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Zusammenfassung 
Dadan Hindayana, 2001: “Ressourcennutzung von Episyrphus balteatus 
DeGeer (Diptera: Syrphidae) und Intraguild predation“ 
 
Zur “Ressourcennutzung von Episyrphus balteatus DeGeer (Diptera: 
Syrphidae) und Intraguild predation" wurden Untersuchungen im Labor 
durchgeführt. Ziel war es zu charakterisieren, (i) welcher Blattlaus-Wirtspflanze-
Komplex eine optimale Entwicklung von E. balteatus gewährleistet, (ii) welche 
Faktoren zu Kannibalismus bei E. balteatus-Individuen führen, (iii) unter 
welchen Bedingungen es zu Intraguild predation zwischen E. balteatus und 
anderen aphidophagen Prädatoren kommt und (iv) inwiefern E. balteatus in 
Kombination mit anderen Blattlausprädatoren die Populationsentwicklung der 
Blattläuse und ihre Dispersionsdynamik beeinflusst. 

Mit der Kartoffelblattlaus Aulacorthum solani Kaltenbach als Beute erhöhte sich 
die Überlebensrate von E. balteatus signifikant im Vergleich zu anderen 
Beutetieren. Darüber hinaus wurden eine erhöhte Fekundität und eine höhere 
Überlebensrate festgestellt, wenn die Wirtspflanzen (Gurke) der Blattlaus 
A. solani zusätzlich gedüngt wurden. Dabei zeigte sich, dass die erste 
trophische Ebene in der Nahrungskette einen indirekten Einfluss auf die 
Eignung von Beutetieren für E. balteatus hat. Im Fall der Blattläuse profitierten 
die Prädatoren vom optimalen Ernährungszustand der Herbivoren. 

E. balteatus zeigte kein ausgeprägtes kannibalistisches Verhalten. Nur wenn 
keine Alternativnahrung vorhanden war bzw. wenn die Altersstruktur der 
Syrphidenlarven sehr heterogen war, fand Kannibalismus statt. Eier und das 
erste Larvenstadium wurden oft von älteren Larven gefressen. 

Bei den Wechselwirkungen zwischen E. balteatus-Larven und anderen 
Blattlausprädatoren spielte vor allem die Größe der jeweiligen Gegner eine 
Rolle. In der Regel waren größere Entwicklungsstadien kleineren überlegen. 
Eier und Erstlarvenstadien (L1) von E. balteatus wurden häufig von anderen 
Prädatoren gefressen. Puppen von E. balteatus wurden nur von C. carnea-
Larven angegriffen. Die Interaktionen zwischen E. balteatus und Aphidoletes 
aphidimyza Rondani waren immer asymmetrisch. E. balteatus war 
A. aphidimyza in jedem Fall überlegen. Die Interaktionen waren in kleinen 
Arenen und bei Mangel an Alternativnahrung besonders ausgeprägt. 

Die Blattlaus Acyrthosiphon pisum Harris reagierte in Gegenwart von 
E. balteatus und in Gegenwart einer Kombination aus zwei Räubern mit 
verstärkten Fluchtreaktionen. Als Folge veränderte sich die Verteilung der 
Blattläuse von stark geklumpt zu zufällig. Da A. pisum wie viele andere 
Blattläuse ein Vektor für Viruskrankheiten ist, könnte es bei der 
Schädlingsbekämpfung mithilfe von Prädatoren bei erhöhter Dispersion der 
Blattläuse zu verstärkten Virusinfektionen an den Pflanzen kommen. 

Die Ergebnisse werden im Zusammenhang mit der Optimierung der 
biologischen Schädlingsbekämpfung diskutiert. 

Keywords: Episyrphus balteatus, direct and indirect effects, prey suitability, 
efficiency of conversion ingested, intraguild predation, dispersal of prey, 
aggregation index, biological control, cannibalism. 



  

Abstract 
Dadan Hindayana, 2001: Resource exploitation by Episyrphus balteatus 
DeGeer (Diptera: Syrphidae) and intraguild predation 
 
All experiments on resource exploitation by Episyrphus balteatus DeGeer 
(Diptera: Syrphidae) and intraguild predation between antagonists were 
conducted in the laboratory. The aim of this study was to investigate (i) the main 
factors that influence the suitability of prey for E. balteatus, (ii) the cannibalistic 
behavior of E. balteatus, (iii) the behavior of E. balteatus and its interaction with 
three other aphidophagous predators and (iv) the combined effect of E. 
balteatus and other aphidophagous predators on the population development 
and dispersal of aphids. 
 
Episyrphus balteatus survival was enhanced and females laid numerous eggs 
when larvae were reared with Aulacorthum solani Kaltenbach as prey, 
especially when the host plants were fertilized cucumber plants. It seems that 
on the first trophic level the host plant has an indirect impact on the fitness of E. 
balteatus. An optimal nutritional condition of the herbivore had a positive effect 
on the predators. 
 
Cannibalism in E. balteatus occurs only in the absence of prey and when the 
age structure among the syrphid larvae population was heterogeneous. Eggs 
and first instar larvae were extremely vulnerable in regard to larger conspecific 
larvae. 
 
The outcome of interactions between E. balteatus larvae and the other 
predators mainly depends on the body size of the competitors. Large individuals 
behaved as intraguild predator while small individuals became intraguild prey. 
Eggs and young instars of E. balteatus were extremely vulnerable to predation 
by all other predators, while pupae of E. balteatus were only preyed upon by the 
larvae of C. carnea. Interactions between Aphidoletes aphidimyza Rondani and 
E. balteatus were asymmetric and always favored the latter. Neither the 
presence of aphids as extraguild prey nor a bigger arena prevented eggs and 
young instar larvae of E. balteatus from being affected by intraguild predation. 
However, the frequency of predation on older developmental stages of E. 
balteatus was significantly reduced. 
 
Single E. balteatus larvae or combinations of E. balteatus with either 
Chrysoperla carnea Stephens or Coccinella septempunctata L. caused 
dispersion of the aphid Acyrthosiphon pisum Harris. Therefore A. pisum 
dispersed randomly within and among plants in the presence of any predator. 
Since A. pisum is a vector for the pea enation mosaic virus and easily drops 
from the host plant in the presence of predators, aphid control with natural 
enemies can have negative side effects on disease control. 
 
In this thesis, the results are discussed further in the context of biological control 
efforts. 
 
Key words: Episyrphus balteatus, direct and indirect effect, prey suitability, 
efficiency of conversion ingested, intraguild predation, dispersal of prey, 
aggregation index, biological control, cannibalism. 
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Introduction 1

1. Introduction 
 

The hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) belongs to the 

subfamily of Syrphinae (Stubbs and Falk, 1983). The larvae of this species are 

predators on more than 100 species of aphids worldwide (Sadeghi and Gilbert, 

2000b). E. balteatus is the most common hoverfly in central Europe 

(Tenhumberg and Poehling, 1991), in the UK (Stubbs and Falk, 1983; Gilbert, 

1993) and in South Asia (Kalshoven, 1981). Predominance of E. balteatus in 

the natural habitat (Tenhumberg and Poehling, 1995) is due to the female 

oviposition behavior. Eggs are always laid near aphid colonies (Chandler, 

1968a and 1968 b; Scholz and Poehling, 1999) and the emerging young larvae 

locate immediately the food sources (Scholz and Poehling, 1999). Therefore, E. 

balteatus has the potential to play an important role in the biological control of 

aphids in natural agroecosystems. Several examples show high efficacy of E. 

balteatus as predator, particularly in regard to cereal aphids (Dean, 1982; 

Ankersmith et. al., 1986; Chambers and Adams, 1986; Poehling, 1988; 

Entwistle and Dixon, 1989; Tenhumberg and Poehling, 1995), Myzus persicae 

Sulzer (Homoptera: Aphididae) in tobacco agroecosystems (Kalshoven, 1981) 

and Brevicoryne brassicae L. (Homoptera: Aphididae) on Brasicca plants 

(Pollard, 1971).  

 

Apart from being an important group of naturally occurring aphid predators in 

field crops, syrphids can be used like any other natural enemy for biological 

control (Kreß, 1996; Schneller, 1997b). Recently E. balteatus was considered 

for aphid biological control of the black bean aphid, Aphis fabae Scopoli 

(Homoptera: Aphididae), the cotton aphid, Aphis gossypii Glover (Homoptera: 

Aphididae) (Ministerium für Ländlichen Raum, Ernährung, Landwirtschaft und 

Forsten Baden-Württemberg, 1995), or aphids on rose plants in greenhouses 

(Kreß, 1996). A prerequisite for the acceptance of natural enemies for 

inundative release in greenhouses is a high and constant quality (efficacy) of 

the biological control agent at a reasonable price (Van den Bosch et al., 1982; 

Krieg and Franz, 1989; Van Driesche, 1996; Flint and Dreistadt, 1998; Ehler, 

1998). Therefore, mass rearing techniques must be developed which guarantee 

short developmental time, high survival rates and fecundity of E. balteatus. After 
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realizing that the mating behavior was a major obstacle in laboratory rearing of 

E. balteatus (Tanke, 1976), laboratory cultures were established in different 

working groups. However, no detailed studies were set up to optimize the 

rearing conditions by selecting suitable plant-aphid combinations although very 

often high mortality rates and low fecundity could be observed. This issue will 

be discussed in the first chapter. The experiments were divided into three parts. 

In the first set of experiments, five different aphid species representing three 

different herbivore feeding niches for E. balteatus, i. e. vegetables, cover crops, 

and cereal crops, were chosen. All aphid species were reared on their 

respective host plants without additional fertilizer. In a second set of 

experiments, the indirect effect of the host plant on syrphid fitness was 

estimated by comparison of the development of one aphid species, 

Aulacorthum solani Kaltenbach (Homoptera: Aphididae), on different host 

plants, i.e. potato and cucumber plants.  Since it is documented that the 

nutritional value of herbivore for natural enemies can be influenced by the 

nutrient status of the host plants (Hodek, 1967 and 1993; Rüzicka, 1978; 

Ruberson et al., 1989; Jørgensen and Lövi, 1999), a possible indirect effect of 

the host plants´ nutritional value on syrphid fitness was investigated in a third 

set of experiments. 

 

Apart from prey effects, intra- and interspecific competition may be an important 

regulation factor in predator performance under rearing or application 

conditions.  The most important intraspecific effect is cannibalism. Cannibalism 

occurs in various species of insects (Fox, 1975; New, 1991) and has twofold 

consequences (Fox, 1975). When food is plentiful, cannibalism is rare but if it 

occurs, it may result in death of individuals which would otherwise survive, and 

is then detrimental, particularly in mass rearing systems that can only be run 

economically with high output rates. However, under more natural conditions, 

especially when normal prey items are scarce, cannibalism can ensure the 

survival of a population which might otherwise become locally extinct, and in 

that case it has a positive adaptational value and is a stabilizing factor in the 

population dynamics (Taylor, 1984). Chapter 3 will deal with some aspects of 

cannibalism in E. balteatus. 



Introduction 3

The success of biological control efforts was initially determined by two major 

factors, i.e. host suitability and ecological requirements of the antagonist (Ehler, 

1998; Greathead and Greathead 1992). However, over the last two decades 

many experts assumed that interspecific interactions among natural enemies 

(named intraguild predation [IGP]) play a critical role for the success of 

biological control efforts (Rosenheim, 1998; Janssen et al., 1998; Polis et al., 

1989. Rosenheim et al., 1993 and 1995; Brodeur and Rosenheim, 2000). As a 

result the amount of studies of IGP increased constantly, and not only those of 

IGP between predatory insects (Sengonca and Frings, 1985; Polis et al., 1989; 

Rosenheim et al., 1993; Lucas et al., 1998; Phoofolo and Obrycki, 1998; Snyder 

and Wise, 1999), but also those of IGP between parasitoids and predators 

(Ferguson and Stiling, 1996; Rosenheim, 1998; Meyhöfer and Hindayana, 

2000; Brodeur and Rosenheim, 2000). On the other hand the behavior of E. 

balteatus in interspecific relationships with other predators and their combined 

effect on the population growth of aphids has been neglected so far. For this 

reason chapter 4 will discuss intraguild predation between E. balteatus and 

other aphidophagous predators in the laboratory. The outcome of IGP was 

studied both in the presence and in the absence of the extraguild prey 

Acyrtosiphon pisum Harris (Homoptera: Aphididae). 

 

Finally, intraguild predation among natural enemies can influence biological 

control efforts. Theoretically the combined release of two predators can result in 

three different effects on the pest population, i.e. synergistic, additive or non-

additive effects (Ferguson and Stiling, 1996). However, the presence of natural 

enemies does not only reduce the prey population (direct effect), but can also 

change the distribution of the prey in the natural habitat (Sih, 1987). As a result, 

the spread of plant viruses transmitted by the prey can be influenced by 

intraguild predation. So chapter 5 will deal with the effect of the combined 

release of E. balteatus with Coccinella septempunctata L. (Coleoptera: 

Coccinellidae) or with Chrysoperla carnea Stephens (Neuroptera: Crysophidae) 

on the population growth of the aphid, A. pisum, and the changes in prey 

distribution. As each chapter of this thesis can be used as a paper for 

publication, certain overlaps, especially in the introduction and discussion, were 

inevitable. 
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2. Host plants - aphids - predator:  tritrophic effects on the life 
history of the hoverfly Episyrphus balteatus DeGeer (Diptera: 
Syrphidae) 

 

 

2.1. Introduction 
 
Episyrphus balteatus DeGeer  (Diptera: Syrphidae) is a primary predator and 

occupies the third trophic level in the food chain hierarchy. On this level prey 

suitability depends on more complex factors than the host plant choice by 

herbivores (Hodek, 1993). Food suitability can be affected not only by the prey 

itself (direct effects), but also by the condition of the host plants (indirect 

effects). The direct effects can reduce the suitability of prey to predator due to a 

bitter taste produced by the prey itself as a defense strategy against predators 

(Berenbaum, 1995). The indirect effects obtained from the host plants and their 

influence on predators depend on substance ingested by the herbivore 

(secondary plant compounds). Some studies show that indirect effects play an 

important role for the prey suitability. Metasyrphus corrolae Fabricius (Diptera: 

Syrphidae) larvae cannot complete their development on Aphis sambuci 

Linnaeus (Homoptera: Aphididae) which contains the glucosid sambunigrin of 

its host plant Sambucus nigra (Rüzicka, 1978). Hodek (1967 and 1993) reports 

similar effects of A. sambuci on the development of coccinellidae. Both the 

longevity and effectiveness of the parasitoid Edovum puttleri Grissell 

(Hymenoptera: Eulophidae) are reduced when fed on eggs of Colorado potato 

beetle Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) which 

were reared on potato plants resistant against aphids (Ruberson et al., 1989). 

Consumption rates of the carabid Harpalus affinis (Schrank) (Coleoptera: 

Carabidae) decrease if the predator was reared on caterpillars Heliothis 

armigera (Hübner) (Lepidoptera: Noctuidae) that fed on proteinase inhibitor-

containing diets (Jørgensen and Lövi, 1999). Hilbeck et al. (1998) also show 

that the mortality rate of C. carnea larvae fed on European corn borer, Ostrinia 

nubilalis (Hübner) (Lepidoptera: Pyralidae), reared on transgenic Bt corn is 

much higher than that of lepidopteran larvae reared on normal cultivar. Such 

secondary plant substances like alcaloids or induced enzym inhibitors often 
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caused detrimental effects on predators or parasitoids of herbivores. On the 

other hand the plant´s nutritional status can improve food quality of prey items 

particularly with nitrogen fertilization. On bean plants enhanced fecundity and 

faster development of the parasitoid Chrysocharis oscinidis Ashmead 

(Hymenoptera: Eulophidae) attacking the leafminer Liriomyza trifolii Burgess 

(Diptera: Agromyzidae) can be induced by nitrogen supply (Kaneshiro and 

Johnson, 1996). Moreover, Loader and Damman (1991) report that Pieris rapae 

L. (Lepidoptera: Pieridae) larvae reared on nitrogen-rich plants are preferred by 

natural enemies due to both better nutritional quality of host as well as more 

vigorous and green host plants. 

 

Two non-exclusive mechanisms can influence indirectly the suitability of prey for 

predators (Hodek, 1993; Jørgensen and Lövi, 1999): (i) metabolism of 

herbivores changes to bad or unfavorable conditions when feeding on 

unsuitable host plants and (ii) herbivores sequester plant secondary compounds 

that are toxic or at least unsuitable for predators or parasitoids. In the first case, 

it is well known that food quality affects the performance, behavior and survival 

of insects (Mattson, Jr., 1980; Scriber and Slansky, Jr., 1981; Fajer et al., 1989). 

The nitrogen supply of food plants is a critical factor for the nutritional 

physiology of insects and mainly results in low or imbalanced contents of amino 

acids or proteins. Such poor diets often cause sub-lethal effects like reduced 

growth or reproduction or delayed development (Scriber and Slansky, Jr., 1981; 

Mattson and Scriber, 1987; Fajer et al., 1989; Loader and Damman, 1991). 

Fajer et al. (1989) show that herbivores reared on poor diets ingest more plant 

tissue to compensate for their nutritional needs. In spite of this full 

compensation cannot often be achieved due to the unfavorable energy loss 

during food consumption including searching activities and food assimilation 

(Begon et al., 1996). In the second case, sequestration of plant secondary 

compounds is directly related to the defense of herbivores against natural 

enemies (Romoser and Stoffolano, Jr., 1998). I.e. the aphid A. sambuci uses 

the glucosid sambunigrin produced by its host plant Sambucus niger to reduce 

its suitability as prey for syrphid and coccinellid larvae (Hodek, 1967 and 1993; 

Rüzicka, 1978). 
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A series of experiments to determine the major factors that influence prey 

suitability for E. balteatus was conducted. In the first experiment, five different 

aphid species were taken representing four different herbivore feeding niches, i. 

e. broad bean for vegetable and cover crops with A. pisum and A. fabae, wheat 

for cereal crops with Sitobion avenae Fabricius, potato for a field vegetable crop 

with Aulacorthum solani Kaltenbach as well as cucumber with A. gossypii and 

A. solani for vegetables under protected cultivation. All aphids are important 

pests in the agricultural and horticultural ecosystem. A. pisum is a common pest 

on Fabaceae such as clover, lucerne and peas (Djafaripour, 1976; Suter, 1977) 

in central Europe and on alfalfa in North America (Roitberg and Myers, 1979; 

Gutierrez et al., 1980; Losey and Denno, 1998b). A. fabae, A. solani and A. 

gossypii are the most frequent aphid species that infest plants in greenhouses 

in Germany (Schneller, 1997a), while S. avenae is the cereal aphid species with 

the largest damage potential particularly in winter wheat (Watt, 1979). The 

aphids were reared on host plants without additional fertilizer. The aim of this 

experiment was to determine whether particular aphid species and aphid-plant 

combinations affect the fitness of E. balteatus (i.e. efficiency of conversion of 

ingested food to body substance, the duration of development, survival of 

larvae, longevity and fecundity of adults). In the second experiment, the indirect 

effect of the host plant on syrphid fitness was estimated by comparing the prey 

suitability of A. solani reared on different host plants for the development of E. 

balteatus, while in the third experiment effects of the host plants´ nutritional 

state on E. balteatus was investigated. 
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2.2. Materials and Methods 
 

2.2.1. Rearing of insects and host plants 
 

Episyrphus balteatus specimens were collected from a field site near the 

Institute of Plant Diseases and Plant Protection in Hannover, Northern 

Germany. Hoverflies were reared in the laboratory following the protocol of 

Bargen (1998). Adult flies were fed with bee pollen (Melzer's Bienenfarm, Bonn, 

Germany) and crystalline sugar. This combination of carbohydrates and 

proteins was sufficient to induce egg production. Females readily laid their eggs 

on broad bean plants (Vicia faba L. var. Hang down) infested with the pea 

aphid, A. pisum. Immediately after hatching, larvae were transferred to rearing 

cages (18 x 13.5 x 6.5 cm) and pea aphids were provided as food on leaf 

cuttings of broad beans until pupation. Rearing conditions were 20 ± 1 oC, 50 ± 

10% relative humidity, 16 h of daylight and artificial lighting of 5000 lux (cd/m2). 

