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Abstract. The presented paper describes an innovative self-adaptive multi-objective 

optimization code. Investigation goals concern proving the superiority of this code compared to 

NGSA-II and applying it to an inductor’s design case study addressed to a “tailored” heating 

forging application. The choice of the frequency and the heating time are followed by the 

determination of the turns number and their positions. Finally, a straightforward optimization is 

performed in order to minimize energy consumption using “optimal control”.  

1.  Introduction 

Evolutionary algorithms have been successfully applied in the last few decades for solving 

optimization and design problems of electromagnetic devices [1]. The goal is to determine values for 

model parameters that provide the best trade-off in the case of multiple conflicting objects. The 

combination of the multi-objective optimization procedures with problem-oriented mathematical 

models allows the development of an effective optimization strategy which can be applied to 

engineering cases. Since the evaluation of the goal functions requires frequently a FEM model, whose 

computational cost could be significant, it appears to be crucial to reduce the number of evaluations.   

Currently, the non-dominated sorted genetic algorithm (NGSA-II) [2] has received the most 

attention because of its simplicity and demonstrated superiority over other methods and it has been 

widely used in the design of electromagnetic devices [3]. Nevertheless, NGSA suffers of some 

drawbacks when the population and number of iteration must be limited to reduce the time of 

computation: it can occur, e.g. when the objective functions are evaluated using a numerical method 

like finite element. Moreover, when the number of individuals in the initial population is limited, the 

solution sometimes is affected by the choice of the initial population [10]. Particle Swarm 

Optimization (PSO) [4] is a heuristic search technique that simulates the movement of a flock of birds 

which aim to find food. The relative simplicity of PSO and the fact that it is a population based 

technique have made it a natural candidate to be used in design problems [5]. On the other hand, in 

computational electromagnetics, applications and also modifications of Biogeography-Based 

Optimization (BBO) are an emerging new field of research [6]. However, it has been proved that it is 

impossible to develop a single algorithm that is always efficient for a diverse set of optimization 

problems [7].  

Inspired by the work of Vrugt et al. [8], we present an optimization procedure which combines the 

concepts of simultaneous multimethod search and self-adaptive offspring creation. In the proposed 

code, contrary to NGSA, PSO and BBO, several mechanisms are together combined for generating 

offspring. This feature clarifies the meaning of “multi-method” search. The “self-adaptively” comes 

http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

VIII International Scientific Colloquium on Modelling for Materials Processing IOP Publishing

IOP Conf. Series: Materials Science and Engineering 355 (2018) 012016 doi:10.1088/1757-899X/355/1/012016

 

 

 

 

 

 

from the fact that a certain mechanism is preferred if it’s more efficient in generating offspring.  We 

intend to apply this innovative optimum search not only to few benchmark problems but also to a real 

inductor’s design case addressed to tailored heating applications. Tailored heating aims at creating a 

desired temperature profile inside of the work-piece in order to gain desired material properties and/or 

to minimize energy consumption of e.g. a forging process. Multi-objective optimization aims to find 

the best combination of geometrical and electromagnetic parameters to fulfil the goals mentioned 

before. 

 

2.  Proposed optimization method 

We consider a multi-objective optimization problem, with n decision variables:  nxxx ,...,1 and m 

objectives: ))(),...,(()( 21 xfxfxf  subject to 0)( xg i  i = 1,2,...,r and 0)( xhi  i =1,2,…s. The 

presence of multiple objectives give rise to a set of Pareto-optimal solutions, instead of a single 

solution. A Pareto-optimal solution is one in which one objective cannot be further improved without 

causing a simultaneous degradation in at least one other objective. 

The algorithm here used is a modification of the algorithm AMALGAM proposed by Vrugt et al. 

