Time Domain Based Image Generation
for Synthetic Aperture Radar
on Field Programmable Gate Arrays

Von der Fakultat fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des akademischen Grades
Doktor-Ingenieur
(abgekiirzt: Dr.-Ing.)
genehmigte Dissertation

von Herrn
Fabian Cholewa M.Sc.

geboren am 25. Februar 1981
in Winsen an der Luhe / Deutschland

2019

1. Referent: Univ.-Prof. Dr.-Ing. Holger Blume
2. Referent: Univ.-Prof. Dr.-Ing. Jérn Ostermann

Tag der Promotion: 20.06.2018

Danksagung

Die vorliegende Dissertation ist im Rahmen meiner Tatigkeit als wissenschaftlicher
Mitarbeiter am Institut fiir Mikroelektronische Systeme (IMS) der Gottfried Wilhelm
Leibniz Universitat entstanden.

An erster Stelle méchte ich mich bei Herrn Prof. Dr.-Ing Holger Blume fiir die
langjahre fachliche Unterstiitzung und die Ubernahme des 1. Referats bedanken.
Herr Blume hat in seiner Funktion als Leiter des Instituts auBerdem einen wesentlichen
Einfluss auf die positiven Ergebnisse dieser Arbeit. Des Weiteren mdchte ich mich
bei Herrn Prof. Dr.-Ing Jérn Ostermann fiir die Ubernahme des Koreferats und die
freundliche Zusammenarbeit im Bereich SAR bedanken. Mein weiterer Dank richtet
sich an Herrn Prof. Dr.-Ing Peter Pirsch, fiir die jahrelange fachliche Unterstiitzung
im Bereich SAR, sowie fiir die Ubernahme des Priifungsvorsitzes.

Ich moéchte mich auBerdem bei meinen Kollegen fiir die gute Atmosphire am
Institut, sowie fur die diversen fachlich hilfreichen Diskussionen bedanken. Fir die
erfolgreiche Zusammenarbeit im Projekt, die Unterstiitzung und den Teamgeist
mochte ich mich besonders bei Matthis Wielage, Christian Fahnemann und Martin
Pfitzner bedanken.

Meinen Freunden danke ich fiir die Motivation und das Gefiihl mit den taglichen
Sorgen nicht alleine zu sein. Der gréBte Dank gilt meiner Familie, die mir immer das
Gefiihl der vollen Unterstiitzung geben und sich immer fiir mich eingesetzt haben.
Ohne diese Unterstiitzung wahrend meiner Laufbahn, wére ich niemals bis zu diesem
Punkt gekommen. Dafiir méchte ich meiner Mutter Béarbel Stiirzbecher, meinem
Vater Erik Cholewa, meinem Stiefvater Emil Stiirzbecher, meiner Schwester Melanja
Tucker, sowie meinen GroBeltern Christine und Rolf Meyer danken.

Ich widme diese Arbeit meinem Vater Erik Cholewa, der diesen Tag leider nicht
mehr erleben durfte.

Abstract

Aerial images are important in different scenarios including surface cartography,
surveillance, disaster control, height map generation, etc. Synthetic Aperture Radar
(SAR) is one way to generate these images even through clouds and in the absence of
daylight. For a wide and easy usage of this technology, SAR systems should be small,
mounted to Unmanned Aerial Vehicles (UAVs) and process images in real-time. Since
UAVs are small and lightweight, more robust (but also more complex) time-domain
algorithms are required for good image quality in case of heavy turbulence. Typically
the SAR data set size does not allow for ground transmission and processing, while
the UAV size does not allow for huge systems and high power consumption to process
the data. A small and energy-efficient signal processing system is therefore required.

To fill the gap between existing systems that are capable of either high-speed
processing or low power consumption, the focus of this thesis is the analysis, design,
and implementation of such a system. A survey shows that most architectures either
have to high power budgets or too few processing capabilities to match real-time
requirements for time-domain-based processing. Therefore, a Field Programmable
Gate Array (FPGA) based system is designed, as it allows for high performance and
low-power consumption. The Global Backprojection (GBP) is implemented, as it is
the standard time-domain-based algorithm which allows for highest image quality at
arbitrary trajectories at the complexity of @(N3). To satisfy real-time requirements
under all circumstances, the accelerated Fast Factorized Backprojection (FFBP)
algorithm with a complexity of @(N%logN) is implemented as well, to allow for a
trade-off between image quality and processing time. Additionally, algorithm and
design are enhanced to correct the failing assumptions for Frequency Modulated
Continuous Wave (FMCW) Radio Detection And Ranging (Radar) data at high
velocities. Such sensors offer high-resolution data at considerably low transmit power
which is especially interesting for UAVs.

A full analysis of all algorithms is carried out, to design a highly utilized architecture
for maximum throughput. The process covers the analysis of mathematical steps
and approximations for hardware speedup, the analysis of code dependencies for
instruction parallelism and the analysis of streaming capabilities, including memory
access and caching strategies, as well as parallelization considerations and pipeline
analysis. Each architecture is described in all details with its surrounding control
structure. As proof of concepts, the architectures are mapped on a Virtex 6 FPGA
and results on resource utilization, runtime and image quality are presented and
discussed. A special framework allows to scale and port the design to other FPGAs
easily and to enable for maximum resource utilization and speedup.

The result is streaming architectures that are capable of massive parallelization
with a minimum in system stalls. It is shown that real-time processing on FPGAs with
strict power budgets in time-domain is possible with the GBP (mid-sized images) and
the FFBP (any image size with a trade-off in quality), allowing for a UAV scenario.

Keywords: Synthetic Aperture Radar, SAR , Time-domain, Backprojection, FPGA

\Y,

Kurzfassung

Luftbilder sind ein wichtiger Bestandeteil in der Kartographierung, der Uberwachung,
des Katastrophenmanagements, der Generierung von Héhenmodellen usw. Die Tech-
nologie des Radars mit synthetischer Apertur, oder Synthetic Aperture Radar (SAR),
erdffnet die Moglichkeit diese Bilder auch durch Wolken und in Dunkelheit zu erzeugen.
Um diese Technologie in der Breite verfiigbar zu machen, ist es nétig SAR Systeme
zu entwickeln, die in Drohnen (Unmanned Aerial Vehicles (UAVs)) eingesetzt werden
koénnen und in der Lage sind Bilder schritthaltend zu generieren. jedoch machen die
geringe GroBe und das damit einhergehende geringe Gewicht von Drohnen, diese
anfalliger fiir atmosphérische Einfliisse. Deshalb werden bei schwereren Turbulenzen
robustere (aber auch komplexere) zeitbereichsbasierte Verfahren eingesetzt, um eine
ausreichende Bildqualitat gewahrleisten zu kdnnen. SAR Systeme liefern in der Regel
hohe Datenraten die, aufgrund der geringen Geschwindigkeiten der Funkverbindung,
nicht schritthaltend zu einer Bodenstation Gibertragen werden kénnen, um die Daten
dort schritthaltend zu verarbeiten. Aufgrund der rauschartigen Charakteristik kdnnen
die Daten auch nicht komprimiert werden. Da Drohnen iblicherweise nur tber
ein beschranktes Platz- und Energiebudget verfiigen, miissen die eingesetzten SAR
Systeme innerhalb dieser Spezifikationen liegen und dennoch in der Lage sein die
Daten schritthaltend zu verarbeiten.

Um die Liicke zwischen bestehenden System zu schlieBen, die entweder nicht
zu einer schritthaltenden Verarbeitung hochratiger Sensordaten in der Lage sind
oder energieeffizienten arbeiten, liegt der Fokus dieser Arbeit auf der Analyse, dem
Entwurf und der Implementierung eines Systems, das beide Eigenschaften vereint.
Eine Voruntersuchung ergibt, dass die meisten nicht dedizierten Architekturen diese
beiden Anforderungen nicht gleichzeitig erfiillen kénnen. Deshalb wird eine dedizierte
Field Programmable Gate Array (FPGA) Architektur entwickelt, die Energieeffizienz
mit hoher Rechenleistung kombiniert. Das Standardverfahren im Zeitbereich ist
die globale Riickprojektion (Global Backprojection (GBP)) mit einer Komplexitat
von O(N3). Dieses wird implementiert, da es beliebige Trajektorien bei maximaler
Bildqualitat ermoglicht. Um die schritthaltende Verarbeitung bei gréBeren Daten-
satzen zu ermdglichen, wird auBerdem das beschleunigte Riickprojektionsverfahren
(Fast Factorized Backprojection (FFBP)) implementiert, das bei einer Komplex-
itat von O(N%logN) einen Abtausch zwischen Bildqualitdt und Berechnungszeit
ermoglicht. AuBerdem wird die Architektur erweitert, um grundlegende Annahmen
zu korrigieren die versagen, wenn Frequency Modulated Continuous Wave (FMCW)
Radardaten verarbeitet werden, die bei hohen Geschwindigkeiten aufgenommen wur-
den. FMCW Sensoren sind speziell fiir UAVs interessant, da sie hohe Auflésungen
bei vergleichsweise geringer Sendeleistung ermdglichen.

Fir einen effizienten Entwurf, der vorhandene Hardware Ressourcen maximal nutzt,
werden die Verfahren einer vollstandigen Analyse unterzogen. Dies beinhaltet die
Analyse des mathematischen Modells, sowie die Analyse moglicher Approximationsver-
fahren zur beschleunigten Ausfiihrung auf dedizierten Architekturen.

VI

AuBerdem die Analyse von Instruktionsabhangigkeiten zur Maximierung der Par-
allelisierung, die Analyse der kontinuierlichen Datenwortverarbeitung in Bezug auf
den Hauptspeicher- und Zwischenspeicherzugriff, sowie die Analyse zum Pipelining
der Verfahren. Alle Architekturen werden inklusive der Kontrollstrukturen detailliert
beschrieben. Zum Nachweis der Machbarkeit werden die Architekturen auf einen
Virtex 6 FPGA {ibertragen und die bendtigten Ressourcen, die Laufzeiten sowie die
resultierende Bildqualitat prasentiert und bewertet. Ein spezielles Framework erlaubt
die einfache Portierung auf weitere FPGAs, sowie die ressourcenabhéngige Skalierung,
um die jeweils maximale Beschleunigung zu erreichen.

Das Resultat ist eine Architektur, die eine nahezu kontinuierliche Datenwortver-
arbeitung bei massiver Parallelisierung und gleichzeitig minimaler Unterbrechung
der Pipeline ermoglicht. Es wird gezeigt, dass eine schritthaltende Verarbeitung
bei gleichzeitiger strikter Begrenzung des Energiebudgets, im Zeitbereich mit dem
GBP (bis zu mittleren BildgréBen) sowie mit dem FFBP (fiir beliebige BildgroBen
bei gleichzeitigem Abtausch gegen Qualitit), moglich ist. Der Einsatz auf UAVs ist
damit sinnvoll moglich.

Schlagworte: Radar mit synthetischer Apertur, SAR, Zeitbereich, Riickprojektion,
FPGA

Vil

Contents

List of terms and abbrevi
List of symbols
1 Introduction

1.1 A brief history of
1.2 Challenges and re

ations

Radarand SAR
sulting motivation L.

1.3 Research objectives
1.4 Structure of thiswork

2 SAR image processing

2.1 SAR signal model

2.2 Azimuth compression in frequency-domain
2.3 Azimuth compression in time-domain L.
2.3.1 Global backprojection algorithm (GBP)

2.3.2 Fast facto

rized backprojection algorithm (FFBP)

2.3.3 FMCW backprojection algorithm (start-stop-approximation) .

3 Related work

3.1 Non dedicated architectures

3.2 Dedicated archite
3.3 Evaluation and di

4 Conceptual hardware

ctures L L L Lo
SCUSSION v v v i e e e

design

4.1 Field Programmable Gate Arrays (FPGAs)

4.2 Principles for ded
4.3 Analysis of the m

icated hardware implementation
athematical SAR model

4.4 Analysis of processing dependencies
441 GBP dependencies
442 FFBP dependencies.
4.4.3 Conclusion of dependency analysis

4.5 Analysis of streaming capabilities,

451 Memory a
451.1
4512
4513
4514
4515

ccess patterns (loop ordering)
General considerations for RAM access
Considerations for GBP RAM access optimization .
Considerations for GBP RAM access reduction . . .
Considerations for FFBP RAM access optimization
Considerations for FFBP RAM access reduction . .

25

29
29
31
32

33
33
36
39
40
44
47
53
54
54
55
57
60
65
68

4.5.2 Inter loop streaming (read write balancing)
4521 GBP inter loop streaming
4522 FFBP inter loop streaming
4.5.2.3 Inter loop streaming on module level . . .

453 Intra loop streaming (pipelining)
45.3.1 GBP intra loop streaming
45.3.2 FFBP intra loop streaming

5 Hardware implementation

5.1 Basic dedicated signal processing function units.
5.1.1 Range distance approximation

5.1.2 Square root and trigonometric functions (CORDIC)

5.1.3 Interpolation
5.1.3.1 Evaluation of interpolation methods . . .

5.1.3.2 Implementation of interpolation

5.1.4 Complex multiplication

5.2 Dedicated GBP implementation
521 GBPPE.
5.2.2 GBP control structure

5.3 Dedicated FMCW implementation
5.4 Dedicated FFBP implementation.
5.4.1 Analysis of factorization impact on image quality . .
542 Mapper
5.4.3 Factorizer
544 Full FFBP system.

5.5 Integration of dedicated modules

6 Results and evaluation

6.1 Resource utilization
6.1.1 GBP resource utilization
6.1.2 FMCW resource utilization
6.1.3 FFBP resource utilization

6.2 Performanceresults
6.2.1 GBP performanceresults
6.2.2 FMCW performanceresults
6.2.3 FFBP performanceresults

6.3 Imageresults L.
6.3.1 GBPimageresults
6.3.2 FMCW imageresults
6.3.3 FFBP imagevresults.

6.4 Evaluation and discussion of results

7 Summary

101
104
106
107
111
112
114
116
121
126
131
132

135
135
135
139
141
145
145
148
148
151
151
152
153
154

159

List of terms and abbreviations

ALU
ARU
ASIC

BRAM

CAT
CBP

CE

CLB
CORDIC
COTS
CUDA

DDR
DSP

FBP
FFBP
FFT
FIFO
FIR
FMCW
FPGA
FSM
FU

GBP
GPP
GPU
HDL

ISLR

Arithmetic Logic Unit
Arithmetic Unit
Application Specific Integrated Circuit

Block Random Access Memory

Computer Aided Tomography
Convolution Backprojection

Cordic Element

Configurable Logic Block

Coordinate Rotation Digital Computer
Commercial Of The Shelf

Compute Unified Device Architecture

Double Data Rate
Digital Signal Processor

Filtered Backprojection

Fast Factorized Backprojection

Fast Fourier Transform

First In — First Out

Finite Impulse Response

Frequency Modulated Continuous Wave
Field Programmable Gate Array

Finite State Machine

Function Unit

Global Backprojection
General Purpose Processor
Graphic Processing Unit

Hardware Description Language

Integrated Sidelobe Ratio

XI

LFM
LUT

MAC
MSE

NoC

PE
PLD
PPP
PSLR
PSNR

Radar
RAM
RAR
RDA
RISC
RMS
ROM

SAR
SDRAM
SIMD
SoC
Sonar
SRAM

TDC
TDP

UAV
UEMU
UwB

WKA

Xl

Linear Frequency Modulated
Look Up Table

Multiply-Accumulate
Mean Squared Error

Network on Chip

Processing Element
Programmable Logic Device
Pulse to Pixel Projection
Peak Sidelobe Ratio

Peak Signal to Noise Ratio

Radio Detection And Ranging
Random Access Memory

Real Aperture Radar

Range Doppler Algorithm

Reduced Instruction Set Computer
Root Mean Square

Read Only Memory

Synthetic Aperture Radar

Synchronous Dynamic Random Access Memory
Single Instruction Multiple Data

System on Chip

Sound Navigation And Ranging

Static Random Access Memory

Time Domain Convolution
Thermal Design Power

Unmanned Aerial Vehicle
Unified EMUlation Framework
Ultra WideBand

Wavenumber Domain Algorithm

List of symbols

Notation

Na;
Ta

by
by
By

calcgpp
IYsupe

I XxubC
I, subC

Oy
Ox

Trange

irg
laz
iy

Ix

Iz
Ty
I'x
Tmax
rd
T'min
5rg
or
Tp

1 th{bR

Description

aperture angle in azimuth direction
aperture angle in range direction
antenna lenght

aperture position vector z component
aperture position vector y component
aperture position vector x component
apertures in azimuth

azimuth resolution

beam width
burst length of memory transfer

bus clock frequency

calculated runtime of the GBP

center position of subimage on ground in y
center position of subimage on ground in x

center position of subimage on ground
distance between pixel in y axis
distance between pixel in x axis
covered distance in range line

discrete sample position in range
discrete aperture position in azimuth
discrete y coordinate for pixel

discrete x coordinate for pixel

distance in z between pixel and antenna
distance in y between pixel and antenna
distance in x between pixel and antenna
distance antenna to end of samples
distance between sample and aperture
distance antenna to first sample
distance between range samples
distance between pixel and antenna
duration of pulse

half width of subimage on ground in y

Dimension

3333 ¢°0°

©
EE
=

o

pure

333333¢

©“©33333333227TT
3300

3

X

Notation

z
Z

1P

Teell
i
Scomp
Sint

hwgpp

T/
Pfint
Pfact
f sub

Ny

fsuby
f sub,
Japt

PFFBP
PGBP

PCc
Pcorr
PEpcr
PE.¢

Tcomp
rr

XIV

Description

height map array for ground area
height of coordinate in z axis

image pixel position array on ground
image plane array

image pixel in y direction

image pixel in x direction

index for range cell

index of sample in range line
interpolated phase corrected aperture
interpolated aperture

measured runtime of the GBP in hardware

new aperture position array

number of parallel interpolations FUs
number of parallel factorizer PEs
number of subimages in total
number of pixel iny

number of pixel in x

number of subimages in y

number of subimages in x

number of factorized apertures

original aperture position array

parallelization degree of the FFBP PE
parallelization degree of the GBP PE
parallelization degree of processing elements
phase correction constant

phase correction angle

processing element pipeline frequency
processing element clock frequency

range compensation factor
range resolution

samples in aperture

set of new apertures

set of apertures

signal bandwidth

single range sample position

Dimension

pure
pure
pure
pure
pure
pure
pure

pure
pure
pure
pure
pure
pure
pure

complex
m

pure
pure
pure
Hz

pure

Notation

dy

d() C

dL'l’l
dO n

Dy,
By
1 YsubD
1 Yah‘vD
IX, absD

Description

slant range to ground

speed of light

squared distance between pixel and antenna
squared distance in z between pixel and antenna
squared distance in y between pixel and antenna
squared distance in x between pixel and antenna
startposition of subimage on ground in y

time to load a full range line
time of processing of one PE
time of travel

vector between new aperture and new center
vector between old aperture and new center
vector between new aperture and sample
vector between center and new aperture
vector between old and new aperture

wavelength of the radar

width of data word

width of memory bus word

width of subimage on ground in y
width of image on ground in y
width of image on ground in x

Dimension

3333 3«33

33333

bit

XV

1 Introduction

The principle of visual perception is a powerful and important mechanism of sensing.
Many daily routines, whether complex or simple, rely strongly on this principle. The
power lies within the capability of the eyes, to constantly assimilate a vast amount
of surrounding information, coupled with the brain that processes and interprets this
data within a very short time. Thus, many technical systems forward information only
or mainly in a visual manner. The principle of Radio Detection And Ranging (Radar)
constitutes no exception to that. Radar sensors send electromagnetic waves to
illuminate the surrounding area, the reflected echoes carry wavelength characteristic
information back to the sensor. This information is visualized and can be interpreted
with a certain knowledge of the system. The most common use case for Radar
technology is the range detection of objects and determination of their velocity and
direction. This is used for the coordination of maritime and air traffic. The big
advantage of this technology becomes obvious in four features:

1. The range of the human eye is extended
2. As an active system radar is independent of daylight
3. Information that is not visible for the human eye becomes accessible

4. Specific electromagnetic waves can penetrate certain materials and atmospheres

Besides the very basic and spread application of maritime and air traffic control,
the principle of Radar can be enhanced in many different ways to gather and represent
supplementary information. One of these enhanced principles is the imaging technique
Synthetic Aperture Radar (SAR). Radar systems usually present information in a
greatly reduced complexity, objects are reduced to a dot or their Radar cross-section.
Since the process of gathering SAR information is different from Radar, certain
information is lost, while other information is gained. In contrast to Radar, SAR
systems are capable of presenting information in a way, that is more likely to be
interpreted directly by the human eye. When mounted on an airborne platform, the
gathered data can be processed to become comparable to electro-optical ground
images. Depending on the used SAR principle, this technology is useful in many
scenarios such as:

1. Topographic mapping of planetary surfaces or ocean floors [1, 2]
2. Monitoring the development and condition of crops [3]
3. Disaster control (e.g. landslide identification [4])

4. Military or civil surveillance [5]

1 Introduction

Figure 1.1: SAR image of Frankfurt airport provided by Intermap Technologies [6]

An example for SAR generated images is given in Fig. 1.1 provided by Intermap
Technologies Canada. The image is part of a mapping campaign surrounding Frankfurt
airport (Germany).

On a first glimpse, this image resembles a standard planar representation of a
top-down grayscale aerial photo. But a detailed examination of Fig. 1.1 reveals
fundamental differences to electro-optical top-down images. Some structures are
emphasized while others are blurred, buildings seem to be observed from an angle
and not top-down, and although streets and runways are present, no cars or planes
seem to be present in the image. The differences to electro-optical images result
from the SAR principle and how data is recorded and processed.

First, electromagnetic microwaves can be reflected almost completely, pass through
or be absorbed depending on the material. This can be an advantage, as it creates
the mentioned highlighting or fading of structures. Second, the area was scanned
in 8.8 km height with a slant range of 9.2 km. This results in an angle of roughly
45°, creating a slightly tilted representation of higher objects. Still, it would not
be perceived as a 45° angle. With SAR, even sharper angles are possible whereas
the perception is not affected to the same extent. This allows for extreme slant
range scans. In contrast to optical systems, the achievable spatial resolution of a
SAR system does not change with the slant range, making it a perfect candidate
for satellite missions. Third, SAR images base on data recorded over time, while an
optical image is recorded in an instant. This results in smearing and dislocation of
moving objects in a SAR image (e.g. white artifacts in the runway area). This effect
is a disadvantage if objects need to be identified, which is important in surveillance
but not in mapping means. In some cases, this can become an advantage, as objects
can be indicated as being in regular motion or static.

1.1 A brief history of Radar and SAR

Ground imaging is the classic SAR scenario, but many adaptations exist which
allow for the retrieval of different scientific data, making SAR an important tool for
different applications. Still, this technology comes with certain disadvantages which
exist in recording and fast and accurate processing of SAR data. The presented thesis
tackles especially the problems of faster and more accurate processing especially in
harsh environments.

1.1 A brief history of Radar and SAR

The first Radar system was developed in the year 1904. The German engineer
Christian Hiilsmeyer developed a device called Telemobilskop, which allowed to detect
ships in a distance of up to 3000 m with the help of electromagnetic waves [7]. In
1922 the Italian physicist Guglielmo Marconi developed a device to detect metallic
objects [8]. This principle was adopted in the same year by two American engineers,
A.h.Taylor and L.C. Young, who build the first Continuous Wave (CW) Radar [9].
The second world war boosted the research and development of different radar
technologies significantly, resulting in increasingly powerful constructions. In 1939
a Radardevice was used onboard an airborne platform for the first time [9]. This
fast development shows that Radar was applicable in the early stages with available
technologies.

Compared to Radar, SAR demands for more complex calculations. The theory of
wavefront reconstruction was developed by the Hungarian engineer and Nobel Prize
winner Dennis Gabor in 1948 [10]. In the year of 1951, the American mathematician
Carl A. Wiley recognized, that this theory can be combined with the airborne Radar
technology to generate images of an observed ground area. The principle of SAR
was born, but the technology to perform the actual math for such complex signal
processing was not available at that time [11]. Nevertheless, the first simple analog
experimental SAR system was operating in 1952 at the University of Illinois [12].
The first SAR images of the coast of Key West (Florida) were created in 1953 [13]
with this system. The patent was registered only later by Wiley in 1954 [14] and
published in 1965.

More precise SAR focusing systems were developed in the optical field by the
American engineers Loius J. Cutrona, Weston E. Vivian and Emmett N. Leith [15].
They started the development of optical (analog) SAR processors using the principle
of Fresnel approximation. This was the standard way to generate SAR images until
the development of digital SAR signal processors. The first concepts and simulations
for digital SAR processing were conducted during the 1970s by the American engineers
William M. Brown [16], John C. Kirk [17], W.J. van de Lindt [18] and C. Wu [19].
With the introduction of digital processing in SAR focussing, many new problems
raised about how to record and process the digital data [20]. An operating digital
SAR processor was first designed for the SEASAT satellite in 1978 [21]. From this
day, digital SAR focusing became relevant.

1 Introduction

In general SAR data processing can be separated in the frequency-domain-based
and time-domain-based algorithms. Since the mathematical model of wavefront
reconstruction was too complex for the available processing capacities in the late
seventies, a less demanding algorithm had to be developed for SEASAT. This was
done by MacDonald Dettwiler (MDA) and the Jet Propulsion Lab (JPL) [20] and got
to be known as Range Doppler Algorithm (RDA) [22]. Therefore, the RDA was the
first frequency-domain-based operating digital SAR processor. Approximations were
used to simplify the mathematical model of SAR processing, which allows for faster
computation with less accuracy for some cases. Many developments in the decades
after the SEASAT project increased the potential of SAR, including antennas, digital
components, and algorithms. Leading to applications in many different fields besides
ground imaging, like topography, terrain discrimination, forestry, urban growth,
oceanography, and many others.

With exponential growing processing capacities in the following decades, other
frequency-domain-based algorithms like the Wavenumber Domain Algorithm (WKA)
[23] and the Chirp Scaling Algorithm (CSA) [24] were developed, which increased
the quality of SAR images. The WKA was the first algorithm to fully embrace the
principle of wavefront reconstruction. All of the named algorithms are still popular
today. Especially the RDA is widely spread as it is fast and simple and still offers good
image quality. But all frequency-domain algorithms are limited in certain aspects
because approximations or assumptions are made to simplify the calculation. The
most important limitations are the maximum bandwidth of the Radar and the shape
and extent of deviation from a linear path.

Processing in the time-domain is free from the here mentioned limitations but also
more complex. The basic principle of time-domain-based algorithms is known as
backprojection and is based on the Radon transformation postulated by the Austrian
mathematician Johann Radon in the year 1917 [25]. It is used to transform a plane
into a set of lines (projections), where each line (projection) contains the density
information of the entire plane from one defined angle. Radon himself already
postulated the inversion formula that is used to construct the plane information from
the lines (projections). To retrieve the line information, an object or area needs to
be circled by several aligned sources and several aligned sinks, facing each other to
collect the density information. This is called a parallel beam geometry.

The base of the time-domain algorithms, which are also used in SAR, emerged
first from the field of astronomy with the formulation of the projection slice theorem
in 1956 by the Australian physicist Ronald Bracewell [26]. Thereby, Bracewell
formulated the bridge between the Radon transform and the Fourier Transform by
expressing the relation between the projection data and their two dimensional Fourier
transform. The theorem was revisited in the early sixties for the Computer Aided
Tomography (CAT) principle by different scientists, the American physician William
H. Olfendorf in 1961 [27], the American physician David E. Kuhl in 1996 [28] and
the South African physicist Allan McLeod Cormack in 1963 [29], who formulated
the basic adaption. But a clear image could not be retrieved with the given settings.

1.1 A brief history of Radar and SAR

Cormack continued on the field and was able to improve the method, but it was up
to Bracewell and Riddel in 1967 [30], who enhanced the theorem with appropriate
filters to remove ambiguities. The method is know today as Filtered Backprojection
(FBP), Convolution Backprojection (CBP) or Time Domain Convolution (TDC). The
American mathematician Larry Shepp and the electrical engineer Benjamin F. Logan
implemented this method for CAT the first time in 1974 and improved it further,
creating clear images of a section of a human head. The principle was adapted in
parallel by Lakshminarayanan [31] and Budinger et. al [32] in 1975, to a fan beam
geometry with only one source covering the entire object.

When compared, a specific type of a SAR scenario (spotlight mode) and fan-beam
CAT scenarios are sorts of similar. In both cases, an area is circled and scanned from
all angles by a certain type of electromagnetic waves. Considering the similarities,
it is surprising that the class of time-domain algorithms was recognized for SAR
much later. Compared to frequency-domain-based algorithms, time-domain-based
algorithms include more detailed geometrical information during the image forming
process. This results in better image quality but also a higher degree of complexity and
therefore more demanding processing capacities. The early use of time-domain-based
algorithms in CAT might origin from the fact that CAT systems create smaller images,
while SAR systems usually create large images. Processing capabilities were simply
not given at that time. When compared in more detail, CAT and SAR scenarios are
different for many reasons. CAT is a circular scenario with an exact, predefined path
for the multiple transmitters and receivers which are located in opposite positions,
facing each other (bistatic), and are active simultaneously. Most SAR scenarios only
use one transmitter and receiver simultaneously which are placed directly next to each
other (monostatic), or sender and receiver are the same antenna alternating between
transmission and reception. On top of that, the path is not predefined and could
be either circular or linear with no exact position information. In addition to these
differences, another frequency band, which can also be much wider in bandwidth, is
used for SAR. But for the mentioned reasons, time-domain-based solutions could not
be applied directly to SAR.

In 1983 the American engineer David C. Munson proved, that FBP could be
adapted to process SAR data of a spotlight scenario [33]. A more common case
for SAR is the so-called stripmap geometry where an area is scanned while flying
along a linear path. The adaption to a SAR stripmap geometry was covered later by
many authors independently. The American and Swedish mathematicians John A.
Fawcett [34] and Hans Hellsten et. al [35] proved, independent from each other, a
valid method to invert the Radon transformation for a SAR setup in 1985 and 1987
by using Fourier Hankel transformations. Both rely on straight, instead of circular,
paths which can be used for stripmap scenarios. In the approach of the Swedish
mathematician Lars Erik Andersson [36] in 1988 it is described how the algorithm is
adapted to handle Ultra WideBand (UWB) signals, which is a key feature for SAR
data processing.

1 Introduction

When both methods are combined, a general algorithm can be derived that can
process UWB SAR data in a stripmap geometry. This algorithm is often referred
to as Global Backprojection (GBP) or TDC algorithm and has become a golden
reference for the processing of SAR data, as it provides the best image quality. But
it has high demands in processing capacities at the same time. Because of this, it is
not often used in systems that need to deliver fast image results.

To counter long processing times, faster versions of the GBP algorithm were
developed over the past years. Two different classes beside the basic GBP algorithm
class exist. First, the two-stage algorithms which reside in a complexity class between
the GBP and frequency-domain algorithms, e.g. the Fast Backprojection algorithm
(FBP) developed by Ali. F. Yegulap in 1999 [37] or the Local Backprojeciton (LBP)
algorithm developed by Swedish mathematicians Olle Seger et. al in 1998 [38]. Second
the multiple stage algorithms that can actually reach the same complexity of the
frequency-domain algorithms, e.g. the Quadtree Backprojection algorithm (QTBP)
developed by John McCorkle et. al in 1996 [39], the Links Fast Backprojection
algorithm (LFBP) developed by the Swedish mathematicians Stefan Nilsson et.al
in 1998 [40], the Fast Hierarchical Backprojection algorithm (FHBP) developed by
the American engineer Samit Basu et. all in 2000 [41] and the Fast Factorized
Backprojection algorithm (FFBP) developed by the Swedish mathematician Lars
Ulander et. al in 2000 [42]. Frankly, the modified versions reduce the computations
for the GBP step, by combining adjacent areas of SAR data to reduce the processing
complexity. As there is no free lunch, speeding up the processing results in a decrease
in image quality under certain circumstances.

Depending on the size and quality of SAR data, the demands in image quality,
processing capacities and the given SAR scenario, any of the time or frequency-
domain algorithm can be used. The ongoing fast development of computer technology
increased the capabilities of SAR systems continuously, which created an interest
in the technology in military and civil organizations, making it a key technology in
remote sensing.

1.2 Challenges and resulting motivation

Inverse image reconstruction from multiple separated echos is of interest in fields of
application like SAR, CAT and Sound Navigation And Ranging (Sonar). Different
wavelengths, modes, and antenna settings allow for a variety of information to be
obtained from the observed area. SAR can be used in near field scenarios, but the
most common use cases are a far-field scenario like spaceborne and airborne SAR.
For airborne scenarios, Unmanned Aerial Vehicles (UAVs) gain more importance due
to the high reduction of costs and risk. This allows for wider civil usage of SAR in
the fields of disaster prediction and control, crop and forest monitoring, archaeology,
cartography, and others.

1.2 Challenges and resulting motivation

But implementing SAR on UAVs calls for strict restrictions regarding system
dimensions and energy consumption of the system processing SAR data. Furthermore
small and lightweight airborne platforms react more sensitive to atmospheric conditions
then bigger and heavier planes. Therefore, the imaging algorithm needs to be
robust enough to compensate for the effects of motion in the platform trajectory.
Nevertheless, because of the mentioned advantages, this work is focused on a UAV
based SAR scenario.

Depending on the application case and the sensor, the amount of raw data can be
in the range of mega samples per second (MS/s). As image reconstruction algorithms
come with a high degree of complexity, this results in large processing times (growing
exponentially with the amount of raw data) and high energy consumption. For
air- and spaceborne platforms these aspects are critical for operation. For effective
missions, the image should be available shortly after the data was sampled (real-time
mission control). Storing the data on-board for ground processing is therefore not a
preferred option. Two option exist to handle this (runtime/energy) challenge. The
first and trivial option is a real-time transmission of the raw data to the ground,
so that image reconstruction can be performed on high-performance computers.
But based on the sensor scan rate, the amount of raw data per second cannot
be transmitted via standard downlinks. This calls for broadband solutions or the
compression of the raw data before transmission. But SAR raw data resembles
a noise structure, which is why compressing results in few percentages of data
reduction. Broadband downlinks are not always possible either, common limitations
are the given terrain (no line of sight) or the maximum energy consumption (for
transmission) of the given platform (e.g. satellites). The sophisticated and second
option is on board image reconstruction. Standard image compression codecs such
as H264 can then be used to reach high data reduction factors on the generated
images, allowing for standard downlinks to be used for real-time transmission. This is
advantageous in two aspects. First, only a fraction of the raw data is stored onboard
in small processing buffers, which reduces storage hardware to a minimum. Second,
real-time mission control is possible if the delays between echo reception onboard
and image reception on the ground can be greatly reduced. This is possible when
the delays for processing, compression and image transmission are small enough.
The delays for image transmission and compression are considerably small, as highly
efficient hardware solutions exist for image compression, leaving only a fraction
of the original data for fast image transmission. Only the delay for processing is
challenging as image generation algorithms demand high-performance computing.
This automatically results in bigger systems dimensions and high energy consumption.
To reduce the requirements the simplest image generation algorithm should be picked.

When only runtime complexity is considered, frequency-domain-based algorithms
are the better choice for processing SAR data, as they are faster at least one
order of magnitudes when compared to time-domain algorithms (backprojection).
The downside of these algorithms lies within the approximations used for image
generation. Approximations simplify the mathematical model in a way that only

1 Introduction

simple trajectories (linear movements) of the platform result in good image quality.
But airborne platforms underlie strong deviations, which can result in a drastically
reduced image quality. These errors can be compensated to a certain degree, but a
full recovery is not possible. As a rule of thumb, it can be stated, that a deviation
within the amount of a quarter wavelength of the carrier frequency from a linear path
in any axis, does not affect the quality of the image. For SAR systems the carrier
frequencies are partitioned in wavebands from 0.2 GHz to 300 GHz, resulting in
wavelengths from 1.5 m to 1 mm. Applying the quarter wavelength rule, already the
upper boundary of 1.5 m would limit the allowed motion deviation to 37.5 cm. For
any type of airborne platform, this limitation would be violated by the typical flight
path deviations. Time-domain algorithms, on the other hand, are more complex, but
do not rely on approximations wherefore any trajectory is allowed and any deviation
can be compensated. This is of special interest for small airborne platforms (UAVs)
as they are more affected by weather conditions. This work is addressing the question
under which conditions this problem can be solved, which hardware could be used
for such a demanding task, and how this might limit the achieved result.

This creates a challenging scenario: A small airborne platform with reduced space,
and restrictions on weight and energy consumption, has to be capable of high-
performance computing for time-domain-based SAR processing. For UAVs all aspects
need to be reduced to the lowest possible values to use a maximum of resources
for the actual SAR sensor system. Common General Purpose Processor (GPP)
architectures are not suited for this task. The power of GPPs lies within the broad
variety of tasks they can handle. Due to this, the processing performance for tasks is
limited on average. While multicore or manycore architectures, containing many GPP
cores could partly close this gap, constraints on system size and energy consumption
prohibit this solution, as already one powerful GPP core can consume the energy of
100 W and above at peak performance. Another option are Graphic Processing Units
(GPUs) which are tailored for image processing. The power of GPUs lies within the
massive parallel processing but makes these platforms also very energy-demanding
which can result in 200 W power dissipation and above. Additionally to the high
energy demands, GPUs need a host system which increases the system size. Digital
Signal Processors (DSPs) which are processors that are tailored for signal processing
tasks consume less energy when compared to standard GPPss or GPUss, but the
performance for massive parallel tasks is reduced.

The optimal architecture that combines all criteria are Application Specific Inte-
grated Circuits (ASICs). For maximum performance, the circuit can be designed
to only implement the signal processing operations required for the specific task.
Omitting unnecessary operations automatically reduces the architecture to the lowest
possible system dimensions and energy consumption. The parallelism of the imple-
mented operations can be used to increase performance. The big downside of an
ASIC is the fact, that it cannot be updated to algorithmic adaptations and that it
exceeds development time and cost by far, when compared to other architectures.

1.3 Research objectives

A compromise solution is Field Programmable Gate Array (FPGA) technology,
which allows the same level of adaption and parallelism but does not match the same
small system dimensions, low energy consumption, and fast operating frequency as
ASICs. However, system dimension and energy consumption will still reach lower levels
when compared to other high-performance platforms. The relatively low operating
frequencies of FPGAs can be compensated by the massive parallelism. Development
time is however comparatively high, as it requires a full hardware description. In
general, the time factor needs to be considered for system design but becomes
less relevant as system constraints get harsher. In contrast to ASICs, FPGAs can
be adapted to algorithmic changes, although not as fast as any other mentioned
architecture. When leaving development time aside, considering all given constraints
and the pros and cons of each technology, FPGA technology is the best compromise.
The resulting motivation is to investigate how and within which limits, onboard
processing of SAR data in the time-domain is possible with FPGA based systems.

1.3 Research objectives

As a key technology for surveillance, disaster control and cartography, SAR image
generation is a continuous research topic. Different approaches in time-domain
were already examined on different non-dedicated architectures [43, 44, 45, 46] and
dedicated architectures [47, 48, 49]. Nevertheless, it becomes apparent that a gap in
the field of fast time-domain-based processing on FPGAs exits.

Therefore, as a first step, one major objective is the identification of fast time-
domain-based processing algorithms suitable for FPGAs implementation. A pre-
liminary study with a high-level software implementation is necessary prior to any
implementation in hardware. The study serves as a reference for quality evaluation
and to examine algorithm settings, while the objective is to identify the best trade-off
between achieved quality and complexity. The second objective is a low-level accuracy
analysis. In contrast to pure software implementations, dedicated designs demand a
deeper understanding of the underlying hardware structure for optimal results. This
starts with the number representation in fixed-point format rather than floating-point
format as used in software implementations. Fixed point format demands detailed
analysis to understand how the reduced number format might affect the accuracy.
The third objective is an efficient implementation. FPGA designs cannot compete
with other architectures in terms of operating frequency, wherefore the objective is
to choose algorithms, which are either suited for massive parallelization or divisible in
small steps to implement a fine-grained pipelined streaming architecture. In addition
to the algorithm structure, all steps can be performed with different accuracy. It is
the objective, to identify approximations that fit the needs, are efficient to implement
and are easy to pipeline or used in parallel. The fourth objective is scalability and
portability. As the resources of FPGAs on the market constantly increase, the designed
architecture should be divided in generic modules that can be scaled in size, accuracy

1 Introduction

or amount to max out the resources of a wide variety of FPGAs. For universal
utilization, the architecture should only depend on common hardware periphery like
Double Data Rate (DDR) memory. To map the architecture on different FPGAs, the
signal processing modules should be wrapped in a module that translates between
the board-specific periphery and the internal communication interface. This would
allow for module internal changes without any effect on the external periphery and
vice versa. The fifth objective is the proof of the entire design in the form of a fully
working, closed-loop real-time laboratory setup. As every setting of SAR sensors and
every parameter in backprojection algorithms can change the outcome of the image
result, a laboratory demonstrator is necessary to validate the universal application of
the architecture. The whole setting should include a SAR sensor, signal sampling, and
signal processing in real-time. Where real-time means, data needs to be processed
within the same duration of sampling time. To increase the effectiveness of real-time
mission control, the latency of processing should be as small as possible.

1.4 Structure of this work

This thesis is structured as follows. Chapter 2 will explain the fundamental theories of
the SAR principle and signal model. Based on this, the idea behind backprojection is
described and the used algorithms will be explained in more detail. To understand the
relevance of the presented work, Chapter 3 will give an overview of the state of the art
SAR processing with backprojection on different architectures. To understand how an
efficient implementation of time-domain-based processing on dedicated architectures
can be achieved, Chapter 4 will explain the fundamental ideas for fast implementation.
All alternative concepts will be discussed, considering the fact, that an on-board
integration of time-domain-based processing on dedicated hardware is the main goal.
After this, in Chapter 5 the basic signal processing blocks for fast implementations
and the backprojection architectures are explained in detail, to understand which
concrete measures were adopted for implementation. In Chapter 6 the concepts will
be evaluated regarding resource utilization and runtime. Image quality is evaluated
on different data sets which vary in their SAR scenario setting. Also, further options
for fast dedicated implementations are discussed. A summary of the whole work is
given in Chapter 7.

10

2 SAR image processing

Radio Detection And Ranging (Radar) is a key technology for a variety of different
applications in many different fields. Synthetic Aperture Radar (SAR) is one of these
fields, where Radar technology is used to generate digital 2D images of an observed
ground area. SAR systems usually base on pulsed Radar systems in a far-field scenario
which involves an airborne or space-borne platform. Due to the latest development
in SAR sensor technology, apart from far-field scenarios, also near field scenarios
can be covered. This is possible by the use of Frequency Modulated Continuous
Wave (FMCW) Radar sensors, which offer finer resolutions but do not cover bigger
distances. The basic SAR signal model and the generation of images from the raw
data will be explained in the following sections. The processing steps for image
generation, the acquired data and the applied algorithms will be outlined.

2.1 SAR signal model

All SAR system base on the principles of Real Aperture Radar (RAR) systems [50].
Enhancements of the technology, which mostly based on signal processing, allowed to
overcome the natural limitations of RAR. The limitations can be understood by looking
closer into the process of how RAR systems generate images. To retrieve ground
information, a RAR system sends multiple narrow beams of energy perpendicularly
to the flight path (azimuth direction) of the airborne or space-borne platform to
the ground. The echos are collected over time and are used to generate the ground
image. The geometry is depicted in Fig. 2.1.

Based on the beam width and the distance to the ground a rather small or rather
big area, called the swath, is illuminated by the beam. The distance between any
point within the swath and the RAR system is called slant range. This swath has
a length in range direction (perpendicular to the flight path in azimuth direction)
which results from the slant range d; and the aperture angle in range direction
0, of the used antenna. Within this swath, echos from further ranges return at
a proportionately larger time then echos from closer ranges. Based on these time
values, the echos can be separated into equidistant cells, which are combined to a
range cell vector (range line Ny;). The relative intensity of the echos in the vector is
used to generate a single image line of a narrow swath of terrain. The size of the cells
defines the resolution of the image line in range direction. The resolution in azimuth
direction is defined by the width of the swath, which depends on d; and the aperture
angle @, in the azimuth direction. Due to the continuous forward movement of the
platform, the next pulse is transmitted at a slightly different position in azimuth.

11

2 SAR image processing

Figure 2.1: Geometry for stripmap RAR on airborne platform

Therefore, a slightly different strip of terrain will be illuminated. By forming
a sequential strip (RAR strip) of terrain swaths side by side in azimuth, a two-
dimensional data array that forms the RAR image is created.

Due to the principle of how RAR systems work, the resolution of the image is
heavily limited. To be able to distinguish between two objects in range direction,
the objects must be separated by a minimum distance in slant range d; in order to
locate them in two different range cells. The distance ds to an object is defined by
the travel time 7 of the pulse to an object. Since the pulse travels to the object and
back to the sensor with the speed of light ¢y, the actual distance results to Eq. (2.1)
[20].

(2.1)

This distance d; must be greater than the radar pulse length 7,. Otherwise the back
scattered pulse of the second object would overlap with the back scattered pulse of
the first object and would locate both echos in the same range cell. Range resolution
ry is therby defined to equation Eq. (2.2) [20].

_¢%" %

== (2.2)

12

2.1 SAR signal model

To focus in range direction, in order to improve the resolution in range, the length
of the radar pulses 7, should be as short as possible. But shortening the pulse is
problematic for three reasons.

First, the higher the frequency of a Radar system, the more it is affected by weather
conditions like rain or clouds.

Second, the pulse must transmit enough energy, so that the backscattered echo
energy is still strong enough to enable for the detection of the reflected signals. To
keep the energy level constant, shortening the pulse demands for an increase of pulse
energy (amplitude). This is problematic, since the design of systems that transmit
very short, but high energy pulses are difficult and uneconomical.

The third reason is the direct dependency of range and azimuth resolution. To
counter the range resolution problem, the first enhancement to RAR systems is
introduced with the technique of range compression. Range compression is one
of the two major steps in focusing Radar data and thereby an important step for
moving from RAR to SAR systems. Range compression uses so-called chirped pulses
(chirps) which are used in most Radar systems. Chirps are characterized by a Linear
Frequency Modulated (LFM) pulses instead of short pulses with a constant frequency.
Another type of pulses are so-called FMCW pulses which are covered later. Chirps
can be much longer than a not modulated pulse and thus allows the pulse energy
to be transmitted with lower peak power. When the echoed chirp is filtered with a
matched filter, a narrow pulse is the result which contains condensed pulse energy.
This improves range resolution and signal to noise ratio. The matched filtering
can be implemented in many ways. One efficient method is the use of Fast Fourier
Transforms (FFTs) and is done in the frequency-domain. Such operations have certain
advantages in terms of processing speed, which is one reason for the existence of
frequency-domain-based SAR processing algorithms. The matched filter corresponds
to the convolution of the echo with a replica of the original pulse. This focuses the
pulse to a much shorter length. Overlapping pulses can now be distinguished by
referencing time to frequency within the signal bandwidth B. The range resolution is
then defined by Eq. (2.3) [20].

