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Abstract
The electrical conductivity of solid-state matter is a fundamental physical property and can be
precisely derived from the resistance measured via the four-point probe technique excluding
contributions from parasitic contact resistances. Over time, this method has become an
interdisciplinary characterization tool in materials science, semiconductor industries, geology,
physics, etc, and is employed for both fundamental and application-driven research. However, the
correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the
homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific
characteristics are intimately related to technical constraints such as the probe geometry and size of
the sample. In particular, the latter is of importance for nanostructures which can now be probed
technically on very small length scales. On the occasion of the 100th anniversary of the four-point
probe technique, introduced by Frank Wenner, in this review we revisit and discuss various
correction factors which are mandatory for an accurate derivation of the resistivity from the
measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative
size and geometry of the sample with respect to the contact assembly are considered. We are also
able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable
probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a
four-tip STM/SEM system. We are aware that this review article can only cover some of the most
important topics. Regarding further aspects, e.g. technical realizations, the influence of
inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

Keywords: bulk and surface resistivity, four-point probe techniques, correction factor,
nanostructures
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1. Introduction

The specific electrical resistance or resistivity p of a solid
represents one of the most fundamental physical properties
whose values, ranging from 1078 to 10! Qcm [1], are used
to classify metals, semiconductors and insulators. This
quantity is extremely important and is variously used for
the characterization of materials as well as sophisticated
device structures, since it influences the series resistance,
capacitance, threshold voltage and other essential parameters
of many devices, e.g. diodes, light emitting diodes (LEDs) and
transistors [2].

From a fundamental point of view, the precise
measurement of the resistance is closely related to other
metrological units. In general, when an electric field E is
applied to a material it causes an electric current. In the
diffusive transport regime, the resistivity p of the (isotropic)
material is defined by the ratio of the electric field and the
current density J:

o=E/J. (1.1)

Thereby, the resistivity of the material is measured in €2 cm,
the electric field in Vcm™! and the current density in A cm™2.
Experimentally, a resistance R is deduced from the ratio of an
applied voltage V and the current /. Only when the geometry
of the set-up is well-known can the resistivity be accurately

calculated, as we will show below.

As shown in figure 1(a), the resistance R is determined
by measuring the voltage drop V between two electrodes,
which impinge a defined current / into the sample. However,
the identification of this value with the resistance of the
sample is usually incorrect as it intrinsically includes the

contact resistances R. at the positions of the probes, which
are in series with the resistance of the sample. This problem
was encountered and solved for the first time in 1915 by
Frank Wenner [3], while he was trying to measure the
resistivity of the planet Earth. He first proposed an in-
line four-point (4P) geometry (figure 1(b)) for minimizing
contributions caused by the wiring and/or contacts, which is
now referred in the geophysical community as the Wenner
method [4,5]. In 1954, almost 40 years later, Leopoldo
Valdes used this idea of a 4P geometry to measure the
resistivity p of a semiconductor wafer [6] and from 1975
this method was established throughout the microelectronics
industry as a reference procedure of the American Society
for Testing and for Materials Standards [7]. For the sake
of completeness, the Schlumberger method will also be
mentioned here. As early as 1912 he proposed an innovative
approach to map the equipotential lines of soil, however, his
approach relied on only two probes. Eight years later he also
measured Earth’s resistivity using a 4P probe configuration.
In contrast to Wenner, the Schlumberger method uses non-
equidistant probe spacings. The interested reader is referred
to [8].

Technically, if the voltage drop V between the two inner
contacts is measured while a current [ is injected through
the two outer contacts of the proposed in-line 4P geometry,
the ratio V/I is a measure of the sample resistance R only
(providing that the impedance of the voltage probes can be
considered to be infinite).

Having this in mind, the question remains of how
the resistivity p of the material can be determined from
the resistance R. This review summarizes the different
mutual relations between these two quantities for isotropic
and anisotropic materials in various dimensions. Thereby,
the description covers various geometric configurations
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Figure 1. Schematics of (a) a two-point probe and () a collinear 4P probe array with equidistant contact spacing.

of the voltage and current probes, e.g. collinear and
squared arrangements. As we will show the 4P probe
resistivity measurements are intrinsically geometry-dependent
and sensitive to the probe positions and boundary conditions.
The relationship between R and p is defined using details of
the current paths inside the sample.