 

Pea aphid (A. pisum) and black bean aphid (A. fabae) were reared on the broad 

bean (V. faba) variety “Hang down, Grünkernige”, grain aphid (S. avenae) on 

the wheat (Triticum avenae) variety “Tinos”, glasshouse potato aphid (A. solani) 

on the potato (Solanum tuberosum) variety “Mirabel” and cotton aphid (A. 

gossypii) on the cucumber (Cucumis sativus L.) variety “chinesische 

Schlangengurken”. None of the host plants received additional fertilizer. 

 

2.2.2. Experimental set-up 
 
2.2.2.1. Effects of different prey species on the life history parameters of  

E. balteatus 
 

All experiments were conducted in a climate chamber at 20 ± 1 oC, 50 ± 10% 

relative humidity, 16 h of daylight and a light intensity of approximately 5000 lux. 

Petri dishes (5.5 cm diameter and 1.5 cm high) were used as experimental 

arenas in all experiments. A 1.5 cm wide hole was made in the center of each 

petri dish lid and covered with a gauze for ventilation purpose. Only 

synchronized aphids with a uniform age structure were used in these 
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experiments. Approximately 20 adult aphids were placed on a host plant. After 

24 h the adults were removed and the offspring had reached the desired age. 

The aphids were transferred directly into the experimental arena. Single E. 

balteatus larvae were placed into the experimental arena immediately after 

hatching. As prey a surplus of the different aphid species was provided. Every 

24 h the number of consumed aphids was recorded, the remaining aphids were 

removed, and new aphids were introduced into the petri dish. Until the second 

day of the development E. balteatus larvae were fed with up to 3-day-old aphids 

(L2) while later developmental stages were fed with 7-day-old aphids (L4). To 

quantify the effect of the different aphids on the fitness of E. balteatus, the 

following parameters were recorded during the experiment: 

 

(i) biomass and number of consumed aphids per day 

(ii) fresh weight of pupae 

(iii) survival of larvae, pupae and adults of E. balteatus 

(iv) pre-oviposition period and lifetime fecundity of females 

 

The biomass ingested was calculated as the difference between the introduced 

and the remaining biomass (left-overs) in the experimental arenas after 24 h. 

The introduced biomass was therefore estimated as a product of the number of 

introduced aphids and the average biomass of an introduced aphid. The 

remaining biomass was weighed directly and the consumption rate was 

calculated. The pupae biomass was estimated 12 - 18 h before hatching. At this 

time the pupa changed its color from light yellow to dark brown and changes in 

biomass ceased. The efficiency of conversion of ingested food to body 

substance (E.C.I) was calculated to compare the nutritional value of the 

different aphid species for E. balteatus according to the formula of Waldbauer 

(1968): 

 

         

weight gained 

E.C.I    =                                                  x  100 

weight food ingested 
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Weight gain was calculated as the difference between pupal weight and initial 

weight of the first larval stage. Since the L1 weight was on average only 0.003 ± 

0.00001 mg (SE), the initial weight was neglected. Weight of pupae in our 

experiments therefore meant the weight gained during the larval development. 

All biomasses were weighed with a Sartorius micro balance scale (Model MC 

5). The E.C.I.s of E. balteatus reared with the five different aphid species were 

analyzed by using ANOVA. In case of significant F-values, pairwise comparison 

was performed with a bonferroni posthoc test, while T-test was used for 

comparison of two different treatments (Sokal and Rohlf, 1995). To confirm that 

the pupal weight of E. balteatus represents a parameter for adult size, the 

correlation between adult thorax width and pupal biomass was calculated as 

well. The relationship between weight of pupae and thorax width of adults was 

analyzed by using Regression Model II test (Sokal and Rohlf, 1995). For 

investigations concerning the longevity and fecundity of adults a male and a 

female were transferred into a plexiglas tube arena (15 cm diameter and 40 cm 

height) after hatching. In each experimental arena, water, sugar and bee pollen 

were provided separately as food on small petri dishes. Cuttings of broad bean 

plants with aphids were put into small bottles with water and placed into the 

arena six days after the hatching of the adults. The cuttings were replaced and 

checked daily for eggs laid and survival of adults. 

 

2.2.2.2. Effects of host plants on the life history parameters of E. balteatus 
 

a. The same prey species reared on different host plants 
 

The first experiments showed that E. balteatus reached the highest E.C.I with A. 

solani as prey reared on potato plants (see results Table 2.1). For the 

comparison of host plant effects only the development of E. balteatus was 

studied by offering A. solani as prey on both potato and cucumber. 

Consumption rates as well as longevity and fecundity of E. balteatus served to 

quantify host plant effects. Since A. solani is a very polyphagous herbivore 

(Dixon, 1998), it was possible to rear the aphid on potato (variety "Mirabel") as 

well as on cucumber (variety "chinesische Schlangengurken”. The experimental 
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set-up for the measurement of prey consumption, fecundity and longevity of 

adults was the same as described before. 

 

b. The same prey species reared on the same host plant but with different 
fertilizer regimes 

 
Since E. balteatus showed the highest efficiency of conversion on A. solani 

reared on cucumber plants (see results Table 2.2), these plants were chosen to 

test the indirect effect of plant fertilization on hoverfly development. The 

cucumber plants were treated twice with 20 ml of 2% fluid fertilizer (Euflor flory 

Hydrodünger N-P-K-Mg 15-7-22-6) in the 3rd and 4th week after planting. The 

following week A. solani aphids were transferred to the host plants. The aphids 

were reared 8 days on the cucumber plants before they were offered to the 

hoverfly larvae. The experimental set-up for the provision of prey and the tests 

for fecundity and longevity of adults were the same as described before. 

 

2.3. Results 
 

2.3.1. Effects of different prey species on the life history parameters of E. 
balteatus 

 

As expected the result showed that the average number of aphids consumed by 

E. balteatus during larval development depended on the body size of the 

different prey species. The smaller the body size of an aphid species the more 

prey was consumed until the end of larval development. Among the different 

aphid species the individual weight of L4 ranged from 0.26 mg for A. gossypii to 

1.49 mg for A. pisum. On average E. balteatus larvae consumed 246.5 ± 6.7 

(SE) specimens of A. gossypii and only 61.5 ± 2.7 (SE) specimens of the five 

times larger A. pisum  (Table 2.1). When the amount of biomass of aphids 

consumed was considered, A. solani was the lowest (55.9 ± 2.2 mg, SE), while 

A. pisum was the highest (91.9 ± 2.8 mg, SE). However, the overall nutritional 

value of the different aphid species could be best explained with the E.C.I. 

parameter, i.e. the efficiency of conversion of the ingested food into body 

biomass. The highest E.C.I. was obtained with A. solani as prey (37.9%) while 
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the lowest efficiency was calculated for A. pisum as prey (31.9%). All other 

aphid species showed intermediate ECIs which were not significantly different 

(Table 2.1). 

 

The developmental time of E. balteatus larvae until pupation significantly 

depends on the aphid prey species (F = 25.25, df = 4; 74, P < 0.0001) (Fig. 

2.1). The bonferroni post hoc test showed that E. balteatus preying on A. fabae 

developed significantly faster (7.20 ± 0.11 days, SE) than E. balteatus 

specimens preying on A. solani (9.00 ± 0.18, SE) (p < 0.0001) or S. avenae 

(8.42 ± 0.12, SE) (p < 0.0001). However, the difference between the larvae fed 

on A. fabae and A. pisum (7.62 ± 0.15 days, SE) or A. gossypii (7.62 days ± 

0.14 days, SE) was not significant (p = 0.373 and p = 0.648). 

 

Table 2.1. Consumption rates (biomass ingested), pupal weight and efficiency 
of food conversion (E.C.I.) of E. balteatus larvae preying on five 
different aphid species. Average values ± SE. Different letters 
(column) indicate a significant difference (p < 0.05, ANOVA followed 
by a bonferroni post hoc test). N = 22 for A. pisum, N = 20 for A. 
solani, N = 18 for A. fabae, N = 19 for S. avenae, N = 13 for A. 
gossypii.  

 

Prey 

species 
Host 
plant 

Mean no. 
aphids 
eaten 
(total) 

Mean 
biomass of 
L4 aphids 

(mg) 

Mean 
biomass 
ingested 

(mg) 

Mean weight 
gained 
(pupae) 

(mg) 

Efficiency of 
food 

conversion 
(E.C.I ) 

 

A. pisum 

 

Bean 

 

  61.5 ± 2.7 

 

1.49 ± 0.06 

 

91.9 ± 4.0  

 

28.2 ±  0.8  31.9 ± 1.64 a 

A. solani Potato   83.1 ± 3.2 0.59 ± 0.03 55.9 ± 2.2  21.3 ± 0.6  37.9 ± 2.27 b 

A. fabae Bean 147.5 ± 5.6  0.50 ± 0.01 73.6 ± 2.8  25.5 ± 1.1  35.7 ± 1.47 ab 

S. avenae Wheat 148.8 ± 3.6 0.45 ± 0.01 67.5 ± 1.6  24.8 ± 0.8  36.9 ± 0.97 ab 

A. gossypii Cucumber 246.5 ± 6.7 0.26 ± 0.01 65.1 ± 1.8  21.3 ± 0.4  33.0 ± 0.93 ab 

 

The feeding activity of E. balteatus larvae reached its peak generally three to 

four days before pupation. About 90% of the larvae molted or changed to the 

pupal stage and 73% of the pupae hatched. However, only few adults reached 

the reproductive stage and started laying eggs. In experiments where E. 

balteatus larvae were fed with A. pisum, 84% of the larvae reached the adult 

stage (21 adults; 13 males, 8 females) but only one female reached the 
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reproductive stage and laid 1112 eggs in total. Similar results were obtained 

with the other prey species: 16 larvae (73 %) fed with A. solani reached the 

adult stage (7 males, 9 females) and only two females started laying eggs (613 

and 2373 eggs/specimen), 15 larvae (75%) fed with A. fabae reached the adult 

stage (9 males, 6 females) and only one female laid eggs (531 eggs/specimen), 

and 17 larvae (85%) fed with S. avenae reached the adult stage (11 males, 6 

females) but none of the females survived. When larvae were reared with A. 

gossypii as prey 73% (3 males and 8 females) survived and five females 

reached the reproductive stage. On average they laid 28.07 ± 5.35 (SE) 

eggs/specimen (range 31 – 302 eggs/specimen).  

 

2.3.2. Effects of host plants on the life history parameters of E. balteatus 
 

a. Effect of host plant species 
 
To investigate the effect of the first trophic level (host plant) on the third trophic 

level (predator) A. solani was reared on two different host plants, potato and 

cucumber. In general, A. solani aphids reared on cucumber were approximately 

1.3 times larger than aphids reared on potato plants. E. balteatus larvae 

consumed on average 10 aphids more per day when the prey was reared on 

potato rather than on cucumber (Table 2.2). However, predator larvae still 

ingested more biomass if aphids were reared on cucumber (T-test, t = -1.77; df 

= 36; p = 0.086) and pupae reached a significantly higher biomass (Table 2.2; 

T-test, t = -4.86; df = 27; p < 0.0001). The efficiency of conversion of ingested 

aphid biomass (E.C.I) was slightly higher for prey reared on cucumber although 

the differences were not significant (Table 2.2; T-test, t = -1.33; df =27; p = 

0.195). 
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Fig. 2.1. Average daily consumption rates of E. balteatus larvae preying on five 

different aphid species. N = 22 for A. pisum, N = 20 for A. solani, N = 
18 for A. fabae, N = 19 for S. avenae, N = 13 for A. gossypii, average 
values ± SE). The experiment ends with the pupation of the larvae.  
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Table 2.2. Consumption rates (biomass ingested), pupal weight and efficiency 
of food conversion (E.C.I.) of E. balteatus larvae preying on A. solani 
reared on two different host plants. Average values ± SE. Different 
letters (column) indicate a significant difference (p < 0.05, T-test). N = 
18 for cucumber and N = 20 for potato. NS = not significant. 

 

Host plant 
Mean no. 

aphids 
eaten (total) 

Mean biomass 
of L4 aphids 

(mg) 

Mean biomass 
ingested 

(mg) 

Mean weight 
gained (Pupae) 

(mg) 

Efficiency of 
food 

conversion 
(E.C.I) 

Cucumber 
72.8 

± 3.0 

0.85 

± 0.02 

61.8 ns 

± 2.5 

26.2 b 

± 0.9 

41.8 ns 

± 1.70 

Potato 
83.1 

± 3.2 

0.59 

± 0.03 

55.9 ns 

± 2.2 

21.3 a 

± 0.6 

37.9 ns 

± 2.27 
 

The developmental time of E. balteatus larvae fed on A. solani reared on 

cucumber was significantly shorter (7.62 ± 0.14 days, SE) (T-test, t  = 5.79; df = 

27; p < 0.0001) than that for larvae fed with A. solani reared on potato plants. 

With A. solani prey reared on cucumber, 15 individuals (75%) completed their 

lifecycle and hatched from the pupae (7 males and 8 females). 5 females finally 

reached the reproductive stage and laid on average 516 ± 180.8 (SE) 

eggs/specimen (range 217 - 1215). With A. solani prey reared on potato, 16 

larvae (73%) reached the adult stage (7 males, 9 females) and only two females 

started laying eggs (613 and 2373 eggs/specimen). Despite the better overall 

performance of E. balteatus larvae on aphids reared on cucumber compared to 

potato, the fecundity of the females was still quite low and showed a high 

variability. 

 

b. Effects of the nutritional value of the host plant 
 

Host plant nutrition has a direct impact on herbivore performance and in turn 

might influence herbivore suitability for predators. As E. balteatus´ larval 

efficiency of conversion was the highest with A. solani on cucumber (Table 2.2), 

A. solani was reared on fertilized cucumber and on plants that had not been 

supplied with additional fertilizer. These aphids were offered to E. balteaus 

larvae. E. balteatus larvae were fed on equal numbers of prey reared in the 

different treatments, but ingested a significantly higher biomass if prey was 
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reared on plants without additional fertilizer (T-test, t = -2.36; df = 35; p = 

0.024). Despite the reduced biomass ingested from prey reared on fertilized 

plants the pupae showed a significant higher biomass (T-test, t = 2.08; df = 29; 

p = 0.047). As a consequence the E.C.I of E. balteatus larvae preying on A. 

solani reared on fertilized cucumber was on average 10% higher than on prey 

reared on unfertilized cucumber plants (Table 2.3, T-test, t = 5.87; df = 30; p < 

0.0001). Moreover, the average developmental time of larvae fed with aphids 

reared on fertilized plants (7.26 ± 0.10 days, SE, N = 19) was significantly 

shorter compared to larvae fed with aphids from unfertilized plants (7.62 ± 0.14 

days, SE); (T-test, t = -2.06; df = 30; p = 0.048). The fertilization of host plants 

also had a positive impact on the survival of adults as well as on longevity and 

fecundity (Table 2.3 and 2.4). 95% of the individuals reached the adult stage 

and seven out of eight females entered the reproductive stage. Females fed 

with aphids reared on fertilized plants laid on average three times more eggs 

than females fed with A. solani reared on plants without additional fertilizer 

(Table 2.4, T-test, t = 3.20; df = 10; p = 0.009). 

 
Table 2.3. Consumption rates (biomass ingested), pupal weight and efficiency 

of food conversion (E.C.I.) of E. balteatus larvae preying on A. solani 
reared on cucumber plants with different fertilizer regimes. Average 
values ± SE. Different letters (column) indicate a significant 
difference (p < 0.05, T-test). N = 18 for unfertilized plants and N = 19 
for fertilized plants. 

 

Treatment 
Mean no. 

aphids 
eaten 
(total) 

Mean 
biomass of L4 
aphids (mg) 

Mean 
biomass 
ingested 

(mg) 

Mean weight 
gained (Pupae) 

(mg) 

Efficiency of 
food conversion

(E.C.I) 

 

Unfertilized 
plants 

 

72.8 ± 3.0 

 

0.85 ± 0.02 

 

61.8 ± 2.5b 

 

26.2 ± 0.9a 

 

41.8 ± 1.70a 

Fertilized 
plants 

71.9 ± 2.1 0.76 ± 0.02 54.9 ± 1.6a 28.8 ± 0.8b 52.7 ± 1.00b 
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Table 2.4. Comparison of larval to adult development of E. balteatus larvae 
preying on A. solani reared on fertilized and not fertilized host plants. 
For egg laying, cucumber plants with A. solani were offered. Average 
values ± SE. Different letters (column) indicate a significant 
difference (p < 0.05, T-test).  