[8]. We’ll call it, for the sake of simplicity, AMALGAM*. In Figure 1 is shown the main procedure of 

the optimization code. The algorithm is initialized by using a random population 0P  of size N. Then, 

to each parent is assigned a fitness value based on the non-dominated sorting mode [2]. The 

population of offspring  kQQQ 0

1

00 ,..., , is implemented using k individual algorithms instead of 

using a single operator. The chance that one offspring is generated by the k-th algorithm is 

proportional to the “specific probability” k-th of the algorithm itself. If at the beginning each algorithm 

has the same “specific probability”, at each generation, the values are updated according to the success 

that algorithms have in producing offspring. The idea of using the “specific probability” is an original 

contribution of the authors. After offspring’s creation, a combined population 000 QPR  of size 

2N is created and ranked using the non-dominated sorting mode. The N members for the next 

population are chosen according to the rank and the crowding distance of the 2N elements of 0R . The 

new population 
1P  is then used to create offspring using the already described procedure. This step 

algorithm is repeated until convergence is reached.  

If the vector 
k

tt SS ,...,1
 indicates the “specific probability” at t generation,  k

tt NN 1

1

1,...,   is the 

number of offspring that, at the previous generation, each algorithm generated and,  k

tt PP ,...,1
 stands 

for the number of offspring, produced by the k-th algorithm, which appear in the current population, 

the “specific probability” has been calculated as follows (1): 

Figure 1. Flowchart of the proposed algorithm. The   main 

structure is the same of the NGSA-II code. 
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In order to avoid inactivating algorithms, the minimum “specific probability” value was set to 0.1. 

In AMALGAM*, we adopted three different algorithms for generation offspring: Non dominated 

sorting genetic algorithm NGSA-II [2], Multi-objective particle swarm optimization MPSO [4], Multi-

objective biogeography-based optimization MBBO [6,9]. 

NGSA-II uses simulated binary crossover (SBX) and polynomial mutation to create offspring. In 

the case of MPSO, let )(txh  denote the position of the h-th particle at the iteration t, the position of 

the particle is changed by adding a velocity )(tvh  to the current position (2): 

)()1()( tvtxtx hhh           (2) 

The velocity vector reflects the socially exchanged information. In the case of MPSO, since there is 

not – like in the single objective case – a best solution, the “best” particle is a random one extracted 

from an external archive which contains the best 
m2exp  non-dominated particles (particles are sorted 

by rank and crowding distance). The best particle’s position ever is instead updated when the particle 

is dominated of if both are incomparable (they are both non-dominated with respect to each other). In 

MBBO each solution considered is treated as habitat. The offspring are generated by means of two 

stochastic operators: migration and mutation. Migration is supposed to improve “bad” habitats (which 

have bad fitness) by sharing features from “good” habitats. Mutation modifies some randomly selected 

habitats in view of a better exploration of the design space. 

In case of constrained optimization, if an offspring (particle) violates one or more constraints in the 

design space, objective functions are not evaluated. What it is calculated is the “violation” (3): 

     
 


r

q

s

q

qqh xhxgvio
1 1

)())(,0max(         (3) 

Each feasible solution has a better fitness than every other unfeasible solution. Unfeasible solutions 

are ranked on the basis of their hvio : the smaller hvio , the better the fitness. 

3.  Numerical test 

In this section we intend to test AMALGAM* applying it to four analytical cases. We adopt the 

metrics used in [10] to quantify the performance of the proposed algorithm. We evaluate the error 

between the approximated and exact one, both in the Pareto front (objective function space) and its 

correspondent inverse image (variable space). Considering frN  individuals with the lowest rank final 

front, the geometric distance between each h-th point ),...,( 1 nxxx   and its inverse image is (4): 

2

,,12

1

,, )),...,(( hnh

n

i ihihx xxfxd  

                           (4) 

Where 
1

if  is the i-th component of the inverse image of the Pareto front. While, in order to 

evaluate the error in the objective space, in the case of two objective functions (5): 

)( ,1,2,2, kkkhf fffd           (5) 

With kf ,2  is given the exact expression of the Pareto front. The rms error value of the fr  

distances is evaluated in order to compare the performances.  