We will start with the recapitulation of homogeneous
3D semi-infinite bulk and infinite 2D systems which can be
exactly solved. Thereafter, the effect of limited geometries
is taken into account for technically relevant cases (e.g. finite
circular and square samples) followed by the basics of the
van der Pauw method, which can be applied to thin films
of completely arbitrary shapes. Finally, we will revisit
the regime of anisotropic phases based on the theoretical
approaches of Wasscher and Montgomery. The careful re-
analyses and applications of their methods allow us to derive
for the first time the correction factors for a contact assembly
inside a circular lamella hosting an anisotropic 2D metallic
phase. Our theoretical conclusions will be corroborated and
illustrated by the latest experiments performed using a four-
tip scanning tunneling microscopy (STM) combined with a
scanning electron microscopy (SEM) either in our group or by
our colleagues.

We want to emphasize that this review highlights the
progress made in the field of geometrical correction factors
over the last century and their latest applications in low-
dimensional, anisotropic and spatially confined electron gases.
The inclusion of further aspects would definitely go beyond
the constraints of this journal. As mentioned, this technique
is used in related disciplines and readers with a geophysical
background might be interested in [9,10]. For technical
aspects please see, e.g. [11-13]. Readers working in the
field of surface science are referred to [14, 15], which address
further aspects of semiconductor surface conductivity. At
this point we would like to acknowledge the contributions
from our colleagues who also work in the field of low-
dimensional systems [15—-17]. In comparison to the diffusive
transport regime, further attention needs to be paid to probes
interacting with ballistic systems, where the probes may be
either invasive or non-invasive in character [18]. In this
review we restrict ourselves to homogeneous phases. The
conclusions, of course, change drastically if inhomogeneities
are present, as mentioned in [19].

2. Four-probe methods for isotropic semi-infinite 3D
bulks and infinite 2D sheets

For the ideal case of a 3D semi-infinite material with the four
electrodes equally spaced and aligned along a straight line (a
4P in-line array, see figure 1(b)), the material resistivity is given
by [6]

2.1

where V is the measured voltage drop between the two
inner probes, I is the current flowing through the outer
pair of probes and s is the probe spacing between the two
probes. Equation (2.1) can be easily derived considering
that the current +17, injected by first electrode in figure 1(a),
spreads spherically into a homogeneous and isotropic material.
Therefore, at a distance r; from this electrode, the current
density J = I/2rr? and the associated electric field, i.e. the
negative gradient of the potential, can be expressed as
pl dv

E(m)=pl=-—=-

—_—. 2.2
271r12 dr 2.2)

By integrating both sides of (2.2), the potential at a point P
reads

v ol (™ dr Ip
dV = —— - = V(P) = . 2.3)
0 o r

21 2mry

For the scenario shown in figure 1(a), the voltage drop is then
given by the potential difference measured between the two

probes, i.e.
Ip Ip _ Ip (1 1
27 271y T om r )
This concept can be easily extended to 4P geometries where the
problem of contact resistances (see above) is usually avoided.
According to figure 1(b), the concept presented above can be

generalized and the voltage drop between the two inner probes
of a 4P in-line array is

Ip 1 1 1 1
Vv=Vv,-Vi=—I||———])-———)]|, @.)5)
2 ST 5 $3 S84

which, for the special case of an equally spaced 4P probe
geometry (with s; = s4 = s and s, = s3 = 2s), is equivalent
to (2.1).

2.4)
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Figure 2. Voltage V () and current density J () profiles for a semi-infinite 3D material and infinite 2D sheet.

