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ABSTRACT: 

 

Land cover describes the physical material of the earth’s surface, whereas land use describes the socio-economic function of a piece 

of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic 

update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on 

convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we 

apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based 

on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the 

prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches 

of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments 

show that an overall accuracy of up to 85.7% and 77.4% can be achieved for land cover and land use, respectively. The classification 

of land cover has a positive contribution to the classification of the land use classification.  

 

 

1. INTRODUCTION 

Classification of land cover is a standard task in remote sensing, 

in which each image pixel is assigned a class label indicating the 

physical material of the object surface (e.g. grass, asphalt). This 

task is challenging due to the heterogeneous appearance and high 

intra-class variance of objects, e.g. (Paisitkriangkrai et al., 2016). 

In contrast, land use describes the socio-economic function of a 

piece of land (e.g. residential, agricultural). A land use object 

can contain many different land cover elements to form complex 

structures, and a specific land cover type can be a part of different 

land use objects. Thus, land cover and land use classification 

based on remote sensing data are tasks pursuing different 

objectives (Barnsley & Barr, 2000).  

 

The information about land use is often stored in geospatial 

databases, typically acquired and maintained by national 

mapping agencies. Such databases consist of objects represented 

by polygons that are assigned class labels indicating the objects’ 

land use. In such a setting, which is also adopted in this paper, 

the primitives to be classified to derive land cover and land use 

are also different: land cover is determined for individual pixels, 

whereas land use is an attribute of polygons from an existing 

database. The primary goal of land use classification is updating 

the existing database, whereas land cover is an auxiliary product 

providing an additional (yet important) input for achieving that 

overall goal (Albert et al., 2017).  

 

The classification of land cover and land use has mainly been 

tackled by supervised methods, because they are more easily 

transferable to other scenes than model-based techniques. A large 

variety of features and classifiers have been applied for that 

purpose, including methods incorporating context based on 

Conditional Random Fields (Albert et al., 2017). Recent work on 

the classification of images has focused on convolutional neural 

networks (CNN). Originally developed for predicting one class 

label per image (Krizhevsky et al., 2012), they have been 

expanded to pixel-based classification of images (semantic 

segmentation) (Badrinarayanan et al., 2017) and also to 

classification of land cover based on aerial images (Audebert et 

al., 2016; Paisitkriangkrai et al., 2016). CNN have outperformed 

other classifiers for pixel-based classification by a large margin 

if a sufficient amount of training data is available. For instance, 

the best-performing methods in the ISPRS semantic labelling 

challenge (Wegner et al., 2017) are based on CNN, e.g. 

(Marmanis et al., 2018). However, the application of CNN to the 

prediction of a land use label for an irregularly shaped polygon is 

not as straight-forward, because the convolution layers of a CNN 

need a regular image grid. To the best of our knowledge, up to 

date there is no application of CNN for the classification of land 

use polygons based on remote sensing data. 

 

In this paper, we propose new methods for the classification of 

land cover and land use based on high-resolution digital aerial 

imagery and derived products such as a Digital Surface Model 

(DSM) and a Digital Terrain Model (DTM). The scientific 

contributions of this paper can be summarized as follows: 

 

 We extend the SegNet architecture of Badrinarayanan et al., 

(2017) to other input data than RGB images and we propose a 

modified SegNet architecture having more layers while 

requiring fewer parameters. 

 To the best of our knowledge, this is the first paper describing 

the classification of land use polygons based on CNN. This is 

achieved by converting the original input into a structure that 

can be classified by a CNN. 

 For both tasks, we compare different network variants, and we 

assess the contributions of individual data sources to the 

classification results to highlight the benefits, but also to show 

remaining problems of the proposed methodology. 
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The remainder of this paper is structured as follows. We start with 

a review of related work in section 2. Our approach for land cover 

classification is presented in section 3, whereas section 4 is 

dedicated to classification of land use objects. Section 5 describes 

the experimental evaluation of our approach. Conclusions and an 

outlook are given in section 6. 

 

 

2. RELATED WORK 

We start this review by a discussion of different strategies for 

land use classification from high-resolution remote sensing data, 

focusing on the overall strategy and the way in which land cover 

is integrated into the process. In the second part of this review, 

we discuss methodological aspects related to CNN. 