The so called “relative” crowding distance has been also calculated for both the objective and 

variable spaces. The average “relative” distance of frN  individuals in the variable space is (6): 
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An analogous expression is used in the objective space, where n is substituted with m (the space’s 

dimension). The average relative distance is called here f . In the variables space, the relative 

distance between the h-th and the j-th individuals, both in the front, is (7): 

2

1

,,

)min()max(
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Again, for the objective space, it’s just sufficient to substitute n with m and x with f. The crowding 

of the front in terms of design variables )(hcwx  is the number of individuals, j-th, which are closer to 

the individual h-th than the threshold  x  (8): 

 

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Also here there is a correspondent definition for the objective space. 

3.1.  Test functions 

We considered four unconstrained test functions [2,10,11] which are summarized in Table 1. 

 n 
Variable 

bounds 
Objective functions 

Optimal 

solutions 
Pareto front 

A 2 [0,2] 
𝑓1 = 𝑥1

2 + 𝑥2
2 

𝑓2 = (𝑥1 − 1)2 + (𝑥2 − 1)2 
𝑥1=𝑥2 𝑓2 = 𝑓1 − 2√2𝑓1 + 2 

B 3 

𝑥1 ∈ [0,1] 

 𝑥2, 𝑥3

∈ [−1,1] 

𝑓1 = 𝑥1 +
2

3
[𝑥3 − sin(6𝜋𝑥1 + 𝜋)]2 

𝑓2 = 1 − √𝑥1 + [𝑥2 − sin (6𝜋𝑥1 +
2

3
𝜋)]

2

 

 

𝑥𝑖 = sin (6𝜋𝑥1 +
𝑖𝜋

𝑛
) 

 

𝑖 = 2, . . , 𝑛 

𝑓2 = 1 − √𝑓1 

C 30 [0,1] 

𝑓1 = 𝑥1 

𝑓2 = 𝑔(𝑥)[1 − √𝑥1 𝑔(𝑥)⁄ ] 
𝑔(𝑥) = 1 + 9(∑ 𝑥𝑖

𝑛
𝑖=2 )/(𝑛 − 1)  

𝑥𝑖 = 0 

𝑖 = 2, . . , 𝑛 
𝑓2 = 1 − √𝑓1 

D 10 

𝑥1 ∈ [0,1] 

 𝑥𝑖 ∈ [−5,5],
𝑖 ≠ 1 

𝑓1 = 𝑥1 

𝑓2 = 𝑔(𝑥)[1 − √𝑥1 𝑔(𝑥)⁄ ] 
𝑔(𝑥) = 1 + 10(𝑛 − 1) 

+ ∑ [𝑥𝑖
2 − 10cos (4𝜋𝑥𝑖

𝑛

𝑖=2
)] 

 
𝑥𝑖 = 0 

𝑖 = 2, . . , 𝑛 
𝑓2 = 1 − √𝑓1 

 

Tests were performed with 20 different starting populations. Here we present the average (over the 

20 cases) rms error in both variable and objective spaces, as the most representative indicator in the 

ability to identify the Pareto front (Table 2). With “Pop” and “Gen” we refer respectively to 

population’s individuals number (called it N before) and to the generations’ number. In other words, 

we decide a priori the number of calls of the objective functions. 

 

Test Pop Gen Code errrms(x) errrms(f) 

A 20 20 NGSA-II 0.205 0.068 

   AMALGAM* 0.0819 0.0202 

Table 1. Test functions: T1 (A), F2 (B), ZDT1 (C), ZDT2 (D). 

Table 2. Comparison of the rms error in the variable and objective space. 
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A 20 50 NGSA-II 0.125 0.0333 

   AMALGAM* 0.0497 0.0118 

B 20 50 NGSA-II 0.478 0.332 

   AMALGAM* 0.186 0.0511 

B 20 100 NGSA-II 0.408 0.3086 

   AMALGAM* 0.1377 0.0285 

C 100 200 NGSA-II 0.914 0.698 

   AMALGAM* 0.0633 0.0398 

D 100 300 NGSA-II ** ** 

   AMALGAM* 0.4982 0.1838 

 

In every case AMALGAM* shows an evident superiority compared to NGSA-II. In the case D 