In order to correctly calculate the resistivities from the
resistances other aspects are of importance. For instance, when
the thickness ¢ of the sample is small compared to the probe
spacings, i.e. for simplicity when ¢ « s (see section 3.1
for a more accurate definition), the semi-infinite 3D material
appears as an infinite 2D sheet and the current can be assumed
to spread cylindrically instead of spherically from the metal
electrode as depicted in figure 2. The current density in this
case is given by J = I /2xrt, which yields an electric field of

pl dv

= 2nrt dr

(2.6)

Repeating the same steps as for (2.3)—(2.5), a logarithmic
dependency is obtained for the voltage drop between the two
inner probes:

I
Ve=V,—Vs=—"In <%> . 2.7

2t S154

In the case of an equally spaced in-line 4P geometry the bulk
resistivity is given by

line __ wt'V

= ——, 2.8
2D In2 I (2.8)

i.e. the resistance is not dependent on the probe distance which
directly underlines the 2D character of the specimen. In case
of a homogenous and finitely thick sample the resistivity can
be assumed to be constant, thus the bulk resistivity is often
replaced by the so-called sheet resistance R, defined as
o
R =~ (€2). 2.9
This quantity is also used to describe the spatial variation of
the dopant concentration in non-homogeneously doped thick
semiconductors (e.g. realized by ion implantation or diffusion).
Note that the dimension of the sheet resistance is also measured
in ohms, but is often denoted by Qsq~! (ohms per square) to
make it distinguishable from the resistance itself. The origin
of this peculiar unit name—ohm per square—relies on the fact
that a square sheet with a sheet resistance of 1 Qsq~' would
have an equivalent resistance, regardless of its dimensions.
Indeed, the resistance of a rectangular rod of length / and
cross section A = wt can be written as R = pl/A, which
immediately simplifies to R = Ry, for the special case of a
square lamella with sides I = w (see figure 3).
The four electrodes are often arranged in a square
configuration rather than along a straight line. Indeed, the

Figure 3. Schematic of a square 4P probe configuration with
s1 =854 =sand s, =853 = V2s.

Table 1. Bulk resistivity p or sheet resistance Ry, for the case of
linear and square arrangements of four probes on a semi-infinite
3D material, infinite 2D sheet and 1D wire.

Sample shape 4P in-line 4P square
2 Vv
3D bulk? 2ws — LI
I 221
TV 2n V
2D sheet” —— ——
In2 1 In2 [
Vv
1D wire* ; — —
s 1

# Bulk resistivity p.
® Sheet resistance Ry, Y, = ma? wire section.

square arrangement has the advantage of requiring a smaller
area (the maximum probe spacing is only +/2s against the
3s for the collinear arrangement) and reveals a slightly
higher sensitivity (up to a factor of two, see below). The
corresponding expression for the bulk resistivity p (sheet
resistance Rg,) for the 4P square configuration on a semi-
infinite 3D bulk is easily derived from (2.5) ((2.7) for the
infinite 2D sheet) with s; = s4 = s and s, = s3 = /2§
(see figure 3).

All relations derived so far for the infinite 3D and 2D
systems are summarized in table 1. From these equations it
is evident that the measured resistance R does not depend on
the probe spacing for the 2D case (Ryp  p - In2 = constant),
while it decreases as s~! when increasing the probe spacing
for the 3D case (Ryp o p/s). Naively, one would expect
that the resistance should increase as the paths for the electric
charges are increased, irrespective of the dimension. This
counter-intuitive scenario can be rationalized by inspection of
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Figure 4. Diagrams of the current flow pattern in (a) an infinite 2D sheet and () a semi-infinite 3D material.
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Figure 5. (a) Two-probe resistance—corrected for the average wire section X ,.—versus probe spacing s of a free-standing GaAs NW. The
solid red line is the linear best fit of the experimental data and shows the expected s dependence for a quasi-1D system. The inset in (a) is a
false-color SEM image (60 000 x magnification, 45°-tilt view) of a freestanding GaAs NW with two STM tips positioned on its lateral

facet [20]. (b) A photograph of a multi-probe STM system mounted in the focus of an SEM for the navigation and placement of the

tungsten tips.

the sketches shown in figure 4 (for a linear arrangement of
the probes): for an infinite 2D sheet (figure 4(a)) the expected
increase of the resistance (as in the 1D case, see below), is
exactly compensated by the current spreading in the direction
perpendicular to the probes. In the 3D case this effect is
overcompensated by the spread into the sample, which causes
the s~! probe dependence.