 

Treatment N 
No. of larvae 

reaching adult 
stage (%) 

Sex ratio 
Male : 

Female 

No. females 
reaching 

reproductive stage 

Mean no. of eggs 
laid (± SE) 

(range) 
Unfertilized 

plants 
20 15 (75) 7 : 8 5 

561.0 ± 180.8a 

(217 – 1215) 

Fertilized plants 20 19 (95) 11 : 8 7 
1396.6 ± 178.1b 

(683 – 1998) 

 

 
2.3.3. Feeding behavior of E. balteatus larvae and impact on female and 

male body size 
 

In all experiments, male larvae of E. balteatus constantly consumed more aphid 

biomass than female larvae, although the differences in most cases were not 

significant (ANOVA, F = 0.302; df = 5, 85; p = 0.910). Significant differences 

could only be found when larvae were fed on A. solani reared on fertilized 

cucumber plants (Fig. 2.2a, T-test, t = 5.03; df = 17; p < 0.0001). The slight 

differences in biomass ingested in most cases led to a higher individual weight 

of male pupae of males (Fig. 2.2b) indicating a higher conversion efficiency in 

male than in females, although the differences were not significant (Fig. 2.2c, 

ANOVA, F = 1.43; df = 6, 102; p = 0.211). Per mg ingested aphid biomass 

males reached 1.05 – 1.15 times higher pupal weights. A reliable parameter of 

adult body size was the thorax width of males, which was significantly larger 

than the thorax width of females (Fig. 2.3a). In addition, for both sexes pupal 

weight correlated with the thorax width of the adults (Fig. 2.3b and 2.3c).  
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Fig. 2.2. Differences in larval consumption rates between male and female E. 

balteatus. (a) aphid biomass ingested, (b) weight of pupae and (c) 
efficiency of food conversion (T-test, * = 0.001 > p < 0.05, ns = not 
significant, B = broad bean, W = wheat, P = potato, C = cucumber, CF 
= fertilized cucumber). 
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Fig 2.3. Differences in the thorax width between male and female specimens of 

E. balteatus (a) (N = 23 for male and N = 22 for female; T-test, t = -8.75; 
df = 43; p < 0.0001). The correlation between the thorax width and the 
pupal weight was estimated for male (b) (N = 23; F = 33.79; df = 1, 20; 
p < 0.0001) and female (c) (N = 22; F = 20.77; df = 1, 20; p < 0.0001) 
specimens separately.  

 

 

2.3.4. Temporal pattern in reproduction of E. balteatus females and fertility 
of eggs 

 

E. balteatus specimens fed with A. solani reared on cucumber were used for the 

analysis of temporal patterns in the reproduction of E. balteatus females and the 

fertility of eggs, since this was the only plant-prey system which produced a 

reasonable number of E. balteatus specimens reaching the reproductive stage. 

Female E. balteatus had a pre-reproductive phase of about 9 days (Fig. 2.4) 

before mating took place. Females started egg laying 10 days after hatching. 

During the first two days, on average, 40 eggs were laid. During the following 
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days the number of eggs laid increased steadily until day 18. Two more cycles 

of egg laying occurred thereafter, each with a period of 4 days. Ten random 

samples of 762 eggs from different specimens showed that 67.6 ± 1.8% (SE) of 

the eggs were fertile and developed into first larval stage. 

 

 

Fig. 2.4. Temporal pattern in the number of eggs laid per day by female 
E. balteatus. Specimen either fed on A. solani reared on fertilized 
cucumber plants (CF) (N = 7 from day 10 – 24, N = 6 from 25 – 27, N 
= 5 from 28 – 32 and N = 4 on 33 day after hatching from the pupae) 
or on A. solani reared on not fertilized cucumber plants (C) (N = 5 from 
day 10 – 14, N = 4 from 15 – 24, N = 3 from 25 – 39 and N = 1 from 
day 40 – 46 after hatching from pupae). Bars indicate the standard 
error. 

 
 
2.4. Discussion 
 

2.4.1. Suitability of different aphid species 
 

New (1991) suggested that food resources ingested by predators could be 

defined as either “essential" or “alternative". Essential food sources ensure 

days after hatching from pupae
10 14 18 22 26 30 34 38 42 46

m
ea

n 
nu

m
be

r o
f e

gg
s

0

20

40

60

80

100

120
A. solani (CF)
A. solani (C)



Host plants - aphids - predator:  tritrophic effects 20 

completion of the larval development and subsequent adult reproduction, 

whereas alternative food sources merely serve as energy source and guarantee 

survival without providing sufficient nutrients for development or reproduction. 

Estimates of larval development are therefore an unreliable parameter to 

classify the suitability of different prey species for predators (Hodek, 1993). 

Moreover, estimates of survival, longevity as well as fecundity of adults are of 

primary importance in judging the relative value of different prey species. During 

the experiments the suitability of five different aphid prey species, A. pisum, A. 

fabae, S. avenae, A. gossypii and A. solani, was estimated. Four of the aphid 

prey species turned out to be only more or less alternative prey for E. balteatus. 

Female specimens rarely reached the reproductive developmental stage, 

except for E. balteatus feeding on A. gossypii, their fecundity, however, was 

very low (28.07 ± 5.35, SE). Of the tested aphid species only A. solani and only 

when reared on cucumber as host plant could be classified as essential prey. 

Syrphid survival increased and females laid numerous eggs. Fecundity was 

even higher and reached as much as 1396.6 ± 178.1 (SE) eggs per female (683 

- 1998 eggs) when A. solani aphids were reared on fertilized cucumber plants. 

Compared to the results of Tenhumberg (1993) with the aphid species 

Metopolophium dirhodum (Walk.) as prey the fecundity of E. balteatus in these 

experiments was more than four times higher. Moreover, fertilization of the host 

plant significantly enhanced the conversion efficiency of ingested biomass. The 

enrichment of the nutritional contents of the food plant in the first trophic level 

influenced the third trophic level indirectly via the nutritional value of the aphid 

prey. The important nutritional element might be nitrogen. It induces enhanced 

health, growth, reproduction and survival in many organisms (Mattson, Jr., 

1980) and therefore is of major importance for the feeding physiology of insects 

(Loader and Damman, 1991; Fajer et al., 1989; Scriber and Slansky, Jr., 1981; 

Mattson, Jr. and Scriber, 1987; Mattson, Jr., 1980). The evidence of the role of 

nitrogen in regard to the nutrition of insects was studied by Slansky and Feeny 

(1977) who reported that the E.C.I. and growth rate of Pieres rapae L. 

(Lepidoptera: Pieridae) increases and their consumption rate decreases when 

the larvae are fed on collards heavily fertilized with ammonium nitrate. Almost 

the same effects of nitrogen supply were observed for the parasitoid C. 

oscinidis attacking the leafminer L. trifolii on fertilized bean plants. Parasitoid 
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fecundity was enhanced and the larval developmental time was shorter on 

hosts feeding on plants with nitrogen treatment (Kaneshiro and Johnson, 1996). 

Since the specific nutritional requirements of entomophagous insects are still 

little known (Thompson, 1999), these facts and the results of this study more or 

less indicate that the requirements of E. balteatus are not much different from 

those of herbivores and of parasitoids. However, the effect of fertilization of host 

plants was not tested with all aphid host-plant combinations, therefore it cannot 

generally be concluded that nitrogen supply of host plants improves prey 

suitability. Secondary plant compounds acting via the food chain can also have 

a negative effect on the development of predators like E. balteatus. To 

compensate for a low quality of food insects often ingest higher quantities (Fajer 

et al. 1989). In a similar manner E. balteatus larvae ingested more biomass 

when feeding on alternative prey, especially when host plants were unfertilized. 

But nevertheless the increased voracity does not guarantee that E. balteatus 

can compensate deficiencies in food conversion and reach sufficient larval and 

pupal size, the reproductive stage or even successful reproduction. Voracity of 

predators is therefore an insufficient parameter to estimate the suitability of 

different prey species (Rüzicka, 1978; New, 1991; Hodek, 1993). 

 

Hagen (1987) explained that prey suitability can influence the behavior of a 

predator in different ways: (i) the predator may reject the prey immediately after 

"tasting" it, (ii) it may be killed by toxins in the prey, (iii) the predator may 

consume an individual prey at a slower rate, (iv) develop at a slower rate, 

and/or (v) might be less fecund as adult and live a shorter life. E. balteatus 

readily preyed on all aphid species in this study. None of the prey species was 

rejected or caused a premature death of specimens which might have indicated 

strong toxins delivered via the food chain. The observed reactions of 

E. balteatus in the here tested treatments cannot explain in detail the underlying 

mechanism. Since different prey species lead to more or less typical gradual 

sublethal effects like retarding the velocity of development, reduced body weight 

or reproduction capacities, the hypothesis of nutritional value as key factor 

seems to be more logical than strong intoxication effects of secondary plant 

compounds acting via the food chain. Only the experiments with A. solani on 

different host plants may allow some speculations about the role of secondary 
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plant compounds. Syrphid larva in our study reached the highest E.C.I. with A. 

solani reared on potato as prey while the developmental time was slightly 

extended. An important secondary compound of potatoes that is known to 

influence survival are Solanum glycoalkaloids such as solanin and chanonine 

(Soule et al., 1999). This secondary metabolites had a negative effect upon the 

survival of the Colorado potato beetle, Leptinotarsa decemlineata insect  (Say) 

(Coleoptera: Chrysomelidae) and the potato leafhopper, Empoasca fabae 

(Harris) (Homoptera: Cicadellidae) (Tingey, 1984) and moderately influenced 

the metabolism of Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) 

(Günther et al., 1997). Similar effects may to a certain degree be responsible for 

the lower suitability of A. solani reared on potato plants and the better 

adaptation of E. balteatus to the prey reared on cucumber plants. 

 

On the other hand, deficiencies of nutritional value as a result of lacking or 

imbalanced primary compounds like amino acids and proteins may act in 

combination with “soft” toxins influencing the efficiency of food conversion 

mechanism. The low food conversion efficiency even on prey with high feeding 

rates may support this hypothesis as well as the observation. When A. solani 

from cucumber under different fertilizer regimes served as prey item, the higher 

nutritional value caused by conversion of nitrogen to essential primary 

compounds at low or lacking toxin levels in cucumbers could be responsible for 

the higher assimilation efficiency. This hypothesis is supported by qualitative 

observations on the amount of feces excreted, which indicates the amount of 

nutrient loss. The higher the nutrient loss the lower the assimilation efficiency 

(New, 1991). In this study the amount of feces excreted was not quantified, the 

frequency of feces excretions that occurred at the third larval stage immediately 

before pupation, however, was noted. Frequency of feces excretions varied 

between prey species. For example, feces excretions occurred 2-3 times with A. 

pisum and A. fabae, 1-2 times with S. avenae and A. gossypii as prey and only 

once with A. solani reared on potato as prey. This indicates that E. balteatus 

might reach higher assimilation efficiency with A. solani as prey. 
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2.4.2. Thorax width as a parameter for body size of adult E. balteatus 
 

Many morphological parameters were used in previous studies to distinguish 

between female and male specimens of syrphids (Gilbert, 1985a, 1985b and 

1985c), i.e. wing length, wing width, head width, thorax width, tibia length, 

proboscis length, fulcrum length, labrum-epipharynx, prementum length, 

labellum length, tergite 2 width, tergite 3 width and tergite 4 width. Among all of 

these parameters there is no morphological parameter which can be used to 

characterize the body size of female and male specimens (Gilbert, 1985c). Most 

of these parameters are difficult to measure and might change with the age of 

the specimen (i.e. damaged wings). In this study, the thorax width of the adult 

as a parameter to characterize the body size of adult E. balteatus was chosen 

for two reasons: (i) it is easier to measure than to apply other parameters, (ii) it 

is a fixed parameter regardless of the age of the adult. The results show that the 

thorax width was a good parameter to distinguish between male and female E. 

balteatus. Males always showed a larger thorax than females. Moreover, the 

thorax width was positively correlated with the pupal weight. It is therefore 

suggested that either the weight of pupae or the thorax width should be used as 

a standard parameter to represent the body size of adult syrphids. 

 

In general females are heavier and larger than males in the world of insects 

(Scriber and Slansky, 1981) because of the female need to accumulate more 

energy reserves for reproduction. This generalization, however, does not apply 

to syrphids. There are at least two species where males are to be known larger 

than females, i.e. Heringia heringi Zettrstedt and Xylota sylvarum L. (Stubbs 

and Falk, 1996). Both of them belong to the subfamily Milesiinae. The results 

show that E. balteatus males are also larger than females (Fig. 2.2b and 2.3a) 

and that male larvae are more voracious than female larvae (Fig. 2.2a). Gilbert 

(1984) speculated that the foraging and mating behavior of S. ribesii was 

related to thermoregulatory abilities, which are dependent on the body size. A 

larger female has the advantage of regulating the body temperature more 

efficiently than a smaller one (Heinrich, 1999). Therefore it arrives at the mating 

place earlier in the morning and is able to occupy the best sites. As a 

consequence females might "choose" larger males as mating partners because 
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they have better thermoregulatory abilities. In a similar way, this might also 

explain the different sizes of male and female E. balteatus, but there is still no 

literature dealing with behavioral observations during mating.  

 

2.4.3. Temporal patterns of egg laying and the survival of eggs 
 

Since E. balteatus specimens fed with A. solani reared on fertilized cucumber 

plants were the only plant-prey system which resulted in a reasonable number 

of E. balteatus specimens reaching the reproductive stage, the discussion on 

temporal reproduction patterns of E. balteatus females and the fertility of eggs is 

limited (Fig. 2.4). From literature, it is known that E. balteatus has a well-defined 

temporal pattern in egg production and egg laying behavior. Every second day 

the number of eggs laid reaches its maximum (Volk, 1964; Bargen, 1998). On 

the other hand, the experiments showed that E. balteatus females needed a 

nine day premature period and then started to lay eggs almost continuously. 

The number of eggs laid per day increased steadily until the 18th day after 

hatching. Only in the end of the reproductive phase a time period of two days 

between the peaks in egg production could be identified. The contradiction 

between the various studies can partly be explained because of the differences 

in the experimental set-ups. Bargen and Volk assumed that females needed 

two days to regenerate their ovaries and therefore they offered females plants 

with aphids for egg laying every second day. In our experiments broad bean 

plants were offered each day. 

 

Large numbers of the eggs laid by E. balteatus were fertile. An average 

hatching rate of the first larvae of 67.6 ± 1.8% (SE) was observed. This was 

slightly higher than the average hatching rate of 53.6 ± 12.6% observed by 

Geusen-Pfister (1987). Food quality and/or experimental set-up seemed to be 

crucial for maintaining high survival rates of E. balteatus offspring in rearing. 

During the experiments E. balteatus were fed exclusively with A. solani which 

were reared on fertilized cucumber plants, whereas Geusen-Pfister offered E. 

balteatus a mixture of Aphis craccivora (Koch) and A. pisum aphids reared on 

broad bean plants. Apart from that it remains unclear whether the host plants 

were fertilized or not. Moreover, only single pairs of male and female were kept 
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together in one cage, whereas in the previous study with E. balteatus adults 

were kept in groups of 16 males and 14 females. While storing groups of males 

and females the probability of successful mating attempts might be reduced. It 

is expected that food quality enhances the fitness of males as well as the 

number of fertile eggs. 

 

2.5. Conclusion 
 
The first trophic level, the host plant, has an indirect impact on the fitness of 

E. balteatus. The importance of the nutritional value of a prey was investigated 

in the experiment with fertilized host plants. Supply of nitrogen can improve 

suitability of prey. Survival, longevity and fecundity of E. balteatus were 

enhanced, especially when the host plant had an optimal nutritional value for 

the herbivore. Therefore, future studies on suitability of prey/host for 

predators/parasitoids should take into account the condition of host plants for 

prey/hosts. Additionally, for mass rearing of E. balteatus, although there are still 

many other aspects to be studied, fertilization can be applied to enhance the 

nutritional value of aphids for further increase of the fitness of E. balteatus. This 

study shows that A. solani reared on fertilized cucumber plants should be used 

to optimize mass rearing of E. balteatus. 
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3. Cannibalism in Episyrphus balteatus de Geer (Diptera: 
Syrphidae) 

 

 
3.1. Introduction 
 

Cannibalism is defined as the feeding activity on conspecifics and occurs in 

various species of insects (Fox, 1975; New, 1991). Cannibalism is not restricted 

to insects which normally are predatory, but also appears to be widespread 

among herbivores, e.g. the cotton leafworm, Spodoptera littoralis (Abdel-Salam, 

1973), the corn earworm Helicoverpa armigera Hübner (Lepidoptera: 

Noctuidae) (Fox, 1975; Kalshoven, 1981) and the fall armyworm, Spodoptera 

frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) (Chapman et al., 1999). 

Cannibalism mainly occurs  when food resource is scarce (Agarwala and Dixon, 

1992; Branquart et al., 1997), although some reports show that cannibalism can 

also be observed even when food is abundant  (Fox, 1975; Hassan, 1975;  

Branquart et al., 1997; Phoofolo and Obrycki, 1998; Chapman et al., 1999). 

Riechert (1981) suggests that cannibalistic tendencies are genetically 

determined. 

 

In the laboratory, the larvae of E. balteatus fed on conspecific eggs both in the 

presence and in the absence of aphids (Chandler, 1969; Branquart et al., 1997). 

Especially in regard to the third instar larvae (L3), Branquart et al. (1997) 

observed that cannibalism on conspecific eggs was in inverse proportion to the 

amount of aphids present in the petri dishes. They further discovered that 

cannibalism of L3 decreased with increasing body size of conspecific larvae. 

However, the information whether cannibalism does occur between the same 

instar or not is not yet available. Since cannibalism was observed among similar 

stages of C. carnea and Coleomegilla maculata (DeGeer) (Coleoptera: 

Conccinellidae) (Phoofolo and Obrycki, 1998), cannibalism studies with E. 

balteatus were set up. This study was carried out both in the presence and in 

the absence of aphids to observe the effect of availability of food. Cannibalism 

is also density-dependent (Fox, 1975), such as in S. frugiperda (Chapman et 

al., 1999), therefore different numbers of larvae were kept together to 



Cannibalism 27 

investigate whether the density factor plays a role in inducing cannibalism in E. 

balteatus. 