€0
r=5p (2.3)
The range compression finishes the focusing of the Radar data in range direction.
As already mentioned, shortening the pulse length is problematic also because of
the direct dependency of the azimuth resolution from the range resolution. The
azimuth resolution defines the ability to separate two objects in azimuth direction.
This resolution is defined by the aperture angle ®,; of the antenna. All objects that
are illuminated by the antenna beam while having the same distance to the antenna,
will backscatter energy at the same time. These echoes are received at the same
time by the sensor, wherefore the sensor cannot distinguish between the two objects,
although the might lie on the opposite edges of the beam.

13

2 SAR image processing

90°
120° _60°
150°7 s 30° c
=
El
[=]
180° 8
£
o= |
E
150°, L
4207 — .60°
-90°
- slant range dg -

Figure 2.2: Antenna diagram with aperture

Therefore, the beam needs to be as narrow as possible in order to illuminate as
few objects in azimuth at the same time. Figure 2.2 shows an antenna diagram with
the corresponding aperture angle ®,; [20]. The angle is defined by the width of
the main lobe of the antenna, whereby the main lobe is defined as the area where
loss of echo energy does not drop under 3 dB (50%). Since the aperture angle ©,;
defines the beamwidth and is a fixed value for a given antenna, the diagram shows
that the azimuth resolution r, (so also the range resolution) depends on the slant
range distance d; to the object. The beamwidth b,, depends on the physical length
I, of the RAR antenna in azimuth direction and the wavelength A of the Radar and
results to Eq. (2.4) in meter. [20].

by =

% (2.4)

This shows that to narrow the beamwidth, either the wavelength (pulse width)
needs to be reduced or the size of the real antenna must be increased. Due to the
already discussed limitations, the wavelength can only be shortened to a certain limit.
The same applies to the antenna length I,. Since the resolution in azimuth results to
Eq. (2.5) [20], only the slant range distance can be reduced.

rq = dg-tanb,, -2 (2.5)

Also, the slant range can only be reduced in certain limits on airborne and spaceborne
platforms and would not be sufficient to reduce azimuth resolution as required.

To solve this problem, the data must be focused in azimuth. This is the second
step after range compression and completes the processing of SAR data. As already
indicated by the name, a long real aperture is synthesized by stitching several small
real apertures together, forming a virtual antenna.

14

2.1 SAR signal model

Figure 2.3: Geometry for stripmap SAR on airborne platform

To form the synthetic aperture, the linear movement of the platform along a
linear track in azimuth is used. This is called stripmap mode in SAR. In contrast to
RAR systems, the antenna of such systems is small. Thereby the aperture and the
resulting swath size on the ground is wide. Therefore, an object on the ground will
be illuminated by many different pulses which overlap each other. This also means
that an object is illuminated from many different angles during the flight (antenna
synthesis). The principle is shown in Fig. 2.3.

While in RAR systems, an image is formed rather simple due to the single image
line scans, SAR systems rely on a rather complex signal processing to focus the image.
This is also called azimuth compression. The different techniques to perform azimuth
compression are discussed in the following sections and is the main focus of this
work. The basic principle of azimuth compression relies on the fact that every pulse
that covered the object, contains a small amount of echo energy from this object.
The echo energy is located in the range line N,;, the position within the range line
depends on the distance between object and sensor. Due to the wide aperture, this
distance information results in a blurred position, represented by a circular arc around
the antenna position. Due to the movement of the platform, the distance between
sensor and object will change continuously, which shifts the position of the echo
energy in every following range line N,;. The multiple samples of blurred information
create an overdetermined equation system, allowing to trace back an object location.

15

2 SAR image processing

The backtracing is done by simple summation of energy. An object at a certain
position will create an energy pulse in a specific range position, according to the
distance to the antenna. This position will shift in every line due to the movement
of the antenna. This energy can be projected as a circular arc around each antenna
position. By doing this, all arcs will overlap at the correct position to focus the
object. This belongs to the mathematical group of inverse problems since the image
is traced back from a set of indirect observations. According to [20] the azimuth
resolution for SAR systems results to Eq. (2.6), so to half of the antenna length /.

_ o 2.6

Tas =) (.)
This shows the superiority of SAR systems. First, to increase the number of samples
per object the beam width should be widened, which is contrary to RAR system.
Second, the resolution does not depend on slant range d; anymore, since the length
of the virtual antenna can be used to compensate for the change in slant range. This
enables for high ground resolutions which are not possible with RAR systems. The
disadvantage of SAR system is the high demand for processing power to perform the
signal processing to focus the image. In addition to the stripmap mode, other modes
exist where the antenna is always steered to focus on one spot during forward-motion
on a straight path (spot mode). Another form is circular SAR, where an area is
circled and continuously scanned. Both modes allow for even higher resolutions. The
processing is divided into frequency and time-domain-based algorithms, both having
pros and cons which are covered in the following sections.

2.2 Azimuth compression in frequency-domain

While range compression is similar for all domains, azimuth compression is divided
into frequency and time-domain-based algorithms. The most prominent algorithms in
the frequency-domain are the Range Doppler Algorithm (RDA) and the Wavenumber
Domain Algorithm (WKA). The undeniable advantage of frequency-domain-based
processing is the relatively small complexity when compared to time-domain-based
processing. Both the RDA and the WKA reside within the complexity class of
O(N?logN) for images with the size of N x N pixels. Where N represents the number
of collected echo lines N,;. Data is transformed into the frequency-domain via a
FFT for processing. The class of algorithms is named after that. In the frequency-
domain, a simplification is possible as the convolution theorem [51] states that a
convolution in the time-domain equals a pointwise multiplication in the frequency-
domain. This allows substituting all matched filter convolutions in the algorithms
with multiplications. While processing speeds up, the simplification does not allow
for a direct interpretation of time-dependent parameters. This can create ambiguities
and reduced image quality under certain conditions (motion variations from a linear
track). Motion compensation algorithms are capable of correcting the deviations to
a certain degree.

16

2.3 Azimuth compression in time-domain

Nevertheless, the RDA and WKA are still state of the art algorithms and are used
in most SAR systems for processing. But one has to bear in mind, that SAR systems
usually were mounted to bigger and more stable platforms in the past, wherefore
motion was not a severe problem. With the availability of smaller SAR frontends
which are capable of high-resolution scans, smaller platforms are also used. Especially
small Unmanned Aerial Vehicles (UAVs) are affected by atmospheric turbulences,
because of the lightweight system design, comparatively lower speed, and altitude.
For this reason, the assumption of an ideal flight path fails in most practical airborne
scenarios, which makes the precise correction of motion errors mandatory.

2.3 Azimuth compression in time-domain

Frequency-domain-based compression assumes a rather straight flight path to work
properly. While the assumption of an ideal straight flight path (without bigger
deviations) can be valid for bigger platforms, such assumptions are usually invalid
for smaller lightweight platforms. The big advantage of time-domain-based azimuth
compression over frequency-domain-based azimuth compression is the inclusion of
all available trajectory information, which allows compensating any deviation during
processing. Additionally, the principle provides the best possible image results for
SAR data. The Global Backprojection (GBP) is the basic algorithm for time-domain-
based azimuth compression and is therefore explained in detail. But it imposes the
highest degree of complexity for processing. To reduce complexity, several different
methods exist, from which the Fast Factorized Backprojection (FFBP) shows the
most potential for complexity reduction, flexibility, and preservation of image quality.
Therefore, this method is examined as well. All of these methods were developed
under the principle of very short Radar pulses, the FMCW technology with longer
frequency pulse ramps might violate this assumption for processing. In order to
compensate for longer pulse ramps, the principle of FMCW Radar is explained.

2.3.1 Global backprojection algorithm (GBP)

The backprojection principle is based on the Radon transform [25], which can be used
for indirect image formation. It is commonly used in the medical field [30] as data sets
and image dimensions are smaller, which allows for decent runtimes despite the high
complexity of the mathematical problem. This problem resides in the complexity class
of &(N3) [52], where N represents the number of collected echo lines and processed
image pixels in x and y dimensions. Therefore, computation time is challenging
when high-resolution images are required in real-time due to exponentially growing
processing times. Different adaptations reformulated the problem and adapted it to
SAR scenarios [33, 34, 35, 36]. The GBP follows the basic physical and geometric
principles of SAR which is depicted in Fig. 2.4.

17

2 SAR image processing

Nrg
y.range e e L o
A - A
_ -
-
-
-
image I[x,y]
reflector — - ==fF === - - - - echo
_-
-
s j ;\
7 N sensor
7 i \ data
/ly / \\d)\ S[Naz,Nrg]
N/ \,
57 \
/ N
II \’ -r-—-—"—=-== Naz
I/ ” \\ 'min
\
/ — \
I ____t.f!}___-——_::r"@"'* """ e
A SR R e antenna X, azimuth

trajectory [Naz]

Figure 2.4: SAR geometry with trajectory vector and overlapping image plane [53]

SAR data is acquired by moving a wide aperture sensor on a path in azimuth while
looking sidewards during pulse transmission. During acquisition, all objects (which
are illuminated by the sensor) induce an echo signal in the raw sensor data S of
each pulse. By traveling N, positions, N, views (range lines) of an observed object
from different angles and distances are collected. System-specific range compression,
according to Section 2.1, is used for each of these range lines, to form the equidistant
range samples N, or range cells. These range samples form a range line that is part
of the sensor data set S. The index of every range sample i, represents the time
when this sample was acquired. The described process is a direct observation result
of the ground, viewed from the moving platform.

To form an image with backprojection, this traced back and transferred onto the
image plane. This can also be understood as a projection of the energy back on
the ground, which explains the name of the algorithm. The time indices i, of each
range sample in a range line, can be used to allocate the specific range sample in
each range line that holds the echo signal of one specific object on the ground. This
requires the position of the object on a 2D pixel raster to form an image plane.

18

2.3 Azimuth compression in time-domain

The position)WE is composed with the help of the components calculated according
to Eq. (2.7) - Eq. (2.9).

X=1iy-0x (2.7)

Where i, is the discrete coordinate of the current pixel in x in the image plane and
Ox is the increment in distance between two pixel. It is assumed, that the origin of
the platform trajectory (which define the antenna positions) and the origin of the
image plane are identical.

y=iy-8y (2.8)

Where iy is the discrete coordinate of the current pixel in y in the image plane I and
dy is the increment in distance between two pixel.

z2="Z|x,y] (2.9)

Where z is the height value in m for every ground coordinate. The value is read
from an array that holds a height map of the scanned aerial. The z component
is required for correct calculation but not for the 2D image raster. Based on the
antenna position t;; and the position of the object on the raster x’y—% the distance
between the object and the antenna can be calculated following Eq. (2.10).

8r = [iye — 3% (2.10)

Due to the movement of the platform, the distance 6r between an object and the
antenna changes for every range line N,;. This gives an individual index or time value
ree; for the object in each range line and results to Eq. (2.11)

(Sr_rmin

(2.11)

Teell = 5rg
Where Org is the distance between each range sample, and ry;;, is the distance from
the antenna to the first range sample. Both factors are defined by the SAR system.
As rqepp will not be a discrete value, interpolation is required, to match r..;; with the
equidistant pattern of indices i, of a range line. Since the complex valued range
samples not only carry information about the reflected energy, but also about the
phase signal, a phase correction is required as well. The correction requires the angle
@corr Which results to Eq. (2.12).

4n
p)

This finishes the mapping of one range sample of one pulse Ny, to one pixel in the
image plane I. This is also called a Pulse to Pixel Projection (PPP). As image
reconstruction takes place in the time-domain, which directly corresponds to the
spatial domain, no approximations are required while an exact solution is calculated.

Gcorr = O7 (2.12)

19

2 SAR image processing

A A
/ N\ 7\
y / \ antenna p \
] / \ positions / \ range cell rcell
X N Na /
/
/ /\ N1 o7 /\/
l /\ |
OITTTTT I T T T T A TT T T T ON T T T T T A I T T I T T AT T T T TN T O T I T T T TTTTTTT1]
1 g \ A Y 1 ,
A AN /
4 \ ,range line Naz
T T, 2 RO T T T T I T
I(x,y) ’
Nx . / / | \\ point Naz
projected \//
target s |3 target
Ny Nrg
back projected scene 4 real scene
(virtual image) L]

Figure 2.5: The process of projecting sample energy back to image plane I [54]

To process the entire image plane I, each pixel is defined as an object and must be
processed. lterating over all N, pulses (range lines), the distance 8r between each
antenna position 7y, on the trajectory vector and the pixel position)ﬁ% is calculated.
Each range line Ny, at all positions n in the sensor data arry S, contributes one value
to the pixel position I[x,y]. This is done by the interpolation of S corresponding to
the distances 6r. This results to S;,, which is phase corrected based on ¢, and
coherently accumulated to form the final pixel value according to Eq. (2.13). This
finishes the projection of one pixel to the image plane and requires N,; PPPs.

Naz .
I(x.,y) = Z Sinl (n7 rcell) : el"Pmrr (2'13)

The resulting magnitude of an output pixel finally matches the reflectivity at that
particular position Ix,y. This is done for all x x y pixel in the image plane Iaccording
to Eq. (2.14) and yields a total number of @(N3) complex valued projections.

1 N Ny

I= Z Y Zsm, n,reer) - €9 (2.14)

n=0 x=1y=

This is also described as pseudo-code in Algorithm 4.1. The principle of the circular
projection of echo energy across the image plane [is also called smearing and is
depicted in more detail in Fig. 2.5.

20

2.3 Azimuth compression in time-domain

The numbers 1-4 correspond to the N,; antenna positions where the radar sensor
transmits/receives the sent/reflected pulses. The range compression is applied to
form the range lines with N,, range samples. During data acquisition, all point targets
in the real scene, which are covered by an aperture, induce an echo in the raw sensor
data array S of the pulse. The point target echo is allocated to a range cell r; (as
indicated by the black and grey cells in the real scene) based on the time passed
between sending and receiving. This cell position changes for each antenna position,
as indicated by position 1 (grey line) and 2 (black line). The reflection value of each
range cell is backprojected (smeared) on the virtual image I, based on the distance
Or between a pixel position and the antenna position. Since the calculated distance
usually does not match with the equidistant discrete cell of the range line, the values
have to be interpolated (S;y;) and phase-corrected. But only the distance 6r and not
the direction of the reflection is known, therefore, the energy is projected on circular
lines. This adds the energy to each pixel that is covered by the circular line. If this is
done for every antenna position in flight direction (azimuth), accumulation ensures
that the pixel is focused at the correct geometrical position. All lines, corresponding
to the point target, overlay at a certain point (projected target) and therefore focuses
the pixel. The resolution of the virtual image plane I is arbitrary, as the grid positions
can be chosen freely. In contrast to frequency-domain-based algorithms, the GBP
can handle arbitrary trajectories without additional motion-compensation, as data is
processed directly in the time-domain, so no ambiguities are created.

2.3.2 Fast factorized backprojection algorithm (FFBP)

The problem complexity &(N3) of the GBP limits the image size and raw data
size for real-time application. Different modifications were developed to reduce the
complexity to &(N2+/N) [37] and &(N?logN) [42]. The modifications serve as a good
trade-off between problem complexity, robustness, and quality. The modification
presented by Ulander [42] is called FFBP and shows the most potential in terms of
performance result and for the adaptation to dedicated hardware architecture.

The FFBP is a time-domain-based algorithm which uses the GBP algorithm for
core calculations. To reduce the overall complexity, the impact of one of the three
factors that lead to the high GBP complexity is reduced. Such reductions are possible
for GBP processing, when the image dimension in x or y direction or the number
of incoming apertures per calculated image are reduced. But a reduction of image
resolution is not optional as image resolution should always match, or at least be
close to the maximum possible quality. Otherwise, the SAR system should be reduced
in complexity. This leaves the aperture set as the only candidate for complexity
reduction. Well designed SAR systems sample data close to the Nyquist rate [55].
This means that every reduction of the aperture set inevitably leads to undersampling.
While the GBP can run with a reduced aperture set, the undersampling will cause
aliasing effects which leads to ghost images.

21

2 SAR image processing

y
—>
Stage 0 lx
Full image

eoe2 IO OO M HOL MO0O

y y y

1 — 1-4 _— 1-16 _—
<
=
=]
E e e ><
(o]
data image decimated subimages decimated subimages
Stage 0 dataset Stage 1 dataset Stage 2

Figure 2.6: Factorization of image I and apertures N,; in two FFBP stages s

The amount of ghost images, which manifest as a mitigated version of the
original image, correlates with the rate of undersampling and decrease image quality
accordingly. Nevertheless, the approach of the FFBP is to reduce the aperture set,
but instead of skipping apertures a subset of adjacent apertures is merged (factorized)
to counteract the effect of undersampling. The idea is to hold the information of
many apertures in one new merged (factorized) aperture. A merged set of adjacent
apertures is called a subaperture, while the size of a subaperture is defined by f,,.
A set of subapertures is called a decimated dataset.

As there is no free lunch, also the factorization introduces image errors in the
form of information loss. To counter the error (or loss of information), the process
is repeated for different sections of the image. These sections are referred to as
subimages in the following. The number of subimages is controlled by f,;, in x
direction and fj,;, in y direction of the image. Each aperture of the decimated
dataset is rectified to the geometrical center of its subimage, to be merged to a new
subaperture for this specific subimage. This results in multiple decimated datasets of
unique information for each subimage. The process can be repeated in successive
stages s, while an increasing number of subimages is generated with progressively
fewer subapertures in each stage. A decimated dataset is created by factorizing the
apertures of the previous stage. The error becomes smaller the more subimages are
created per stage. A sketch of a symmetric process of factorization with two stages
is depicted in Fig. 2.6 as an example.

22

2.3 Azimuth compression in time-domain

image grid
T[o-1]
_C an
-+
dnS
g Tl[n] /\/\
i subimage

Figure 2.7: Geometry for factorization of subapertures and subimages

In each of the two stages s, 4 apertures are merged to a subaperture (f,,; =4). At
the same time, the image is split in x and y direction by a factor of 2 (fxubx:fxuby: 2)
in each stage. This example is called symmetric, because the total factor of aperture
factorization (4 x 4 = 16) equals the total number of subimages (2 x 2 x2 x 2 =16).
When splitting an image into subimages, the resolution of each subimage is reduced
by the factor of fy; X fsub,- Assuming an aperture count of 16 and an image
resolution of 16 x 16, each of the 16 subimages would have a resolution of 4 x 4. The
GBP would required 16 x 16 x 16 = 4096 PPP for this example. The FFBP creates
16 subimages with 2 subapertures, while each subimage is processed by the GBP,
and would therefore require 16 x (2 x4 x4) =512 PPP. This shows the possible
potential of the FFBP and how complexity reduction is achieved. Although parts
of the information is lost within this process (wherefore the effect of undersampling
cannot be contained completely), quality can be kept to a certain degree while
complexity is reduced. A reduction in complexity is reached, when the effort for
factorization and the processing of the reduced aperture set with the GBP, is smaller
than the effort for full GBP processing. With this trade-off for image quality, the
FFBP reduces the processing effort and tends to reach a complexity of O(N%logN).

The whole geometry of the FFBP scenario is formulated in polar coordinates and is
depicted in Fig. 2.7. For aperture factorization, the midpoint of the decimated dataset
must be know. It will become the new position of the subaperture and is based on
the set of original aperture positions T[N,;]. The position of the new subaperture
will be referred to as T'[n], it becomes a member of the set of subaperture positions
T'[Naz/ fape)- The actual required mathematical operations for the FFBP can be
formulated as followed. T’[n] results to Eq. (2.15). The indices n,s and k always
start at 0. While fu,, is the factorization factor for stage s.

1 faprx -1

= : T(fapt, -1+ k] (2.15)
faptx k=0

')

23

2 SAR image processing

The vector d,, between the subaperture position T’[n] and a position T|o] of the
original aperture o results to Eq. (2.16).

don = T'[n] —T|o] (2.16)

The vector d., between the subaperture position 7’[n] and the subimage center ¢
results to Eq. (2.17).

den = co—T'[n] (2.17)

Knowing d,, and d., allows to calculate the cosine for angle a =d,,£d., between
the two vectors following Eq. (2.18).

d()n ‘dcn
cosqu= — N __ (2.18)
lldonl| - |ldenl|

To form a range sample of a subaperture, one range sample value of each of the
fapr apertures, within the decimated dataset, is required for accumulation. To find
the corresponding range sample position in an old (original) aperture o, rectification is
required. This process requires information about the range sample in the subaperture
first. Each range sample has an index i, which corresponds to a distance d,; from
the subaperture position 7’[n] to the range sample position s. This distance results
to Eq. (2.19).

dps = iy - 878+ Fiin (2'19)

Where Org is the distance between each range sample, and ry;, is the distance
from the antenna to the first range sample. These values originate from the GBP
geometry. d,; overlays with d, up to the range sample position. Thus the cosine
of a spans between d,; and d,,. Having enough knowledge about the geometrical
setup, the law of cosine is used to calculate the range distance rd between the range
sample i, and the aperture position T [o] according to Eq. (2.20).

rd = \/|ldon| >+ 2, — 2+ ldon] - ds - cos @ (2.20)

The distance rd spans a circular arc around the aperture position 7' [0], and therefore
crosses the sample in aperture o that corresponds to sample i, in subaperture n.

24

2.3 Azimuth compression in time-domain

To retrieve the distance index r.,;; of this sample in o, Eq. (2.19) can be rearranged
to Eq. (2.21)

rd — Tin

(2.21)

Teell = 5rg

Like in the GBP, the calculated range sample index will not be a discrete value,
thus interpolation and phase correction is required for compensation. Interpolation is
based on distance index r..;. To obtain the angle ¢, for phase correction, d; is
subtracted from rd, to get the difference in length. The result is multiplied with a
phase correction constant pc.=4m/A. The rectification of one range sample to the
beam between T'[n] and the center ¢ of a subimage then results to Eq. (2.22).

Sint(T[f&pt,\ n+k), reerr) . ¢ Beorr (2.22)

Where S is the array of all apertures. The full merge of one sample of a subaperture
results to Eq. (2.23).

fapz; -1

S,[iaptair] = Z Sint (T[faptx ‘n+ k]) rcell) : ej-%w (2'23)
k=0

Where S’ is the array of all subapertures. This process is performed for each sample
of the new subaperture. The error that is introduced during this process, or the
loss of information, can be explained by the aperture enlargement through aperture
factorization. The longer the virtual subaperture becomes, the more the subaperture
angel is narrowed. Thus, a subaperture does not illuminate the same image area as
the aperture before. By this, smaller subimage areas are formed during the process.
This process is called factorization. The number of iterations, of subimages in each
iteration, and the number of combined apertures for every subimage can be chosen
independently. Therefore, sets of parameters are discussed in Section 5.4.1, where a
comparison of quality and runtime is given. Pseudo-code for the FFBP is listed in
Section 4.4.2.

2.3.3 FMCW backprojection algorithm (start-stop-approximation)

Common SAR algorithms were formulated for pulsed Radar systems. The short
duration of such pulses allowed for the so-called star-stop-assumption or start-stop-
approximation. This assumption implies, that the position for emitting a pulse is
identical with the position for echo reception.

25

2 SAR image processing

f
4 :7delayJ
LdelayJI
|
A [
| RX
| | |
' | | | P RX
|
| | | ﬂ | TX
1 f 5 B [
u g » »
t t 1l t
geometrical offset geometrical offset
(a) Geometrical offset for pulsed Radar (b) Geometrical offset for FMCW Radar

Figure 2.8: Comparison of geometrical offset for pulsed and FMCW Radar [54]

This assumption derives from the propagation speed of electromagnetic waves
(light speed) in combination with very short pulse durations and low platform velocity.
To gain better resolutions, especially in mid and near field scenarios, FMCW Radar
sensors were developed lately. FMCW sensors emit a continuous signal ramp, which
is modulated in frequency for the duration of the ramp. The long duration allows to
emit a Ultra WideBand (UWB) signal, which increases range resolution according to
Eq. (2.3). While for pulsed Radar a transmission takes a few microseconds, FMCW
ramps last a couple of milliseconds. This means, that the distance that is covered
between transmission of a ramp and reception of the entire echo is significantly longer
for FMCW sensors. Therefore, in case of longer frequency ramps in combination with
a fast-moving platform, the change in angle is so fast, that the start-stop-assumption
is corrupted. The difference is shown in Fig. 2.8. It is obvious that FMCW differs
from pulsed Radar in a way, that the geometrical offset between pulse transmission
and echo reception is much greater in case of FMCW. Table 2.1 compares the
geometrical distance for different velocities of pulsed and FMCW Radar. While a
velocity of 1 m/s results in an insignificant offset for both systems, already 10 m/s
generate a huge difference for FMCW Radar, which results in a loss of focusing
quality. This effect increases/decreases with the ramp length and reveals why the
start-stop-approximation has to be abolished for FMCW Radar.

Ribalta [56] presented a modified GBP that can correct these effect of defocussing,
as it considers the movement of the platform during the transmission of a ramp. In
[567] this correction was successfully examined with real sensor data. The modification
of the GBP is graphically explained in Fig. 2.9. Each cell holds a reflection value that
corresponds to a fixed signal runtime, which is defined by the sampling frequency of
the reflected signal. Based on the signal runtime the GBP assigns a distance/position
to every range cell. In the case of pulsed Radar, the signal runtime corresponds with
the assumed distance/position due to the very short traveled distance during the
very short pulse.

26

2.3 Azimuth compression in time-domain

Table 2.1: Flight distance at different pulse-/ramp-length

flight velocity ‘ signal length ‘ moved flight distance
10 m/s pulse : 1 ps 10 um
FMCW : 10 ms 10 cm
100 m/s pulse : 1 us 100 um
FMCW : 10 ms 1m
1000 m/s pulse : 1 us 1000 mm
FMCW : 10 ms 10 m
Ised FMCW
pulse > >
signal runtime signal runtime

|
I
(.
I
I
I
I
I
I _
{1
| L]
L
|
|
|
s||192 abueu

include difference in
calculations

Figure 2.9: Correction of azimuth position for every range cell of a FMCW ramp [54]

For FMCW Radar, the signal runtime results in a mismatch of assumed position
and actual position. This leads to a defocussing during the back projection of
each ramp. The modification takes the time difference in the form of a delta in x
direction into account. The quotient of this value and ér is calculated and multiplied
with a constant, that includes several system parameters like ramp-length, velocity,
wavelength, cutoff frequencies, etc. [56]. The sample distance (range) is corrected
for each range cell individually to focus the correct range cell for an image pixel.
Basically, every single range cell is adapted in azimuth position, as depicted in Fig. 2.9.
With this correction added in the GBP, arbitrary ramp lengths and velocities are
possible, while regular focusing quality is achieved.

27

3 Related work

Time-domain-based Synthetic Aperture Radar (SAR) data processing is a well-known
principle due to the given advantages. However, the high complexity standard
time-domain-based algorithms hampered the implementation for fast, compact and
energy-efficient platforms. The ongoing technological improvements during the past
years allowed to reconsider the obstacle of complexity. Besides dedicated Field
Programmable Gate Array (FPGA) architectures, other types of non dedicated
architectures such as Digital Signal Processors (DSPs), Graphic Processing Units
(GPUs), multicore and manycore systems are available for implementation. The
chosen scenario of real-time processing on board of Unmanned Aerial Vehicles
(UAVs), imposes the requirements of high processing performance, standalone ability,
compact design and low power dissipation to any utilized architecture. Although
real-time processing of SAR data is not broadly covered in the scientific community,
several publications that cover or partly cover this topic exist. Since the Global
Backprojection (GBP) is an established algorithm, in particular in the medical field,
the majority of these publications cover only the GBP. Due to the short time of
existence compared to the GBP, the Fast Factorized Backprojection (FFBP) is much
less discussed for real-time implementations. This is true for dedicated and non-
dedicated architectures. Additionally, it is hard to compare the FFBP performance,
since the possible permutations of configuration parameters span a wide design space.
The performance of GBP implementations can be compared relatively simple by Pulse
to Pixel Projections (PPPs) per time, as this value is not altered by configurations.
Therefore, the given comparison of platforms base on GBP performance. To some
extent this allows for the extrapolation of the FFBP performance as the GBP usually
consumes the major part in FFBP processing time. The most potent candidate (that
was researched) of each architecture is picked to represent the technology group in
the following section. Parts of the presented related work were already discussed in
[53, 58, 59, 60].

3.1 Non dedicated architectures

Due to the high flexibility and fast implementation, software solutions on General
Purpose Processors (GPPs) are widely spread. A generalized software implementation
usually lacks in performance and power efficiency. The software for GPPs can be
transferred directly or after modifications to multi- and manycore systems. This allows
to sustain flexibility and combine it with parallel processing. Multi- and manycore
systems are partly a consequence of the limitations in clock frequency.

29

3 Related work

While packing density of transistors continues to increase, the simultaneous increase
in clock frequency is slowing down due to the disproportion of speed and leakage
current. Therefore, the available resources are distributed into multiple cores of the
same type (homogeneous) or different types (heterogeneous) on the same processor
die. This has also lead to the manycore class, which is not clearly separated from
the multicore class, but usually consist of significantly more cores and is optimized
to handle code executed in parallel. The cores in heterogeneous systems can be of
any nature and can therefore also include cores of dedicated hardware accelerators,
such as smaller GPU cores, DSPs or other types besides a standard GPP architecture.
An example of a manycore architecture is presented by Park et al. in [43]. It
considers the implementation of a GBP for a circular SAR scenario on a Xeon Phi
processing cluster. The cluster consists of one Intel Xeon processor E5-2670 [61] with
8 cores at 3.30 GHz and two Intel Xeon Phi 5110 coprocessors [62] with 60 cores at
1.05 GHz each. Based on the Thermal Design Power (TDP) of the datasheets, the
implementation consumes up to 605 W and can process 35 Giga PPP per second.
A multicore architecture is presented by Wielage et al. in [59]. The used platform
is an ODROID-XU4 [63] multicore plaform with a heterogeneous Samsung Exynos
5 Octa 5422 System on Chip (SoC) [64], which consists of one Cortex-Al5 [65]
with 4 cores at 2.2 GHz, one Cortex-A7 [66] with 4 cores at 1.4 GHz and one
Mali-T628 GPU which is not used for processing. The implementation features a
FFBP implementation, which also consists a GBP core, which is used for performance
comparison. Based on the TDP of the datasheets, the implementation consumes up
to 11 W and can process 23 Mega PPP per second.

As the name already indicates, a DSP is a special type of processor, designed to
handle typical operations, required during signal processing. Since signal processing
often includes Single Instruction Multiple Data (SIMD) like processing, DSPs feature
fast interfaces for fast data input and output. The incoming data can then be
processed by efficiently implemented operations. A common operation required
during signal processing tasks is a combination of a two operand multiplication,
followed by accumulation with another operand, a so-called Multiply-Accumulate
(MAC) operation. A MAC is, among other things, required for filter and Fast Fourier
Transform (FFT) implementation. The GBP and FFBP algorithms are no exception
to that. Although DSPs are usually used for less demanding tasks than backprojection
they should be considered as a possible candidate since they are designed for highly
efficient processing. An example for a DSP architecture for backprojection processing
is presented by Zhao et al. [44]. Since DSPs are usually not very powerful in terms of
massive parallel processing, a cluster was used for parallel execution. The used DSP
core is a Texas Instruments TMS320C6678 [67], which consists of 8 TMS320C66x
DSP [68] cores, each running with up to 1.25 GHz. Based on the TDP of the
datasheet, the implementation consumes up to 10 W and can process 9 Mega PPP
per second.

In contrast to DSPs, GPUs are a comparatively young architecture type which
underrun a very fast development. To speed up the processing of graphic imaging

30

3.2 Dedicated architectures

tasks, which have a strong SIMD character, GPUs contain hundreds or thousands
of small cores for massively parallel processing. Since the typical environment are
not constrained in energy consumption, GPUs tend to consume over 100 W and
more. Therefore, standard GPUs do not fulfill the low power constraints for the
given scenario. A new embedded type of GPUs, specially developed for mobile
processing, is a possible candidate for comparison. Nevertheless, a regular GPU
architecture is compared as well. In 2011 Chapman et al. [45] presented an optimized
GBP SAR implementation for a Tesla C2050 GPU, which consists of 14 streaming
multiprocessors, each holding 32 streaming processors, which sums up to a total of 448
cores running at 575 MHz. Based on the TDP of the datasheet, the implementation
consumes up to 238 W and can process 6.2 Giga PPP per second. The more
interesting candidate is the embedded GPU implementation that was presented by
Wielage et al. in [60] on a nVidia Jetson TX2 GPU [69]. It is equipped with 1
Cortex-A57 [70] processor with 4 cores at 2 GHz, 1 nVidia Denver processor with 2
cores at 2GHz, and 256 cores running with 1.3 GHz max. The presented architecture
also features a FFBP implementation, but only GBP results are used for comparison.
Based on measurements, the implementation consumes up to 9 W and can process
543 Mega PPP per second.

3.2 Dedicated architectures

Due to the real-time constraint in a mobile environment, FPGAs are chosen as
target technology because of their power efficiency, compact size, and high potential
of performance. The FPGA technology is explained in more detail in Section 4.1.
Compared to non-dedicated architectures, the effort for a FPGA implementation
is considerably high. FPGA designs are additionally interesting, as they offer the
option to implement the architecture as an Application Specific Integrated Circuit
(ASIC). This requires additional effort, in terms of time and money, but can increase
performance by orders of magnitude, while enabling for ultra low power architectures.
Although the principle of backprojection is also used in the medical field, for example
in Computer Aided Tomography (CAT), FPGA implementations are very rare, most
probably because of the high effort required for the design.

Schleuniger et. al. presented a GBP design for SAR processing in 2013 [47]. The
used FPGA was a Xilinx Virtex 7. A multicore system with 64 Tinuso processors [46]
was established. The whole Network on Chip (NoC) design consumed 60% of the
hardware resources on the used FPGA. Since soft processor cores were implemented,
the design is programmable and is therefore flexible for changes. The whole design
consumed 10 W and is capable of processing 46 Mega PPPs per second.

In 2010, Chapman et al. [48] presented theoretical design considerations for
different Altera FPGAs, in order to process SAR data with the GBP algorithm. The
theoretical design covered different topics, such as the central processing pipeline for
back projection calculations and a cache architecture to minimize external memory

31

3 Related work

access latency. The design on a simulated Altera Stratix IV EP45100G4 FPGA
consumes up to 15 W based on values in the datasheet while processing 2.9 Giga
PPPs per second. But it has to be considered that this is a theoretical design,
wherefore stalls of the design, because of memory bus limitations, are not included.

In 2015 Pritsker [49], presented an architecture for SAR data processing with the
GBP algorithm on an Altera Arria V FPGA. The architecture implements a pipelined
systolic array structure and uses parallelism over image pixels and Radio Detection
And Ranging (Radar) pulses. The whole design consumed 27 W and is capable of
processing 2.1 Giga PPPs per second.

Implementations on FPGAs addressing the FFBP algorithm are practically not
existing. Hast et al. [71] presented an architecture which implements a Power-PC
processor on a FPGA, but no comparable performance results were given, on top of
that, it is a combined software/hardware structure.

3.3 Evaluation and discussion

Although the Intel Xeon manycore implementation shows high performance results,
an architecture with a consumption of up to 605 W is not applicable to the focused
UAV scenario. With 11 W in power dissipation, the heterogeneous Exynos multicore
implementation provides values that are applicable to small UAV like platforms, but
with only 23 Mega PPP per second, the processing speed is far from real-time for
bigger images. Like the multicore implementation, the DSP consumes relatively little
power with only 10 W, but with only 9 Mega PPP per second, it is too insufficient
for real-time implementation. Similar to the manycore architecture, the standard
GPU is highly suitable to process GBP SAR data, but the downside is the high power
consumption of up to 238 W, which is not feasible for a mobile setup. The embedded
GPU has a much lower power dissipation and can also provide a high amount of
PPP per second. When compared to non-dedicated architectures, the dedicated
architectures show significantly more processing performance, when normalized on
the average power. The only exception to this is the embedded GPU, wherefore
this is the only notable candidate besides the dedicated architectures. All presented
FPGA implementations stay within a power consumption range that is feasible for
mobile setups.

The presented implementations do not intend to be exhaustive in terms of finding
the most potent candidates of a specific architecture. Nevertheless, it shows the
basic trend for each architecture and why the implementation on FPGAs must be
considered for real-time implementation of backprojection SAR, under the constraint
of low power dissipation.

32

4 Conceptual hardware design

As already presented in Chapter 3, the processing of Synthetic Aperture Radar
(SAR) data is not limited to a specific hardware architecture. In the case of less
demanding constraints on performance and energy consumption, a non-dedicated
General Purpose Processor (GPP) architecture is the best choice, as the development
effort is reduced to a minimum, while full algorithmic flexibility is provided. In the
case of more demanding constraints, for any of the mentioned aspects, the optimal
architecture will depend on the characteristic of the constraints. As Unmanned
Aerial Vehicles (UAVs) are the chosen target platform, constraints for low-energy
consumption, small system dimensions and fast processing times are required to allow
for efficient operation. Additionally, the system is dedicated to one specific task only,
whereby the system with the highest customization potential is attractive. For the
given reasons Field Programmable Gate Arrays (FPGASs) are the best option as they
combine all the mentioned aspects. Considering the fact, that development time is a
nonrecurring factor, the benefits of dedicated hardware implementation is worth the
effort.

In this chapter the entire hardware design process and the considerations regarding
the presented design decisions are discussed. This includes the explanation of general
principles for efficient dedicated hardware implementations. All decisions are driven by
the requirement to combine and fulfill all given constraints at the best possible rate.
As processing time is the most critical aspect, this work is focused on the concept
for efficient and exhaustive resource utilization of any given FPGA, to maximize data
throughput rate at a minimum of latency.

4.1 Field Programmable Gate Arrays (FPGAs)

FPGAs belong to the group of re-configurable architectures. To be more specific,
to the class of Programmable Logic Devices (PLDs). Compared to other members
in the class of re-configurable architectures, they are the most flexible and allow for
very fine grained adjustment, to tailor the hardware to the required signal processing
function. This is possible through the direct implementation of logic functions in
memory [72]. Basically a FPGA is a big mesh of Look Up Tables (LUTs), which are
freely programmable. Depending on the FPGA type LUTs of different size are used.
In general a k-input-LUT is compound of 2 Static Random Access Memory (SRAM)
cells, which can be addressed with a 2F : 1 multiplexer. While one k-LUT can realize
any logic function with k inputs, many interconnected LUTs can implement logic
functions of variable size. Additionally, LUTs can also be used to implement memory

33

4 Conceptual hardware design

blocks. A smaller set of LUTs, together with flip-flops, a carry logic and different type
of multiplexers form a slice. The connection of slices allows for a variety of functions
to implement. In Xilinx FPGAs such block are called Configurable Logic Blocks
(CLBs). The CLBs are connected to the routing fabric with configuration boxes
(CB). The routing fabric interconnects all CLBs, Block Random Access Memorys
(BRAMs) and Digital Signal Processors (DSPs) in a matrix across the entire FPGA.
These interconnections are configurable via numerous switching matrices across the
island style FPGA, whereby complex functions can be implemented.

Although this leaves a high degree of flexibility, a considerable overhead is created
through this architecture. In fact, the interconnection network accounts for the bigger
part of the consumed area in a FPGA. The basic structure of an FPGA is depicted
in Fig. 4.1. To benefit from the very compact size of fixed interconnected logic,
additional DSP blocks and BRAMs are interwoven with the CLB matrix. The DSPs
perform multiplication in two's complement at variable bit-width up to a certain
boundary. Multiplications with multiplicands wider then a DSP block need to be
partitioned and distributed to numerous DSPs. A so-called BRAM primitive can be
used as a small memory or to cascade multiple BRAMs to create bigger memory
blocks. The input and output ports of a BRAM are usually highly configurable and
therefore, they provide everything from a high memory width and low memory depths
(words with one bit in depths) up to low memory width and high memory depths
(maximum combined width of all ports of one interface type). Combined, this can
reach up to input and output ports with several hundred bits in width. All mentioned
elements build the core structure of a FPGA. Dependent on the FPGA type other
blocks like smaller Reduced Instruction Set Computer (RISC) processors or bigger
blocks of memory might be added to the structure. 10 (input/output) blocks are
distributed around the FPGA, to allow for massive input and output interactions
with the outside world. How an FPGA is arranged, how LUTs, BRAMs, DSPs and
all other resource elements are structured, and how many elements of each resource
type are available, depends highly on the manufacturer and the specific FPGA family.
Dependent on the signal processing task, the proper FPGA must be picked, in order
to get the right ratio between LUTs, BRAMs and DSPs. Table 4.1, list a selection
of Xilinx high end Virtex FPGAs as examples. Due to the wide variety, of how
for examples a LUT is implemented, these numbers are not always 100 percent
comparable. To be at least partly comparable, only one family of FPGAs from one
manufacturer is listed.

Each of the listed FPGAs in Table 4.1 represent one Xilinx Virtex family. They
were picked for better comparison. In terms of resources they are positioned at the
lower end of the upper third of the FPGAs within the family. Between the FPGAs
of one family big differences in the amount and distribution of resources exist. The
lower end and upper end of the entire range have a more extreme configuration.
Between the families, the gain in resources per mm? is significant. This is due to
new or improved techniques and denser packaging by smaller fabrication processes.
While LUTs increased with a factor of 9, BRAMs increased much more with a factor

34

4.1 Field Programmable Gate Arrays (FPGAs)

10 block
routing fabric
switching matrix

CLB

Figure 4.1: Basic structure of a generic island-style FPGA structure

of 32 and DSPs even increased by a factor of 54 across the picked FPGAs. This
intense gain in resources allows for the implementation of complex signal processing
tasks making FPGAs more attractive. Beside the plain amount of resources, the
mapping of a signal processing task on the resources is equally important. Based
on the mapping, resource utilization varies in efficiency and design clock varies in
frequency. Two aspects influence the efficiency of the mapping process. One is
the designer, as mapping can be supported by a sophisticated and well balanced
architecture. The second is the used synthesis tool that maps a circuit, described in
a Hardware Description Language (HDL), on the actual resources. The synthesis
involves many steps, the first step is an automated global optimization of the logic

Table 4.1: Resource comparison of different Xilinx high end Virtex FPGAs

FPGA year |process DSP LUT BRAM
family type [nm] | type ‘ # | type # |size [Kb]‘ #
Virtexs |XC5VLX110T|2006| 65 [25x18| 64 |[6-LUT| 69120 36 148
Virtex6 |XC6VLX240T|2009| 40 [25x18| 768 |6-LUT|150720| 36 416
Virtex7 | XC7TVX690T |2011| 28 |25x18(3600(6-LUT|433200| 36 [1470

Virtex US | XCVU125 [2014| 20 |25x18|1200|6-LUT|716160| 36 |2520
Virtex US+ VU5P 2014| 16 |25x18|3474|6-LUT|601000, 36 |4668

35

4 Conceptual hardware design

functions and the mapping of these functions to FPGA specific libraries. Afterwards,
the libraries are placed on the actual resource elements. Finally the routing of all
elements is performed. All steps represent an optimization problem, which can also
end in a local optimum. Therefore, each synthesis can turn out with different results.

Compared to implementations on other architectures, like GPPs or Graphic Pro-
cessing Units (GPUs), the design for an FPGA is by far more time consuming. This
is due to the high degree of freedom in the design process and that basic functions
must be implemented manually. A faster development process for other architectures
comes with the drawback of lower throughput rates. This can only be compensated
through massive parallelization, which in turn creates a higher power dissipation.
Nevertheless, recent architectures like embedded GPUs might be able to close this
gap in the future [60]. The main argument for using FPGAs is the good trade-off
between power dissipation and throughput, making it the perfect platform for UAV
based SAR processing in real-time. Especially the regular structure of time-domain-
based backprojection SAR algorithms match perfectly with the regular structure of
island-style FPGAs. Furthermore FPGAs allow exploiting the possible parallelism
in the algorithms. It has already been shown in [73], that frequency-domain-based
SAR processing is possible in real-time on compact systems that do not exceed the
power dissipation of 15 W. In case, a system with ultra-low power dissipation and
even higher processing power is required, an Application Specific Integrated Circuit
(ASIC) is the only option. Here, the simulated and emulated FPGA is of dual-use, as
it is a necessary step towards an ASIC design, and as it already covers the digital
design verification part during development.

4.2 Principles for dedicated hardware implementation

Architectures others then FPGAs, always base on unchangeable underlying hardware
blocks or Processing Elements (PEs). For example, Compute Unified Device Archi-
tecture (CUDA) cores are used in GPUSs, special hardware blocks in DSPs, or the
Arithmetic Logic Unit (ALU) in a GPP. To max out the efficiency on any of these
platforms for any given task, the task must be analyzed in detail, to understand the
nature of the basic PEs. To optimize the mapping on a specific architecture, detailed
knowledge of the architectural structure is indispensable. Besides the knowledge on
the given PE dependencies, knowledge about connection limits and side effects is
required.

To explain better which kind of problems arise during the processing of such
algorithms, pseudo-code for the Global Backprojection (GBP) is listed in Algorithm 4.1.
The pseudo-code shows the flexibility of the algorithm. The constrain parameters
(fazsix,iy) for the loops in line 1, 2 and 3 can be interchanged with each other
(alongside with some minor changes in code order). If done correctly, any parameter
order will result in the same image, since this only changes how data is accessed and
in which sequence the pixel, of the final image, is generated. According to the order,

36

4.2 Principles for dedicated hardware implementation

Cont{r.o[Unit CU > Processing Unit PU {irg} Jommmmcan N
ix, iy, iaz} ' {1} |
H R A A A H

H {Ix:ly,laz}; . . {irg}i

{ixiy}} {ixivH + {iaz} } i

f [zt | n i {S}

i» RAM » RAM i» RAM €-:

(Positions) (Image data) (Echo data)

f | t

Figure 4.2: Block diagram of a generalized GBP processing platform

specific data access rates might be slow (outer loop), median (intermediate loop) or
fast (inner loop), but every pixel can be processed independently from each other.

Independent of the used hardware for processing, the scheme can be simplified to
highlight the critical aspects. This scheme is depicted in Fig. 4.2.

Three elements need to be taken care of for GBP processing. Loop control is
handled in a control unit CU. Parameters for the actual raw data section i,; and the
current image position iy,iy are required by the actual processing unit (PU) and the
Random Access Memory (RAM) section. The GBP is data greedy, wherefore the data
flow must be analyzed in depth to reduce (respectively optimize) the transfers between
the RAM and the PU. Therefore, the following sections will cover this topic in detail.
Another aspect is the actual processing inside the PU. The dependencies in the code
are a natural limitation for processing speed. A pure sequential algorithm cannot
be enhanced by parallel processing for example. Therefore, dependency analysis is
required, to check on possible candidates for optimization. Besides this, the costly
core functions need to be checked in advance, to analyze possible substitutions
(approximations) for easier and faster processing. Therefore, the important steps are:

1. Analysis of the algorithm’s mathematical model
2. Analysis of dependencies

3. Analysis of streaming capabilities

All this is not obsolete by the use of dedicated hardware platforms (FPGAs), as
they also need to interface with the memory, as long as raw data cannot be stored
completely inside of the FPGAs internal memory. But between all architectures,
dedicated hardware offers the biggest degree of freedom in all design aspects. This
means an algorithmic implementation does not have to be adapted to the under-
lying hardware architecture. But the hardware architecture can be adapted to a
given algorithm. In the case of careful design, this will result in the most efficient
implementation in terms of size and energy consumption.

