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Abstract
The electrical conductivity of solid-state matter is a fundamental physical property and can be
precisely derived from the resistance measured via the four-point probe technique excluding
contributions from parasitic contact resistances. Over time, this method has become an
interdisciplinary characterization tool in materials science, semiconductor industries, geology,
physics, etc, and is employed for both fundamental and application-driven research. However, the
correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the
homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific
characteristics are intimately related to technical constraints such as the probe geometry and size of
the sample. In particular, the latter is of importance for nanostructures which can now be probed
technically on very small length scales. On the occasion of the 100th anniversary of the four-point
probe technique, introduced by Frank Wenner, in this review we revisit and discuss various
correction factors which are mandatory for an accurate derivation of the resistivity from the
measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative
size and geometry of the sample with respect to the contact assembly are considered. We are also
able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable
probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a
four-tip STM/SEM system. We are aware that this review article can only cover some of the most
important topics. Regarding further aspects, e.g. technical realizations, the influence of
inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.
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nanostructures
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1. Introduction

The specific electrical resistance or resistivity ρ of a solid
represents one of the most fundamental physical properties
whose values, ranging from 10−8 to 1016 � cm [1], are used
to classify metals, semiconductors and insulators. This
quantity is extremely important and is variously used for
the characterization of materials as well as sophisticated
device structures, since it influences the series resistance,
capacitance, threshold voltage and other essential parameters
of many devices, e.g. diodes, light emitting diodes (LEDs) and
transistors [2].

From a fundamental point of view, the precise
measurement of the resistance is closely related to other
metrological units. In general, when an electric field E is
applied to a material it causes an electric current. In the
diffusive transport regime, the resistivity ρ of the (isotropic)
material is defined by the ratio of the electric field and the
current density J :

ρ = E/J. (1.1)

Thereby, the resistivity of the material is measured in � cm,
the electric field in V cm−1 and the current density in A cm−2.
Experimentally, a resistance R is deduced from the ratio of an
applied voltage V and the current I . Only when the geometry
of the set-up is well-known can the resistivity be accurately
calculated, as we will show below.

As shown in figure 1(a), the resistance R is determined
by measuring the voltage drop V between two electrodes,
which impinge a defined current I into the sample. However,
the identification of this value with the resistance of the
sample is usually incorrect as it intrinsically includes the

contact resistances Rc at the positions of the probes, which
are in series with the resistance of the sample. This problem
was encountered and solved for the first time in 1915 by
Frank Wenner [3], while he was trying to measure the
resistivity of the planet Earth. He first proposed an in-
line four-point (4P) geometry (figure 1(b)) for minimizing
contributions caused by the wiring and/or contacts, which is
now referred in the geophysical community as the Wenner
method [4, 5]. In 1954, almost 40 years later, Leopoldo
Valdes used this idea of a 4P geometry to measure the
resistivity ρ of a semiconductor wafer [6] and from 1975
this method was established throughout the microelectronics
industry as a reference procedure of the American Society
for Testing and for Materials Standards [7]. For the sake
of completeness, the Schlumberger method will also be
mentioned here. As early as 1912 he proposed an innovative
approach to map the equipotential lines of soil, however, his
approach relied on only two probes. Eight years later he also
measured Earth’s resistivity using a 4P probe configuration.
In contrast to Wenner, the Schlumberger method uses non-
equidistant probe spacings. The interested reader is referred
to [8].

Technically, if the voltage drop V between the two inner
contacts is measured while a current I is injected through
the two outer contacts of the proposed in-line 4P geometry,
the ratio V /I is a measure of the sample resistance R only
(providing that the impedance of the voltage probes can be
considered to be infinite).

Having this in mind, the question remains of how
the resistivity ρ of the material can be determined from
the resistance R. This review summarizes the different
mutual relations between these two quantities for isotropic
and anisotropic materials in various dimensions. Thereby,
the description covers various geometric configurations
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Figure 1. Schematics of (a) a two-point probe and (b) a collinear 4P probe array with equidistant contact spacing.

of the voltage and current probes, e.g. collinear and
squared arrangements. As we will show the 4P probe
resistivity measurements are intrinsically geometry-dependent
and sensitive to the probe positions and boundary conditions.
The relationship between R and ρ is defined using details of
the current paths inside the sample.

We will start with the recapitulation of homogeneous
3D semi-infinite bulk and infinite 2D systems which can be
exactly solved. Thereafter, the effect of limited geometries
is taken into account for technically relevant cases (e.g. finite
circular and square samples) followed by the basics of the
van der Pauw method, which can be applied to thin films
of completely arbitrary shapes. Finally, we will revisit
the regime of anisotropic phases based on the theoretical
approaches of Wasscher and Montgomery. The careful re-
analyses and applications of their methods allow us to derive
for the first time the correction factors for a contact assembly
inside a circular lamella hosting an anisotropic 2D metallic
phase. Our theoretical conclusions will be corroborated and
illustrated by the latest experiments performed using a four-
tip scanning tunneling microscopy (STM) combined with a
scanning electron microscopy (SEM) either in our group or by
our colleagues.

We want to emphasize that this review highlights the
progress made in the field of geometrical correction factors
over the last century and their latest applications in low-
dimensional, anisotropic and spatially confined electron gases.
The inclusion of further aspects would definitely go beyond
the constraints of this journal. As mentioned, this technique
is used in related disciplines and readers with a geophysical
background might be interested in [9, 10]. For technical
aspects please see, e.g. [11–13]. Readers working in the
field of surface science are referred to [14, 15], which address
further aspects of semiconductor surface conductivity. At
this point we would like to acknowledge the contributions
from our colleagues who also work in the field of low-
dimensional systems [15–17]. In comparison to the diffusive
transport regime, further attention needs to be paid to probes
interacting with ballistic systems, where the probes may be
either invasive or non-invasive in character [18]. In this
review we restrict ourselves to homogeneous phases. The
conclusions, of course, change drastically if inhomogeneities
are present, as mentioned in [19].

2. Four-probe methods for isotropic semi-infinite 3D
bulks and infinite 2D sheets

For the ideal case of a 3D semi-infinite material with the four
electrodes equally spaced and aligned along a straight line (a
4P in-line array, see figure 1(b)), the material resistivity is given
by [6]

ρ line
3D = 2πs

V

I
, (2.1)

where V is the measured voltage drop between the two
inner probes, I is the current flowing through the outer
pair of probes and s is the probe spacing between the two
probes. Equation (2.1) can be easily derived considering
that the current +I , injected by first electrode in figure 1(a),
spreads spherically into a homogeneous and isotropic material.
Therefore, at a distance r1 from this electrode, the current
density J = I/2πr2

1 and the associated electric field, i.e. the
negative gradient of the potential, can be expressed as

E (r1) = ρJ = ρI

2πr2
1

= −dV

dr
. (2.2)

By integrating both sides of (2.2), the potential at a point P

reads ∫ V

0
dV = −ρI

2π

∫ r1

0

dr

r2
⇒ V (P ) = Iρ

2πr1
. (2.3)

For the scenario shown in figure 1(a), the voltage drop is then
given by the potential difference measured between the two
probes, i.e.

V (P ) = Iρ

2πr1
− Iρ

2πr2
= Iρ

2π

(
1

r1
− 1

r2

)
. (2.4)

This concept can be easily extended to 4P geometries where the
problem of contact resistances (see above) is usually avoided.
According to figure 1(b), the concept presented above can be
generalized and the voltage drop between the two inner probes
of a 4P in-line array is

V = V2 − V3 = Iρ

2π

[(
1

s1
− 1

s2

)
−
(

1

s3
− 1

s4

)]
, (2.5)

which, for the special case of an equally spaced 4P probe
geometry (with s1 = s4 = s and s2 = s3 = 2s), is equivalent
to (2.1).

3
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Figure 2. Voltage V (r) and current density J (r) profiles for a semi-infinite 3D material and infinite 2D sheet.

In order to correctly calculate the resistivities from the
resistances other aspects are of importance. For instance, when
the thickness t of the sample is small compared to the probe
spacings, i.e. for simplicity when t � s (see section 3.1
for a more accurate definition), the semi-infinite 3D material
appears as an infinite 2D sheet and the current can be assumed
to spread cylindrically instead of spherically from the metal
electrode as depicted in figure 2. The current density in this
case is given by J = I/2πrt , which yields an electric field of

E (r) = ρJ = ρI

2πrt
= −dV

dr
. (2.6)

Repeating the same steps as for (2.3)–(2.5), a logarithmic
dependency is obtained for the voltage drop between the two
inner probes:

V = V2 − V3 = Iρ

2πt
ln

(
s2s3

s1s4

)
. (2.7)

In the case of an equally spaced in-line 4P geometry the bulk
resistivity is given by

ρ line
2D = πt

ln2

V

I
, (2.8)

i.e. the resistance is not dependent on the probe distance which
directly underlines the 2D character of the specimen. In case
of a homogenous and finitely thick sample the resistivity can
be assumed to be constant, thus the bulk resistivity is often
replaced by the so-called sheet resistance Rsh defined as

Rsh = ρ

t
(�) . (2.9)

This quantity is also used to describe the spatial variation of
the dopant concentration in non-homogeneously doped thick
semiconductors (e.g. realized by ion implantation or diffusion).
Note that the dimension of the sheet resistance is also measured
in ohms, but is often denoted by � sq−1 (ohms per square) to
make it distinguishable from the resistance itself. The origin
of this peculiar unit name—ohm per square—relies on the fact
that a square sheet with a sheet resistance of 1 � sq−1 would
have an equivalent resistance, regardless of its dimensions.
Indeed, the resistance of a rectangular rod of length l and
cross section A = wt can be written as R = ρl/A, which
immediately simplifies to R = Rsh for the special case of a
square lamella with sides l = w (see figure 3).

The four electrodes are often arranged in a square
configuration rather than along a straight line. Indeed, the

Figure 3. Schematic of a square 4P probe configuration with
s1 = s4 = s and s2 = s3 = √

2s.

Table 1. Bulk resistivity ρ or sheet resistance Rsh for the case of
linear and square arrangements of four probes on a semi-infinite
3D material, infinite 2D sheet and 1D wire.

Sample shape 4P in-line 4P square

3D bulka 2πs
V

I

2πs

2 − √
2

V

I

2D sheetb π

ln2

V

I

2π

ln2

V

I

1D wirea

∑
s

V

I
—

a Bulk resistivity ρ.
b Sheet resistance Rsh,

∑ = πa2 wire section.

square arrangement has the advantage of requiring a smaller
area (the maximum probe spacing is only

√
2s against the

3s for the collinear arrangement) and reveals a slightly
higher sensitivity (up to a factor of two, see below). The
corresponding expression for the bulk resistivity ρ (sheet
resistance Rsh) for the 4P square configuration on a semi-
infinite 3D bulk is easily derived from (2.5) ((2.7) for the
infinite 2D sheet) with s1 = s4 = s and s2 = s3 = √

2s

(see figure 3).
All relations derived so far for the infinite 3D and 2D

systems are summarized in table 1. From these equations it
is evident that the measured resistance R does not depend on
the probe spacing for the 2D case (R2D ∝ ρ · ln2 = constant),
while it decreases as s−1 when increasing the probe spacing
for the 3D case (R2D ∝ ρ/s). Naively, one would expect
that the resistance should increase as the paths for the electric
charges are increased, irrespective of the dimension. This
counter-intuitive scenario can be rationalized by inspection of
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Figure 4. Diagrams of the current flow pattern in (a) an infinite 2D sheet and (b) a semi-infinite 3D material.

Figure 5. (a) Two-probe resistance—corrected for the average wire section �Ave—versus probe spacing s of a free-standing GaAs NW. The
solid red line is the linear best fit of the experimental data and shows the expected s dependence for a quasi-1D system. The inset in (a) is a
false-color SEM image (60 000× magnification, 45◦-tilt view) of a freestanding GaAs NW with two STM tips positioned on its lateral
facet [20]. (b) A photograph of a multi-probe STM system mounted in the focus of an SEM for the navigation and placement of the
tungsten tips.

the sketches shown in figure 4 (for a linear arrangement of
the probes): for an infinite 2D sheet (figure 4(a)) the expected
increase of the resistance (as in the 1D case, see below), is
exactly compensated by the current spreading in the direction
perpendicular to the probes. In the 3D case this effect is
overcompensated by the spread into the sample, which causes
the s−1 probe dependence.

In contrast, a linear increase of the resistance with
increasing probe distance is found only for the 1D case, where
the current density is constant and independent of the distance
s from the electrodes that impinge the electric current. Hence,
for a circular wire with radius a, much smaller than the probe
spacing (i.e. for a � s), the wire appears as quasi-1D and the
current density simply reads J = I/πa2. From (1.1), it is
easy to see that the resistance is now proportional to the probe
spacing and equals R1D = ρs/πa2 (cf table 1). Note that the
conclusions drawn so far are valid both on the macroscopic as
well as the microscopic scales.

As an example of a 1D system, figure 5(a) shows
the corrected two-probe resistance R × �Ave versus the
probe spacing s of a semiconductor GaAs nanowire
(NW) [20, 21]. The transport measurements are carried out
using a multi-probe STM system (figure 5(b)) by placing, with

nanometric precision, two tungsten tips on a freestanding NW
(i.e. vertically oriented with respect to the GaAs substrate).
The NW is 4 µm long, while its radius a decreases from 60
to 30 nm moving from the NW pedestal to the top and is at
least 10 times smaller than the probe spacing (i.e. a � s).
We point out that the resistance of the GaAs NW is orders
of magnitude larger than the contact resistances in the present
case and that a two-probe configuration is in our case sufficient
to infer the inherent resistivity of the NW. Examples of four-
probe measurements on 1D structures can be found in [22–25].