 

3.2. Materials and methods 
 

Cannibalism experiments were carried out at 20 ± 1o C, 50 ± 10% relative 

humidity, 16 h of daylight and a light intensity of approximately 5000 lux (cd/ 

m2). The rearing procedure for E. balteatus is described in chapter 2. In the first 

experiment (food availability), cannibalism was tested by keeping two larvae of 

E. balteatus  together in petri dishes (5.5 cm diameter and 1.5 cm height).  E. 

balteatus eggs were offered in small groups of 7.4 ± 0.1 (SE)  as well as of 13.3 

± 0.3 (SE) eggs per leaf to first instar larvae (L1) and third instar larvae (L3). All 

experiments were carried out both in the presence and in the absence of 

aphids. Aphids were provided on leaf cuttings. Approximately 20 aphids were 

used for the combination between L1, 50 aphids for second instar larvae (L2) 

and 100 aphids for L3. The latter amount was also used for experiments 

between eggs and L3, L1 and L3 as well as L2 and L3 combinations. The larvae 

were selected one, three and five days after hatching for L1, L2 and L3. Each 

combination was replicated 15 times and the experiments lasted for 24 h. The 

frequency of cannibalism was compared using χ2 tests with Yate’s correction for 

continuity recommended for small sample sizes. Eggs consumed by the 

conspecific larvae in the presence and in the absence of aphids were compared 

using T-tests. The data were transformed using arc-sin before analysis (Sokal 

and Rohlf, 1995).  In the second experiment, densities of 2, 5 and 10 larvae E. 

balteatus were kept together in similar petri dishes. Since cannibalism between 

L3 was observed neither in the presence nor in the absence of aphids (see 

Table 1), the density experiments were only conducted in the absence of 

aphids. The experiments were replicated 10 times, except for density of 2 larvae 

(N = 15). The incidence of cannibalism was calculated by using a method of 

Chapman et al. (1999) and was defined as the proportion of potential victims 

consumed with a maximum of the total amount of larvae per petri dish minus 

one. 
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3.3. Results 
 
Cannibalism on E. balteatus eggs. In the absence of aphid, E. balteatus eggs 

were heavily cannibalized by the conspecific larvae, especially by L3, which 

consumed approximately 87.1% of the eggs offered (Fig. 1). Even in the 

presence of aphid, cannibalism on eggs was still observed. However, the 

consumption of eggs by L1 (T-test, t = -4.89; df = 28; p < 0.0001) as well as by 

L3 (T-test, t = -5.44; df = 28; p < 0.0001) (Fig. 1) decreased significantly. 
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Fig. 3.1. Cannibalism on E. balteatus eggs by  conspecific larvae (L1 and L3). 

Bars represent the mean percentage (± SE) of E. balteatus eggs 
consumed during a 24 h interval. * indicate significant differences 
between treatments with and without aphids at p < 0.05 tested with a 
T-test.  The number (N) of replicates with cannibalism is given below 
each bar (in total N = 15). 

 
Cannibalism on L1 E. balteatus. In the absence of aphids, L1 was vulnerable 

to both L2 and L3. However, the frequency in cannibalism between the different 

treatments was not statistically significant (χ2 test, value = 0.14; df = 1; p = 

0.713;  N = 30). There was no cannibalism when L1 was confronted with the 

same instar. In the presence of aphids, there was no cannibalism at all (Table 

3.1). 
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In general, the cannibalism on L1 decreased significantly in the presence of 

aphids (Table 3.1, χ2 test, value = 12.95; df = 1; p < 0.0001;  N = 90). 

Cannibalism on L2  E. balteatus. In the absence of aphids, there were two 

replicates with cannibalism on L2 by L3 (Table 3.1). Cannibalism did not occur 

when L2 was confronted with L2. In the presence of aphids, there was no 

cannibalism. 

Cannibalism on L3 E. balteatus. Cannibalism among L3 did not occur, neither 

in the absence nor in the presence of aphids (Table 3.1). 

The density of cannibalism. In serial density tests of 2, 5 and 10 larvae per 

petri dish in the absence of aphids, cannibalism among L3 occurred very rarely, 

only 1.1 % of the replicates with the density of 10 specimen per petri dish (Table 

3.2). 

 
Table 3.1.  Cannibalism between different developmental stages of E. balteatus 

in petri dishes in the absence and presence of aphids. N = 15. 
 
 

Number of victims  

Absence of aphids Presence of aphids 
Superior 

developmental 
stage of  

E. balteatus L1 L2 L3 L1 L2 L3 

L1 0  0 0 0 0 0 

L2 6  0 0 0 0 0 

L3 7 2 0 0 0 0 

 

Table 3.2. Cannibalism of E. balteatus in different densities of larvae in the 
absence of aphids as alternative prey. The amount of cannibalism 
was calculated by using the method of Chapman et al. (1999). 

 

Density  
of E. balteatus larvae 

No. of replications 
(no. of larvae in total) 

Amount of cannibalism 
% ± SE (no. of  larvae in total) 

2 15 (30) 0.0 ± 0.0 (0) 

5 10 (50) 0.0 ± 0.0 (0) 

10 10 (100) 1.1 ± 1.1 (1) 
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3. 4. Discussion 
 

The factors that can induce cannibalism in many species are natural food 

availability, population density, behavior of victims (defense mechanism) and 

susceptibility (e.g. size relations, nutritional value), stress and encounter rate 

(Fox, 1975). From the mentioned factors, only “alternative” food, population 

density and susceptibility of potential victims were discussed in this study. 

Cannibalism mainly occurs when prey is scarce  (Fox, 1975; New, 1991; 

Agarwala and Dixon, 1992; Branquart et al., 1997; Schellhorn and Andow, 

1999). The experiments with E. balteatus showed that indeed natural food 

supply (aphids) influenced cannibalism rates, but even with extremely low 

availability of food (in the absence of aphids) and with high population density 

(Table 3.1 and 3.2), cannibalism rarely occurs when specimens of similar age 

(size) (L3) of E. balteatus interacted. On the other hand, cannibalism in 

chrysopid, Chrysoperla carnea (Neuroptera: Chrysopidae) (Ridgway et al., 

1970; Hassan, 1975; Phoofolo and Obrycki, 1998), H. armigera (Kalshoven, 

1981) and S. frugiperda (Chapman et al., 1999) frequently occurred and was 

high even when food was abundant and population density low. In S. frugiperda 

kept in plastic pot arenas (9 cm diameter and 4 cm height), cannibalism 

increased from 40% in density of 2 to 53% in density of 4 larvae per pot in the 

presence of 400 cm2 of maize leaves  (Chapman et al., 1999). This study shows 

that there is no evidence that food scarcity and density-dependence play a role 

in cannibalism of E. balteatus larvae when the size is equal. In our department 

in Hannover, approximately 100 – 150 larvae were kept in Plexiglas boxes (18 x 

13.5 x 6.5 cm) and cannibalism was hardly observed. The larvae would rather 

starve to death than eat the conspecific larvae (Hindayana, unpublished data). 

 

The extent of cannibalism is strongly dependent on the size and therefore 

influenced by the degree of habitat segregation among size classes or the 

defense mechanisms of smaller larvae (New, 1991). New´s statement could be 

confirmed in this experiment. When L3 were confronted with smaller specimens 

(L2), cannibalism only occurred in 2 cases (13.3%). A stronger asymmetry in the 

body size of the interacting specimens, however, induced a higher amount of 

cannibalism, a finding which is supported by observation on egg predation, 
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since eggs were attacked by all instar larvae (Fig. 3.1) even in the presence of 

aphids. The same tendencies were reported by Branquart et al. (1997) for E. 

balteatus and by Agarwala and Dixon (1992) for coccinellid, Adalia bipunctata 

and Coccinella septempunctata (Coleoptera: Coccinellidae). These 

developmental stages can easily be found and only have few possibilities to 

defend themselves (New, 1991). However, in Coccinellid (Agarwala and Dixon, 

1992; Phoofolo and Obrycki, 1998), chrysopid, C. carnea  (Phoofolo and 

Obrycki, 1998), H. armigera (Kalshoven, 1981) and S. frugiperda (Chapman et 

al., 1999) the extent of cannibalism even in the same size (same instar larvae) 

was still high.  

 

The low cannibalism rates observed under experimental conditions in this study 

suggest that cannibalism in E. balteatus can only be expected in mass rearing 

when extremely different age groups of larvae are kept together in small cages 

with low food supply, conditions which are more or less unusual. Also under 

field or greenhouse conditions, cannibalism should be not important. In reality, 

the incidence of cannibalism in syrphids in the field has never been measured 

(Branquart et al., 1997). But also without direct observation, the possibility of 

high encounter rates and crowding effects is extremely low. Different studies 

showed that females always laid eggs near aphid colonies (Chandler, 1968a 

and 1968 b; Scholz and Poehling, 1999) and only in a very limited number in 

small patches. Females were not only able to adapt their egg deposition in 

regard to aphid density but also to perceive the presence of conspecific eggs 

and therefore oviposited less often in small aphid colonies or if conspecific eggs 

were already present (Scholz and Poehling, 1999). It could be speculated that 

cannibalism in E. balteatus in the field is an uncommon phenomenon.  

 

The question whether E. balteatus is able to use cannibalism to prevent 

starvation when aphid densities are extremely low under certain circumstances 

cannot be answered in these experiments. Therefore more detailed studies 

particularly on the nutritional value of eggs or first instar larvae may be 

necessary. Branquart et al. (1997), however, observed that larvae feeding on 

conspecific eggs could complete their development, although their growth rate 

was not as fast as that of larvae that fed on aphids. In terms of larval growth 
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and survival, conspecific eggs of coccinellids serve as better food than aphids 

(Agarwala and Dixon, 1992; Yasoda and Ohnuma, 1999). It is still unclear 

whether this suitability of conspecifics on larval growth and survival is positively 

correlated with fecundity of adults, although the study of Walzer and 

Schausberger (1999) with predatory mite, Neoseiulus californicus McGregor 

(Acari: Phytoseiidae), showed that the suitability of conspecifics on larval growth 

and survival is not positively correlated with fecundity of adults.  Immature 

stages of N. californicus feeding on conspecific larvae could reach adulthood, 

but their female did not lay eggs. In relation to food suitability, conspecifics 

probably could only be used as alternative food rather than as essential food.  

 

3.5. Conclusions 
 

Cannibalistic tendencies in E. balteatus are very low. As long as the larvae are 

fed continuously and, even more important, are homogenous in size, 

cannibalism occurs very rarely. Cannibalism only occurs when eggs or young 

instar larvae are kept together with larger larvae, especially L3, in the absence 

of aphids. Considering these facts, there may be no need to change the 

conditions for mass rearing of E. balteatus in our department in Hannover. 
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4.  Intraguild predation among the hoverfly Episyrphus 

balteatus de Geer (Diptera: Syrphidae) and other 
aphidophagous predators * 

 
 
4.1. Introduction 
 

Studies of intraguild predation (IGP) have increased over the last two decades, 

especially with respect to the analysis of failures in biological control programs. 

In many cases, IGP was found to reduce the efficacy of biological control due to 

heterospecific competition between predator species. Snyder and Wise (1999) 

reported that carabid beetles and lycosid spiders reduced the number of non-

lycosid spiders and foliar-foraging predators, mainly nabid bugs, in Cucurbits 

experimental plots by 50%. Survival of C. carnea decreased by 90% due to 

interference from indigenous predators (Rosenheim et al., 1993). Parasitoid 

mummies were reported to be preyed upon by different predators (Ferguson 

and Stiling, 1996; Rosenheim, 1998), and in a field study more than 50% of 

exposed Lysiphlebus fabarum Marshall (Hymenoptera: Braconidae) mummies 

were destroyed by aphidophagous predators within a four day period (Meyhöfer 

and Hindayana, 2000). Under the same conditions, we observed in a 

preliminary experiment that on average 20% of exposed syrphids eggs were 

consumed by predators (Hindayana, unpubl. data). Therefore, it is likely that 

IGP has a strong impact on the population dynamics of many beneficial and 

pest insect species. 

 

IGP is defined as the killing and eating of species that uses similar, often limited 

resources, and thus are potential competitors (Polis et al., 1989). The likelihood 

of IGP increases if the predators not only belong to the same guild but also 

share the same foraging habitat (Rosenheim et al., 1995; Losey and Denno, 

1999). 

 
••••    Based on Hindayana, D., Meyhöfer, R., Scholz, D. and Poehling, H.-M. (2001). 

Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera: 
Syrphidae and other aphidophagous predators. Biological Control 20, 236-246. 
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Other factors that affect the occurrence of IGP are relative body size, prey 

specificity and mobility of predators (Lucas et al., 1998), as well as the 

availability of extraguild prey (Sengonca and Frings, 1985; Polis et al., 1989; 

Lucas et al., 1998). 

 

In this study, the interspecific interactions of E. balteatus with three other 

aphidophagous predators, with the ladybird Coccinella septempunctata L. 

(Coleoptera: Coccinellidae), the lacewing C. carnea and the gall midge 

Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) were investigated. 

Interactions between predators were studied in arenas of different sizes and in 

the presence or absence of the pea aphid A. pisum as extraguild prey. In 

central Europe, E. balteatus is the most common hoverfly and a voracious 

aphid predator in different crops. Particularly in cereals, this hoverfly is often an 

effective aphid predator (Ankersmith et al., 1986; Chambers and Adams, 1986; 

Poehling, 1988; Tenhumberg and Poehling, 1995). Strong effects on aphid 

populations were observed whenever high levels of syrphid oviposition occurred 

early and high numbers of larvae hatched before aphid populations achieved 

high growth rates (Tenhumberg and Poehling, 1995). Abundant immigration of 

adult female syrphids into crops depends on the local availability of suitable 

hibernation sites and spring habitats or long distance migration (Salveter, 1996; 

Krause, 1997; Hart et al., 1998). But even if immigration rates are high, the 

efficacy of aphid control by hoverflies shows considerable variability that cannot 

be explained simply by abiotic conditions (Poehling et al., 1991; Tenhumberg 

and Poehling, 1995). As the relationship between eggs laid and the number of 

young larvae resulting from them is the most variable factor influencing the 

population size of E. balteatus, it is hypothesized that biotic interactions with 

other predators might be an influence on the survival of these highly vulnerable 

life stages. In almost every habitat with aphids, a whole range of different aphid 

antagonists is also present (Groeger, 1993; Tenhumberg, 1993; Hindayana and 

Meyhöfer, unpubl. data; Brown, 1997; Nunnenmacher, 1998) and IGP can be 

expected. In both conservation of biological agents in outdoor crops and in 

greenhouses, such mixed predator communities are encouraged for biological 

control of aphids (Krieg and Franz, 1989; Schneller, 1997b; Flint and Dreistadt, 

1998). However, the possible effects of intraguild predation are often neglected. 
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The objectives of this study were to elucidate the role of E. balteatus within its 

predator guild. As an aphidophagous predator, immature E. balteatus should 

show specific defense behaviors against other aphid predators. In a series of 

laboratory experiments, range intensities of predatory interference were 

elaborated. Conditions producing a high probability of interference among 

predators were simulated by using small arenas without extraguild prey. This 

setup mimicked situations in which an extraguild prey population rapidly 

decreases while predator densities are still high. An intermediate level of 

interference among predators was simulated in both small arenas with 

extraguild prey or large arenas without extraguild prey. Finally, low probability of 

interference among predators was expected in large arenas with whole plants 

and extraguild prey. Such conditions might occur in field situations with high 

extraguild prey populations. The potential role of all immature stages of E. 

balteatus as well as the effects of arena size and the availability of extraguild 

prey were also examined.  

 

4.2. Materials and Methods 
 

4.2.1. Rearing of the insects 
 

Laboratory cultures were started with C. septempunctata and E. balteatus that 

were collected from a field near the Institute of Plant Diseases and Plant 

Protection in Hannover, northern Germany, and with C. carnea and A. 

aphidimyza obtained from a commercial supplier of biological control agents 

(Neudorff Ltd., Emmerthal, Germany). For all predator species, continuous 

laboratory cultures were established. Pea aphids, A. pisum on broad bean 

plants were offered to all predator species during their development. All rearing 

and experiments were conducted 20 ± 1 o C, 50 ± 10% relative humidity, 16 h 

of daylight and a light intensity of approximately 5000 lux (cd/m2). 

 

E. balteatus was reared in accordance to the protocol of Bargen (1998) with 

slight modifications for the rearing of the larvae, which were kept in Plexiglas 

boxes (18 x 13.5 x 6.5 cm). Bee pollen (Melzer's Bienenfarm, Bonn, Germany), 

and crystalline sugar were fed to promote egg production of adult females.  
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Adult C. septempunctata were kept in groups of 20 to 30 in Plexiglas boxes (30 

x 25 x 13 cm). Eggs laid were transferred to a smaller Plexiglas box which 

similar manner as E. balteatus larvae and kept there until pupation. 

 

Adult C. carnea were kept in plastic tubes (10 cm in diameter, 20 cm in height) 

and reared on a diet previously described by Hassan (1975). Larvae were 

maintained in the same tubes as the adults until pupation. The pupae were 

transferred to petri dishes (5.5 cm diameter and 1.5 cm height) to avoid 

cannibalism by conspecific larvae. 

 

Adult gall midges were kept in plexiglas boxes (40 x 30 x 20 cm) with a gauze 

window on one site. Broad bean plants, infested with A. pisum, were introduces 

into the boxes to stimulate egg laying. The larvae were kept in a similar manner 

as C. carnea. 

 

4.2.2. Consumption rate and development time of aphidophagous 
predators 
 

For experiments on intraguild predation, test insects need to be synchronized 

and voracious in confrontations. Therefore, before running IGP experiments, 

the developmental times and daily consumption rates of each predator species 

were investigated. 

 

Only synchronized groups of pea aphids with a uniform age structure were 

used in these experiments as prey. Immediately after hatching, predator larvae 

were placed individually in petri dishes (5.5 cm diameter and 1.5 cm height) 

with a defined number of aphids. After 24 h, the number of aphids consumed 

was recorded, the remaining aphids were removed, and new aphids were 

introduced into the petri dish. Predator larvae of up to three days old were fed 

with 2-day-old aphids (L2 stage). Older predator larvae were fed with 7-day-old 

aphids (L4 stage). Aphids were provided on excised bean leaves. Experiments 

were replicated 22 times with E. balteatus and C. septempunctata and 17 times 

with C. carnea. Results of the experiment conducted with A. aphidimyza are not 

reported because very few individuals completed their development on this diet. 
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All experiments were conducted at 20 ± 1 o C, 50 ± 10% relative humidity, 16 h 

of daylight and a light intensity of approximately 5000 lux (cd/m2). The total 

biomass of aphids consumed by predators in the experiments was compared 

using ANOVA, and in case of significant F-values, followed by a least significant 

different test (LSD) (Sokal  and Rohlf, 1995). 

 
4.2.3. Intraguild predation 

 

The experiments on IGP were conducted at 20 ± 1 o C, 50 ± 10% relative 

humidity, 16 h of daylight and a light intensity of approximately 5000 lux (cd/ 

m2). In the experimental set-up, different spatial dimensions of the foraging 

arena as well as the role of extraguild prey were considered. Except for gall 

midges, which were only tested in petri dishes (5.5 cm diameter and 1.5 cm 

height), two different types of arenas were used. Petri dishes served as small 

arenas, while broad bean plants in plexiglas tubes (15 cm diameter and 40 cm 

height) served as large arenas. The volume in large arenas was therefore 223 

times greater than in small arenas. In small as well as in large arenas, IGP was 

investigated in the absence and presence of extraguild prey, i.e., aphids. In 

small arenas aphids were provided excised bean leaves and in large arenas on 

whole plants. The number of aphids offered varied in the different predator 

combinations, and was adjusted according to the specific consumption rates of 

the predators. Approximately 20 aphids were used for experiments in small 

arenas with early developmental stages, while 100 aphids were used in 

experiments in small arenas with late developmental stages, and 60 aphids for 

all experiments in large experimental arenas. In all treatments, aphids were 

always provided in surplus to predator consumption.  