(**), at every attempt, the code NGSA-II failed the convergence to the real Pareto front. We show here 

more in details the results in case of test A (Figure 2). A better ability of exploiting the Pareto front is 

shown by AMALGAM* compared to NGSA-II. Especially in the left side, results obtained with 

NGSA-II don’t cover the overall extension of the Pareto front. This fact is visible in the calculation of 

the crowding distance: particles amass much more in the case of NGSA-II (Figure 2). 
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Figure 2. Comparison between calculated and true Pareto front in the objective (A) and variable (B) 

spaces with Pop=20 and Gen=20. Crowing distances in f and x spaces with NGSA-II (C-D) and 

AMALGAM* (E-F). 
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4.  Tailored heating 

In literature the concept of “Tailored heating” refers to an innovative heating approach which is 

addressed to forging processes [12]. Forging a billet from an initially “simple” geometry to a part of 

“complex” geometry may require several preform stages. In each stage, a pair of dies must be 

designed and manufactured. Subsequently, a series of mounting and dismounting die-inserts must be 

performed in the preform stage. This is often time consuming and costly. Consequently, the die 

forging of parts with complex geometry is only cost effective for large-batch production. Guo et al. 

[13] and Kayatürk et al. [14] proposed a thermal differential flat-die forging process, in which the 

parts of the forging billets which are supposed to have a high material flow are heated up to hot 

forging temperature. Parts which are supposed not to have such high material flow are at “colder” 

temperatures like 800-900 °C. This contains the basic idea of “Tailored heating”. 

The work-piece under analysis is a 42CrMo4 carbon steel billet with 474 mm length and 30 mm 

diameter. The problem aims to heat up the billet with a desired temperature profile: two “hot” zones 

with a uniform temperature of 1200 °C alternate with three “cold” zones which are supposed to reach 

a uniform temperature of 900 °C. It was considered a coupled electromagnetic-thermal model for the 

field analysis with the package ANSYS®. The design of an inductor which is able to provide the afore 

described temperature profile is the topic of this work. It represents a challenging task in which 

AMALGAM* has been applied. 

4.1.  Choice of frequency and heating time 

We want to understand which frequency- heating time couple best fits to our purpose. In [12] good 

results have been reached using a frequency of 4 kHz and a heating time of 70 seconds. We consider 

for simplicity a 1D model (Figure 3), in which the inductor is a massive piece of copper and the work-

piece a 15 mm wide 42CrMo4 body. 

Our intention is to obtain a uniform temperature of 1200 °C. Two objective functions are 

evaluated: the maximum deviation, at the end of the heating, along the line A-B (see Figure 3) from 

1200 °C and the energy consumption (9). A fixed current is applied for the entire duration of the 

heating. 

 1200),(max1 heatAB tlTf  



heatt

Pdtf 2            (9) 

Three design parameters are under investigation: heating time (t), frequency (f) and current (I) 

(Table 3). Values of current don’t have a real physical meaning because we are referring to a 1D 

model. 

 

t (s) f (kHz) I (kA) 

40 - 70  4 - 7 4 - 7 

 

Figure 3. 1D model’s geometry. 

Table 3. Parameters to be optimized. 
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Figure 4 summarizes the results of optimization after 100 generations with a population of 20 

individuals. While AMALGAM* shows a greater ability in exploring the Pareto front compared to the 

results obtained with NGSA-II, the minimum value of f1 is practically the same (see Table 4). 

 

 

 

 

 

As expectable, the maximum homogenization is obtained with longest time and the smallest 

frequency. What is interesting to see, is that, moving along the Pareto front, with a frequency of 4 kHz 

and a heating time of 63 s, f1 values 55°C, which is only 5°C more than the found optimum with 

minimum f1. On the other hand, the energy consumption is in this case 1655 Wh (1.6% less) and the 

time is drastically reduced. For this reason, we adopt a frequency of 4 kHz and a heating time of 63 s. 

In Figure 5 instead are shown the trends of the “specific probability” during the 100 generations of the 

three optimization algorithms used in AMALGAM*. If at first NGSA-II and MBBO are dominant, the 

Particle Swarm shows a better ability in exploiting the Pareto front. That’s why it has the maximum 

specific probability in the last generations. 