 

Existing methods for land use classification differ by the 

primitives to be classified, the data sources, the features used for 

classification and the classifiers used to predict the class labels; 

cf. (Albert et al., 2017) for a recent overview. Many approaches 

rely on a strategy consisting of two steps (Hermosilla et al., 

2012): After determining land cover in the first stage, the results 

are used to support the classification of land use in the second 

stage. The spatial distribution of land cover types within a land 

use object is analysed to define features that are combined with 

features derived from the sensor data. Spatial metrics quantify 

the spatial configuration of the land cover elements within a land 

use object, describing the size and the shape of the land cover 

segments (Hermosilla et al., 2012) or their spatial configuration 

(Novack and Stilla, 2015). Graph-based-metrics describe the 

frequency of the local spatial arrangement of land cover elements 

within a land use object, e.g. based on an adjacency-event matrix 

(Barnsley & Barr, 1996; Walde et al., 2014). Recent work has 

focused on including context into the classification process by 

using context features (Hermosilla et al., 2012) and Markov or 

Conditional Random Fields (CRF) (Montanges et al., 2015; 

Novack and Stilla, 2015; Albert et al., 2017). Sometimes, the 

contextual model is simple, involving assumptions about 

smoothness of labels at neighbouring sites that are not justified 

for larger entities such as land use objects (Montanges et al., 

2015). Other approaches involve complex models of context 

based on classifiers that need a large amount of training data and 

are difficult to optimize (Albert et al., 2017). In the inference 

procedure for the simultaneous classification of land cover and 

land use described by Albert et al. (2017), the accuracy of land 

cover could be improved, but this was not the case for land use, 

which indicates that the procedure may have gotten stuck in a 

local optimum.  

 

All the methods described so far rely on hand-crafted features. 

Recent advances in image-based classification that were also 

adapted for land cover classification (Paisitkriangkrai et al., 

2016; Marmanis et al., 2018) relied on CNN, see also the recent 

overview of (Zhu et al., 2017). This resulted in a considerable 

improvement in the classification accuracy that can be achieved, 

which is usually attributed to the fact that using CNN, high-level 

features can be learned from training data. To the best of our 

knowledge, this principle has not yet been applied to the problem 

of the prediction of land use.  

 

CNN consist of building blocks that combine a convolutional 

layer, a non-linear mapping and a pooling layer reducing the 

spatial resolution of the signal (LeCun et al., 1998). Deep CNN 

consist of a series of such blocks followed by fully connected 

(FC) layers. Originally, CNN only predicted one label per image, 

e.g. AlexNet (Krizhevsky et al., 2012). Deeper networks such as 

VGG-16 and VGG-19 (Simonyan & Zisserman, 2015) could 

further increase classification accuracy, though at the cost of 

requiring many parameters. GoogLeNet (Szegedy et al., 2015) is 

based on even more layers. Using more but smaller convolutional 

kernels in the convolutional layers, the number of parameters is 

smaller than in VGG-16 despite the increased depth, because the 

FC-layers are omitted. ResNet (He et al., 2016) offers an 

architecture that may have more than 100 layers. This is achieved 

by shortcut connections bypassing convolutional layers, so that 

only a residual function needs to be learned by the network. All 

of these methods only deliver one class label for an entire image 

(or image patch), but cannot be applied directly to obtain a 

prediction on a per-pixel level as is required for land cover 

classification. 

 

To achieve this goal, an image can be divided into many patches, 

each of them being representative for the label of its central pixel. 

The pixels near the patch centre provide context information that 

is converted into a feature vector by the CNN. Längkvist et al. 

(2016) apply this procedure in a sliding window approach, 

making each pixel the centre of such a patch. However, 

processing overlapping patches requires unnecessary 

computations. Paisitkriangkrai et al. (2016) apply patch-based 

classification to every nth pixel in the image, using bilinear 

interpolation of class scores to obtain dense predictions; 

however, bilinear classification does not preserve the object 

boundaries well. 