Furthermore, in order to illustrate the 2D/3D transition
due to the finite thickness of the sample, figure 6 shows the
resistance measured on an n-type Si(1 1 1) wafer (nominal
resistivity of 5–15 � cm, 4×15×0.4 mm3 in size) as a function
of the probe spacing s [26]. The experimental data points were
recorded again using a similar nano-4P STM and follow a s−1

dependence, expected for a semi-infinite 3D semiconductor,
as long as the probe spacing s is within 10–60 µm, i.e. small
compared to the sample thickness. The resistivity is around
7 � cm in accordance with (2.1) [26]. In contrast, for larger
probe spacings, the current penetrates deeper into the crystal
reaching the bottom and edges of the wafer. The current pattern
becomes compressed and the resistance increases.

5



J. Phys.: Condens. Matter 27 (2015) 223201 Topical Review

Figure 6. Electrical resistance of a Si(1 1 1) wafer crystal measured
using a nano-4P STM as a function of the probe spacing. The two
diagrams display the current flow pattern inside the Si(1 1 1) wafer
for different probe spacings. The solid line shows the expected s−1

dependence for a semi-infinite 3D material, while the dashed curve
is just a guide for the eye. Only experimental data associated with
the bulk states (i.e. for probe-spacings larger than 10 µm) are
reproduced from [26]. Electrical transport measurements using a
smaller probe spacing are dominated by semiconductor surface
states and are intentionally not reported here.

Conventional macroscopic 4P set-ups for wafer testing
typically reveal probe distances in the millimeter range, which
are comparable to the overall specimen dimensions [27]. The
effect of confinement for the current paths is not covered by the
equations derived so far. The following sections will introduce
stepwise the so-called correction factors for thin/thick films
which are necessary to precisely reveal the resistivities of both
isotropic and anisotropic materials in various length scales.

3. Correction factors for finite isotropic samples

Real specimens are not infinite in either the lateral or vertical
directions and the equations in table 1 need to be corrected for
finite geometries. Equivalently, correction factors also become
necessary if the probes are placed close to the boundary of a
sample, as in the case of truly nano-scaled objects, and/or the
probe spacing itself is comparable to the size of the samples.
In such cases of finite and arbitrarily shaped samples the bulk
resistivity is generically expressed as

ρ = F
V

I
, (3.1)

where F = F1 ·F2 ·F3 is a geometric correction factor, which is
usually divided into three different factors taking into account
the finite thickness of the sample (F1), the alignment of the
probes in the proximity of a sample edge (F2) and the finite
lateral width of the sample (F3). Formally, F is dimensionally
equivalent to a length, however, the correction factors F1, F2

and F3 are defined as dimensionless (see below). Further
correction factors related to the cases of anisotropic and finite
materials will be introduced and discussed in section 5.

Figure 7. The solid curve in the figure is the correction factor F1

versus normalized sample thickness (t/s), where t is the wafer
thickness and s is the probe spacing. The dashed lines represent the
two limit cases, i.e. F1 = 1 for t/s < 1/5 and
F1 = 2 ln2 (s/t) for t/s > 4.

The evaluation of the correction factors F1, F2 and F3

has triggered many studies. Several mathematical approaches
have been used over a time span of almost 40 years, such as
the method of images [6, 28–30], conformal mapping theory
[31–33], solving Laplace’s equations [34, 35], the expansion of
the Euler–Maclaurin series [36] and the finite element method
(FEM) [37], to accurately determine the values of Fi=1,2,3 for
different geometric configurations and probe arrangements.

3.1. Samples of finite thickness: the correction factor F1

The resistivity of an infinite sheet of finite thickness t can be
formally expressed as

ρ = Rline
sh−2D · t · F1

(
t

s

)
=
[

π

ln 2

V

I

]
· t · F1

(
t

s

)
, (3.2)

where Rline
sh−2D is the sheet resistance of an infinite 2D

sheet (measured using the in-line geometry). F1 is now a
dimensionless function of the normalized sample thickness
(t/s) which reduces to 1 as t approaches zero (at the moment
we assume that F2 = F3 = 1). A detailed derivation of the
thickness correction factor F1 (t/s) was given for the first time
by Valdes in 1958 [6] using the method of images. This method
is the first derived and to date is still the most frequently used
for the calculation of the correction factors F . The factor F2

is also explicitly evaluated through this method as we will
show below. However, this method results in a power series
expression for F1 so it is not really suitable for numerical
computation. Instead, the expression found by Albers and
Berkowitz in 1985 [35] through an approximated solution of
Laplace’s equation will be reported here. For the case of a
4P in-line array on an infinite sheet of thickness t (electrically
decoupled from a substrate), the correction factor F1 (t/s) can
be written as [35]

F1 = ln2

ln {[sinh (t/s)]/[sinh (t/2s)]} . (3.3)

6
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Figure 8. (a) Diagram of a 4P in-line array perpendicular to a distance d from a non-conducting boundary of a semi-infinite 3D specimen.
Probes 1 to 4 are real while the tips 5 and 6 are imaginary and are introduced to mimic the presence of the non-conducting edge
mathematically. (b) Correction factor F2 versus normalized distance d/s from the boundary (d = edge distance). The solid (dashed) curve
refers to the case of four probes perpendicular (parallel) to the sample edge.

A quite similar dependence is obtained for the case of a 4P
square configuration [34]. The only experimental verification
of the latter formula obtained so far was by Kopanski et al
in 1990 [38]. In 2001, Weller [36] re-calculated F1 through
an expansion of the Euler–Maclaurin series, confirming the
validity of the (3.3).

Figure 7 shows a plot of the correction factor F1 and
nicely demonstrates that for t/s � 1 the curves follows
F1 (t/s) ≈ 2 ln2 (s/t), thus (3.2) reduces to the expression
for a semi-infinite 3D specimen. On the other hand, for
thin samples, i.e. for t/s � 1, the term sinh(t/s) of (3.3)
can be approximated by t/s. F1 becomes unity and (3.2)
reduces to the expression of an infinite 2D sheet (see section 2,
table 1). This approximation holds until t/s < 1/5 (with
an approximation error around ε ≈ 1%), which means that
real semiconductors with a finite thickness t can be considered
to be thin and approximated by a quasi-2D sheet until this
condition is satisfied. Similarly, the sample can be considered
of infinite thickness if t/s > 4 (ε ≈ 1%).

3.2. Probes in the proximity of a single sample edge: the
correction factor F2

The correction factor F2 accounts for the positioning of
the probes in the proximity of an edge on a semi-infinite
sample. Albeit this idealized configuration can be realized only
approximately, the equally spaced 4P in-line configuration
with a distance d from a non-conducting boundary, as sketched
in figure 8(a), serves nicely as a reference model to illustrate
the concept of image probes, which is used extensively in the
following section. The non-conducting (reflecting) boundary
is mathematically modeled by inserting two current image
sources of the same sign at a distance −d for current probe
4 and –(d + 3s) for probe 1, respectively [6]. Because of
this mathematical trick, (2.3) still holds for a semi-infinite 3D
specimen and the potential at probe 2 is given by

V2 = Iρ

2π

(
1

s
− 1

2s
− 1

2d + s
+

1

2d + 5s

)
. (3.4)

A similar equation is obtained for the potential at probe 3, so
the total voltage drop V = V2 − V3 between the two inner
probes reads

V = Iρ

2πs

(
1 +

s

2d + s
− s

2d + 2s
− 1

2d + 4s
+

1

2d + 5s

)
,

(3.5)

and the bulk resistivity can be written as ρ = 2πs ·(V/I)·F2 =
ρ line

3D · F2 (d/s) with

F2 =
(

1 +
s

2d + s
− s

2d + 2s
− 1

2d + 4s
+

1

2d + 5s

)
.

(3.6)

The case of a 4P in-line geometry oriented parallel to a non-
conducting boundary is solved in the same way. More details
can be found in Valdes’ original paper [6].

The dimensionless correction factor F2 (d/s) for both
geometric configurations (i.e. perpendicular and parallel to
a non-conducting boundary) are plotted in figure 8(b). It
is evident that as long as the probe distance from the wafer
boundary is at least four times the probe spacing, the correction
factor F2 reduces to unity (with an error of around ε ≈ 1%).
This also explains why the data points in figure 6 follow the
tendency for a semi-infinite 3D semiconductor when the probe
spacing s is in the 10–100 µm range.

For instance, if the 4P array is centered on the Si wafer,
which is 4×15×0.4 mm3 in size, the probe distance from the
closest sample edge is about thirty times the probe spacing and
F2 ≈ 1 for each of the four edges, while the thickness t remains
at four or more times the probe spacing, then F1 ≈ 2s ln2/t .
The resistivity equation (3.1) thus clearly reduces to that for a
semi-infinite 3D sample.

It is worth noting that the correction factor F2 reaches
its minimum (F2)min = 1/2 when the 4P array is aligned
parallel along the sample edge. This means that the measured
resistance R can increase up to a factor of two compared to the
case of a semi-infinite 3D sample by moving the 4P array from
a faraway location towards the sample edge. Qualitatively, this
behavior can be easily rationalized since the current paths are
restricted to one half of the semi-infinite 3D sample.

7
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Figure 9. Schematics of a (a) 4P probe in-line and (b) square array on a finite circular slice. The current sources outside the circle, namely
E′F ′ in (a) and H ′B ′ in (b), represent two additional image dipoles introduced for describing the effect of the finite boundary.

3.3. Samples of finite lateral dimension: the correction
factor F3

The condition forF1 to be unity (t/s < 1/5) is easily fulfilled in
a macroscopic 4P set-up with probe spacings in the millimeter–
centimeter range [27] on wafers with typical thicknesses of
200–300 µm. Furthermore, the case of 4P probes positioned
close to a single edge of the sample is also an idealized
approximation and the correction factor F2 is not sufficient for
a realistic description. Therefore, a further correction factor
F3 is needed, which takes into account the entire effect caused
by all lateral boundaries of the sample.

In this section the correction factor F3 will be discussed
for two special geometric configurations which are, however,
representative for a variety of practical situations, i.e. an in-
line or square 4P probe geometry inside a finite circular slice
(section 3.3.1) and a square 4P probe array inside a finite
square (section 3.3.2). These configurations are usually used
for semiconductor wafer or integrated circuit characterizations
where the test windows are usually squares or rectangles.

3.3.1. In-line and square 4P probe geometries inside a
finite circular slice. In 1958, Smith [29] first calculated the
correction factor F3 for an in-line 4P probe array placed
in the center of a circular sample using the concept of
current image sources. Albert and Combs [39], and
independently Swartzendruber [40], obtained in 1964 the same
result by applying the conformal mapping theory [41] and
transforming the circular sheet into an infinite half plane
(see section 2). Here, we report the more general solution
proposed by Vaughan [42], which is also valid for a squared
4P configuration and displacement of the 4P probes away
from the sample center. The model is based on the following
assumptions: (i) the resistivity of the material is constant
and uniform (an isotropic material), (ii) the diameter of the
contacts should be small compared to the probe distance (point
contacts), (iii) the 4P probes are arranged in a linear (equally
spaced) or square configuration and (iv) the sample thickness

is much smaller than the probe spacing (t/s < 1/5 : F1 = 1)

and thus equivalent to a quasi-2D scenario.
Likewise, the mathematical approach used by Vaughan

is based on the method of images: the resistivity formula
for an infinite 2D sheet is thus extended to the case of a
finite circular quasi-2D sample by introducing an appropriately
located current image dipole for describing the effect of a
finite boundary. This concept finally adds an additional term
to (2.7) (with s1 = s4 = s and s2 = s3 = 2s for an in-
line array) yielding the following voltage drop between the
inner probes (V2 = H , V3 = G) for the situation shown in
figure 9(a):

V = V2 − V3 = Iρ

2πt

(
ln4 + ln

F ′H · E′G
F ′G · E′H

)
. (3.7)

Now, for a 4P probe in-line geometry with an inter-probe
spacing of 2s ′(=s) on a circle of diameter d, where the the
mid-point of the 4P geometry (E, H , G, F) is displaced at a
distance αs ′ (βs ′) in the x− (y−) direction with respect to
the circle center (see figure 9(a) for reference), (3.7) can be
written as [42]

Rin−line 4P
sh =

(
V

I

)
· 2π

ln
(
4Lα,β

) , (3.8)

where the term Lα,β is a function of the position of the 4P
probes

Lα,β =
[

[EHR4 − (E + H − 16) R2 + 1]

× [
FGR4 − (F + G − 16) R2 + 1

] ]

×
[ [

EGR4 − (E + G − 4) R2 + 1
]

× [
FHR4 − (F + H − 4) R2 + 1

] ]−1

, (3.9)

with E(F) equal to [3 + (−) α]2 + β2, G(H) equal to
[1 + (−) α]2 + β2 and R = s/d.
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Figure 10. Correction factor F3−circle versus normalized wafer diameter d / s for (a) an in -line and (b) a square 4P probe array on a finite
circular slice (s is the probe spacing for the in-line configuration and the square edge for the square configuration, respectively).

Furthermore, when the linear probe array is centered with
respect to the circular sample (i.e. α = β = 0), (3.9) is greatly
simplified yielding the same result for the correction factor
F in−line 4P

3−circle found by Smith [29]:

Rin−line 4P
sh−circle =

(
V

I

)
· 2π

ln
(
4L0,0

) = F in−line 4P
3−circle · π

ln2
·
(

V

I

)

⇒ F in−line 4P
3−circle = ln2

ln2 + ln
{[

(d/s)2 + 3
]
/
[
(d/s)2 − 3

]} .

