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Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the
commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by
means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-
visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both
bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum
loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the
absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity
of pure and Pt-loaded TiO

2
was investigated employing the photocatalytic oxidation and dehydrogenation of methanol.The results

of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding
bare TiO

2
for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a

significant improvement of the photocatalytic activity of TiO
2
. This beneficial effect was attributed to an increased separation of

the photogenerated electron-hole charge carriers.

1. Introduction

Titanium dioxide is regarded to be one of the most common
photocatalysts, having a wide range of properties, such as
a strong resistance to chemical and photocorrosion, strong
oxidation capability, low operational temperature, low-cost,
being and nontoxic [1]. These properties make TiO

2
an

attractive candidate for its utilization as a photocatalyst in the
photocatalytic processes. TiO

2
has been extensively studied

and demonstrated to be suitable for numerous applications
such as, destruction of microorganisms [2–5], inactivation of
cancer cells [6, 7], protection of the skin from the sun [8–11],
photocatalytic water splitting to produce hydrogen gas [12–
14], manufacture of some drug types [15–17], degradation of
toxic organic pollutants in water [18–20], and self-cleaning

of glass and ceramic surfaces [21]. Even though TiO
2
is the

most used semiconductor material, it exhibits some disad-
vantages, such as low surface area and fast recombination
rate between the photogenerated charge carriers and the
maximum absorption in the ultraviolet light region.

Different attempts have been performed to improve the
efficiency of TiO

2
depressing the recombination process of

the photoelectron-hole pairs. Some of them include the
modification of TiO

2
surface with other semiconductors to

alter the charge-transfer properties between TiO
2
and the

surrounding environment [22, 23], sensitizing TiO
2
with col-

ored inorganic or organic compounds improving its optical
absorption in the visible light region [24–28], bulk modifi-
cation by cation and anion doping [29–38], and fabrication
of TiO

2
surface from polyhedral to produce hallow TiO

2
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[39, 40]. TiO
2
nanoparticles are considered to be more active

photocatalysts as compared with the bulk powder. The ratio
of surface area to volume of nanoparticles has a significant
effect on nanoparticles properties. This leads to a higher
chemical activity and loss of magnetism and dispersibility
[41].

This work was focused on the characterization of the
prepared Pt-loaded TiO

2
(Hombikat UV 100) samples.More-

over, the photocatalytic oxidation and photocatalytic dehy-
drogenation of methanol have been studied employing both
the bare and Pt-loaded TiO

2
in the O

2
and N

2
atmosphere.

Themethanal formation was determined using Nashmethod
at a wavelength of 412 nm.

2. Materials and Methods

Aknownweight (2 g) of TiO
2
(HombikatUV 100, Sachtleben,

Germany) was suspended under continuous stirring at
250 rpm in a solution containing 40 cm3 of 40% aqueous
methanal (Chemanol), 10 cm3 of methanol (Hayman), and
the appropriate volume of hexachloroplatinic acid (Riedel-
De-Haen AG) dissolved in HCl. The reaction mixture was
maintained at 303K, purged with nitrogen gas (20 cm3/min)
and irradiated by UV-A light employing Philips Hg lamp
(90W) with the light intensity of 3.49mW/cm2 (Efbe-
Schon 6 lamps) for 4 h. This period of irradiation time
was found to be the most sufficient time for the com-
plete photodeposition process of metallic platinum. The
concentration of platinum was monitoring by the atomic
absorption spectroscopy (Shimadzu-AA-6300, Japan). The
milky white suspension turns to the pale grey colour
with the deposition of Pt. The suspension solution was
filtered and washed by absolute methanol, throwing in a
desecrater overnight. At the end the product was dried
in an oven at 100∘C for 2 h [31, 32]. Band gap ener-
gies of bare and Pt (0.5)-loaded on TiO

2
surface were

determined, via the measurement of reflectance data R by
(Cary 100 Scan) UV-visible spectrophotometer system. It is
equipped, with using a Labsphere integrating sphere diffuse
reflectance accessory for diffuse reflectance spectra over
a range of 300–500 nm by employing BaSO

4
as reference

material.
In all photocatalytic experiments, 100 cm3 of 40mM

aqueous methanol solution (HPLC grade, Sd fine-CHEM
limited) was mixed with certain weight of bare TiO

2
or

platinized TiO
2
and was suspended using a magnetic stirrer

at 500 rpm. At different time of intervals 2.5 cm3 of reaction
mixture was collected in a plastic test tube and centrifuged
(4000 rpm, 15 minutes) in an 800 B centrifuge. The super-
natant solution was carefully removed by a syringe to a new
plastic test tube and centrifuged again to remove the fine
particles of bare TiO

2
or platinized TiO

2
. The concentration

of formed methanal was determined spectrophotometrically
at 412 nm following Nash method [42, 43] using UV-visible
spectrophotometer (T80+, PG Instruments Limited, Eng-
land).
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Figure 1: FT-IR spectra for bare and different percentages of
Pt-loaded on TiO

2
, at (a) bare TiO

2
, (b) Pt (0.25)/TiO

2
, (c) Pt

(0.50)/TiO
2
, (d) Pt (0.75)/TiO

2
, and (e) Pt (1.00)/TiO

2
.