 

Larval stages of predators used in treatments were defined based on their 

consumption rates and developmental stages (see results; Fig. 4.1). First (L1) 

and second (L2) instar larvae of E. balteatus, C. septempunctata and C. carnea 

as well as third (L3) instar larvae of C. septempunctata were tested one day 

after hatching or molting, respectively. Third instar of E. balteatus and fourth 

(L4) instar larvae of C. septempunctata were collected 48 h after molting. Third 

instar larvae of C. carnea could be collected from the third until the eighth day 
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after molting (see Fig. 4.1). Old larvae (L3) of A. aphidimyza used in the 

experiment were 120 h old. 

 

The outcome of predatory interference between larvae was tested by confining 

individual E. balteatus larvae with one of the other species of predators. If an 

instar of E. balteatus acted as an IG predator, the next developmental stage of 

the opponent was tested. If E. balteatus turned out to be inferior, it was 

assumed that in confrontation with the next developmental stage of the 

opponent it would remain inferior. Therefore, these combinations were not 

tested. Eggs of E. balteatus were offered to C. septempunctata and C. carnea 

in all experiments in small groups of 12.1 ± 0.5 (SE) eggs per leaf as laid by 

female E. balteatus. In small arenas, leaf cuttings with eggs were introduced. 

The number of eggs consumed per egg mass was recorded. In the small arena, 

pupae were introduced individually, whereas in the large arenas, old L4 E. 

balteatus were transferred into the arenas to allow pupation directly on the 

plants. Each combination was replicated 15 times. Each experiment lasted for 

24 h. During the first two hours of each experiment in the small arena, all 

confrontations between the antagonists were observed directly to characterize 

the attack, counterattack and defense behavior of the opponents. Based on 

these characterizations the evidence of IGP was evaluated at the end of the 

24h period under a stereo microscope and the outcome was classified. 

 

The outcome of IGP was treated as a nominal variable (Köhler et al., 1996). 

The frequency of IGP in these experiments was compared using χ2 tests with 

Yate’s correction for continuity recommended for small sample sizes (Sokal and 

Rohlf, 1995). Percentages of syrphid eggs consumed by a predator in the 

absence and in the presence of aphids were tested using ANOVA. Data were 

arcsine transformed before analyses (Sokal and Rohlf, 1995). 
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4.3. Results 
 

4.3.1. Consumption rate and developmental time of aphidophagous 
predators 

 

At 20 ± 1 o C, larval development of C. septempunctata and C. carnea took 

twice as long as that of E. balteatus (Fig. 4.1). Larvae of C. septempunctata 

consumed more prey biomass (154.4 ± 9.5 mg, SE) than did those of C. carnea 

(112.8 ± 4.6 mg, SE) or E. balteatus (91.9 ± 4.0 mg, SE) (F = 24.6; df = 2, 56; p 

< 0.0001). Late instars of all predators were more voracious than younger 

instars (Fig. 4.1). The molting and associated periods without feeding by larvae 

of E. balteatus were extremely short. Hence, molting could only be detected by 

direct observation. In contrast, molting in C. septempunctata and C. carnea 

could easily be detected by the shape of the aphid consumption curve. For both 

L1 and L2 of E. balteatus, development took an average of two days. 

Developmental time of both L3 C. carnea and L4 C. septempunctata were 

particularly long, lasting approximately seven days. 

 

The choice of individuals for use in IGP experiments depended on species-

specific behaviors. Directly after molting, larval instars of C. septempunctata 

and C. carnea were not very voracious. Thus, young instar larvae (L1 and L2 as 

well as L3 C. septempunctata) and old instar larvae (L4 C. septempunctata and 

L3 C. carnea) of both predators were collected 24 h and 48 h after molting, 

respectively, to standardize the voracity of the predators. Extended starvation 

periods prior to the onset of IGP tests were not necessary. Thus, all predator 

larvae were starved only for 3 h before the beginning of an experiment. 
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Fig. 4.1. Consumption rates (means) of E. balteatus (a), C. septempunctata (b) 

and C. carnea (c) during larval development (pea aphid A. pisum as 
prey). The amount of prey biomass eaten (in mg) was estimated as 
difference between prey input and remaining prey on a daily basis. 
The number of L4 aphids (given on the second y-axis) was calculated 
taking into account the consumed biomass (in mg) and the average 
weight of L4 A. pisum. Arrows indicate the moulting periods for the 
different larval stages of the predators. N = 22 for E. balteatus and C. 
septempunctata and N = 17 for C. carnea. 
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4.3.2. Intraguild predation 
 
Behavioral characterization of intraguild predation. During the first two 

hours of each experiment, interspecific interactions between predators were 

observed. First instar larvae of E. balteatus did not show defense reactions or 

counterattack behavior in confrontations, while older larval stages (L2 and L3) of 

E. balteatus used oral secretions (slime) to defend themselves against the 

opponent or to attack it. Counterattacks by E. balteatus were seldom observed. 

When E. balteatus larvae were superior in confrontations, the remaining body 

parts of the intraguild (IG) prey showed a rather large circular hole as a result 

from repeated mouthhook insertions and slime secretions on the whole body 

surface. C. carnea larvae could often be observed to recoil repeatedly from the 

opponent during confrontations, which increased the distance to the aggressor. 

When C. carnea was IG predator, species-specific puncture holes from the 

mandible insertion could be observed in the remaining body parts of the IG 

prey. Moreover, the color of E. balteatus pupae turned from light yellow to black 

when destroyed by C. carnea. In contrast, larvae of C. septempunctata did not 

recoil but showed the ability to orally secret a black defense fluid that caused 

the opponent to recoil. In these experiments, C. septempunctata were never 

observed to show reflex bleeding. When acting as an IG predator, C. 

septempunctata larvae used then mandibles to tear large irregular holes in 

prey. 

 

Based on these species-specific signs likely to be found on the remaining body 

parts of the IG prey, the behavioral interactions at the end of each experiment 

could be classified as (1) opponent dead and eaten by the IG predator, 

species-specific signs were present on the remaining parts, (2) the opponent 

dead but not eaten by the IG predator, species-specific signs indicated 

aggressions, (3) the opponent alive but was engaged in counterattacks or 

defensive behaviors, indicated by species-specific signs on its body, or (4) the 

opponents were both alive and showed no obvious signs of aggressions. A 

classification of confrontations is summarized in Table 4.1. In experiments 

where E. balteatus larvae were IG prey, both IG predator species, C. 

septempunctata and C. carnea larvae, consumed their prey items. In those 



Intraguild Predation 

 

 

42 

cases where E. balteatus larvae behaved as IG predator, a large proportion of 

C. septempunctata larvae survived an aggression, i.e., were not consumed by 

E. balteatus (Table 4.1). In contrast, C. carnea larvae were consumed, killed or 

survived an attack of E. balteatus in equal proportions, depending on the 

relative body size of IG prey (C. carnea) and IG predator (E. balteatus). There 

were very few contacts between E. balteatus and A. aphidimyza. In those cases 

where E. balteatus and A. aphidimyza did come into contact, A. aphidimyza 

was killed and its body fluids sucked out by E. balteatus. 

 

Intraguild predation on eggs of E. balteatus. In all experiments, C. 

septempunctata and C. carnea larvae preyed on E. balteatus eggs. Particularly 

in the absence of aphids, the percentage of E. balteatus eggs consumed was 

related to the developmental stage of the predatory larvae. The larger the 

larvae, the more eggs of E. balteatus they consumed, leading in many cases to 

more than 70% egg mortality in small arenas (Fig. 4.2a and 4.3a) and 40% egg 

mortality in large arenas (Fig. 4.2b and 4.3b). In the presence of aphids in small 

arenas, young instars (L1) of both predators and older instars of C. 

septempunctata consumed less than 20% of the eggs (Fig. 4.2 and 4.3), while 

old C. carnea larvae killed approximately 50% of E. balteatus eggs (Fig. 4.3a). 

In general, the presence of extraguild prey both in small and large arenas 

significantly reduced predation on E. balteatus eggs by C. septempunctata (F = 

114.14; df = 1, 58; p < 0.0001 and F = 6.89; df = 1, 28; p= 0.014, respectively) 

and C. carnea larvae (F = 12.70; df = 1, 88; p < 0.0001 and F = 16.75; df = 1, 

28; p < 0.0001, respectively). Increasing the foraging arena reduced predation 

on E. balteatus eggs by L3 C. carnea both in the absence and presence of 

extraguild prey (F = 24.29; df = 1, 28; p < 0.0001 and F = 11.80; df = 1, 28; p = 

0.002, respectively). However, the reduction in predation by L4 C. 

septempunctata was only significant in the absence of aphids (F = 30.90; df = 

1, 28; p < 0.0001 and F = 0.34; df = 1, 28; p = 0.566, respectively) 
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Fig. 4.2. Intraguild predation on syrphid eggs by C. septempunctata. The 

frequency of IGP was determined in small (a) and in large arenas (b). 
Bars represent the mean percentage (± SE) of syrphid eggs 
consumed during a 24h interval in small (a) and in large arenas (b). * 
indicate significant differences between treatments with and without 
aphids (p < 0.05, ANOVA), ns = not significantly different. The 
number (N) of replicates with IGP is given below each bar (in total N 
= 15). 

 

Intraguild predation on L1 E. balteatus. In the absence of aphids, L1 E. 

balteatus turned out to be highly vulnerable to IGP, even when confronted with 

the same larval developmental stages of the two other predators C. 

septempunctata and C. carnea (Fig. 4.4a and 4.5a). No IGP was recorded 

when L1 E. balteatus were exposed to A. aphidimyza larvae (Fig. 4.6). In 

experiments with C. septempunctata and C. carnea, the presence of aphids 

significantly decreased the frequency of IGP (χ2, value = 42.1; df = 1; p < 

0.0001; N = 60) (Figs. 4.4 and 4.5). In large arenas, IGP on L1 E. balteatus 

could not be verified. Because of their small body size, surviving larvae could 

not be located. Remains of dead L1 also could not be found on the plants. 

Therefore, IGP on L1 E. balteatus in large arenas could not be evaluated. 
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Fig. 4.3. Intraguild predation on syrphid eggs by C. carnea. The frequency of 

IGP was determined in small (a) and in large arenas (b). Bars 
represent the mean percentage (± SE) of syrphid eggs consumed 
during a 24 h interval in small (a) and in large arenas (b). * indicate 
significant differences between treatments with and without aphids (p 
< 0.05, ANOVA), ns = not significantly different. The number (N) of 
replicates with IGP is given below each bar (in total N=15). 

 

Intraguild predation on L2 E. balteatus. In small arenas and in the absence of 

aphids, L2 of E. balteatus was only vulnerable to late instars and adults of C. 

septempunctata (Fig. 4.4a) and to late instar larvae of C. carnea (Fig. 4.5a). 

When exposed to L3 C. septempunctata or L2 C. carnea, the predatory 

interference was symmetrical: L2 E. balteatus fed on other predators and vice 

versa. When L2 E. balteatus were confronted with younger instars of C. 

septempunctata, C. carnea or with late instars of A. aphidimyza, E. balteatus 

larvae were able to kill other predators (Figs. 4.4, 4.5 and 4.6). In the presence 

of extraguild prey, IGP on L2 E. balteatus by C. septempunctata and C. carnea 

decreased in small arenas significantly (χ2, value = 40.24; df = 1; p < 0001; N = 

180) (Figs. 4.4a and 4.5a), while in large arenas IGP remained constant in 

presence and absence of extraguild prey (χ2, value = 0.32; df = 1; p = 0.57; N = 

90) (Fig. 4.4b and 4.5b). 

 

Intraguild predation on L3 E. balteatus. Compared to L2, a reduced frequency 

of IGP was recorded between L3 E. balteatus larvae and L3 C. septempunctata 
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and L4 C. carnea, respectively. However, in small arenas and in the absence of 

aphids, in most cases E. balteatus larvae were killed by adult as well as by L4 

C. septempunctata and IGP was reduced significantly in the presence of aphids 

(χ2, value = 21.01; df = 1; p < 0.0001; N = 30) (Fig. 4.4a). In large arenas, 

hardly any L3 E. balteatus were killed by adult or L4 C. septempunctata and 

there was no significant difference between the treatments with and without 

aphids (χ2, value = 0.00; df = 1; p = 1; N = 30) (Fig. 4.4b). In contrast, L3 E. 

balteatus were superior in confrontations with L2 and L3 of C. carnea (Fig. 4.5). 

When interacting with earlier larval instars of the other predators as well as with 

all stages of A. aphidimyza (Fig. 4.6), L3 E. balteatus behaved as an intraguild 

predator. 

 

Intraguild predation on E. balteatus pupae. Neither larvae nor adults of C. 

septempunctata preyed on E. balteatus pupae (Fig. 4.4). L3 C. carnea but not 

L1 or L2 were able to feed on E. balteatus pupae. In the absence of aphids and 

in small arenas, the mortality risk for pupae of E. balteatus was about 33%. 

Increasing the foraging arena did not affect the mortality risk for E. balteatus by 

C. carnea larvae neither in the absence nor in the presence of aphids (χ2, value 

= 1.08; df = 1; p = 0.30; n = 30 and χ2, value = 0.54; df = 1; p = 0.46; N = 30; 

respectively) (Fig. 4.5).  
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Fig. 4.4. Intraguild predation between different developmental stages of E. 
balteatus and C. septempunctata in small arenas (a) and in large 
arenas (b). Bars represent the number of replicates (in total N = 15) 
where the opponent was IG prey. Significant differences in the 
number of predator aggressions are indicated with * (p < 0.05, χ2 
tests with Yate’s correction for continuity). L1-L4 = larval 
developmental stages 1 – 4, P = pupae, A = Adult.  
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Fig. 4.5. Intraguild predation between different developmental stages of E. 

balteatus and C. carnea in small arenas (a) and in large arenas (b). 
Bars represent the number of replicates (in total N=15) where the 
opponent was IG prey. Significant differences in the number of 
predator aggressions are indicated with * (p < 0.05, χ2 tests with 
Yate’s correction for continuity). L1-L3 = larval developmental stages 
1 – 3, P = pupae. 
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Fig. 4.6. Intraguild predation between different developmental stages of 

E. balteatus and A. aphidimyza in small arenas in the absence and 
presence of extraguild prey. Bars represent the number of replicates 
(in total N =15) where the opponent was IG prey. Significant 
differences in the number of predator aggressions are indicated 
with * (p < 0.05, χ2 tests with Yate’s correction for continuity). L1 - L3 
= larval developmental stages 1 – 3, young = 48 h old larvae, old = 
120 h old larvae. 

 
Influence of extraguild prey (aphids) and different assay arenas on IGP. 
The outcome of interspecific interactions between the different predators was 

significantly influenced by both the availability of extraguild prey and by the size 

of the arena. In all but one experiment, the presence of aphids as extraguild 

prey significantly reduced the frequency of IGP (Table 4.2). In all treatments, 

the total number of IGP events decreased by half in the presence of aphids. 

The same trend of interspecific relationships was observed for E. balteatus and 

C. septempunctata and for E. balteatus and C. carnea. In the absence of 

extraguild prey, a significantly higher level of IGP was recorded in small 

compared to large arenas (Table 4.3). 
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Table 4.2. The effect of extraguild prey (aphids) on IGP between E. balteatus 
(eggs, larvae and pupae) and other aphidophagous predators. 
Numbers represent the sum of predatory interference between the 
opponents either in presence or absence of extraguild prey. 
Significance level was estimated by χ2 tests with Yate’s correction 
for continuity.  

 

Occurrence of IGP 
Predator species Arena type N 

No-aphids Aphids 
p 

Small arena 360 115  26 0.001 
C. septempunctata 

Large arena 180   22  12  0.087 

Small arena 300   98   32  0.001 
C. carnea 

Large arena 150    21     7  0.006 

A. aphidimyza Small arena 120   15     3  0.005 

 
 
 
Table 4.3. The effect of arena size on IGP between E. balteatus (eggs and 

larvae and pupae) and other aphidophagous predators. Numbers 
represent the sum of predatory interference between the opponents 
either in small arenas or in large arenas. Significance level was 
estimated by χ2 tests with Yate’s correction for continuity. 

 

Occurrence of IGP 
Predator species Aphids N 

Small arena Large arena 
p 

Absence 180 64  22  0.001 
C. septempunctata 

Presence 180 16  12 0.537 

Absence 150 39  21  0.005 
C. carnea 

Presence 150  15   7  0.106 
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4.4. Discussion 
 

Under laboratory conditions, the role of immature developmental stages of 

E. balteatus within the guild of aphidophagous predators was characterized. 

Direct and indirect interactions between predators are one of the most recently 

identified factors that determine the abundance and densities of predators 

(Janssen et al., 1998). The focus of this study was on direct interactions 

between E. balteatus and other aphidophagous predators. These interactions 

may include defense behavior of E. balteatus larvae and tropic interaction, e.g. 

IGP. The results with E. balteatus confirm that the size of the respective 

predator determines the outcome of the interaction, with larger individuals 

behaving as IG predators and smaller individuals becoming IG prey (Sengonca 

and Frings, 1985; Polis et al. 1989; Lucas et al, 1998; Snyder and Wise, 1999). 

Confrontations between predators of similar size often resulted in symmetric 

interactions where neither species consistently took on the role of the IG 

predator. The importance of body size for the outcome of interspecific 

interaction reflects the sum of species-specific behavioral and morphological 

attributes: (i) weapons and attack behavior, (ii) body strength of the opponents, 

(iii) defense mechanisms and (iv) escape mechanisms. Each of these factors 

will be discussed separately and finally the role of extraguild prey and size of 

foraging arenas are considered to explain the mortality risk for E. balteatus by 

intraguild predation. 

 

4.4.1. Role of attack, strength and defense mechanisms for the hierarchy 
of IGP 
 

Large individuals are able to fight longer than small individuals because of 

proportionally larger energy reserves (Peter, 1983; Griffiths, 1991). Additionally, 

they have larger mandibles (Griffiths, 1992). Therefore, they could usually 

overcome the adversary. In E. balteatus, the L2 was the first developmental 

stage that was able to kill larvae of C. septempunctata, C. carnea and A. 

aphidimyza. This ability was mainly due to well-developed mouthparts of L2, 

with the triangular sclerites already present (Tinkeu and Hance, 1998) and an 

increased slime production in L2 compared to L1 E. balteatus (D. Hindayana, 
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pers. observation). Slime is used by syrphid larvae as sticky salivary glue to 

capture prey and as a defensive secretion (Eisner, 1971). L3 produced 

considerably more slime than the younger instars, and had a higher mobility. 