(3.10)

Figure 10(a) shows a plot of the latter equation and clearly
reveals that, ford/s > 25, F in−line 4P

3−circle ≈ 1 (approximation error
ε ≈ 1%) thus, as expected, the sheet resistance Rline

sh reduces
to the expression of (2.8) for an in-line array of four probes
inside an infinite 2D sheet. As a rule of thumb, a finite sample
can be considered as infinite when the overall width is at least
one order of magnitude larger than the half probe spacing. For
instance, for a 4 inch wafer, the maximum probe spacing should
not exceed 5 mm. It is worth noting that F in−line 4P

3−circle reaches
a minimum value of

(
F in−line 4P

3−circle

)
min

= 1/2 (like F2) when
the external current probes lie on the sample circumference
(d = 3s). In other words, the measured resistance increases
by a factor of two by increasing the probe distance and moving
the 4P array from the center (d � s) to the sample periphery
(d = 3s). For d < 3s, the correction factor F in−line 4P

3−circle (d/s)

does not have a physical meaning.
The case of a 4P square geometry, as shown in figure 9(b),

can be solved in an analogous way [42]. Again, a current
image dipole is introduced to maintain the necessary boundary
conditions and an additional term appears in (2.7) (where
s1 = s4 = s and s2 = s3 = √

2s):

V = V2 − V3 = Iρ

2πt

(
ln2 + ln

B ′D · H ′C
B ′C · H ′D

)
. (3.11)

Vaughan [42] has shown that the latter formula can be still
written in the following form:

R
square 4P
sh−circle =

(
V

I

)
· 2π

ln
(
2Sα,β

) , (3.12)

where the parameter Sα,β is again a non-trivial function of
the square 4P array displacement

(
αs ′, βs ′) with respect to the

circle center. Further details can be found in Vaughan’s original
paper [42]. Here, we restrict ourselves to the case of a 4P
square array placed in the center of the circle (i.e. α = β = 0),
so that the correction factor F

square 4P
3−circle reduces to

R
square 4P
sh−circle =

(
V

I

)
· 2π

ln
(
2S0,0

) = F
square 4P
3−circle · 2π

ln2
·
(

V

I

)

⇒ F
square 4P
3−circle = ln2

ln2 + ln
{[

(d/s)2 + 2
]2

/
[
(d/s)4 + 4

]} .

(3.13)

The correction factor is plotted in figure 10(b) as a function
of d / s. As is obvious, F

square 4P
3−circle (d/s) ≈ 1 for d/s >

25 (approximation error ε ≈ 1%) and the sheet resistance
converges, as expected, to the expression for an infinite 2D
sheet (see table 1). On the other hand, when the 4P probes
are located on the edge of the circular sample for d/s = √

2,
F

square 4P
3−circle = 1/2 and the sheet resistance is

R
square 4P
sh−4P on circle = π

ln2

(
V

I

)
. (3.14)

This equation refers to the case of 4P probes lying on
the circumference of a circular sample and remains valid
for an arbitrarily shaped sample provided with a symmetry
plane. We will show this explicitly by introducing the
van der Pauw theorem in section 4. Moreover, since the
sheet resistance represents an intrinsic material property, both
expressions (3.10) and (3.13) for Rin−line 4P

sh−circle and R
square 4P
sh−circle

reveal that the current densities are increased when the 4P probe
array is placed inside a finite sample (where F3 � 1), yielding
to a larger voltage drop V and thus to a larger resistance.
Naturally, this would result in an apparently increased sheet
resistance (up to a factor of two), if we were to simply apply
the formula of table 1. Finally, although formally equal
to (2.8), (3.14) should not be confused with that for an in-line
arrangement of 4P probes on an infinite sheet.

The method of images can be also applied to the case of
a rectangular 4P array inside a circle. Interested readers are
referred to appendix D, where the correction factor F

rectangle 4P
sh−circle

9
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Figure 11. Schematic of a 4P square array centered with respect to a square lamella (a) and conformally mapped onto a circular lamella (b).
The points H1, B1, C1, D1 in the circle correspond to the contact points H , B, D, C of the 4P square array inside the square lamella,
although their position is only illustrative of the mapping procedure. H ′

1, B
′
1 is the current image dipole that needs to be introduced for

describing the circular boundary. (c) Correction factor F
square 4P
3−square for a 4P square array on a finite square lamella as a function of s / d ratio

and φ tilt angle. Here, s and d are the side lengths of the square 4P array and lamella, respectively.

for a rectangular 4P array placed in the center of a circular
lamella is explicitly derived, further generalizing the results of
Vaughan’s theory [42].

3.3.2. A square 4P probe array inside a finite square slice.
The case of a square 4P probe array inside a finite square
sample is mathematically a non-trivial scenario. In 1960,
Keywell and Dorosheski [28] first determined the correction
factor F3 by using the method of images. The authors correctly
introduced an infinite series of current image sources to model
the boundaries of the square. However, the result suffers
from convergence problems, which were finally overcome by
Buehler and Thurber [30] in 1977 by solving the problem in
the complex plane.

Here, we concentrate on an alternative approach for
calculating F3 on a square sample, which was proposed by
Mircea in 1964 [31] and relies on the so-called conformal
mapping theory. Interested readers are referred to [41, 43]
for a detailed description of this theory. In brief, the method is
based on a conformal transformation that merely maps a square
specimen onto a circular geometry for which the problem has
already been solved [31].

According to the conformal mapping theory, each point
B (x, y) of a square can be mapped uniquely to a point B1 (r, θ)

of a circle as illustrated in figure 11. Consequently, if H ,
B, C, D are the 4P probes placed on a square lamella, we
can determine four corresponding points H1, B1, C1, D1 on a
circular lamella. For this scenario of four probes on a circle,
a formula equivalent to (3.11) can be written and the voltage
drop between V2 (= D1) and V3 (= C1) reads

V2 − V3 = Iρ

2πt

(
ln

H1C1 · B1D1

H1D1 · B1C1
+ ln

B ′
1D1 · H ′

1C1

B ′
1C1 · H ′

1D1

)
, (3.15)

where H1C1, B1D1, H1D1, B1C1 correspond to s2, s3, s1, s4,
respectively, and H ′

1, B ′
1 is the current image dipole. At this

stage it should be evident that the last equation remains valid

also for the original square sample, since points H1, B1, C1,
D1 correspond by definition to H , B, C, D and the problem
reduces to finding a transformation between the B(x, y) and
B1 (r, θ) planes.

Mircea [31] has shown that the transformation between
the coordinates can be approximated by the following
expressions:

r2 = cosh x − cos y

cosh x + cos y

cos (π − x) + cos y

cos (π − x) − cos y

cos (π + x) + cos y

cos (π + x) − cos y

×
{

1 − 8
e−2π

1 + e−π
cosh x cos y

}
, (3.16a)

θ = tan−1 sin y

sinh x
+ tan−1 sin y

sinh (π − x)
− tan−1 sin y

sinh (π + x)

−4
e−2π

1 + e−π
sinh x sin y, (3.16b)

where x = πs cos φ/
√

2d, y = πs sin φ/
√

2d and d is now
the side length of the squared lamella.

Now, if the 4P probes form a square array, which is
centered with respect to the square sample (as depicted in
figure 11(a)), these points are mapped for symmetry reasons
again on a square array which is still centered on the circular
specimen and (3.16a) and (3.16b) are greatly simplified
yielding a correction factor F

square 4P
3−square [31]

R
square 4P
sh−square = V

I
· 2π

ln2 + ln
{[

B ′
1D1 · H ′

1C1

]
/B ′

1C1 · H ′
1D1

}
= F

square 4P
3−square ·

(
V

I

)

⇒ F
square 4P
3−square = 2π

ln2 + ln
{[

r2 + 1
]2

/
[
r4 + 1

]} , (3.17)

where r is given by (3.16a). Except for the constant factor
2π/ln2, which is now included in the definition of the term
F

square 4P
3−square , the last expression looks very similar to that obtained

10
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Figure 12. Correction factor F
square 4P
3−square for a square 4P probe array

on a thin square sample as a function of the s / d ratio (with φ fixed
at 45◦). The dashed and solid curves represent the theoretical curves
obtained by Mircea [31] and Sun [46] using the conformal mapping
theory, while the dotted and dash-dotted curves are the theoretical
results obtained by Green [47] and Shi [37] using the FEM. The
open squares are the experimental values measured by Sun [46] on a
25 × 25 mm2 silicon substrate.

for a circle F
square 4P
3−circle . When inserting (3.16a) into (3.17), the

correction factor is finally a function of both the normalized
side s / d and the tilt angle φ of the 4P square array. The factor
has been calculated and plotted in figure 11(c). As is obvious,
F3 changes only by around 5% when rotating the square array
φ of 45◦. Likewise, in the case of the 4P square array inside
a circle, moving the four probes from the sample center to the
square periphery or equivalently decreasing the sample sizes
from infinite (for d � s) to fit the dimensions of the 4P square
array (for d = s), the measured resistance increases again by
factor of two.

Indeed, this effect is compensated by F
square 4P
3−square when

changing from 2π/ln2 for d � s to π/ln2 for d = s. For
the latter case we obtain for the sheet resistance R

square 4P
sh−square the

same expression which was obtained above for the circle (see
(3.14)) and which is expected for a thin sample of arbitrary
shape provided with a symmetry plane [44, 45] (see section 4):

R
square 4P
sh−4P on square = π

ln2

(
V

I

)
. (3.18)

In 1992, Sun et al [46] independently obtained similar
correction factors by mapping a squared sample onto a semi-
infinite half plane. They also carried out the first experimental
measurements (on a 25 × 25 mm2 silicon substrate) to check
their theoretical calculations. Moreover, the correction factor
F3 for a square sample with a square 4P probe was evaluated
numerically [37, 47, 48] using the flexible FEM.

Figure 12 summarizes the theoretical results obtained by
these authors thus far using different methods (i.e. method of
images, conformal mapping theory and FEM) and compares
them with the experimental results of Sun et al [46]. Extremely
good agreement between theory and experiment is evident.

The conformal mapping theory and FEM can be also
extended to the case of rectangular samples. However, the
calculations become even more complicated. For details the
reader is referred to [47, 49, 50].

4. The van der Pauw theorem for isotropic thin films
of arbitrary shape

Of great importance for resistivity measurements is the van der
Pauw theorem [44, 45], which virtually extends the formulas
for evaluating the correction factor F3 for the special case of
square/circular samples to a specimen of arbitrary shape, as
long as the four probes are located on the sample’s periphery
and are small compared to the sample size. Moreover, the van
der Pauw theorem requires samples which are homogeneous,
thin (i.e. t/s < 1/5 : F1 = 1), isotropic and singly connected,
i.e. the sample is not allowed to have isolated holes.

If IAB is the current flowing between contacts A and B,
while VCD is the voltage drop between contacts C and D, the
resistance is given by RAB,CD = VCD/IAB (cf figure 13(a)).
Analogously, we define RBC,DA = VDA/IBC . van der Pauw
has shown that these resistances satisfy the following condition
(ρ is the resistivity):

e−π t
ρ
RAB,CD + e−π t

ρ
RBC,DA = 1. (4.1)

For samples provided with a plane of symmetry (where A,
C are on the line of symmetry while B, D are placed
symmetrically with respect to this line, see figure 13(b)), we
immediately obtain by using the so-called reciprocity theorem
RAB,CD = RBC,DA = R and (4.1) reads

ρ = πt

ln2

(
V

I

)
. (4.2)

This equation coincides exactly with (3.14) and (3.18) obtained
in the previous section for the special cases of circular and
square samples, respectively, (with the four probes located
on the periphery). In the case of symmetrized samples,
i.e. RAB,CD = RBC,DA, a single resistance measurement
is sufficient to evaluate the sample’s resistivity. For non-
symmetric samples, the resistivity is generally expressed as
[44, 45]

ρ = πt

ln2

RAB,CD + RBC,DA

2
f , (4.3)

where f is now a function of the RAB,CD/RBC,DA ratio and
satisfies the relation

cosh

{
ln2

f

RAB,CD/RBC,DA − 1

RAB,CD/RBC,DA + 1

}
= 1

2
e

ln2
f . (4.4)

Summarizing, (4.3) allows the determination of ρ for an
arbitrarily shaped thin sample from two simple resistance
measurements. van der Pauw has explicitly calculated the
result of (4.3) in two famous articles [44, 45] and interested
readers are referred to these for further details. In brief, the
proof of the theorem consists of two parts. First, (4.3) is
derived for the special case of a semi-infinite half sheet, with
four probes located at the edge. Its demonstration is given
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Figure 13. (a) Typical van der Pauw arrangement of the 4P probes placed along the periphery of a thin and arbitrarily shaped sample. (b)
Schematics of a thin sample provided with a line of symmetry. (c) An alternative van der Pauw arrangement with the 4P probes placed along
a symmetry line of the sample. See the text for details.

explicitly in appendix A. ρ is easily obtained using the same
mathematical approach as described in section 2, assuming
that the current spreads cylindrically. Finally, it needs to be
shown that (4.3) remains valid for a lamella of any shape. This
is achieved by means of a conformal mapping in the complex
field of the arbitrarily shaped specimen into an infinite half
sheet.

It is worth mentioning a recent revision of the van der Pauw
method for samples with one or more planes of symmetry as
elaborated by Thorsteinsson et al [51]. In this case, (4.1) still
holds (with the exception of a factor of two, see below) if the
four probes are placed along one of the planes of symmetry.
The current density component normal to the mirror plane is
zero, i.e. J · n = 0, for a linear 4P arrangement as shown in
figure 13(c) and the potential remains unchanged by replacing
the mirror plane by an insulating boundary. Consequently, the
resistances are lowered exactly by a factor of two compared to
the situation where the probes are positioned on the boundary.
For this special scenario, depicted in figure 13(c), (4.1) can be
rewritten as

e−2π t
ρ
RAB,CD + e−2π t

ρ
RBC,DA = 1. (4.5)

As an example, if we consider the case of an in-line 4P
probe array aligned along the diameter of a finite circular
slice (see figure 10(a)), the evaluation of the correction factor
F in−line 4P

3−circle (3.10) is no longer required and, according (4.5), the
resistivity can be precisely extracted from two independent 4P
configurations. Moreover, this geometry is robust to probe
positioning errors. Note, this aspect is of importance but
has not been addressed so far in the derivation of correction
factor F3 (see section 3). For details see the original work of
Thorsteinsson et al [51], where the error due to small probe
misalignments in circular and square specimens is evaluated.