 

 t (s) f (kHz) I (A) f1 (°C) f2 (Wh) 

NGSA-II 69.8 4 4634 50.9 1682 

AMALGAM* 70 4 4626 50.0 1681 

Figure 4. Approximated Pareto front 

after 100 generations. NGSA-II’s 

Pareto front is much more limited. 
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Figure 5. Specific probability of NGSA-II, MPSO and MBBO during the 100 generations. 

Table 4. Individual with the minimum value of f1 (best heating accuracy). 
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4.2.  Inductor’s design 

The next step is the design of the inductor. Since it’s very difficult to define a priori the inductor’s 

configuration (number of turns, air gaps between them…), in the model proposed the inductor is 

substituted by five nonconductive areas in each of them a uniform current density is applied. In order 

to speed up the solution, the numerical model consists of one fourth of the system (Figure 6). As 

design variables, the length li and the current density ij  applied to each area are considered. l0 

indicates the position of the first area from the middle of the billet. In total 11 variables are under 

analysis (Table 5). 

 

The aim is to obtain a uniform temperature of 1200 °C in the hot zone and 900 °C in the cold ones. 

As visible in Figure 6, we don’t take into account the temperature between different zones, in a 

transition zone 15 mm long.  Three objective functions are evaluated (10): 

 


W

i heatii tyxTf
11 900),,(  

 


Q

i heatii tyxTf
12 1200),,(  

 


Z

i heatii tyxTf
13 900),,(        (10) 

Where W and Z is the number of nodes respectively in the cold zone at the “centre” and at the “side” 

of the work-piece. Q is the number of nodes in the hot zone. Each objective function is the sum of the 

differences, estimated in each node, between the desired and calculated temperature at the end of the 

heating. Although this choice doesn’t impose any limit to the maximum deviation between final and 

desired temperature which can be reached in a certain zone, it seems to be more effective in the event 

that the temperature distribution is only coarsely known. The huge number of variables require a great 

amount of goal functions’ evaluations. A population of 40 individuals after 70 generations has given 

these results in terms of goal functions (Figure 7). 

 

l0 

(mm) 
l1 l2 l3 l4 l5 

j1 

[A/m2] 
j2 j3 j4 j5 

1-10 20-60 5-20 70-150 5-40 40-150 
0.5-1.0 

107 

0.1-0.8 

107 

0.8-1.35 

107 

0.1-0.9 

107 

0.6-1.3 

107 

l0 (mm) l1 l2 l3 l4 l5 f1 (°C) f2 f3 

2.4 20.1 12.9 114.0 18.4 109.5 
25.45 

103 

65.17 

103  

11.45 

103  
 j1 (A/m2) j2 j3 j4 j5 

 0.999 107 0.129 107 1.118 107 0.433 107 0.798 107 

Table 5. Design variables in the inductor’s design problem. 

Figure 6. Geometry of the model. 

Table 6. Best solution for the inductor’s design. 
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For the design of the inductor we consider the closest solution to the “utopia” point (Table 6). From 

the technological point of view f1, f2 and f3 are not fully representative whether the solution is suitable 

or not. Substantially f2 with a sum of 65.17 10³ keeps a potential to be minimized and thus become 

more closely to an optimum solution. In Figure 8 is shown the final temperature distribution relative to 

the best design point. 

Especially in the “hot” zone, the temperature in the whole area is far from being uniform. A quite 

flat temperature field has been reached only in the middle part of the “hot” zone, instead the maximum 

deviation from 1200°C is achieved at the edges. In Table 7 are summarized both the maximum 

deviations from the goal temperature and the largeness of zone in which the temperature difference 

doesn’t exceed 35°C. Referring to the “hot” zone, over a length of 56 mm the temperature doesn’t 

differ more than 35° from 1200°C. 

 

 

 

 

 

 

 

 Central “cold” zone “Hot” zone External “cold” zone 

Length (mm) 38 90 79 

Max Deviation (°C) 106.97 165.64 38.67 

Length (mm) 25 56 78 

Max Deviation (°C) < 30 < 35 < 30 
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Figure 7. Results of optimization after 2800 goal functions evaluations. 