3. Results and Discussion

3.1. Characterisation of Bare and Platinized TiO
2

3.1.1. FTIR Analysis. The Fourier transform infrared spectra
of bare and platinized TiO

2
are depicted in Figure 1.The illus-

trated peaks at 3350–3450 cm−1 correspond to the stretching
vibration mode of O–H bonds of free water molecules and at
1620–1630 cm−1 correspond to the bending vibrationmode of
O–H bond of chemisorbed water molecules. The absorption
intensity of surfaceO–Hgroups in TiO

2
is regularly increased

with the increasing of the percentage ofmetals content.These
findings are in a good agreement with the literature data
[44–46]. The broad intense band below 1200 cm−1 is due
to Ti–O–Ti bridging stretching mode in the crystal. This
peak appeared as unsymmetrical valley with the increasing
of metal loading (or content) on TiO

2
exhibiting a maximum

at 580 cm−1. This change is related to the formation of
Ti–O–M vibrations [47, 48]. The intense bands at 3621,
3645, and 3696 cm−1 in all spectra are attributed to the
characteristic tetrahedral coordinated vacancies of

4
Ti4+–OH

besides two bands at 3765 and 3840 cm−1.These revealed that
the octahedral vacancies designated as

6
Ti3+–OH are found.

In the presence of metal loaded on TiO
2
the peaks of

6
Ti3+–

OH are not observed. This is because the metal acts as an
electron trapper, mainly preventing the formation of Ti3+–
OH species [49]:

Ti4+–OH + e− 󳨀→ Ti3+–OH (1)

M + e− 󳨀→ M− (2)

3.1.2. XRD Analysis. The XRD patterns of different TiO
2

samples (bare and platinum loaded) are shown in Figure 2.
The mean crystallite size (𝐿) of samples was calculated by
Scherrer’s equation (3) and the crystallite size (Ĺ) of samples
can be estimated from plotting the modified Scherrer’s
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Figure 2: XRDpatterns of bare and different percentage of Pt loaded
on TiO

2
surface.

formula (4) [50] as shown in Figure 3. The corresponding
values are listed in Table 1:

𝐿 =

𝑘𝜆

𝛽 cos 𝜃
, (3)

ln𝛽 = ln(𝑘𝜆
𝐿́

) + ln( 1
cos 𝜃
) . (4)

In (3) and (4), 𝑘 is Scherer’s constant depending on shape of
particles (0.94), 𝜆 is the wavelength of the X-ray radiation
(0.15418 nm for CuK

𝛼
), 𝛽 is the full width of half maximum

(FWHM) intensity (in degree which converted to radian),
and 𝜃 is the diffraction (Bragg) angle [50, 51].

No peak was observed for Pt (0.25 wt%)/TiO
2
sample

at 𝜃 = 46.5∘. This result is in good agreement with the
previous findings [52]. However, 𝜃 = 46.6∘ which is related
to Pt appeared very weak band with Pt (0.5%) loading and
increased for Pt (1.0%) as shown in Figure 2. The mean
crystallite size of both bare and platinized TiO

2
decreased

from 11.487 nm to 9.355 nm, respectively. The crystallite size
of bare TiO

2
was found to be equal to 10.132 nm. This value

was decreased with the increasing of Pt content on TiO
2
.

The decreasing of the mean particle size of platinized TiO
2

is attributed to the location and incorporation of Pt(IV) with
Ti(III) in TiO

2
lattice. Moreover, the ionic radius of Pt(IV)

(0.63 Å) is relatively smaller than that of Ti(III) (0.67 Å)
[53, 54].

3.1.3. AFM Analysis. Figure 4 shows the three-dimensional
AFM images of bare and Pt-loaded TiO

2
surface which were

used to measure the particle sizes. AFM images indicate that
the shapes of both bare and platinized TiO

2
are spherical.

The results summarized in Tables 1 and 2 indicate that the
particle sizes for all samples are found to be bigger than
the values found for crystallite size. This indicates that each
particle consists of several crystals (polycrystals) [55]. The
values of crystal size and particle size for bare TiO

2
are more

than those values for metalized TiO
2
. This is related to the

Table 1: Mean crystallite sizes and crystallite sizes of bare TiO2 and
Pt-loaded on TiO2.