5. The 4P probe technique on anisotropic crystals
and surfaces

Until the end of the 1980s only little attention was paid
to anisotropic materials, the transport properties of which
were seldom studied and measured. However, the growing
interest in these classes of solids, which revealed pronounced
electronic correlation effects (such as high-temperature

superconductors [52] and low-dimensional organic and
metallic conductors [53–55] also renewed the interest in their
transport measurements. Moreover, also application-driven
research has sustainably triggered the techniques of anisotropic
conductivity measurement, e.g. the industrial application of
anisotropic textiles inside high-tech woven [56, 57] or highly
oriented paper-like carbon nanotubes (so-called buckypapers),
carbon fiber papers inside fuel cells [58], supercapacitor
electrodes [59] and even artificial muscles [60].

The evaluation of the electrical resistivity in the case of an
anisotropic solid is in general more complex and demanding.
For instance, the resistivity ρ is no longer a scalar, but instead
needs to be substituted by a symmetric second-rank tensor,
whose componentsρij represent the resistivities along different
directions of the solid; thus, Ohm’s law (1.1) can be rewritten as

E1

E2

E3


 =


ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ23 ρ33




J1

J2

J3


 , (5.1)

where Ei and Ji are the electric field and the density
current along the ith direction, respectively. Crystallographic
symmetries fortunately further reduce the number of the
resistivity components ρij . For example, two quantities ρx =
ρy and ρz are sufficient for the complete description of trigonal,
tetragonal and hexagonal systems while three, four and six
quantities are necessary for orthorhombic, monoclinic and
triclinic crystals, respectively [61, 62].

As seen, for isotropic materials the I / V ratio measured
with 4P probes along one axis is directly proportional to
the material resistivity if appropriate correction factors are
included (cf section 3). This linear relationship fails for
anisotropic materials where the I / V ratio measured along
one arbitrary axis simultaneously depends on other resistivity
components (e.g. ρx, ρy, ρz for orthorhombic crystals).

The main question here is how to disentangle the different
components in order to fully determine the resistivity tensor.
So far, this problem has been solved for crystals with a
maximum of three components [63]. In this section we follow
the same scheme presented in the context of isotropic crystals,
i.e. we first consider the case of a 3D semi-infinite half plane
and, thereafter, an infinite 2D sheet.

Finally, we will extend our focus to finite and anisotropic
samples with dimensions that are comparable to typical probe

12



J. Phys.: Condens. Matter 27 (2015) 223201 Topical Review

Figure 14. Schematic of the mapping procedure of an anisotropic cubic sample into an equivalent isotropic parallelepiped.

distances. We first recapitulate two of the most important
and relevant methods, proposed by Wasscher [32] and
Montgomery [63], respectively. In this section we also derive
the correction factor for a square 4P array inside an anisotropic
2D system with variable probe spacings. The theoretical
results are underlined by the latest experiments on finite and
2D anisotropic systems carried out using a four-tip STM/SEM
system.

5.1. Formulas for anisotropic semi-infinite 3D bulk and infinite
2D sheets

In 1961 Wasscher [64] first solved the problem of decoupling
and measuring the components of the resistivity tensor and
extended the formulas reported in table 1 to the case of
anisotropic materials. The original solution is based on an
idea of van der Pauw’s [65], who suggested a transformation
of the coordinates (cf figure 14) of the anisotropic cube with
dimension l and resistivities ρx, ρy, ρz (along the x-, y- and
z-axes) onto an isotropic parallelepiped of resistivity ρ and
dimensions l′i using

l′i =
√

ρi

ρ
l, (5.2)

where ρ = 3
√

ρx · ρy · ρz and i = x, y, z. It is important
to emphasize that these transformations preserve voltage and
current, i.e. they do not affect the resistance R [64, 65].

We first will start with an in-line geometry of four probes
on an anisotropic semi-infinite 3D half plane. For the sake of
simplicity we further assume that the resistivities ρx, ρy, ρz

are directed along the x, y, z high symmetry axes of the solid.
According to (5.2), the 4P probes, which will be aligned along
the x-axis of the anisotropic solid with a probe distance sx ,
are still aligned along the x ′-axis after transformation with a
distance s ′

x = √
ρx/ρsx . As Vx and Ix are preserved, the

resistivity according to (2.1) is, for isotropic samples, given by

ρ = 2π
√

ρx/ρsx

Vx

Ix

, (5.3)

which can be immediately rearranged giving now for the
resistance Rx = Vx/Ix along the x-axis of the anisotropic

Table 2. Electrical resistances Rx = Vx/Ix for the cases of linear
and square arrangements of four probes on an anisotropic
semi-infinite 3D material and infinite 2D sheet.

Sample shape 4P in-linea 4P squareb

3D bulk
1

2πs

√
ρyρz

√
ρxρz

πs

[
1 −

(
1 +

ρx

ρy

)−1/2
]

2D sheet
ln2

πt

√
ρxρy

√
ρxρy

2πt
ln

(
1 +

ρx

ρy

)
a The 4P probes are aligned along the x-axis of the anisotropic

solid with a probe distance s.
b The 4P probes are arranged in a square configuration the sides of
which are aligned along the x- and y-axes, respectively. Current
is applied through two probes aligned along the x-axis, while the
remaining probe couple measures the voltage drop. Here s is the
side length of the square.

sample

Rx = 1

2πsx

√
ρyρz. (5.4)

The resistance measured with an in-line arrangement of 4P
probes along the x-axis of an anisotropic sample is thus the
geometric mean of the resistivity components along the other
two principal axes. The remaining cases (a 4P probe in-line
array on an infinite 2D sheet and a 4P probe square array
on a semi-infinite 3D plane and infinite 2D sheet) can be
solved using a similar approach. Table 2 summarizes all the
formulas for the four geometric configurations considered here
(in-line and square geometries in 2D and 3D). The equations
are derived by assuming that the 4P in-line (square) array is
aligned along the x-axis (the x- and y-axes) of the anisotropic
solid (further details are given in appendix B).

From the comparison of the formulas shown in table 2
with those for an isotropic sample (table 1), it is evident that
the measured resistances still decrease when increasing the
probe distance on a semi-infinite half plane, while they remain
constant for the case of an infinite 2D sheet. The reason for this
behavior is still due to the current spreading in the direction
normal to the probe array and into the sample when the probe
distance is increased (see figure 4).

In order to reveal information about the anisotropy either
the current/voltage probes need to be exchanged or the 4P probe
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Table 3. Electrical resistance ratio Rx/Ry of an anisotropic
semi-infinite half plane and infinite 2D sheet measured through an
in-line and square arrangement of four probes.

Sample shape 4P in-linea 4P square

3D bulk
√

ρy

ρx

√
1 + ρx/ρy − 1√
1 + ρy/ρx − 1

2D sheet 1a
ln
(
1 + ρx/ρy

)
ln
(
1 + ρy/ρx

)
a This configuration is not sensitive at all to the material anisotropy.

Figure 15. Electrical resistance ratio Rx/Ry versus the resistivity
anisotropy degree ρx/ρy for the infinite 3D half plane and 2D sheet
depending on the adopted 4P probe geometric configuration (square
versus in-line geometry).

geometry needs to be rotated. For instance, rotation of the 4P
probe array by 90◦ reveals a resistance which is now defined by
Ry = Vy/Iy . The corresponding expressions similar to those
of table 2 are obtained by exchanging ρx and ρy .

Finally, the anisotropy ratio Rx/Ry , which directly refers
to the anisotropy of the resistivities, is easily obtained. The
equations are summarized in table 3 and plotted in figure 15 as
a function of the resistivity anisotropy ρx/ρy . The dependence
on ρz (for 3D materials) cancels out by evaluating the resistance
ratio Rx/Ry . It is evident that the square arrangement reveals
a higher sensitivity compared to the linear arrangement. In
the case of an infinite 2D sheet, the anisotropy cannot be
determined at all with the in-line 4P geometry. In section 3.3,
we showed that the impact of finite boundaries can be neglected
if the sample size is larger by one order of magnitude compared
to the probe spacing. This argument still holds in the case of
an anisotropic sample (see section 5.4).

In general, the equations reported in table 2 can be used
to fully determine the resistivity tensor of large and thick
(t/s > 4, see section 3.1) 3D samples, albeit three distinct
measures are necessary, at least for the most general case of
an anisotropic material with three resistivity components. In
order to determine all principal resistivity directions ρi = x,y,z,
which are for the sake of simplicity assumed to be parallel
to each of the three principal x-, y- and z-axes, first the
geometric mean

√
ρyρz is determined by (5.4) using an in-line

arrangement of 4P probes aligned along the principal x-axis,
thereafter

√
ρxρz is determined by rotating the in-line 4P array

by 90◦, finally the last term
√

ρxρy is obtained by cutting a thin
lamella (t/s < 1/5, see section 3.1) from the thick sample and
repeating the first measurement.

In this context, the characterization of anisotropic 2D
materials with only two components ρx, ρy is easier. If
the square 4P probe geometry is aligned with respect to the
principal axes of the anisotropic surface, it is sufficient to
perform the measurement twice by rotating the square array
by 90◦ or by exchanging the combination of selected current
and voltage probes. In the case that the contact geometry is
not aligned accurately, the equations reported in table 2 can
no longer be applied and the evaluation of the data becomes
tedious and extremely arduous. As an example, we consider
the latter case of a 4P probe square array on an anisotropic
2D sheet and we assume that the 4P array is rotated by an
arbitrary angle θ with respect to the two orthogonal resistivity
components. In this case the expression relating the measured
resistance and the material resistivity becomes a function of the
angle θ and reads [66] (the readers are referred to appendix C
for the derivation of (5.5))

R
(
ρx, ρy, θ

)

=
√

ρxρy

2πt
ln

√√√√√√
(

1 + ρy

ρx

)2
− 4 cos2 θ sin2 θ

(
1 − ρy

ρx

)2

(
sin2 θ + ρy

ρx
cos2 θ

)2 .

(5.5)

The expected resistance for arbitrary orientations of the
square 4P geometry and for various resistivity anisotropy
parameters is plotted in figure 16(a). As mentioned
previously, the anisotropy is best seen for two orthogonal
contact configurations. Furthermore, it is evident that a
negative resistance appears at some θ for extremely anisotropic
materials, i.e. ρx/ρy > 20. This artifact is explained by
a deformation of the electrostatic potential in the case of very
large anisotropies. This unexpected behavior was observed for
the first time by Kanagawa et al while they were studying the
transport properties of atomic indium chains on Si(1 1 1) [66].

As a general remark, highly anisotropic 2D atomic chain
ensembles have recently attracted great interest because of their
exotic electronic properties, such as charge-density waves [67],
spin-density waves and also signatures of Luttinger liquid [68].
In this review we restrict ourselves to the In/Si(1 1 1) system
which takes the role of a benchmark system as it has been
comprehensively studied over last decade. A single domain
Si(1 1 1) 4×1-In surface is obtained by depositing a monolayer
of indium onto Si(1 1 1) (miscut 0.5◦ ÷2◦) at 350–400 ◦C [69].
This 2D system is highly anisotropic because the In chains
are preferentially oriented along the Si atomic steps and also
electrically decoupled from the Si bulk bands by a Schottky
barrier [66].

Figure 16(b) shows the resistances measured via a nano
4P STM system on such a single domain Si(1 1 1) 4 × 1-In
surface as a function of the angular position θ of the assembly
with respect to indium chain orientation. Some of the probe
configurations have been imaged using an SEM and are shown
in figure 17. The probe spacing is around 40 µm and is
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Figure 16. (a) Theoretical angle dependence of the electrical resistance R(θ) for an anisotropic infinite 2D sheet. The different dashed
curves are plotted using (5.5) with various (ρx/ρy) values. (b) Measured electrical resistance R on a single domain Si(1 1 1) 4 × 1-In surface
as a function of 4P square array angular position θ with respect to the indium atomic chains. Filled symbols show the experimental values
obtained by Kanagawa et al [66], while empty symbols show the results obtained by our group [70]. The solid lines in the figure are the best
fitting curves for the experimental data, obtained using (5.5).

Figure 17. SEM micrograph (×2000 magnification, plan-view) of four STM tungsten tips placed on a Si(1 1 1)4 × 1-In surface. The blue
dashed squares show how the 4P square array of the nano multi-probe STM system is rotated by almost 180◦. θ is the angle between the
square side and the indium chains, which are aligned along the Si atomic steps.

therefore much smaller than the dimension of the sample itself
(1.5 × 0.8 cm2 in size) mimicking an infinite In layer. The
filled symbols of figure 16(b) represent values measured by
Kanagawa et al [66], while the empty symbols represent
values obtained by our group under similar experimental
conditions [70]. At a low degree of anisotropy (empty symbols
in figure 16(b)), the resistance changes only slightly with θ

and remains positive, while at a high level of anisotropy (filled
symbols in figure 16(b)), the resistance varies strongly and
becomes negative at some θ in accordance with theory. The
absolute values of the resistances and the degree of anisotropy
for the Si(1 1 1) 4 × 1-In surface depends significantly on the
substrate cleaning procedure [71], the miscut angle (single
domain), the amount of deposited indium and the deposition
temperature [70]. The lower anisotropy measured for our
samples is most likely ascribable to the smaller miscut angle
of the Si(1 1 1) substrates (namely 1◦ versus the 1.8◦ of [66]).