37

4 Conceptual hardware design

Algorithm 4.1: GBP algorithm

input : pc. = phase correction constant (47/A)
Ny, = number of incoming sensor echos in azimuth
Nyg = number of incoming range samples per range line
Org = distance between each range cell
Imin = Minimum distance covered by sensor echo
Fmax = maximum distance covered by sensor echo
1x[Ngz] = trajectory vector of the platform in x
ty[Ng;] = trajectory vector of the platform in y
1;[Ny;] = trajectory vector of the platform in z
S[Nyg,Ngz] = sensor data array
N = number of image pixel in x
Ny, = number of image pixel in y
Ox = distance between image pixel in x
8y = distance between image pixel in y
Z[Ny,Ny] = height of each image pixel on ground
I[Ny,Ny] = initial image array on ground (set to 0)

output: /[N,,N,] = processed image

1 for (iz; = 0 to N,;-1) do /* iterate over echos in azimuth */
2 for (iy = 0 to N,-1) do /* iterate over image pixel in x */
3 for (iy = 0 to Ny-1) do /* iterate over image pixel in y */
4 X =iy - 6x
5 y =iy 0y
6 Iy = X — tyliaz)
7 ry =y = tylia]
8 rz = Zlixiy] - tZ[iac]
9 Fys = Fy * Iy
10 Fys =Ty - Ty
11 Fps = 1y - I3
12 Org = Iy + Iys + Iz
13 Sr = +/drg
14 if (rmin<0r<rpax) then /x if pixel in sensor range */
15 Trange = OF — T'min
16 Tcell = Trange / org
17 Pcorr = pcec - or
18 Feomp = eI 9corr /* then follows interpolation */
19 Sintlfaz Teelt] = im{[iazfcellLS[iaz:irg]}
20 Scomp = Simt [iuzvrcell]’rcomp
21 Iiy,iy] = Ifix.iy]+Scomp
22 end if
23 end for
24 end for
25 end for

38

4.3 Analysis of the mathematical SAR model

While fewer restrictions need to be considered, the high degree of freedom implies
a much bigger design space. Depending on the structure of the given algorithm, a full
custom dedicated implementation, or softcore processors with dedicated accelerators
might be the better choice. But the more flexibility is needed within the algorithm
and the more dependencies during processing might occur, the more likely it would
be to pick other architectures then FPGAs, as this is not a strong feature of FPGAs.
For fast FPGAs architectures, the algorithms should allow for vast internal parallelism
and data streaming. As described in Section 4.1, FPGAs contain LUTs, DSP slices
and BRAMs. Every FPGA type comes with different ratios of these resources and it
is up to the designer, to either chose an FPGA with the best fitting resource ratio
or to adapt the design to a given FPGA, to max out the resources. To implement
full dedicated hardware architectures, including the smaller dedicated accelerators
PEs for time-domain SAR algorithms, the following sections will briefly explain the
above-mentioned steps.

4.3 Analysis of the mathematical SAR model

Both time-domain-based algorithms and the underlying mathematical steps have
been described in Chapter 2. Every mathematical operation is formed by the four
basic arithmetical operations of addition, subtraction, multiplication, and division.
Therefore, every architecture features hardware blocks to perform these basic opera-
tions. But more complex operations are not necessarily available, which might result
in sub-optimal implementations. The description in Chapter 2 shows that processing
SAR data in frequency and time-domain share the same mathematical operations:

1. Interpolation
2. Complex multiplication
3. Square root calculation

4. Sine and cosine calculation

A dedicated hardware block for all operations would increase performance drastically
but would also consume more resources. To reduce the number of required resources,
an analysis of every operation, in terms of required accuracy and/or less resource-
demanding approximations, can be very useful. Depending on the type of the chosen
FPGA, the entire design should be converted from floating point to fixed-point number
format. While this conversion results in more efficient resource utilization, a loss in
accuracy and dynamic range occurs. Therefore, in addition to the above-mentioned
steps, it might be necessary to analyze area-efficient fixed-point approximations.
Section 5.1 will provide a description of such approximations.

39

4 Conceptual hardware design

4.4 Analysis of processing dependencies

To understand the potential and limits of a given hardware architecture, it is not only
important to determine the pure size of possible processing elements. Bottlenecks can
generate anywhere, either due to the design of the architecture or due to conditions
that generate from components which interface with the architecture. A classic
bottleneck is the memory, which could be too small, too slow or too inflexible. This
can call stalls for a subset or even all processing elements, reducing the average
throughput rate of the whole architecture. Some bottlenecks can be overcome with
different ways of implementations, a rearrangement of the processing order or a
rearrangement of how data is stored. Only under optimal conditions, a hardware
architecture can reach the full possible processing capabilities. A beneficial condition
is the lack of dependencies, as any dependency can create conflicts which usually
results in stalls.

Systems which perform only one command at a time sequentially can handle any
dependency without conflict. Systems which work in parallel suffer from performance
drops under such conditions due to data dependencies which result in pipeline hazards.
Especially, FPGAs gain performance from massive parallel processing. Therefore, it is
of special interest to analyze an algorithm, to find and resolve arising dependencies [74].
Standard compilers try to optimize the code to reduce such conflicts automatically
with a dependence analysis with sufficient quality. For dedicated applications, this
analysis needs to be done manually and on a deeper level, as operations can be
implemented in different ways and order. According to the Bernstein condition [75],
dependencies exist when process A cannot execute in parallel to B, because A effects
values used by B or the other way around. Nor can A and B execute in parallel if
any subsequent process C uses data effected by A and B, i.e. whose value might
depend on the order of execution. To analyze such data dependencies is a standard
technique to check on possible parallel data processing, to avoid pipeline hazards
and to react correctly on hardware jumps. The dependencies split up into:

1. Data dependency
a) Flow dependency (read after write)
b) Anti dependency (write after read)
c) Output dependency (write after write)
d) Input dependency (read after read)
2. Control dependency
3. Loop dependency

Data dependencies relate to a change of the resulting value of one or more
instructions, while control dependencies relate to the execution of one or more
instruction based on the result of another instruction. A flow dependency (read after

40

4.4 Analysis of processing dependencies

write) occurs, when an instruction depends on the result of a previous instruction (as
shown in Algorithm 4.2). INST; depends on the update of value INST;. The same
relation exists between INST, and INST;. All instructions are in a transitive relation,
wherefore INST; also depends on INST;.

Algorithm 4.2: Flow dependency
1 INST| = x
2 INST, = INST,
3 INST; = INST,

An anti dependency (write after read) occurs when a subsequent instruction writes
a value, that was read in an earlier instruction, see Algorithm 4.3. INST, anti depends
on the INST) instruction in line 3 as it is updated later. Therefore, the ordering of
these instructions cannot be changed, as it would change the final value of INST>.
This is also the reason why the two instructions cannot be executed in parallel as
race conditions could occur and might change the ordering of the instructions.

Algorithm 4.3: Anti dependency / output dependency

1 INST, =x
2 INST, =INST| +y
3 INST, =z

This is also called a name dependency as changing variable names could remove
the dependency as shown in Algorithm 4.4. A copy of INST) is declared with the
name of INST,,. By renaming the anti dependency between line 2 and line 3 is
removed and two instructions could be processed in parallel. But clearly, a new
dependency was introduced between INST, and INST| which forms a classical flow
dependency.

Algorithm 4.4: Anti dependency rename

1 INST; =x

2 INST,, = INSTy

3 INST, = INST,,+y
4 INST, =z

An output dependency (write after write) occurs when instruction ordering will
change the final output value, as it would be the case for Algorithm 4.3. An output
dependency exists between the two instructions of line 1 and line 3, wherefore these
instructions cannot be executed in parallel. This is again called a name dependency.
Like in the example above, renaming can be used to remove the dependency as
shown in Algorithm 4.5.

41

4 Conceptual hardware design

Algorithm 4.5: Output dependency rename

1 INST |, =x
2 INST, = INST\,+y
3 INST| =z

Another type of dependency is the input dependency. It can only occur during
parallel processing when two instructions try to access the same resource at the same
time as shown in Algorithm 4.6. A reordering of instructions is possible as this will
not cause different results. This will only change how long one process has to wait
for accessing this resource.

Algorithm 4.6: Input dependency

1 INST; =x+1
2 INST) =x+2

While data dependencies relate to the influence of instructions on values, control
dependencies relate to the influence of a value on the execution of another instruction:

Algorithm 4.7: Control dependency
1 if (INST; == INST) then
2 | INST, = INST, +INST,
3 end if
4 INST, = INST; + INST,

In Algorithm 4.7 the instruction in line 2 has a control dependency on the preceding
instruction in line 1, as the outcome of INST; determines the execution. In terms of
execution, the instruction in line 3 is independent of the outcome of line 1, still, the
value of INST> might be influenced by the execution of line 2. In general, it can be
stated, that any condition will generate control dependencies if the true/false body
includes variables which are used in other parts of the algorithm. These dependencies
must be analyzed thoroughly based on the control flow graph of an algorithm, as such
dependencies might be forwarded through many decisions and variables, wherefore
a clear identification might become a complex task. As already mentioned, in
conventional sequential processing of an algorithm, control dependencies will not
cause problems. But the implication of a control dependency for parallel processing
can either hinder parallelism or, when executed without prior analysis, it can cause
hazards in the form of wrong results.

A more complex dependency is formed when one of the above-mentioned conditions
exits between two instructions of different loop iterations. This could either happen

42

4.4 Analysis of processing dependencies

inside a loop segment, between two different loops or inside nested loops. For
sequential code, loop dependencies will not occur as loop segments or different
loops will not be processed in parallel. But since loops usually consume a large
part of processing time, parallelism is vital. Therefore, an analysis is important,
but also more complex than line based dependencies in sequential code since time-
lines are not directly visible. Examples are given in Algorithms 4.8 to 4.10, where
loops create dependencies over time. Dependencies would occur already if iterations
would be equally split on two processors p, so that p; € (I; =1,...,I} = %) and

pre (=M% 11,1 = MAX).

Algorithm 4.8: Flow loop dependency
1 for (i=0;i < MAX;i++) do
2 | Ali+1]=Ali]
3 end for

In Algorithm 4.8, the value of A[i] which was written in the prior iteration, is read
and stored in A[i + 1], creating MAX flow dependencies between iteration i and i+ 1.
After complete processing, every element up to position MAX has the same value as
the element at position i = 0. Basically, the value in element A[i = 0] is copied to the
next element in every subsequently iteration. The loop runs could not be split on p,
processors, as the parallel processing would split the array A in p, strings of different
values.

Algorithm 4.9: Anti loop dependency
1 for (i=0;i < MAX;i++) do
2 | Ali—1]=Ali]
3 end for

In Algorithm 4.9, the value of A[i], which was written in the prior iteration, is
read and stored in A[i — 1], creating MAX anti dependencies between iteration i and
i— 1. After complete processing, every element up to position MAX is shifted by one
position to the left or lower. The loop runs could not be split on p, processors, as
this would create p,_; inconsistencies in the string at the transitions from Ali] € py,
to A[l] € Pm+1-

In Algorithm 4.10, the value of A[i] and A[i+ 1] is written in one iteration, creating
MAX output dependencies between iteration i and i+ 1 as the two following iterations
would write to the same location. After full sequential processing, every element up
to position MAX will contain the value of x. As with anti dependencies, the loop
runs cannot be split up on p, processors as parallel processing inconsistencies would
occur within the string at the transitions. As already mentioned, input dependencies
only occur during parallel processing when the same resources need to be accessed at

43

4 Conceptual hardware design

Algorithm 4.10: Output/input loop dependency

1 for (i=0;i < MAX;i++) do
2 Ali] =x

3 | Ali+1]=y

4 end for

the same time. In case Algorithm 4.10 would be split on p,, processors, it can happen
that up to p, read attempts to x or y will occur. It is up to the system periphery
how and in which order these attempts are handled. In a worst-case scenario, this
will lead to sequential processing, in a best-case scenario all accesses are valid at the
same time. However, the system will handle such situations, it should not lead to
inconsistencies when compared to the pure sequential run on one processor.

4.4.1 GBP dependencies

The above-described dependencies need to be identified in the algorithm, to either
resolve or at least alleviate them as much as possible. While the basic principle of the
GBP algorithm is described in Section 2.3.1, Algorithm 4.1 formulates the algorithm
in an architecture-independent pseudo-code for analysis.

In Algorithm 4.1 the order is adapted to inline processing of slowly incoming sensor
data. As soon as one complete echo is received, by the sensor (one i,, azimuth
position), the energy of this echo is projected fast in the entire image I in the following
loops. This means every pixel of the image receives incremental updates with every
processed echo, so every outer loop run. In case the order is changed, this would
either change across which direction of the image the energy is projected fast, or
how fast sensor data is accessed. If, for example the i,, parameter is switched to the
inner loop with the iy parameter, data is projected fast across the x direction instead
of the y direction. Also, the image is generated differently, as sensor data is now
accessed in the inner loop. Instead of incremental updates for a pixel, one inner loop
run results in a completely processed image pixel which will be not accessed for the
entire remaining run of the algorithm. But this also requires every sensor echo to be
received before the inner loop is run for the first time. Which means data cannot
be processed while sensor data is incoming. Again, the final result and how often
data is read or written to perform an instruction respectively, will not be changed by
reordering, but the image is generated in a different sequence.

As already mentioned, every pixel can be processed independent, which could be
useful for a full parallelization. In the case of Algorithm 4.1, this would mean to
process every iteration in a single processing element. It seems promising, that the
algorithm does not contain output loop dependencies and that every instruction in the
inner loop accesses resources, which are only affected by the current loop run. But

44

4.4 Analysis of processing dependencies

although it is not directly visible, flow loop dependencies exist. They are introduced
by the outer loop as the two dimensional array I[iy,iy] is accessed N,; - Ny - N, times.
A full parallelization of all loops would, therefore, result in N, parallel write accesses
to every dimension of I. The problem of parallel write accesses can be resolved by
increasing the array to three dimensions I[iy,iy,iq;| as shown in Algorithm 4.11 (under
the assumption of an unlimited memory bandwidth).

Algorithm 4.11: Flow loop dependency resolved
1 for (i;; = 0 to Ng;-1) do
2 for (iy = 0 to N,-1) do
3 for (i, = 0 to N,-1) do
4 ‘ I[l'x,l'y,l'az—f—l] = I[i_)CviyviaZ] + Scomp
5
6
7

end for
end for
end for

Still, the flow dependency would continue to exist, as the final value of a pixel has
to be updated with every new processed azimuth echo, which could never be done
in parallel. Even if this would be possible, one has to bear in mind that, based on
the size of the dimensions, in reality, this could also result in a drastic increase of
required memory. Therefore, N,, flow dependencies between iteration i,; and i, +1
exist. Based on this assumption, the entire process could be distributed on Ny - N,
processors at maximum. But as soon as loop runs are processed in parallel, input
loop dependencies will occur, either instantly or at a certain degree of parallelization,
depending on the architecture. Only ideal architectures with unlimited resources could
handle the vast amount of read and write accesses to the same memory location and
the necessary bandwidth for operations in parallel. The rearrangement of the loops
can change the characteristics or the number of dependencies. However, different
measures like local memories, in forms of caches, for example, can reduce or resolve
such conflicts faster.

Besides the parallelization across iterations and different loops, parallelization of
the instructions within on iteration could be possible as well. As already mentioned
before, the possible dependencies are basically structured identical. The dependencies
are given in Table 4.2, where the notation {1,2} {3,4,5} means, that line 1 and 2
depend on line 3,4 and 5 where x € {f,a,0,i, fl,c} and represents a flow, anti, output,
input, loop-flow or control dependency. Based on Table 4.2, different subsets of
instructions can be performed in parallel without creating any hazards. The subsets
depend on each other and must be processed sequentially, which means a delay
must be introduced until all instructions in the subset are completely processed.
Depending on the instruction type in the subset, this can require multiple cycles. It
is assumed, that the architecture can solve input dependencies without additional
delays by the additional use of resources. Therefore, subsets are circumscribed by

45

4 Conceptual hardware design

Table 4.2: Dependencies of the GBP algorithm (Algorithm 4.1)

Flow dependency: 6y L (4); {73 s (5); (81 L (4,5)
oy (63 {10y L 73 1y L gy
(12} L 9,10,11}
(13} {12}
(14,1517 L (13); (14 4 (13)
(15,17} & {14}
(16} s {151 {18y L (1m
(19} s {18}
20} L {19}
21} 45 1201

Loop flow dependency: {21} il» {21}

Anti dependency: {21} & {21}

Input dependency: {7,8} AN {6}; {6,8} AN {7}, {6,7} N {8}
{14} 5 {15); {15} 5 {14}

Control dependency: {15,16,17,18,19,20,21} + {14}

flow dependencies mainly. The first subset is formed by line 4 and 5 and can be
processed in parallel, as they do not depend on any inner loop instruction. The
second subset formed by line 6,7 and 8 as they all depend on line 4 and/or 5 but not
on each other. The third subset is consists of line 9,10 and 11. Line 12 and line 13
form a subset each. Line 14, 15 and 17 all depend on line 13 and could be processed
in parallel as a closed subset if line 15,16,17,18,19,20 and 21 would not be depending
on line 14 in form of a control dependency. Therefore line 14 is the only instruction
directly depending on line 13. While line 15 and 17 form a subset depending on
line 14. Line 16 and 18 depend on the subset of line 15 and 17. All remaining
lines 19,20 and 21 are single subsets which all depend on their preceding instruction.
Instruction 21 could also be reformulated in a a = b+ c; followed by b = a statement.
As this is a write after read behavior, this forms an anti dependency. Based on this,
the whole inner loop can be split into eleven consecutive processing stages (flow
dependencies), which would then define the maximum gain through parallelization.
This is just a theoretical consideration, as it is not clear how an architecture could
perform different instructions. While standard operations like addition, subtraction
and multiplication are easy to define in terms of delays, other more costly instructions
can be implemented in different ways. This is especially true for the instructions of
line 13, 18 and 19 as they represent a square root, the transformation from real to
complex via Euler's formula, an interpolation and a complex multiplication. These

46

4.4 Analysis of processing dependencies

instructions need to be analyzed in more detail for an efficient implementation. This
is done in Section 5.1.

4.4.2 FFBP dependencies

The Fast Factorized Backprojection (FFBP) algorithm is a prestage for the GBP, to
reduce processing complexity, by reducing the original raw input data for one image.
The original raw data is reduced by merging multiple adjacent apertures to form
new apertures. The new reduced set of apertures is the new raw input data for the
GBP. The merging process can be split into two steps, first calculating the position
of a new aperture, and second the rectification and summation of multiple apertures
on the new aperture position. The process introduces geometrical errors which are
stemmed by focusing each new raw data set on smaller image regions. Therefore,
many sets are required to form the final image without a loss of quality. Therefore,
the total amount of raw data to process the entire image is increased. Nevertheless,
the initial statement is still valid, as the input data for each subimage is reduced
and therefore the complexity is reduced for a smaller image, and therefore in total.
The concept is to reduce overall complexity, by combining many small problems with
reduced complexity, instead of having one problem with high complexity. The process
to form the small sets of raw data can be split into stages, always generating new raw
data out of the previously created raw data. The final sets form the final image after
GBP processing. During this process, a trade-off between the number of merged
apertures and the amount of formed subimages is possible. This trade-off condition
and the impact on image quality and complexity is discussed further in Section 5.4.1.

The basic principle of the FFBP algorithm is described in more detail in Section 2.3.2.
The three FFBP steps of aperture position calculation, subimage center calculation
and aperture merging are formulated in architecture-independent pseudo-code in
Algorithm 4.12, Algorithm 4.13 and Algorithm 4.14. Like for the GBP, the above-
described dependencies need to be identified in the code, to either resolve or at
least alleviate them as much as possible. The algorithms are always valid for a
specific stage and subimage. Since processing can be implemented as a tree with
multiple stages and subimages, every stage and the included subimages will rely on
the subapertures and their positions, as well as on the subimage positions from the
previous stage and subimage. This forms a relation from the parent node to the
child node, which is not expressed in the presented algorithms and therefore, each
subimage treats incoming data as original data. In the case of multiple stages and
subimages, the algorithms need to be glued by additional parameters like stage and
subimage counters. To analyze the dependencies a stand-alone projection of every
step is sufficient.

In Algorithm 4.12 the center positions of all subimages in stage s are calculated.
This is a necessary step before the actual factorization of apertures, as an entire
set of new subapertures for one subimage needs to be rectified to the center of

47

4 Conceptual hardware design

that subimage. The amount of subimages per stage is set by f,,, while the center
positions of the subimages are equally spread across the entire range of the image
of the preceding stage. The loop iterations can be processed in parallel as they do
not depend on each other. This means the order of processing does not matter, as
only iteration internal dependencies exist. Full parallelization is therefore possible if
needed, but would inflict parallel read access on the memory for some constants.

Algorithm 4.12: FFBP subimage center calculation per stage

input : N, = number of image pixel in x
Ny = number of image pixel in y
fsup = number of sub images for this stage
IP[N;,Ny| = image pixel positions on ground

output: Iy;c[fsup] = 3D subimages center vector of this stage (z=0)

1 IXupsp = IP[Ny,0] - 1P[0,0] /* width of I in x */
2 Xgpe = Xupsp /2 /* center of subimage in x */
3 [Yusp = IP[O,Ny] - IP[0,0] /* width of I in y */
& IYyup = Iapsp/ fsub /* width of one subimage in y */
5 Wgpr = Ygpp/2 /* half width of one subimage in y */
6 for (igz, =0 to fy,-1) do /* iterate over subimages */
7 IYgor = YsubD isub /* startpostition for subimage */
8 Ygwe = Wapr + Ypr /* subimage y position increase */
9 L fsuv) = IXsupc:l¥supc) ~ /* center position for subimage */
10 end for

Besides the parallelization of iterations, it is possible to execute instructions of one
iteration in parallel. This depends on the dependencies which are given in Table 4.3.

Based on Table 4.3, different subsets of instructions can be performed in parallel
without creating any hazards. It is assumed that the architecture can solve input
dependencies without additional delays by the additional use of resources. The first
subset, formed by line 1 and 3, can be processed in parallel, as both instructions do
not depend on any other instruction. The second subset is formed by line 2 and 4 as
both depend on line 1 or 3 but not on each other. All remaining lines (5,7,8 and 9)
are single subsets, which all depend on their preceding instruction. Based on this,
the instructions outside the loop can be split into a pipeline of three stages. But as
these instructions are only performed once, this is not performance relevant. It might
only be of interest in case of processing all subimage centers of all stages at once in
a loop construct. The whole inner loop cannot be parallelized but must be split into
three stages as well.

In Algorithm 4.13 the center positions of the new subapertures for one subimage
of stage s are calculated. Besides calculating the subimage center, this is the central
step necessary for factorization of apertures. The amount of merged apertures is set

48

4.4 Analysis of processing dependencies

Table 4.3: Dependencies of FFBP subimage center algorithm (Algorithm 4.12)

Flow dependency: {2} EN {1}; {4} N {3}
{51 (4}
7445}
{8} {5.7)
{0} 2.8)
Input dependency: {3} KN {1}; {1} N {3}

by fapr, while the position of the new aperture is always the geometrical center of all
merged aperture positions. The entire set of new apertures will be focused on the
line between the center of a subimage and the new aperture center. The inner loop is
a summation over all loop iterations and contains flow loop dependencies, wherefore
a parallelization is not possible. The flow loop dependency could be resolved like in
Algorithm 4.11, but with the same consequences. Wherefore full parallelization is
only possible for the outer loop runs, as they are independent of each other. Still,
this would inflict parallel read access on memory for some constants.

Algorithm 4.13: FFBP aperture position calculation per stage and subimage

input : N, = number of incoming sensor echos in azimuth
fapr = aperture factorization count for this stage
T[N4;]= 3D aperture trajectory vector of this stage/subimage

output: T'[Na/fup:] = 3D aperture trajectory vector of next stage/subimage

1 for (igpr =0 to Nyz/fup-1) do /* all aperture merges */
2 T'ligp) = 0

3 for (i = iapr-fapt €0 iap - (faps+1)-1) do /* single merge */
4 | T'liapt] = T'fiapt] + Tlim]

5 end for

6 T'[iape] = T'[iapt]/ fape

7 end for

Besides the parallelization across iterations, parallelization of the instructions within
one iteration could be possible as well. This depends on the dependencies which are
listed in Table 4.4.

Based on Table 4.4, no proper subsets can be combined, as everything depends on
each other in terms of output/anti/flow and flow loop dependencies. This means no
parallelization besides for the outer loop level is possible.

49

4 Conceptual hardware design

Table 4.4: Dependencies of FFBP aperture position algorithm (Algorithm 4.13)

Flow dependency: {4} s {2}
{6} 4}
Loop flow dependency: {4} g {4}
Output dependency: {4} {2}; {6} {4}
Anti dependency: {435 {4}, {615 {6}

The most demanding step during FFBP processing is listed in Algorithm 4.14. It
describes the process of merging f,, neighboring apertures, across the entire set of Ny,
apertures of the preceding stage s — 1. In the case of the first stage, s — 1 refers to the
original data. Merging can start as soon as the subimage center and the subaperture
positions are calculated for this subimage and stage. The algorithm describes this
process for one subimage out of f;,;, subimages for the stage s. In a simple loop
setup, the apertures are merged along a stage and subimage. Meaning, that all
apertures, which belong to this subimage and stage, are processed subsequently (see
Algorithm 4.14). Every range sample rg of a subaperture is processed with the input
of all contributing apertures f,,;. Due to the order of processing, the geometrical
constants for one subaperture need to be processed many times, or they need to be
stored. But a range sample rg can be stored internally.

The opposite of this order of processing would be the processing across stages
s. Like this, merging could start as soon as enough apertures are recorded (raw
data) to merge them to one final new subaperture in the highest stage. To form a
subaperture of the final stage, several raw data apertures is required that results from
the product of the f,); factors of all stages s. In the process of merging a subaperture
of the final stage, the subapertures of all stages before, which act as parent nodes
for this subaperture, are formed as well. The GBP can then project the subaperture
of the final stage across the final subimage. This order of processing requires either
multiple calculations of certain parameters for a subimage run or more memory to
hold the already calculated parameters. Additionally, the GBP processing would
induce memory access more often, as the image pixel would need to be reloaded
more often (see Section 4.5.1.1 for more information on GBP processing strategies).

Another approach is to perform range rg processing in the inner loop. Distances
between the preceding aperture and the subaperture need to be processed only once,
but the entire subaperture line must be reloaded f,), times from memory.

All approaches show that flexibility in processing order is given, although not to the
extent of the GBP, where every pixel is completely independent. Nevertheless, this
also shows, that processing in parallel is possible since data dependencies between
subimages within one stage are not existing. Another option is the parallel processing

50

4.4 Analysis of processing dependencies

Algorithm 4.14: FFBP aperture merging per stage and subimage

input

s = current stage number

pce = phase correction constant (47/A4)

Nyz; = number of incoming sensor echos in azimuth

Nyg = number of incoming range samples per range line

Fmin = Minimum distance covered by sensor echo

Fmax = maximum distance covered by sensor echo

fapr = apertures factorization per stage

fsup = number of subimages per stage

drg = distance between each range cell

T[N,4;] = 3D aperture trajectory vector of last stage/subimage
Lywc|fsun] = 3D subimages center vector of this stage (z=0)
S[Naz,Nrg] = sensor data array

T'[Naz/ fapr) = 3D aperture trajectory vector of this stage/subimage

output: S'[Ny;/ fap:Nrg] = new apertures for this subimage and stage

1 for (igpr =0 to Nyz/ fupr —1) do /* all aperture merges */
2 for (i, =0 to N,,—1) do /* cross range samples */
3 for (im = iapr-fapt 0 fapt-(iape +1)—1) do /* single merge */
4 den = IsubC[s]fT/[iupt}
5 dop = T[im}_ T/[iapt}
6 scap = dop * dep /* scalar product */
7 scan = ||donl| || denl| /* scalar product norm */
8 cos (don £ den) = scap/scay
0 Faiss = ir-67g
10 dus = Tdist + Tmin
1 1 = HanH'HdonH
12 €2 = dys dyg
13 c3 = 2-cos(don Lden) *||don||-dns
14 rdcos = €1 +c2—¢3
15 rd = \/rdcos
16 if (rmin < rd <rmqx) then /* within line boundaries */
17 Trange = rd - Tyin
18 Tcell = Trange / 5i’g
19 0d = rd - dyg
20 Qcorr = pce-6d
21 Teomp = o) 9corr /* then follows interpolation */
22 Sinr[imvrcell] = int{[imvrcell]vs[inuir]}
23 Swmp = Sint[iimrcell]' Ycomp
24 S/[iaphir} = S/[iaphir} + Smmp
25 end if
26 end for
27 end for
28 end for

51

4 Conceptual hardware design

Table 4.5: Dependencies of FFBP aperture merge algorithm (Algorithm 4.14)

Flow dependency: {11} EN {5}; {10} EN {9}
{6, 7} Ly (4,5}
{8} »—> {6 7}; {12} Js {10}
{13} >—> {5,8,10}
{14} >—> {11,12,13}
(1514 (14}
(16,17, 19}@{15}; {16} L {15}
{17, 19} H {16}
{18} >—> {17}; {20} H {19}
{21} >—> {20}; {22} A {18}
{23} >—> {21,22}
{24} i> {23}
Loop flow dependency: {24} {24}
Anti dependency: {24} & {241
Input dependency: {4} Hy {5} {5} AN {4}
{6,7} n—> {13}; {6, 13} AN {6}; {7,13} AN {7}
{12} AN {13}; {13} % {12}
(17} {19} {19} +5 {17}
Control dependency: {17,18,19,20,21,22,23,24} & {16}

on aperture merging. For the given loop order, the inner loop contains a summation
over all outer loop iterations iy in line 24. This forms an indirect flow loop
dependency, wherefore running inner loops in parallel is not possible. One could
argue that this can be solved by rearranging the loop hierarchy, but however the
loops are ordered, a indirect flow loop dependency will always exist due to line 24 or
22. The flow loop dependency could be resolved like in Algorithm 4.11, but with the
same consequences. Wherefore full parallelization is only possible for the outer loop
runs as they are independent from each other. Still this would inflict parallel read
access on memory for some constants. Beside the parallelization along stages (or
merges), parallelization of the instructions within one iteration could be possible as
well. The possible dependencies are basically structured identically and are given in
Table 4.5 based on the structure in Algorithm 4.14.

Based on Table 4.5, subsets for loop internal pipelining can be found. The
instructions within a subset can be performed in parallel without creating any hazards.

52

4.4 Analysis of processing dependencies

Subsets, in general, depend on each other and must be processed sequentially,
which means a delay must be introduced until all instructions in the subset are
completely processed. Depending on the instruction type in the subset, this can take
multiple cycles. It is assumed that the architecture can solve input dependencies
without additional delays by the additional use of resources. Therefore, subsets are
circumscribed by flow dependencies mainly. The first subset is formed by line 4,5
and 9 and can be processed in parallel, as they do not depend on any inner loop
instruction. The second subset is formed by line 10 and 11, as they depend on line 5
and/or 9 but not on each other. The third subset consists of line 6 and 7 since they
depend on line 4 and 5 each. Line 8 and 12 form the fourth subset by depending on
line 6 and 7 or line 10. Line 13, 14 and 15 form the fifth, sixth and sevenths subset
each. Line 16,17 and 19 all depend on line 15 and could be processed in parallel as
a closed subset if line 17,18,19,20,21,22,23 and 24 would not be depending on line
15 in the form of a control dependency. Therefore, line 16 is the only instruction
directly depending on line 15 forming the eights subset. While line 17 and 19 form a
ninths subset depending on line 16. Line 18 and 20 depend on line 17 and 19 forming
subset number ten. Line 21 and 22 form subset number eleven as they depend on
line 18 or 20. The remaining lines 23 and 24 are single subsets number twelve and
thirteen which both depend on their preceding instruction. Instruction 24 could also
be reformulated to a = b+ c; followed by b = a statement. As this is a write after
read behavior, this forms an anti dependency.

Based on this, the whole inner loop can be split into thirteen consecutive processing
stages (flow dependencies), which would then define the maximum gain through
parallelization. This is just a theoretical consideration, as it is not clear how an
architecture could perform different instructions. While standard operations like
addition, subtraction and multiplication are easy to define in terms of delays, other
(more costly) instructions can be implemented in different ways. This is especially
true for the instructions of line 4,5,6,7,11,15,21 and 22 which need to be analyzed in
more detail for an efficient implementation. This is done in Section 5.1.

4.4.3 Conclusion of dependency analysis

The analysis of the GBP and FFBP algorithms show the potential of possible
parallelization in dedicated hardware. Depending on the resources of a given FPGA
and the interfacing periphery, all of the described subsets of instructions could be
performed in parallel, which allows for an increase of throughput rate. In general, it
can be stated that, according to the Bernstein condition, an instruction A can be
executed in parallel to instruction B when no flow, output, anti or control dependency
exits between them. Even if a dependency exists, a parallel execution might be
possible when the instructions are in different time slots of a pipeline. But this
has to be manually checked. Based on the results of such a manual analysis, the
architecture is designed to max out the possible performance. Since the restrictions
and capabilities of a given system (FPGA and the interfacing periphery) are not known

53

4 Conceptual hardware design

in advance, the design needs to allow for a dynamic adaptation of parallelization
degree and interfacing speed.

4.5 Analysis of streaming capabilities

An architecture can be defined as a streaming architecture when a constant flow of
incoming and outgoing data exist. Although this is the general definition of a stream,
this does not state anything about how often or how long some PEs wait (stall)
for the result of another PE. The overall goal of a streaming architecture should
be to create a stream of data with a minimum amount of stalls in any PE for any
type of parallelism. The dependency analysis in the preceding section examines the
logical boundaries to exploit parallelism. Depending on the given architecture such
boundaries can only be reached to a certain extent, as memory bandwidth, processing
power or other constraints will generate practical limitations. These limitations will
also influence, if parallelization is implemented more as an intra loop (parallelization
of instructions inside a loop iteration), or inter loop (parallelization of loop iterations)
concept. This indicates that the degree of inter loop parallelization is not the only
measured value, as parallel PEs might still be stalled for longer time intervals in case
the design is not optimal. For an optimal design, which is capable of well-balanced
streaming, three aspects in the following order need to be considered.

1. How to setup memory access patterns (loop ordering)
2. How to balance multiple parallel read/write operations (inter loop streaming)
3. How to segment loop internal pipelining (intra loop streaming)

The following section will explain how the mentioned mechanisms can be used, to
implement a design with a maximum in parallelization, that works similar to vector
or array processors in a streaming manner.

4.5.1 Memory access patterns (loop ordering)

The presented backprojection pseudo-codes (Algorithm 4.1; Algorithm 4.12 - Algo-
rithm 4.14) show, that the algorithms demand plenty of data to process one final
image pixel. The same data words are required (load, store) often to process the
entire image since a cell of one echo line contributes to many image pixel. This
results in a vast amount of data accesses and identifies the memory interface as
a bottleneck for any chosen architecture. Especially, because SAR data sets, and
the resulting images are usually in the range of many million pixels. Since high
throughput is a key requirement of the backprojection algorithms, it is fundamental
to blueprint the memory architecture, before considerations for intra or inter loop
streaming are finalized. The big sets of raw data and image data exclude small and
fast local memories (caches or buffers). Bigger and slower memories (RAM) are

54

4.5 Analysis of streaming capabilities

the only way to store the entire raw data and image data during the process. The
technical features of such memories constrain the choices of how the architecture
should be designed for fast processing. Read cycles are usually faster than write
cycles for example. The design should mainly focus on the data access patterns of
the GBP, as it is usually more data demanding than the FFBP and therefore could
slow down the processing speed if not considered appropriately. The data access
patterns in the GBP can be modified by switching the parameters in the three nested
loops (loop ordering). It is important to isolate the permutation of parameters which
matches best with the features of the given memory architecture. Nevertheless,
slower memories might result in a memory bottleneck as the GBP is a data greedy
algorithm. To close, or at least reduce bottlenecks, local memories can still be used
to reduce the overall memory transfers to/from the RAM, how it is done with regular
caches in GPPs for example. In connection with local memories and the concept of
parallelization (inter or intra) data broadcast might be used as well, to reduce the
overall bus transfers. Basically, all methods have to be considered in combination for
a sophisticated design, as one aspect might benefit another.

4.5.1.1 General considerations for RAM access

As already mentioned, one aspect which has to be considered, is the order of
loops, since this also affects the loop internal parallelization or the number of input
dependencies. As presented in Algorithm 4.1, the raw echo data is read in the outer
loop, which would mean a new line of data is received and projected on the image.
The projection can be chosen (depending on the loop order) to be done fast in
azimuth (y) direction, and slow in range (x) direction, or the other way around. The
order of access pattern will not alter the result, but from the architectural point of
view, this order can have a big effect on the design and throughput rate. This can be
understood when typical RAM attributes are considered. RAM is required for storing
the entire raw data and image data. Although typical RAM interfaces work in a way
that a wide data word can be accessed at any location in any order, this does not
imply that any access pattern will result in the same latency. Usually, the addressing
scheme of RAM is a consecutive number, but internally these numbers translate in a
matrix memory with lines (combined to pages) and columns. Also, the bigger the
memory, the more likely it will be organized in physically separated memory banks
which still appear as one big memory. Although RAM provides fast and broadband
interfaces, data rates depend heavily on the linearity of memory access and might
drop in any of the following cases:

1. Reading not in burst mode (consecutive read in one page)
2. An address jump across pages
3. A switch from one bank to another

4. Address conflicts in case of parallel access

55

4 Conceptual hardware design

The physical characteristics of a RAM define the timing parameters of the memory
and describe the required time for any memory access pattern. Random access
patterns should be avoided as they will inflict high timing penalties more often than
regular access patterns. Also, a regular pattern might allow arranging access in a way
that the predictable timing penalties are masked behind other memory operations.
Especially, streaming systems can benefit from this.

For reading data this automatically implies that reading in one page and also
reading pages, in a consecutive manner, is fast, while reading consecutive columns
is the slowest access as address jumps across pages and banks are more likely to
happen. As bigger images will be accessed through different pages and columns in
the memory, this shows that reading fast in x (page direction) or reading fast in y
(column direction) can have a big impact on throughput. Of course, an image can
also be transposed if the loop order would require this, but this is only possible if
the mathematical operations match with this pattern. While it might be possible
to store the image transposed to read and write fast in y direction, mathematical
operations might need access to neighboring data in x direction. The interpolation
in the GBP algorithm is an example of this. In this case, raw data and image data
could be stored in different directions, as all mathematical operations (besides the
final accumulation for one image pixel) only require raw data. Nevertheless, this
explains why such implications need to be considered for fast design.

Writing data to the RAM usually underlies even stronger restrictions. For example,
in a GPP with a four-way associative cache, a read operation will perform faster
than a write operation. To ensure fast data fetching into the cache, parallel read
access to four RAM memory banks are performed since it is not determined where the
required data word is stored. Although this includes several useless read operations,
this access will not alter the data. Writing data from the cache to RAM is slower
because four parallel write operations would alter data words that should not be
altered. Therefore, the chip must wait until the memory bank address is determined,
which might take several clock cycles. For writing data in a streaming system this
is not necessarily true, as buffers do not have to be so complex. In case of data
dependencies are not given, addresses can be determined without bigger effort as it
follows a straight pattern. The write operation can then be pipelined. Nevertheless,
buffers and the patterns of access need to be understood and planned in advance.

Considering that a RAM is required, the architecture should be designed to match
general RAM attributes. Since many PEs should act in parallel, the question arises,
if one PE should process a full image, a full image line or a pixel alone, or if any of
the options should be divided between many PEs. All strategies bare pros and cons
which show when the loop order is discussed.

56

4.5 Analysis of streaming capabilities

4.5.1.2 Considerations for GBP RAM access optimization

As already discussed, the GBP treats every image pixel independent of all other
image pixels. Therefore, the loop hierarchy is free of choice. Changes in the loop
hierarchy and the choice of the right memories provide a lot of alternatives. For
a simple and fast estimate of investigated alternatives, simplified image and echo
parameters are used. These dimensions are, raw data of N,; = 1000 lines in azimuth,
each with N, = 1000 echo samples in range, and image dimensions of N, = 1000
and Ny = 1000 pixel. This set is treated as one synthetic aperture, meaning that
every image pixel is illuminated by every aperture (pulse) of the raw data set (N,
raw apertures). A single image pixel would thereby require 1000 projections to be
finished, one from every raw aperture in azimuth. An important parameter of the
GBP is the number of projections for the entire image given by Eq. (4.1).

Npro = Ny - Ny - Ny (4.1)

The number of projections is proportional to the image dimension and the number of
echo positions in azimuth. For the here used simplified parameters, 10° projections
or 1G (Giga) projections. For each projection, the core of the loops of Algorithm 4.1
need to be processed. Therefore RAM data needs to be read and written. For FPGA
implementations, parameters in the range between 256 and 8192 will be investigated.
Therefore an exemplary size of N;; = 1000 is in the mid number range. Since these
numbers are comparatively small raw data and image dimensions, it is obvious that
the GBP core operation should be processed as efficiently as possible. Therefore,
memory access patterns need to be optimized as well.

To do so, the permutation of loop parameters need to be checked. This results
to six different configurations. These configurations are depicted in Fig. 4.3, while
the corresponding memory access rates are given in Table 4.6. The configurations
differ in running order [1,2,3], where the first, second and third positions represent
the outer, intermediate and inner loop. Every raw data sample and image data pixel
(indicated as black) is accessed directly in the inner loop, while everything indicated
with a darker grey is accessed slower in the intermediate loop. Everything indicated
with a very light grey is accessed in the outer loop, so very slowly. The following
considerations are thought without the concept of local memories in the PE. It is
also assumed that the RAM bus word width B, is not equal to the data word width
Dy, which is used for processing raw data samples and image pixel. Like this, the
system and/or memory controller might also have to take care about reading or
storing a smaller data word within a larger bus word in memory. This requires more
memory operations to handle address misalignment and would not allow for single
data word addressing. The RAM access of the first iteration of the inner loop is
represented with arrows. The load and store actions in Fig. 4.3 are indicated with
lower and upper case letters. A lower case indicates the load or store of a single data
word, while an upper case letter indicates the load or store of an entire line. Read
operations from the raw data memory are indicated by the letter a or A. Load and

57

4 Conceptual hardware design

store operations on the image memory are indicated by the letter b and B or ¢ and C.
Whether an operation is a load or a store can be seen by the direction of the arrow.
An arrow from the image memory to a PE is a load operation, while an arrow to the
image memory is a store operation.

Without any optimization, processing a full image requires Ny - Ny - N, raw data
load, image data load and image data store memory operations each. This does not
include additional load and store operations required for the mathematical operations.
Every permutation of access strategies is characterized by different access patterns,
which can perform differently on memory. Fig. 4.3 depicts the different possible
patterns to calculate the image. Again, this can result in different access patterns on
the image memory and the raw data memory, which are depicted as bigger blocks.
A PE loads data from the raw data memory and loads/stores data from/in the
image memory. This depends on the chosen strategy. A PE is depicted as one
single square but can either hold one single pixel, parts of an image line, a full image
line or the entire image, depending on available resources. It will be discussed that
some strategies allow for certain advantages regarding the amount of load and store
operations, while others do not have any effect. By this, certain resource-demanding
setups for the PE can be excluded from further evaluation as no beneficial effects
exist.

Configuration (1) and (2) project N, raw data lines, one after another, on the
entire image. This creates Ny, slices of the image, which need to be accumulated for
the full image (see Fig. 4.3). Loop parameters are accessed in the order of @ =
[az,y,x] or @ = [az,x,y]. This means, that for the processing of one image slice the
same raw data line az will be accessed Ny - N, times. Therefore, the range samples rg
within that a range line az are loaded in total Ny - Ny times. Meaning that a specific

sample rg will be accessed Nﬁ’[{,‘v times in average. Whereby not every sample must be

accessed to the same amount. This depends on the geometrical dependencies. Based
on these dependencies, a sample might be required more often for interpolation then
others. The geometric relationship between the range line and image line determine
the access rate of each range sample. In total the amount of read operations (a) on
raw data memory for the entire image sums up to Ny; - Ny - Ny = 10° or 1G (Giga)
loads. Image data is loaded continuously (b) as with every inner loop iteration a new
pixel is partly processed. The result is written back (c¢) to memory as a small fraction
of one image slice. To form the complete image, all slices need to be summed up
coherently, wherefore one pixel must be loaded, summed up and stored az times.
This results to the total amount of Ny; - Ny - Ny = 10° or 1G (Giga) load operations
and 1G (Giga) store operations on the image memory. Assuming that the x direction
is the direction of fast access in the memory, configuration @ is advantageous over
@ in terms of access patterns. This is due to the fact, that the access across memory
is performed fast in x direction (inner loop). Therefore, this pattern exploits spatial
locality better than a fast run in y direction. This reduces the address jumps within
image memory and also the busloads.

58

4.5 Analysis of streaming capabilities

rg @ X rg @ X

K‘D’j >#< a@ubc

|l If N N

az y §az y
=

(|
raw data image data raw data image data

« O « O

LR v aff,?%

az y V24 az y
=
raw data image data raw data image data
9 @ X rg @ X
o
(Al TGN (e
Tl [T Tl
az y £4 az y
=
| |

raw data image data raw data image data

Figure 4.3: Memory access patterns without local buffers

Configuration (3)=[y,az,x] and (4)=[x,az,y] project raw data lines az one after the
other on an entire image line (see Fig. 4.3). In contrast to @ and @ one image
line is finished after the inner loop is done. The amount of read operations (a) on raw
data memory is the same as for configuration @ and @ A smaller disadvantage is
the access pattern of raw data memory since a new raw data line az is accessed in
every iteration of the intermediate loop (indicated with darker grey). This results in
a more frequent change of memory locations in the raw data memory. The amount
of image loads (b) and stores (c¢) from and to the image memory is equivalent to
configuration to @ and (2). This results from the fact that the inner loop accesses a

59

4 Conceptual hardware design

new pixel in every iteration. But the order temporally restricts iteration space (black
line instead of light grey) and reduces the address jumps on image memory to one
direction until one image line is finished. Considering the order of x and y and the
image memory direction, the pattern of configuration @ is advantageous over @

Configuration (5)=[y,x,az] and (6)=[x,y,az] project the raw data lines az one after
another on an image pixel (see Fig. 4.3). In contrast to (I) and (2) the pixel is finished
after the inner loop is done. The amount of read operations a on raw data memory is
the same as for any other configuration. A bigger disadvantage is the pattern of raw
data memory access since a new raw data line az is accessed in every iteration of the
inner loop (indicated black). But for image data these configurations show a major
advantage, which leads to a reduction of read operations b to N, - Ny = 10° or 1M
(Mega) loads for both configurations. Store operations ¢ also reduce to Ny - Ny = 100
or 1M (Mega) stores for both configurations. Configuration @ is processed in y
(intermediate loop) wherefore address jumps in image memory are more frequent.
But the load operations are only required when storing the final pixel value. Since
the initial value of any image pixel is zero, no load cycles on image memory are
required. And since a single image pixel is processed in one sweep, intermediate
results do not have to be stored and loaded for later accumulation in the image
memory. However, this only applies in the case, that single data words can be written
to the image memory. But usually, only full bus words with B,,, bits can be written
to the image memory. Usually, By > Dy, which means that a data word (pixel)
with D, bit must be stored inside of a full bus word. Therefore, it is necessary to
read the memory location first, then include the pixel value and store the entire bus
word back into image memory. For the case that D,,, > B,,, read operations could
be skipped completely for both strategies.