In contrast, a linear increase of the resistance with
increasing probe distance is found only for the 1D case, where
the current density is constant and independent of the distance
s from the electrodes that impinge the electric current. Hence,
for a circular wire with radius a, much smaller than the probe
spacing (i.e. for a < s), the wire appears as quasi-1D and the
current density simply reads J = I/wa®. From (1.1), it is
easy to see that the resistance is now proportional to the probe
spacing and equals Rjp = ps/ma® (cf table 1). Note that the
conclusions drawn so far are valid both on the macroscopic as
well as the microscopic scales.

As an example of a 1D system, figure 5(a) shows
the corrected two-probe resistance R X Xaye versus the
probe spacing s of a semiconductor GaAs nanowire
(NW) [20,21]. The transport measurements are carried out
using a multi-probe STM system (figure 5(b)) by placing, with

nanometric precision, two tungsten tips on a freestanding NW
(i.e. vertically oriented with respect to the GaAs substrate).
The NW is 4 um long, while its radius a decreases from 60
to 30 nm moving from the NW pedestal to the top and is at
least 10 times smaller than the probe spacing (i.e. a < s).
We point out that the resistance of the GaAs NW is orders
of magnitude larger than the contact resistances in the present
case and that a two-probe configuration is in our case sufficient
to infer the inherent resistivity of the NW. Examples of four-
probe measurements on 1D structures can be found in [22-25].

Furthermore, in order to illustrate the 2D/3D transition
due to the finite thickness of the sample, figure 6 shows the
resistance measured on an n-type Si(l 11) wafer (nominal
resistivity of 5-15 Qcm, 4 x 15x0.4 mm? in size) as a function
of the probe spacing s [26]. The experimental data points were
recorded again using a similar nano-4P STM and follow a s !
dependence, expected for a semi-infinite 3D semiconductor,
as long as the probe spacing s is within 10-60 pm, i.e. small
compared to the sample thickness. The resistivity is around
7 Qcm in accordance with (2.1) [26]. In contrast, for larger
probe spacings, the current penetrates deeper into the crystal
reaching the bottom and edges of the wafer. The current pattern
becomes compressed and the resistance increases.
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Figure 6. Electrical resistance of a Si(1 1 1) wafer crystal measured
using a nano-4P STM as a function of the probe spacing. The two
diagrams display the current flow pattern inside the Si(1 1 1) wafer
for different probe spacings. The solid line shows the expected s~!
dependence for a semi-infinite 3D material, while the dashed curve
is just a guide for the eye. Only experimental data associated with
the bulk states (i.e. for probe-spacings larger than 10 ym) are
reproduced from [26]. Electrical transport measurements using a
smaller probe spacing are dominated by semiconductor surface
states and are intentionally not reported here.

Conventional macroscopic 4P set-ups for wafer testing
typically reveal probe distances in the millimeter range, which
are comparable to the overall specimen dimensions [27]. The
effect of confinement for the current paths is not covered by the
equations derived so far. The following sections will introduce
stepwise the so-called correction factors for thin/thick films
which are necessary to precisely reveal the resistivities of both
isotropic and anisotropic materials in various length scales.

3. Correction factors for finite isotropic samples

Real specimens are not infinite in either the lateral or vertical
directions and the equations in table 1 need to be corrected for
finite geometries. Equivalently, correction factors also become
necessary if the probes are placed close to the boundary of a
sample, as in the case of truly nano-scaled objects, and/or the
probe spacing itself is comparable to the size of the samples.
In such cases of finite and arbitrarily shaped samples the bulk
resistivity is generically expressed as

1%
p=F—,

7 3.1)

where F = F- F,- F3 is a geometric correction factor, which is
usually divided into three different factors taking into account
the finite thickness of the sample (F}), the alignment of the
probes in the proximity of a sample edge (F>) and the finite
lateral width of the sample (F3). Formally, F is dimensionally
equivalent to a length, however, the correction factors Fy, F;
and F5 are defined as dimensionless (see below). Further
correction factors related to the cases of anisotropic and finite
materials will be introduced and discussed in section 5.

10
1
w
= 0.1
w
0.01
0.001
0.001 0.01 0.1 1 10 100
t/s

Figure 7. The solid curve in the figure is the correction factor F;
versus normalized sample thickness (z/s), where ¢ is the wafer
thickness and s is the probe spacing. The dashed lines represent the
two limit cases, i.e. F; =1forz/s < 1/5 and

Fy=21In2 (s/t) fort/s > 4.