Irrespective of the further details for the different
anisotropies, it is important to note that the experimental
behavior is in excellent agreement with theory as shown in
figure 16(a).

5.2. Classical approaches for finite anisotropic samples

As outlined in section 3, the usual way of extending the
concepts elaborated for a semi-infinite 3D bulk and/or an
infinite 2D sheet to the case of finite samples involves
the introduction of correction factors depending on the 4P
geometry/placement and sample shape. The correction factors
introduced for isotropic finite samples can be related to
the anisotropic case, i.e. by mapping these anisotropic
samples on equivalent isotropic ones according to the Wasscher
transformations [64]. However, attentive readers may
have noticed that this transformation typically maps an
anisotropic square sample on an isotropic rectangle or an
anisotropic circular specimen on an equivalent elliptic one,
respectively. Therefore, first a revision of the correction factors
F

square 4P
3−square (s/d) (3.17) or F

square 4P
3−circle (s/d) (3.13) is mandatory

before we extend this concept towards anisotropic circular or
square samples (see also section 5.4).

In fact to date, the resistivity of finite and anisotropic
materials is exclusively calculated via the methods introduced
by Montgomery [63] and by Wasscher [32], which will be
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Figure 18. (a) Schematics of the contact geometry for the Montgomery method and (b) the Wasscher mapping procedure of an isotropic
parallelepiped on an anisotropic parallelepiped and vice versa.

explained hereafter. In order to allow an easy analytical
treatment of the problem both methods rely on some
simplifications, e.g. (i) the sample has the shape of a
parallelepiped [63] (or of a thin circular lamella [32]), (ii)
the components of resistivity are aligned w.r.t. the edges of
the parallelepiped (or along two orthogonal diameters of a
circular lamella) and (iii) the 4P probes must be placed at
the corners of one rectangular face (or at the boarders of two
perpendicular diameters of the circular lamella). Hence, for
the sake of simplicity, both these methods do not evaluate
the correction factors for any arbitrary value of the probe
spacing s over sample dimension d ratio (i.e. s / d), but
only with probes located on the sample periphery, i.e. for
s / d = 1. In section 3, we showed that the resistance R

of isotropic 2D materials becomes larger by increasing the
probe distance, i.e. by moving the 4P probe geometry from the
sample center (for d � s) towards the sample periphery (for
d = s). A comparable effect takes place for finite anisotropic
materials, which similarly offers a much higher sensitivity with
respect to the infinite case and will be elucidated in detail in
section 5.4.

In this section, we first will briefly introduce both
theoretical concepts, i.e. the Montgomery and Wasscher
methods, and we will subsequently compare these with
recent experimental results obtained for anisotropic ensembles
of In wires grown on Si(1 1 1) mesa structures of finite
widths (section 5.3). In particular, the gradual rotation of
the squared 4P probe geometry allows us to determine the
conductivity components for this finite anisotropic system.
In section 5.4 these concepts are further generalized for
arbitrary probe spacings s for a 4P probe geometry inside an
anisotropic circular lamella with diameter d . Using the latter
method we introduce a complementary approach to measure
independently the conductivity components for an anisotropic
system.

5.2.1. The Montgomery method. In 1970 Montgomery
proposed a graphical method [63] for specifying the
resistivities of anisotropic materials cut in the form of a
parallelepiped with the three orthogonal edges l′1, l′2, l′3

collinear to the three resistivity directions ρi = x,y,z The
Montgomery approach is the most commonly used method for
determining the electrical resistivity of anisotropic materials
(more than 500 citations) [72]. Here we describe the revised
version developed by dos Santos et al in 2011 [73] which
allows one to solve the problem analytically. Although
this method can be applied to a rectangular prism of finite
thickness, here we will derive the formulas for the case of a
thin rectangular film with two distinct resistivity components
ρ1, ρ2(= ρ3). For the more general case the readers are
referred to [63, 73].

The revised Montgomery method is based on the Wasscher
transformation (cf (5.2)) and the theoretical work of Logan
et al [74], who showed that the resistance R1 = V1/I1 of
an isotropic rectangular prism (with dimensions l1, l2, l3; cf
figures 18(a) and (b)) is related to the resistivity ρ by means
of two correction factors, E and H1, via

ρ = EH1R1. (5.6)

Thereby, the current I1 is applied via two contacts placed
on one edge of the facet l1l2, while the voltage drop V1 is
probed by the other two contacts on the opposite edge of
the same facet (as depicted in figures 18(a) and (b)). As
we will see below the correction factor E is comparable to
the correction factor F1 (cf section 3) and accounts for the
finite thickness of the isotropic sample. Furthermore, H1 is
the analogue to the correction factor F3 and corrects the finite
lateral dimensions. An equivalent relation can be written by
exchanging the current and voltage probes with each other (i.e.
ρ = EH2R2 with R2 = V2/I2).

Since the contacts are placed on the corners of the
parallelepiped (i.e. si = li = x,y,z and fixed), both E and
H1 (or H2) do not depend on the s / d ratio, but they are
a function of the ratios between sample dimensions l1, l2, l3.
Logan et al [74] applied the method of images (see section 3.2)
for the evaluation of the correction factors H1 (or H2), which
reads

1

H1
= 4

π

∞∑
n = 0

2[
(2n + 1) sinh

[
π (2n + 1) l2

l1

]] . (5.7a)
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Figure 19. (a) Correction factor H versus the (l2/l1) ratio according to series (5.7a) (filled squares) and the approximated expression (5.8)
(solid red curve). (b) Correction factor E/l3 as a function of normalized thickness (l3/

√
l1l2). The dashed black lines represent the two limit

cases, i.e. E/l3 = 1 for l3/
√

l1l2 < 0.2 and E/l3 ≈ (
√

2/2)(l1l2)
1/2/l3 for l3/(l1l2)

1/2 >
√

2, while the solid red curve describes the
transition regime for 0.2 < E/l3 <

√
2 and it is approximated by (5.9).

1/H2 is obtained by substituting l2/l1 with l1/l2. Similarly,
the E factor can be expressed as

E

l3
=

l1
∑∞

l = 0

[
(2l + 1) sinh

[
π (2n + 1) l2

l1

]]−1

∑∞
l = 0

∑∞
n = 0

[
εn

s sinh(πsl2)

]−1 , (5.7b)

where s = [
[(2l + 1) / l1]2 + (n/l3)

2
]1/2

, ε0 = 1 and εn = 2
in the case of n > 0. As mentioned, the values of E and
H were determined by graphical interpolation in the original
paper of Montgomery. The revision by dos Santos et al
[73] has revealed that both mathematical series can be greatly
simplified and expressed through analytic equations. An in-
depth analysis of (5.7a) has finally revealed that H1 can be
approximated by

H1 ≈ π

8
sinh

(
π

l2

l1

)
. (5.8)

A similar expression is obtained for H2 when substituting l2/l1
by l1/l2.

Both equations (5.7a) (filled squares) and (5.8) (solid
curve) are plotted in figure 19(a), which demonstrates
the extremely good agreement between the exact and the
approximated expressions over several orders of magnitude.

Similarly, (5.7b) reduces to unity (i.e. E/l3 ≈ 1) for
l3/ (l1l2)

1/2 < 0.2, while it can be approximated by E/l3 ≈(√
2/2

)
(l1l2)

1/2 /l3 for l3/ (l1l2)
1/2 >

√
2. These two cases

correspond to those of a thin and a thick film, respectively.
For 0.2 < l3/ (l1l2)

1/2 <
√

2, (5.7b) is described well by the
following expression:

E/l3 ≈ 1/
(

1 + e−π [(l1l2)1/2/l3−
√

2/2]
)

. (5.9)

Figure 19(b) shows the correction factor E/l3 as a function
of the l3 / (l1l2)

1/2 ratio and strictly reproduces the line-shape
of correction factor F1 introduced above for isotropic samples

(see figure 7 for comparison) but also confirming the formal
equivalence between the two theories.

Based on these approximations, the resistivity can finally
be related with the resistance: by means of Wasscher equation
(5.2), the thin anisotropic rectangle with dimensions l′1, l′2
and l′3(� l′1l

′
2) along the three resistivity directions ρ1, ρ2, ρ3

can always be mapped onto an isotropic parallelepiped with a
resistivity ρ = 3

√
ρ1 ρ2ρ3 and dimensions li = 1,2,3 = l′i

2
√

ρi/ρ

(cf figure 18(b)). As E ≈ l3 for the present case, it follows
that

√
ρ2 = √

ρ1
l2

l1

l′1
l′2

, (5.10)

so that finally the Logan relation (5.6) can be expressed in
terms of resistivity component ρ1

ρ = l′3 2

√
ρ3

ρ
H1R1 ⇒ √

ρ1ρ2 = l′3H1R1

⇒ ρ1 ≈ π

8

(
l′3l

′
2

l′1

)
l1

l2
R1 sinh

(
π

l2

l1

)
. (5.11)

A similar equation is obtained for the second component ρ2

by exchanging l1(l
′
1) with l2(l

′
2). The unknown l1/l2 term

in (5.11), which represents the length ratio of the equivalent
isotropic rectangular prism, can still be determined via the
same resistances R1 and R2 measured on the face l′1l

′
2 of

the anisotropic thin rectangle. According to the analytical
expressions derived by dos Santos et al, the R1/R2 resistance
ratio can be written as

R2

R1
≈ sinh (πl2/l1)

sinh (πl1/l2)
, (5.12)

which is easily solved by using the hyperbolic relation sinh x =(
ex − e−x

)
/2 and yields the following expression for l2/l1

length ratio [73]

l2

l1

∼= 1

2


 1

π
ln

R2

R1
+

√(
1

π
ln

R2

R1

)2

+ 4


 . (5.13)

17



J. Phys.: Condens. Matter 27 (2015) 223201 Topical Review

Figure 20. Schematics of (a) an anisotropic rectangular sample with edges parallel to the resistivity directions, (b) the equivalent isotropic
rectangular sample after Wasscher transformation and (c) the final mapping onto the upper half plane of the complex plane.

In summary, the revised Montgomery method using (5.11),
(5.13) and two simple resistance measurements permit one
to fully and easily determine the resistivity components of
a finite thin anisotropic rectangular lamella assuming that
their directions are well defined and known. However, if
the directions of the resistivity tensor are unknown but still
orthogonally oriented, the problem can only be solved using
the approach proposed by Wasscher which is described in the
following.

5.2.2. The Wasscher method. Wasscher described in his
PhD thesis an alternative method for determining the electrical
resistivity components of an anisotropic thin film [32].
Although his solution was proposed one year before that of
Montgomery, very few works make use of his technique [72],
probably because of the non-trivial mathematics required for
its effective application. However, his studies in the field of
resistivity measurements were of utmost importance and have
allowed the first quantitative comparisons between the infinite
and finite regimes of anisotropic thin films. This is particularly
of importance for nanostructures (see below).

In a more general way, the Wasscher method can be
considered as a special case of the van der Pauw method for
anisotropic samples introduced in section 4. Wasscher uses the
reversed mathematical approach and shows that an anisotropic
rectangular or circular thin lamella can be always mapped
on an isotropic semi-infinite sheet where the van der Pauw
equations are valid. The demonstration is not trivial and uses
both the coordinate transformation of (5.2) and the conformal
mapping theory in the complex field: if P ′′, Q′′, R′′, S ′′

denote the locations of four probes on the edge of a semi-
infinite sheet the resistances R1 = RPQ,RS = |VR − VS | /IPQ

and R2 = RQR,SP = |VS − VP | /IQR , respectively, can be
expressed as (see appendix A)

R1 = RSP,QR = ρ

πt

(
ln

S ′′Q′′

S ′′R′′
P ′′R′′

P ′′Q′′

)
, (5.14a)

R2 = RSR,QP = ρ

πt

(
ln

R′′P ′′

R′′Q′′
S ′′Q′′

S ′′P ′′

)
. (5.14b)

Let us consider again a thin (i.e. l3/ (l1l2)
1/2 < 0.2)

anisotropic rectangular lamella of dimensions l1, l2 with

its edges parallel to the resistivity directions ρ1, ρ2 and
provided with probes P , Q, R, S on its four corners (see
figure 20(a)). First, the anisotropic rectangular lamella will
be mapped onto an equivalent isotropic rectangle by using the
transformation of coordinates given by (5.2) (figure 20(b)).
Second, a transformation of the coordinates, which makes use
of the properties of Jacobian sine-amplitude elliptic function
sn(K(k), k) in the complex field, maps the four probes
P ′, Q′, R′, S ′ onto the upper half plane of the complex plane
P ′′, Q′′, R′′, S ′′. At this point, it should be evident that the
resistances R1 = V1/I1 and R2 = V2/I2 of the anisotropic
rectangular lamella (where Ii = 1,2 is the current injected via
two probes along one edge and Vi = 1,2 the corresponding
voltage drop on the opposite edge) can be measured using
(5.14a) and (5.14b), since all the transformations preserve
both currents and voltages. Thus, the problem reduces
to finding the general correspondence formula between the
original four probes P , Q, R, S on the anisotropic rectangle
and the corresponding P ′′, Q′′, R′′, S ′′ probes on the semi-
infinite sheet. A quite similar case was already described in
section 3.3.2. We will not report the details here, but instead
call the attention of interested readers to the original thesis [32].
In brief, the coordinates of the original probes mapped onto the
upper half sheet of the complex plane are expressed by

P ′′ ( 1/ [k sn (K (k) , k)] , 0) , (5.15a)

Q′′ (−1/ [k sn (K (k) , k)] , 0) , (5.15b)

R′′(−sn (K (k) , k) , 0), (5.15c)

S ′′(sn (K (k) , k) , 0), (5.15d)

where K(k) is the complete elliptic integral defined as

K (k) := F (π/2|k) :=
π/2∫
0

dθ√
1 − k2sin2 (θ)

, (5.16a)

and where sn (z, k) is the so-called sine-amplitude function
defined as the inverse of the incomplete elliptic integral of first
kind:

sn (z, k) := sin x, wherez := F (x|k) =
x∫

0

dθ√
1 − k2sin2 (θ)

.