The configurations show how much influence the order of loops can have on the
memory access patterns and thereby on access rates. Under the assumption, that
tiny local buffers in an architecture are present, which is a standard feature in the
form of a cache, load and store operations can be reduced significantly in some cases.
This results from the fact that the tiny memories allow for storing enough pixel of
D,,,, bit to combine it to a full bus word of By, bit, which can then be transmitted
directly. This results in a reduction of load and store cycles and can even result in
a reduction to zero read cycles on image memory in the case of configuration @
These mechanisms will be discussed in the following subchapters. Since the reduced
memory access rates result from the possibility to hold data in a tiny local memory,
the potential of even bigger local memories should also be discussed further.

4.5.1.3 Considerations for GBP RAM access reduction

For FPGAs a larger design space exists when compared to non-dedicated architectures.
FPGAs allow for a high degree of freedom in the choice of how resources are
implemented. This freedom can be used to implement local memories (in the form of

60

4.5 Analysis of streaming capabilities

BRAMS) in a variety of sizes and bandwidth. The amount and size of such memories
depend on the FPGA type. Therefore, a design must be able to adapt the amount
and size of the buffers. Like caches for regular GPPs, buffers are an important factor
for fast processing and can be vital for reaching a fluent stream of data. Using
BRAMs gives several advantages compared to a system of only RAM.

First, compared to RAM, BRAMs can provide lower read/write latency of one
clock cycle, a wider interface, true dual-port access (synchronous read/write) and
deterministic timing. Especially for streaming architectures, a deterministic access
behavior is important, to not run into stalls of the entire system. Due to the fast
and deterministic access, every load/store operation shifted from external to internal
memory, does not need to be considered further for the memory access rates.

Second, small buffers can be used to fully utilize RAM access. As already described
in Section 4.5.1.2 for configuration (5) and (6), redundant data load operations
occur when Dy, < B, because individual word addressing is not possible. Reading
one data word (when D,,,, < By,,) just results in a transmission of additional useless
data. Writing one data word would require to read one bus word from the RAM,
encapsulating the data word, and writing back the bus word in order not to overwrite
neighboring data words. Therefore, write access will increase the redundant bus load
because of the additional preceding read operations. Depending on the loop order,
BRAMSs can be used to solve both problems. They can store the additional loaded
data for a short time interval if the data is required in the short term. In the case of
writing, a buffer can amass adjacent data words until a complete bus word can be
written. Smaller buffers can already help to increase bus load efficiency and therefore
reduce the total amount of external memory accesses. Since such buffers are so small,
it is assumed that they exist in every architecture. For non-dedicated architectures,
this can also be assumed, as almost all architectures are equipped with caches. The
existence of such buffers is indicated by the red factors in Table 4.6 and Table 4.7.

Third, if efficiently integrated, bigger buffers allow shifting a bigger portion of
external memory access to internal memory access. This is possible if the loop order
mainly accesses a spatially limited memory region for a longer period. BRAMs can
be used to buffer that data region to reduce write and read operations to the RAM.
But considering the size of SAR raw and image data, FPGAs can only store fractions
of the data in BRAMs. Since resources are limited, the BRAMs must be dimensioned
and placed thoughtfully. Larger buffers can reduce RAM access rates significantly.

Applied to the discussed permutations of the GBP algorithm, BRAMs can be very
beneficial in some cases, while in other cases they do not show any improvement.
Figure 4.4 shows how access pattern change in case BRAMs are used as buffers.
Table 4.6 lists the amount of external memory operations with and without BRAMs
for comparison.

For configuration (1) and (2) buffers are useful in two cases.

First, raw data can be buffered. For one outer loop iteration (image slice), one
raw data line in the external memory is accessed N, - Ny times. During this time,

61

4 Conceptual hardware design

rg @ X rg @ X

b
EED“ el e LI5).
@
b
) j\ 9),
CLLTT - [HEEE
az y g az
|
raw data image data raw data image data

g @ X rg @ X

az y az

Wvd

aﬁmbc >aC v,
>E< @
96|||||)

raw data image data raw data image data

rg @ X rg @ X

az y § az
=

fl:lﬁ >FC e GD%

raw data image data aw data Image data

Figure 4.4: Memory access patterns with local buffers

the same raw data samples will be accessed repeatedly in irregular patterns. This
generates small and/or big address jumps based on the geometric relation of the
image and the raw data. For this reason, it would not be sufficient to buffer smaller
coherent chunks of raw data, as the next access could already be out of buffer bounds.
But in case the entire raw data line is buffered (indicated with A), one outer iteration

62

4.5 Analysis of streaming capabilities

run requires only N, external memory raw data load operations, to move the full line
to the internal buffer. From this point, every access to this raw data line (indicated
with a) is handled internally for this image slice, meaning that N, - N, load operations
reduce to N, load operations for the processing of one line. For a full image, this
sums up to Ny - Ny; raw data loads with buffers, compared to Ny - N, - N, without
buffers. For the exemplary dimensions, this reduces the load operations from 10° or
1G (Giga) loads to 10° or 1M (Mega) loads. In the case that the bus word width
By, is bigger than the data word width D,,,,, buffering is even more beneficial, since
all additional data that is loaded is not lost due to full buffering. This results to
IEI'I;M{Y“J raw data load operations in total.
Dyww
Second, image data can be buffered. But line buffers are of no use, as an image
pixel is only accessed once in one outer iteration run. Nevertheless, small buffers
can be used to increase the efficiency of load (b) and store (c) operations in case of
Byyw > D,,,. By storing a bus word instead of a data word, all loads to the following
image pixel within the range of a bus word are avoided. The efficiency increases by
the factor of L%J which reduces the total amount of accesses from Ny - Ny, - Ny, to
Ny-Ny-Na
L]

ww

for load and store operations each.

Additionally, burst modes, which are available in common external memory con-
trollers, can be used to read multiple bus words consecutive in one direction. The
amount of read operations is not reduced, but the overhead for memory setup times
is smaller, whereby memory throughput is increased. Buffers need to be extended
to the size of burst length b; - By,,. Optimization considering B, and b; are only
possible for configuration (T) which reads and writes data in memory direction (x,7g).
When processing in y direction (image row) all additional intermediate pixel values
which are loaded in x direction are obsolete. To avoid this, the buffer size would have
to be increased from Ny to Ny - By, respectively Ny - By, - b;. Otherwise, the same
amount of read operations as without buffers is required.

For configuration @ and @ raw data can be buffered as well. But since one
outer loop iteration completes an image line or image row, all raw data lines are
accessed in shorter time. Since not all lines can be buffered, they need to be reloaded
for the next outer iteration run. For a full image, this sums up to Ny - Ngz - Ny raw
data loads with buffers, compared to Ny - Ny - N,; without buffers. In case of equal

dimensions of rg and x, this leads to the conclusion that buffers are beneficial in the
Nyg-NoN,
also proofs to be very beneficial for image data. In case a full image line is buffered,
no intermediate values need to be transferred to and from the RAM. This is because
one image line is processed en bloc, meaning all raw data lines are projected on the
line that is currently buffered. This reduces the number of load operations to zero.
Only the final values of the line need to be transferred (indicated with B) in EVLWV’J
cycles to the RAM. For the exemplary dimensions, this reduces the store operat[i)ghs
from 10° or 1G (Giga) stores to 10° or 1M (Mega) stores. Write operations in burst

case By, > Dy, resulting to raw data load operations in total. Buffering

63

4 Conceptual hardware design

mode can be used to reduce the setup time overhead. As for configuration @
optimization considering By, and bl are only possible for configuration @ due to
operation in x direction. Operating in y direction bears another disadvantage for
writing image data. While image rows can be processed en bloc in y direction, writing
a row en bloc in y direction is not possible. Neighboring data in x would have to be
read first, resulting in additional Ny - Ny - N,; read operations. This is a drawback to
processing without image data buffers.

For configurations (5) and (6) it is of no use to buffer raw data since every inner
loop iteration addresses a new raw data line. If a line would be buffered, this would
sum up to more raw data load operations then without buffers. This is why every
raw data sample would have to be accessed separately like in a “unbuffered” setup.
Buffering image data is beneficial. Although configuration @ and @ have different
access patterns then @ and @ the numbers for reading and writing image data
are identical. The difference is the size of the buffers. While @ and @ buffer a
complete line, @ and @ buffer one image pixel only, which reduces the number of
required resources for buffer size. Nevertheless, for writing data, a minimal buffer with
the length of B,,,, is required, for architectures where D,,,, < B,,,. This is required
to enable a PE to be able to write a complete bus word back to memory. This would
also be necessary for “unbuffered” architectures. And since buffers for writing data
could be used when reading image data this would change both image data access
numbers. This is indicated by the red numbers in Table 4.6. This unshrinkable buffer
shows, that already small amounts of additional resources can reduce the number
of memory operations significantly. For each FPGA a trade-off between available
resources and reduction of memory load operations has to be made.

It can be stated, that an access in y direction (configuration (2), (4), (6)) for
any architecture where D,,,, < By, is unfavorable, due to the perpendicular memory
access. Especially for line buffered architectures all benefit is lost, as long as buffers
are not two dimensional.

For a design decision, all configurations need to be compared. It is obvious that
all configurations with data access in y direction do not have to be considered.
Configuration @ requires reduced raw data read operations but much more image
read /write operations. Considering the costs of a write access, this configuration is
only favorable if raw data sets are too big for main memory or other memory models
that are used, like for example in [76]. When comparing “unbuffered” architectures,
configuration @ offers the most benefit, as image read operations are reduced
to zero and image write operations reach the theoretical minimum. For buffered
architectures @ and @ are in strong competition. The only difference in data
access rates is for raw data which is reduced for @ in case Dy, < By,,. Also, access
patterns are fit better, as full lines are read in range direction instead of singe pixel in
the azimuth direction. On the other hand, configuration @ consumes much fewer
resources, as no full lines need to be buffered to write image data. A design decision
must either base on the available resources or on another advantage, which might
be given in case of intra or inter parallel PE design. Moreover, the mathematical

64

4.5 Analysis of streaming capabilities

Table 4.6: Memory access rates for GBP configurations, implemented with and
without buffers, the red factors apply in case the size of a full By, can be
stored locally, otherwise red factors apply with 1

buffered unbuffered
Configu- raw data image data raw data image data
ration read read write read read write
NyeNyg Nue-Ne'Ny | Naz-Ni-N, Nue-Ne-Ny | Noz-Ni-Ny
1=[az,y,1] e | NNl | Ml || e | Nagel) Na Ny
” N LDy) L Dy)) Du) Lo
NN,
2=l[az,x,y] (B | NaoNeeNy | NaoNeNy || Nao-Weedy | Nao-NeNy | Nag-Na- Dy
Dy
Naz-Nyg-N,y Ny-Ny Nuz:NeNy | NegNe-N,
3=Daza || Tmayt 0 [| Nabo-My | “ Ty | B
Dy Dy L Dy D
Nz Nyg-N,
4:[x,az,y] "[BL::{J . Naz Ny -Ny Ny Ny Naz - Ni-Ny Ngz - Ny Ny Naz - Ny Ny
D
Ny-N, Ny-N,
5:[))>-x7az] Naz Ny - Ny 0 ngw'\J Naz - Nx - Ny Ny-Ny-0 l gnn"“
Dypyy Dy
6=[x,y,az] Naz-Ne-N, Ne-Ny Ny -Ny Naz-Nx-Ny Ne-Ny Ne-Ny

operations for processing could tip the balance, when more than just one atomic
location in memory is required. In the case of interpolation, neighboring samples will
have to be loaded as well. Based on the width of such operations, buffers in the line
direction might reduce external access additionally.

4.5.1.4 Considerations for FFBP RAM access optimization

Similar to the analysis for the GBP algorithm, strategies can also be optimized for
the FFBP algorithm in order to reduce the RAM access rate. The given analyzes
concentrates only on the factorization part of the FFBP (see Algorithm 4.14), as
only in this part comparatively high bus load is induced. The parts for subimage
center calculation (see Algorithm 4.12) and subaperture position calculation (see
Algorithm 4.13) require mostly arithmetic operations and less memory transfers.

In terms of iterations, the merging of apertures to form a new subaperture is
much less complex than a full GBP run. This is caused by the fact, that every
sample in a raw data set is only accessed once to form all subapertures for a new
data set. Compared to the GBP, where every sample is accessed N,; times, this
reduces complexity from O(N?) to O(N?) (where N represents Ny, and Ny). But
complexity is increased for the FFBP since the described process only represents the
complexity of one out of many subimages in one out of many stages. Nevertheless,
the FFBP would only reach (or even extend) the complexity level of the GBP for

65

4 Conceptual hardware design

very small images combined with many stages and subimages. When comparing
the general structure of the two algorithms, similarities are recognizable in terms
of loop setup, even some instructions are shared. The major difference besides the
complexity is that the range of accessed samples is reduced to the spatial locality
of fup: apertures for subaperture merging. This is contrary to the GBP, where each
sample is treated more or less global. Combined with the right strategy, this can
result in some advantages in terms of memory access rates.

Similar to the GBP the loop order of the FFBP is flexible, but the indexing of data
arrays or vectors must be adjusted. The order describes how often raw data must be
read and how often subaperture data must be read and/or written. Table 4.7 lists
the general formulas for the access rates for generating of one subimage in one stage.
Loop parameters are iqp, ir and iy, where the index apt is the number of formed
subapertures, m controls the number of merged apertures per subaperture and r is
the number of range samples in a line. For example, the order of [iqp,ir,im] means
that iy is controlling the outer loop on the highest hierarchic level, i, controls the
intermediate loop and iy, is controlling the inner loop on the lowest hierarchic level.
Although not directly visible through the loop factors, the factor Ny, is included
in these formulas, as it results from the product of merged apertures f,,; and the
number of subapertures igp; = Naz / fupr-

Configuration @ is processing the subaperture positions in the inner loop. Since
every subaperture is merged from a different set of f;,, raw data apertures, address
jumps in both memory sections (raw data read, subaperture write) are required for
every inner loop iteration.

As already explained in the GBP section, a minimal buffer with the length of
By is required for writing data, for any architecture (“buffered” or “unbuffered™)
where Dy, < By,,. This changes access numbers and is indicated by the red factors
in Table 4.7. In case of a B,,, > D,,, the beneficial effect of reading more then
one word per cycle is not given due to the continues jumps. This yields Ny; - Ny
memory read operations on raw data memory, as every raw data sample must be read
separately. The same applies to the writing of subaperture samples to subaperture
memory. Since samples are merged, Ny; - Ny, read operations on subaperture memory
are necessary to read the current sum for further accumulation. As this is not
necessary for the first summand of a range sample, this results in a given amount
of read operations. The difference between configuration (a) and (b) is the faster
run across merge positions. This causes even more address jumps in memory. But
since the inner loop causes bigger address jumps by running fast across subaperture
positions, there is no real difference between both configurations. Therefore the same
amount of memory operations is required.

Configuration @ is processing merge positions in the inner loop. This implies
jumps to a new raw data line in every cycle. No bus words can be used, thus Ng; - Ny
memory read operations on raw data memory are required. But since a merge for one
sample of a subaperture is performed coherently in place accumulation is possible.

66

4.5 Analysis of streaming capabilities

Table 4.7: Memory access rates for FFBP configurations, implemented with and
without buffers, for one subimage and one stage, the red factors apply
in case the size of a full B, can be stored locally, otherwise red factors

apply with 1
buffered unbuffered
raw subaperture raw subaperture
Configu- data data data data
ration read read write read read write
a=[im, ir, lapt] Do Mrg 0 Naz N N, N, Naz N
—Ltms trytapt [BWWJ az *Nrg (az — fﬁf) rg laz " Nrg
Dy
.. Ngz-N, Nas
b:[lra lmﬂapt] L[;am,‘]g 0 Naz - Nrg (Naz — fa‘[';,) Nrg Naz - Nig
Dy
=
—[; > 7 Na:‘Nrg fﬂ[’l 'Nrg
C_[laphlhlm:l [waJ 0 Naz - Nrg 0 LRH\\ J
Dy Dy
e . NazNig Naz Naz
d= [177 lapts lm] [g“"" | 0 ngw] Naz - Nrg ﬁ Mg fa[;;z Nrg
WW. WW.
_ Naz y, _ Naz .
Tl Ny | Wz)N | NN || NNy | Nam)N | NN
e_[lWhlapl:lr] [waj [&J LBV\M J LBW J MJ L/’uu‘
Dunw Duw LDy D LDy Dy J
Naz _ Naz .
i || N Fap Ve || NNy | WNeem 2)N | NNy
7[laptvlfmlr] LBWJ 0 LBWWJ L”\\n J By J L”nu
D Dy Dy L Dy D

When writing data to the subaperture memory, only the actual summed up values for
all subapertures are written (;V”l). Since the merge is processed in range direction
apl

in the intermediate loop, a bus word width can be assembled and written back to
memory. This results in 0 read operations on subaperture memory, as a full bus word
is written, thus no redundant parts need to be read, to write a single sample back to
memory. The difference between configuration (<) and (d) is the faster run across
subaperture positions. This implies to disadvantages. First, no bus words can be
assembled, wherefore the number of write operations cannot be optimized. Second,
this makes read operations on subaperture memory necessary, as full bus words must
be read to include a single sample value.

Configuration (&) runs across range positions in the inner loop. This implies a
continues address scheme and therefore few jumps in memory. Bus words can be
used, wherefore read operations on raw data memory is reduced. Since no in place
accumulation is possible, the read and write operations on subaperture memory
would result in the same amount of operations as for configuration (@) and (b). But
processing in range allows reducing this amount by reading full bus words in range
direction. The difference between configuration @ and @ is the faster run across

67

4 Conceptual hardware design

merge positions. This has no effect on the number of memory operations, as jumps
across memory are necessary anyway and in place accumulation is still not possible.

In case of Dy, = By @ is the most efficient configuration as it requires no read
operation on subaperture memory. Configuration (e) and (f) increase in efficiency the
shorter D,,,, is compared to B,,,,. This is to be expected for any system with common
RAM interfaces. Between the two setups, configuration @ is preferred, as the
addressing scheme is causing smaller address jumps compared to @ Additionally,
both configurations not only reduce memory operations but also the number of
arithmetic operations. Due to the run in range direction, the cosine for the angle
between subaperture and old aperture is constant for the entire inner loop iteration.
A similar, but less effective, effect can be observed for configurations @ and @ due
to the slow change in range direction. This reduces the computation time for every
instruction related to i,. However, for a regular SAR setup, the loop length for i, will
be greater than for the merge loop iy, or the run across apertures. Considering all
aspects, configuration @ seems to be the most efficient when it comes to memory
operations. Especially in combination with a data greedy GBP algorithm using the
same bus interface at the same time, the reduction of memory access is a vital
criterion.

4.5.1.5 Considerations for FFBP RAM access reduction

Local buffers can only be instantiated in smaller numbers as already discussed in the
GBP Section 4.5.1.3. Introducing buffers will change how often raw data is read
and how often subaperture data is read and/or written. Table 4.7 lists the general
formulas for the access rates for one subimage of generating one stage.

For the possible configurations, buffers show low effort whenever the outer loop
is used for the actual merge process. This implies that the inner loops change
subaperture position and range position fast in one of two cases. Any of the two
would require Ny, / fapr buffers with a length of N, each, to allow for the merge to
be done in phase. This is equivalent to buffering the entire subimage, which is not
resource-efficient and not even possible for bigger subimages. The configurations (2)
and (e) are characterized by this combination. For configuration () buffers can still
be of good use, but only when instantiating Ny, / fupr buffers with a length of B,,,
each. This helps to read and/or write raw data and subaperture data in bus words.

The same type of buffers can be used for configuration @ and @ with a different
result compared to @ Both configurations have the same setup in the two most
inner loops. Which means running fast across subaperture positions and merge sets.
With a set of small buffers, a small set of intermediate results of a merge can be
buffered for every subaperture position. This allows writing a bus word to memory,
which makes read operations to subaperture memory obsolete. The raw data memory
reads can be reduced as well, as the small memory can buffer the additional loaded
samples until they are next in line for processing.

68

4.5 Analysis of streaming capabilities

Another size of the buffer is the full range line buffer. This is beneficial for
configuration @ and @ Since the two most inner loops of both configurations
run across range direction and merge direction. Therefore, a subaperture is always
completely processed before the next subaperture is stored. A full range line buffer
(or subaperture buffer), would allow to read bus words from raw data memory and
buffer them. This allows merging samples to assemble bus words. Therefore, write
operations to subaperture memory are reduced and all read operations to subaperture
memory are obsolete. While the reduction of read operations to the raw data memory
is only beneficial for configuration @ the reduction on aperture memory only affects
configuration (f).

Four configurations can be trimmed to the same level of memory operations. From
all four, @ seems to be most attractive as it maintains spatial locality in range
and in merge direction. This allows for smaller address jumps in both memory
sections. Nevertheless, due to the limited amount of BRAMSs, the use off buffers is
questionable for the FFBP as they are more beneficial for the design of a fast GBP
implementation. In case of too few resources, buffers might only be possible for the
GBP implementation.

4.5.2 Inter loop streaming (read write balancing)

To reach peak performance the processing of multiple data streams is vital. Depending
on the algorithm, not every form of parallelism (e.g. instruction or data parallelism)
is possible. Different processor designs are possible to suit a given class of algorithms
at the best rate possible. According to Flynn's taxonomy [77], every design can be
classified based upon the number of data streams or instruction streams available in
the processor. The backprojection algorithms are characterized by the vast amount
of data that is processed to form new sets of raw data or final image pixel. Since
the instruction patterns are very regular and show almost no control dependencies,
processing would fit best to a Single Instruction Multiple Data (SIMD) architecture. In
a SIMD architecture each element of a set of similar data is processed simultaneously
on multiple identical PEs in parallel. Such architectures are often realized in the
form of vector or array processors. A block diagram of such a processor is depicted
in Fig. 4.5. A control unit, which can be a softcore or a state machine, controls
the entire flow of the system. This includes the input and output of data into main
memory, the allocation of tasks to modules and it's inner PEs and the timing of
data access. The PEs consists of an Arithmetic Unit (ARU) to perform arithmetic
operations. They can have local buffers of variable size which are connected to
main memory via a connection network, which can be a regular bus with different
typologies. In a perfect system, the data would be streamed through the system
without any stalls, resulting in maximal resource utilization.

The speedup of such designs does not only depend on the number of available
resources. As already mentioned, the accessibility of data is critical. With a growing

69

4 Conceptual hardware design

: Module 0 H H Module n-1 H
PE O PE 1 PE n-2 PE n-1

ARU ARU ARU

4 4 4 4
v + + * v
1/0 «----- >| Interconnection Network (Bus) |< ----- »1/0O
4
v
| Memory |

Figure 4.5: Generic block diagram of an array processor design

number of active PEs an exponential growth of read/write collisions is not unlikely
since the memory is shared. This must, of course, be avoided by design choices. The
focus of the inter loop streaming is to:

1. Reduce memory busload

2. Align data access across all implemented modules

Both algorithms work on different data in memory. The FFBP requires original raw
data to create merged subaperture data. The GBP takes this subaperture data for
processing. For this reason, the busload reduction should be handled on module level
(GBP and FFBP). The alignment of data access is partly handled on PE level (as a
module can contain several PEs which interfere with each other), partly on module
level (as FFBP and GBP module are active at the same time but both interact often
with main memory).

4.5.2.1 GBP inter loop streaming

As a first step on GBP PE level, one of the already discussed configurations in
Section 4.5.1 is picked in order to reduce memory access. In case of insufficient
resources for local buffers, configuration (5) requires the smallest amount of memory
access. The disadvantage of all “unbuffered” architectures is the continuous access
to memory, either to raw data or image memory. The continuous address jumps
and the big amount of surplus raw data on the bus (in case a data word is not
directly accessible) facilitates the bus as a bottleneck. Assuming that FPGAs with
a considerable amount of BRAM resources are available, buffers can be discussed.

70

4.5 Analysis of streaming capabilities

Between buffered mode configurations, @ is the most efficient. Equipped with two
full line buffers for raw data and image data, this configuration combines several
advantages. These advantages are, a minimum of image data write operations,
reduction of all image data read operations to zero, reduced raw data read operations
and more linear raw data read patterns (in case of By, > D,,,). Besides the already
discussed advantages, this configuration enables for an additional reduction of raw
data reads by the factor p, which represents the amount of parallel working PEs.
This is a major feature since more PEs would usually cause a heavier busload in a
shorter time. This would increase the chances for conflicts and stalls. For a streaming
design, even one PE is already enough to block access to memory alone. But with
the chosen design, more PEs actually manage to keep the busload on the same level
of one PE, and therefore to reduce the amount of total raw data read operations.
This is possible through data sharing and is a major argument to have multiple GBP
PEs working in parallel.

To process an image line, a PE reads the entire set of N,; - N, raw data. To
process all lines of an image, this process needs to be repeated Ny times. A reduction
is possible because p parallel PEs require the same raw data to process p different
image lines. All p PEs run in parallel and can be synchronized to always process the
same raw data section at a time. This allows to broadcast this section of raw data to
all PEs where the data is buffered for full line processing. This reduces the Ny runs
by factor p. Taking burst transfers of length b; at a bus word width B,,,, and data
word width D,,,, into consideration, the final amount is determined by Eq. (4.2).

Naz’Nrg 'Ny
pebi- 5]

ww

Raw,g = (4.2)

This results in a very drastic reversal behavior. The more PEs work in parallel, the
less traffic for raw data loads is caused. This is contrary to all other configurations,
where more PEs would cause more load traffic in the same time interval.

Similar optimizations are not possible for other configurations, due to different
access patterns on raw and image data. Configuration @ would not benefit from
such measures as every PE would handle a different raw data line. Configuration (5)
would not benefit either as every PE needs only a small specific section of a raw data
line to project it onto the processed image pixel. Based on the geometric relation
between the raw data line and image pixel, these sections can be different for every
pixel. For reading image data such optimizations are impossible for any configuration,
as they would inflict hazards in the form of output dependencies.

This is giving configuration @ a clear implementation advantage in terms of bus
load reduction. The linearity of the address patterns allows for the most efficient
memory access. Additionally, no memory sections overlap, which avoids the chance
of read or write conflicts. Nevertheless, it is important to try to balance read and

71

4 Conceptual hardware design

write operations between multiple PEs. In this case not in terms of amount, but
in terms of homogeneity. Every switch between read and write operations will add
additional delays to memory access. A sequence of pure read or write operations will
execute much faster than a sequence of operations consisting of a mixture of reads
and writes. The concept of line buffers helps to meet these requirements once again.
The strategy allows large blocks of data to be received or transmitted in one sweep.
Nevertheless, PEs need to be scheduled to follow such patterns and to synchronize
in order not to pile up read or write memory access.

This architecture is designed to work with standard monolithic memory components
(eg. Double Data Rate (DDR) memory). Such components usually cannot be read
and written at the same time. But they allow for wide memory access in one cycle.
For example, one DDR3 Synchronous Dynamic Random Access Memory (SDRAM)
module usually allows for 8 - 64 = 512 bit of parallel memory access. Compared
with a standard data word width D,,, of 16, 32 or maximum 64 bit, multiple data
words can be transferred in one cycle. Due to the heavy arithmetic load of the
algorithm, it can also be assumed that loading a raw data line from memory will take
a shorter time than the projection on an image line. This leads to the conclusion
that the scheduled slots will be dominated by processing time. In combination with
a configuration to reduced memory load, this allows to consecutively read from and
write to a buffer line during processing.

A simple schedule for one PE with one raw data line buffer and one image data
line buffer is depicted in Fig. 4.6. A raw data set R with two lines R; and R; is
loaded from main memory, projected on an image I with two lines I} and I, and then
written back to main memory. The length of a slot ¢ is defined by the longest time,
which is assumed to be the processing time. First, the raw data buffer of the PE
is filled with the first raw data line R in time slot #;. In #; the ARU can start the
projection of Ry — I;. During this time new raw data cannot be transmitted to the
buffer, as all raw data elements in the buffer are required for the projection. After the
projection is finished, the next raw data line R; is loaded in #3 and projected Ry — I}
in t4. In t5 —tg this process is repeated with the second image line I,. According to
the assumption above, the finished image line I} can be transmitted from the image
line buffer, back to main memory in the same cycle of receiving R in t5. The final
image is transmitted back to the main memory in 79. For the already mentioned
exemplary setup of Nz, Nrg, Ny, Ny = 1000 this would result to 2 - 10® M (Mega)
time slots ¢ for processing, while one time slot can consist of many cycles of the
ARUs. This calculation does not consider the time needed for filling the buffers at
the very start. Fifty percent of the time is required for transferring data. Which
means each component, the main memory, and the ARU are in idle state fifty percent
of operation time.

As already claimed before, all resources should be utilized to the highest possible
rate to achieve the maximum throughput rate. In theory, utilization can increase
to one hundred percent by introducing additional buffers. The concept of a second
buffer for raw and image data allows loading the next raw data line, while the first is

72

4.5 Analysis of streaming capabilities

Dataread | R, | | R, | R, | ' R, |
Projection R,—,| R,—> 1| R,—>1,| R,—>1,|
Data write E‘
t, t, t, t, t, t, t, t, t, >t

Figure 4.6: Schedule for GBP with one PE with single line buffers

still used for processing. Since this would enable for constant processing of raw data,
a second image line buffer is required as well, to hold the already processed image
line until it is fully transferred to the main memory. The ARU can swap the buffers,
like this processing can continue seamlessly. A simple schedule for one PE with swap
buffers is depicted in Fig. 4.7. The swap buffers are used for raw data and image
data. In contrast to a single buffered setup, the next raw data line R is loaded from
main memory in t,. As soon as projection R; — I is completed, buffers swap in t3
and R, is projected on line I} in 13 (Ry — I1). The final image line can be transferred
to main memory in #4. After this the last projections (R; — I, and Ry — I;) follow.
The whole process is finished in six time slots . This concept implies that at least
two full lines can be transferred during the processing of one line. This is possible as
long as the interface of the main memory is at least twice as wide as a data word
Dy, or bus clock frequency B,y is at least twice as high as PEs clock frequency PE.s.
As long as this criterion is fulfilled, the total amount of time slots ¢ can be reduced
by fifty percent to 10® = 1M (Mega), just by doubling resources for buffers.

Dataread | R, | R, | R | R, |

Projection R,—=1,|R, =, |R,—|,|R,—I,|
Data write |
Tt . &t L &t "

Figure 4.7: Schedule for GBP with one PE and swap line buffers

Constant processing (streaming) of a module can be established with the discussed
methods of swap buffers and proper scheduling. A different way of optimization is
the described parallelization of PEs. The PEs do not have to implement swap buffers
for this. But the total amount of allocated resources is smaller for one PE with swap
buffers then for two PEs with single buffers. More resources are consumed because
a second PE doubles resources for buffering and for arithmetic operations (ARU),

73

4 Conceptual hardware design

while a second buffer only doubles the amount of used BRAMs. However, a module
should only contain PEs of the same design to smooth scheduling. The schedule
for a multi-PE module with a parallelization degree of p =2 including swap buffers
is shown in Fig. 4.8. Following Eq. (4.2), the raw data bus load is reduced to fifty
percent with p =2. Both PEs receive the first raw data line R} in ¢; from memory
with one transfer. In t, the swap buffers store the second raw data line R, during both
PEs are processing. Each PE projects data on a different image line (R — I} and
Ry —). In t3 buffers are swapped and the second raw data line is projected (R, — I
and Ry —). Both image lines are finished in 74 and can be transferred to main
memory. It has to be scheduled, which PE transfers its data to memory first, but the
order will not alter the final image result since every PE processes a different image
section. The line buffers, which are used for accumulation of all intermediate results
can now act as a time buffer, until the PE is allowed to transfer data to the memory.
All modules must finish transferring before the next range line can be requested from
the main memory. For streamlined processing, which demands continuous memory
transfer, this concept implies that p + 1 full lines can be transferred while processing.
This is possible if By, > Dy - (p+1), or if the bus clock frequency B.f is higher
then the PEs clock frequency PE.f, so Bcy > PE.ys - (p+1). As long as this criterion
is fulfilled, the total amount of time slots required for processing can be reduced
by the factor of p. Otherwise, the average processing rate will be reduced because
additional stalls for transmitting and receiving data would be required. In the given
example, the required time slots ¢ are halved by quadrupling resources for buffers and
doubling resources for arithmetic.

Dataread | R, | R, |

Projection PE, ‘
Projection PE, ‘

Data write 1.1,

Figure 4.8: Schedule for GBP with two PEs and swap line buffers

These calculations are the theoretical minimum for seamless streaming. Different
factors might interrupt the streaming and slow down the entire design. One of
these factors could be the transmission of small chunks of control data and the
geometrical parameters. Every PE receives this information to calculate the distance
between a range line and the current image pixel, the interpolation index and a phase
correction angle. All factors must, of course, be taken into consideration for the final
architecture. At the same time, the design should be able to handle any interruption.

74

4.5 Analysis of streaming capabilities

Based on the presented analysis, it is clear, that a concept containing multiple
PEs with additional swap buffers offers the highest potential in terms of seamless
streaming, as it is highly linear in terms of data access and reduces the busload to
a minimum. The disadvantage is the higher resource consumption, therefore, the
degree of p should be free of choice, to fit the design to different types of FPGAs.

4.5.2.2 FFBP inter loop streaming

Inter loop streaming is done on PE level, by a parallel instantiation of multiple
processing cores. Naturally, this comes with an increase in resources. In the case of
the GBP, the additional resources allow for faster processing and to help to reduce
memory access rates. The flexibility in processing order allows to find an optimal
parameter configuration of the algorithm, that allows combining p PEs leading to a
reduction of read operations on memory by the factor p. This is possible by splitting
the working set to parallel modules, which share the same raw data. Processing
one subimage of the FFBP does not offer the same opportunity since each line of
raw data for a subimage is only read once to contribute to one new subaperture.
Nevertheless, more PEs can be instantiated to speed up the processing. More PEs
can compensate for a lack of processing power in case incoming data for a subimage
is transferred before a PE has finished the processing. Similar to the GBP PE, which
can process one Pulse to Pixel Projection (PPP) per clock cycle, a FFBP PE is
assumed to process one interpolation of a range sample per clock cycle. In contrast
to the GBP, where high quality (sinc) interpolation is necessary for good projection
results, nearest neighbor or linear interpolation is sufficient for the FFBP, to keep
the error rate in acceptable boundaries [42]. Therefore, access to a wide range of
neighbor samples for interpolation is not required. Additionally, it can be assumed,
that the required interpolation positions will grow linear in equidistant steps, and not
change as dramatic as it might be possible in the GBP interpolation. Therefore, input
buffers of range line length are not necessary and incoming data can be interpolated
in line. This only requires small buffers for input data. For common systems, it can
be assumed that multiple data words will be transferred from memory in one clock
cycle. Figure 4.9 shows how multiple PEs would be synchronized to work on different
range samples of the same incoming range line data. In this example, two range lines
(apertures) get merged to form one new range line (subaperture) for the subimage.

For the exemplary case of a bus transfer of four parallel samples, Fig. 4.9 shows
four parallel PEs, which utilize four times the amount of resources. Each PE is
assigned to one section (a,b,c,d) of the streamed input data. Range line R| and R,
are merged to form interpolated line /; 5. The problem of this configuration is the
time that is required to write back the merged range line. During the transfer, all
modules are blocked from processing and have to idle. Although the full data of the
range lines are shared with all PEs, a PE only uses a quarter of the data. Therefore,
total bus transfers are not reduced because the range line would, in general, have
been required only once during the process.

75

4 Conceptual hardware design

Dataread [R, [R, |
Processing PE,
Processing PE,
Processing PE,
Processing PE, \

Data write I,

Figure 4.9: Schedule for FFBP PEs processing one range line for one subimage

To emphasize the importance of a reduction of bus transfers, the following example
shows how often data is transmitted during the entire FFBP stage. Again the following
exemplary dimensions are assumed, raw data of N,; = 1000 lines in azimuth, each
with Ny, = 1000 echo samples in range. The FFBP runs three iterations s = [1,2, 3]
with the following setup for subimages fy,,= [16,8,4] and aperture factorization
Sapr=12,2,4] per stage. The total number of read operations on memory results to
Eq. (4.3):

NazNrg Naz-Nrg
Naz-Nrg-foup 1]+ Fsub V- Foup 21+ 7177 Fsub - Fsup (2] Fsup 3]
Raw,g = sub 1 1] o U[wa Jfa,”[l]fa,n[Z] sub s 7 s (4.3)
Dyw

While the total number of write operations on memory results to Eq. (4.4):

Naz-Nrg Naz-Nrg . . Naz-Nrg . » »
Rawyy — Lot o0 o ey oo 0o B 7 1 e B (4.4)
1B

For the given example configuration, this results in 208 M (Mega) read operations
and 72 M (Mega) write operations. Depending on how many data words fit into
one bus word, these numbers are reduced by [g“‘v‘;j Although this is still few when
compared to the amount of read and write operations which are required the GBP,
especially read operations should be reduced to keep the busload low.

As depicted in Fig. 4.10 the processing scheme of the subimages for the FFBP
forms a tree, where the root is the set of original raw data. f,;[1] sibling (child
nodes or subimages) will generate from the root. In the next stage, the generated
child nodes become the parents nodes for the next stage, each generating a new
set of fy,[2] siblings. This continues until the last stage is reached and the GBP

76

4.5 Analysis of streaming capabilities

Stage 0 Stage 1 Stage 2 Stage 3 RAM usage
leaf node maximum
1,1 51 3,1
fan[2,4,2] [Q — GBP
3,3
fan[4,2,2] %C:m —GBP [
3,4
% — GBP 1.2
2,3 e > — GBP
[k 3,6 it
RaRT T »g — GBP
3,7
2,4 e > —» GBP
@:z’ 3,8 1,3
AR »g — GBP
»s 3,9 i
N > —» GBP
________ o k 3,10
R — »EX —» GBP
6 3,11 L4
~~~~~~~ O e pFH — GBP
----- »@:ﬁ 3,12
e »Ed —GBP  [7]2,1
3,13 —
77— g —GBP | |22
________ o k 3,14 2,3
S — »EH —>GBP |
2,8 3,15 {51
~~~~~~ 8 @ —GBP 33
"""" *@:Z 3,16 —t 3'3
T »Ed—GBP []32

Figure 4.10: FFBP processing tree 4+ memory usage with s =3, f,[2,4,2],
fsub [47272]

can run on the leaf nodes. Inside this tree, the multiple defined PEs of Fig. 4.9 can
be assigned to process siblings of subimages in parallel, instead of processing one
subimage in cooperation. Since all siblings of a parent node share the same input
data, the data can be broadcasted to all PEs. Another setup is the splitting of PEs
to process multiple subimages in parallel. The splitting of PEs does not allow to
process a continues stream of incoming data, because every PE needs more time for
processing. The entire bus word must be processed before a new bus word can be
transmitted. This results in clock cycles in which no traffic on the bus is generated.
This schedule is depicted in Fig. 4.11. After the second range line R, is sent to
the PEs, merging is complete for the first section in every subimage. These chunks
(Ia,1p,1:,1;) can be sent to memory during the free bus cycles, to transmit data to
the memory. The required resources are the same, but the merging of one line takes

7

4 Conceptual hardware design

Data read [R_]| R
ProceSSing PE] ‘ Rl_bll,aH R1_>|1,3H Rl_bll,aH R1_>|1,aH Rz_bll,aH R2_>I1,aH Rz_bll,aH Rz_bll,aH
Processing PE, |R—I, |R—I, [R—I [R—| Rl Rl R R |

ProceSSing PE3 ‘ Rl_bll,cH R1_>|1cH R’l_’ll,cH R1_>I1,CH Rz_blch R2_>I1,|:H Rz_’lch Rz_bll,cH

Processing PE, | R—>l, | R—>l | R—>l, j R—>L, [R—L | R, | R—>L JR—L |

Data write AREEAENEAEEARAEEN

T T T T T T T Tt

1 2 3 4 5 6 7 8 9

Figure 4.11: Schedule for FFBP PEs processing one range line on multiple subimages

four times longer than before. This is compensated by the four lines merged within
this time interval. The distributed merging has two advantages compared to the
collaborative merging. First, raw data is shared on the bus, for the given example
the read operations are reduced from 208 M (Mega) to 52 M (Mega). The second
advantage is the higher bus utilization as part of the merged data can already be sent
during merging, only one additional cycle is required to transmit the final samples of
the entire subimage. The disadvantage of the strategy shows whenever the amount
of generated siblings per stage is smaller than the amount of available PEs. This
would result in modules in idle status during a full stage.

Both strategies require full line buffers to merge (accumulate) the input lines. Due
to the given advantages, the FFBP PEs are parallelized to perform distributed merging
4.11. As line merging is performed in range direction, this strategy is only possible
with configurations (e) or (f). This delivers one more argument for configuration
@ which is already the preferred configuration to reduce overall busload.

4.5.2.3 Inter loop streaming on module level

So far, the GBP and FFBP modules were discussed separately. For the processing of
the GBP, all discussed aspects are valid for the design. For processing the FFBP this
is different, as both modules are required in combination to generate a FFBP SAR
image. This aspect will be discussed and raises questions about, how the modules
should be synchronized. Two basic opposing strategies exist.

The first strategy is successive processing. The entire set of stages would need to
be processed until all leaf nodes (subimages) are generated and stored in the RAM.
Then the GBP can start loading each subimage from the RAM, process the data and
transfer it back to memory. This would ease the synchronization and reduce bus
conflicts. But one of the two modules would be stalled for the full runtime of the

78

4.5 Analysis of streaming capabilities

other module. Resulting in a low hardware utilization rate. This obviously results in
the longest possible runtime as long as a simultaneous run would not inflict so many
bus hazards, that a massive overhead of stalls is generated. Finally, this strategy
causes a peak in memory consumption, as all subimages need to be held in memory
before the GBP starts processing.

The second strategy is interleaved processing. To start the GBP, only one subimage
of the final FFBP stage is required to be fully stored in memory. To start as early as
possible with interleaved processing, the FFBP is set to process only one branch of
the processing tree until the first leaf node is reached. This is free both modules, to
process at the same time, as long as input data is available for both modules and
the bus allows to transfer output data back to memory. Due to the data greedy
behavior of both modules either the shared memory or the limited bus interface will
reach its limitations at certain points. Then one of the modules is stalled because
another module is loading or transferring data from /to memory. In case of slow FFBP
processing, the GBP will also stall due to insufficient subimage data. As a result, the
strategy requires a fine balancing of available hardware resources. In case of good
balancing and synchronization, this strategy allows for the shortest possible runtime
due to maximum resource and bus utilization. Additionally, the required memory to
store subimages is kept on a stable level, because of the branch processing. This is
shown in Fig. 4.10.

The shown example in Fig. 4.10 is optimal for a FFBP module containing 4 PEs.
The configuration runs three iterations s =3 (stage 1, 2 and 3). Each iteration
(stage) has a individual configuration for merging apertures (aperture factorization)
fapt[2,4,2], and a individual configuration for the amount of subimages that are
spawned (image factorization) from the image in the previous stage fy,; [4,2,2]. Stage
0 represents the full raw data as it was received from the SAR system (containing 32
range lines in azimuth direction). This stage contains the root node and serves as the
parent node for all siblings in stage 1 (1,1; 1,2; 1,3; 1,4). In stage 1 four subimages
Ssup =4 will be generated. Since f,,; =2 two apertures get merged to form the new
subapertures for the child nodes in stage 2. The data of the parent node must be
kept in memory until the entire set of siblings for this parent node (stage 2) was
generated. This means, that in case the number of PEs is less than the number of
siblings (subimages) spawning from one parent, the PEs need to process the data
of the parent node multiple times. In case an intermediate parent node is removed
from memory before all siblings nodes are processed, a redundant stage 1 run for this
parent node is necessary. In the case of too few available memory, this can become a
necessary action. Depending on the configuration of the FFBP and how the tree is
processed (walked), this can create vast amounts of intermediate data. For example
when each subimage in each stage is processed before the next stage is triggered.
On the other hand, when enough memory is available, the creation of multiple nodes
in the same stage can be beneficial as the data broadcast option to all FFBP PEs is
reducing busload. The concept of bus load reduction applies by sharing data during
the creation of fy,;, child nodes. Whether it is better to hold multiple parent nodes in

79

4 Conceptual hardware design

memory, or to process a parent node multiple times, depends on the system resources.
Therefore, a system-dependent compromise between memory usage and redundancy
must be found.

The shown tree walk of recursive factorization (indicated by the dashed lines)
shows a good solution to keep memory usage stable at the level indicated by the
bar at the right side. One has to keep in mind that raw data sets of common SAR
systems can produce considerable big raw data sets. For example the data set shown
in Fig. 1.1 of Frankfurt airport [6], is a block of 16k - 4k raw data samples resulting
to 64 M (Mega) samples of data. With a sample size of 32 bit one block is roughly
256 MB of data. Creating multiple subimages in the first stage with low aperture
factorization will account to intense memory usage. For the given strategy it is
sufficient to process every intermediate node only once and to keep a maximum
of min(PE, fy;) nodes per stage in memory. After the last iteration is reached,
the GBP is executed, resulting in a first partial image, so that the raw data of all
nodes that are not required for other subimages, can be deleted from memory. All
siblings of the same stage, where the parent data is still present in memory, will be
processed. After processing all child nodes, also the parent node can be deleted from
memory. After a branch is finished the tree is walked recursively until a node with
unprocessed child nodes is found. The whole procedure is repeated until all siblings
are processed by the GBP. The total amount of memory access is of course not
reduced by this (besides the reduction through broadcasting). The combination of
stable memory usage, the use of broadcasting data and the faster processing make
interleaved processing superior to successive processing and is therefore preferred for
hardware implementation.

4.5.3 Intra loop streaming (pipelining)

An important measurement factor for high throughput architectures is the utilization
rate of used resources, meaning how high is the percentage of stall cycles compared
to processing cycles. This was already discussed for PEs on a higher level. Besides
this general concept of a streamlined design on module level (inter loop streaming),
optimized streaming on PE level is imperative for full resource utilization and a fast
design. For comparison, inter loop streaming is based on the concept of parallel PEs
that form of an array processor architecture, to process the same task in parallel on
multiple data samples. This is a homogeneous design, since all PEs are atomic on
module level and result in equal runtime. But inside of a PE the structure breaks down
into buffers and the ARU with several Function Units (FUs) with heterogeneous tasks
and varying runtime. The different FUs cover the diversity of arithmetic operations
of the GBP. High resource utilization is more challenging on a lower level because of
the big gaps in complexity between different FUs, but therefore it can create even
greater speedup if done carefully and gaps are balanced. By implication this could
mean that available resources be rather used to improve constant data flow through

80

4.5 Analysis of streaming capabilities

the PEs (intra loop streaming) then for a higher degree of parallelization (inter loop
streaming) across PEs.