Consequently, they able to attack opponents or defend themselves better 

against attacks by other predators. Adversaries that came into close contact 

with the defensive slime secretions of E. balteatus larvae but were not killed 

sometimes until to 16 %recovered (Table 1). 

 

Coccinellid larvae excreted orally a black defense fluid, containing alkaloids 

(Ceryngier and Hodek, 1996). Oral secretions of L4 C. septempunctata were 

effective against larvae of E. balteatus. After contact with the defensive fluid of 

coccinellids, L3 E. balteatus were immobilized, but recovered after a few 

minutes and started crawling again. Additionally, spikes on the dorsal 

integument of C. septempunctata larvae prevent successful attacks of E. 

balteatus larvae. L3 C. carnea possess powerful mandibles (Romoser and 

Stoffolano, 1998) and were able to pierce E. balteatus pupae. However, C. 

carnea larvae were repelled by the slime secreted by larval E. balteatus. In 

general, defense mechanisms were less pronounced in less sessile stages like 

eggs, L1 and pupae. These developmental stages have few possibilities to 

defend themselves against a predator’s attack (New, 1991). All instars of the 

rather small, immobile and defenseless A. aphidimyza larvae were always IG 

prey to E. balteatus larvae. Lucas et al. (1998) also showed that A. aphidimyza 

was an easy IG prey of the coccinellid Coleomegilla maculata lengi Timberlake 

and the chrysopid Chrysoperla rufilabris (Burmeister). 

 

Certain predators usually have low predation rates on inactive prey (Englund, 

1997; Eubank and Denno, 2000). The observations indicated that E. balteatus 

belongs to this category. E. balteatus larvae were more mobile in the presence 

of actively foraging predators (D. Hindayana, unpubl. data) and the encounter 

risk between E. balteatus and C. carnea was lower than between E. balteatus 

and C. septempunctata. The high mobility of C. septempunctata larvae caused 

the high activity of E. balteatus larvae, thus increasing the probability of IGP. By 

contrast, in both small and large arenas, C. carnea larvae were less active. 

Chang (1996) observed that the lacewing Chrysoperla plorabunda Fitch often 
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hides in the leaf-axil when inactive. Hiding in a shelter could reduce the number 

of contacts with other predators, and thereby minimizes the risk of IGP. In 

addition, we observed that most often L3 C. carnea avoided counterattacks and 

tried to escape from E. balteatus larvae. 

  

Lucas et al. (1998) concluded that highly-specialized aphid predators like A. 

aphidimyza are completely ineffective in conflicts with more generalist predators 

like C. maculata lengi and C. rufilabris. According to the results here, this does 

not necessarily apply to all specialist predators in the same way. Larvae of E. 

balteatus, a specialist predator of aphids, were able to defend themselves and 

could kill more generalist coccinellid and chrysopid predators. In interspecific 

confrontations, predator size and defense behavior seems to be more important 

than prey specificity. 

 

The experiments showed that the potential for predatory interference between 

larvae of E. balteatus and other aphidophagous predators depends on the body 

size, foraging activity and defense behavior, with large individuals usually 

behaving as intraguild predators, and small individuals prey. In confrontations 

between E. balteatus and C. septempunctata or C. carnea, for example, there 

is a dynamic shift in the behavior of E. balteatus from that of an IG predator to 

an IG prey as the relative size of the life stages of two confronting species 

change. E. balteatus L2 as an IG predator in confrontations with C. 

septempunctata L1 and L2, while symmetric IGP could be observed with L3 

larvae. The role of E. balteatus, however, shifted to that of IG prey in 

confrontations with L4 or adults of C. septempunctata. Similar shifts in the 

behavior could be observed in confrontations with C. carnea. Figure 4.7 

summarizes the changes in the hierarchy of the different developmental stages 

of E. balteatus within the guild of synchronized aphid antagonists in relation to 

larval development of each species. Such situations can occur when several 

antagonists are released in a greenhouse at the same time.  
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Fig. 7 Linkage between the developmental time of larval instars and the 

occurrence of IGP between E. balteatus and C. carnea as well as C. 
septempunctata in a perfectly synchronized antagonist community. 
Arrows indicate the direction of IGP, pointing towards IG prey. The graph 
is based on the results obtained in small arenas and absence of 
extraguild prey. L1-L4 = larval developmental stages 1 – 4. 

 

Moreover, the figure shows that E. balteatus larvae develop twice as fast as C. 

septempunctata and C. carnea. Molting phases during which predators might 

be extremely vulnerable were not observed during larval development of E. 

balteatus. Fast larval development in general is interpreted as an adaptation to 

limited resource availability (Mattson, 1980; Scriber and Slansky, 1981). 

Additionally, the experiments showed that short developmental times could be 

interpreted as adaptation to minimize exposure times of vulnerable stages to 

high predation risks. The rapid larval development of E. balteatus without 

reduced mobility during molting periods minimizes the exposure times of 

susceptible young larval stages. E. balteatus grows rapidly and L2 change in the 

hierarchy within the antagonist guild quickly from IG prey to IG predator (Fig. 

4.7). 
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4.4.2. Influence of extraguild prey and assay arenas on IGP 
 

The presence of extraguild prey could either increase or decrease the 

probability of IGP or could have no effect (Lucas et al., 1998). A decrease could 

be due to a dilution effect by the extraguild prey, while an increase could be the 

result of predator aggregation in prey colonies. Meyhöfer and Hindayana (2000) 

observed that IGP on parasitoid mummies was similar in the presence and 

absence of extraguild prey. This indicates that aggregation of predators in aphid 

colonies and the dilution effect might offset each other. Lucas et al. (1998) 

proposed four different scenarios to characterize the role of extraguild prey in 

IGP.  

1). IGP might decrease steadily with increased extraguild prey densities (e.g., 

predation of the phytoseiid Amblyseius cucumeris Oudemans by the 

predatory bug Orius tristicolor [White]). 

2). IGP might decrease exponentially as extraguild prey is introduced (e.g., 

confrontation between L1 C. rufilabris and L1 C. maculata). 

3). IGP might be constant regardless of extraguild prey density (e.g., 

confrontation between L3 C. rufilabris and L1 C. maculata). 

4). IGP might remain constant and high at low extraguild prey densities but 

decrease at very high densities (e.g., confrontation between L3 C. rufilabris 

and old larvae of A. aphidimyza). 

The results show that the presence of extraguild prey reduced predatory 

interference between E. balteatus and C. septempunctata, C. carnea, or A. 

aphidimyza, irrespective of the size of the arena, and led to a threefold 

decrease in IGP (Tab. 4.2). Since different densities of extraguild prey were not 

tested, it is impossible to distinguish between a linear or exponential decrease 

in IGP. However, the impact of extraguild prey on the role of E. balteatus within 

predator guild seems to be best explained by the scenario of Lucas et al. 

(1998) in which IGP decreases with increased the extraguild prey density. 

 

The presence or absence of extraguild prey may not only influence the direction 

and outcome of IGP, but also the foraging behavior of the predators. The size 

of the experimental arenas has an important effect on IGP (Chang, 1996). 

Depending on the different assay arenas and the availability of extraguild prey, 
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the results reflect different levels of IGP, i.e., strong, intermediate and moderate 

levels of IGP. Strong IGP, when more than 50% of the confrontations end with 

predatory interference was found only in small arenas in the absence of 

extraguild prey. These experiments in small arenas show the potential outcome 

of predatory interference between two antagonists and allowed to estimate the 

effectiveness of attack and defense mechanisms (Diamond, 1986; Wiens, 

1989; Levin, 1992) prior to more complex situations (Diamond, 1986; Kareiva, 

1990). However, strong IGP with 50% predatory interference are also frequently 

observed in the field in extreme situations, i.e., when extraguild prey 

populations rapidly decrease and predator densities are still high (Rosenheim et 

al., 1993; Snyder and Wise, 1999; Meyhöfer and Hindayana, 2000). 

Intermediate levels of IGP, with predatory interference between 20-50%, were 

observed either in small foraging arenas in the presence of aphids, or in larger 

arenas without extraguild prey (Table 4.3). Occurrence of symmetry and 

probability of IGP was similar in both situations. In the presence of aphids, IGP 

most likely was reduced because of the dilution effect, which increases the 

chances of survival for the competing predators (Taylor, 1984; Turchin and 

Kareiva, 1989; Lucas et al., 1998; D. Hindayana, unpub. data). In larger 

foraging arenas, the predators were able to stay in refuge patches (Englund, 

1997). However, a larger searching arena and the presence of extraguild prey 

did not completely prevent IGP, although the occurrence of IGP was reduced 

approximately fivefold compared to small arenas (moderate IGP, less than 20% 

predatory interference). It is believed that the incidence of IGP in large arenas 

and in the presence of extraguild prey is related to the defense mechanism of 

aphids and the searching activity of predators. C. septempunctata can dislodge 

nearly 60% of A. pisum from the plant (Losey and Denno, 1998a). In 

consequence, two predators forage for prey on the same plant and on similar 

foraging paths and extraguild prey gets scarce, while the chances of IGP 

increase. 

 

4.5. Conclusion 
 

In carnivore guilds, IGP is the result of a cascade of foraging decisions leading 

to various degrees of interference between predators. The oviposition decisions 
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of adults, whether eggs are laid singly or in batches, the foraging behaviors of 

young and old larvae, larval defensive abilities, the phenology and 

developmental times of predators, and the effect of extraguild prey density, all 

influence the extent of IGP. Because of these factors, the current knowledge is 

insufficient to predict the importance of IGP at the community level. For E. 

balteatus, it can be concluded that the egg stage and young developmental 

stages are particularly vulnerable to IGP. Intraguild predation as a possible 

mortality risk for antagonists should not be neglected when explaining pest 

population dynamics in the field or in IPM projects. Especially in greenhouses 

where a diverse guild of predators is often employed, IGP might be of primary 

importance. 
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5. The effect of predator combination on population dynamics 
and dispersal of aphids 

 
 
5.1. Introduction 

 
Studies on predator-predator interactions and their consequences for prey 

population dynamics are relatively new (Kareiva, 1994; Losey and Denno, 

1998b). Traditional research on pest population regulation emphasizes 

chemical input, resistant plant varieties or specific natural enemies (Letourneau 

and Andow, 1999) with focus on individual pairwise interactions at any time 

(Kareiva, 1994). In nature, however, things are far more complex. Interactions 

among predators, for instance, can have a substantial effect on the total impact 

of an antagonist guild on the pest population dynamics. The term intraguild 

predation (IGP) (Polis et al., 1989) is nowadays most commonly used for trophic 

interference among natural enemies. 

 

In theory intraguild predation can lead to three different effects on pest 

population regulation, i.e. synergistic, additive or non-additive effects (Ferguson 

and Stiling, 1996). Synergistic effects of two natural enemies on the pest 

population can be found when their impact is higher than the expected value, 

i.e. the sum of the impact of each antagonist on its own. This effect can occur 

when the foraging activity of one predator species alters the behavior or feeding 

niche of the prey, making it more susceptible to another predator (Losey and 

Denno, 1998b and 1999; Soluk, 1993). An additive effect might occur when 

natural enemies do not interact, so that the total level of prey mortality is equal 

to the individual mortality rates (additive mortality) (Ferguson and Stiling, 1996; 

Losey and Denno, 1998b). A non-additive effect can be observed when one 

natural enemy kills or interferes with another natural enemy (Losey and Denno, 

1998b). In case of non-additive effects the impact of the antagonists on the pest 

population is less than the additive effects or the mortality caused by one 

natural enemy alone (Ferguson and Stiling, 1996). Synergistic or at least 

additive effects should be favored in all biological control efforts. 
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The presence of natural enemies in a certain habitat not only reduces the prey 

population but also changes its distribution (Sih, 1987). Predators are 

responsible for proximate and also for olfactory cues (Bargen, 1998) and prey 

directly respond with defense behaviors against natural enemies. Defensive 

responses such as kicking, walking away and especially dropping off from the 

plant are known to be the most common escape behaviors of aphids for 

increasing individual survival (Klingauf, 1967; Niku, 1971; Roitberg and Myers, 

1977 and 1979; New, 1991; Losey and Denno, 1998). In a similar fashion the 

alteration of prey activity in the presence of predators was observed for 

caterpillars (Stamp and Bowers, 1992). Moreover, sucking pests (Homoptera, 

Heteroptera) can function as vectors for various diseases. As a consequence 

predator induced dispersal of the prey might have an indirect impact on the 

spread of certain plant diseases within a crop (Niku, 1971). On the other hand, 

alteration in the distribution of prey could also be of advantage for some 

predators, since some of them cannot perceive preys at a great distance and 

rely on random searching movement to locate the prey (Gutierrez et al., 1980; 

New, 1991; Berenbaum, 1995). The more prey disperses the higher is the 

possibility for predators to encounter them. 

 

In central Europe, E. balteatus is the most common hoverfly and a voracious 

aphid predator in different crops. The aphid Acyrthosiphon pisum (Harr.) 

(Homoptera: Aphidae) is a common pest on leguminoceae such as clover, 

lucerne, and peas (Djafaripour, 1976; Suter, 1977) in central Europe and on 

alfalfa in North America (Roitberg and Myers, 1979; Gutierrez et al., 1980; 

Losey and Denno, 1998). In almost every habitat where aphids occur a whole 

range of aphid antagonists can be found (Brown, 1977; Groeger, 1993; 

Hindayana & Meyhöfer, unpub. data; Nunnenmacher, 1998; Tenhumberg, 

1993) and interspecific interactions between natural enemies can be expected. 

Moreover, the pea aphid A. pisum can cause not only direct damage on the 

plant by causing leaf yellowing, stunting and even plant death (Guiterez et al., 

1980), but also indirect damage as a virus vector for the pea enation mosaic 

virus (Farah, 1968; Adam, 1976). Since A. pisum is known to escape from 

predator attacks by use of alarm pheromones and dropping from the plants 
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(Klingauf, 1967; Niku, 1971; Losey and Denno, 1998a), it might speed up the 

spread of a virus disease.  

 

In this study the specific interactions of E. balteatus with two other 

aphidophagous predators, i.e. the ladybird C. septempunctata and the lacewing 

C. carnea, were investigated. The aim was to quantify the effect of predator 

combinations on the population dynamics and the distribution of the pea aphid 

A. pisum in the habitat. 

 

5.2. Materials and Methods 
 

5.2.1. Rearing of the insects 
 

Laboratory cultures were started with C. septempunctata and E. balteatus that 

were collected from a field near the Institute of Plant Diseases and Plant 

Protection in Hannover, Northern Germany, and with C. carnea obtained from a 

commercial supplier of biological control agents (Neudorff Ltd., Emmerthal, 

Germany). For all predator species, continuous laboratory cultures were 

established. E. balteatus was reared in accordance with the protocol of Bargen 

(1998). Bee pollen (Melzer's Bienenfarm, Bonn, Germany) and crystalline sugar 

were fed to promote egg production of adult females. Adult C. carnea were 

reared on an artificial diet (Hassan, 1975). Broad bean plants (cv. Hang down 

“Grünkernige”) with pea aphids were offered to both predator species for egg 

laying. Pea aphids on cut sections of broad beans were provided as prey for all 

developmental stages of the predatory species until pupation. Rearing 

conditions were 20 ± 1 o C, 50 ± 10% relative humidity, 16 h of daylight and a 

light intensity of approximately 5000 lux (cd/m2).  A more detailed description of 

the rearing procedures is given in chapter 4. 

 

5.2.2. Experimental set-up 
 

The experiments to evaluate the effect of single and combined predator impact 

on the population and distribution of aphids were conducted in a greenhouse at 

24 ± 2 0 C, 50 – 60 % relative humidity and 16 h of daylight. Two different arena 
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types with different spatial dimensions were used. A single broad bean with 4 

leaves in a plexiglas tube (15 cm diameter and 40 cm height) served as small 

arena, while 9 broad bean plants in a cage (75 x 56 x 52 cm) served as a large 

arena. The volume of the large arenas was approximately 30.9 times bigger 

than in the small arenas. In the large arenas nine broad bean plants were 

planted on a tray (48 x 30 x 7 cm). The distance between the individual plants 

was approximately 13 cm. At this distance plants do not touch each other and 

aphids as well as predators have to cross the soil to change plants. In both 

arenas, 30 synchronized L4 aphids were introduced as a starting population. 

Specimens were placed on the stem of the host plant close to the ground 3 h 

before the release of the predator larvae. Second instar larvae (L2, three days 

old) of E. balteatus, fourth instar larvae (L4, directly after molting) of C. 

septempunctata and third instar larvae (L3, two days after molting) of C. carnea 

were used in the experiments. Single and combined release of E. balteatus with 

either C. carnea or C. septempunctata was tested. E. balteatus larvae were 

released on the upper leaves of the broad bean plant, while C. septempunctata 

or C. carnea were released on the stem of the broad bean plant near the 

ground. In the cage, aphids and predators were released on the plant in the 

center of the tray (no. 5). Experiments were replicated 15 times in the plexiglas 

tubes and 10 times in the cages. 

 

The number of aphids per plant was counted every 24 h over a period of 5 

days. The average number of aphids per day in the presence of different 

predator species was compared with repeated measures ANOVA, and in case 

of significant differences, followed by a bonferroni posthoc test (Sokal and 

Rohlf, 1995). The data of the proportions of aphids in the various plant 

locations, i.e. canopy, first leaf (Leaf-1), second leaf (Leaf-2), third leaf (Leaf-3), 

stem and off-plant, were arc-sin transformed. The distribution of aphids within 

and among plants was analyzed using a method developed by Lloyd (1967). He 

named the distribution parameter as “patchiness” of a given distribution. 

Changes in population density have little impact on this parameter. 
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Patchiness is defined as: 

mean crowding (X*) / mean (X) 

where mean crowding (X*) is defined as 

X*  =  X + (S2/X – 1) 

with S2 being the population variance. Values of patchiness less than, equal to, 

or bigger than 1 indicate uniform, random and aggregated distribution. The 

patchiness index was rank transformed for the comparison between different 

treatments and analyzed with a nonparametic ANOVA, i. e. the Kruskal-Wallis 

test for measure differences in location and in case of significant differences, 

followed by the Kolmogorov-Smirnov two-sample test (Sokal and Rohlf, 1995). 