The evaluation of the correction factors Fy, F, and Fj3
has triggered many studies. Several mathematical approaches
have been used over a time span of almost 40 years, such as
the method of images [6,28-30], conformal mapping theory
[31-33], solving Laplace’s equations [34, 35], the expansion of
the Euler—Maclaurin series [36] and the finite element method
(FEM) [37], to accurately determine the values of F;_; » 3 for
different geometric configurations and probe arrangements.

3.1. Samples of finite thickness: the correction factor F;

The resistivity of an infinite sheet of finite thickness ¢ can be
formally expressed as

p:Rn}?eZD't'Fl E — LK .[.Fl E S (32)
sh— ) In2 1 s

where RI", s the sheet resistance of an infinite 2D
sheet (measured using the in-line geometry). F| is now a
dimensionless function of the normalized sample thickness
(¢/s) which reduces to 1 as ¢ approaches zero (at the moment
we assume that F, = F3 = 1). A detailed derivation of the
thickness correction factor F) (¢/s) was given for the first time
by Valdesin 1958 [6] using the method of images. This method
is the first derived and to date is still the most frequently used
for the calculation of the correction factors F'. The factor F,
is also explicitly evaluated through this method as we will
show below. However, this method results in a power series
expression for Fj so it is not really suitable for numerical
computation. Instead, the expression found by Albers and
Berkowitz in 1985 [35] through an approximated solution of
Laplace’s equation will be reported here. For the case of a
4P in-line array on an infinite sheet of thickness ¢ (electrically
decoupled from a substrate), the correction factor F (t/s) can
be written as [35]

B In2
"~ In{[sinh (¢/s)]/[sinh (£ /25)]}"

(3.3)

F



J. Phys.: Condens. Matter 27 (2015) 223201

Topical Review

1.0
(a) 1“’ 0.9
Semiconductor .|+ Boundary 0.8
1 2 3 4 5 6 Qo-,v
T 0.
«~ MO0 Or0 |0 rO &
«© |4—>|4—>|<—>I4—><—>|4—>| 0.6
s s s d d 3s
0.5
ioc 0.4

<= Specimen
o0

do
parallel

[o]
(o]

(o]
«— —gd

perpendicular

0000
—|d

d/s

Figure 8. (a) Diagram of a 4P in-line array perpendicular to a distance d from a non-conducting boundary of a semi-infinite 3D specimen.
Probes 1 to 4 are real while the tips 5 and 6 are imaginary and are introduced to mimic the presence of the non-conducting edge
mathematically. (b) Correction factor F, versus normalized distance d /s from the boundary (d = edge distance). The solid (dashed) curve
refers to the case of four probes perpendicular (parallel) to the sample edge.

A quite similar dependence is obtained for the case of a 4P
square configuration [34]. The only experimental verification
of the latter formula obtained so far was by Kopanski et al
in 1990 [38]. In 2001, Weller [36] re-calculated F; through
an expansion of the Euler—Maclaurin series, confirming the
validity of the (3.3).

Figure 7 shows a plot of the correction factor F; and
nicely demonstrates that for /s > 1 the curves follows
Fi(t/s) =~ 2 1In2(s/t), thus (3.2) reduces to the expression
for a semi-infinite 3D specimen. On the other hand, for
thin samples, i.e. for /s < 1, the term sinh(z/s) of (3.3)
can be approximated by t/s. F; becomes unity and (3.2)
reduces to the expression of an infinite 2D sheet (see section 2,
table 1). This approximation holds until /s < 1/5 (with
an approximation error around € ~ 1%), which means that
real semiconductors with a finite thickness ¢ can be considered
to be thin and approximated by a quasi-2D sheet until this
condition is satisfied. Similarly, the sample can be considered
of infinite thickness if /s > 4 (¢ =~ 1%).