Without optimization, a PE generates a result per clock cycle in one continuous
complex long step. This lowers the throughput of the entire PE as this cycle defines
the clock rate of the PE which is considerably low, due to the long processing of the
complex step. The clock frequency of a PE is defined as in Eq. (4.5).

1
PE

PE.; = (4.5)

Where PE), is the time a PE requires to project one raw data sample on an image
pixel. During this process new raw data samples cannot be feed into the ARU as the
single FUs are directly coupled and depend one the result of the preceding FU. PE),
is the sum of all FUs processing delays FUy,, and resolves to Eq. (4.6).

PEy =FU;, +FUy, +...+FU, (4.6)

pt

The linear processing is very inefficient because only one out of n FUs is active at
once while all other parts are stalled as depicted in Fig. 4.12.

PE processing flow | FU, [FU, | - | FU,_, | FU,, |

idle active idle idle

Function unit time FU, —«+—FU, — ——FU_, ——FU_, 4

Total processing time PE |

pt

Figure 4.12: PE processing time without optimization technique

This is similar to Fig. 4.6, where only the buffer or the ARU can be active at
once. To speed up the processing, buffer resources have to be doubled, to fetch
data while processing, because the ARU depends on the access to the whole buffer
range. In contrast, to speed up the ARU only an insignificant amount of resources is
required by the use of pipelining. The complex process is split up in many shorter
cycles and the process is divided into pipeline stages, which are less complex (down
to atomic level). This is possible albeit all FUs always depend on their preceding FU,
they never require access to all intermediate results of the preceding FU but only
to the final result. To allow for parallel processing of the FUs, additional registers
RE (buffer with the size of one data word) are injected, so that every FU can store
its intermediate result. This allows every FU to act independently and process in

81

4 Conceptual hardware design

parallel to all other FUs. The benefit is a higher throughput for the entire ARU, with
only marginal additional resources for the added registers. This is called pipelining
and is a standard concept in many processors. For a PE this is depicted in Fig. 4.13.

PE processing flow | FU, |RE| FU, [RE|--| FU_, |RE] FU_ . [RE|
Function unit time |_aCFCJl—|—aCFEJz—| [a'C:NUen_zpt t ac':WLeJn,h,t—i
Total processing time PE
Longest FU ' FU
processing time -

Figure 4.13: PE processing with added registers (RE) for pipeline technique

Pipelining can create high speedup values but implies a rather predictable sequence
of instructions, as any jump would create stalls which result in performance drops.
The pseudo-code listed for the backprojection algorithms in the preceding section
fulfill this requirement in perfection, making them an ideal candidate. Pipelining
can be understood as a conveyor belt, where every step of a process is handled by a
different station. In a pipeline, the stages are filled only step by step, since the stages
with the registered and the injected registers (RE) are clock synchronized. As soon as
the pipeline has processed one full cycle and data continues to stream into the PE, all
pipeline stages are busy. PE; is also called the core clock, as it represents the time a
data word requires to pass the entire pipeline. In a pipeline of n stages, a data word
is processed n cycles. This defines the latency for the processing of one data word.
Since the steps are independent, every stage can load a new data word in every cycle.
Data words are then sequentially sent through the entire pipeline. From the moment
a data word has passed the entire pipeline, on average, every cycle one processed
data word drops out of the pipeline. Whereby the slowest stage in the entire pipeline
determines the clock frequency of the PE. Furthermore, the time needed to store the
intermediate result in the register RE is added to the total processing time of every
stage. The final clock frequency of a PE is given by Eq. (4.7).

1 1

PE,.; = =
ref +FUy, + ..+ FUy,) +Rs FUpp

max(FU| (+7)

pt

In case of Fig. 4.13, FU,_,, is the slowest stage and therefore defines FUp, as
all other stages would need to stall until FU,_; has finished processing. This is why
balancing the internal pipeline is not as simple as balancing on PE level, where every
PE requires the same time for processing. On ARU level, a multiplication might be

one stage while the other stage performs an interpolation. The maximum theoretical
speedup PE; of a pipeline is limited to the number of stages if all stages would require

82

4.5 Analysis of streaming capabilities

the same processing time. For k data samples passing the pipeline, which is divided
into n stages, with a cycle time of FU,,, the speedup is given by Eq. (4.8).

PEy -k _ PEyk (48)

PE; =
l’l'FUpp]Jr(k*l)'FUppt (l’l+k*1)'FUppr

Filling the pipeline takes n stages. As soon as the pipeline is filled, the first
data sample has already passed all stages and is processed. The remaining data
samples will be processed after additional kK — 1 steps. The less complex the stages
are, the higher the possible PE clock. To balance the stages and thereby increase the
throughput, pipeline stages can split down to the atomic level. This increases the
maximum possible clock frequency, which of course increases resource consumption.
The advantage in throughput is only diminished when execution hazards occur.
A hazard requires the pipeline to stall or to restart the entire pipeline again. A
non-pipelined processor is basically performing an unconditional restart for every
instruction. With more stages the chances for hazards in the form of control, input
or output dependencies increase. It should, therefore, be adapted to the available
periphery and algorithms to reduce such hazards, as they lower the efficiency of the
entire pipeline.

4.5.3.1 GBP intra loop streaming

Independent of the chosen configuration, the flow of operations in the GBP is fixed
and is localized in the inner loop. The dependency analysis in Section 4.4.1 shows
how to split up this flow into several stages, for pipeline processing in general. The
stages determine which instructions can be parallelized, as the instructions of a subset
do not dependent on each other. To reach the maximum speedup, the possible
degree of parallelization should be exhausted. In the case of the GBP, a pipeline has
mostly benefits besides the marginal additional resources consumption for registers.
Since the algorithm is highly linear, the risk of hazards is only given for the control
dependency. To reduce input dependencies, the chosen configuration should allow
for a split of the outer loop on different PEs, so that data dependencies do not occur
between the data accessed by the PEs. In the case of configuration @ such input
dependencies would already occur with the first level of loop parallelization, due
to the simultaneous access on image pixel by the parallel PEs. To streamline the
process and increase pipeline efficiency, configuration (3) with additional resources
in the form of swap buffers, for raw data and image data, is optimal. This allows for
splitting the outer loop so that every PE can process an isolated image line. Instead
of creating data dependencies on PE level, a broadcast could be implemented, so
that busload even reduces with a growing number of PEs. To optimize the flow,
the three existing types of dependencies (input, control, flow) should be addressed
individually. Two types of dependencies can be resolved directly in the design.

83

4 Conceptual hardware design

Input dependencies, created through the concurrent access on the pixel coordinates
x and y, and the concurrent access on the range distance dr can be directly solved in
hardware. A data word can be sent to an (almost) arbitrary amount of FUs through
direct routing. Any input dependency can be resolved like this with few additional
resources, as long as the passed data word is short enough. This is contrary to GPP
architectures, where the memory architecture, the interface, and the caching strategy
influences if a data word is accessible in parallel.

Control dependencies in the GBP only exist in one case, to decide if the currently
processed image pixel is covered by the echo of the sensor at the current range line
position. A pixel could either be too close to the sensor, so that 8r < ry;, or to
far away so that ryee < Or. If any of the conditions is true, further processing is
pointless since the current echo will not contribute any information to the current
pixel. The consequence would be a pipeline flush which would cause all following
FUs to stop processing for the time a new data word passes the given criteria. Given
the fact that the implemented FUs would turn to idle mode, as they could not be
allocated to another PE, the control dependency decision could be shifted to the
end of the pipeline, to avoid a flush, continue processing and instead to zeroize the
result of the projection at the very end. Since all required data is held in local buffers
the processing would not cause additional busloads. The final image line would be
written back to memory anyway. This would not reduce the number of required
resources to resolve the control dependency, but it would not become obsolete to
invest resources to partly stall the pipeline. Other platforms like GPPs have the
advantage of branch prediction and dynamic resource allocation in order not to
process useless data. Nevertheless, the chances of running into such conditions can
be reduced by a reasonable choice of the image origin, to the data origin. When the
area that is covered by radar echos is smaller then the image area, the question of,
if a pixel was illuminated by the sensor echo, will result in false often. To achieve
a sharp image in all sections, the dimensions of the area covered by sensor echos
should be greater than image dimensions. Both scenarios are depicted in Fig. 4.14.
In case of a smaller echo area, the outer image pixel can be assigned to an echo
sample by a distance r. In case of a bigger echo area, all image pixel can be assigned
to an echo sample.

Flow dependencies are the major constraint for parallel processing of the GBP. They
cannot be resolved but the instruction within one stage described in Section 4.4.1
can be performed in parallel. Further parallelization is only possible in case a second
full-featured pipeline is implemented in a second ARU. This is only applicable in case
the BRAMSs, used to implement line buffers for raw data and image data, offer more
bandwidth than needed by a single ARU. This is discussed further in the GBP chapter.
Nevertheless, the central feature of a pipeline is the increase of throughput through
parallel stages. High throughput asks for a high pipeline frequency PE,r, which is
defined by the longest critical path FU); of all pipeline stages. Simple instructions
like a simple addition mark the lower boundary of a critical path and therefore mark
the upper limit for PE frequency and throughput. For the given pipeline, the more

84

4.5 Analysis of streaming capabilities

roda] | [L [0 echo sample
e il =1l a1 [] image pixel

sensor sensor
position position

Figure 4.14: Overlap of raw data and image grid

complex instructions, like square root or interpolation, mark the upper boundary
and therefore need to be chopped to smaller stages or sub-pipelined, to shorten the
critical path. This process is, of course, limited again due to other flow dependencies.

To efficiently map an instruction on an FPGA, regarding the consumed resources
and the critical path, it is expedient to consider approximations instead of the exact
mathematical solution. To gain an advantage, the approximation should be superior
in speed (degree of parallelization and/or critical path) or resource consumption.
Operations like division and multiplication are of course possible and also common to
implement on FPGAs (some are even specialized on this), but they are always more
consuming in terms of resources and processing time. If an approximation can be
broken down to use mainly very basic operations, like additions and shifts, this is
advantageous, as they can be implemented with few resources and therefore feature
small propagation delay (critical path). For an efficient implementation, suitable
approximations should be discussed for the square root calculation, interpolation,
polar format transform, and complex multiplication.

4.5.3.2 FFBP intra loop streaming

The general mechanisms and benefits of pipelining were already explained for the
GBP. These mechanisms are also applied to the FFBP PE to gain a maximum in clock
frequency and parallelism. Although the flow of operations is mostly fixed in the inner
loops of the three different parts of the FFBP algorithm, the chosen configuration can
reduce certain dependencies. The prior analysis prefers configuration @ for FFBP
implementation due to the given reasons. The dependency analysis in Section 4.4.2
shows how to split up the flow of the three different algorithms parts into several
stages for pipeline processing in general. Since it was already explained in detail in
the Section 4.5.3.1, how certain dependencies can be resolved, this section will not
get into the details of these aspects and only draw a sketch if and how pipelining
should be applied for each part.

85

4 Conceptual hardware design

Based on Algorithm 4.13, the calculation of subimage centers can be split into six
subsets, three for the outer loop instructions and three for the inner loop instructions.
The outer part is only performed once per stage s, wherefore no additional resources
should be invested to speed up processing. The whole inner loop could be parallelized
to compute subimage centers faster if required. As this is only required rarely, this
part might not be parallelized at all. Algorithm 4.13 forms a single subset for inner
and outer loop instructions each. Parallelization should be performed on the outer
loop level to compute subaperture positions faster. But similar to subimage center
computation, it is required rather seldom compared to the core operation of merging
subapertures in Algorithm 4.12. The actual compute-intensive work, in terms of
massive interpolation, to create subimage sample data is performed in this part of
the FFBP. As stated in Section 4.4.2, this can be split into thirteen consecutive
subsets if maximum speedup must be reached. It was also mentioned that a set of
instructions (line 4,5,6,7,11,15,21,22 of Algorithm 4.12) need to be analyzed in more
detail, in order to understand the optimal design for an efficient implementation.
Instructions 21 and 22 are the same as in the GBP. The analysis of these instructions
and possible approximations is presented in Section 5.1. The same applies to the
first instructions until line 16, which address mainly vector operations, like forming
a vector sum or obtaining the scalar product. The basic goal of the instructions
is to find the distance between a specific range cell of the old aperture and the
antenna position of the new subaperture. This is done to find the corresponding
range cell in the old aperture. The calculation is performed, based on the law of
cosine. The entire range calculation (all instruction until the control instruction in
line 16) can be substituted with a approximation (see Section 5.1). A major benefit
of the approximation, besides the simplification, is that the general characteristics of
a SAR setup, allow to generalize the whole computation of range cell-specific range
computation, by dissolving the actual dependency on the range cell position. This
allows moving the entire block of instructions up to line 16 out of the actual loop
construct. The result is that the range value can be processed once for the whole
range line. A comparison between the versions with and without approximation is
shown in Fig. 4.15.

without
approximation‘ MAP |FACT| MAP |FACT| MAP |FACT| MAP |FACTH
with \ MAP |FACT|FACT|FACT|FACT|

approximation
» t

Figure 4.15: Runtime comparison with/without range approximation for a FFBP line

In Fig. 4.15 an exemplary range line with four samples is interpolated or factorized
(FACT). Without approximation, every interpolation would require the range cell to be
mapped (MAP) to the corresponding distance. Compared to the linear interpolation of
one cell, the mapping process requires much more time. With the range approximation,

86

4.5 Analysis of streaming capabilities

the entire range line can be interpolated with the same range value. Since common
range lines lengths in SAR data sets can reach up to multiple thousands of samples,
the saving in processing time is massive. To speed up processing, the pipelines can
be fully separated. As mapping is now a process that is required less often, it can
be merged with the other parts of the FFBP algorithm, which are processed less
often. A compound of steps is formed (subimage center calculation, subaperture
position calculation, range calculation). Because this compound manifests a rather
unbalanced workload when compared to the interpolation part, a method to uncouple
the actual parameter calculation from the interpolation stage should be developed.
One way to do this is a loose coupling over RAM memory as depicted in Fig. 4.16.

mapping [MAP 53, L]MAP S| [MAP S, L] [MAP S L]
f:ﬁ;?rrr';agt o [FACTIFACTIFACTIFACTIFACTIFACTJFACTIFACT]
ff . ;?,;'22202" [FACTIFACTJFACTJFACTFACTIFACTJFACTIFACT]

rattread [] Dn;j: oo OO
RAM write |:| |:| |:| I:l

>t
Figure 4.16: FFBP with separated mapper and factorization for two subimages

The schedule shows the processing of the first line (eight samples in range direction)
of two subimages of the same parent. Before factorization in the according PE can
start, which from now on will be referred to as factorizer, the entire calculations
for both subimages need to be finished in the according PE, which from now will
be referred to as mapper. The mapper loads several constants, position data and
the FFBP configuration from RAM memory. After processing is finished the range
data required from the factorizer is stored into RAM memory. As soon as the sets
for both subimages are processed, both modules can start by loading the range data
and sample data from RAM and start processing. The factorizer will load chunks
of sample data from RAM in equidistant time frames to continue processing. In
between those time frames, the bus might be in an idle state. The mapper can use
these free time-slots to process upcoming range data sets for the upcoming lines.
It is called loose coupling, as the modules of course still depend on a quite linear
schedule, but the time frame is wider and therefore fewer restrictions apply. By
introducing a distributed memory on PE level, which holds all range data sets and
further configuration settings, this principle can be optimized as depicted in Fig. 4.17.

An internal distributed memory is accessed faster and can provide a wider interface
if necessary. As only parameters are stored, it can be smaller by orders of magnitude
when compared to the external RAM. The configuration memory, which from now will
be referred to as config mem, helps to reduce the busload, whereby the development

87

4 Conceptual hardware design

mapping |MAP S, L:|MAP S;,Li| |MAP Sl,LZI |MAP Sz,Lz|

factorization

subimagel
factorization
subimage 2
configuration
memory read
configuration I:l I:T
memory write

ruread I OO0 CO OO0ODCIOOO

[FACTJFACTIFACTIFACTIFACTFACTIFACTIFACT]

/|FACT|FACT|FACT|FACT|FACT|FACT|FACT|FACT|
4

»t

Figure 4.17: FFBP with separated mapper, factorization and configuration memory

of hot spots is reduced. Additionally, bus timing is improved due to less alternating
access patters. With a decoupled setup, the mapper can be implemented in a resource-
saving design, since a slow mapper will not cause any delays for the factorizer, as
long as it is guaranteed that range data sets will be ready on time. Saved resources
might be used to implement more factorizer PEs. But it has to be mentioned that
only a limited amount of factorizer PEs is useful. As the modules are on the same
stage to reduce busload, only max|[f,;] are useful. Depending on the FFBP setup,
it can only be guaranteed that a minimum amount of two factorizer modules are
constantly used.

This results in a setup of two different PEs with separated pipelines, which are
loosely coupled over a distributed memory. The pipeline of the factorizer is shortened
by this to six subsets, corresponding to six stages. The mapper has to be discussed
based on the applied approximation presented in Section 5.1.

88

5 Hardware implementation

The detailed implementation of the concepts discussed in Chapter 4 are explained in
the following. This includes the basic signal processing blocks, which are partly used
for the Global Backprojection (GBP) and the Fast Factorized Backprojection (FFBP)
architecture. Additionally, the concept for the integration of the entire architecture,
in a framework to connect to the outside periphery, is explained. All decisions are
driven by the requirement to combine and fulfill the given constraints at the best
possible rate and to reduce processing time to a minimum, by implementing a highly
efficient and resource exhaustive architecture. The actual implementation can differ
slightly from the conceptual phase as the approximation of the basic signal processing
blocks simplify certain steps.

5.1 Basic dedicated signal processing function units

Besides the basic arithmetic operations, time-domain Synthetic Aperture Radar (SAR)
algorithms rely on three different classes of more costly operations. These operations
include trigonometric functions, interpolation, and complex-valued functions. As the
algorithms mainly based upon these core operations they should be implemented
efficiently. Efficiency primarily means fast and/or resource-saving implementations.
General Purpose Processors (GPPs) perform a great part of operations in single or
double-precision floating-point format. While this format allows for high precision
and high dynamic range due to the adapting decimal point, it is resource (area)
costly. This is because floating-point arithmetic uses fixed-point logic at its core,
but resources are added to manipulate the data word before and after (normalize)
core processing. While implementing operations in floating point is, of course,
possible on Field Programmable Gate Arrays (FPGAs), however, it is more efficient
to implement an operation in fixed-point format. Fixed point operations are also
less resource consuming because FPGA designs can be adjusted to the required
accuracy bitwise. In most cases, it is sufficient enough to represent a result in a
fixed-point number representation also because an algorithm might not even require
an arithmetic operation to be highly precise. To use fixed point instead of floating-
point, the data path in a Function Unit (FU) might have to be adjusted in width.
This also includes the required dynamic range of every step, in order not to truncate
intermediate results unintended. Beside preserving resources, efficiency is also bound
to throughput. Wherefore the FU should allow for parallelism and sub-pipelining.

89

5 Hardware implementation

5.1.1 Range distance approximation

The processing of subapertures for the FFBP algorithm includes the interpolation of
range lines. Each range sample must be interpolated in order to be mapped on the
new range sample position as depicted in Fig. 2.7 of the artificial formed subaperture
which is aligned to the new subimage center ¢. To obtain the actual interpolation
index, the range distance d,; between the sample (range cell) of the old aperture
and the antenna position of the new subaperture must be calculated. This is done
with the help of the law of cosine (Eq. (5.1)), where the length of the third side of a
triangle can be calculated if one knows the lengths of the two remaining sides and

the angle between them:
c=1/a?+b>—2abcos ¢ (5.1)

To simplify the calculation a Taylor series can be used. A Taylor series [78] represents
an arbitrary function as a sum of terms, which are calculated based on values of
the same function derivatives at a single point a. This is an approximation, as a
Taylor series converges only in a certain interval around this point a. The universal
formulation of a Taylor series for f(x) that is differentiable infinitely at a real or
complex number a is a power series and results to Eq. (5.2).
/a 1 a

Tf(x;a):f(a)+f1¥(x7(l)+f27(')()€7(l)2+... (5.2)
A more complex notation is given in Eq. (5.3) where n! denotes the factorial of n
and f"(a) denotes the nth derivative of f.

= £(n) (g
Tf(x;a) = be (4) (x—a)" (5.3)

The higher the order of this power series, the higher the accuracy around point a.
Nonetheless, the power series can be also truncated after any term. The function
rd(dps) (Eq. (5.4)) calculates the range distance with the law of cosine.

rd(dps) = \/dgn +d2, — 2dy5dppn cos ¢ (5.4)

The range distance rd(dys) results to Eq. (5.5) when it is approximated with a Taylor
series truncated after the first term. Instead of the actual calculation of the distance
to the range cell, the range distance function rd is developed around the point of
distance between the old aperture and the new subimage center d,.. The subimage
center is assumed to be the optimal development point, as the error at this point is

90

5.1 Basic dedicated signal processing function units

minimal in average, since it represents the average distance for all range cells in the
subimage.

rd' (dyc)

rd(dys) =~ rd(dpe) + T

(dns — doe) (5.5)
Taking d,c as a development point, the outer function for rd(d,.) is given with
g(x) = /x, while the inner function results to h(x) = d2, +d2, — 2dycdoncos ¢. The
first derivation of the outer function results to g'(x) = 2\1/;, while the first derivation
of the inner function results to /'(x) = 2d,.—2d,,cos . Applying the chain rule
f(x) =g (h(x)) - (x) the first derivation of rd(d,.) results to Eq. (5.6).

2dpe —2dpn cos @
2\/d2, + d2. — 2dpcdon cos @

rd' (doe) = (5.6)

Inserting Eq. (5.6) into Eq. (5.5) results to Eq. (5.7).

2dye —2dpn cos ¢
2 \/dgn + dgc —2dyedon cos @

(dns —doc) (5.7)

1 (dns) 2 \J 43, + A2 — 2dedon cos ¢+

According to the law of cosine, the substitution of d,s with d,. results to the range
distance between the new aperture and the subimage center. This corresponds to
the vector dy. in Algorithm 4.14, wherefore \/dg,,—i-dgc—Zd(,cdoncosqb equals d.
Inserting dy,c in Eq. (5.7) plus cutting out the factor 2 in the fraction, results to a
Taylor approximation for the range distance rd which is developed around the point
doc. The result can be expressed as Eq. (5.8)

doc —doncos ¢

rd(dns) = dpe +)
ne

(dns - doc) (5.8)
Equation (5.8) still contains four vectors and requires the calculation of cos¢. Since
we are in a SAR scenario, it can be assumed that the distance in range rd is by
orders of magnitudes greater then the distance d,, between the old and new antenna
positions. This necessarily means that also all vectors d,,c, dys and d,, are far greater
than d,,. Therefore, d,, can be assumed to tend to zero, which allows for the
simplification of Eq. (5.9)

dpe = dye — dyp cOS @ (5.9)

To prove this behavior, a second Taylor approximation is taken as a proof. For the
second approximation, rd =d,. will stay constant while d,,, will vary and can be set
to 0. This results to Eq. (5.10).

d;w (don = 0)

dnc (don) - dnc(don - 0) + I

(don —0) (5.10)

91

5 Hardware implementation

The first derivation of dyc(don) is given in Eq. (5.11).

_ 2dyn —2dye cos @
22, + d2, — 2dyedoncos §
_ —2dpccos ¢
2/dg
—dpcCcOs ¢
d()C
_ —dpccos ¢
=0
= —cos¢ (5.11)

!
dVlC

(don - 0)

Inserting Eq. (5.11) into Eq. (5.10) results to Eq. (5.12).

—COS
dnc(don) = dnc(don = 0) + T(p (don - 0) (5~12)

With dype = \/d2, +d2. — 2dpcdy, cos ¢ and setting d,, = 0, this results to dye = doc.

Substituting dp. with d,c gives the final results of Eq. (5.13).

—COS
dnc (don) = doc + T(p (don - 0)
=doc — don COS¢ (513)

This proves Eq. (5.9) under the given assumptions and allows to simplify Eq. (5.8)
to the final approximation result given in Eq. (5.14).

d,
rd(dm‘) =dpe + Tm (dm - doc)
nc

=dpc + (dnx - d()C) (5.14)

This is a significant simplification in terms of complexity, as all lines from 4-15 in
Algorithm 4.14 can be replaced with the computation of Eq. (5.14). This can be
performed by simple adders.

5.1.2 Square root and trigonometric functions (CORDIC)

Time-domain-based SAR algorithms require two arithmetic operations in consequence
of the varying distance between the signal source and the projected area. Those two
operations are:

1. Square root calculation

2. Sine and cosine calculation (trigonometrical functions)

92

5.1 Basic dedicated signal processing function units

The square root calculation is required to determine the direct distance of &r
between the sensor and the pixel position. This distance is required to allocate the
corresponding range sample i, of a sensor echo iy to an image pixel (ix,iy). Based on
Or and the phase correction constant pc. (which depends on the radar mid-frequency),
a correction angle @.,r is calculated. This factor is used to adjust the phase and
amplitude signal of the complex-valued range sample. The correction factor can be
interpreted as a complex number with a magnitude of 1 and a phase angle of ¢.
This polar coordinate representation must be transformed to a Cartesian coordinate
representation to perform the raw data phase correction. This transformation delivers
the sine and cosine component of ¢, to form the complex-valued correction factor
/%o according to Euler's formula as given in Eq. (5.15).

o) fcorr — cos(Peorr) + jsin(Peorr) (5.15)

A complex multiplication performs the actual phase correction. The computation of
these functions is usually costly as the used mathematical operations are not designed
for dedicated hardware implementation. Well know methods for the calculation of
the square root are the Babylonian method [79], Bakhshali method [80], Vedic duplex
method [81], Goldschmidt’s algorithm [82] and Taylor series [83]. Common methods
to obtain the sine and cosine are the use of tables. A Taylor series can also be
combined with tables and polynomial or rational approximation such as Chebyshev
[84] or Padé [85]. The disadvantage of implementing such methods in hardware is
the extensive use of costly multiplications and/or the significant amount of required
memory (for table operations).

An alternative for computing both functions exists in the form of an iterative
algorithm named Coordinate Rotation Digital Computer (CORDIC), developed by
Volder in 1959 [86] and extended by Walther in 1971 [87]. This is especially interesting
for devices lacking in multipliers since the algorithm mainly uses addition, subtraction
and shift operations, combined with small lookup tables. The basic algorithm is
based on the principle of iterative vector rotation to transfer polar coordinates (R,9)
to Cartesian coordinates (x,y) (rotation mode) and vice versa (vectoring mode).
Either the input is a vector with magnitude R, which is rotated to reach the angle
@, resulting in x and y, or the input is a vector at x,y and is rotated to the abscissa,
resulting in magnitude R and angle ¢.

But it is not trivial to directly rotate a vector by an arbitrary angle, because of
the values for sine and cosine. Instead of the direct rotation, the idea of CORDIC is
to use predefined angels for the rotation. The angles are precomputed and stored
in a Look Up Table (LUT). Basically, the first angle for rotation is 45°. Following
rotations ideally (but not necessarily) always reduce the rotation by fifty percent.
As this would require multiplications, the set of angles is chosen in a way that the
multiplication can be substituted with a shift to the right (division by two). But the
set of chosen angles must allow for a vector to be rotated by a full quadrant maximum.
The total angle of rotation is then constructed from the sum of small rotations,
whereby each rotation increases the convergence gradually. The direction of rotation

93

5 Hardware implementation

X Yi Zj

| . 5
[<<27] | << 2] c LUT

T =y

v v v MR

N N
ADD/SUB ADD/SUB ADD/SUB
Xj+1 Yi+1 Zit1

Figure 5.1: Block diagram of a single CORDIC unit FU¢o

(clockwise and/or counter-clockwise) is determined by the current vector quadrant.
If the vector drops from quadrant | to quadrant IV, so below the abscissa, rotation
direction is inverted. The CORDIC can realize different operations, depending on
the input and initial values, the chosen coordinate system (circular, hyperbolic or
linear coordinate) and the CORDIC mode (vectoring, rotation). A full overview of
the possible operations is given in [88]. A factor K is required to correct the final
result, which is the only multiplication required in the whole algorithm.

A block diagram of a single Cordic Element (CE) is depicted in Fig. 5.1. Table 5.1
lists how input ports need to be connected to receive the required results on the
output ports. An additional control block is necessary to alter how the CORDIC is
wired to set the appropriate modes and initial values.

A single CE requires a small LUT to store the precomputed angles, three Arithmetic
Logic Units (ALUs) to perform the actual addition or subtraction and two shift register
to manipulate the argument of the previous calculation. The shift registers need to
be able to perform a variable shift depending on iteration count i. The ALUs need

Table 5.1: Required CORDIC operation modes

performed coordinate | selected initial output
operation system mode values values
cos @ xi=1 Xit] = COS Pcorr
sin¢ circular rotation yi=0 Vi1 = SinQeorr
tan ¢ Zi = Peorr Zi+1 =position
cartesian to polar Xi=a X1 = Va2
Va+b2 circular vectoring vi=b Yi+1 =position
tan~!(b/a) zi=0 zi+1 = arctan(b/a)

94

5.1 Basic dedicated signal processing function units

Xp Yo 29
! ¥ !
fe—i i MUX MUX i
REG REG REG
[<<27] | << 27|
1
v l v v
N N /
ADD/SUB ADD/SUB /&
Xi Yi

Figure 5.2: Block diagram of a recursive CORDIC unit FUcog

to be controllable to perform a subtraction or addition depending on the extracted
sign of z;. To perform a sequence of iterations, the CE is wired in a recursive manner
as depicted in Fig. 5.2. Only two types of additional hardware elements are required
for the single CE to work in recursion. Three multiplexers (MUX) are required for
flow selection during iterations. The start values are feed to the CORDIC in the
first iteration. For every consecutive iteration, the multiplexer feeds the intermediate
results of the previous iteration into the current iteration. Also, three registers (REG)
are required to hold the intermediate values to wait for the next ALU cycle to begin.
One CE in a loop only allows for a throughput of one result every i cycles. Since a
CE only consumes few resources it is therefore attractive to implement the module
in a pipeline as shown in Fig. 5.3.

In a pipelined CORDIC implementation with i CEs, a initial latency of i cycles exist
for the first result. After i cycles, one result per cycle is processed on average. The
resource consumption of a recursive CE does not multiply with i for the pipelined
version. The LUT is only required once (hard-wired to every stage) and shift operations
do not need to be variable (hard-wired shift). Multiplexers are not required at all.

As an example for the quality of a CORDIC the error for sine and cosine approxima-
tion is evaluated in Fig. 5.4. As already shown in [73], the absolute error &4, (which
represents the worst-case during processing) decreases with the number of iterations
and the bit width of the data word width dw,, (wordlength). The trade-off between
approximation precision and resource consumption leads to an operation point for
the final hardware configuration. As presented in [89], each iteration roughly allows
for an additional accuracy of 1 bit in the fraction part. With a wordlength of 16
bit and 12 iterations, the error level is almost dropping below 1073 and is therefore
comparable with polynomial approximation.

95

5 Hardware implementation

Xo Yo Zp
=
N
| << 29 | << 29 = LUT [0]
T ()}
v v v LR
N N
ADD/SUB ADD/SUB ADD/SUB
REG REG REG
NH
| << 21| | << 21| = LUT[1]
T =y
v v v MR

N N
ADD/SUB W ADD/SUB

< 5
[<<27] |<<I 27| g’ LUTILi]
v v v MR
N N
ADD/SUB ADD/SUB ADD/SUB
Xj+1 Yi+1 Zit1

Figure 5.3: Block diagram of a pipelined CORDIC unit FUcop

A pipelined CE with the required accuracy would result in: 12-3- ALUs, 12-3-
registers, one LUT with at depth of 12 words, and a considerable amount of resources
for routing. The fact that multiple iterations increase the delay is not relevant as the
entire processing of the GBP follows a pipelined layout with higher initial latency.
Besides this, every other method would result in long latency processing as well, since
multiplications usually consume more time then additions/subtractions and shifts.
Since the longest critical path defines the clock frequency of the entire design, it is
even preferable to implement many simple elements than a few complex elements.
This is important when registers are injected to form a pipeline. As the critical
path is defined by the most complex element, simple elements allow for a significant
shortening of the critical path of the single element, which directly translates into
an increased throughput. Additionally, the CORDIC allows for direct computation
of the euclidean magnitude vaZ + b2, which is required for the three-dimensional
distance calculation of 8r. All these pros, make the CORDIC a preferable algorithm
for a dedicated SAR implementation.

96

5.1 Basic dedicated signal processing function units

1,0E+00 -85y

Ra SSSEsEsEs

1,0E-01 \‘{'_' ‘ = ‘ ‘ e
8 10E-02 - -\i‘“,—‘,%s___’_ ,ﬁr‘_‘__,\,_ﬁﬁ ==
c T
g 1,0E-03 \‘QL [(" =l -#-4 jterations
b5 r * -+-8 iterations
T 1,0E-04 ~ - -#-12 iterations
§] + --16 iterations
% 1,0E-05 —-20 iterations
g o—s 24 iterations
s 1,0E-06 28 iterations

32 iterations
1,0E-07 =
1,0E-08

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
wordlength

Figure 5.4: Evaluation of CORDIC error for sine and cosine [73]

5.1.3 Interpolation

In the GBP algorithm, the distance vector dr between the image pixel (x,y) and
the antenna position (iy;) defines the position of the range sample i, which covers
the current image pixel. Most likely, the distance vector will not align with the
equidistant sample positions of the range samples. Interpolation is required to create
this off-grid (intermediate) echo data. For the FFBP algorithm a similar problem
exists due to the off-grid antenna positions created for the subapertures. As the raw
data is the base for a sharp image, the interpolation method must sustain a certain
quality, to not create errors which would amplify during processing.

5.1.3.1 Evaluation of interpolation methods

Literature provides a broad set of interpolation methods which differ in complexity
and accuracy. Starting from the simple nearest neighbor and linear interpolation
(curve fitting among limited spatial points), up to complex polynomial interpolation
(finding the polynomial of the lowest possible degree that passes through all points).
The interpolation method must also fit to the data that is interpolated. According
to [20] a common technique to interpolate the band-limited SAR data, is by the use
of ideal low pass filters (also called sinc filters). A sinc filter removes all frequency
components above a given cutoff frequency, without affecting lower frequencies. The
name originates from the impulse response in the form of a sinc function in the
time-domain, while its frequency response is a rectangular function. This behavior
can only be approximated, as the ideal version has an infinite impulse response. As a

97

5 Hardware implementation

consequence, the sinc filter kernel is often tapered (windowed) when implemented.
One way to approximate a sinc filter is by Finite Impulse Response (FIR) filters which
use linear convolution after Eq. (5.16).

T—-1
v = Y k] -xln—K] (5.16)
k=0

A T tap wide window h[k] slides across the incoming data x[n], creating a sum
of k weighted input samples per output sample y[n]. The weighting function is
characterized by the number of taps and the coefficients ¢ used for each tap. The
amount of ¢ coefficients affects the slew rate of the filter. They are precomputed
and stored in a LUT for direct access. For interpolation, these coefficients need to
be ordered in S —1 separate sets, where every set represents a sub-sample position
between two discrete samples. The number of taps and sets form a trade-off condition.
This condition must be evaluated based on the interpolation quality and resource
consumption. While more sets increase the amount of required LUTs, more taps
increase the required amount of resources for Multiply-Accumulate (MAC) operations
and LUTs. The final amount of LUTs results from the product of taps T and S.

The quality of different sinc setups was already evaluated in [90] based on f. = f’"—;{“
Where fqx is the maximum frequency of the radar signal bandwidth B, and fy is
the Nyquist frequency for this signal. f, > 1 represents a undersampled radar signal,
while f, <1 represents oversampling. The evaluation compares sinc, nearest neighbor
and linear interpolation in floating-point format. It shows, that a sinc filter with
a setup of T'=8,16,32 and S = 64 deliver good results (mean error) for all ratios
fr < 1. Within the same range, simple interpolation methods lack in quality due to
less oversampling when f; is approaching 1. Since a setup with 7 = 8 shows good
results, it is preferred in the following study, as this will reduce the required memory
depth (7' -S). Additionally f; is assumed to be close to 1, as this represents a realistic
SAR system setup.

To justify the use of the sinc interpolation, the sinc setup of (T = 8;S = 64)
is compared in Fig. 5.5 with more complex methods of spline interpolation and
ideal sinc interpolation. The evaluation is based on a random simulated and time-
discrete sampled baseband limited waveform. As a comparison to [90], linear and
nearest-neighbor interpolation results are compared as well. Every interpolation is
performed in floating-point number format and is based on a set of 16 sampling
points. The chosen metric for quality evaluation is the Root Mean Square (RMS).
The relative error ye,,, is defined as absolute difference of the interpolated sample
y to the ideally interpolated sample ref divided by the maximum absolute value
of the ideally-interpolated signal ref. The values given in dB are calculated as

20-logyg (yerrm)-

98

5.1 Basic dedicated signal processing function units

Jeusis pa1lwi| pueq WOpUEJ uo spoylsw uoijejodiaiul jo uonenjeay :G'G ainSi4

ST ot S 0
(399Y) 8=1 ONISA) —— !
auyds
- Jeaur { f -
J0QIBION I521eaN —— f | |
m | i !
= | ,, \ | \ F , J/ A .
fh / i r\ \ 1 / | i
NN _ (\ o= ZANEANY N
r\ S /l-\ A\~ //m\l
| |
Jeubis 22ua19)a.1 JO SWY 03 dAI3R|24 poylaw uonejodiajuy 4ad 10419 Injosqy
ST 0T S 0
- T T
pajduwes
(adua1a2y) [lewndo
(129y) 8=1 DNISA) ——

= auyds

Jeaun) ——
J0qIYBIaN 151RaN

diaju|

wouy

08~

09-

ov-

ap ui (a1)sw / [jou-Al

€0

s|eubis (x)A

99

5 Hardware implementation

Table 5.2: Average, median, maximum error rates for interpolation methods in dB

interpolation average error | median error | maximum error
method (setup) in dB in dB in dB
nearest neighbor -21.24 -24.90 -3.28
linear -24.83 -28.04 -10.65
spline -31.52 -35.21 -11.80
ideal sinc -57.27 -65.49 -26.80
sinc (T=32;5=64) -44.77 -49.93 -27.17
sinc (T=16;5=64) -42.26 -44.62 -25.16
sinc (T=8;5=64) -38.11 -41.35 -20.01
sinc (T=32;5=32) -40.38 -42.99 -25.69
sinc (T=16;5=32) -39.08 -41.31 -23.37
sinc (T=8;5=32) -36.32 -38.71 -19.71
sinc (T=32;5S=16) -37.08 -39.89 -22.69
sinc (T=16;5=16) -36.29 -38.68 -22.47
sinc (T=8;5=16) -34.43 -36.40 -20.07

The evaluation confirms that linear and nearest-neighbor interpolation is not
applicable for SAR echo data. The main result is that on average, a more complex
(resource costly) spline interpolation is not superior to a sinc interpolation. While the
spline interpolation tends to undershoot, the sinc interpolation tends to overshoot.
The relative error Y., for the spline and the sinc interpolation are comparable.
Often the relative error for sinc interpolation is even below the relative error for spline
interpolation. Since the results in [90] only compare setups with S =64, Table 5.2
lists the values for all permutations of sinc setups for T = 8,16,32 and S =16,32,64
as well as all other mentioned interpolation methods.

The results in Table 5.2 confirm, that reducing the sets S can be compensated by
increasing the taps T and vice versa. Additionally, the results show, that although a
sinc setup of T =8; § = 16 shows the lowest performance between all sinc permu-
tations, the results of this configurations are still comparable with the performance
of spline interpolation. As this setup consumes the fewest resources between all
permutations, it is preferred for implementation. To be able to adapt to different
SAR signals, the implemented interpolation Processing Element (PE) should allow

100

5.1 Basic dedicated signal processing function units

the adjustment of either the filter behavior (by changing the number of taps) or the
quantization error for sub-sample positions (by changing the number of sets). As
both parameters adjust the quality, while changing S only affects the memory depth,
this parameter is selected to be variable in the PE.

All presented results base on filter coefficients ¢ € S formatted in floating-point
number representation. This allows for high precision and wide dynamic range. But
since fixed-point number format is used for PE implementation, an evaluation of
the required fixed-point data width for coefficient quantization is mandatory. This
gap from floating to fixed-point is closed in [90]. The results show that reducing
the quantization width to 14 bit has only a marginal impact on the interpolation
quality and can pin general keep up to the floating-point number representation. A
further reduction would reduce memory depth but also reduce interpolation quality
noticeably. Based on all presented results, a filter setup of 8 taps (7') and 16 sets (S)
with a coefficient quantization of ¢,, = 14 bit is chosen for the final interpolation PE
implementation.

5.1.3.2 Implementation of interpolation

The preferred configuration (T =8, S =16, g,, = 14) for the interpolation unit FUjyrp
is depicted in Fig. 5.6. The unit is designed to process one interpolation per clock
cycle in a pipelined manner, to reduce the critical path and increase throughput. This
is the most complex unit between the basic signal processing blocks, which shows the
longest latency from input to output, as it requires to be split into many stages by
registers. As already explained in [53], the unit FUjyrp splits the sample into a real
and imaginary part which are processed on two separate unit cores. The unit receives
two data streams while sending (pumping) two data streams at the same time.

1. IN 1: real valued interpolation position data to both cores
2. OUT 1: real valued block address data for line buffers
3. IN 2: complex valued sensor data (Re;Im): Re to corel, Im to core2

4. OUT 2: complex valued sensor data (Re;Im): Re from corel, Im from core2

The unit receives (IN 1) a real-valued stream of interpolation positions (Dl;4,),
each composed of an integer and a fractional part [int,frac]. The int part of Dl
is the base to determine the actual read position DOy, for the line buffers. For
interpolation, a block position calculation unit shifts the int part, to load also
neighboring samples. The frac part is the base to determine the correct set of
coefficients for sub-sample interpolation. The generated read address DO,4y, is
applied (OUT 1) to the line buffers which are located outside the interpolation
unit (one new address each clock cycle). Interpolation with ¢ taps, requires t — 1
neighboring samples. The set of # complex-valued (Re,Im) samples is streamed (IN 2)
from the N,; samples wide line buffers. The data is split upon the two cores, the

101

5 Hardware implementation

IN 2

REG

<

OouT1 E
DQaddr] E
addr+1 . '
R) H

MR ! [RE
REGH——+

E F W ¥ -~ F W ¥ -~ F W ¥ -~
Im |coeff. ROM| | [coeff. ROM| -+ | [coeff. ROM|

ouT 2 Y Y
&4 Adder tree in 3 stages (3 ADD + 7 REG) |

Figure 5.6: Block diagram of interpolation unit FUjnTp

real part Re is streamed to corel, the imaginary part Im part is streamed to core2.
The final interpolated sample (Re,Im) is merged from the two separate interpolation
cores. The interpolated sample (one per clock cycle) is streamed (OUT 2) to the
functional unit for complex multiplication.

Since an interpolation index DI, depends on different geometrical parameters,
any position within a range lane can be addressed. To ensure one interpolation per
clock cycle, the line buffers need to contain the entire range line with N, samples,
before the first interpolation is triggered. The line buffers outside the interpolation
unit are assembled of Block Random Access Memorys (BRAMs). Each BRAMs can
store up to 36 Kbit and allows for a 36 bit wide output interface. As the data word
width for samples is 32 bits, only 32 of the 36 bit of the output interface are relevant.
This allows to store and load 1024 -32 bit samples in each BRAM. To establish a
wide interface to the line buffers (to fetch all neighbor samples for interpolation in a
single clock cycle), the interface of the line buffers has to be t samples wide. This
results to a r-32 bit = 256 bit wide interface, wherefore ¢ parallel BRAMs each with
a 32 bit interface need to be instantiated in parallel. Due to the limited interface of
one sample per BRAM, the vector of t incoming samples must be stored interlaced
inside the line buffer. This causes, that each sample from the linear stream of ¢
samples, is stored in a different BRAM as shown in Fig. 5.7. This allows for parallel
access to t samples at once, resulting in a 256 bit wide interface. Increasing the
width has the disadvantage of reducing the address space by the factor ¢ to w.
Therefore, only discrete blocks, aligned to multiples of samples, can be addressed.

102

5.1 Basic dedicated signal processing function units

RAM

BRAM4 BRAMs || BRAMs || BRAM7 || BRAMs

y

[213]4fc]el7I8]oli0l11f12]33]14]15]16]

Fle

512 bit wide Data Vector from Line Buffer

Figure 5.7: Interlaced sample storage in line buffers for parallel 512 bit access

But unaligned addressing of samples is necessary, as the ¢ consecutive samples might
overlap a block address. This is solved by the concatenation of two adjacent blocks,
resulting in a 2-¢ sample vector loaded from the line buffers, encapsulating the ¢
samples as shown in Fig. 5.7. The mentioned setup of the BRAM interfaces only
offers a t-32 bit =256 bit access. But the BRAMs can also be instantiated as true
dual-port memory. A true dual-port setup allows doubling the interface width to 72
instead of 36 bit. This enables for reading two blocks (each 256 = 2! bit wide) from
the line buffers simultaneously, resulting in a 512 bit wide interface.

The address calculation block generates the two aligned block addresses DO,
for accessing the line buffers. Address calculation is based on the integer part int of
the sample index DI;;,. The int part represent the middle address of the 27 linear
samples. Subtracting |7/2] from the int value, results to the address of the first
sample that is required for interpolation. Since the address can be unaligned with the
block addresses, a division with a remainder with the sample block size ¢ is applied,
which results in the first block address DO, 4. The remainder is stored as an of fset
value to extract the start position within the 2 -7 wide vector. As this is a division

103

5 Hardware implementation

by the power of two, it can be realized by a simple right shift by log,(#) bit. The
second block address is just the next linear address to obtain two linear blocks from
the line buffers.