Crystal components Pt % Mean crystallite
sizes (𝐿)/nm

Crystallite
sizes (Ĺ)/nm

TiO2 Hombikat
(UV 100) 0.000 11.487 10.132

Pt-TiO2 0.250 10.799 10.021
Pt-TiO2 0.500 9.355 9.503
Pt-TiO2 0.750 10.221 9.589
Pt-TiO2 1.000 10.475 8.262

increasing of the number of located of Pt4+ ions in TiO
2

lattice, which depresses the growth of TiO
2
Hombikate (UV

100) nanocrystals [54]. The results show that each particle
consists of about 9 to 11 crystals, according to the results
obtained from the calculation of Crystallinity Index values by
employing the following equation [56]:

Crystallinity Index =
𝐷
𝑝

𝐿 or (𝐿́ )
, (5)

where𝐷
𝑝
is the particle size which is measured by AFM anal-

ysis and 𝐿 and 𝐿́ are the corresponding mean crystallite size
and the crystallite size calculated by the Scherrer equation
and the modified Scherrer equation employing XRD data,
respectively.

The maximum value of average Crystallinity index for
Pt (0.5)/TiO

2
is found to be 8.168. That referred to the

suppression of the crystal defects number through decreasing
the amorphous phase present in TiO

2
and overall enhancing

the photocatalytic activity of TiO
2
[57].

3.1.4. UV-Visible Diffuse Reflectance Spectra. The UV-vis
absorbance spectra of the bare TiO

2
and platinized TiO

2

(0.5% Pt) powders were also measured to confirm the Pt-
loading trend and to measure the effect of Pt loading. The
results from UV-visible reflectance spectra as plotted in
Figure 5 clearly show the shift of absorption edge towards
longer wavelength for platinized TiO

2
. These results indicate

that the excitation of metalized TiO
2
occurs with the narrow-

ing and red shift of the band gap energy (𝐸
𝑔
) peak [58].These

results were subsequently agreed with the increasing of the
average Crystallinity Index [57].

3.2. Effect of the Metal Loading on Photocatalytic Activity
of Methanol Solution. The photocatalytic activity of the
platinized titanium dioxide was first increased with the
increasing of themetal loading until amaximumwas reached
with the following decrease in the activity. Figures 6 and
7 show the results obtained with the samples containing
different amount of platinum. The highest photocatalytic
activity was observed with the Pt loading of 0.5 wt%. This
loading percentage may give the most efficient separation of
photogenerated electron-hole pairs [59]. The presence of Pt
on the TiO

2
surface leads to an increase of the surface barrier

and the space charge region becomes narrower. As a result of
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Figure 3: Modified Scherrer equation plot of (a) bare TiO
2
, (b) 0.25% Pt loaded on TiO

2
, (c) 0.50% Pt loaded on TiO

2
, (d) 0.75% Pt loaded

on TiO
2
, and (e) 1.00% Pt loaded on TiO

2
.

Table 2: Particle size measured by AFM and Crystallinity values of bare TiO2 and platinized TiO2.

Samples Particle size/nm ∗Crystallinity Index ∗∗Crystallinity Index Average Crystallinity Index
TiO2 80.940 7.046 7.988 7.517
Pt(0.25)/TiO2 63.600 5.889 6.346 6.117
Pt(0.50)/TiO2 77.020 8.233 8.104 8.168
Pt(0.75)/TiO2 54.890 5.370 5.724 5.547
Pt(1.00)/TiO2 73.130 6.981 8.851 7.916
∗Crystallinity Index calculated by divided particle size on mean crystallite size and ∗∗Crystallinity Index calculated by divided particle size on crystallite size.
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Figure 4: Three-dimensional AFM image of (a) bare TiO
2
, (b) 0.25% Pt loaded on TiO

2
, (c) 0.50% Pt loaded on TiO

2
, (d) 0.75% Pt loaded

on TiO
2
, and (e) 1.00% Pt-loaded on TiO

2
.

the metal loading the space charge region becomes narrower
leading to an increase of the efficiency of the electron-hole
separation [60] and formation of the Schottky barrier by the
electron transfer from the conduction band of TiO

2
to the

conduction band of Pt. Thereby the recombination process is
suppressed according to the following equations [31, 32, 61]:

Pt/TiO
2
+ ℎ] 󳨀→ h+VB + e

−

CB (6)

Pt
𝑛
+ e−CB 󳨀→ Pt−

𝑛
(7)

O
2
+ Pt−
𝑛
󳨀→ O

2

−∙
+ Pt
𝑛
. (8)