 

5.3. Results 
 

5.3.1. Impact of predators on population growth and dispersal of aphids 
within plants 

 

Aphid populations. All experiments were carried out in plexiglas arenas 

covering a single plant. Therefore neither aphids nor predators had the 

possibility to spatially escape from predation. The growth of the aphid 

populations under different treatments and the aphid distributions within a single 

plant were analyzed. The repeated measures ANOVA showed a statistically 

significant TREATMENT x TIME effect (p<0.001) that indicates that the 

population growth was different under the tested treatments (Fig. 5.1, Table 

5.1). The presence of either a single predator or a combination of two predator 

species significantly reduced the population growth of the pea aphid compared 

to the control (Table 5.2). Most of the single predator species treatments had a 

similar impact on the aphid population growth and were not significantly 

different from each other or from the predator combination treatment of E. 

balteatus and C. septempunctata (Fig. 5.1a, Table 5.2). On the contrary the 

simultaneous treatments of E. balteatus with C. carnea had a significantly 

higher impact on the aphid population in comparison with the single predator 

treatments (Fig. 5.1b, Table 5.2). Predator combination treatments were not 

significantly different from each other.  
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Fig. 5.1. Effects of predator combination on the aphid population growth of 

A. pisum on single plants in plexiglas arenas. E. balteatus was tested 
simultaneously with C. septempunctata (a) or C. carnea (b). N = 12 for 
C. carnea, all other treatments N = 15, mean number of aphids ± SE. 

 

At the end of the experiments, the mean number of aphids in the presence of 

E. balteatus, C. septempunctata and C. carnea was approximately 2 times less 

than in the control (613.9 ± 23.9 (SE) aphids/plant) (p < 0.0001, p < 0.0001 and 

p < 0.0001). When two predators were combined the mean number of aphids 

was 4.2 times less for E. balteatus and C. septempunctata (147.9 ± 43.3, SE) 

and 6.0 times less for E. balteatus and C. carnea (102.7 ± 21.1, SE) compared 

to the control. In the combined treatment with E. balteatus and C. 

septempunctata intraguild predation was observed in 5 replicates. The syrphid 
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larvae were killed by the coccinellid larvae in all cases. Compared to the 

replicates without IGP the effectiveness of the predators in the presence of IGP 

was slightly reduced (see Fig. 1a), although the reduction was not significant (t-

test, t = -0.804; df = 23; p = 0.429). Intraguild predation in a predator 

combination of E. balteatus and C. carnea was not observed. 

 

Table 5.1. Repeated measures ANOVA of the population growth (plexiglas 
cylinders) for a period of five days. Six treatments were considered: 
control, single predator treatments (E. balteatus, C. septempunctata, 
C. carnea), combined predator treatments (E. balteatus + 
C. septempunctata, E. balteatus + C. carnea). N = 12 for C. carnea, 
all other treatments N = 15. 

 
Between subjects 

Source 
df MS F P>F 

Treatment     5   399272.4  43.64 < 0.001 

Error   81       9150.0   

     

Within subject 

Source 
df MS F P>F 

Time      4 1000513.4 401.76 < 0.001 

Treatment x Time    20     85432.3   34.31 < 0.001 

Error (time) 324       2490.4   

 

Aphid dispersal. The distribution of aphids was analyzed at two different times: 

(1) immediately after the release of the predator to estimate initial dispersal and 

(2) at the end of the experiment (day 5) when aphid dispersal to refuge patches 

had been more or less established. The within plant distribution of aphids varied 

between the different treatments and days (ANOVA, F = 2.97; df = 25, 486; 

p < 0.0001 for the second day and F = 3.69; df = 25, 486; p < 0.0001 for the fifth 

day). In general, aphids preferred young leaves in or near the top of a plant.  
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Table 5.2. Significant differences in the aphid population growth between 
different treatments (plexiglas cylinders) (Bonferoni posthoc test). Six 
treatments were considered: control, single predator treatments (E. 
balteatus, C. septempunctata, C. carnea), combined predator 
treatments (E. balteatus + C. septempunctata, E. balteatus + C. 
carnea). N = 12 for C. carnea, all other treatments N = 15 

 

 Control 
E. balteatus 

(E. b.) 

C. septempunctata 

(C. s.) 

C. carnea 

(C. c.) 

E. b. + 

C. s. 

E. b. + 

C. c. 

Control -      

E. balteatus < 0.001 -     

C. septempunctata < 0.001 n.s. -    

C. carnea < 0.001 n.s. n.s. -   

E. b. + C. s. < 0.001 n.s. n.s. 0.038 -  

E. b. + C. c. < 0.001 0.002 0.026 0.001 n.s. - 

 

Approximately 60% of the aphid population could be found on Leaf-3 and the 

canopy of the broad bean plant, while equal proportions (approximately 15%) 

were located on the other leaf pairs (Fig. 5.2). In the presence of most of the 

tested predators aphids still preferred the canopy as feeding habitat, but leaves 

near the canopy (leaf-3) were more attractive than in the control (Fig. 5.2, Table 

5.3). The only exception was found in experiments with C. carnea as predator. 

On the fifth days less then 20% of the aphid population were found in the 

canopy while on the other leaf pairs similar proportions of approximately 25% 

were located and a fraction of less than 3% was found off plant (Fig. 5.2, Table 

5.3). 

 

The evidence of patchiness was significantly different between treatments on 

the second day (Kruskal-Wallis test, value = 17.1; df = 5; p = 0.004) and on the 

fifth day (Kruskal-Wallis test, value = 29.4; df = 5; p < 0.0001). Immediately after 

the release of the predators the aggregation index of the aphids was 

significantly reduced in the single predator treatments C. carnea and C. 

septempunctata and the predator combination treatment of E. balteatus and C. 

septempunctata compared to the control. Until the fifth day, the distribution of 

aphids within the plant slightly changed (Fig. 5.3). Only in the presence of C. 

carnea as single predator aphids tended to a more uniform distribution within a 

plant than in the presence of other predators (Fig. 5.3). The aphid populations in 

all other treatments had a similar aggregation index and were not significantly 
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different from each other or from the control, except in the combination of E. 

balteatus with C. carnea from control. 

 

Table 5.3.  Proportion of aphids on different parts of broad bean plants (± SE) 
in the presence of various predators on the second and the fifth day 
after the release of predators. Different letters (row) indicate a 
significant difference (p < 0.05, ANOVA followed by Bonferroni post 
hoc test). E. b. = E. balteatus, C. s. = C. septempunctata, C. c. = C. 
carnea, E. b. + C. s. and E. b. + C. c. = E. balteatus in  combination 
with C. septempunctata as well as with C. carnea. N = 12 for C. 
carnea, all other treatments N = 15. Data were arc-sin transformed 
before analysis. 

 

Plant 

part 
Day Control E. b. C. s. C. c. E. b. + C. s. E. b. + C. c. 

2nd   0.0 ± 0.0 
a 

  4.2 ± 1.8 
ab 

  2.5 ± 1.0 
ab 

  2.3 ± 1.2 
ab 

  7.9 ± 2.4 
b 

  0.4 ± 0.4 
a Off-

plant 
5th   0.1 ± 0.1 

ab 
  0.1 ± 0.1 

ab 
  0.0 ± 0.0 

a 
  0.8 ± 0.4 

b 
  0.3 ± 0.3 

ab 
0.1 ± 0.1 

ab 

2nd   0.9 ± 0.6 
n.s. 

  3.2 ± 2.0 
n.s. 

0.0 ± 0.0 
n.s. 

  1.4 ± 0.9 
n.s. 

  0.8 ± 0.5 
n.s. 

  0.7 ± 0.4 
n.s. Stem 

5th   3.0 ± 1.1 
bc 

  0.8 ± 0.5 
ab 

  0.1 ± 0.1 
a 

  5.6 ± 1.6 
c 

  0.0 ± 0.0 
a 

  1.3 ± 0.6 
ab 

2nd 31.0 ± 0.6 
n.s. 

22.9 ± 6.3 
n.s. 

14.3 ± 3.0 
n.s. 

28.3 ± 4.7 
n.s. 

14.7 ± 4.0 
n.s. 

29.5 ± 5.8 
n.s. Leaf-1 

5th 22.9 ± 5.7 
ab 

12.2 ± 3.5 
ab 

11.6 ± 3.5 
a 

28.3 ± 3.6 
b 

13.4 ± 6.2 
ab 

20.4 ± 4.1 
ab 

2nd 10.9 ± 2.7 
n.s. 

20.7 ± 2.4 
n.s. 

24.9 ± 4.2 
n.s. 

19.5 ± 3.2 
n.s. 

20.9 ± 4.7 
n.s. 

25.4 ± 4.7 
n.s. Leaf-2 

5th 7.1 ± 2.2 
a 

14.6 ± 2.2 
ab 

18.6 ± 3.3 
ab 

24.5 ± 2.7 
b 

18.4 ± 5.8 
ab 

23.5 ± 3.8 
b 

2nd 16.3 ± 4.2 
n.s. 

14.3 ± 2.1 
n.s. 

28.9 ± 4.7 
n.s. 

21.9 ± 3.1 
n.s. 

27.9 ± 6.2 
n.s. 

30.3 ± 5.1 
n.s. Leaf-3 

5th 10.5 ± 3.1 
n.s. 

17.2 ± 3.1 
n.s. 

23.5 ± 6.0 
n.s. 

24.4 ± 4.1 
n.s. 

25.5 ± 4.1 
n.s. 

21.9 ± 3.8 
n.s. 

2nd 40.8 ± 7.0 
b 

34.7 ± 5.5 
ab 

29.3 ± 5.5 
ab 

26.7 ± 5.2 
ab 

27.8 ± 6.2 
ab 

13.8 ± 4.7 
a Canopy 

5th 56.5 ± 7.1 
b 

55.3 ± 5.5 
b  

46.2 ± 8.0 
ab 

18.1 ± 1.9 
a 

42.4 ± 8.3 
ab 

30.8 ± 5.6 
ab 
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        Canopy,              Leaf-3,               Leaf-2,               Leaf-1,              Stem,              Off-plant 

 

                 Time (day)

                                      Control                                        E. balteatus

                    C. carnea                                C. septempunctata

        E. balteatus + C. carnea          E. balteatus + C. septempunctata

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������

�������
�������
�������

��������
��������

��������
�������� �������� �������

�������
�������
�������

��������
��������
��������

��������
�������� ��������

��������
�������
�������

�������
�������

��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

0%

20%

40%

60%

80%

100%

�������
�������
�������

��������
��������
�������� ��������

��������
��������
��������

��������
��������

�������
�������
�������
�������

��������
��������
�������� ��������

��������
��������

��������
��������
��������

��������
��������

�������
�������
�������

��������
��������

��������
��������

��������
��������
��������

��������
��������
��������

�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������

�������
�������
�������

��������
��������
��������

�������
�������
�������

�������
�������

��������
��������
��������

�������
�������
�������

��������
��������
��������

�������
�������
�������

�������
�������
�������

��������
��������
��������
��������

�������
�������
�������

��������
��������

�������
�������
�������

�������
�������
�������
�������

��������
��������
��������

�������
�������
�������

0%

20%

40%

60%

80%

100%

��������
��������
��������

��������
��������
��������

�������
�������
�������

��������
��������
��������

��������
��������

��������
��������
��������

��������
��������
��������

�������
�������
�������

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������

��������
��������
��������

�������
�������
�������

��������
��������
��������
��������

��������
��������
��������

��������
��������

��������
��������
��������
��������

�������
�������
�������
�������

��������
��������
��������

��������
��������
��������
��������
��������

�������
�������
�������

�������
�������
�������
�������

�������
�������

�������
�������
�������
�������

��������
��������
��������

�������
�������
�������
�������

�������
�������
������� �������

�������

�������
�������
�������

��������
��������
��������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������

��������
��������
��������

�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��������
��������
��������
��������

0%

20%

40%

60%

80%

100%

1 2 3 4 5

�������
������� �������

�������
�������
������� �������� ��������

��������

�������
�������
�������

�������
�������
�������

�������
�������

��������
��������
��������

��������
��������
��������

�������
�������
�������

�������
�������
�������

�������
�������
�������

��������
��������
��������

��������
��������
��������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

1 2 3 4 5

Pr
op

or
tio

n 
of

 a
ph

id
s/

pl
an

t p
ar

t

 
Fig. 5.2. Variation in the distribution of the aphid, A. pisum, on different parts of 

broad bean plants in the absence and in the presence of predators on 
five successive days. Bars indicate the proportion of the aphid 
population in the various plant parts. N = 12 for C. carnea, all other 
treatments N = 15. 
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Fig. 5.3. Variations in the mean (± SE) of the aggregation index of the aphid, 

A. pisum, within a single broad bean plant (plexiglas tubes) in the 
absence and in the presence of predators on five successive days. 
The “patchiness” method developed by Lloyd (1967) was used to 
calculate the aggregation index. Calculations were based on the 
number of aphids in six different plant parts: canopy, Leaf-1, Leaf-2, 
Leaf-3, stem and off-plant. Letters indicate significant differences (p < 
0.05, Kruskal-Wallis test and Kolmogorov-Smirnov two-sample test). N 
= 12 for C. carnea, all other treatments N = 15. Data were rank 
transformed before analysis.  
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5.3.2. Impact of predators on population growth and dispersal of aphids 
between plants 

 

Aphid populations. These experiments were carried out in an arena consisting 

of 9 broad been plants. Prey and predators were released on the plant in the 

center of the arena from which they started to disperse. Prey as well as 

predators (i.e. in the combination treatment) were able to stay in refuge patches 

and hence were able to escape predation. The presence of predators 

significantly reduced the population growth of the pea aphid. The repeated 

measures ANOVA showed a statistically significant TREATMENT x TIME effect 

(p<0.001), which indicates that the population growth was different in the tested 

treatments (Fig. 5.4, Table 5.4). In comparison with the control, the presence of 

the ladybird larvae as aphid predator was the only treatment that did not 

influence the population growth of the aphid (Fig. 5.4a, Table 5.5). All other 

single predator treatments and treatments with predator combinations 

significantly reduced the aphid population density (Fig. 5.4, Table 5.5). 

 

Table 5.4. Repeated measures ANOVA of aphid population growth (cages, 
large arena) for five days. Six treatments were considered: control, 
single predator treatments (E. balteatus, C. septempunctata, C. 
carnea), combined predator treatments (E. balteatus & C. 
septempunctata, E. balteatus & C. carnea). N = 6 for C. carnea and 
E. balteatus + C. carnea, all other treatments N = 10. 

 
Between subjects 

Source 

Df MS F P>F 

Treatment     5   399272.4 43.64 < 0.001 

Error   81       9150.0   

     

Within subject 

Source 

Df MS F P>F 

Time     4 1000513.4 401.76 < 0.001 

Treatment x Time   20    85432.3   34.31 < 0.001 

Error (time) 324      2490.4   
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Table 5.5. Significant differences in aphid population growth between the 
different treatments in cages (Bonferroni posthoc test). Six 
treatments were considered: control, single predator treatments (E. 
balteatus, C. septempunctata, C. carnea), combined predator 
treatments (E. balteatus & C. septempunctata, E. balteatus & C. 
carnea). N = 6 for C. carnea and E. balteatus + C. carnea, all other 
treatments N = 10. 

 

 Control 
E. balteatus 

(E. b. 

C. septempunctata 

(C. s.) 

C. carnea 

(C. c.) 

E. b. & 

C. s. 

E. b. & 

C. c. 

Control -      

E. balteatus 0.013 -     

C. septempunctata n.s. n.s. -    

C. carnea 0.049 n.s. n.s. -   

E. balteatus & 
C. septempunctata 

< 0.001 n.s. 0.001 n.s. -  

E. balteatus & 
C. carnea 

0.001 n.s. 0.013 n.s. n.s. - 

 

To the contrary, only a few predator treatments were found not to be 

significantly different from each other, i.e. a single predator treatment with E. 

balteatus or C. carnea. The treatments with predator combinations, however, 

turned out to be more efficient than the single predator treatment with C. 

septempunctata (Table 5.5). At the end of the fifth day the mean number of 

aphids in the single predator treatments E. balteatus and C. carnea was 

approximately two times less than in the control (489.8 ± 25.3 SE). On the other 

hand C. septempunctata was not able to reduce the population density (426.7 ± 

20.6, SE; p = 1.00). The combined effect of two different predator species led to 

a further reduction in the population density of the aphid compared to single 

predator treatments. In the presence of E. balteatus with either C. carnea (193.7 

± 45.8, SE) or C. septempunctata (184.3 ± 29.1, SE) the aphid population 

density was approximately 2.5 times less than in the control (489.8 ± 25.3, SE). 

In none of the treatments with predator combinations intraguild predation was 

observed (Fig. 5.4). 
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Fig. 5.4. Effects of predator combination on the aphid population growth of 

A. pisum on 9 broad bean plants in cages. E. balteatus was tested 
simultaneously with C. septempunctata (a) or C. carnea (b). N = 6 for 
C. carnea and E. balteatus + C. carnea, all other treatments N = 10. 

 
 

Aphid dispersal. The distribution of aphids was analyzed at two different times: 

(1) immediately after the release of the predator to estimate initial dispersal and 

(2) at the end of the experiment (day 5) when aphid dispersal to refuge patches 

had been more or less established. In the predator treatments, aphids started to 
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disperse immediately after the release of the predators from the center plant to 

neighboring plants (Fig. 5.5), while in the control treatment on the second day 

after release 99% of the aphids could still be found on the release site. The 

presence of predators forced 21% (E. balteatus and C. septempunctata) to 68% 

(C. carnea) of the aphids to leave the release site (center plant). The evidence 

of patchiness was significantly different between the treatments of the second 

day (Kruskal-Wallis test, value = 23.56; df = 5; p < 0.0001) and those of the fifth 

day (Kruskal-Wallis test, value = 29.19; df = 5; p < 0.0001). The presence of E. 

balteatus, C. carnea or a combination of both predators resulted in a 

significantly reduced aggregation compared to the control (Fig. 5.5 and 5.6), i.e. 

a more uniform distribution. To the contrary the presence of C. septempunctata 

alone or in combination with E. balteatus had no immediate impact on the 

aggregation of aphids on the second day (Fig. 5.5 and 5.6). Until the fifth day, 

the distribution of aphids on the plants generally developed into a uniform 

distribution in the presence of predators. All predator treatments showed a 

significant lower aggregation index than the control (Fig. 5.6). In the presence of 

E. balteatus, C. carnea or in the presence of a combination of E. balteatus and 

C. septempunctata a significant lower aggregation index could be determined 

than in treatment with C. septempunctata. The aggregation of aphids in all other 

treatments did not differ from each other (Fig. 5.6). 
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Fig. 5.5. Variations in the distribution of A. pisum populations on 9 broad bean 

plants in the absence and in the presence of predators on five 
successive days. Bars indicate the average proportion of the aphid 
population on the different plants. Numbers in brackets [(1) – (9)] 
indicate the position of the plant in the experimental arena. Aphids 
and predators were released on the plant (5) in the center of the 
arena. N = 6, for C. carnea and E. balteatus + C. carnea, all other 
treatments N = 10. 
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Fig. 5.6. Variations in the mean (± SE) of the aggregation index of the aphid, 

A. pisum, on 9 broad bean plants (cages) in the absence and in the 
presence of predators on five successive days. The “patchiness” 
method developed by Lloyd (1967) was used to calculate the 
aggregation index. Calculations were based on the number of aphids 
in 9 different plants. Letters indicate significant differences (p < 0.05, 
Kruskal-Wallis test and Kolmogorov-Smirnov two-sample test). N = 6, 
for C. carnea and E. balteatus + C. carnea, all other treatments N = 
10. Data were rank transformed before analysis. 
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5.4. Discussion 
 

5.4.1. Effect of predators on the population growth of A. pisum 
 
The presence of predator species reduced the population growth of the aphid 

A. pisum significantly. The impact of predators (in all treatments) on the aphid 

population in large arenas was lower compared to the impact on small ones. 