3.2. Probes in the proximity of a single sample edge: the
correction factor F»

The correction factor F, accounts for the positioning of
the probes in the proximity of an edge on a semi-infinite
sample. Albeitthisidealized configuration can be realized only
approximately, the equally spaced 4P in-line configuration
with a distance d from a non-conducting boundary, as sketched
in figure 8(a), serves nicely as a reference model to illustrate
the concept of image probes, which is used extensively in the
following section. The non-conducting (reflecting) boundary
is mathematically modeled by inserting two current image
sources of the same sign at a distance —d for current probe
4 and —(d + 3s) for probe 1, respectively [6]. Because of
this mathematical trick, (2.3) still holds for a semi-infinite 3D
specimen and the potential at probe 2 is given by

_ e
T 27

V, 34

1 1 1 N 1
s 25 2d+s 2d+5s)°

A similar equation is obtained for the potential at probe 3, so
the total voltage drop V = V, — V3 between the two inner
probes reads
Ip s s 1 1
V=—11+ — — + ,
2ms 2d+s 2d+2s 2d+4s 2d+5s
3.5
and the bulk resistivity can be writtenas p = 2ws -(V/I)-F, =

pg]‘;e - F5 (d/s) with

F=(1+-2
2d +s

K 1 N 1
2d+2s 2d+4s 2d+5s)°

(3.6)

The case of a 4P in-line geometry oriented parallel to a non-
conducting boundary is solved in the same way. More details
can be found in Valdes’ original paper [6].

The dimensionless correction factor F, (d/s) for both
geometric configurations (i.e. perpendicular and parallel to
a non-conducting boundary) are plotted in figure 8(b). It
is evident that as long as the probe distance from the wafer
boundary is at least four times the probe spacing, the correction
factor F, reduces to unity (with an error of around € ~ 1%).
This also explains why the data points in figure 6 follow the
tendency for a semi-infinite 3D semiconductor when the probe
spacing s is in the 10-100 pm range.

For instance, if the 4P array is centered on the Si wafer,
which is 4 x 15 x 0.4 mm? in size, the probe distance from the
closest sample edge is about thirty times the probe spacing and
F, = 1 for each of the four edges, while the thickness ¢ remains
at four or more times the probe spacing, then F; & 2s In2/z.
The resistivity equation (3.1) thus clearly reduces to that for a
semi-infinite 3D sample.

It is worth noting that the correction factor F, reaches
its minimum (F,).;, = 1/2 when the 4P array is aligned
parallel along the sample edge. This means that the measured
resistance R can increase up to a factor of two compared to the
case of a semi-infinite 3D sample by moving the 4P array from
a faraway location towards the sample edge. Qualitatively, this
behavior can be easily rationalized since the current paths are
restricted to one half of the semi-infinite 3D sample.
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(b)

Figure 9. Schematics of a (a) 4P probe in-line and (b) square array on a finite circular slice. The current sources outside the circle, namely
E'F’in (a) and H'B’ in (b), represent two additional image dipoles introduced for describing the effect of the finite boundary.

3.3. Samples of finite lateral dimension: the correction
factor F;

The condition for F tobe unity (/s < 1/5) iseasily fulfilled in
amacroscopic 4P set-up with probe spacings in the millimeter—
centimeter range [27] on wafers with typical thicknesses of
200-300 um. Furthermore, the case of 4P probes positioned
close to a single edge of the sample is also an idealized
approximation and the correction factor F; is not sufficient for
a realistic description. Therefore, a further correction factor
F3 is needed, which takes into account the entire effect caused
by all lateral boundaries of the sample.

In this section the correction factor F3 will be discussed
for two special geometric configurations which are, however,
representative for a variety of practical situations, i.e. an in-
line or square 4P probe geometry inside a finite circular slice
(section 3.3.1) and a square 4P probe array inside a finite
square (section 3.3.2). These configurations are usually used
for semiconductor wafer or integrated circuit characterizations
where the test windows are usually squares or rectangles.

3.3.1. In-line and square 4P probe geometries inside a
finite circular slice. In 1958, Smith [29] first calculated the
correction factor F3 for an in-line 4P probe array placed
in the center of a circular sample using the concept of
current image sources. Albert and Combs [39], and
independently Swartzendruber [40], obtained in 1964 the same
result by applying the conformal mapping theory [41] and
transforming the circular sheet into an infinite half plane
(see section 2). Here, we report the more general solution
proposed by Vaughan [42], which is also valid for a squared
4P configuration and displacement of the 4P probes away
from the sample center. The model is based on the following
assumptions: (i) the resistivity of the material is constant
and uniform (an isotropic material), (ii) the diameter of the
contacts should be small compared to the probe distance (point
contacts), (iii) the 4P probes are arranged in a linear (equally
spaced) or square configuration and (iv) the sample thickness

is much smaller than the probe spacing (/s < 1/5: Fy =1)
and thus equivalent to a quasi-2D scenario.