Figure 8. Final temperature profile relative to the best solution.  

Table 7. Best solution for the inductor’s design. 
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Table 8. Total equivalent current. 

Table 9. Design parameters and best solution obtained. 

4.3.  Real Inductor 

As already done in [12], we need to “translate” this configuration in a real inductor. Each area could 

be seen as one turn coil. For designing the real inductor, assuming a series connection between turns, 

it’s possible to convert every one-turn coil in an equivalent multi-turns coil. The total equivalent 

current (current density times area) which flows in each area is visible in Table 8. 

 

 

 

 

The number of turns in each zone has been chosen as follows: 2 in the first, 7 in the second and 6 in 

third. In total there are 15 turns in a half inductor, which are equally distributed in each area. The 

resulting temperature profile is bell-shaped at the centre of the “hot” zone due to the fact that there the 

magnetic field is maximum. For this reason, a new sub-optimization is performed, in which, the 

positions of the turns are modified in order to get a more satisfying temperature profile. In this case 13 

variables are under analysis: the y positions of the first 12 turns plus the (assumed) constant distance 

of the last three turns (see Figure 9).  

Since the overlapping between turns is not allowed, we’re looking at a constrained optimization case. 

We set a minimum distance between turn and turn of 1 mm. Using a coil with an external diameter of 

10 mm, the following inequalities must be true (11): 

111  ii yy mm, with i=1,…,11       (11) 

 

    In Table 9 the variables’ domains and the solution which best meets our purposes are summarized. 

Goal functions are the same that have already been used (10). A population of 30 individuals had been 

run for 100 generations. The total number of evaluations is 2384 for the NGSA-II and 2375 in the case 

of AMALGAM*. 

 

I1 (A) I2 (A) I3 (A) I4 (A) I5 (A) 

2008 166 12745 797 8738 

 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 Lf 

Min 8.5 38 50 64 80 95 110 127 142 165 190 210 18 

Max 12 43 60 74 90 105 125 140 155 180 201 225 26 

Best 9.5 40 55.4 68 85.5 100.7 118.5 133.5 144.5 169.8 195.7 217.1 22.0 

Figure 9. Geometry of a generic inductor.  



11

1234567890‘’“”

VIII International Scientific Colloquium on Modelling for Materials Processing IOP Publishing

IOP Conf. Series: Materials Science and Engineering 355 (2018) 012016 doi:10.1088/1757-899X/355/1/012016

 

 

 

 

 

 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10000 20000 30000 40000

f2
 [
°C

]

f1 [°C]

NGSA-II

AMALGAM*

850

900

950

1000

1050

1100

1150

1200

1250

0 0,05 0,1 0,15 0,2 0,25

T
em

p
er

a
tu

re
 [
°C

]

Length [m]

Surface

Centre

 

 

 

 

 

 

 

 

 

Figure 10 shows the temperature distribution of what is supposed to be the best result from the 

optimization procedure. A solution with relative small f2 value is here favourite (Figure 11). 

Nevertheless, even in the best solution the temperature field diverts considerably from the wished one 

at the edges of each zone. Table 10 sums up maximum deviations and describes the zones extensions 

which have a maximum temperature deviation below 35°C. Values are remarkably greater to those in 

Table 7, which justifies the necessity to perform a sub-optimization. Actually, it has not been found a 

temperature field in which the “transitions zones” are only 15 mm wide. Transitions in our case study 

take values of approx. 29 mm, to whose correspond a gradient of 100 °C/cm. 

 

 Central “cold” zone “Hot” zone External “cold” zone 

Length (mm) 38 90 79 

Max Deviation (°C) 124.23 76.64 99.72 

Length (mm) 30 78 71 

Max Deviation (°C) < 30 < 35 < 30 
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Figure 11. Results of optimization in the real inductor case.  

Figure 10. Temperature field (left) at the end of the heating. Temperature profile (right) along the 

length at the surface and in the centre. 