(5.16b)
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Figure 21. (a) Schematic of an anisotropic circular lamella with the 4P probes placed on two vertical diameters and rotated by φ degree
w.r.t. the resistivity directions. For the sake of clarity, we also show the angle θ = 5π/4 − φ used in figure 17 to define the angular position
of the square 4P array w.r.t. the resistivity directions. (b) The calculated angle dependence of electrical resistance R (φ) for an anisotropic
finite circular thin film. The solid curves are plotted using (5.18a) with different (ρ1/ρ2) resistivity ratios.

We point out that for the incomplete elliptic integral, the upper
limit x becomes a function of z, called the amplitude of z.
So the Jacobi sine-amplitude is the sine of the upper bound
of the incomplete elliptic integral obtained by inverting the F

function (i.e. x = F−1 (z, k)) [75, 76]. Both equations depend
on the modulus k, which is only a function of the resistivities
and lengths of the anisotropic rectangular lamella and is given
by the inverse of the so-called Jacobi’s nome q(k):

(q (k))rectangle := e−π
K
(√

1−k2
)

K(k) = e
−2π

l1
l2

√
ρ1
ρ2 . (5.16c)

When the Wasscher method was published, the values of
the nome q(k) as well as the numerical values of elliptic
integrals (5.16a) and (5.16b) as functions of k were given in
mathematical tables [77], but now computer software, such as
Matlab [78] or Wolfram Mathematica [79], allows their rapid
and easy evaluation with high numerical precision.

Evaluating the distances P ′′Q′′ := P ′′(1/ [k sn (K, k)] ,

0) − Q′′ (−1/ [k sn (K, k)] , 0), etc, and replacing them into
(5.14a) and (5.14b), we finally obtain

(R1)rectangle =
√

ρ1ρ2

πl3

(
2ln

1 + ksn2 (K (k) , k)

1 − ksn2 (K (k) , k)

)
, (5.17a)

(R2)rectangle =
√

ρ1ρ2

πl3

(
2ln

1 + ksn2 (K (k) , k)

2k1/2sn (K (k) , k)

)
. (5.17b)

Similarly to the Montgomery method, the numerical solution
of both (5.17a) and (5.17b) allows the evaluation of both
resistivity components ρ1, ρ2 from two single resistance
measurements (i.e. R1 and R2).

The main advantage of this mathematical approach relies
on its simple generalization to the case of a circle. Indeed, if we
consider now a thin anisotropic circular lamella, of radius r and
thickness t (< (d/5)), with all four point probes placed on its
circumference d along two orthogonal diameters, and we call
φ the angle between the two orthogonal resistivity components
ρ1, ρ2 and the lines intersecting the two opposite contacts as
shown in figure 21(a), the corresponding resistances measured
on a circle read [32]:

(R1)circle =
√

ρ1ρ2

πt

(
ln

2

1 − ksn (4K (k) φ/π, k)

)
, (5.18a)

(R2)circle =
√

ρ1ρ2

πt

(
ln

2

1 + ksn (4K (k) φ/π, k)

)
, (5.18b)

where now the modulus k is given by the inverse of Jacobi’s
nome (q (k))circle:

(q (k))circle := e−π
K
(√

1−k2
)

K(k) = e

(
ρ

1/2
1 −ρ

1/2
2

)4

(ρ1−ρ2)
2

. (5.19)

Figure 21(b) shows (5.18a) as a function of φ with different
(ρ1/ρ2) resistivity ratios. The graph is only shifted by π/4
with respect to the infinite case of figure 16(a) which is
plotted as a function of θ = 5π/4 − φ (see figure 21(a)
for reference). Interestingly, contrary to the infinite case, the
resistance remains always positive, even for high anisotropies.

As in the case of an infinite sample the resistivity
directions can be found easily and their values consequently
determined by rotating the entire 4P array. As is obvious
the (R1)circle / (R2)circle ratio takes its maximum for φ =
π/4 (or θ = π/2), because R1 is maximum (see figure 21(a)),
while R2, which has a similar dependence on φ but
shifted by 90◦ with respect R1, has its minimum. Since
sn (4K (k) φ/π, k) = 1 for φ = π/4, one immediately obtains
from (5.18a), (5.18b)

(R1/R2)max = ln (1 − k) /2

ln (1 + k) /2
. (5.20)

Similarly, the resistance anisotropy as a function of resistivity
anisotropy degree ρ1/ρ2 for a rectangular or square (with
l1 = l2 = l) lamella with the probes located on its corners
is easily derived from (5.17a), (5.17b). Both dependencies are
plotted in figure 22 together with those obtained on anisotropic
infinite 2D sheets (cf table 3). As is obvious, the electrical
resistance ratios Rx/Ry(= R1/R2) of a finite anisotropic film
can be increased by several orders of magnitude compared to
an infinite film although its resistivity ratio ρx/ρy(= ρ1/ρ2) is
the same. The dependency on the geometry of the sample is
much weaker. Therefore, a much higher sensitivity is expected
when the 4P probes are placed on the sample periphery (i.e. s =
d or s = l) compared to the infinite case (i.e. s � d or s � l).
However, care should be taken when measuring the resistivities
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Figure 22. Electrical resistance ratio Rx/Ry(= R1/R2) as a
function of resistivity anisotropy degree ρx/ρy(= ρ1/ρ2) for an
infinite 2D sheet and a finite circular and square lamella. The solid
curves, referring to finite geometries, are plotted using (5.17a),
(5.17b) (with l1 = l2 = l) and (5.20) of the Wasscher method. The
filled symbols are obtained from (5.10) and (5.12) of Montgomery’s
method (here assuming l′1 = l′2).

of finite anisotropic materials. While for isotropic samples the
error can be only a factor two, it can hugely increase for the
case of finite anisotropic lamella structures.

Finally, the full squares in figure 22 display the values
determined using the Montgomery method (with l′1 = l′2,
(5.10) and (5.12)). The perfect agreement with the solid curve,
obtained using the Wasscher method relying on a completely
different approach, underlines once more the robustness of
both mathematical solutions.

5.3. An experimental comparison between the finite and
infinite regimes for anisotropic 2D systems

We have introduced in section 5.1 the In/Si(1 1 1) system as an
anisotropic 2D benchmark system to determine the resistivity
tensor and will now use the same system on spatially restricted
areas to prove the increase of the resistance ratio discussed in
the context of figure 22. Please see section 3 for any details on
the infinite (i.e. unconfined) In/Si(1 1 1) system.

The spatially restricted 4 × 1-In wire system grown
on circular Si(1 1 1) mesa structures, i.e. elevated Si(1 1 1)
islands, is illustrated by figure 23(c). The resistivity
components have been again determined by means of a four-tip
STM/SEM system.

The mesa structures in this case have a diameter of
30 µm and a height of 500 nm (figures 23(a) and (b)) and
were fabricated using optical lithography and reactive ion
etching (RIE, using SF6) onto a Si(1 1 1) semiconductor wafer
(a miscut of 1◦ toward the [−1–12] direction and P-doped,
500–800 � cm). A clean Si(1 1 1) 7 × 7 surface [80, 81] is
thus obtained through the vigorous chemical treatment of the

sample including standard RCA-1 cleaning [82] in air and
subsequent flash annealing cycles up to 900 ◦C under ultra-
high-vacuum (UHV) conditions. The 4 × 1-In phase is finally
obtained by adsorption of an indium monolayer at 400 ◦C.

By means of a high-resolution SEM, the four tungsten
tips of the multi-probe STM are independently navigated
with nanometer precision to the mesa periphery as shown in
figure 23(b) and individually moved to the 4 × 1-In surface
via feedback control approach mechanisms. The electrical
resistance of the 4 × 1-In atomic chains is thus measured as a
function of the 4P square array angular position on the circular
mesa periphery. In order to compare these measurements
on finite areas we performed similar measurements with the
same contact geometry on the lower quasi-2D infinite areas
at least 300 µm away from the circular mesa structure. In
this way we can realize resistivity measurements on infinite
as well as finite areas on the same sample and ensure that the
average defect densities are approximately the same. Both
measurements are plotted in figure 23(d) showing clearly the
effect of confinement. The resistance anisotropy degree for
the 4 × 1-In system grown onto the circular mesa surface
(empty symbols) is around

(
Rx/Ry

)
Mesa = 17.4 compared to(

Rx/Ry

)
2D = 3.5 measured on the large and flat area of

the same sample. The solid curves reveal the best-fits of
the experimental data using (5.18a) or (5.18b) and (5.5) for
the finite and infinite case, respectively, for the resistivity
components ρy = 6.2 (±1.2) × 104 � sq−1 and ρx =
16.7 (±1.0) × 104 � sq−1 yielding a resistivity anisotropy
degree ρx/ρy ∼ 2.7

This result is of importance, because it directly confirms
that a much higher sensitivity (of one order of magnitude or
more) can be easily achieved when the sample size becomes
comparable to the probe distance and validates both theoretical
models introduced for the description of infinite and finite
regimes. Furthermore, we notice that the minimum resistance
(i.e. parallel to the indium chains) for our 4 × 1-In system
is ∼5 × 103 �, one order of magnitude larger than the value
reported in figure 16(b) for an indium layer deposited under
similar conditions. We point out that the difference is not
related to the probe spacing and sample geometry, but is most
likely due to the lower annealing temperature (900 ◦C versus
1200 ◦C) in order to preserve the mesa structures. This leaves
a higher concentration of surface defects behind which is
responsible for the larger measured resistance [71], although
the relative values (i.e. the resistivity anisotropy degree ρy/ρx)

remain comparable. Nonetheless, the spatial constriction
reveals the unique possibility of controlling and correlating
the impact of defects in surface transport.

5.4. Correction factors for a square 4P array inside an
anisotropic circular area

In order to derive the resistivity components of a finite and
anisotropic material by means of the Montgomery [63] or
Wasscher [32] methods, the 4P probes must be precisely
positioned on the sample periphery (see section 5.2). To the
best of our knowledge, the correction factor for arbitrary probe
spacings s on samples with size d, i.e. F(s/d), again for the
case of a finite anisotropic medium, has so far not been derived.
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Figure 23. (a) SEM micrograph (1000× magnification, plan-view) of circular mesa structures fabricated using optical lithography and RIE
onto a Si(1 1 1) substrate. (b),(c) An SEM image and a schematic of the four tungsten tips placed with nanometric precision on the periphery
of the mesa structure. (d) Electrical resistance of the 4 × 1-In system as a function of 4P array angular position R (θ) on (empty symbols)
and faraway from (filled symbols) the Si mesa structure. The solid red and blue lines are the best fitting curves of the experimental data,
obtained using (5.18) and (5.5) for the finite and infinite regimes, respectively.

Figure 24. (a) Schematics of a 4P probe square array placed in the center of an anisotropic circular sample. The square edges are assumed
to be parallel to the resistivity directions ρx and ρy. (b) A diagram of the electrically equivalent elliptical isotropic sample and rectangular 4P
array and (c) related subsequent mapping onto a unit circle.

In the following we will explicitly calculate the correction
factor for the case of a square 4P probe array placed in the
center of an anisotropic circular slice with two distinct and
mutually orthogonal resistivity components ρx, ρy(= ρz). As
we will show further, our theoretical result is fully in line with
the latest experiments performed on the 4 × 1-In wire system
selectively grown on circular Si(1 1 1) mesa structures.

Figure 24(a) shows the schematics of a four-‘point’ probe
square array placed in the center of a ‘thin’ anisotropic circular
medium. As in the context of the Wasscher method, we still
assume that both the probe size and sample thickness are
small w.r.t. the probe spacing, i.e. we restrict our analysis
to a quasi-2D scenario. In agreement with the nomenclature
adopted throughout this review, s is the distance in between
next-neighbor probes, while d is the diameter of the circle.
Furthermore, for the sake of simplicity, we suppose that the

square edges of the 4P probe array are parallel to the two
resistivity components, ρx and ρy . At the end of this section
we will generalize this to arbitrary angles of rotation (cf
section 5.3).

By applying (5.2) (the Wasscher method), the anisotropic
circle (figure 24(a)) is first transformed into an electrically
equivalent isotropic ellipse of resistivity ρ = 3

√
ρxρyρz

with the semi-axes a′ = r
√

ρx/ρ, b′ = r
√

ρx/ρ (and
thickness t ′ = t

√
ρz/ρ), while the square 4P probe assembly

is simultaneously stretched into an electrically equivalent
rectangular 4P probe assembly. In figure 24(b), the special
case ρy/ρx = 2 is depicted. In general, the aspect ratio of
the rectangle depends on the anisotropy degree of the original
circle.