The two blocks (DOy44r, DOyyar+1) form a data vector DIy, of 512 bit. The
vector is read from the line buffers at once and is divided into a real Re and an
imaginary part Im. Both parts are streamed separately to both cores. The samples
needed for interpolation are selected by ¢ parallel multiplexers (MUX) from the 512
bit and fed into r multipliers. Although the received data vector is 2-7 samples
wide, the multiplexer can be reduced to t: 1 instead of 2¢: 1. This is possible
because at least the first sample must be located within the first block of the vector
(DOygar+of fset), so one out of ¢ position. Every sample requires the same selection
window length, only the of fset value is increased by 1 for every consecutive sample.
Every sample is assigned to its correct coefficient for multiplication in each core. For
a correct assignment, the frac part of DIy = [int, frac] is passed to another set of
multiplexer in each core. One out of s polyphase subsets of precomputed coefficients
is selected from the Read Only Memorys (ROMs). The amount of subset influences
the quantization precision and therefore controls how accurate the frac part can
be mapped to the subsets. This mapping is done by rounding the frac part to the
closest power of two of log, s bits. Based on this mapping, the ¢ multiplexer pick
one out of s sets (s: 1) which are then multiplied with the corresponding samples.
All Re products and Im products are summed up separately in each core. Instead of
the incremental summation of all products, an adder tree is implemented. The adder
tree contains ¢ — 1 adder and is divided in log, ¢ stages. The tree consumes the same
amount of resources as a incremental summation (when pipelined), but allows for
a simultaneous processing of each product. This adds additional 1 — 1 registers in
the DI, path in order to delay every product for a correct timing for incremental
summation. The same applies to the of fset path and fraction path. The results of
the two cores are then merged to a complex number and pumped outside (DOj44)
for further processing.

The total amount of resources for each core sum up to, t+ ALUs for multiplication,
t —1 ALUs for the adder tree, 2 -t multiplexer for data and coefficient selection, ¢
ROMs each ¢, -s bit in size. Additional resources for routing all signals and the
address calculation unit need to be added. By adding (r — 1) registers for the adder
tree, t registers for the MUL operations and 4 registers for streaming, a pipeline
implementation is achieved. By this, the critical path of the entire module is reduced
to the time needed for multiplication, as it is the time dominant part.

5.1.4 Complex multiplication

To manipulate complex valued SAR data, complex multiplication is required for
the phase correction of Radio Detection And Ranging (Radar) echos, in order to
coherently sum up location invariant echos in one spot. This is a key element in

104

5.1 Basic dedicated signal processing function units

processing SAR data, as through this correction, it is possible to generate a focused
from unfocussed SAR. Since a complex multiplication is a costly function, it has to
be discussed how this operation can be implemented efficiently. A complex number z
is expressed by a real and imaginary part z = Re+ jIm. The multiplication of two
complex numbers, a+ jb and ¢+ jd is defined by Eq. (5.17).

21-22 = Re+ jIm = (a+ jb)(c+ jd)
= (ac—bd) + j(be+ad)
=[a(c+d)—d(a+D)]+ jlc(b—a)+a(c+d)] (5.17)

According to [91] one can calculate the intermediate values k1, k2 and &3 to:

kl =a(c+d)
k2 =d(a+b)
k3=c(b—a) (5.18)

Using the intermediate values from Eq. (5.18), the real part Re and the imaginary
part jIm can now be expressed to:

Re =kl —k2
Im =kl 43 (5.19)

An imaginary number can now be expressed to:

Re+ jIm = (k1 —k2) + j(kl +k3)
=[a(c+d)—d(a+Db)]+ jlalc+d)+c(b—a)] (5.20)

The two formulations of a complex multiplication can now be compared for a dedicated
implementation. The direct formulation Eq. (5.17) requires four multiplications
(MUL) and three additions/subtractions (ADD/SUB) in total to obtain Re and Im.
Equation (5.20) requires three multiplications (MUL) and five additions/subtractions
(ADD/SUB). This is because the intermediate-term k1 is used twice, but must be
computed only once. In the case of pipelining, nine registers are added to the indirect
version (3M;5AS) while only four registers are required for the direct version (4M;2AS).
The two block diagrams in Fig. 5.8 show how the two alternatives (4M;2AS) and
(3M;5AS) can be transferred to a dedicated hardware unit FUcy.

The decision between the two alternative implementations is based on resource
consumption and performance. In terms of latency, the direct implementation
(4M;2AS) is the better alternative, as processing requires only two consecutive
arithmetic blocks instead of three. Without pipelining the direct implementation
would also generate higher throughput rates as it has a shorter critical path. This
advantage is nullified in case of pipelining the implementations in two stages for
(4M;2AS) and three stages for (3M;5AS). (4M;2AS) still is advantageous in terms
of initial latency and register consumption, but the critical path is now reduced to

105

5 Hardware implementation

b d C b a
' |
v A4 \4
MUL abp/ [\abp/ | \sUB
Stage 1
y
REG REG][REG|[REG|[REG|[REG]|[REG
k1 k2 k3
Stage 2
Re Im REG REG REG
Stage 3 \sUB/ \ABD/
Pipeline Re Im

Figure 5.8: Block diagram of complex multiplication units FUcyy in different imple-
mentation with (4M;5AS) left and (3M;5AS) right

the MUL stage for both implementations. Passing through the stages, the data path
will increase in width, based on the performed arithmetic operation. This influences
either the critical path or the required resources, or even both. While the number of
stages differs, both alternatives have a similar positioning of MUL and ADD/SUB
operations. Therefore, the arithmetic blocks of MUL are assumed to have a similar
critical path and resource consumption in relation to its pipeline stage. This results
in the same critical path length for both implementations, as they are defined by the
most complex block in the pipeline (MUL). A decision is therefore based on resource
consumption. Although (4M;2AS) requires fewer arithmetic blocks, (3M;5AS) is
picked for implementation. This is based on the considerations, that ADD/SUB
operations can also be mapped to logic elements (LUT) instead of Digital Signal
Processor (DSP) slices. This allows for an additional degree of freedom during the
synthesis process and widens the range of FPGAs for implementation.

5.2 Dedicated GBP implementation

Several possibilities exist to implement the GBP in hardware. To reach maximum
performance, the processing has to follow the already described concepts of pipelining
(intra line) and parallelization (inter line). Due to the high regularity of the algorithm
and the freedom to compute all Pulse to Pixel Projection (PPP) in any order, the
architectural concept is optimized for memory management, scalability, and platform

106

5.2 Dedicated GBP implementation

versatility. The concept for the GBP PE implementation is described in Section 5.2.1.
Additionally, to the GBP core, a wrapping structure is required to control the core,
the overall concept is described in Section 5.2.2.

5.2.1 GBP PE

A trivial approach to implement the GBP is to take one rangeline (the echoes of one
pulse) and project it to all pixels. To be efficient with this approach, the whole image
must be present in fast memory, due to the vast number of read and write access to
the output image memory. This has been solved for CT in [76] by alternately using
two dedicated static Random Access Memorys (RAMs) as accumulation memory.
This is not possible for FPGAs, as the internal memory is too small to hold the whole
image data at once. The here described architecture always generates one complete
image line I, of the final image I[iy,iy] at a time, by looping over all pulses N,;. In
the case of only one PE, every line will be processed consecutively by the PE. In case
of p multiple PEs the lines are divided equally among all available PEs.

The concrete strategies to enable constant streaming of data were discussed in the
previous chapters. The architecture for the time and resource costly functions were
also described in the form of different FUs for complex multiplication, interpolation,
square root calculation, and Euler transformation. All other operations during
GBP processing can be covered by standard elements. All elements need to be
interconnected in order to form a GBP PE. This PE should be flexible to allow for
different rangeline lengths. Furthermore the PE should allow for inter loop streaming
as depicted in Fig. 4.5, so that multiple PEs can utilize every FPGA.

The architecture for the GBP PE is depicted in Fig. 5.9. A PE is connected to a
control unit, which is responsible for generating the control parameters of the internal
loop. This includes the splitting of such parameters to several instantiated GBP PEs
if existing. A connection to the RAM is provided over a bus that can transmit k
data words per clock cycle. The proposed architecture reduces the bus load through
internal buffers. Also, as already described, the busload is reduced by the factor p
which represents the amount of parallel GBP PEs. Nevertheless, a constant stream
of data is required from the RAM, including trajectory data, height information of
the terrain (Z), constants and mostly raw data S. Of course, data is not only loaded
from the RAM, but a fully processed image line is also transferred back as soon as
the bus allows for a complete transfer.

Due to the parallel operation of GBP PEs, and the fact that RAM can only be
accessed by one PE at once, every GBP PE is designed to be able to stall at any point
during processing. Internal buffers with the size of one full range line are instantiated
to avoid stalls. Holding the entire range line shifts the massive read access to the
internal BRAMs of the FPGA, while write access to external memory is reduced to
the minimum of one image size. This reduces the busload to the initial load of the
line itself. To additionally cancel the waiting period for the initial load, the buffer is

107

5 Hardware implementation

Position (trajectory) data

Z[x,y]

tz tx ty

Radar data

Image data

control/geometry unit

OX iazi

Ix

o

J

Buffer w.

Figure 5.9: Block diagram of GBP PE

o
) RE REG REG i
© [REG : REG| 32bit
s FUcorp frange FUINT
£ OV 2o Dldata EMUX
—>"° DOdatal
> c=va’+b? sinc(x)
\4
MU »|FIFO| g
2 [REG] [REG] [REG] i [REG][REG]
a r N
3 FUcop FUcop s [FUcm
) Qeorr
S 20 »|zo Im a,b
Seom
.m Xo XM .MV..VxQ xmu.VE — c,d z ’ I
g yo >y
g i Remcosto o
S
£
s1 2 , .S3 . ., .S4 ., S5 S6 S7 ., .88.., S9
' ' " Pipeline ' ' '

108

5.2 Dedicated GBP implementation

implemented in pairs, to form a swap buffer (buffer A+B). This allows to load the
range line az+1 in advance into the background buffer, while the PE is processing
the data from range line az in the foreground buffer. As soon as line az was projected
on image line y, the buffers are switched from A to B (foreground to background) or
vice versa. This allows for constant processing of raw data, as long as the processing
time PE,; is smaller then the line load time PEj; to load one full range line from
RAM. The same concept is used to hold intermediate results. A full image line is
held in a foreground buffer, cutting all read and write accesses to RAM, besides
the final transmission of the processed image line. To ensure access to a buffer for
processing the next image line, the foreground buffer is switched to the background
buffer. The data can then be transmitted to the main memory, as soon as the bus is
free. Since all az range lines need to be loaded completely to generate one image
line, the raw data buffers are switched N,; times more often than image line buffers.

The whole PE follows a pipeline concept (intra line streaming) to gain maximum
throughput. The pipeline stages on PE level are indicated in Fig. 5.9 (S1 - S9). This
does not include the sub pipeline stage (indicated grey) of the more complex FUs,
wherefore they need to be looked up in the preceding sections. In contrast to the
theoretical considerations (11 pipeline stages), the total amount of stages results to
9. This is the result of an optimization of control dependencies. It is not evaluated if
the current distance is within the actual range line limits. Instead, the processing
is continued, as the resources are available anyway. Outliers will try to access data
that is not available in the range line buffer, which will simply result in zero. Another
reduction is the result of a mathematical approximation in the form of CORDIC
modules. The CORDIC directly processes the differential vector in fewer steps.

The core operation of a single PPP starts by calculating the distance from the
antenna position (including motion deviations) to the ground point (pixel) position
Or in the first four stages. The ground position (pixel position x and y) is generated
in stage S1 by the loop values iy and iy using start (0) and increment values (6x,0y).
In S2 three subtractors calculate the difference to each component of the current
antenna position (#,t,,t;) based on x and y and the height value Z[x,y]. The third
and fourth stage complete the calculation with two CORDIC FU¢gp units by directly
computing the differential vector norm 6r. The CORDIC unit FUcop is seen as one
pipeline stage, while it is actually sub pipelines as described in Section 5.1.2. This
adds more pipeline stages which are actually not listed but indicated as small grey
dashes on the pipeline bar. To sync the input values for the CORDIC in S4, the path
for r; is buffered with a First In — First Out (FIFO) buffer.

After stage S4 the path splits. The upper path is the interpolation path. To obtain
the actual interpolation position from the range distance 8r, the distance ry;, to
the first range sample is subtracted in stage S5 resulting in rygg.. This value must
be divided by the constant distance 6rg between range cells, to obtain the actual
interpolation position r,;; in the range line. The division corresponds to multiplication
with the reciprocal of 6rg in stage S6. The real-valued distance is fed into the sub
pipelined interpolation unit FUpyr in stage S7, which computes the interpolated

109

5 Hardware implementation

but not yet phase-corrected raw data sample. The lower path generates the phase
correction angle @, by multiplication with the phase correction constant p.. in
stage S5. The phase correction value is constant over the entire image, wherefore no
subtraction of the r,,;, is necessary. In stage S6 another instance of FUcp is used
to approximate the cosine (Re) and sine (Im) values of .o as the complex phase
correction factor.

Upper and lower path unite again in stage S8 for complex multiplication in FU¢y,.
Due to the different operations, both data streams feature a different latency and
must be synchronized to generate a correct result. A handshake mechanism with
two signals is used to regulate the data flow. A req signal indicates that data is
requested from the preceding stage or memory for the next clock cycle. A val signal
confirms (usually one clock cycle later) that the triggered unit is ready. The reg
val protocol gives every unit one cycle to have the requested data ready. This is
especially important for internal buffer access, as data is only valid one cycle after the
address is requested. In the special case of upper and lower path, the synchronization
is realized through a FIFO memory of dynamic length in the upper interpolation path.
The FIFO length (delay) is set according to the accuracy (iteration depths) of the
CORDIC unit in the phase angle path. The FIFO buffers the interpolated samples
Sint, until FUcop sends a req signal, which is confirmed with a val signal to show that
processing can continue. This and the possible lack of bus bandwidth when writing or
reading data, requires to stall the entire design also just partly to guaranty a flawless
processing scheme under all conditions. From that point, all pipeline stages are
filled and synchronized continuously, allowing for constant processing. The complex
multiplication of S;;; and Scomp is carried out in S9, generating a phase-corrected
and interpolated sample. This stage marks the end of a PPP. N,; - N, PPPs are
required to form one finished image line. To cancel the continuous read and write
operations to the external memory, one of the buffers (selected by the FUcy as
foreground buffer) holds the entire line for in line pixel accumulation (I[x,y] + Sin)-
As this accumulation can lead to overflows of the fixed-point number, the data path
width to the buffers is extend by logs(N,;) bit for the real and imaginary part of a
sample. When the entire line is transferred to the main memory, log,(N,;) bits of
each value are truncated. To not alter the maximum value, a dynamic right shift
by logs(Ny;) bit is performed. This results in truncating the least significant bits,
which corresponds to multiple divisions by factor two. By this, the dynamic range
can be adjusted. The chosen structure of pipelining and path synchronization allows
for easy enhancement of the module to adjust the algorithm.

At this stage, a full image generation takes about N, - N, - N, PPPs (clock cycles)
with a small overhead for pipeline filling and double buffer swapping. Altogether this
concept enables for an exhaustive utilization of available resources, while no special
requirements are imposed on the platform itself or its memory periphery, while all
required hardware units are embedded on the FPGA.

110

5.2 Dedicated GBP implementation

externa
memor

raw data line
> >
| read port header strip off >
7y :‘—:>GBP PE
A : register ==
r/w por D i constants >
. block I
§ position
o] 3 geometry >
© »r
g 5 block »—=>GBP PE
o | > > 2
control * n—5><P
write address control |¢ 1 o
block |e._:
v line selection % <
4 write port [« - T c|™
N I Image line k: GBP PE
vv vy p

Figure 5.10: Block diagram of the control instance of p GBP PEs

5.2.2 GBP control structure

To exploit maximum performance on any FPGA, the GBP PE is instantiated p times.
Each instance of p processes an individual image line at a time. Every instance
iterates synchronously across the raw data lines. Wherefore raw data can be shared
between all p instances. This reduces the number of total read operations by a factor
p when compared to operation with only one PE. Concurrently, the write access rate
is increased by the same factor. The proposed PE has five potential key features:

1. one PPP per clock cycle (after initial latency)

2. the flexible design can handle any arbitrary flight paths

3. the massive shift of slow external read/write operations to fast internal buffers
4. the reduction of external read access by parallelization factor p

5. the reduction of complexity through function approximation

The GBP PE is the core of the FPGA design for fast processing. Nevertheless, a
higher level instance is required to control the PE and to synchronize multiple PEs if
existing. The user space is setting all necessary parameters for this, including image
size, the number of parallel modules p and accuracy parameters. Figure 5.10 shows
this higher instance in a block diagram. The diagram shows a setup of p parallel
GBP PEs.

First of all, it must be noted that no element inside a GBP PE has direct access to
the bus, which is connected directly to the external memory. For simplification, this

111

5 Hardware implementation

was indicated differently in Fig. 5.9, where constants and trajectory data were always
loaded directly from memory. This would inflict a high risk of stalling the pipeline.
Therefore, all user settings and constants (which are universal for all PEs) are stored
in special registers (small local buffers) for a broadcast to all p PEs. The registers
are set before processing starts and can be directly accessed from the outside world
over a special slave port to the external memory. Next, raw data is requested by a
control block (Finite State Machine (FSM)) over a bus master port from external
memory. The control block generates the raw data line addresses. How often a
line is requested is defined by the number of image lines and factor p. Trajectory
parameters are included in each header of a raw data line. The parameters for every
line are stripped off in a geometry block. These parameters are broadcasted to every
PE, as all PEs process the same raw data and therefore require the same parameters.
In case of multiple PEs, the geometry unit additionally calculates all start positions y
for every PE before processing starts. This is necessary as every PE is processing a
different image line. Only in case of one single PE the position can be calculated
inside the PE by constant accumulation. p processed image lines will be available at
the same time in the local PE buffers after N, clock cycles. The control unit sets the
memory address to transfer each line successively to main memory over an additional
master port on the bus. The control unit controls the entire process independently
until all loop parameters are processed.

5.3 Dedicated FMCW implementation

While the GBP is a very accurate algorithm with inherent compensation in case the
recorded trajectory is accurate, it was designed for short pulsed Radar. The use of
Frequency Modulated Continuous Wave (FMCW) systems imposes other restrictions,
so that the start-stop-approximation becomes invalid. In order to deal with this
problem, the GBP architecture in Section 5.2 needs to be modified according to [56].

The difference between pulsed and FMCW Radar is the geometrical offset between
pulse transmission and echo reception. While for pulsed systems, the difference is so
small (due to the short pulse) that it is negligible, for FMCW systems this distance
increases with growing velocity. Since the correct projection of a range line onto
the image is based on the distance Ar between a pixel and antenna position, the
continuous change in distance during one projection results in erroneous projections.
The GBP, with the pseudo-code given in Algorithm 4.1, is modified to correct this
process. The steps required for correction are shown in Algorithm 5.1. Instead of
listing the entire code from Algorithm 4.1, only the loop structure and the modified
lines for correction are shown.

To adapt to motion, the distance is corrected for every range cell (87corrected)
as explained in Section 2.3.3. For the correction, the influence of the platform
velocity during ramp transmission must be considered. For this, the quotient of
Or and Ory must be calculated. Several system constants (ramp-length, velocity,

112

5.3 Dedicated FMCW implementation

Algorithm 5.1: GBP algorithm modified for FMCW Radar after [56]

input : pc. = phase correction constant (47/1)
N, = amount of incoming sensor echos in azimuth
Org = distance between each range cell
Fmin = minimum distance covered by sensor echo
Imax = mMaximum distance covered by sensor echo
S[Nuz,Nyg] = sensor data array
FMCW,pns = pre calculated FMCW constant
Ny = amount of image pixel in x
Ny = amount of image pixel in y
I[Ny, Ny] = initial image array on ground (set to 0)

output: /[N,,N,] = processed image

1 for (i;; =0 to Ny,;—1) do /* iterate over echos in azimuth */
2 for (iy=0to Ny—1)do /x iterate over image pixel in x */
3 for (iy=0to Ny—1) do /* iterate over image pixel in y */
/* correction for FMCW radar */
4 Srcorrected = 6r+FMCVVC(mst * rx/ér
5 if (rmin < 8Tcorrected < rmax) then /% in sensor range? */
6 Trange = OTcorrected — V'min
7 Teell = rrange/srg
8 Pcorr = pCc - OTcorrected
9 Teomp =) Yeorr /* then follows interpolation */
10 Sintliaz Teetl] = im{[iqurcell]aS[iaZvirg]}
11 Scomp = Sint [iazvrc'ell]'rcomp
12 Iix,iy] = I[ix,iy|+Scomp
13 end if
14 end for
15 end for
16 end for

113

5 Hardware implementation

wavelength and cutoff frequencies) are combined in a pre-calculated factor FMCW,yp; .
Multiplied with this factor, the sample distance (range) is corrected for each range
cell individually. After this, the interpolation and the phase correction for this specific
position are applied and the value is accumulated to the corresponding position
value [54]. The modification of the GBP architecture is depicted in block diagram
Fig. 5.11.

Compared to the GBP PE in Section 5.2, the presented architecture shown in
Fig. 5.11 consists of additional elements (marked in light grey) to correct the influence
of the platform velocity during ramp transmission. Besides these additional elements
the processing flow is identical to the GBP PE. An extra CORDIC FU is added to
perform the division of r, and 6r. An additional multiplier is instantiated for the
correction factor FMCW,y,sr. An extra adder sums up the multiplier result with the
originally calculated range distance 8r to obtain the corrected range value reorrecred-
The adjusted range is transferred to the two paths, one for interpolation with the
8-tap low-pass sinc filter, the other for phase correction with complex multiplication.
The additional steps increase the pipeline length by three stages. In case of a pulsed
Radar these blocks can either be chosen to not be included in the entire design or
if flexibility is required, the modules can be bypassed in case the system is used for
FMCW and pulsed Radar.

5.4 Dedicated FFBP implementation

The implementation of the FFBP algorithm is less straight forward then implementing
the GBP algorithm. Earlier analyzes showed, that the actual FFBP module should be
split in two PEs. The mapper PE which calculates all parameters, distances, positions
and addresses for the actual factorization process. The factorizer PE conducts the
merging of apertures to form new subapertures for all subimages of each FFBP stages.
Both PEs work unsynchronized, meaning that they are not directly interconnected to
form a linear processing pipeline. The PEs are loosely coupled over the config mem.
The mapper stores multiple sets of computed parameters for a merge process in
the config mem. All instantiated factorizer PEs can access the memory whenever
ready and the bus is in idle state. Whenever a subimage in the final stage is ready,
the responsible factorizer PE triggers a GBP PE to start the processing of the
subimage. To reach maximum performance, the design of the PEs has to follow
the already described concepts of pipelining (intra line) and parallelization (inter
line). The architecture concepts are developed to optimize memory management,
scalability, and platform versatility. The concept for the implementation of the FFBP
PEs is described in Section 5.4.2 and Section 5.4.3. The structure to connect both
PEs is described in Section 5.4.4. Since the FFBP is a flexible algorithm in terms
of iterations, optimized configurations of subimages and aperture factorization, a
pre-analysis for a set of permutations is conducted in Section 5.4.1. This is required,
to understand which parameters have the highest impact on quality, etc. and if this
will affect the actual implementation.

114

5.4 Dedicated FFBP implementation

[96] 01 Suipiodde sepey ADINS 404 PayIpow 34 49D JO weaSelp ¥do|g (TT°G N34

| A1 - | | QC__W_Q_&_ L - | | |
Zis ' 1is ' ots ! 65 ' g8s ' 1S 'oS''gs T Typg Tgg T s ! s !
(OETE|) o T 3
(Pl+3)x (b)uis=wj q/e=> 20+,8A=D m
(+e) =2z $)s0>=3)
= =N i)| Ba H
q'e w| ozl 0z, A@. 0z A@. 4 W
won4d| s 4004 400N 4 dodN4 . r_ =
] 14 2
[o3y][o3y] i [o3y| BEN BEN g PET | kg BEN BEN| [23y]«-4= 8
x 2 =
"3
A A A A o)
! s | = -3
J rree0Qq . - R 1. 2 * 4 m
XA SR wnale XX A._Ou__uT 0 g <
Em_u_ﬁ_ eNA.. —"
o m +
NN st doon4 m
gy R XN\ [93d BELY BELY
»|_ao4ng iz
I o % AIQN A i3
: v Jayng ry yy 2 &
: Yy N9ZTS
. .»|_8J9ung s
BEN yy 2 i
A :] X
i 0 i
v e N
H | S A [AX]z
mm“mc abew ejep Jepey NV ejep (A1o3dalesy) uonisod

115

5 Hardware implementation

Table 5.3: System parameters of the here used high bandwidth FMCW SAR sensor
devolped by Pohl et al. [92] for near field measurements

parameter name value
frequency 80 GHz
bandwidth 25.6 GHz

max. resolution (-6 dB) | 8.08 mm x 10.73 mm

ramp-lenght 2-16 ms

5.4.1 Analysis of factorization impact on image quality

The FFBP can be processed in many iterations or stages s, while each stage is
controlled by different parameter permutations of aperture factorization f;,; and
subimage splitting f;,,. The combinations of different parameter permutations per
stage s are free of choice and affect the final image quality and the overall runtime
(Filtered Backprojection (FBP) + GBP). It is necessary to get a clear understanding
of the effects, to implement hardware that creates a good trade-off between both
aspects. A comprehensive study was conducted where the same set of parameter
permutations was evaluated for different amounts of iterations s. While one can
state that an increased runtime results in better image quality, this is not always true
when different iterations are compared. The results of this study were also discussed
in [58], [59]. To classify the relevance of the study, two aspects need to be discussed.
First which type of SAR data was used for image quality evaluation. Second which
metric was used for evaluation.

The type of data used for evaluation was obtained from a near field sensor system
which parameters are listed in Table 5.3. The sensor was used in a range distance of
1.2 m. The near filed setting simulates the worst case possible, to check if also harsh
conditions would still allow a working design.

The nature of SAR signals is problematic for quality evaluation. First, no ground
truth data is available for any set of data. This always raises the question, if a
change in processing enhances or worsens the image. Second, without any ground
truth data, it is hard to benchmark if a chosen metric is suited for quality evaluation.
Since no metric was found so far that corresponds with human evaluation, SAR
images are still evaluated manually by humans. For automated evaluation metrics
like the Integrated Sidelobe Ratio (ISLR) and Peak Sidelobe Ratio (PSLR) are used.
These metrics rely on corner reflectors or objects with similar characteristics that
outshine their surroundings through intense reflections. The mentioned metrics rely
on measuring the size of the main lobe and the surrounding side lobes, to evaluate
the quality in the image. Due to the characteristics of the FFBP, these metrics can

116

5.4 Dedicated FFBP implementation

lead to misinterpretations during evaluation. Since the FFBP divides the image into
subimages, edges start to emerge in the image. In case a strong reflector is located
on an edge of a subimage, the quality of the signal will be reduced in comparison
to the quality of the reflector in case it was located in the middle of a subimage.
A possible metric is the Peak Signal to Noise Ratio (PSNR) which is based on the
Mean Squared Error (MSE). The MSE measures the average of the squares of the
deviations (or the difference) between the estimator and what is estimated. The
MSE results to Eq. (5.21) for a two dimensional image .

1 N—1Ny—1

N;-N, k;o [; (Igp(k,1) —Irrpp (k1)) (5.21)

MSE =

Since the GBP can also be processed alone without any factorization, the resulting
image can be used as a golden reference (or ground truth) for a comparison of
different FFBP configurations. The PSNR in Eq. (5.22) is using the MSE, divided by
a max value pyq which is the maximum pixel value found in the entire image. This
metric is also used in the evaluation of SAR images according to the literature [20]

PSNR = —101logo(MSE / ppax) (5.22)

The tested permutations in this chapter underlie a very specific restriction owed
to the implementation in hardware. While in general f,,, fop € N, which could
be realized in hardware, it is more efficient to reduce the set from fp, fup €N to
Sapt, fsub € 2" where n is an integer. If the parameters for raw data sets and processed
image dimensions respect the same restrictions, computations can be simplified, as
some operations can be broken down to shifts instead of multiplications or adders.
Furthermore, edge cases and odd parameters are reduced, since multiplications and
division in this number of space will always reside in the same number space of 2".

Factorization of the image is possible in x (range) and y (azimuth) direction. The
impact of splitting the image in y direction should have a greater effect then splitting
in x direction. This is because the distances between two subimages in y direction
should be much greater than the distance between two subimages in x direction. This
should reduce the induced error in range at the same time. The tested permutations
are plotted in Fig. 5.12 for a different amount of iterations. Within a group of
constant iterations (1, 2, 3 or 4) all parameters (e.g. factorization factors in x and
Y, size of subapertures) are combined to different permutations. The vast amount
of possible permutations across different iteration groups does not result in a plot
that would allow identifying the individual parameter permutations. Instead, every
configuration is ranged according to its PSNR value in dB against the runtime in
seconds. The PSNR values are calculated by comparison to the same image processed

117

5 Hardware implementation

Table 5.4: Runtime and PSNR of FFBP Pareto configurations

config C/ | iterations Sapt; Ssub, Ssub,; PSNR | runtime
points P i inx iny in dB ins
P1 1 2 8 2 58 52
P2 1 4 32 2 53 30
P3 1 4 16 1 52 26
P4 2 4,2 16,4 2,1 46 18
P5 3 2,24 4,44 1,21 40 11
P6 4 2222 | 8241 | 1,221 42 19
GBP | 1 [1 1 1 o [101

with the GBP as a golden reference. The runtime of roughly 101 seconds for the
GBP is marked as a vertical line for comparison, while every iteration group is colored
differently.

The factorization across the image is creating a tree-like structure for every single
permutation and iteration. Walking down a branch of a tree will always result in
a reduction of image quality. This is owed to the increasing aperture factorization,
which always results in a higher error rate due to the growing distance between actual
aperture positions and subaperture position. Naturally, this error is increasing with
fapt, but it can be circumscribed to a certain degree by increasing the subimages
foup Tor a node, as it limits the distance between the subaperture position and the
subimage center. The compulsory loss in quality by aperture factorization and the
fact that this can only be partly contained or limited by a higher image factorization is
manifested by the imaginary horizontal boundary for each iteration group (1,2,3, and
4) in Fig. 5.12. Although the elements of different iteration groups (1,2,3 and 4) mix
across the plot, it is obvious, that all elements of one iteration group cannot pass a
certain horizontal boundary. The downgrading in quality between the iteration groups
can also be understood through the reduction of raw data. With an increasing number
of iterations, more apertures are merged (factorized). The reduction of aperture
data has the same effect as undersampling, which introduces equidistant attenuated
double images (or so-called ghost images). The final resolution of an image, which
can also be chosen as a parameter, has only a small effect on image quality. This is
because image formation is the last step and has no effect on how subapertures are
generated. The processed image in Fig. 5.12 has a resolution of 1024x1024 pixel. As
already mentioned, this evaluation represents a worst-case scenario according to [42].
This is explained through the A/f boundary, which indicates the maximum error in
the distance that does not affect the image quality noticeably. For the near field
sensor data, with a mid-range frequency of 80 GHz the maximum unnoticed error in
range results to A /4 =0.936 mm. Additionally, the close range results in quite steep
ratios between the radii of different antenna positions.

118

5.4 Dedicated FFBP implementation

SUOI1RINSIJUOD g4 IUDISY4IP JO) § Ul SWIIUNI "SA gp Ul YNSJ :ZT'G 24n3i4

(s) sawnuni
ort 0ct 00T 08 09 (014 0c 0
I I I I I I le o
, P o
e A A TR mq ¥ %%ﬁ%m dge
o gt H
e PR 4< v
A AR A
v v
Mx@«sﬂ ﬂwqqa%ﬁz -
R wm& -1 Ov
RS sy
v v
44% v
-1 0§
suonesa)l ¢ -
suonesa)l € - - g5
suonesa) g -
uonesd) T o

d49

aAIND 0j3ded

(gp) UNSd

119

5 Hardware implementation

Additionally, to the plotted configurations, a Pareto curve [93] is plotted in Fig. 5.12.
The curve fits the outer frontier of configurations C that are most efficient. This
means the Pareto curve marks the optimal trade-off between runtime and quality
(PSNR) for a pair of iteration i and configuration C (parameter setting). The corner
points P lay on this curve which marks the Pareto optimum. This means, a point in P
represents a special configuration within an iteration Z, in which no parameter can be
changed to improve runtime or image quality, without degrading the other. P1 — P5
mark points at which the slope of the Pareto curve changes, and therefore marks a
local optimum point with the highest trade-off between relativity low computation
and relativity high PSNR. This set of points is used to derive the actual constraints for
the hardware implementation and therefore are used to compare the implementation
with the results of this quality analysis.

It can be observed, that the most left-bound configurations belong to the iteration
group of 2 and 3. This makes sense, as higher iterations tend to factorize a higher
number of apertures. Following this logic, some configurations within the iteration
group 4, should allow for even shorter runtimes then configurations with lower
iteration count. This is not the case, since iteration counts of 4 and higher create a
growing overhead in processing time for splitting images, combing apertures and such.
Therefore, it takes even longer to process such configurations than configurations
within 3 iterations. Depending on the raw data set and the sweep of parameters,
this tipping point will be reached sooner or later for a FFBP run. A hardware
implementation profits from this result, as the required memory can be reduced with
fewer iterations.

The simulations show, that creating more subimages from the start is more
important for image quality while keeping the aperture factorization low at the
same time. For a hardware implementation, this is useful. The low aperture
factorization can be used to limit the size of line buffers in the factorizer, due to
the merging of subapertures. Since fewer summands create smaller sums, bits can
be saved, which results in a reduction of buffer size. The high number of required
subimages from the start also comes with a downside, as this results in higher memory
consumption for storing the images. Such aspects need to be considered for the
hardware implementation as the external RAM is, of course, limited in size as well.

Concluding this analysis, it has to be mentioned, that the differences in runtime
between the corner points P are small in absolute numbers because the images are
small in the presented example. The relative distance between the corner points
would stay the same for bigger images, but the absolute numbers would be more
significant than the here presented values. For a given SAR scenario it might be
useful to switch between different configurations, as the factorization has different
effects depending on the setting of the scenario.

120

5.4 Dedicated FFBP implementation

Config Register RAM
Naz Nrg Pfact S fsub[SO ,,,,, Sn-l] fapt[SO Sn-l] Pcc 1/5!’9 S[Naz,Nrg] H
vV VYV VW v

header_strip

@ iterator
new_line_req

aperture_pos

v

subimage_mid rgline_par
- wz>e<
_new_line_req | </ Np<c) I\

<

addresses

lmem_addr_a pt lmem_addr_sub_apt lmem_sub_par mem_sub_posl

Figure 5.13: Block diagram of the mapper PE

5.4.2 Mapper

As already mentioned, the mapper and the factorizer are softly coupled over a
configuration memory (config mem). The mapper is the controlling PE since all
processed parameters direct the factorizers actions. The mapper receives certain
information about the SAR system and the FFBP configuration. This information is
used to calculate the geometrical parameters for subimage and subaperture processing
for the entire tree walk. Additionally, read and write addresses are generated for the
factorizer PE. The addresses indicate where old apertures are located in the main
memory and where newly merged subapertures should be stored. The factorizer PE is
a plain number cruncher and calculates the results according to the given parameters.
The processing of one new range sample of a subaperture is performed once per
clock cycle. Since parameters and addresses only need to be send once per line, the
mapper has Ny, /prac clock cycles to process a new set, where p . is the number of
parallel factorizer PEs. The mapper PE is depicted in Fig. 5.13. Since the merging of
range lines usually requires significantly longer time, the mapper is not time-critical.
This allows implementing the mapper in a resource-saving manner. Therefore, the
following explanations focus more on the process itself, than on detailed diagrams of
the actual hardware implementation.

The mapper is split into three parts. The major part is located in the iterator,
which calculates all read and write addresses for the subaperture factorization. This
is done for all stages s, including all submimages in x and y direction. Additionally,
the subimage center positions are calculated, which are processed further in the
rgline__par step of the mapper. All calculated addresses and positions are stored in

121

5 Hardware implementation

Table 5.5: Indicies for an exemplary FFBP tree run

| P A Y A A

m
0({0(1/0,0(/0(2|0,0(0|3 113 1(2|10,1(|2|3 3|3
1/{0{1}1,0{{0|2]1,0(/0|3 113 112111123 3|3
21/0(1/2,0(10(2|2,0(0|3 113 11212123 3|3
31/0(1/3,0//0(2|3,0(0(3 113 11213123 3|3

so-called sets in the config mem to control the factorizer PE based on these sets. One
set includes all the required information for the processing of one entire subimage,
which then will be processed alone by one factorizer PE. To keep the config mem
small, only p e - s sets are stored. As soon as the memory is filled, the entire mapper
PE is stalled until memory is freed by the factorizer PE. Based on the strategy in
Section 4.5.2.2, only one branch of the FFBP tree is processed until the final stage
is reached. A FSM iterates the FFBP tree based on the parameters (fup[s0,...,5n—1],
Ssub[505sSn—1], S, Nrg, Naz, Pgaci) Which are set in the dedicated config registers of
the FFBP module.

To calculate the addresses for input data and output data, the entire image is
split and indexed across the x and y direction. Based on the index of a subimage,
the aperture and the image factorization (fup:,fsup), as well as the read and write
addresses in main memory for this subimage, are calculated. Every index is paired
with one available factorizer PE. The paring allows to write the calculated set of
addresses and parameters in fixed addresses (direct mapping) in the config mem which
simplifies the process of allocating. This process is exemplary shown in Fig. 5.14. In
contrast to Fig. 4.10, the nodes are not indexed according to their position in the
tree, but according to the image splitting, which is based on iterations and subimage
factorization. Additionally, the bar does not indicate the amount of RAM used, but
the position for the sets for each subimage in the config mem. The config mem bar
also shows the fixed allocation of a FFBP PE to a fixed address in the config mem.
Each color in the image indicates another iteration. As indicated by the continuous
lines in the tree, the iterator finishes one branch to broadcast data from the main
memory to multiple PEs. This is most efficient in the first stage where the amount
of PEs fit f;,,. In Table 5.5 the exemplary run is listed from top to bottom, with
every index and parameter required for address calculation. The table lists the run,
split into lines for each module m. It is worth mentioning that it must be logged (p;),
how often one module passed a certain iteration i. This is required to track the tree
position for each module, to generate the correct read and write address for the next
stage.

122

5.4 Dedicated FFBP implementation

uol1ed0||e waw 31Juod/J4 pue uol1e|Nd|eD SSaIppe

S
<TNO~
S
Or-NM

— HOSSS

N M<tnNor~

(sy1ds abewiqgns) sbew jeuy

T !

T'0

a8ewiqns Joj Suinds s8ew| 1°G 2.n314

e =
0 €3d
‘0T ¢3d
{00 fomeg T3d
‘0'el_|vad
07| Jead
07| Jead
‘0’0l _J1ad
1 ¥3d
T'0| Jead
0T} |zad
00} |tad
mMMW
waw byuod

0t
0°¢
0°C
0L
00

€ abers

———

———

———

———

———

———

00

z 9bess

~~

-

~
s,

-

1

—
—

|

—
o

1 A

|

o

1 9bess

[z'Z'v1ansy

[2'v'zhdey
= 5S3d dg44

0 abe1s

123

5 Hardware implementation

FFBP finished

indices ready

next branch or child nodes

get_stage

check branch status

midpoint in pixel ready

midpoint passed to rgline_par

gen_rd_addr

read address ready

RAM request complete

config mem free merge complete

gen_wr_addr_prev

merge not complete

gen_rd_addr_prev

Figure 5.15: FSM to control tree processing in one iterator step of the mapper PE

The FSM that controls the tree walk is depicted in Fig. 5.15. From idle state, the
setting of a control register flag initiates the FFBP, which will trigger the interwoven
GBP. Required constants are calculated first in const set state. The node state is
triggered and starts the FSM loop. Processing the FFBP tree is controlled from here
in terms of the current branch and node position. In case of a new subimage, a new set
of indices is generated in the get_xy state. The indices are used by the sub_mid_px
state for subimage midpoint calculation in pixel (according to Algorithm 4.12). Since
Algorithm 4.12 only represents center calculation in one dimension, this must be done
separately for each dimension in sub_mid_px. State sub_mid_mt transforms the
pixel position to meters for the rgline_par step. The subimage indices are required
in state gen_rd_addr for RAM read address calculation of one range line (aperture)
that contributes to this subimage. The address is stored in the config mem (if not
full) over the mem_addr_apt signal as a part of the merge set for the factorizer
PE. Furthermore the address triggers a read of the aperture in external RAM for
the rgline_par stage to get the geometrical aperture position. The biu_ctrl state
synchronizes this access with the rgline_par stage, whereby the merge set is generated.
This is done fy,[s] times in a loop with the gen_rd_addr_prev state so that all
addresses for one subaperture merge are calculated. To merge a new subaperture,
a write address is required as well, which is calculated in the gen_wr_addr state
and written to the config mem (if not full) over the mem_addr_sub__apt signal as
a part of the merge set. A full merge set in stage s contains f,[s] read addresses
and one write address. A full set of merge sets is called a subimage set. It contains

124

5.4 Dedicated FFBP implementation

Naz/Hf;d fapt[i] read addresses and N, /[T;_ fap:[i] write addresses. Therefore, the
FSM loops until the addresses for a subimage set are complete. The parameters of
Sapt[s], foupls] are passed over the mem_addr_apt signal, the subimage indices x,y
and the flags for last iteration and finishing are passed over the mem_addr_sub__apt
signal to contribute to the merge set. The set-specific information is required by the
factorizer PE and the following GBP PE.

In case the node state detects that a subimage is done, new indices are generated
and the loop performs another run to form the next merge sets to assemble the next
subimage set. Only if the last iteration is reached and all line addresses for all p
modules were generated, get_stage is triggered from gen_wr_addr, to proof if more
then p child nodes depart from the current parent node. In this case, the current
iteration stage is kept and the loop will finish all subimage sets. Otherwise, the tree
is walked backwards to the next node with unprocessed child node, so that the next
branch is processed. This is continued until all subimage sets for the entire image
are processed. The sets are completed (during set construction) with the parameters
processed by the rgline_par stage (mem_sub_par, mem_sub_pos), so that the
factorizer PE can stream all required addresses, parameters, positions and control
information from the config mem, in order to just load the actual raw aperture data
from external RAM. merge sets are allocated to the factorizer PEs over the position
in the config mem.

The rgline_par step is required for processing the interpolation parameters for
each aperture and for processing the new subaperture position. Although all steps in
the mapper are directly coupled, every step retains some cycles of flexibility due to
buffers. The FSM depicted in Fig. 5.16 describes the flow of the steps.

parameter module ready to feed

aperture_pos
position new .\

'subimage_mid merge subaperture
@ no subimage_mid

done position
subimage_mid

Figure 5.16: FSM for processing subaperture positions and parameter approximation

The rgline_par step waits in get_mid_mt until a subimage midpoint has been
received. As soon as a midpoint is received, aperture position merging starts in
accu_apt according to Algorithm 4.13. So fu,: aperture positions received from
the header_strip step are processed. When the position merge is complete, the
mean value is generated in mean_apt and is transferred to the parameter processing
step in feed_par. The parameter processing step includes the processing of the
actual distances between the new subaperture, each old aperture, and the subimage
center. The difference in distances gives the parameters for the interpolation in the

125

5 Hardware implementation

factorizer PE. Since those calculations are rather complex, (but were approximated in
Section 5.1.1) a detailed block diagram of this approximation is depicted in Fig. 5.17
with the parameter calculation.

The approximation results to Eq. (5.14) with rd ~d,c+(dys—doc). To process dy.
and d,, three positions are required. The header_strip extracts the old position (0) of
each aperture triggered from the iterator step and passes it to the rgline_par module.
The subimage middle position (c) is calculated by the iterator. The new subaperture
position (n) is calculated inside the rgline_par module. Muxing o and n, dy. and dy,
are calculated in turn by CORDIC FUs. Demuxing with a register as delay, provides
both values in one cycle to interconnect them to a subtraction to result to rd. The
value for d,. is a equidistant linear growing range cell distance. In order to not
generate the amount of N, values, adding this values is done later in the factorizer
PE. This reduces the config mem by the factor of N,; in size, as only one value is
required to correct an entire line. This value is then split into a phase correction
value and an interpolation index. This is similar to the GBP PE. The interpolation
index is split into a fraction (rf.) and an offset (r,/rs) value. The fraction value
defines the position for linear interpolation in the factorizer PE. The offset defines the
number of the first sample to start the linear interpolation from. Basically lines are
shifted against each other by this value. This is a significant difference to the GBP
PE, where every range cell required a interpolation with unique values. This shifting
against each other allows for another simplification when compared to the GBP PE.
In the GBP the distance from the sensor to the ground r,; must be subtracted for
correct calculation. As all lines share the same ry;, the shifting against each other
allows to drop 7y, from the equation.

By using this approximation, one parameter set is sufficient for an entire line. Those
calculated values are composed in the mem_sub_ par set, while the mem_sub__pos
set just contains the subaperture center position. Both are passed to the factorizer
PE over the config mem. The whole mapper PE generates a set, which is required
for one range line processing, which takes 49 cycles. This is fast compared to the
interpolation length of N, samples. Even for a high parallelization factor p of the
interpolation FUs, 49 cycles are more than sufficient.

5.4.3 Factorizer

The factorizer PE is used to create the new subapertures by linear interpolation. The
interpolation can be carried out in parallel to process multiple range samples of one
new subaperture at once, and/or multiple subapertures can be processed parallel
to each other. The type and amount of parallelization can be parameterized and
increased/decreased according to the available resources or desired throughput. The
interpolation FUs have a fully pipelined design to achieve the highest throughput.
Apertures from previous stages are loaded from external RAM and distributed to
the factorizer via the State In (SI) FSM. The State Out (SO) FSM collects the

126

5.4 Dedicated FFBP implementation

Jed™au 84 ul uoiie|nojed usaweled uonejodiajul snid uoinewixoidde ssloweled jo weaSelp yoo|g /TG 2.nSi4

auljadid
" " " " "
LS 9S GS vS €S €S
w
(b)uis=w 29+zepA=D f=d
{Bys0r=on e
oAl- oA« Xo =
0 <o 3
oY ox|d:- —Hx ox|< ~ .nL_a
T BEl
w) oz|< oz| - 59
zi0ady 0 g3
d0dN4 d0dN4
v
538 oat] BE
7y
.............. 4' 20+@p=D -
oA [¢—]
X5
2p youp X X T@A < W B
S|
oz|g:- Nty
0 ..m o
sosgh Fr—— pi dodN4 el
v ﬁ _ _ °p Up v
[agng] [0y [o3y] BEN]
0
XNW3d /4 g_
—_ =t
X3
3 x x <&
/yng |ein g
33
E}
HE Y I T
sod gns waw Jed gns waw 619/T »d lonuo>3|ed
waw byuod 19351694 J9sn |0J3u0d

127

5 Hardware implementation

subapertures from the interpolation modules. Both FSMs are controlled by the data
in the config mem.