Platinum acts as electron scavenger hindering the recombi-
nation of the charge carriers and ultimately exhibiting the
enhancement of the photoreactivity as shown in the following
equation [31, 32, 62, 63]:

Pt−
𝑛
+ h+VB 󳨀→ Pt

𝑛
. (9)

However, when the percentage of the metal reached max-
imum, the additional amount leads to making the space

charge layer very narrow. As a result the penetration depth of
light exceeds the space charge layer.The recombination of the
electron-hole pairs will be favorable and the photocatalytic
activity will be reduced [60]. Moreover, the presence of
metal on the TiO

2
surface reduces the number of the surface

hydroxyl groups leading to the reduction of the photoreac-
tivity [64]. This means that the metal on the TiO

2
surface

acts both as an efficient trap site and as a recombination
center at the same time [65]. Hence the rate of the methanal
(HCHO) formation will be slower while the conversion of
methanal to formic acid (HCOOH) is a faster process. On the
other hand, with the increasing of the metal amount, TiO

2

samples will become more grey in color. Thus, the changed
optical properties of the samples could lead to the screening
of the light towards the TiO

2
and suppression of the electrons

excitation to the conduction band [31, 66].
Two mechanisms for the photocatalytic oxidation (in the

presence of O
2
) and photocatalytic dehydrogenation (in the

presence of N
2
) of methanol with Pt (0.5)/TiO

2
are suggested

as shown in Scheme 1. The scheme shows the differences
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between the mechanism of photooxidation and photodehy-
drogenation of methanol on platinized titanium dioxide. The
formation of CaCO

3
in photooxidation process was indicated

by passing the outlet gas in Ca(OH)
2
solution. However, no

CO
2
formation was indicated in photodehydrogenation of

methanol.
Differences in experimental conditions, such as, exper-

imental equipment, type of photocatalyst, position of band
edges of semiconductor compared to redox potential of
O
2
/O
2

−∙ and −OH/∙OH, and type and concentration of
organic pollutant, cause difficulties in the comparison of
photocatalytic activity of different materials. Xiang et al. [67]
measured the formation rates of hydroxyl free radical for var-
ious semiconductor photocatalysts at the same experimental
conditions. They discussed the difference of rates formation
of hydroxyl free radical on various semiconductors. In
another study Xiang et al. [68] showed that hydroxyl radicals
are one of active species and indeed participate in photo-
catalytic reactions. They also found that the photocatalytic
activity of Ag-TiO

2
exceeds that of P25 by a factor of more

than 2. Our results are in good agreement with these findings.
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The different yields that are suggested in the two mecha-
nisms are HCOH and H

2
O in the absence of oxygen (photo-

catalytic dehydrogenation of methanol) and HCOOH in the
presence of oxygen (photocatalytic oxidation of methanol).
The pH of the reaction suspension after one hour of irra-
diation was found 6.93 in dehydrogenation process while it
was 4.82 in photooxidation process.This indicates the further
oxidation of the formed formaldehyde to formic acid.

4. Conclusions

This study is focused on the elucidation of the mechanism
of the methanol formation by the photocatalytic oxidation
and/or photocatalytic dehydrogenation of aqueous methanol
solutionwith bare and platinized TiO

2
.Themain conclusions

can be summarized as follows.

(1) The FT-IR spectra show that the peaks at 3450 cm−1
and 1630 cm−1 related to the surface O–H groups of
TiO
2
are increasedwith the increasing of the platinum

amount loaded on TiO
2
surface. The intense bands

at 3621, 3645, and 3696 cm−1 have been observed
in all spectra which are characteristics for the tetra-
hedral coordinated vacancies designated as

4
Ti4+–

OH. Additionally, a disappearance of two bands at
3765 and 3840 cm−1 attributed to

6
Ti3+–OH has been

observed as well.
(2) The XRD data have been used to calculate the

crystallite size of the bare and Pt-loaded TiO
2
. The

values obtained for the crystallite size of the bare
TiO
2
showed a decrease with the increasing of plat-

inum amount on TiO
2
.

(3) AFM images indicate that the shapes of both bare and
platinized TiO

2
are spherical.

(4) One particle consists of about 9 to 11 crystals.
(5) In photoreaction, no reaction occurred with using

bare TiO
2

under inert gas (N
2
); however, in the

presence of metal, the photoreaction occurred; that
is, the existence of the metal substituted the needed
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for the O
2
. In the existence of O

2
the reaction was

carried on to form formic acid as a result of further
oxidation of methanol while, in the absence of the
O
2
, dehydrogenation of methanol occurred, and no

further photooxidation occurred.
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