According to the conformal mapping theory (cf also
section 5.2.2), we know that the interior of an ellipse (i.e. every
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point z of an ellipse) can be mapped onto a unit circle ( [41],
ch 6, p 296) by the function

w = f (z) =
√

ksn

(
2K(k)

π
sin−1 z√

a′2 − b′2 , k

)
(5.21)

with |w| < 1. Where z is the position of an arbitrary
point inside the ellipse (expressed in complex coordinates),
K(k) denotes the complete elliptic integral of modulus k

(5.16a), whose value is given by the inverse of Jacobi’s nome
(q (k))circle (see (5.19)) and depends on the resistivity values of
the original anisotropic circle. It is easy to demonstrate that the
four initial points A, B, C, D shown in figure 24(a) are mapped
onto the points A′′ = f (A′), B ′′ = f (B ′), C ′′ = f (C ′),
D′′ = f (D′) in the unit circle with the following coordinates:

A′′ =
√

ksn

(
2K (k)

π
sin−1 −√

ρx − i
√

ρy√
ρx − ρy

s

d
, k

)
, (5.22a)

B ′′ =
√

ksn

(
2K (k)

π
sin−1

√
ρx − i

√
ρy√

ρx − ρy

s

d
, k

)
, (5.22b)

C ′′ =
√

ksn

(
2K (k)

π
sin−1

√
ρx + i

√
ρy√

ρx − ρy

s

d
, k

)
, (5.22c)

D′′ =
√

ksn

(
2K (k)

π
sin−1 −√

ρx + i
√

ρy√
ρx − ρy

s

d
, k

)
. (5.22d)

These equations have been plotted in figure 24(c) (using
Wolfram Mathematica). The dashed black curves show how
the coordinates of the four points change as the d/s ratio
is varied. It is worth noting that the 4P array still has a
rectangular appearance on the unit circle, however, the paths
of the corners when going from zero up to the circle diameter
d (i.e. for s/d = √

2) are curved as indicated by the arrows.
Furthermore, the angle between the two curved paths depends
on the anisotropy degree of the original circle (see the gray
dashed curves in figure 24(c) for reference).

Fortunately, the case of a rectangular 4P array placed
in the center of an equivalent isotropic circular slice can
be easily solved by applying the method of images, further
generalizing the Vaughan solution [42] for a 4P square array
(see section 3.3.1 above). If the current Iy is injected, according
to figure 24(c), via the probes B ′′ and C ′′, while the voltage Vy

is probed between A′′ and D′′, the resistance Ry for the present
rectangular probe configuration inside a circle reads

Ry =
√

ρxρy

2πt

[
Fy(s/d)

]−1

=
√

ρxρy

2πt

[
F

rectangle 4P
3−circle

(
d ′′/b

)
ln
(
1 + r2

)
]−1

, (5.23)

where r = a/b (with a = A′′D′′ and b = A′′B ′′, see
figure 24(c)) is the aspect ratio of the rectangle mapped on
the unit circle and F

rectangle 4P
3−circle is the general correction factor

for a rectangular 4P array placed in the center of an isotropic
circular slice, which reads

F
rectangle 4P
3−circle

(
d ′′

b

)

= ln
(
1 + r2

)
ln
(
1 + r2

)
+ ln [1+(d ′′/b)2+r2]2

[1+(d ′′/b)2]2
+2(1−(d ′′/b)2)r2+r4

. (5.24)

For the present case d ′′ = 2 which is the diameter of the unit
circle. For further details regarding the derivation of these
equations the reader is referred to appendix D ((5.23) and (5.24)
correspond to (D.8), with Rsh replaced by ρ/t ′ = √

ρxρy/t ,
and (D.7), respectively).

As is obvious from (5.23), the correction factor Fy(s/d),
albeit formally linked to the correction factor F

rectangle 4P
3−circle for

a rectangular 4P array in an isotropic circle, represents (via
(5.22a)–(5.22d)) the correction factor for a 4P square array
placed in the center of an anisotropic circle and aligned as
depicted in figure 24(c) (i.e. with the current probes parallel
to the ρy component). Based on (5.22a)–(5.22d) and (5.24),
this correction factor can be numerically calculated with high
precision as we will show below.

In order to determine the entire resistance anisotropy ratio
the orthogonal Rx component is needed. By exchanging the
current and voltage probes an equation similar to (5.23) can be
written for the resistance Rx parallel to the ρx component

Rx =
√

ρxρy

2πt
[Fx(s/d)]−1

=
√

ρxρy

2πt

[
F

rectangle 4P
3−circle (d ′′/a)

ln
(
1 + r−2

)
]−1

. (5.25)

Similarly to the former case, now a correction factor Fx(s/d)

is introduced which depends on F
rectangle 4P
3−circle (d ′′/a):

F
rectangle 4P
3−circle

(
d ′′

a

)

= ln
(
1 + r−2

)
ln
(
1 + r−2

)
+ ln [1+(d ′′/a)2+r−2]2

[1+r2]2
+2(1−r−2)(d ′′/a)2+(d ′′/a)4

. (5.26)

From the ratio of (5.25) and (5.23), we obtain a compact
expression for the anisotropy ratio Rx/Ry , which directly
refers to the resistivity components ρx and ρy inside the
anisotropic circle and normalized circle diameter d/s and
simply reads

Rx

Ry

= Fy

Fx

= ln
(
1 + r(d/s, ρx, ρy)

−2
)

ln
(
1 + r(d/s, ρx, ρy)2

) . (5.27)

This resistance anisotropy ratio can be numerically derived
using (5.22a)–(5.22d). Figure 25(a) shows the ratio as a
function of the normalized circle diameter d/s for various
resisitivity anisotropy values. It is apparent that the measured
electrical resistance ratio Rx/Ry rises exponentially as the
squared probe assembly is moved from the center (d � s)

to the circle periphery (d = √
2s). As expected, the values we

obtain from (5.27) for the limits d � s (infinite 2D sheet) and
for d = √

2s (i.e. probes on the circle circumference) coincide
with the values plotted in figure 22.

In order to confirm our above considerations, we again
used the 4 × 1-In reconstruction grown on a circular Si(1 1 1)
mesa structure (diameter d = 20 µm) and measured precisely
the resistance components parallel (Ry) and perpendicular
(Rx) to various probe spacings s. The correct alignment of the
probes was performed before using the rotational square 4P
method discussed in the context of figure 23(d). We thereafter
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Figure 25. (a) Theoretical electrical resistance ratio Rx/Ry versus normalized wafer diameter d/s for a square 4P probe array placed in the
center of an anisotropic circle (s is the square edge of the 4P array). The solid curves are plotted using (5.27) with different (ρx/ρy)
resistivity ratios. (b) Experimental electrical resistance ratio Rx/Ry versus normalized wafer diameter d/s measured on a 4 × 1-In wire
system selectively grown on a circular Si(1 1 1) mesa structure (d = 20 µm). The empty and filled symbols refer to two different mesas of
the same sample. The solid line in the figure is the best fitting curve of the experimental data, obtained using (5.27).

measured both resistance values sequentially by approaching
the tips from the periphery toward the mesa center. As shown
in figure 25(b), the ratio decreases exponentially from a value
of Rx/Ry ∼ 11 with the tips at about 1 µm from the circular
border down to a minimum value of Rx/Ry ∼ 3.5 when
the probes are at a distance of only 3 µm. The solid curve is
the best-fit using (5.27) and yields a resistivity anisotropy of
ρx/ρy = 2.5 ± 0.1 which perfectly agrees with the values
determined (independently) using the rotational square 4P
method. We notice that some data points appear slightly
scattered w.r.t. the fitting curve and this is most likely due to
uncertainties regarding the positioning of the tips or possibly
inhomogeneities within the In reconstruction on the Si(1 1 1)
mesa itself.

As just seen, the probe distance dependent measurements
of the resistance in a finite area can be used to correctly
determine the resistivities. Finally, we would like to
demonstrate that this technique can be combined with the
rotational square method mentioned in sections 5.2.2 and 5.3.
In this case, function (5.21) maps the 4P square array on an
electrically equivalent parallelogram inside the unit circle and
the new coordinates of (5.22a)–(5.22d) depend explicitly on
the azimuthal orientation of the 4P assembly. Technically,
the approach is similar to what we outlined in the appendix
for the rectangular geometry used above. Thus we will not
repeat all of the steps in detail but show the final result for the
resistance R(ρx, ρy, φ, s/d) in figure 26 exemplarily for one
set of resistivity components ρy = 6.2 (±1.2) × 104 � sq−1

and ρx = 16.7 (±1.0) × 104 � sq−1.

6. Conclusions and outlook

In this review paper we have revisited the 4P probe technique
with a special emphasis on the geometrical correction factors
for both isotropic and anisotropic systems in order to determine
the electrical resistivity from apparently simple resistance
measurements. Despite its long history of almost a hundred
years, the 4P probe transport technique is still a leading method

Figure 26. Theoretical calculation of the resistance for a 4P square
array placed in the center of a finite anisotropic circular lamella as a
function of the d/s ratio and angle of rotation θ w.r.t. the directions
of anisotropy. Here, s and d denote the side length of the square 4P
array and the diameter of the circular lamella, respectively. The plot
is obtained by setting the resistivity values to
ρy = 6.2 (±1.2) × 104 � sq−1 and ρx = 16.7 (±1.0) × 104 � sq−1.
These values coincide with those obtained for the In-4 × 1 phase
shown in figure 23(d).

in both fundamental and application-driven research. Along
with the development of sophisticated multi-probe STMs, this
technique can now be applied successfully even in the truly
nanometer scale. Particularly for nanostructures and, in a
more general sense, for spatially restricted areas, the aspects
of anisotropy and the current paths need to be considered to
reveal reliable values for the resistivity.

As outlined in detail in section 3, the resistance R and the
resistivity ρ are generally linked by dimensionless correction
factors F , which in turn depend on the probe geometry and
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assembly as well as the structure of the sample. Even more
important, the dimensional crossover which occurs along the
transition from the infinite to the finite regime, depending on
ratio between the probe spacing s and sample size d, can
be accurately taken into account. As seen for infinite (i.e.
s/d � 1) and finite scenarios (i.e. s/d = 1), the apparent
resistance of isotropic materials may increase by a factor of
two which, on the other hand, can also be caused by different
probe geometries or sample structures. An exception is the
well-known van der Pauw method, where the shape of the
sample is not important as long as the four probes are located
on the sample periphery or along one of its planes of symmetry;
details are discussed in section 4.

On the other hand, anisotropic materials, as discussed in
section 5, still remain challenging since two or three resistivity
components are needed for a complete characterization. As
recently as 40 years ago full analytical treatment was possible
only for the special case of infinite samples (i.e. s/d � 1)

or finite rectangular/circular specimens with the 4P probes
located on the sample periphery (i.e. s/d = 1). Although
the van der Pauw theorem has been shown to be applicable to
anisotropic materials of arbitrary shape as well, it only allows
one to measure the geometric mean

√
ρxρy without being able

to disentangle the individual resistivity components [83, 84].
The methods introduced by Wasscher and Montgomery are
routinely applied to the measurement of resistivity components
in anisotropic materials, but the validation of some effects such
as the negative resistance at a high degree of anisotropy [66]
as well as the increase of the sensitivity of the 4P probe
technique in a finite geometry set-up have only recently been
demonstrated and are also the subject of this review article.
In particular, the latter aspect is important as high resistance
anisotropies are also induced by spatial restrictions (e.g. steps,
inhomogeneities, etc) which in turn could lead to incorrect
resistivity values. Only a few attempts have been made to
date in the calculation of correction factors F for anisotropic
materials as a function of the probe distance compared to the
sample dimension d [32, 85, 86]. In the course of this review
we have calculated for the first time the general case of a square
4P geometry inside a circular anisotropic system.

In this review we restrict ourselves to homogeneous
phases. However, large samples in particular may exhibit
various phases causing spatial variations with regard to
transport properties, e.g. carrier mobilities and densities. In
this case, the interpretation is not straightforward. The first
studies, which date back over fifty years, have shown that 4P
probe measurements are only qualitatively sensitive to non-
uniformities in the case where their diameter is larger than the
probe spacing and yield less information (i.e. averaging their
effect) when their diameter is much smaller [40]. Therefore,
2D and 3D contour map techniques have been developed over
time in order to precisely characterize the variation of wafer
resistivity [87]. Only recently, this problem was encountered
in theoretically providing analytical functions in order to be
able to simulate the sensitivity of 4P probe measurements
towards local inhomogeneities [19].

Furthermore, the effect of the finite widths of the contacts
themselves needs to be taken into account in order to improve

the accuracy in resistivity measurements. In this work we
assumed ohmic and sufficiently small contacts, e.g. point
contacts, compared to sample size. If this condition is not
fulfilled, the resistivity expressions for the infinite 3D half
plane and 2D sheet, further generalizing those reported in
table 1, can be derived [88–90]. In the case of finite isotropic
samples, van der Pauw has provided the first rough estimate of
the error associated with large contacts anchored to the sample
periphery, being of the order 
ρ/ρ ∼ l2/d2 (where l and d

are the contact width and sample size, respectively) [44, 45].
A more detailed analysis using conformal mapping theory
[91–94] and numerical simulations [95, 96] was carried out
for rectangular and circular samples. A method that is valid
for samples of arbitrary shape and that generalizes the van der
Pauw approach was first proposed recently by Cornils et al [97–
99]. The impact of finite contacts for anisotropic materials has
been analyzed only in part and has actually been solved for the
special case of circular thin films [33].

Further efforts and development are certainly required
and expected in the near future in this field, considering the
increasing interest in anisotropic materials and the striking
applications of 4P probe techniques.
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Appendix A.