Likewise, the mathematical approach used by Vaughan
is based on the method of images: the resistivity formula
for an infinite 2D sheet is thus extended to the case of a
finite circular quasi-2D sample by introducing an appropriately
located current image dipole for describing the effect of a
finite boundary. This concept finally adds an additional term
to (2.7) (with sy = s4 = s and 5, = s3 = 2s for an in-
line array) yielding the following voltage drop between the
inner probes (V, = H, V3 = G) for the situation shown in
figure 9(a):

Ip F'H-E'G
V = V2 — V3 =—(Id+In—onn——]. (37)
2t F'G-E'H

Now, for a 4P probe in-line geometry with an inter-probe
spacing of 2s’(=s) on a circle of diameter d, where the the
mid-point of the 4P geometry (E, H, G, F) is displaced at a
distance as’ (ﬂs’) in the x— (y—) direction with respect to
the circle center (see figure 9(a) for reference), (3.7) can be
written as [42]

Rin-line 4P _ (K) o 27
h 1) In(4Lyp)’

where the term L, g is a function of the position of the 4P
probes

(3.8)

Log= [[EHR4—(E+H—16) R>+1]
x[FGR4—(F+G—16)R2+1]:|
x| [EGR*—(E+G —4)R*+1]

-1
x [FHR4—(F+H—4)R2+1]:| ., (3.9

with E(F) equal to [3+(—)oz]2 + ,32, G(H) equal to
[1+(=)al+p%and R = s/d.
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Figure 10. Correction factor F3_. versus normalized wafer diameter d / s for (a) an in -line and (b) a square 4P probe array on a finite
circular slice (s is the probe spacing for the in-line configuration and the square edge for the square configuration, respectively).

Furthermore, when the linear probe array is centered with
respect to the circular sample (i.e. « = 8 = 0), (3.9) is greatly
simplified yielding the same result for the correction factor
Fin—line 4P £5und by Smith [29]:

3—circle

in—line 4P _ Vy 27 _ pin-line4p T v
sh—circle Ji In (4LOO) 3—circle In2 Ji
o In2
Fm—_lme 4P — .
= Ma-cire In2 +1In {[(d/5)* +3]/[(d/$)* — 3]}

(3.10)

Figure 10(a) shows a plot of the latter equation and clearly
reveals that, ford /s > 25, F;':ilg‘ffp ~ 1 (approximation error
€ X 1%) thus, as expected, the sheet resistance Réiﬁ‘e reduces
to the expression of (2.8) for an in-line array of four probes
inside an infinite 2D sheet. As a rule of thumb, a finite sample
can be considered as infinite when the overall width is at least
one order of magnitude larger than the half probe spacing. For
instance, for a4 inch wafer, the maximum probe spacing should
not exceed 5mm. It is worth noting that F;E;ﬁgffp reaches
a minimum value of (F;“__C}igleeélp)mm = 1/2 (like F,) when
the external current probes lie on the sample circumference
(d = 3s). In other words, the measured resistance increases
by a factor of two by increasing the probe distance and moving
the 4P array from the center (d > s) to the sample periphery
(d = 3s). For d < 3s, the correction factor Fg‘:gigfew (d/s)
does not have a physical meaning.