The SI FSM depicted in Fig. 5.18 checks in idle for prepared merge sets in the
config mem. Two possible paths exist from there. Either the special case of GBP
processing is activated (fpr =0, fup =0, s =0) which bypasses all FFBP steps and
leads to the rdaddr state, or regular FFBP processing is activated which leads to the
same_module state. The state checks for p merge sets in the config mem in order
to distribute the same aperture data to p factorizer PEs that share the same parent
node in the processing tree. In case p > fup, p— fsup PEs will set to be bypassed in
the no_wait state for this specific run, meaning that the later states do not have to
wait for this PE. The bypass flags are set by the iterator and passed to config mem.
When all PEs are set, the merge starts by going to the rdaddr state. From here the
aperture address is setup, either for GBP or FFBP processing. The biu_ ctrl state
will request the aperture from external RAM. The wait_rlast checks if the aperture
was streamed completely through the factorizer PE, only to trigger the next aperture
for the subaperture merge loop. When the merge is complete, the next merge sets
will be checked in the same_module state.

aperture received completly

¥ setup transfer aperture requested
GBP A

@ start merge all apertures for merge received
FFBP

PE inactive

bypass PE

same_module

Figure 5.18: SI FSM for data in control of factorizer PE

The factorizer PE is shown in Fig. 5.19 and can be instanced in parallel as indicated
in Fig. 5.21. The PEs are controlled by the FSMs and are feed with the same aperture
data, but with individual parameter sets from the config mem. Throughout the
entire architecture, all data words are requested with a req signal, as soon a data
word is valid a val signal confirms the request and transmission. This val signal
is masked for every PE individually based on the r,¢s values calculated by the
rgline_par step in the mapper PE. This offset value is transmitted over the config
mem and indicates how many samples the actual aperture is shifted against the
currently merged subaperture.

The design of the interpolation for the factorizer PE is very different from the GBP
interpolation. As the linear interpolation does not result in address jumps and does
not require many neighboring samples like in a sinc interpolation, the input buffer can
be reduced to a minibuffer with the size of b,,, + d,,, bit. The additional space for
one data word is required so that every interpolation has a neighbor on the left side.

128

5.4 Dedicated FFBP implementation

The core can use internal parallelization to interpolate all incoming samples at once.
This depends on the available resources and bus capacity as an internal parallelization
degree of pyiy, > Z:: would remain some internal areas without data words for
interpolation. A core receives the aperture specific parameters from the config mem.
Each interpolation path streams two samples from the minibuffer to apply linear
interpolation according to the rf.,. value. A FU for complex multiplication performs
phase correction according to ¢..r-. Each sample of an aperture is corrected using
the same rf4 value. After phase correction, the sample value is added to the sample
value of the merged subaperture. The generated subaperture is being held in a buffer
of N,; samples in size until a merge is complete. Like this, no external bus access
is required until the subaperture transfers to RAM. Switch buffers allow continuous
processing in case the bus is busy. Buffers and parameter registers are controlled
by counters to switch data and parameters when a line is finished. In case of one
interpolation path, the core needs % clock cycles for the interpolation of one bus
word. Meaning that data is not continuously streamed through the unit.

The actual merge is performed in an extra unit in the form of a pipelined accu
that contains one swap buffer and multiple adders. The unit also contains a position
logic, that controls which part of the currently streamed aperture contributes to the
subaperture. The incoming 7,y value determines which cell of an aperture is the
first that contributes to the subaperture. The position cannot be loaded directly as
the same data streams through all parallel factorizer PEs at the same time. Therefore,
a selection mechanism for valid data is required. As the offset value results from the
distance between the midpoint of the subaperture and the aperture, the merge can
be seen as shifting, the aperture an individual value against the subaperture. After
shifting the cells are aligned and can be accumulated. As a result of the shit, some
values of the aperture are not relevant for the subaperture. Since both lines have the
same length, this also means that some subaperture position will not be updated.

The position logic also tracks the offset values of all preceding apertures for this
merge to compare them against each other. Each aperture that is added will be
shifted a different amount of cells, wherefore different zones can exist within a
subaperture after all apertures were accumulated. A zone where no values were
added (should be 0), a zone where only one value was added and a zone where more
than one values were added. The zones are required to either null an area, just write
sample values to an area, or to add sample values to an area.

The SO FSM depicted in Fig. 5.20 is responsible for the transfer of merged
subapertures to the external RAM and is triggered f;[s] less often per iteration s
then the SI FSM. The idle state checks for prepared merge sets in the config mem
as they contain the write address, header information for the new subaperture and
the flags for GBP control. When a merge set is present, the bus transfer is prepared
and the write__back state is activated in case the bus is free. Write back starts but
might be stopped in case the bus is busy, which would lead to a ping pong between
fifo_full and write_back state. From both states, the same transitions are possible,
as both could mark the last sample transfer of the merge set. The loop over the idle

129

5 Hardware implementation

aperture samples

subaperture header | merged subaperture

par
eorr

mem_sub,

control

config mem

subaptpos roffset

last sample

Ifrac

next line

||||||||||||||||||||||||||||| - ’ »
FUcm . m Pipelined Accu
»ab "M v
Minibuffer |' \sUg/ \abD/ | e || \asp/
plai]az]-faidail] , ' Buffer B
_ it __»mm__. REG E
. m~_|
) O NIUX/
FUcm ' Mix EMUX
>fab : MM
- (c.d ' g Position
' logic
=i [REG| REG 444
' S1++ Sia
Si1
) A RN R N S] - - -
»| REGr JREGw |—»REG—>|REG|—
internal parallel interpolation
v_ REG, _»mm_i_ N _mmo_ N _Wmm_ _xmm_ and parallel phase correction
S1 | S2 ., S3 S4 | S5 | S6
1 1 1 N . 1 T
Pipeline

Figure 5.19: Block diagram of factorizer PE

130

5.4 Dedicated FFBP implementation

state runs until the subimage set is finished. When finished and the last iteration
stage is reached, the GBP is triggered in gbp_start to start processing the subimage
data as a part of the final image. The gbp_ ctrl state waits until the GBP is done, it
either goes back to idle in case of upcoming subimages or stops in the finished state.
This state can also be reached from idle in case the last subimage is a dummy image
that was set to be bypassed from the iterator. The bypass, last iteration and finish
flags are all set by the iterator. After finishing, the idle state is triggered to wait for
the next FFBP run.

wait for next run

bypassed subimage
last subimage

more subimages

GBP started

last iteration stage

merge set present
9 P bus free
write_back fifo_full
bus free _J =
subapertures in subimage left or not last iteration stage

bus busy ~

Figure 5.20: SO FSM for data out control of factorizer PE

5.4.4 Full FFBP system

Figure 5.21 shows the combination of the FFBP and GBP PEs to process the FFBP
algorithm. Both modules receive data from user registers including constants, image
dimensions, configurations, etc. Both modules interact with external RAM to either
form new subapertures or subimages. Both modules can be instanced multiple
times while the degrees of parallelization p of each module do not depend on each
other. Parallelization in case of the FFBP means multiple factorization PEs since the
mapper is not a time-critical element. The config mem is also required only once
and can feed all py4 factorizer PEs. Only the size needs to be adjusted to hold all
required subaperture merge information for multiple PEs. The config mem is split
into two memory banks, which are separated to store the different sets from the
iterator and rgline_par stage. Based on this information the factorizer PEs create
new subapertures. The control information is included in these sets, telling the
iterator when to trigger the entire set of GBP modules. It is important to understand
that each factorizer PE can only trigger the entire set of GBP modules and not a
single PEs. Like this, the subimage is processed by all PEs simultaneously, which
allows sharing the input data from the RAM. The parallel factorizer PEs and GBP
PEs might block each other when writing the data back to memory, since both need
excessive RAM access. To reach maximum performance, all modules listen on the
bus to transfer data as soon as possible.

131

5 Hardware implementation

| config register RAM config register RAM :
-~ -~
v v v v Vv \4
FFBP PE1 GBP
¥ subaperture sets
mapper | o sub_pos (ionﬁg mem
@ mem_sub_par 'I APT MEM
= —e »| mmmT—T—T 1
= —
(= ——
= >
o2 ||["mem_addr_apt i | SUB_APT MEM
e —— || MmmmT——T1—T1 71—
o—= ||| mem_addr_sub_apt”™
& —
A%J’y vy Vv vy v
PE1 factorizer
apt G LITTTITTITITEEn llctr
sub CLLTLLLLLITITTLLL "
apt KX TTTTTTTTTTTT1 Tololo]

Figure 5.21: FFBP and GBP modules combined over the RAM

5.5 Integration of dedicated modules

The architectural elements described before were transferred to an FPGA system. To
be independent of a specific FPGA or emulation platform all modules are embedded
in a special framework which is designed to make future technologies easier to use.
The so-called Unified EMUIlation Framework (UEMU) [94] is used for this purpose.
Developed architectures can easily be ported to various commercial or self-designed
platforms. This environment, which has already been used in [53] for flexible platform
integration enables for simple control of various hardware modules on the software
side. The UEMU which is depicted in Fig. 5.22 combines high-level software with an
FPGA emulation system. The control is possible via MATLAB or C/C++ routines.
Gigabit Ethernet is used to transfer sensor and control data. The main advantage is
the simple switching of emulation systems by changing the synthesis options referring
to the used emulation platform. As no special hardware or memory requirements are
imposed by any of the developed GBP or FFBP PEs, e.g. by the use of proprietary
IP cores, it is possible to map this architecture on different FPGA platforms without
modification. This feature is possible by using system abstraction layers. While
platform-independent modules like the GBP or FFBP PEs are encapsulated in a
subsystem (SUB) layer, platform-specific modules (e.g. memory controllers) are
located in the interchangeable main system layer. This decouples the subsystem
from the particular platform type and offers high flexibility in terms of technology.
Modifications in the subsystem will automatically affect all platforms [58].

132

5.5 Integration of dedicated modules

Host PC Host PC

SuUB | GBPOl|GBPn-1||FFBPO"FFBPn-1|
A A A A

|Ethernet PHY I‘

Figure 5.22: Coupling of emulation system and Host-PC with UEMU [53]

Ethernet IF| [RAM Controller

The supported platforms are the Xilinx ML605 [95], the BEEcube BEE4 rapid
prototyping system [96], the Xilinx VC707 [97], some Altera FPGA based platforms,
and the Virtex 5 MCPA board developed at the Institute of Microelectronic Systems
(IMS) [98]. But other platforms can be integrated as well.

133

6 Results and evaluation

This chapter will present and evaluate the results for the three presented architecture
implementations of the Global Backprojection (GBP) architecture, the modified
Frequency Modulated Continuous Wave (FMCW) architecture and the Fast Factorized
Backprojection (FFBP) architecture. The evaluation will cover the utilized resources
for differentCommercial Of The Shelf (COTS) development boards with mid-sized
Field Programmable Gate Arrays (FPGAs). The presented runtime results of all
architectures refer to the same development boards and FPGAs while being compared
to a software implementation running on a standard General Purpose Processor
(GPP). The results in image quality are independent of resource consumption and
runtime, but the fixed-point format induces loss in quality. Therefore, all image
results are compared to the floating-point format software implementation. All results
are discussed in the closing remarks of the chapter.

6.1 Resource utilization

As a proof of concept and for resource utilization comparison, the results for the
different architectures, mapped on one of the FPGA platforms currently supported by
the Unified EMUIation Framework (UEMU) framework, are presented. As described
in Section 4.1 FPGA types differ in many aspects, therefore they are not 100
percent comparable in terms of resources. The here presented results all refer to
one specific FPGA type, the Xilinx XC6VLX240T Virtex 6 [99]. The FPGA was
used in combination with the Xilinx ML605 development board [95] for accessing
external Random Access Memory (RAM) and general data 1/O interfacing. The
FPGA type was picked due to the moderate ratios between Block Random Access
Memory (BRAM), Digital Signal Processor (DSP) and Look Up Table (LUT) elements.
Nevertheless, any FPGA is a potential host for the presented architectures as the
system is described in a generic way, which offers the possibility to adapt the amount
of Processing Elements (PEs), processing accuracy as well as raw data size and image
dimensions. The results for this FPGA can serve as a base for extrapolation to other
FPGA types based on the resource ratios. As mentioned in Section 4.1, the used
design tool can slightly alter the results within each run and especially when mapped
on other FPGA types, due to the complex nature of the algorithms used for mapping.

6.1.1 GBP resource utilization

The exemplary synthesis results for the presented concept of a dedicated GBP
architecture on a XC6VLX240T Virtex 6 FPGA [99] are discussed in the following.

135

6 Results and evaluation

Table 6.1: Resources of Xilinx XC6VLX240T Virtex 6 FPGA [99]

FPGA year | process BRAM LUT DSP
family ‘ type [nm] | size [Kb]‘ # | type ‘ # type ‘ #
Virtex6 | XC6VLX240T[2009| 40 | 36 [416]6-LUT 150720 2518|768

The resource capacity of this FPGA type are listed in Table 6.1. The utilized hardware
resources for the GBP architecture depend on different parameters which are pre
synthesis customizable over generics in a certain range. These parameters are listed
in Table 6.2, with their possible range and with the resources that will be affected
by them. Due to the vast amount of possible permutations, only a selection of
these parameters will be backed up with synthesis results. For better comparison,
all presented results rely on identical sized quadratic raw and image data. Meaning
that any of the parameters is adjustable given that N,; = N,;, = Ny = N, which
affects the maximum processable image dimension. For the presented setups, the
GBP architecture was synthesized with 100 MHz clock rate, while the bus and the
external RAM run a higher clock rate. The relation between parameters and resource
utilization for different parallelization degrees p and varying image and raw data
size Npygx is shown in Table 6.3. Accuracy is scaled by the number of filter taps
Niaps and sets Ny, the number of Coordinate Rotation Digital Computer (CORDIC)
iterations C; and the data word width d,,,,. Processing is done in fixed-point format
with complex valued data at 2-d,,, bit (real,imaginary). In the following evaluation
Niaps =8, Niaps = 16, C; = 14 (14 bit fraction accuracy) and d,,, = 16 for real and
imaginary part of the sensor data stay fixed. The geometrical data were set to 32 bit
accuracy (fixed-point arithmetic).

Table 6.2: Generics of dedicated GBP architecture for pre synthesis

generic value range affected resource type
apertures N, 2", n= 45, ... LUTs

range samples N;g 2", n= 45, ... BRAMs

image pixel in x Ny 2" n=456, .. LUTs

image pixel in y N, 2" n= 45, ... BRAMs

parallel GBP PEs p 12,3, ... BRAMs, DSPs, LUTs
CORDIC iterations C; 56,7, ... LUTs

FIR tabs Nyaps 2" n=123, .. BRAMs, DSPs

FIR tabs Nyes 2" n=20,12, ... LUTs

136

6.1 Resource utilization

Table 6.3: Resource utilization for the GBP architecture on XC6VLX240T Virtex 6

Ny \ p \ LUT \ BRAM \ DSP

1024 8 57k (38%) 128 + 32 (38%) 272 (36%)
2048 8 57k (38%) 128 + 64 (46%) 272 (36%)
4096 8 58k (38%) 128 + 112 (57%) 272 (36%)
4096 4 20k (19%) 64 + 56 (29%) 136 (8%)
4096 1 8k (5%) 16 + 14 (7%) 34 (5%)

The results shown in Table 6.3 prove that p scales every resource type by the same
factor. This is just logical as every physical instance of a PE requires always the
same amount of each resource. This also reveals that the resources required for the
control structure around the PEs only requires a marginal amount of logic, which
results to ((4-8K)—29k)/(4—1) =1k LUTs and no BRAMs or DSPs. This results
in 8k — 1k =7k LUT elements per PE.

A modification of N, only affects control signals which have only marginal impact
on logic (LUTs). The same applies to the number of used DSPs as they are only
required for arithmetic operations. Only BRAMs are directly affected by p and
Nuax- To process one valid sample (32 bit) in each clock cycle, the internal 8-tap
Finite Impulse Response (FIR) filter of a PE requires 8 physical BRAMs to access 8
samples as a single word. As one single BRAM primitive can store up to 1024 32
bit samples, the number of BRAMs allocated by the FIR filter would not increase
for Nipax < 8-1024. To maintain data streaming, double buffering is required which
results in 16 BRAMs per parallelization degree p, resulting to 128 BRAMs for p = 8.

Additional BRAMs are required for line accumulation and depend on N,,,,. Accu-
mulating Njuqx samples with 216 bit requires 2 (102, (Njax) + 16) bit in order to not
create an overflow. Ny, = 1024 this results to 2-26 = 52 bit. Storing Ny = 1024
accumulations & 52 bit requires 53248 bit which fit in two BRAMs, each holding
36000 bit max. Multiplied again by two (for double buffering) this results two four
BRAMSs. With p =8 this results to 8-2-2 =32 BRAMs. Accumulating Ny = 2048
samples requires 2 (108, (Ninax) + 16) = 54 bit. Storing Nyqx = 2048 accumulations
4 52 bit requires 110592 bit which fit in four BRAMs each holding 36000 bit max.
With p =8 and double buffering this results to 8-4-2 = 64 BRAMs. Accumulating
Npax = 4096 samples requires 2 - (102, (Nyax) + 16) = 58 bit. Storing Nyax = 4096
accumulations & 52 bit requires 238568 bit. This fits in seven BRAMs each holding
36000 bit max. With p =8 and double buffering this results to 8-7-2 =112 BRAMs.
As a result, line length N4, can be extended without significant effects on resources
for p =1 (non-parallel processing). Whereas increasing p > 1 has a clear impact on
logic cells, BRAMs and DSPs even for comparatively short lines Ny;qy.

137

6 Results and evaluation

Table 6.4: Resource utilization for the GBP architecture including the UEMU frame-
work on a XC6VLX240T Virtex 6

Nax \) \ LUT \ BRAM \ DSP

1024 | 8 | 57k + 20k (57%) | 128 + 32 + 18 (43%) | 272 (36%)
2048 | 8 | 57k + 20k (57%) | 128 + 64 + 18 (50%) | 272 (36%)
4006 | 8 | 58k + 20k (58%) | 128 + 112 + 18 (62%) | 272 (36%)
4006 | 4 | 29k + 29k (38%) 64 + 56 + 18 (33%) | 136 (18%)
4006 | 1 8k + 20k (24%) 16 + 14 + 18 (11%) 34 (5%)

Changing Ny, has only little impact on the LUT utilization and the number of
used DSPs, since DSPs are only required for arithmetic operations. The number of
BRAMs is determined by Ny, (and p certainly), as they are mainly used for the
in/out buffers and the image line accumulation. One PE includes 38 DSPs. The
determination of 6r uses 4 DSPs: 2 for each CORDIC module. The calculation of
the correction, the interpolation index and phase angle calculation requires 9 DSPs
in total for all multiplications. In order to determine the phase correction factor
(exponential function with sine/cosine) 2 DSPs are required within the CORDIC
module. 16 DSPs are part of the FIR interpolation: 1 for the real and 1 for the
imaginary part for each of the 8 taps. Finally, 3 DSPs are utilized for the complex
multiplication for phase correction. This sums up to 34 DSPs

As already mentioned in Section 5.5, each module is embedded in a subsystem of
a framework called UEMU. This framework allows to switch development boards,
and thereby FPGAs, without bigger effort. This framework basically enables the
system to access the external RAM and to interface with the periphery of the outside
world. Of course this requires additional resources. Compared to the GBP PE the
framework is not affected by scaling and therefore only utilized a fixed amount of
resources. Table 6.4 gives an overview on the resource utilization of the entire system
(UEMU + GBP) with the same GBP configurations as in Table 6.3. The constant
amount of resources for UEMU sums up to 29k LUTs and 18 BRAMs. Overall, the
combination identifies LUTs as a limiting factor for parallelization p, while BRAMs
are the limiting factor in increasing line lengths Nq;.

The GBP PEs can be mapped on different FPGAs to utilize the resource maximum.
While the percentages of resource utilization after synthesis are final for the given
configurations in Table 6.4, it has to be mentioned that the required LUT elements
(logic) need to be mapped on LUT slices (areas with a fixed amount and assembly
of LUT elements). The mapping creates an overhead and can leave a considerable
amount of LUT elements unused. A real 100% utilization is therefore never achieved.
This is called a routing limit which is assumed to be at roughly 90 % of LUT resources.
This limit is soft and is crossed in some cases. But if a FPGA design is too large,

138

6.1 Resource utilization

the required timing constraints might not be met, as the delays of the logic and the
routing becomes too large. This results in a reduction of clock frequency and thereby
in a reduction of throughput.

Depending on the system size and the resource distribution on a specific FPGA, the
process of mapping can vary in efficiency. For example, for the GBP architecture on a
Xilinx XC6VLX240T Virtex 6 FPGA, LUT utilization is increased by roughly 20% by
the mapping process. The limitation in p on this FPGA is caused by LUTs. Mapping
increases the limitation by LUTs even more, as the 58% of LUT utilization (p =8,
Npax = 4096) are increased to 78%. This can be observed in Fig. 6.1, which shows
the maximum parallelization degree p of the GBP PE on different developments
boards with different FPGA types and size.

Figure 6.1 classifies the platforms in respect of their limitation in parallelization p
for a fixed line length Ny, = 4096. Since the UEMU framework is included in the
system the curves are characterized by a offset value that is induced by the framework,
which is only required once. For every FPGA, classification always depends on the
dominating resource in percent on the y-axis. Depending on this resource ratio,
p (on the x-axis) is either limited early by BRAMs or LUTs or DSPs. Since the
ML605/VC707/VCU118, as well as the MCPA/PCIE 385N, provide a comparable
LUT to BRAMSs ratio, their curves show a similar shape. While the limiting factor in
the Xilinx FPGAs are either BRAMs or LUTs, the Altera FPGA and MCPA board
are limited by the number of DSPs. This shows in the crossing of ML605 and the
PCIE 385N curve at roughly p=35. As the UEMU does not require any DSPs, but
mostly logic (ALM for Altera), the PCIE 385N performs better than the ML605 for
low parallelization degree p, while higher degrees of p hit the DSP limit. Since the
PCIE 385N belongs to another family of FPGAs with a different architecture, the
resources are not directly comparable to the FPGAs from Xilinx.

6.1.2 FMCW resource utilization

The architecture for FMCW processing is a modified GBP architecture with additional
elements to correct the failing assumption of the start-stop-approximation for pulsed
Radio Detection And Ranging (Radar). The resource utilization of the FMCW PE
is therefore quite similar to the architecture of the GBP PE. The extra steps to
correct this assumption are highlighted grey in Fig. 5.11. Table 6.5 lists the resource
utilization after the mapping of the FMCW PE for varying Ny,,4x at f = 100 MHz clock
frequency at different parallelization degrees p. The configuration of the CORDIC
module was identical to the others in the system, so 14 pipeline stages. Also the
filter was configured as an 8-tap filter.

Since a major part of the resources is allocated by the regular GBP architecture,
the results show the same behavior when scaling p or image size. The number of
BRAMs stays the same, only LUTs and DSPs results change. The amount of utilized
LUTs is increased by roughly 1 K elements. This is caused mainly through the added

139

6 Results and evaluation

FPGA Xilinx Altera Xilinx Xilinx Xilinx
Type: XC5VLC220T 5SGXA7 XCBVLX240T XC7VX485T VU9P
. LUT 140k ALM 235k LUT 150k LUT 303k LUT 1182k
available BRAM 212 RAMBI. 2560 BRAM 416 BRAM 1030 BRAM 2170
resources: DSP 128 DSP 256 DSP 768 DSP 2800 DSP 6840
[%] | MCPA ||PCIE385NH ML605 H vC707 || vcu118
- / / / /
90 routing limit
80
70
60
40
’—/
30
20 -
-~ ~N < e © [< 3
-~ ™ © g5

Figure 6.1: Resource utilization for different parallelization degrees p for GBP+UEMU
with Ny,x=4096 on different FPGAs [54]

First In — First Out (FIFO) buffers, the adder and registers. The utilization of DSPs
raises to 36. This is 2 more then a GBP PE utilizes. The standard determination of
Or uses 4 DSPs: 2 for each CORDIC Function Unit (FU). By computing 67 corrected
with another CORDIC module, 2 more DSPs are utilized compared to the GBP PE.

Table 6.5: Resource utilization of FMCW architecture on a XC6VLX240T Virtex 6

Nyax \ p \ LUT \ BRAM \ DSP

1024 8 65k (43%) 128 + 32 (38%) 288 (38%)
2048 8 66k (44%) 128 + 64 (46%) 288 (38%)
4096 8 66k (44%) 128 + 112 (57%) 288 (38%)
4096 4 34k (23%) 64 + 56 (29%) 144 (19%)
4096 1 9k (6%) 16 + 14 (7%) 36 (5%)

140

6.1 Resource utilization

Table 6.6: Resource utilization for the FMCW architecture including the UEMU
framework on a XC6VLX240T Virtex 6

Nax \ p \ LUT \ BRAM \ DSP

1024 | 8 | 65k + 20k (62%) | 128 + 32 + 18 (43%) | 288 (38%)
2048 | 8 | 66k + 20k (63%) | 128 + 64 + 18 (50%) | 288 (38%)
4006 | 8 | 66k + 20k (63%) | 128 + 112 + 18 (62%) | 288 (38%)
4006 | 4 | 34k + 29k (42%) 64 + 56 + 18 (33%) | 144 (19%)
4006 | 1 9k + 29k (25%) 16 + 14 + 18 (11%) 36 (5%)

Table 6.6 lists the resource utilization with UEMU framework. Of course, only
a fixed amount for the UEMU framework is added to the system regardless of p.
The results show that the modification did not alter the results which resources are
limiting for parallelization, wherefore no graph is presented. The LUT elements are
still the binding resource, given the fact that they increased with the modification.
Since overall resource consumption is similar to the GBP also the parallelization
on different platforms is similar as DSPs show the lowest consumption rate. The
platforms that are handicapped by an increase of DSP utilization, are the MCPA and
the PCIE 385N platform, as the used FPGAs are characterized by a smaller ratio
between DSPs and LUT elements. In general, it can be stated that the modification
can be implemented without changing the maximum possible parallelization degree
p when compared to the GBP.

6.1.3 FFBP resource utilization

Like the GBP module, the FFBP module is scalable in terms of throughput and
processible data dimensions. For a fair evaluation, the same assumptions for image
and raw data dimensions apply as for the GBP evaluation. Maximum processible
configurations of fu,; and fy,;, depend on the raw data size, as RAM memory of max
4 GB on the used ML605 might be exceeded by too many subimages. The utilized
hardware resources for the FFBP architecture depend on different parameters, which
are customizable pre synthesis over generics in a certain range. These parameters are
listed in Table 6.7 with the range of possible customization and the type of resources
which will be affected by them.

Since the FFBP module contains three different PEs of which only the factorizer
PE is instanced multiple time, the resources for each PE are listed in Table 6.8 for a
line length of N, = 4096. Resources in the form of LUTs and DSPs are used for
processing the set information, generated by the iterator and the rgline_par step of
the mapper. Due to the limitation on the factors to the power of two for raw data
dimensions and aperture factorization, address calculations of the iterator can be

141

6 Results and evaluation

Table 6.7: Generics for thes dedicated FFBP architecture for pre synthesis

generic ‘ value range affected resource type
apertures N, 2" n= 45, ... LUTs

range samples Ny, 2" n= 45, ... BRAMs

aperture factorization fy; 2" n=20,1,2, ... BRAMs

subimage factorization f,; 2" n=20,1,2, ... LUTs

iteration stages s n,n=0,12, .. none

parallel FFBP PEs p 1,2,3, ... BRAMSs, DSPs,LUTs

handled by LUTs with shifts and adds. For the parameter module, CORDIC cores
add more LUTs while other parameter calculations induce DSPs. Beside the fact that
no BRAMs are used, resource consumption is similar to one GBP PE. But a mapper
is only instanced once and does not depend on the range line length. According to
Fig. 6.1 approximately 12 GBP modules can fit on a ML605 before the routing limit
is reached. Substituting one out of 12 GBP PEs would reduce processing speed by
1/12 while adding a mapper with additional factorizer PEs has the potential to speed
up processing significantly based on the chosen configuration. Therefore, resource
consumption is considerably low. For the config mem, only a small memory depth is
required, as only small sets of parameters are saved for every aperture in a subimage
set. Therefore, no BRAMs are used because small memories are more efficient to be
mapped to LUT elements.

The factorizer is the only PE utilizing BRAM elements in order to establish the
swap buffers with N,, samples. Accumulating f;): apertures with a sample width
of 216 bit requires 2- (log, (fapr) + 16) bit in order to not create an overflow. For
Sapr = 16 this results to 2-20 = 40 bit. Storing N,; = 4096 accumulations 4 40 bit
requires 163840 bit, which fit in five BRAMs each holding 36000 bit max. Multiplied
again by two for swap buffering this results two 10 BRAMs. LUT and DSP resources
are only affected by parallelization p. This is because the scaling is only made
in the factorizer and not in the mapper. This means that the resources for the
address calculations and the determination of the parameters remain constant. When
checking Table 6.9, it is obvious, that with a growing number of parallel modules,
the resource consumption is low compared to a GBP module since only the factorizer
would be instanced multiple times. This allows for wide parallel use of the FFBP PE
also for longer range lines.

For the presented setups, all FFBP PEs can be synthesized with 100 MHz clock
frequency, while the bus and the external RAM run at a higher clock frequency.

Figure 6.2 classifies the platforms in respect to their limitation in parallelization p
for a fixed line length N, = 4096. Here parallelization is divided in pggp for the
GBP module and ppppp for the FFBP module for clear understanding. prrpp refers

142

6.1 Resource utilization

Table 6.8: Resource utilization for one FFBP PE broken down for the different units
with Ny = 4096 on a XC6VLX240T Virtex 6

PE \ LUT \ BRAM \ DSP
mapper 9k (6%) 0 (0%) 32 (4%)
factorizer 2k (2%) 10 (2%) 6 (1%)
config mem 400 (<1%) 0 (0%) 0 (0%)
total 12 (8%) \ 10 (2%) | 38 (5%)

to the external parallelization of factorizer PEs and not to the internal parallelizaiton
of a single factorizer PE. The x-axis splits in segments with different pggp which
are again split in different segments of prrgp. Like in Fig. 6.1 every curve starts
with a bigger offset for resource utilization in percent (on the y-axis) because the
UEMU framework is included. For the FFBP another offset is introduced by the
mapper and config mem PEs which are instanced only once. Segments with a low
pcep show a significant growth in utilization when prppp is increased. This impact
fades with growing pgpp, which indicates that especially for bigger images (where
a high degree of pgpp is required) the FFBP can be added with a small growth in
resource consumption. Similar to the GBP, utilization on different FPGAs reveals
a similar behavior between the ML605/VC707/VCU118 and MCPA/PCIE 385N
platforms. Especially for the MCPA platform, the additional FFBP modules limit the
parallelization even further, due to the considerably low amount of DSPs.

A full FFBP systems is combined with the GBP and embedded in the UEMU
framework. Picking a combination of GBP and FFBP modules depends on the FFBP
configuration. In general, since the GBP has a higher degree of complexity, more
GBP then FFBP modules should exist in a system. Only a vast amount of subimages
would back up a similar or even higher amount of FFBP modules. But also this is

Table 6.9: Total resource utilization for the FFBP architecture with multiple PEs and
different Nyqe on a XC6VLX240T Virtex 6

Nyax \ p \ LUT \ BRAM \ DSP

1024 8 26k (18%) 32 (8%) 80 (11%)
2048 8 26k (18%) 48 (12%) 80 (11%)
4096 8 26k (18%) 80 (20%) 80 (11%)
4096 4 18k (12%) 40 (10%) 56 (8%)
4096 1 12k (8%) 10 (2%) 38 (5%)

143

6 Results and evaluation

FPGA Xilinx Altera Xilinx Xilinx Xilinx
Type: XC5VLC220T 5SGXA7 XCBVLX240T XC7VX485T VU9P
) LUT 140k ALM 235k LUT 150k LUT 303k LUT 1182k
available BRAM 212 RAMBI. 2560 BRAM 416 BRAM 1030 BRAM 2170
resources: DSP 128 DSP 256 DSP 768 DSP 2800 DSP 6840
[%] | MCPA || PCIE 385N H ML605 H VC707 || VCU118
%0 routing limit
80
70
60
50
40
30
=
20 &
O~ ¥ ©O-AN ¥ 0o ANY ©OovA ¥ © O« N ¥ ®o-Nw o §

Figure 6.2: Resource utilization for different parallelization degrees p for
GBP+FFBP+UEMU with N;,,=4096 on different FPGAs

limited, as the FFBP becomes equivalent to the GBP when the amount of subimages
approaches the number of image lines. In terms of quality, this setup would result
in an image similar to an image processed the GBP, but with an increased runtime
due to the FFBP overhead. Furthermore, no Pareto point in Table 5.4 exceeds a
factorization fup; >4 in a single iteration stage. All results support that resources for
the FFBP should only be invested to a certain boundary in relation to the GBP. Based
on this information, two realistic full system configurations are selected and listed in
Table 6.10 with full resource utilization (including UEMU) for the ML605 emulation
platform. The resources for the FFBP PEs correspond to the first summand of
a column, the second summand describes the resources of the GBP PEs and the
third summand the part of the UEMU. The configurations were also picked with the
assumption that image size and raw data size are equal (Nyqx = 4096). Therefore,
they represent a regular Synthetic Aperture Radar (SAR) case where both dimensions
are not split by orders of magnitude. In case of extreme conditions, for example,
exceptional long-range lines, other configurations can perform better. The picked
configurations are also used for runtime measurements.

144

6.2 Performance results

Table 6.10: Resource utilization for different parallelization degrees p for FFBP and
GBP including UEMU with N,,,=4096 on XC6VLX240T Virtex 6

PGBP | PFFBP LUT BRAM DSP
FFBP+GBP+UEMU FFBP+GBP+UEMU FFBP+GBP

8 2 || 14k + 58k + 29k (67%) | 20 + 240 + 18 (67%) | 44 + 272 (41%)
4 4 || 18k + 29k + 29k (51%) | 40 + 120 + 18 (43%) | 56 + 136 (25%)

6.2 Performance results

Resource utilization is important to understand the physical limitation of a design
on a specific FPGA. The results can be used to approximate runtime on a device
for a streaming design. Such approximations can be very accurate as long as the
surrounding periphery can keep up data |/O. Especially for data greedy applications
this can be challenging and might limit processing speed although resources would
allow for a higher speedup. Furthermore, an approximation can be accurate for one
PE but multiple PEs can cause other effects that slow down a design. This can
have multifactorial roots like dependencies or a lack of bandwidth due to increased
parallelism. Such effects or not easy to foresee in complex systems. Therefore,
runtime results are measured for different configurations of all presented designs and
compared to the expected results.

6.2.1 GBP performance results

The theoretical computational runtime for the GBP can be calculated (calcggp) with
the amount of required projections based on raw data size Nyg - Ny, and image data
size N¢-Ny. Assuming that a system can manage one Pulse to Pixel Projection (PPP)
per clock cycle at clock frequency PE.f, the runtime in seconds results to Eq. (6.1)

Ny Ny -Ng;
l = 1
calcgpp PECf (6)
In an ideal scenario, runtime for p multiple PEs results to Eq. (6.2).
Ny -Ny-Ng;
calcgpp = ————— 6.2
b (6.2)

The calculation shows that for the GBP the range line length does not matter. This
is because only one sample from each range line is required to process a pixel. The
single pixel across all range lines form the semicircle around the antenna position
that cross the calculated pixel position.

145

6 Results and evaluation

Table 6.11: Comparison of hardware, software and theoretical runtime for the GBP
with p =8 and different configurations for image size and raw data size

Ny -Ny Naz - Nyg sw hw calcgpp efficiency speed
[px] [samples] | runtime | runtime | runtime change up
[s] [s] [s] calcggp/hw | factor
1024*1024 | 256*256 35.87 0.36 0.34 0.94 99
512*%512 72.21 0.71 0.67 0.94 101
1024*1024 | 136.00 1.42 1.34 0.94 96
2048%2048 | 282.67 2.83 2.68 0.94 100
2048%2048 | 256*256 133.83 1.38 1.34 0.97 97
512*%512 263.31 2.76 2.68 0.97 95
1024*1024 | 537.21 5.54 5.37 0.97 97
2048*2048 | 1101.75 11.05 10.74 0.97 100
4096*4096 | 256*256 525.74 5.42 5.37 0.99 97
512*512 1052.55 10.84 10.74 0.99 97
1024*1024 | 2118.67 21.68 21.47 0.99 98
2048*2048 | 4355.15 | 43.52 42.95 0.99 100

The GBP architecture was designed to allow for constant streaming of data even
with multiple PEs due to the data broadcasting that was possible through a specific
processing order. As a proof of concept, the real runtime is measured on a ML605
platform. Different combinations of image and raw data size are measured for the
maximum parallelization degree of p =8, on the ML605 at PE.; = 100 MHz clock
frequency. The real hardware runtime was measured with counters that increment
each clock cycle from the start of processing until the entire image is generated.
For a rating of the computational runtime, a software reference in MATLAB after
[62] is used for comparison. The software (sw) runtime was measured on an Intel i5
running at 3.2 GHz without parallelization. Table 6.11 lists the software (sw) runtime
together with the hardware (hw) runtime, as well as the calculated (calcgpp) ideal
runtime. The calculated runtime in the table is based on Eq. (6.2). The ratio of hw
and calcgpp shows the losses between the minimum possible runtime and the actual
time required in hardware. The listed speedup factors represent the speedup from
software to hardware.

Table 6.11 reveals that doubling image dimensions results in quadrupling runtime
while doubling raw data dimensions only doubles the runtime when image dimensions
stay constant. This is caused by the fact, that during GBP processing only one
range sample from each range line is required for the projection of one pixel. The

146

6.2 Performance results

range line length N, therefore, has no impact on runtime. Nevertheless N,, can not
be increased without consequences as it has a significant impact on BRAM usage.
Comparing hw and sw runtime shows a dramatic reduction in absolute runtime
especially for high Ng;, Ny and N, values, resulting in exponential time savings. An
average speedup of 98 is achieved for p =8, while much less space and energy are
consumed with an FPGA when compared to a GPP.

In general, the measured runtime indicates that the implemented architecture is
close to the calculated (optimal) runtime. Nevertheless, a change in efficiency can
be observed. This divergence increases with decreasing image dimension N,. This
results from the time (latency) needed to fill all pipeline stages of the backprojection
module. This latency sums up to 55 cycles, from which 42 cycles apply to the
three CORDIC modules (each 14 bit accuracy), plus 6 cycles for interpolation, 3 for
complex multiplication and 4 for the remaining stages of the GBP module. This
latency adds an overhead to each processed image line since the buffers of a GBP
module can only be switched when the interpolation is finished. Therefore, the
pipeline needs to be filled again with the beginning of a new line after the buffers are
switched. This has a stronger impact the shorter the processed image line length Ny.
Adding the delay to the calculated runtime calcgpp gives almost the real measured
hardware runtimes hwggp as given in

Ny - (Ny +delay) - Ny;
p- PECf

hwgpp = (6.3)

For example, adding 55 cycles to 1024 (N,) results in 1079 cycles for a full projection.
Dividing 1024 by 1079 results to an efficiency factor of 0.97, this factor can be applied
to the entire processing time. Depending on the chosen dimension, the speedup
factor will vary with the efficiency factor. This shows that the system does not inflict
any bigger stalls caused by the limitations of the bus. This is mainly caused by the
possible broadcasting of raw data to p PEs. Increasing p will result in p finished
lines at a certain point. Since broadcasting only works for reading but not for writing
data, more modules increase the waiting time for each PE to transfer data back to
memory. For the ML605 four data words with 32 bit, each can be transferred in one
bus cycle. This means the bus can handle four PEs without stalls. In case of p >4
the system will get faster but efficiency will reduce since the required time to empty
all PE buffers will increase, which will cause longer stall times.

Figure 6.3 depicts the runtime development across different raw data sizes on
an ML605 at PE.; = 100 MHz for p =4 (dashed lines) and p =8 (full lines) while
image size is constant. As expected, runtime scales linearly with 1/p and N,;. What
becomes obvious is the huge absolute difference in runtime when only one dimension
is increased. This results in exponential growth in case both image dimensions
are increased. Since SAR data and images are usually in the region of multiple
thousand samples/pixel, the benefit of parallelization shows in the absolute reduction
of processing time. Especially, when hardware runtime is compared to software

147

6 Results and evaluation

[s]

90
jo)
80
N,=N,]
1024 p=8
70
—— 2048 p=8
—O0— 4096 p=8
60
-------- 1024 p=4
-~ X-- 2048 p=4
50
--0-- 4096 p=4

3
"
e

Figure 6.3: Runtime results for different p at different N,; with fixed image dimensions

runtime, the change in absolute time saving can range between minutes and hours
depending on the dimensions.

6.2.2 FMCW performance results

The FMCW architecture is similar to the GBP architecture. The main difference
is the additional changes in the pipeline to compensate for motion during ramping.
These additional elements (mainly the additional CORDIC) increases the pipeline
length of the FMCW PE. As discussed in Section 6.2.1, the pipeline length has
an effect on efficiency that increases with decreasing image line length. Since the
pipeline length is increased by a few stages only, the increase in delay is low, wherefore
the effect on efficiency is negligible and not discussed further. The FMCW PE is
therefore considered to be as fast and efficient as the GBP PE.

6.2.3 FFBP performance results

Processing of the FFBP includes the GBP step. Basically, the FFBP preprocessing is
used to reduce GBP runtime by problem size reduction. Therefore, the performance
is evaluated by comparing the GBP runtime without FFBP preprocessing, with the

148

6.2 Performance results

Table 6.12: Runtime results for different FFBP+GBP PE parallelization degrees p at
different Pareto points (configurations) and different image dimensions
on a XC6VLX240T Virtex 6

image and data dimensions
parallelization degree p (GBP, FFBP)
algo- rutime in s
rithm/ 1024 % 1024 2048 %2048 4096 x 4096
config: i fum | fun | Fuwr || 48) || 82) | 48) | 82 || @) || 2
uration inx|iny hw‘ st hw‘ sT || hw ‘ sT hw‘ sT|| hw ‘ sT || hw ‘ st
GBP 1| 1 1 1 |[3.7]1.0{|1.9|1.0{|14.8| 1.0 ||7.4|1.0||59.3| 1.0 ||29.7| 1.0
P1 1] 2 8 2 ||2.0/1.8(|1.1{1.7|| 7.6 | 1.9{|3.9/1.9(|29.9| 2.0 (|15.1| 2.0
P2 |1| 4 | 32 | 2 ||1.3|2.8|/1.2|1.6|| 4.1 | 3.6||2.6]2.8||15.7| 3.8 || 8.5 | 3.5
P3 1| 4 16 1]{1.0|3.7||0.7|2.7{| 3.8 | 3.9 ||2.1|3.5||{15.0{ 4.0 || 7.7 | 3.9
P4 2| 4,2 16,4| 2,1 ||1.0{3.7]|0.9/12.1||2.4|6.2||1.7]4.4||8.3 |7.1|/4.7]6.3
P5 [3]2,2,4/4,4,4/1,2,1]0.6/6.2(|0.7|2.7|| 1.3 |11.4{|1.1]6.7|| 4.3 |13.8|| 2.6 |11.4

runtime of the GBP and FFBP preprocessing step combined. The performance not
only depends on the permutation of FFBP parameters, but also on the image size, the
raw data size and of course the amount of PEs. For evaluation the discussed Pareto
configurations were tested on different image dimensions (squared) on the same raw
data set which was used for image result evaluation in Section 6.3. The set has 1408
lines in azimuth with 1508 range samples each. Based on the available resources of
the ML605, the Pareto configurations were tested on two different hardware setups
of four GBP PEs plus four FFBP PEs (4,4) and eight GBP PEs plus two FFBP PEs
(8,2). Table 6.12 lists the combined FFBP runtimes together with the stand alone
GBP runtime. The speedup value (s1) indicates the gain for each configuration when
compared to the GBP.

Table 6.12 shows that speedup factors (s1) between 1.6 and 11.4 for (8,2) and
between 1.8 and 13.8 for (4,4) can be reached, depending on image dimensions and
FFBP configuration. Just based on numbers, regardless of image quality, this shows
the high potential of the FFBP preprocessing stage. Especially for bigger images the
reduction of absolute runtime is significant.

Comparing the speedup factors for (4,4) and (8,2) across image dimensions and
configurations shows that the bigger the image, the smaller the impact of FFBP
processing on runtime. For 1024 x 1024, the speedup factors for (4,4) are usually

149

6 Results and evaluation

[s]

—o0—P1;4,4
--x--P1,;82
—o—P2;4,4
--0-- P2;82
—n—P3;4,4

--a-- P3; 8.2

16

——P4; 4,4
--0-- P4;8.2
—*—P5; 4,4

--x%-- P5; 82

0,5

1024
2048
4096
NNy

Figure 6.4: Runtime results for different FFBP/GBP PE parallelizaiton degrees p at
different Pareto configurations and image dimensions

better than for (8,2) while for 4096 x 4096 they are almost similar. This is because
GBP processing mostly depends on the final image size while the FFBP is totally
independent of image size and only depends on raw data size which is not scaled
in Table 6.12. The impact of small images in combination with high subimage
and aperture factorization can also be seen in Fig. 6.4, where both axes are scaled
logarithmically instead of linear. While the configurations with more GBP PEs
(dashed lines) are clearly faster for bigger images, this changes for smaller images
in case of many subimages (P2, P4, P5). For P2 and P4 the starting points of the
pairs (dashed and full lines of the same color) for the runtime curves get closer, and
for P5 they are even crossed at [N;,Ny] = 1024. For these three configurations and
image sizes, the total runtime for the FFBP stage dominates the GBP runtime due
to the reduced amount of FFBP PEs. This changes in case the GBP time dominates
the process because of large images. It this case, the aperture factorization f,; has
a bigger, almost linearly reduction effect on runtime, with only a small overhead
depending on the number of subimages. Another factor for FFBP processing is
the range line length N,;. The longer the processed range line, the more important
is a highly parallelized FFBP PE in comparison to the GBP, due to the number
of calculations during aperture factorization. This is increased by the amount of
generated subimages, as they multiply the amount of required FFBP interpolations.

150

6.3 Image results

Since SAR scenarios usually tend to have bigger image dimensions, GBP PEs are
more useful. But depending on the scenario and the factorization parameter, it can
be useful to not maximize the number of GBP PEs, but rather increase the number
of FFBP PEs. Especially if many subimages or iterations need to be performed.
Every configuration should be looked at in particular, but the rules of thumb are:

1. the bigger the image dimensions (subimages) the more GBP PEs should be
used in comparison to the FFBP

2. the bigger the raw data size in comparison to the image dimensions and/or the
more subimages are created, the more FFBP PEs should be used in comparison
to the GBP

6.3 Image results

SAR systems provide information in a visual manner that can be directly interpreted
by the human eye. To prove that the described system does not alter the provided
information significantly, image results of all algorithms need to be compared with
reference images. This is necessary for mainly three reasons. First, comparing quality
only with metrics is a good indicator, but can also bias the evaluation, wherefore a final
visual comparison is required. Second, the used approximations speedup the entire
image generation, but also alter the results and therefore need to be counterchecked.
Third, the entire processing was converted from floating to fixed-point number format,
which limits the dynamic range and thus influences the image result. For comparison,
software-generated images with floating-point precision are used as a reference. SAR
data for image generation was obtained from a near field FMCW sensor [92] provided
by the Ruhr University Bochum (RUB) with the parameters given in Table 5.3.

