the

present study, more likely displays a beginning integration of the implant [39]. Every

implantation procedure involves injury of the surrounding tissue and activates inflam-

matory and wound healing responses [15]. In the normal wound healing process gran-

ulocytes occur at the implantation site initially, but at later stages macrophages, which

participate in the decontamination of the wound through phagocytosis, are the predo-

minant cells in the reactive tissue adjacent to an implant [40]. In an attempt to phago-

cytise the implant, which acts as a foreign body, giant cells are formed by the fusion of

macrophages [40]. The additional appearance of lymphocytes is a sign for chronic
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inflammation with humoral and cell mediated immune reactions [40]. In this context,

the amount of cells and the time of their occurrence are crucial.

In the present study two major differences were noted for MgCa0.8 and S316L: the

course of host reactions and the involvement of lymphocytes. While host reactions

started at the same level in both implant materials and proceeded equally during the

first six weeks, a contrary course was noted after eight weeks. Two weeks postoperati-

veley macrophages and giant cells were the predominant cells within the periimplant

fibrous tissue. Heterophil granulocytes and lymphocytes only occurred in minor quan-

tities. It is likely that this early inflammatory reaction was induced by the surgical pro-

cedure, which always leads to tissue damage and mild inflammation [15]. Resolution of

the early inflammatory response and wound healing was concluded, since all examined

parameters decreased during the first six weeks. Only the amount of heterophil granu-

locytes slightly re-increased after six weeks in MgCa0.8. After eight weeks a re-increase

of all examined parameters was noted in MgCa0.8, whereas the examined parameters

further decreased in S316L. Thus, a significant difference was detected between

MgCa0.8 and S316L for all examined parameters eight weeks after surgery except for

the amount of T-lymphocytes. It is assumed that the reoccurrence of the inflammatory

reactions in MgCa0.8 correlates with the degradation of the implant. Previous in vivo

studies have shown that the degradation rate of a magnesium implant influences the

degree of the inflammatory host response in bone tissue [23]. Gogolewski et al. [41]

reported that the tissue reaction to degradable polymer implants correlates with the

degradation rate as well. Therefore, it is likely that the intensified degradation of

MgCa0.8 eight weeks postoperatively induced a restart of the inflammatory host reac-

tions. Nevertheless, the examined parameters did not exceed the moderate level at any

time. Thus no severe inflammatory reactions were observed in MgCa0.8. Contrary to

that, intense granulomatous inflammatory soft tissue lesions were described with the

use of absorbable polymer internal fixation devices [42-44].

In the present study it was further shown that a distinct difference existed between

MgCa0.8 and S316L concerning the involvement of lymphocytes, which represent the

mediators of humoral and cellular immunity. Humoral immunity reactions were sug-

gested in MgCa0.8, as higher quantities of B-lymphocytes than T-lymphocytes

occurred. B-lymphocytes are the origin of humoral immunity. Once they are activated

B-lymphocytes differentiate into antibody producing plasma cells [45]. The predomi-

nant humoral immune response to MgCa0.8 indicates the presence of soluble antigens

such as wear particles of the degrading implant. In contrast, T-lymphocytes occurred

in higher quantities than B-lymphocytes at the implantation site of S316L. T-lympho-

cytes are the mediators of cellular immunity and hypersensitivity reactions. Cell

mediated immunity is well known for surgical steel implants, as they contain sensiti-

zers such as nickel and chromium, which can cause hypersensitivity reactions [46].

The involvement of cellular immunity with the use of another magnesium alloy

implant has formerly been investigated. In consistence with the results of the present

investigations, only minor quantities of T-lymphocytes were detected at the magnesium

implant site [18]. Thus cell mediated immunity seems to be of less importance in

MgCa0.8 alloy implants.
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Conclusions
Both implant materials were tolerated well since only moderate inflammation, probably

induced by the surgical procedure, was detected at the implantation site of MgCa0.8

and S316L. The early inflammatory host response resolved to a minimum during the

first six weeks. Main differences between both implant materials were the course of

inflammation after eight weeks and the involvement of the immune system. Predomi-

nating humoral immunity was observed in MgCa0.8, whereas cell mediated immunity

was detected in S316L. However, only low amounts of immuno-inflammatory cells

were detected in both groups. Hydrogen cavities that were produced by the degrading

implant did not seem to affect the host adversely as they did not influence the extent

of the host response. The intensity of the inflammatory host response to both materials

did not differ significantly during the first weeks of implantation indicating comparable

biocompatibility for MgCa0.8 and S316L. Eight weeks postoperatively inflammation re-

increased in MgCa0.8, which might be caused by intensified degradation of MgCa0.8.

Nevertheless, the examined parameters did not exceed the moderate level nor indicate

rejection of the implant. Thus, the application of MgCa0.8 as biodegradable implant

material seems conceivable. It is necessary to investigate the host reaction over a

longer time period to observe the further development of inflammation. In addition,

coated MgCa0.8 alloys that could reduce the degradation rate and the gas production

should be investigated in further studies.
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