The case of a 4P square geometry, as shown in figure 9(b),
can be solved in an analogous way [42]. Again, a current
image dipole is introduced to maintain the necessary boundary
conditions and an additional term appears in (2.7) (where
s1 =584 =sand s, =53 = ﬁs):

B'D-H'C
In2+In———11. (311)
B'C-H'D

Ip

V=V,—-V3=
2 3 2wt

Vaughan [42] has shown that the latter formula can be still
written in the following form:

quua.re 4P

\% 21
weir _ (VY 21 3.12
sh—circle <[ > In (2Sot,/3) ( )

where the parameter S, g is again a non-trivial function of
the square 4P array displacement (as’, Bs’) with respect to the
circle center. Further details can be found in Vaughan’s original
paper [42]. Here, we restrict ourselves to the case of a 4P
square array placed in the center of the circle (i.e.« = 8 = 0),

so that the correction factor F;iuc?:;: P reduces to
quuarfe 4P — K . 2—7[ — quue}re 4P . 2_7[ . Z
sh—circle Ji In (2 SO,O) 3—circle In2 Ji
square 4P In2
= F 3—circle

2+ 1In{ [@/)? +2]"/[@/s)* + 4]}
(3.13)

The correction factor is plotted in figure 10(b) as a function
of d /'s. As is obvious, F;"% ¥ (d/s) ~ 1 for d/s >
25 (approximation error € ~ 1%) and the sheet resistance
converges, as expected, to the expression for an infinite 2D
sheet (see table 1). On the other hand, when the 4P probes
are located on the edge of the circular sample for d/s = /2,

plavare 4 /2 and the sheet resistance is

3—circle
quuare 4p _ T Vv
sh—4P on circle — n2 7 :

This equation refers to the case of 4P probes lying on
the circumference of a circular sample and remains valid
for an arbitrarily shaped sample provided with a symmetry
plane. We will show this explicitly by introducing the
van der Pauw theorem in section 4. Moreover, since the
sheet resistance represents an intrinsic material property, both
expressions (3.10) and (3.13) for R 4P apg I+
reveal that the current densities are increased when the 4P probe
array is placed inside a finite sample (where F3 < 1), yielding
to a larger voltage drop V and thus to a larger resistance.
Naturally, this would result in an apparently increased sheet
resistance (up to a factor of two), if we were to simply apply
the formula of table 1. Finally, although formally equal
to (2.8), (3.14) should not be confused with that for an in-line
arrangement of 4P probes on an infinite sheet.

The method of images can be also applied to the case of

a rectangular 4P array inside a circle. Interested readers are
Frectangle 4P
sh—circle

(3.14)

referred to appendix D, where the correction factor
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Figure 11. Schematic of a 4P square array centered with respect to a square lamella () and conformally mapped onto a circular lamella (b).
The points H;, By, C, D, in the circle correspond to the contact points H, B, D, C of the 4P square array inside the square lamella,
although their position is only illustrative of the mapping procedure. Hj, Bj is the current image dipole that needs to be introduced for

describing the circular boundary. (c) Correction factor Fﬁi:':ﬁ:

for a 4P square array on a finite square lamella as a function of s / d ratio

and ¢ tilt angle. Here, s and d are the side lengths of the square 4P array and lamella, respectively.

for a rectangular 4P array placed in the center of a circular
lamella is explicitly derived, further generalizing the results of
Vaughan’s theory [42].

3.3.2. A square 4P probe array inside a finite square slice.
The case of a square 4P probe array inside a finite square
sample is mathematically a non-trivial scenario. In 1960,
Keywell and Dorosheski [28] first determined the correction
factor F3 by using the method of images. The authors correctly
introduced an infinite series of current image sources to model
the boundaries of the square. However, the result suffers
from convergence problems, which were finally overcome by
Buehler and Thurber [30] in 1977 by solving the problem in
the complex plane.

Here, we concentrate on an alternative approach for
calculating F3 on a square sample, which was proposed by
Mircea in 1964 [31] and relies on the so-called conformal
mapping theory. Interested readers are referred to [41,43]
for a detailed description of this theory. In brief, the method is
based on a conformal transformation that merely maps a square
specimen onto a circular geometry for which the problem has
already been solved [31].

According to the conformal mapping theory, each point
B (x, y) of asquare can be mapped uniquely to a point B; (7, 0)
of a circle as illustrated in figure 11. Consequently, if H,
B, C, D are the 4P probes placed on a square lamella, we
can determine four corresponding points H;, B;, Cy, D; on a
circular lamella. For this scenario of four probes on a circle,
a formula equivalent to (3.11) can be written and the voltage
drop between V, (= D;) and V3 (= Cy) reads

) , (3.15)

(