6.3.1 GBP image results

The GBP is the most accurate SAR algorithm as it does not rely on assumptions like a
straight flight path as frequency-domain-based algorithms do. If tracked accurately, all
motion deviations can be compensated by the exact geometrical distance calculations
of the algorithm. As a consequence, the GBP can be used as a golden reference
for image quality. Figure 6.5a shows a SAR FMCW dataset processed in software
with the GBP algorithm. The sensor data was obtained while driving a straight
path on a linear rail system, passing a laying bike in a distance of 1.2 m from the
sensor while being in low elevation. The setup of the SAR system is described in [57].
The system combines high-speed linear movement with the above mentioned Ultra
WideBand (UWB) FMCW sensor. The sensor uses a mid-frequency of 80 GHz and
can generate highly linear frequency ramps for ramp-lengths between 2 and 16 ms
covering a bandwidth of 25.6 GHz per ramp. This allows for a cell resolution of
8 x 11 mm.

151

6 Results and evaluation

GBP processed image in software dB GBP processed image in hardware dB

2.6 2.6
2,4 -5 2,4 -5

122 10 122 -0

£ 2 -15 ¢ ‘ -15

€ 205] -20

“8’, 1.8 “g’, 1.

& 1.6 258 4, } 25
" 4 30 ‘ -30
1_2 35, | -35

0 05 15 40 0 05 1.5 40
Azimuthinm — Azimuthinm —
(a) Processed in software (b) Processed in hardware

Figure 6.5: FMCW dataset processed with GBP in software and hardware [53]

Figure 6.5a shows an image with a resolution of 1024 x 1024 pixel based on a
dataset with 1408 range lines with 1504 range samples each. The dynamic range of
the image is limited to 40 dB. A bike is clearly recognizable, although not every single
feature of the bike is visible. The orientation of the bike to the sensor influences
which features are more visible. Figure 6.5b is the same dataset processed with the
presented GBP FPGA hardware system. The comparison shows, that neither the
implemented CORDIC nor the sinc approximation reduces image quality significantly.
This proves, that the simulations and evaluations, which were taken in advance,
are very helpful as they allow to implement resource-saving (and therefore faster)
implementations, while not reducing image quality. The marginal differences between
the two images show that a switch from floating-point to fixed-point number format
does not influence dynamic range in a way that image contrast suffers.

6.3.2 FMCW image results

The start-stop-approximation has been described in Section 2.3.3. The impact of
violations of the start-stop-approximation has been discussed for many scenarios and
algorithms in [56, 100, 101]. In general, a target displacement and a defocussing of
the target in range and azimuth is observed. The intensity of these effects depends
on the ratio of sensor velocity and FMCW ramp-length. Ribalta [56] has shown, that
a modified GBP can almost fully correct these effects on simulated stripmap data.
Since this defocussing can decrease image quality significantly, the GBP architecture
was modified according to [56] to compensate for this effect. The effect and the
results of the correction are shown in Fig. 6.6. To see the effect isolated and not
mixed with neighboring reflectors, a single 30 mm corner reflector was used for
verification to create a single point target echo. A corner reflector can create a big
radar cross-section with comparatively small dimensions. This is possible through
the orthogonal arrangement of multiple metal surfaces to each other. A three-way

152

6.3 Image results

reflection is created that increases the chance of backscattering to the source. During
scanning the sensor platform emitted frequency ramps of 14 ms in length. The
reference scan was performed in a stop and go mode, so the platform stopped for
the time the ramp was emitted. This dataset was used as a reference since the
start-stop-approximation is valid and the image is not altered. The second scan
was performed with a constant velocity of 60 cm/s. The images in Fig. 6.6 are
arranged in a way that the first column presents the software-based (floating-point)
results, which are considered as a golden reference. The second column shows the
hardware processed images for direct comparison. Images in the first row (Figs. 6.6a
and 6.6b) were processed with the GBP and show the results of the stop and go
scan. As expected both images almost seem identical and show a well-focused point
reflector. The images in the second row (Figs. 6.6c and 6.6d) were scanned with a
velocity of 60 c¢m/s during sending/receiving and were processed with the regular
GBP algorithm. The effect of motion is clearly visible in the strong defocussing of
the point target. This effect increases with ramp-length and velocity and makes the
use of the start-stop-approximation questionable for FMCW based SAR in certain
scenarios. Processing the 60 c¢m/s scan with the modified GBP algorithm, which
additionally approximates the motion during the transmission, results to Fig. 6.6e and
Fig. 6.6f. The significant improvements are clearly visible in the software and hardware
version. Defocussing effects in range and azimuth disappear almost completely when
compared to the stop and go reference scan of Figs. 6.6a and 6.6b.

These results match with the simulations made in [56]. Considering the software
as a golden reference, it can be stated, that the hardware processed results show only
minor differences in the main lobe region. In the less important areas around the
main lobe stronger differences appear. This is primarily due to the use of different
data types, as the software uses floating-point format and the hardware version uses
fixed-point format, which limits the dynamic range.

6.3.3 FFBP image results

To prove that the FFBP is not only potent in reducing runtime with relatively low
additional resource consumption, hardware processed images need to be compared
with the GBP reference. Figure 6.7 shows hardware processed images. Figure 6.7a
shows the GBP as a golden reference. The remaining images Fig. 6.7b - Fig. 6.7f show
the results of the FFBP configuration points from Table 5.4. These configurations
represent corner points of the curve fitted to runtime and the Peak Signal to Noise
Ratio (PSNR) value. While runtime reduces when following the Pareto curve to the
origin, also PSNR values reduce continuously. This can also be observed in Fig. 6.7b
- Fig. 6.7f when the images are compared among each other. While the first two
configurations (P1 and P2, Fig. 6.7b and Fig. 6.7c) are almost similar to the GBP
reference, P3 (Fig. 6.7d) starts to impair quality visibly. Bigger artifacts start to
light up in the lower image sections. This can be explained by the lower amount of
subimages of P3 compared to P2. While both configurations only run one iteration

153

6 Results and evaluation

and factorize 4 apertures, P2 creates 64 subimages while P3 only creates 16. This
reduces the capability to contain the error that is induced by aperture factorization.
This effect can be observed at subimage borders. As iterations increase from one to
two with P4 (Fig. 6.7¢), also aperture factorization increases to eight. It is clearly
visible that artifacts start to migrate also to the upper part of the image indicated by
the drop of 12 dB compared to P1. This can also not be compensated by increasing
the subimage count from 16 to 128 between P3 and P4. The aliasing effect can be
explained by undersampling the image as the aperture factorization creates less and
fewer range lines. This also explains the ghost images in Fig. 6.7f which shows a
considerable loss in quality.

Overall, the image quality corresponds with the reduction in runtime for each
configuration. However, all configurations reach a quality that allows identifying the
bike clearly. The first FFBP configuration, which can be calculated almost twice as
fast as the GBP, is almost identical in quality. This shows the potential to save time
with a small reduction in the quality of the image.

6.4 Evaluation and discussion of results

While time-domain-based SAR algorithms are usually not seen as a real-time option,
the resource, performance and image results show that even the highly complex GBP
algorithm can be considered under certain constraints as real-time capable. This
is mainly possible by exploiting all options for parallelization of the algorithm in a
streaming design. Modular designs allow for scaling the architecture in terms of size
and shows that it is possible to exhaust every FPGA to a high degree. Nevertheless,
FPGAs need to be chosen based on their resource diversification as not every ratio
suits every configuration when a maximum utilization is an objective. Even mid-sized
FPGAs can host multiple parallel processing elements. The upgrade for motion during
ramp transmission for FMCW processing only adds a marginal resource amount to
the GBP design and will therefore only alter the possible degree of parallelization
in border cases. Also, the FFBP architecture can be implemented with much fewer
resources then the GBP and can be implemented in parallel to the GBP without
limiting its parallelization dramatically. Instead, the main memory consumption is
more critical for FFBP usage, as big raw data sets, paired with configurations that
create many subimages, can exceed the memory limits by far. Interlacing both
modules in a tree structure helps to limit memory usage. As interlacing keeps both
steps active at the same time, the module configuration must be adjusted to the
available bus limitations to not cause too many stalls in any PE. All in all, the high
resource availability of modern FPGAs in combination with a sophisticated design,
allows for the implementation of time-domain-based algorithms despite their high
degree of complexity.

Runtime results of the GBP indicate an almost reversed ratio between processing
time and resources, which comes close to optimum efficiency and shows that almost

154

6.4 Evaluation and discussion of results

linear speedup is possible. The average throughput of one PPP per processing
element and clock cycle, already enable mid-sized FPGAs to process smaller images in
matters of seconds which can take several minutes on a GPP. Similar to the resource
consumption of the FMCW architecture, the difference in processing delay compared
to the GBP architecture is marginal. Basically, only the pipeline delay is increased,
which has almost no effect on average throughput. For the FFBP a clear statement
is less simple, as processing time does not scale linearly with resource utilization.
Efficiency changes with the SAR scenario and the FFBP configurations because a given
ratio of processing elements might not fight to the scenario. But since SAR setups
are usually in the range of multiple thousands of samples/pixels, resources should be
used mostly for the GBP PEs, as the high degree of complexity dominates processing
time. A part of the GBP resources should be used for FFBP implementation. The
resource and performance results show that the FFBP implementation can reduce
processing time between 50 and 90 percent with a resource increase of roughly 15
percent.

The image results of the GBP, including all approximation and the switch from
floating-point to fixed-point number representation, show almost no change in the
image when compared to an ideal software reference. This is interesting, as the
used near field data set requires a high dynamic range, therefore also other data
set should not alter this result. The use of FMCW data can cause major image
quality reduction in case of long ramps and a high sensor velocity. The FMCW
architecture improves image quality significantly and can compensate for the effects
under such conditions almost perfectly. The FFBP evaluation is less clear and must
be assessed together with the resource and runtime results. While runtime reduction
by 50 percent is possible with almost no loss in image quality (depending on the
SAR data), a dramatic reduction of up to 90 percent in runtime can cause clearly
visible artifacts in the image. As the error intensity for the different configurations
varies, based on the scenario parameters of the data set, this must be evaluated
individually. As the modules are not fixed to a certain configuration, this does not
influence the implementation itself. This is why the FFBP implementation allows for
a significant gain in performance with a controllable loss in quality. The fact that
the FFBP can be controlled in complexity allows to max out image quality for each
runtime constraint.

Besides image quality and performance, the power dissipation must be as low as
possible for mobile environments. Power consumption measurements of the design
were conducted for the Xilinx Virtex 6 XC6VLX240T processed in 40 nm on the
ML605 development platform. Since semiconductors manufactured in a smaller
process usually show lower power dissipation, a Xilinx Virtex Ultrascale+ VU9P
FPGA processed in 16 nm on the VCU118 development is evaluated is well. The
average power consumption of both FPGAs is based on the Xilinx power analyzer tool.
The estimated numbers for the Virtex 6 are backed up with a real power measurement
of the ML605. The tool analyzes the entire design and estimates power consumption.
For the Virtex 6, the average consumption is estimated at 6.5 W. Compared to

155

6 Results and evaluation

the real measured value of 4.4 W, the estimated value seems to be a conservative
estimation. The 4.4 W are the difference between a full reset and full busy status of
the GBP design. Although the real measured value is lower, the higher estimated
power consumption value is used for comparison. For the Virtex Ultrascale+ the
tools estimates an average power consumption of 18 W. Based on the ratio between
real and estimated value for the ML605, the real values are expected to be slightly
smaller than estimated by the tool for the Virtex Ultrascale+.

To compare the efficiency of the two FPGAs, runtime is put into relation to
the average power consumption. The GBP runtime for 8 PEs on a Virtex 6 for a
4096 x 4096 pixel image with a dataset of 1408 pulses results to 29.7 s (see Table 6.12).
This value can be extrapolated to the Virtex Ultrascale+ as Fig. 6.1 shows that
64 PEs would fit on the FPGA. Runtime would reduce by factor 8 to 3.7 5. If
assumed that performance scales linear with power consumption, a speedup factor of
18 W/6.5 W =2 8 would be expected. The factor between these two values represent
the increase of power efficiency between the two FPGAs and results to 8/2.8 =2.9.

In order to put the runtime results in relation to other architectures, the FPGA
based GBP runtime is used for comparison to the non dedicated and dedicated GBP
architectures mentioned in Section 3.1 and Section 3.2. This requires to measure
the GBP performance in PPP/s. For the same image size and dataset size as in
Table 6.12, 4096 x 4096 x 1408 = 23.6G projections (PPP) are required. This results
to 23.6G/29.7s = 195MEPP for the Virtex 6 and to 23.6G/3.7s = 6.4CLPE for the
Virtex Ultrascale+.

The mentioned non dedicated architectures reach values of 35@ at 605 W [43],
23MEPE ot 11 W [59], 9MEEE at 10 W [44], 6.2CLEE ot 238 W [45] and 543MLEE
at 9 W [60]. Those numbers point out that FPGAs are much more economical.
The embedded Graphic Processing Unit (GPU) shows high potential though. And
considering that hand-optimized FPGA designs take significantly longer to implement
when compared to non dedicated implementations, FPGAs are not always preferable.
The mentioned dedicated architectures reach values of 46@ at 10 W [47], 2.1 %
at 27 W [49] and 2.9@ at 15 W [48]. These results back up the high potential of
FPGAs and show that regarding energy consumption, no hard constraint can be called
for a mobile environment. But of course only architectures with the highest possible
PPP/Ws ratio are attractive for implementation. Across all presented values, only
FPGA implementations cross the border of 100 PPP/Ws or more. The results show,
that time-domain processing is an additional option for processing and especially
important for processing under motion of the platform. In combination with the FFBP
any real-time constraint can be met, in case image quality is a variable parameter.

156

processed image

1.74

1.72

17

Azimuthinm —
o o o o
N A O ©

o

235
Rangeinm —

(a) Stop and go mode software GBP

processed image

2.3 2.35 2. 4 245
Range inm —

(c) 60 cm/s software GBP

processed image

1.74

Azimuthinm —
@
(2]

1.64

1.62

Azimuthinm —
(o2
o

23 2.35 24 245
Rangeinm —

(e) 60 cm/s software corrected GBP

u &.
-40

&

6.4 Evaluation and discussion of results

processed image

174 B,

] 5
' 10
6 15
_ 20
64 25
162 -30
16 35
-40

235
Rangeinm —

(b) Stop and go mode hardware GBP

Azimuthinm —
@ - N
(<] © ~N N

processed image dB
1.74 0
1.72 -5
1.7 -10
+
£1.68 -5
£
< 166 -20
E
<164 25
1.62 -30
16 -35
-40

23 2.35 2.4 2.45
Rangeinm —

(d) 60 cm/s hardware GBP

processed image

1.74
1.72

1.7
1.68
1.64
1.62

1.6

Azimuthinm —
P
o

2.35
Rangeinm —

(f) 60 cm/s hardware corrected GBP

Figure 6.6: FMCW dataset with single corner reflector, recorded with and without mo-
tion during scanning, processed in hardware and software for comparison
with the corrected GBP algorithm [54]

157

6 Results and evaluation

GBP processed image in hardware dB FFBP processed image in hardware dB

Rangeinm —

0.5 1 1.5 2 0.5 1 1.5 2
Azimuth inm — Azimuth inm —

(a) GBP hardware reference (b) FFBP P1 configuration

o

FFBP processed image in hardware dB FFBP processed image in hardware dB

Range inm —

o

Azimuth inm — v . Azimuth inm —

(c) FFBP P2 configuration (d) FFBP P3 configuration

FFBP processed image in hardware dB FFBP processed image in hardware dB

Range inm —

o

0.5 1 1.5 2 .
Azimuth in m — Azimuth in m -

(e) FFBP P4 configuration (f) FFBP P5 configuration

Figure 6.7: FMCW dataset processed in hardware with GBP as reference and different
FFBP configurations according to Pareto corner points [58]

158

7 Summary

Synthetic Aperture Radar (SAR) is a constantly developing technology, which is
capable of generating high resolution aerial imagery. SAR systems emerged to a
standard technology for surface cartography, surveillance, disaster control, height
map generation and many more. Since SAR sensors are active, they do not depend
on daylight and can penetrate certain materials basing on the chosen wavelength, e.g.
clouds. Signal processing is required to extract an image from indirect observations
of an area. To direct the platform along a region of interest, the images should be
available in real-time. This can be challenging, as SAR sensor systems acquire data
with a very high rate, while the signal processing is also complex. The processing
can be performed either in frequency- or time-domain. It is common to perform
processing in the frequency-domain, as the complexity of ﬁ(NzlogN) is better suited
for real-time processing than algorithms in the time-domain, which usually reside in
the complexity class of @(N3). Since SAR systems are getting smaller while allowing
for higher resolution, they are also used in small Unmanned Aerial Vehicles (UAVs).
In contrast to bigger platforms, UAVs are more likely to be affected by atmospheric
conditions due to a lower speed and weight. While frequency-domain algorithms are
less complex, they also rely on a straight trajectory, otherwise, reduced image quality
is the result. This requirement might be compromised for UAVs. Different motion
compensation algorithms are capable of correcting deviations but only in small ranges.
Time-domain-based algorithms allow for arbitrary trajectories and deviation in motion.
Since UAVs are limited in dimension and energy consumption, the processing system
can not be scaled to match the higher processing demand of such algorithms. Due
to the noise characteristic, SAR data cannot be compressed to send data to ground
stations for processing. Therefore, energy-efficient on board real-time processing is
required in the time-domain, in case of heavy deviations from a linear trajectory or in
case of non-linear trajectories.

This work implements a time-domain-based, energy-efficient SAR processing system.
A study on architectures in Chapter 3 based on Digital Signal Processors (DSPs),
Graphic Processing Units (GPUs) and multi-/manycore architectures reveals, that
such platforms (beside one exception) either lack in energy efficiency or processing
power. To tackle the limitations in system dimensions, energy budget limitation, and
processing complexity, the developed system is based on a Field Programmable Gate
Array (FPGA) architecture. In contrast to other architectures, FPGAs can be tailored
to exactly match the required task, wherefore no energy for not utilized resources is
wasted.

The time-domain-based Global Backprojection (GBP) algorithm is implemented
to ensure maximum image quality at arbitrary trajectories. The principle of the

159

7 Summary

chosen algorithms is explained in Chapter 2. To allow for real-time processing in
time-domain, also for bigger image dimensions, the Fast Factorized Backprojection
(FFBP) is implemented. The FFBP algorithm is an accelerated version of the GBP
which allows for a trade-off between image quality and processing time and resides
in the complexity class of ﬁ’(NzlogN). The latest development in SAR systems, is
Frequency Modulated Continuous Wave (FMCW) Radio Detection And Ranging
(Radar). In contrast to pulsed Radar sensors, FMCW sensors allow for high resolution
images at comparatively low transmit power. Due to the limited transmit power,
the sensors are limited in range. For UAVs this is not a critical limitation as they
operate at low altitudes. But the FMCW principle violates the so-called start-stop-
approximation of standard processing algorithms. To compensate for this violation,
the FPGA architecture is adapted to fully compensate any flaws introduced by the
nature of FMCW data.

A premise for efficient dedicated hardware design is a proper analysis of the
algorithms and their inherent limitations. This is important, as a maximum in
performance requires a constant data throughput so that no resource is left unused.
To implement a streaming architecture, Chapter 4 covers a full analysis of both
algorithms. This includes the listing of the mathematical steps to understand which
steps are often used and might offer the chance for an approximation to speed
up processing. The second step covers the analysis of data-, flow- and control-
dependencies to maximize instruction parallelism in the architecture. The third step is
the analysis of streaming capabilities to prevent stalls and speedup the entire system.
This includes memory access and caching strategies, the optimization for the design
of multiple parallel Processing Elements (PEs) and the optimization of the pipeline
for all PEs to shorten the critical path and reach a maximum in clock frequency.

The theoretical considerations are mapped into detailed descriptions of the specific
PEs in Chapter 5. To ensure for a fast design, the core operations are substituted (if
possible) with resource-saving and streaming friendly approximations. The methods
for approximation are considered and analyzed in terms of fitness for the given task.
All building blocks for the GBP, FFBP and FMCW designs are described in detail
including the control structure around the system. Considerations are driven by the
requirement to combine and fulfill all given constraints at the best possible rate
while reducing processing time to a minimum by implementing a highly efficient
architecture that is utilizing the maximum of available resource.

Since designing and implementing FPGA architectures is time costly, a framework
is used to port the designs easily between different FPGAs platforms. This is possible
by using system abstraction layers. The platform-independent design is encapsulated
in a subsystem layer, platform-specific modules are located in the interchangeable
main system layer. Like this, modifications in the subsystem will automatically affect
all platforms. To ensures that the design can make full use of future technology and
to keep up with the ongoing development of SAR sensors, all designs are scalable by
instancing more PEs. Like this, a design can utilize the maximum of resources on
each FPGA.

160

As a proof of concept the design was mapped onto a Xilinx Virtex 6 FPGA and
tested on a Commercial Of The Shelf (COTS) ML605 development board to get
results for resource utilization, the runtime for different algorithm configurations,
power consumption values and image results on approximated fixed-point hardware.
In Chapter 6 these results are presented and discussed. To ensure that the image
results can match with implementations without approximations or precision reduction,
everything is compared to software results as a golden reference.

It can be concluded, that the current increase in resources on FPGAs allows for
real-time processing of the GBP for mid-size images. The results on the image
quality of the hardware implementation show no significant reduction in quality. The
real-time constraint depends of course on the SAR system and platform specifications.
In case higher resolutions are required, the FFBP can be used to trade-off runtime
against image quality. System dimensions and power consumption allow for a setup
in a mobile UAV scenario, while the FPGA design can always be ported to a more
potent platform and can be scaled to max out the available resources to gain the
maximum possible speedup.

161

Bibliography

(1]
(2]

(3]

[4

[5

(6]

[7]

(8]

(9]

(10]

(11]

B. A. Campell, Radar Remote Sensing of Planetray Surfaces. ~The Press
Syndicate ot the University of Cambridge, 2002.

J.-R. Kim, J. Sumantyo, and S.-Y. Lin, “Preliminary study for the long wave-
length planetary SAR sensor design and applications,” in EGU General Assem-
bly Conference Abstracts, ser. EGU General Assembly Conference Abstracts,
vol. 17, Apr. 2015, p. 8446.

D. G. Blumberg, “High Resolution X- Band SAR Imagery for Precise Agriculture
and Crop Monitoring,” in Science and Applications of SAR Polarimetry and
Polarimetric Interferometry, ser. ESA Special Publication, vol. 644, Mar. 2007,
p. 49.

S. Plank, A. Twele, and S. Martinis, “Landslide mapping in vegetated areas
using change detection based on optical and polarimetric sar data,” in Earth
Observations for Geohazards, 2016.

D. Cerutti-Maori, J. Klare, A. Brenner, and J. H. G. Ender, “Wide-area traffic
monitoring with the sar/gmti system pamir,” I[EEE Trans. Geosci. Remote
Sens., vol. 46, no. 10, pp. 3019-3030, Oct. 2008.

J. K. Tennant and T. Coyne, “Star-3i interferometric synthetic aperture radar
(insar): Some lessons learned on the road to commercialzation,” in 4th In-
ternational Airborne Remote Sensing Conference and Exhibition, Intermap
Technologies, Calgary, Alberta, Canada, 1999.

C. Huelsmeyer, “Verfahren, um entfernte metallische gegenstaende mittels
elektrischer wellen einem beobachter zu melden,” Nov. 21 1905, dE Patent
165,546. [Online]. Available: https://www.google.com/patents/DE165546C?
cl=de

S. Jin, N. Haghighipour, and W. lIp, Planetary Exploration and Science: Recent
Results and Advances, ser. Springer Geophysics. Springer Berlin Heidelberg,
2016. [Online]. Available: https://books.google.de/books?id=xphgvgAACAAJ

H. Klausing, Radar mit realer und synthetischer Apertur: Konzeption und
Realisierung. Oldenbourg Wissensch.Vlg, 2000. [Online]. Available: http:
//books.google.de/books?id=iLt4AAAACAAJ

D. Gabor, Ed., A New Microscopic Principle, Research Laboratory, British
Thomson-Houston Co., Ltd., Rugby, 1949.

M. Soumekh, Synthetic Aperture Radar Signal Processing: with MATLAB
Algorithms. John Wiley & Sons, 1999.

163

https://www.google.com/patents/DE165546C?cl=de
https://www.google.com/patents/DE165546C?cl=de
https://books.google.de/books?id=xphgvgAACAAJ
http://books.google.de/books?id=iLt4AAAACAAJ
http://books.google.de/books?id=iLt4AAAACAAJ

Bibliography

(12]

(13]
(14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]
(23]

[24]

[25]

[26]

164

S. Johnston, Holographic Visions: A History of New Science, ser. Spencer,
H.; Herbert Spencer lectures. OUP Oxford, 2006. [Online]. Available:
https://books.google.al /books?id=3hQRP6kj6vIC

C. A. Wiley, Ed., Synthetic Aperture Radars - A Paradig for Technology Evo-
lution, 1985.

W. A, “Pulsed doppler radar methods and apparatus,” Jul. 20 1965, uS Patent
3,196,436. [Online]. Available: https://www.google.com/patents/US3196436

L. J. C. W. E. Vivian and E. N. Leith, “Report of project michigan: A doppler
technique for obtaining very fine angular resolution from a side-looking airborne
radar,” University of Michigan Willow Run Laboratory, Tech. Rep., 1964.

W. M. Brown, G. G. Houser, and R. E. Jenkins, "“Synthetic aperture processing
with limited storage and presumming,” IEEE Transactions on Aerospace and
Electronic Systems, vol. AES-9, no. 2, pp. 166-176, March 1973.

J. C. Kirk, “A discussion of digital processing in synthetic aperture radar,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no. 3,
pp. 326-337, May 1975.

W. J. van de Lindt, “Digital technique for generating synthetic aperture
radar images,” IBM Journal of Research and Development, vol. 21, no. 5, pp.
415-432, Sept 1977.

C. Wu, Ed., A digital system to produce imagery from SAR data, Oct. 1976.

I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation. Artech House Inc., 2005.

J. R. Bennett and I. G. Cumming, Eds., A Digital Processor for the Production
of Seasat Synthetic Aperture Radar Imagery, Symposium on Machine Process-
ing of Remotely Sensed Data. The Laboratory for Applications of Remote
Sensing, 1978.

Digital processing of SEASAT SAR data, vol. 4, Washington, DC, Apr. 1979.

F. Rocca, “Synthetic Aperture Radar: a New Application for Wave Equation
Techniques,” Stanford Exploration Project SEP-56, pp. 167-189, 1987.

I. Cumming, F. Wong, and K. Raney, “A sar processing algorithm with no
interpolation,” in Geoscience and Remote Sensing Symposium, 1992. IGARSS
'92. International, vol. 1, May 1992, pp. 376-379.

J. Radon, “Uber die bestimmung von funktionen durch ihre integralwerte
langs gewisser mannigfaltigkeiten.[on the determination of functions from their
integrals along certain manifolds],” SBleipzig, vol. 29, p. 69, 1917.

R. N. Bracewell, "“Strip integration in radio astronomy,” in Australian Journal
of Physics, vol. 9, 1956, p. 198.

https://books.google.al/books?id=3hQRP6kj6vIC
https://www.google.com/patents/US3196436

[27]

28]

[29]

30]

(31]

(32]

(33]

(34]

35]

36]
(37]

(38]

(39]

[40]

Bibliography

W. H. Oldendorf, “Isolated flying spot detection of radiodensity dis-continuities-
displaying the internal structural pattern of a complex object,” IRE Transactions
on Bio-Medical Electronics, vol. 8, no. 1, pp. 68-72, Jan 1961.

D. E. Kuhl and R. Q. Edwards, “Image separation radioisotope scanning,”
Radiology, vol. 80, no. 4, pp. 653-662, 1963. [Online]. Available:
http://dx.doi.org/10.1148/80.4.653

A. M. Cormack, “Representation of a Function by Its Line Integrals, with Some
Radiological Applications,” Journal of Applied Physics, vol. 34, pp. 2722-2727,
Sep. 1963.

R. N. Bracewell and A. C. Riddle, “Inversion of fan-beam scans in radio
astronomy,” Astronomical Journal, vol. 150, no. 2, pp. 427-434+, 1967.

A. Lakshminarayanan, “Reconstruction from divergent ray data,” Department
for Computer Sience Technology at State University of New York at Buffalo,
Technical Report TR-92, 1975.

T. F. Budinger and G. G.T., “Image processing for 2-d and 3-d reconstructions
from projproject: Theory and practices in medicine and the physical sciences,”
Stanford University, Tech. Rep., 1975.

D. C. Munson, J. D. O'Brien, and W. K. Jenkins, “A tomographic formulation
of spotlight-mode synthetic aperture radar,” Proceedings of the IEEE, vol. 71,
no. 8, pp. 917-925, Aug 1983.

J. A. Fawcett, “Inversion of n-dimensional spherical averages,” SIAM Journal
on Applied Mathematics, vol. 45, no. 2, pp. 336-341, 1985. [Online]. Available:
https://doi.org/10.1137/0145018

H. Hellsten and L. E. Andersson, “An inverse method for the processing of
synthetic aperture radar data,” Inverse Problems, vol. 3, no. 1, p. 111, 1987.
[Online]. Available: http://stacks.iop.org/0266-5611/3/i=1/a=013

L.-E. Andersson, “On the determination of a function from spherical averages,”
in SIAM Journal on Mathematical Analysis. Vol 19, 1988.

A. F. Yegulalp, “Fast backprojection algorithm for synthetic aperture radar,”
in In Proceedings 1999 IEEE Radar Conference, 1999.

O. Seger, M. Herberthson, and H. Hellsten, “Real time sar processing of low
frequency ultra wide band radar data,” in Proc. of EUSAR '98 - European
Conference on Synthetic Aperture Radar, May 1998, pp. 489-492.

J. McCorkle and M. Rofheart, “An order n2 log(n) backprojector algorithm
for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture
radar,” in In SPIE AeroSense Conference,, 1996.

S. Nilsson and L. E. Andersson, “Application of fast back-projection techniques
for some inverse problems of synthetic aperture radar,” pp. 62-72, 1998.
[Online]. Available: http://dx.doi.org/10.1117/12.321872

165

http://dx.doi.org/10.1148/80.4.653
https://doi.org/10.1137/0145018
http://stacks.iop.org/0266-5611/3/i=1/a=013
http://dx.doi.org/10.1117/12.321872

Bibliography

[41]

(42]

43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

166

S. Basu and Y. Bresler, “O(n2log2n) filtered backprojection reconstruction
algorithm for tomography,” Image Processing, IEEE Transactions on, vol. 9,
no. 10, pp. 1760 —1773, oct 2000.

L. M. H. Ulander, H. Hellsten, and G. Stenstroem, “Synthetic-aperture radar
processing using fast factorised backprojection,” in EUSAR, 2000.

J. Park, P. T. P. Tang, M. Smelyanskiy, D. Kim, and T. Benson,
“Efficient backprojection-based synthetic aperture radar computation with
many-core processors,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ser. SC '12.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 28:1-28:11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2388996.2389034

J. Zhao, Y. Yuan, J. Wang, and Y. Jin, “Research on bp imaging algorithm
parallelization using c6678 dsps,” in IET International Radar Conference 2015,
Oct 2015, pp. 1-4.

W. Chapman, S. Ranka, S. Sahni, M. Schmalz, U. Majumder, L. Moore,
and B. Elton, “Parallel processing techniques for the processing of synthetic
aperture radar data on gpus,” in 2011 IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT), Dec 2011, pp. 573-580.

P. Schleuniger and S. Karlsson, Tinuso: A processor architecture for a multi-
core hardware simulation platform, 2010, vol. 3.

P. Schleuniger, A. Kusk, J. Dall, and S. Karlsson, “Synthetic aperture radar
data processing on an fpga multi-core system,” in International conference
on Architecture of Computing Systems ARCS, international conference on
Architecture of Computing Systems.

W. Chapman, S. Ranka, S. Sahni, M. Schmalz, and U. K. Majumder, “Parallel
processing techniques for the processing of synthetic aperture radar data on
fpgas,” in The 10th IEEE International Symposium on Signal Processing and
Information Technology, Dec 2010, pp. 17-22.

D. Pritsker, "Efficient global back-projection on an fpga,” in 2015 IEEE Radar
Conference (RadarCon), May 2015, pp. 0204-02009.

T. Avery and G. Berlin, Fundamentals of Remote Sensing and Airphoto
Interpretation, ser. Prentice Hall series in geographic information science.
Macmillan, 1992. [Online]. Available: https://books.google.de/books?id=
SWYZAQAAIAAJ

R. Bracewell, The Two-Dimensional Convolution Theorem. Boston, MA:
Springer US, 2003, pp. 204-221. [Online]. Available: https://doi.org/10.1007/
978-1-4419-8963-5_6

L. A. Gorham and L. J. Moore, “Sar image formation toolbox for matlab,” in
Proc. of SPIE, vol. 7699, no. 1. SPIE, 2010.

http://dl.acm.org/citation.cfm?id=2388996.2389034
https://books.google.de/books?id=5WYZAQAAIAAJ
https://books.google.de/books?id=5WYZAQAAIAAJ
https://doi.org/10.1007/978-1-4419-8963-5_6
https://doi.org/10.1007/978-1-4419-8963-5_6

53]

(54]
[55]
[56]

[57]

(58]

[59]

[60]

[61]

[62]

(63]

64]

[65]

Bibliography

F. Cholewa, M. Pfitzner, C. Fahnemann, P. Pirsch, and H. Blume, “Synthetic
aperture radar with backprojection: A scalable, platform independent archi-
tecture for exhaustive fpga resource utilization,” in 2014 International Radar
Conference, Oct 2014, pp. 1-5.

F. Cholewa, M. Wielage, P. Pirsch, and H. Blume, “An fpga architecture for
velocity independent backprojection in fmcw-based sar systems,” 2016.

R. L. Freeman, Telecommunication System Engineering, 3rd ed. New York,
NY, USA: John Wiley & Sons, Inc., 1996.

A. Ribalta, “Time-domain reconstruction algorithms for fmcw-sar,” in IEEE
Geosience and Remote Sesning Letters, vol. 8, 2011.

M. Wielage, F. Cholewa, P. Pirsch, and H. Blume, “Experimental violation of
the start-stop-approximation using a holistic rail-based uwb fmcw-sar system,”
in EUSAR 2016; 11th European Conference on Synthetic Aperture Radar,
2016.

F. Cholewa, M. Wielage, P. Pirsch, and H. Blume, "“Synthetic aperture radar
with fast factorized backprojection: A scalable, platform independent archi-
tecture for exhaustive fpga resource utilization,” in 2017 International Radar
Conference, 2017.

M. Wielage, F. Cholewa, P. Pirsch, and H. Blume, “Parallelization strategies
for fast factorized backprojection sar on embedded multi-core architectures,”
in International Conference on Microwaves, Communications, Antennas and
Electronic Systems, 2017.

M. Wielage, F. Cholewa, C. Fahnemann, P. Pirsch, and H. Blume, “High
performance and low power architectures: Gpu vs. fpga for fast factorized
backprojection,” in 2017 Fifth International Symposium on Computing and
Networking (CANDAR), Nov 2017, pp. 351-357.

Intel. Specification of intel xeon e5-2670 proces-
sor. [Online]. Available: https://ark.intel.com/products/64595/
Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI

_ Specification of intel xeon phi 5120d coprozes-
sor. [Online]. Available: https://ark.intel.com/de/products/75801/
Intel-Xeon-Phi-Coprocessor-5120D-8GB-1_053-GHz-60-core

Hardkernel. Specification of odroid-xu4 multicore platform. [Online]. Available:
http://www.hardkernel.com/main/products/prdt_info.php

Samsung. Specification of samsung exynos 5 octa 5422 processor.
[Online]. Available: http://www.samsung.com /semiconductor/minisite/
exynos/products/mobileprocessor/exynos-5-octa-5422/

Arm. Specification of arm cortex-al5 processor. [Online]. Available:
https://developer.arm.com/products/processors/cortex-a/cortex-als

167

https://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/de/products/75801/Intel-Xeon-Phi-Coprocessor-5120D-8GB-1_053-GHz-60-core
https://ark.intel.com/de/products/75801/Intel-Xeon-Phi-Coprocessor-5120D-8GB-1_053-GHz-60-core
http://www.hardkernel.com/main/products/prdt_info.php
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://developer.arm.com/products/processors/cortex-a/cortex-a15

Bibliography

[66]
[67]
[68]

[69]

[70]
[71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

168

Specification of arm cortex-a7 processor. [Online]. Available:
https://developer.arm.com/products/processors/cortex-a/cortex-a7

T. Instruments. Specification of tms320c6678 dsp. [Online]. Available:
http://www.ti.com/product/ TMS320C6678

——. Specification of tms320c66x dsp. [Online]. Available: http:
//www.ti.com/lit/an/sprt580a/sprt580a.pdf

nVidia. Specification of nvidia jetson tx2. [On-
line]. Available: https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/

Arm. Specification of arm cortex-a57 processor. [Online]. Available:
https://developer.arm.com/products/processors/cortex-a/cortex-a57

A. Hast and L. Johansson, “Fast factorized back-projection in an fpga,” Master's
thesis, 2006.

J. V. Oldfield and R. C. Dorf, Field-programmable Gate Arrays: Reconfigurable
Logic for Rapid Prototyping and Implementation of Digital Systems. New
York, NY, USA: Wiley-Interscience, 1994.

M. Pfitzner, F. Cholewa, P. Pirsch, and H. Blume, “A flexible hardware archi-
tecture for real-time airborne wavenumber domain sar processing,” EUSAR,
9th European Conference on Synthetic Aperture Radar, pp. 28 —31, april 2012.

D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

A. J. Bernstein, “Analysis of programs for parallel processing,” IEEE Transac-
tions on Electronic Computers, vol. EC-15, no. 5, pp. 757763, Oct 1966.

M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier, “Parallel-beam
backprojection: An fpga implementation optimized for medical imaging,” The
Journal of VLSI Signal Processing, vol. 39, 2005.

M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. Comput., vol. 21, no. 9, pp. 948-960, Sep. 1972. [Online]. Available:
http://dx.doi.org/10.1109/TC.1972.5009071

L. Papula, Mathematik fiir Ingenieure und Naturwissenschaftler Band 1: Ein
Lehr- und Arbeitsbuch fiir das Grundstudium, ser. Viewegs Fachbiicher der
Technik. Vieweg+Teubner Verlag, 2011. [Online]. Available: http:
//books.google.de/books?id=vTuCSeEal6AC

D. Fowler and E. Robson, “Square root approximations in old
babylonian mathematics: Ybc 7289 in context,” Historia Mathematica,
vol. 25, no. 4, pp. 366 — 378, 1998. [Online]. Available: http:
/ /www.sciencedirect.com/science/article/pii/S0315086098922091

https://developer.arm.com/products/processors/cortex-a/cortex-a7
http://www.ti.com/product/TMS320C6678
http://www.ti.com/lit/an/sprt580a/sprt580a.pdf
http://www.ti.com/lit/an/sprt580a/sprt580a.pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://developer.arm.com/products/processors/cortex-a/cortex-a57
http://dx.doi.org/10.1109/TC.1972.5009071
http://books.google.de/books?id=vTuCSeEal6AC
http://books.google.de/books?id=vTuCSeEal6AC
http://www.sciencedirect.com/science/article/pii/S0315086098922091
http://www.sciencedirect.com/science/article/pii/S0315086098922091

(80]

(81]

(82]
(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

Bibliography

H. S. White, “Mathematics in india by kim plofker,” The Mathematical
Intelligencer, vol. 32, no. 2, pp. 68-70, Jun 2010. [Online]. Available:
https://doi.org/10.1007 /s00283-009-9115-1

B. Tirtha and V. Agrawala, Vedic Mathematics: Or, Sixteen Sim-
ple Mathematical Formulae from the Vedas (for One-line Answers to All
Mathematical Problems), ser. Hindu Vishvavidyalaya Nepal Rajya
Sanskrit series. Motilal Banarsidass, 1970. [Online]. Available:
https://books.google.de/books?id=iEOgAQAAIAAJ

R. E. Goldschmidt, “Applications of division by convergence,” 1964.

Taylor expansions and applications. Milano: Springer Milan, 2008, pp.
223-255. [Online]. Available: https://doi.org/10.1007/978-88-470-0876-2_7

J. Mason and D. Handscomb, Chebyshev Polynomials. CRC Press, 2002.
[Online]. Available: https://books.google.de/books?id=8FHfOP3to0UC

G. Baker, G. Baker, G. Baker, P. Graves-Morris, S. Baker, C. U.
Press, and G. Rota, Pade Approximants: Encyclopedia of Mathematics
and It's Applications, Vol. 59 George A. Baker, Jr., Peter Graves-Morris, ser.
Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1996. [Online]. Available: https://books.google.de/books?id=Kf2e2uzBZhoC

J. E. Volder, “The cordic trigonometric computing technique,” Electronic
Computers, IRE Transactions on, vol. EC-8, 1959.

J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings
of the May 18-20, 1971, Spring Joint Computer Conference, ser. AFIPS '71
(Spring). New York, NY, USA: ACM, 1971, pp. 379-385. [Online]. Available:
http://doi.acm.org/10.1145/1478786.1478840

P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of
cordic: Algorithms, architectures, and applications,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 56, 2009.

M. Pfitzner, F. Cholewa, P. Pirsch, and H. Blume, “Close-to-hardware error
analysis for real-time wavenumber domain processsing,” in 2012 International
Radar Conference, 2012.

M. Pfitzner, “Fpga-basierte hardware-architektur fuer die echtzeit-sar-
bilddatengenerierung mit integrierter motion compensation informationstech-
nik,” Ph.D. dissertation, 2015.

R. G. Lyons, Understanding Digital Signal Processing, 1st ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1996.

N. Pohl, T. Jaeschke, and M. Vogt, “Ultra high resolution sar imaging using an
80 ghz fmcw-radar with 25 ghz bandwidth,” EUSAR, 9th European Conference
on Synthetic Aperture Radar, 2012.

169

https://doi.org/10.1007/s00283-009-9115-1
https://books.google.de/books?id=iE0gAQAAIAAJ
https://doi.org/10.1007/978-88-470-0876-2_7
https://books.google.de/books?id=8FHf0P3to0UC
https://books.google.de/books?id=Kf2e2uzBZhoC
http://doi.acm.org/10.1145/1478786.1478840

Bibliography

(93]

[94]

[95]

[96]
[97]

[98]

[99]

[100]

[101]

170

D. T. Luc, Pareto Optimality. New York, NY: Springer New York, 2008, pp.
481-515. [Online]. Available: https://doi.org/10.1007/978-0-387-77247-9_18

M. Kock, S. Hesselbarth, and H. Blume, “Hardware accelerated design space
exploration framework for communication systems,” in SDR-WInnComm, 2013.

Xilinx. Specification of ml605 emulation platform. [Online]. Available:
http://www.xilinx.com/ml605

[Online]. Available: http://beecube.com/

Xilinx. Specification of vc707 emulation platform. [Online]. Available:
http://www.xilinx.com /vc707

M. Pfitzner, S. Langemeyer, P. Pirsch, and H. Blume, “A flexible real-time sar
processing platform for high resolution airborne image generation,” in 2011
International Radar Conference, vol. 1, oct. 2011, pp. 26 —29.

X. Corp., Virtex-6 FPGA Data Sheet, Xilinx Corp., 2014. [Online]. Available:
https://www.xilinx.com /support/documentation/data_sheets/ds152.pdf

S. V. Tsynko, “On the use of start-stop approximation for spaceborne sar
imaging,” in SIAM Journal on Imaging Sciences, vol. 2, no. 2, 2009.

A. Ribalta, “Omega-k algorithm without the stop-and-go approximation for
high resolution sar image reconstruction,” in Geoscience and Remote Sensing
Symposium (IGARSS), 2012.

https://doi.org/10.1007/978-0-387-77247-9_18
http://www.xilinx.com/ml605
http://beecube.com/
http://www.xilinx.com/vc707
https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf

Wissenschaftlicher Werdegang

10/2002-09/2007 Studium der Informatik
Universitat Liineburg (Diplom)
10/2007-09/2010 Studium der Informatik
Universitat Hannover (Master)
04/2011-06/2018 Wissenschaftlicher Mitarbeiter
Institut fir Mikroelektronische Systeme
Fachgebiet Architekturen und Systeme
an der Leibniz Universitat Hannover

171

	List of terms and abbreviations
	List of symbols
	1 Introduction
	1.1 A brief history of Radar and SAR
	1.2 Challenges and resulting motivation
	1.3 Research objectives
	1.4 Structure of this work

	2 SAR image processing
	2.1 SAR signal model
	2.2 Azimuth compression in frequency-domain
	2.3 Azimuth compression in time-domain
	2.3.1 Global backprojection algorithm (GBP)
	2.3.2 Fast factorized backprojection algorithm (FFBP)
	2.3.3 FMCW backprojection algorithm (start-stop-approximation)

	3 Related work
	3.1 Non dedicated architectures
	3.2 Dedicated architectures
	3.3 Evaluation and discussion

	4 Conceptual hardware design
	4.1 Field Programmable Gate Arrays (FPGAs)
	4.2 Principles for dedicated hardware implementation
	4.3 Analysis of the mathematical SAR model
	4.4 Analysis of processing dependencies
	4.4.1 GBP dependencies
	4.4.2 FFBP dependencies
	4.4.3 Conclusion of dependency analysis

	4.5 Analysis of streaming capabilities
	4.5.1 Memory access patterns (loop ordering)
	4.5.1.1 General considerations for ram access
	4.5.1.2 Considerations for gbp ram access optimization
	4.5.1.3 Considerations for gbp ram access reduction
	4.5.1.4 Considerations for ffbp ram access optimization
	4.5.1.5 Considerations for ffbp ram access reduction

	4.5.2 Inter loop streaming (read write balancing)
	4.5.2.1 gbp inter loop streaming
	4.5.2.2 ffbp inter loop streaming
	4.5.2.3 Inter loop streaming on module level

	4.5.3 Intra loop streaming (pipelining)
	4.5.3.1 gbp intra loop streaming
	4.5.3.2 ffbp intra loop streaming

	5 Hardware implementation
	5.1 Basic dedicated signal processing function units
	5.1.1 Range distance approximation
	5.1.2 Square root and trigonometric functions (CORDIC)
	5.1.3 Interpolation
	5.1.3.1 Evaluation of interpolation methods
	5.1.3.2 Implementation of interpolation

	5.1.4 Complex multiplication

	5.2 Dedicated GBP implementation
	5.2.1 GBP PE
	5.2.2 GBP control structure

	5.3 Dedicated FMCW implementation
	5.4 Dedicated FFBP implementation
	5.4.1 Analysis of factorization impact on image quality
	5.4.2 Mapper
	5.4.3 Factorizer
	5.4.4 Full ffbp system

	5.5 Integration of dedicated modules

	6 Results and evaluation
	6.1 Resource utilization
	6.1.1 GBP resource utilization
	6.1.2 FMCW resource utilization
	6.1.3 FFBP resource utilization

	6.2 Performance results
	6.2.1 GBP performance results
	6.2.2 FMCW performance results
	6.2.3 FFBP performance results

	6.3 Image results
	6.3.1 GBP image results
	6.3.2 FMCW image results
	6.3.3 FFBP image results

	6.4 Evaluation and discussion of results

	7 Summary