Table 10. Best solution for the inductor’s design. 
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Table 11. Possible intervals for heating and soaking time. 

4.4.  Optimal control 

In this last section we intend to apply the concept of optimal control to the already designed inductor. 

In general, the ability to control the heating process means a capability to influence a temperature field 

in order to achieve a desired goal. The temperature distribution can be affected trough a set on control 

inputs. By choosing in every instant the value of each control input, one can modify the temperature 

distribution and dynamic behaviour of an induction heating system [15]. To choose certain control 

properly, one needs to determine a cost function, i.e. a function reflecting technical and economic 

efficiency of system. For example, when maximum productivity is required, a minimal total heating 

time can be considered as cost function [16].  

We intend to reduce the total energy consumption applying a two stage process: in the first the 

heating under maximum power is performed, in the second no power is provided (soaking period). It is 

possible to prove mathematically that in case of a static billet which has to be uniformly heated up, 

time-optimal control consists of alternating stages of heating with maximum power and subsequent 

soaking. Therefore, the shape of optimal control algorithm is known, but the number of stages and 

their durations remain unknown. The greater is the number of stages, better is the heating accuracy 

achievable. In the present work we refer to the simplest case with one heating and one soaking 

interval, even if is not proven that this choice is optimal.  

Typically, optimal control applications are performed with a defined voltage. That means the 

heating is characterized by a first interval where the inductor is fed by the maximum voltage available 

and by a soaking interval. Since in this work we have always thought in terms of current, also in this 

section we assume the current being the input parameter. In the inductor’s optimization a current of 

1230 A was given. Supposing we can provide a maximum current of 1500 A – limit given by the 

maximum power available – we investigated how the energy consumption varies with the heating 

accuracy.  

      In summary, the intervals in which vary the two design variables are (Table 11): 

 

 

 

 

Goal functions take into account the heating accuracy (fA) and the energy consumption (fB) (13). As in 

Section 4.2, W, Z and Q are the total number of nodes in the “cold” and “hot” zones. 

Af  


W

i heatii tyxT
1

900),,( +  


Q

i

Z

i heatiiheatii tyxTtyxT
1 1

900),,(1200),,(  



heatt

B Pdtf        (12)

    

Since an excessive overheating of the billet would be not acceptable, a maximum admissible 

temperature of 1300 °C was set. If during the heating, any point of the billet overcomes 1300 °C, the 

solution is considered not feasible. Figure 12 shows the Pareto fronts’ trend in the case of both, 

NGSA-II and AMALGAM*, with a population of 30 individuals, after 50 generations. 

 

The estimated Pareto front obtained with AMALGAM* dominates the NGSA-II’s one. The best 

heating accuracy (minimum fA) reached by the two codes is shown in Table 12. In the “normal” 

heating mode described in the paragraph 4.3, fA would value 100671 °C and fB 355.8 Wh. If on one 

side the results of optimal control don’t bring any improvement in terms of heating accuracy, on the 

other hand, with a small worsening of the temperature profile, an important reduction of time and 

energy consumption could be obtained. The soaking time tends indeed to vanish the temperature 

gradient between zone and zone. 

tON (s) tOFF (s) 

30 - 65 0.1 - 15 
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Table 12. Minimum value of fA in the two codes. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Conclusions 

Using a multimethod optimization search has been found to be a more successful solution in both test 

and real cases compared to the well-known NGSA-II. Combining different offspring generation 

methods in a self-adaptive way enables, at each generation, to prevail the most effective ones. In 

AMALGAM*, if at first NGSA-II and MBBO hold a high specific probability, when the Pareto front 

has been identified MPSO remains the most active method. The proposed algorithm improves Pareto 

front estimation in problems for which objective functions evaluation are computationally expensive. 

Especially for the tailored heating process, a new inductor design including an optimized set of 

parameters has been investigated from one benchmark experiment followed by an extensive parameter 

study. Here it could be shown, that multimethod optimization can be applied successfully in order to 

minimize the energy consumption by fulfilling the desired temperature profile.  
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