This can be explained by the different spatial dimensions of the arenas. While in 

the small arenas the movement of aphids was focused on one plant ensuring a 

small patch size with high prey density, aphids in the large arenas dispersed in 

enlarged patch sizes with low prey density and settled on plant parts which are 

less efficiently foraged by predators (refuges) (Englund, 1997). Apart from 

reduced efficiency, this situation increases energy loss of the predator. When 

single predator species, i.e. E. balteatus, C. carnea or C. septempunctata, were 

introduced into the arena the reduction in the aphid population density was 

similar in all cases, especially in small arenas. In large arenas, the population 

density of A. pisum in the presence of C. septempunctata was not significantly 

different from the control. The ladybird larvae seemed to have a low impact on 

the population development. This means that the consumption rate of C. 

septempunctata in the cages is much lower than the potential consumption rate 

observed in petri dishes (see Fig. 4.1, chapter 4). The consumption rate of the 

last instar larvae (L4) in petri dishes was approximately 76.1 ± 6.6 (SE) L4 A. 

pisum or 2/3 of the feeding capacity of C. septempunctata larvae during their 

development (100.3 ± 7.5, SE). The decreasing consumption rate in cages can 

partially be explained by the individual behavior since the larvae were rarely 

found in the prey colony. Similar patterns were also observed in the experiment 

in plexiglas arenas where the larvae were very often found on the cylinder 

surface. The principles underlying this phenomenon of larvae staying away from 

aphid colonies hasn’t been very well researched yet. However, possible 

explanations could be: (i) fitness of larvae which have not adapted yet to a large 

system, or (ii) unsuitability of prey and host plant, since the mobility of prey 

(Schneller, 1997) and the color (Lorenzetti et al., 1997) as well as the structure 

of plants (Carter et al., 1984) affected the preferences of predators, or (iii) the 

loss of orientation towards the aphid colonies due to intense pressure in the 
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rearing cage. In regard to the preferences of larvae to the host plant, Lorenzetti 

et al. (1997) observed that coccinellid, Harmonia axyridis Pallas were 

significantly more abundant on yellow than on green maize plants. It might as 

well be that broad bean plants were not attracted to C. septempunctata. In the 

field, Obrycki and Kring (1998) observed that populations of coccinellids were 

abundant in refuge habitats and only seasonally occurred in large numbers. In 

relation with the biological control program, ladybird beetles have been used 

successfully to control coccid pests (Hodek and Honek, 1996), however, their 

role as biological control agents of aphids has been disappointing so far 

(Hemptinne et al., 1992). Additionally, we still have no experience in using C. 

septempunctata to control aphids in greenhouses (Schneller, 1997), although 

these predators are taken as one of the important natural enemies against 

aphids (Krieg and Franz, 1989; Ministerium für Ländlichen Raum, Ernährung, 

Landwirtschaft und Forsten Baden-Württemberg, 1995; Schneller, 1997b; Flint 

and Dreistadt, 1998; Obrycki and Kring,1998).  

 

The combined effect of two predator species (E. balteatus & C. septempunctata 

and E. balteatus & C. carnea) reduced the population density of the aphid A. 

pisum in small as well as in large arenas more efficiently than a single predator. 

However, in most treatments the impact of two predators was lower than the 

sum of the impact observed in single predator species. The semi-natural 

conditions of the cage experiments revealed two different effects for the 

combined release of two predators. E. balteatus in combination with C. 

septempunctata had an additive effect on the aphid mortality, while E. balteatus 

in combination with C. carnea showed a non-additive effect. An additive effect is 

the result of two natural enemies that do not interact so that the total level of 

prey mortality is equivalent to their individual effects on the prey population 

(Ferguson and Stiling, 1996; Losey and Denno, 1998b). It could be suggested 

that additive or synergistic effects are difficult to obtain when the two predator 

species each have a high impact on the prey population and even more when 

they share the same foraging habitat. On the contrary a nice example of 

synergistic effects was shown by Losey and Denno (1998b and 1999), i.e. the 

combined effect of C. septempunctata as foliar-foraging predator and Harpalus 

pennsylvanicus (Colepotera: Carabeidae) as ground-foraging predator. Without 
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any foliar-foraging predators, H. pennsylvanicus had very little impact on the 

aphid population. Thus H. pennsylvanicus took advantage of facilitation 

mechanisms, i.e. when the foraging activity of one predator species alters the 

feeding behavior of the prey, making it more susceptible to attacks by another 

predator species (Soluk, 1993; Losey and Denno, 1998b and 1999).  

 

5.4.2. Aphid dispersal 
 

The biology and ecology of aphids suggests that aggregations occur in the 

absence of predators, since most aphid species are relatively immobile, 

reproduce parthenogenetically and form colonies (Gutierrez et al., 1980). 

However, Gutierrez et al., (1980) observed in their experiments that predation of 

the ladybird Hippodamia convergens (G.-M.) (Coleoptera: Coccinellidae) on 

aphids caused aphids to aggregate even more. The explanation for this 

contradiction was that predation by beetles tends to destroy the colony by 

consuming the aphids or causing them to flee to the stem. An increase of 

predation will not only lead to a lower average density but also to a smaller 

proportion of the stem being colonized – i.e. increasing the distance between 

the colonies. To the contrary, our experiments showed that the presence of any 

predator decreased the aggregation of aphids, both within plants and among 

plants (Fig. 2-3 and 5-6). The presence of foliar-foraging predators significantly 

increased the number of aphids that drop off the plant (Klingauf, 1967; Niku, 

1971; Losey and Denno, 1998a, see also Table 3 and Fig 2-8). Vibration of the 

predators during foraging induced the anti-predator response of the aphids 

(Klingauf, 1967; Niku 1971; Brodsky and Barlow, 1986; Losey and Denno, 

1998a). Aphids produce alarm pheromones as a warning to conspecifics to 

avoid areas with predator activity (Berenbaum, 1995; van Emden and Peakall, 

1996; Janssen et al., 1998).  

 

Brodsky and Barlow (1986) concluded that aphids have a flexible behavioral 

repertoire, which enables them to develop a case specific escape response to 

different predator species. Aphids dropped off a plant in response to the 

approach of a coccinellid beetle or started kicking with the hind legs when 

confronted with a foraging syrphid larvae, Metasyrphus corollae (Fab.). Nearly 
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6 % of the aphids dropped off the plant when the ladybird beetle, 

C. septempunctata, was present (Losey and Denno, 1998a), and Syrphus 

corrolae Fabr. has a strong effect on the dropping behavior of A. pisum (Niku, 

1971). The defense behavior of kicking with the legs is a successful way to 

escape when the predator reacts slowly. However, if the predator reacts faster, 

it may still capture the aphid even if it starts kicking. Therefore, when a fast 

reacting predator approaches (i.e., with a high foraging rate), kicking with the 

hind leg is likely to be unsuccessful. The anti-predator mechanisms of A. pisum 

were not quantified. However, the results suggested that dropping behavior was 

the most common strategy of A. pisum to escape from predator attacks. This 

behavior causes aphids to disperse rapidly and to aggregate again in smaller 

colonies in refuge patches. 

 

The position of aphids within a plant is related to the searching behavior of the 

different predator species. E. balteatus was able to search on all parts of the 

broad bean plant and therefore there was no specific plant part that could serve 

as refuge patch. C. septempunctata preferred to move along leaf edges and 

stems (Chang, 1996). Therefore in the presence of C. septempunctata, we 

observed hardly any aphid on the stem of the plant (Table 5.3). On the other 

hand, chrysopid larvae were able to search directly on the leaf surface (Chang, 

1996) and preferred to rest in the leaf axils of the broad bean plants (Chang, 

1996) and within the leafs of the canopy. Moreover, the results show that the 

A. pisum population was almost uniformly distributed on the plant in the 

presence of C. carnea (Table 5.3). In the absence of predators, A. pisum 

tended to colonize the canopy of the broad bean plant and dispersal only 

occurred when population densities were rather high (Losey and Denno, 1998a; 

Fig. 5.5). Without the activity of predators, aphids showed no need to drop off 

the host plant, especially if the host plant still was in a good condition. In this 

regard, Dill et al. (1990) hypothesized that aphids are able to make an 

economical decision to “select” a type of behavior which gives the “best” (pay-

off situation) response to prevailing conditions. 
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5. 5. Conclusion and implication of the dispersal of plant viruses 
 

Predators, singly or simultaneously introduced, could reduce aphid population 

growth significantly compared to the control, except for C. septempunctata in 

large arenas. These facts show the important role of predators in biological 

control efforts.  However, in particular circumstances, aphid control with natural 

enemies can have negative side effects, since A. pisum is a vector for the pea 

enation mosaic virus and easily drops off from the host plant and disperses in 

the presence of predators. Not every developmental stage of an aphid is equally 

suited for virus transmission. Ossiannilsson (1966) stated that alate aphids play 

a most important role for virus transmission, but on the other hand, Farah 

(1968) showed that immature and apterae-virgin adults of A. pisum can transmit 

the pea enation mosaic virus better than alate-virgin adults. The remaining 

question is, whether it might be more reliable to use spot treatments with e.g. 

botanical insecticides to control insects that serve as virus vectors instead of the 

release of natural enemies, or whether the natural enemies themselves could 

completely avoid the risk of spreading plant pathogenic virus by reducing vector 

population. An answer to these questions requires more research. The results 

indicate that predators could heavily trigger A. pisum dispersal to new host 

plants. Nevertheless, the correlation between A. pisum dispersal and the spread 

of viruses should be investigated. 
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6. General Discussion 
 

To promote E. balteatus as biological control agent for innundative or 

innoculative release, it is of primary importance that the biology and ecology of 

adults and predatory larvae are well known. Furthermore this knowledge is 

necessary for an efficient mass production and for the evaluation of the 

conditions when and where E. balteatus should be used as antagonist. Since 

hoverflies are not the only antagonists that can be used e.g. in greenhouses it is 

also important to consider intraguild predation among antagonists. This PhD 

study deals with of the questions relevant for the optimization of biological 

control efforts with the hoverfly E. balteatus. 

 

Chapter 2, “Host plants - aphids - predator: tritrophic effects on the life history of 

E. balteatus”, offers several suggestions for the mass rearing of hoverflies. The 

potato aphid A. solani reared on cucumber as host plant could be classified as 

essential prey for E. balteatus, i.e. food which ensures the completion of larval 

development and subsequent adult reproduction (New, 1991). In general 

syrphid survival was enhanced and females laid numerous eggs when larvae 

were reared with A. solani as prey, especially when the host plants were 

fertilized cucumber plants. It can be concluded that the first trophic level, the 

host plant, has an indirect impact on the fitness of E. balteatus. Survival, 

longevity and fecundity of E. balteatus were enhanced especially when the host 

plant had an optimal nutritional value for the herbivore and in consequence for 

the predator. This dependence of E. balteatus larvae on the nutritional value of 

food is relevant in regard to the foraging theory which focuses on caloric 

consumption or the selection of prey after its nutrient availability (Waldbauer 

and Friedman, 1991). Therefore, for mass rearing of E. balteatus these results 

should be taken into account in order to enhance the production of insects and 

optimize the fitness of adult syrphids at the release site i.e. in the greenhouse. 

However, the effect of fertilization of the host plants was tested only with a 

single aphid host plant combination. Generalizing the assumption that nitrogen 

is an important essential nutrient not only in combination with A. solani and 

cucumber as host plant, the effect of host plant fertilization should also be 

studied in other aphid host plant associations. In nature, however, the prey 
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selection of E. balteatus highly depends on the capability of the females to 

select aphid species and respective host plants that can provide the larvae with 

qualified food. Unfortunately, the information that the prey selection of E. 

balteatus is related to optimal foraging and based on caloric consumption, 

hasn´t spread yet. From field sampling and oviposition preference experiments 

Sadeghi and Gilbert (2000a) observed that the nettle aphid, Microlophium 

carnosum (Buckton), is rarely selected for oviposition by gravid females, 

although this aphid is highly suitable for the development of E. balteatus larvae 

in the laboratory (Sadeghi and Gilbert, 2000b). As the preferences of the E. 

balteatus females were not tested in this study, it cannot be guaranteed that A. 

solani on fertilized cucumber plants would be selected by E. balteatus females. 

Additionally, there are still many other factors that could determine prey 

selection, such as the color (Lorenzetti et al., 1997) and structure of a plant as a 

habitat for the larvae (Carter et al., 1984; Schneller, 1997), size (Sadeghi and 

Gilbert, 2000) and mobility of prey (Eubanks and Denno, 2000), intraspecific 

interaction (Scholz and Poehling, 1999) and, very important, also interspecific 

interaction. Schneller (1997b) suggested that cucumber might not be suitable 

for E. balteatus larvae due to leaf morphology. Eubanks and Denno (2000) gave 

another example of the low significance of nutrient ability in regard to the 

decision process of predators. In experiments with the big-eyed bug Geocoris 

punctipes (Heteroptera: Geocoridae) they observed that the predator preferred 

attacking pea aphids, A. pisum. Compared to the nutritional value of 

Helicoverpa zea Boddie (Lepidoptera: Noctuidae) eggs, the nutritional value of 

aphids was quite low. The authors suggest that prey mobility is the primary 

motive for prey selection by the big-eyed bug.  

 

The experiments on the cannibalistic behavior of E. balteatus larvae (chapter 3) 

showed that cannibalism only occurs in the absence of prey and when the age 

structure among the syrphid larvae population was heterogeneous. Cannibalism 

very rarely occurs even when population densities of similar larvae are high in 

the absence of alternative prey. Cannibalism therefore isn´t very likely to be a 

limitation factor for the mass rearing of E. balteatus. In nature, cannibalism in E. 

balteatus is an uncommon phenomenon, because females where able to 

perceive the presence of conspecific eggs and oviposited less often in aphid 
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colonies in which eggs were already present (Scholz and Poehling, 1999). This 

phenomenon is seldom found in other insects, neither in predatory insects nor 

in herbivores, for example the chrysopid, C. carnea (Ridgway, 1970; 

Hassan,1975; Phoofolo and Obrycki, 1998), C. septempunctata (Agarwala and 

Dixon, 1992; Phoofolo and Obrycki, 1998), H. armigera (Kalshoven, 1981) and 

S. frugiperda (Chapman et al., 1999), which shows that cannibalism occurs 

even when plenty of alternative food is available and the population densities of 

insects are low. The factors that determine these differences are little known, 

Riechert (1981), however, suggested that cannibalistic tendencies might be 

genetically determined. The already mentioned genetic variation was also 

observed in H. axyridis (Wagner et al., 1999). Why does E. balteatus show low 

cannibalistic tendencies? This question remains open to investigation. 

 

The experiments on intraguild predation (chapter 4) showed that the egg stage 

and the young developmental stages are particularly vulnerable to IGP. This 

result could be confirmed in a preliminary field experiment in sugar beets where 

on average 20% of the exposed syrphid eggs were consumed by predators. 

Moreover, it is likely that 60% of exposed young larval stages were killed by 

predators, although the amount of aphids was approximately 200 aphids per 

plant (Hindayana, unpubl. data). These results show how important interspecific 

interaction, i.e. intraguild predation, can be for the survival of E. balteatus in the 

field. However, in practical application in Germany, young developmental 

stages of E. balteatus are preferred to be released (Kreß, 1996; Schneller, 

1997b). The attempt of releasing E. balteatus adults was reported to have failed 

because the adults always moved away from the greenhouse (Kreß, 1996). The 

results of the introduction of E. balteatus in greenhouse and field were 

contradictory. Kreß (1996) reported a successful control of E. balteatus against 

aphids on rose plants (such as Macrosiphum euphorbiae Thomas). To the 

contrary, Briem and Timm (1999) reported a control failure of E. balteatus 

against Nasonovia nibisnigri (Mosley) and M. euphorbiae on lettuce (Lactuva 

sativa L.). To explain those results there are many factors to be taken into 

account. Some of the factors are temperature (Tenhumberg, 1993), type of 

plant in relation with leaf morphology as well as type of aphid species in relation 

with size and mobility (Schneller, 1997b; Sadeghi and Gilbert, 2000), and the 
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fitness of E. balteatus (Chapter 2) and intraguild predation (Chapter 4). The 

explanation of a link between the developmental time of larval instar and the 

occurrence of IGP between E. balteatus and C. carnea as well as C. 

septempunctata (Fig. 4.7) could help reducing the predators´ interference, 

especially when E. balteatus is being released together with other 

aphidophagous predators. Considering the current level of knowledge it can be 

concluded that E. balteatus should better be released in combination with C. 

carnea instead of with C. septempunctata. There was less interference between 

these two predators, as C. carnea always avoided the counterattack and moved 

away from a confrontation with E. balteatus, and therefore the impact on the 

aphid population was higher (see chapter 5, “The effect of predatory interaction 

on aphid population and distribution”). However, to verify this conclusion further 

studies in greenhouses and in natural communities are necessary.  

 

Finally, E. balteatus alone or in combination with other predators induces 

dispersal in aphid populations (chapter 5). As several aphids also serve as 

vector for plant pathogenic viruses, the introduction of natural enemies is not 

necessarily an advantage for disease control. However, the results in this study 

might not be extensive enough to be generalized, as different aphid species 

show a different behavior in mobility from very mobile (example, A. solani and 

A. pisum) to almost sedentary aphids (example, A. gossypii and M. persicae) 

(Schneller, 1997b). Additionally, the periods of observation were also too short 

to evaluate the roles of predators in the dispersion of aphids. Therefore, intense 

research is necessary to understand the importance of E. balteatus and other 

aphidophagous predators for the secondary spread of plant diseases. 
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