The van der Pauw formula can easily be derived for the special
case of a semi-infinite thin film. This trivial calculation reveals
the origin of the exponential factor in (4.1) and helps in the
understanding of the method proposed by Wasscher for the
evaluation of resistivity components for the case of a finite thin
anisotropic rectangular or circular lamella (see section 5.2.2).
Taking figure A1 as a reference, we assume that the 4P probes
are placed along the edge of a semi-infinite 2D sheet. The
current is injected and collected through the Q and R probes
respectively, while the voltage drop is measured between the

Figure A1. Schematic of the semi-infinite 2D sheet considered here
for the special proof of the van der Pauw equation
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probes S and P . The sample thickness is assumed to be much
smaller than the probe distance, thus the current density J

can be immediately expressed as J = I/πrt yielding for the
voltage drop VSP

VSP =
P∫

S

Edr = ρIQR

πt

(
ln

SQ

PQ
− ln

SR

PR

)
, (A.1)

where the first term is the voltage drop due to the current
injected by probe Q, while the second term is the voltage
drop due to the current leaving the sample via probe R.
Rearranging (A.1), we thus obtain

RSP,QR = ρ

πt

(
ln

SQ

SR

PR

PQ

)
. (A.2)

If we now change the current and voltage probes, we can
similarly write

RSR,QP = ρ

πt

(
ln

RP

RQ

SQ

SP

)
. (A.3)

At this point we notice that

e−π t
ρ
RSP,QR + e−π t

ρ
RSR,QP = 1, (A.4)

since
SR

SQ

PQ

PR
+

RQ

RP

SP

SQ
= 1. (A.5)

The final equation is derived by substitution of QR, RS, SP
with the probe spacing s, and it demonstrates the van der Pauw
formula for the special case considered here.

Appendix B.

In this appendix, the formulas presented in table 2 for infinite
anisotropic solids will be calculated. The case of an in-line
arrangement of four probes on an anisotropic semi-infinite
3D half plane is described in section 5.1. Here, we first
consider the case of an in-line arrangement of four probes on
an anisotropic infinite 2D sheet. We further assume that the
resistivity components ρx, ρy, ρz are directed along the x-, y-
and z-axes of the sample. If the 4P probes are aligned along
the x-axis with a probe distance sx , the same probes will have

Figure B1. Mapping of (a) a 4P square array placed on an anisotropic sample into (b) a 4P rectangular array placed on an equivalent
isotropic specimen.

a distance s ′
x = √

ρx/ρsx on an equivalent isotropic lamella of
thickness t ′z = √

ρz/ρtz after applying (5.2). On this isotropic
sheet, Vx and Ix are preserved while (2.8), which is still valid,
yields for the singular resistivity ρ

ρ = πt ′z
ln2

Vx

Ix

= π
√

ρz/ρtz

ln2

Vx

Ix

, (B.1)

which can be immediately rearranged yielding the following
equation for the measured resistance along the x-axis of the
original anisotropic sheet,

Rx = ln2

πtz

√
ρ3

ρz

= ln2

πtz

√
ρxρy, (B.2)

i.e. the resistance in an anisotropic 2D sheet is still the
geometric mean of the resistivity components, but now lying
on the same plane of the 2D lamella. Although similar, the
demonstration of the two remaining equations summarized in
table 2 for a square arrangement of the probes is slightly more
complex. Taking as a reference the schematics of figure B1, the
4P square array placed on an anisotropic sample and aligned
along the x- and y-axes is transformed into a 4P rectangular
array, still aligned along the x- and y-axes of the equivalent
isotropic sample of resistivity ρ and dimensions


s ′

1 = s ′
4 = s

√
ρy/ρ

s ′
2 = s ′

3 = s

√
(ρx/ρ) +

(
ρy/ρ

)
t ′z = √

ρz/ρtz

, (B.3)

where s1 = s4 = s is the side while s2 = s3 = s
√

2 is the
diagonal of the original square array.

If we now insert (B.3) into expressions (2.5) for a 3D semi-
infinite half plane, which remains valid on the transformed
isotropic sample, we obtain

Rx = Iρ

2π

[(
1

s ′
1

− 1

s ′
2

)
−
(

1

s ′
3

− 1

s ′
4

)]

= ρ

2π

[
2

s

(
1√

ρy/ρ
− 1√

ρy/ρ + ρx/ρ

)]

=
√

ρxρz

πs

(
1 − 1√

1 + ρx/ρy

)
. (B.4)
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Equation (B.4) represents the relation between the
measured resistance and the resistivity components of the
anisotropic sample for the case of a very large and thick
3D specimen. Inserting (B.3) into expressions (2.7), we
finally obtain the resistance expression for the case of a square
arrangement of four probes on an anisotropic infinite 2D sheet:

Rx = Iρ

2πt
ln

(
s ′

2s
′
3

s ′
1s

′
4

)

= ρ

2π
√

ρz/ρtz
ln

[
(ρx/ρ) +

(
ρy/ρ

)
ρy/ρ

]

=
√

ρxρy

2πtz
ln

(
1 +

ρx

ρy

)
. (B.5)

Appendix C.

The formulas for infinite anisotropic samples reported in table 2
are deduced assuming the principal resistivities ρi and the 4P
probe array aligned along the xi-axes, but this condition is not
always satisfied. Here we derive the more general equation
(5.5) for the special case of a square probe array placed on an
anisotropic infinite 2D sheet and rotated by an arbitrary angle
θ with respect to one of two orthogonal resistivity components
ρx, ρy . If A, B, C, D are the starting probe positions of the 4P
square array on the anisotropic sample, their positions A′, B ′,
C ′, D′ after an arbitrary rotation of θ can be easily evaluated
by applying the 2D rotation matrix

[
x

′

y ′

]
=
[

cos θ − sin θ

sin θ + cos θ

] [
x

y

]
, (C.1)

which gives


A (0, 0)
θ deg→ A′ (0, 0)

B (s, 0)
θ deg→ B ′ (s cos θ, s sin θ)

C (s, s)
θ deg→ C ′ (s cos θ − s sin θ, s sin θ + s cos θ)

D (0, s)
θ deg→ D′ (−s sin θ, s cos θ) .

(C.2)

Figure C1. (a) Rotation of the 4P square array of an arbitrary angle θ with respect to the x- and y-axes and (b) successive mapping onto an
equivalent isotropic sample.

Next, we map the contacts points of the rotated square
array on an equivalent isotropic sample using (5.2):


A′ → A′′ (0, 0)

B ′ → B ′′ (s√ρx/ρ cos θ, s
√

ρy/ρ sin θ
)

C ′ → C ′′(s
√

ρx/ρ (cos θ − sin θ) ,

s
√

ρy/ρ (sin θ + cos θ))

D′ → D′′(−s
√

ρx/ρ sin θ, s
√

ρy/ρ cos θ).

(C.3)

As shown in figure C1(b), we now calculate the probe
spacing s ′′

1 = A′′D′′, s ′′
2 = A′′C ′′, s ′′

3 = B ′′D′′, s ′′
4 = B ′′C ′′ of

the rotated and transformed 4P array:


s ′′
1 = s

√
ρx sin2 θ+ρy cos2 θ

ρ

s ′′
2 = s

√
ρx

ρ
(cos θ − sin θ)2 + ρy

ρ
(cos θ + sin θ)2

s ′′
3 = s

√
ρx

ρ
(cos θ + sin θ)2 + ρy

ρ
(cos θ − sin θ)2

s ′′
4 = s

√
ρx sin2 θ+ρy cos2 θ

ρ
.

(C.4)

Finally, we insert (C.4) into (2.7), which remains valid on
the equivalent isotropic sample where the 4P square array is
mapped. After some rearrangements, we obtain

R(θ, ρx, ρy) = ρ

2πt ′
ln

(
s ′′

2 s ′′
3

s ′′
1 s ′′

4

)
= ρ

2πt
√

ρz/ρ

×ln

[[
ρ2

x

ρ2

(
cos2 θ − sin2 θ

)2

+
ρ2

xρ
2
y

ρ2
(cos θ − sin θ)4 +

ρ2
xρ

2
y

ρ2
(cos θ + sin θ)4

+
ρ2

y

ρ2

(
cos2 θ − sin2 θ

)2
]1/2][ [

ρx

ρ
sin2 θ +

ρy

ρ
cos2 θ

] ]−1

⇒ R(θ) =
√

ρxρy

2πt
ln

×
[(

ρ2
y

ρ2
x

+ 1
) (

cos2 θ − sin2 θ
)2

+ 2 ρy

ρx

(
1 + 4 cos2 θ sin2 θ

)]1/2

[
sin2 θ + ρy

ρx
cos2 θ

]
⇒ R(θ, ρx, ρy)
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=
√

ρxρy

2πt
ln

√√√√√√
(

1 +
ρ2

y

ρ2
x

)2
−
(

1 − ρ2
y

ρ2
x

)2
4 cos2 θ sin2 θ(

sin2 θ + ρy

ρx
cos2 θ

)2 , (C.5)

which coincides with (5.5) and describes how the measured
resistance changes as a function of the 4P square array angular
position θ and the resistivity anisotropy degree of the 2D
infinite sheet.

Appendix D.

The derivation of the correction factor F
rectangle 4P
3−circle for a

rectangular 4P array placed in the center of an isotropic circular
lamella is based on the following assumptions: (i) uniform
resistivity, (ii) point contacts and (iii) a sample thickness much
smaller than the probe spacing (thus equivalent to a quasi-2D
scenario). Hence, figure D1(a) shows a rectangular 4P array
placed in the center of an isotropic circular lamella, where B

and C are the current probes while A and D are the voltage
probes of the 4P array, both are positioned at a distance p

from the center (denoted by O). If we neglect for a moment
the circular finite boundary, we can easily obtain by means of
(2.7) (with s1 = s4 = b and s2 = s3 =

√
a2 + b2) the voltage

drop Vy for a given current Iy , which is

Vy = V1 − V2 = Iyρ

2πt
ln

(
s2s3

s1s4

)
= Iyρ

2πt
ln

a2 + b2

b2
, (D.1)

where a and b are the sides of the rectangle. It is evident
that (D.1) immediately converges to the expression for a 4P
square array when a = b (which is strictly valid only for an
infinite or unlimited 2D sheet). According to the method of
images, the effect of an isolated circular finite boundary can
be mathematically described by adding two current images P

and Q, both placed at a distance d2/4p from the circle center
O (where d is the circle radius) and along two straight lines
connecting the circle center with the two current probes C and
B (see figure D1(a)). It is easy to verify that the adopted
configuration of real and image currents compensates the

Figure D1. (a) Schematics of a 4P rectangular array onto a finite circular slice. The current sources P and Q outside the circle represent the
additional image dipole introduced to mimic the boundary of the lamella. (b) Correction factor F

rectangle
3−circle versus the normalized wafer

diameter d / a (d / b), where a (b) is the shorter (longer) edge of the rectangle ABCD.

electrostatic potential along the circumference of the circular
lamella [100] and allows one to correctly evaluate the potential
inside the circle. For this scenario of four current probes, the
voltage drop between V2 (= D) and V1 (= A) now reads

Vy = V1 − V2 = Iyρ

2πt

[
ln

a2 + b2

b2
+ ln

PA·QD

PD·QA

]
. (D.2)

The various line segments in (D.2) are obtained by simple
geometric considerations (see figure D1(a))

PA = QD = p +
d2

4p
=

√
a2 + b2

[
1 +

d2

4
(
a2 + b2

)
]

,

(D.3)

while,

PD = QA =
√

PO
2

+ OD
2 − 2PO · OD cos [π − α].

(D.4)

Equation (D.4) can also be expressed as a function of the
side lengths, a and b, of the rectangular 4P array by noting
that cos [π − α] = −cos [α] = − (

2cos2 [α/2] − 1
)

and

cos [α/2] = b/
√

a2 + b2 and we immediately obtain

PD = QA =

√√√√a4 + 2a2
(
b2 − d2

)
+
(
b2 + d2

)2

4
(
a2 + b2

) . (D.5)

If we insert (D.3) and (D.5) into (D.2) and we define the aspect
ratio of the rectangle r = a/b, we finally obtain a compact
expression for the voltage drop Vy between A and D as a
function of the geometric parameters of the rectangular 4P
probe array, which reads

Vy = IyRsh

2π

{
ln
(
1 + r2

)

+ln

[
1 + x2 + r2

]2

[
1 + x2

]2
+ 2

(
1 − x2

)
r2 + r4

}
, (D.6)
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with x = d/b. We can thus define the correction factor
F

rectangle 4P
3−circle in the following form:

F
rectangle 4P
3−circle

(
d

b

)
def= ln

(
1 + r2

)
ln
(
1 + r2

)
+ ln [1+x2+r2]2

[1+x2]2
+2(1−x2)r2+r4

.

(D.7)

Hence, the measured resistance Ry reads

Ry = Rsh

2π

[
F

rectangle 4P
3−circle (d/b)

ln
(
1 + r2

)
]−1

. (D.8)

It is evident that (D.8) again reduces to that of a square (see
(3.13)) for r = 1. Equation (D.7) is plotted as a function of
the normalized wafer diameter (x = d/b in figure D1(b), also
revealing the effect of the aspect ratio r of the rectangle, which
becomes obvious. The interval of existence of the function
F

rectangle 4P
3−circle shrinks as the rectangle aspect ratio increases.

If we rotate the rectangle by 90◦ (equivalently exchange
the current and voltage probes), an equation similar to (D.8)
results in

Rx = Rsh

2π

[
F

rectangle 4P
3−circle (d/a)

ln
(
1 + r−2

)
]−1

, (D.9)

where F
rectangle 4P
3−circle is now a function of x ′ = d/a

F
rectangle 4P
3−circle

(
d

a

)
def= ln

(
1 + r−2

)
ln
(
1 + r−2

)
+ ln [1+x ′2+r−2]2

[1+r2]2
+2(1−r2)x ′2+x ′4

.

(D.10)

It is easy to prove that F
rectangle 4P
3−circle (d/a) = F

rectangle 4P
3−circle (D/b)

and (D.8) and (D.9) differ only for the logarithmic factor (in
addition to the resistance term Rx, y). Figure D1(b) thus shows
the trend of correction factor F

rectangle 4P
3−circle irrespective of the

adopted configuration for the current and voltage probes.
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