 

An alternative to such patch-based approaches is to switch to 

network architectures that directly deliver class predictions for 

each pixel. Fully convolution networks (FCN) (Long et al., 2014) 

apply the convolutions and the pooling operations to the entire 

image rather than to a patch, which leads to a map of signals that 

has a lower spatial resolution. A final upsampling layer delivers 

the predictions at pixel level. Deconvolution networks (Noh et 

al., 2015) use an encoder-decoder strategy where the encoder part 

is similar to a standard CNN, whereas the decoder part is 

responsible for upsampling the low-resolution signal to the full 

resolution of the image. The decoder consists of several building 

blocks that mirror the structure of the encoder part of the 

network; the difference is that each block starts with an 

upsampling layer that increases the spatial resolution. A better 

representation of the object boundaries is achieved by storing the 

positions that delivered the signal in the max pooling layers and 

using them to distribute the low-resolution signal to the higher 

resolution layer. A similar strategy is pursued by SegNet 

(Badrinarayanan et al., 2017), applying end-to-end learning of all 

parameters, including those of the decoder part. Variants of such 

networks have been used for land cover classification, achieving 

promising results. For example, Marmanis et al. (2018) apply 

FCN and combine an ensemble of classifiers at different 

resolutions for that purpose, improving the delineation of 

boundaries by a network predicting image edges. Sherrah (2016) 

proposed a FCN without down-sampling to address the problem 

of the loss of spatial resolution, which could be achieved by 

atrous convolution. However, this method needs more 

computational effort (at least 40 times more training time) for an 

increase of 2% in accuracy in the ISPRS labelling challenge. 

Volpi et al. (2016) propose an encoder-decoder structure with 

different upsampling strategies. The architecture is more shallow 

than the one of SegNet, which reduces the reduction in spatial 

resolution in the encoder part because there are fewer pooling 

layers. The reduced depth might limit the expressive power at the 

prediction stage. 

 

The prediction of class labels for land use objects is more closely 

related to object detection. In the context of CNN, this problem 

is solved in a procedure based on two stages: first, regions that 
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are likely to contain some object are determined by generic 

region-proposal methods. After that, a CNN is used to classify 

these regions (Ren et al., 2015). We do not need region proposals, 

because we know the location and shape of the objects we want 

to classify from the geospatial database. However, the object size 

has large variations, so that rescaling of the bounding box 

enclosing an object may become infeasible. For instance, roads 

are very thin objects, yet their bounding boxes may become 

rather large, so that rescaling them to a window of a fixed size 

typical for CNN may almost completely remove them from the 

image. In this paper, we propose a method that allows to use a 

fixed-size CNN without object-dependent rescaling. 

 

 

3. CNN-BASED CLASSIFICATION OF LAND COVER 

Our land cover classification is based on SegNet (Badrinarayanan 

et al., 2017), because it delivers a class label for each pixel while 

outperforming the FCN of Long et al. (2014). According to 

Audebert et al. (2016), SegNet also provides a good balance 

between accuracy and computational cost. In section 3.1, we 

outline the original basic SegNet architecture, referred to as 

SegNet-B in this paper. Section 3.2 describes our extensions of 

the architecture. Section 3.3 gives information about the 

implementation, training and inference. 

 

3.1 SegNet-B 

SegNet (Badrinarayanan et al., 2017) applies a symmetric 

encoder-decoder structure. The encoder is a succession of four 

blocks, each consisting of one convolutional layer followed by 

batch normalization (BN; Ioffe et al., 2015), a rectified linear unit 

(ReLU) introducing non-linearity and max-pooling. The decoder 

part consists of four blocks that are symmetric to the encoder. 

Each block starts with an upsampling layer that distributes the 

lower resolution signals according to the positions of the pixels 

that were not suppressed by the corresponding max-pooling 

layer, which is followed by one convolutional layer, batch 

normalization and a rectified linear unit. Each convolutional 

layer consists of 64 filters with a size of 7 x 7 and uses zero-

padding to keep the spatial dimension of the resultant feature 

maps. Max-pooling is always applied with a window of 2 x 2 and 

a stride of 2. At the end of the decoder part, there is a 1x1 

convolutional layer that converts the output of the previous layers 

to a tensor of dimension 𝐿 × 𝐻 × 𝑊, where 𝐻 × 𝑊 is the size of 

the input image and L is the number of classes to be discerned. 

For each pixel i of the image to be classified, this results in a 

vector 𝒛𝑳𝑪
𝒊 = (𝑧𝐿𝐶1

𝑖 , … , 𝑧𝐿𝐶𝐿
𝑖 )𝑇  of class scores, where ℂ𝐿𝐶 =

 {𝐶𝐿𝐶1 , … , 𝐶𝐿𝐶𝐿} is the set of land cover classes and 𝑧𝐿𝐶𝑐
𝑖  is the 

class score for class 𝐶𝐿𝐶𝑐. These class scores are normalised by a 

softmax function, the output of which can be interpreted as the 

posterior probability 𝑃𝑖(𝐶𝐿𝐶𝑐|𝑥)  for pixel i to take class label 

𝐶𝐿𝐶𝑐 given the image data x:  
 

         𝑃𝑖(𝐶𝐿𝐶𝑐|𝑥) = softmax(𝑧𝐿𝐶
𝑖 , 𝐶𝐿𝐶𝑐) =  

𝑒𝑥𝑝 (𝑧𝐿𝐶𝑐
𝑖 )

∑ 𝑒𝑥𝑝 (𝑧
𝐿𝐶𝑙
𝑖 )𝐿

𝑙=1

.   (1) 

 

In training, the parameters of all convolutional layers are 

determined, including those of the decoder part of the network. 

Training uses stochastic gradient descent (SGD) based on mini-

batches and backpropagation for computing the gradients. The 

function to be minimized by SGD is the cross-entropy loss: 
 

          𝐿 = −
1

𝑊∙𝐻∙𝑁
∑ [𝜔𝑐 ∙ 𝑦𝐿𝐶𝑐

𝑖𝑘 ∙ 𝑙𝑜𝑔(𝑃𝑖(𝐶𝐿𝐶𝑐|𝑋𝑘))]𝑐,𝑖,𝑘 ,   (2) 

 

where k is the index of an image, Xk is the kth image in the mini-

batch and N is the number of images in a mini-batch. The 

indicator variable 𝑦𝐿𝐶𝑐
𝑖𝑘  is 1 if the training label of pixel i in image 

k is identical to 𝐶𝐿𝐶𝑐 and 0 otherwise, and 𝜔𝑐  is a class weight 

computed according to (Eigen et al., 2015) in order to 

compensate for an imbalanced class distribution in the training 

data. The sum in (2) is taken over all potential class labels for all 

pixels of all images of a mini-batch. 
 

3.2 Network variants 

Based on SegNet-B, we developed two additional variants of the 

network, referred to as SegNet-F and SegNet-O. We also apply 

combinations of different networks (ensemble methods).  

 

3.2.1 SegNet-F: SegNet-B requires RGB images as input, but it 

cannot cope with an additional input such as a DSM and an 

infrared band (IR). This is usually achieved by using different 

CNN branches for the individual input sources. Unlike existing 

methods, e.g. (Sherrah, 2016; Hazirbas et al., 2015), we use three 

branches: the first one corresponds to SegNet-B and is applied to 

the RGB orthophotos, the other two are also based on SegNet-B, 

but they use one input band only (DSM and IR, respectively). 

After the last convolutional layer of the decoder parts of the three 

branches, their output is concatenated spatially, which is the same 

as the concatenation in (Sherrah, 2016). Finally, a 1 x 1 

convolutional layer is used to convert the concatenated signals 

into class scores, which are used as arguments for the softmax 

function. 

 

3.2.2 SegNet-O: SegNet-B uses a filter size of 7 x 7 pixels for 

all convolutional layers. Following the ideas of Simonyan and 

Zisserman (2014), we replace these convolutional layers by three 

successive blocks of convolution, BN and ReLU, where the filter 

size of the convolution is 3 x 3, keeping the number of filters in 

each convolutional layer the same as in SegNet-B. This 

modification adds an implicit regularization to the model due to 

more BN and non-linearity layers. SegNet-O is deeper than 

SegNet-B (12 vs. 4 convolutional layers both in the encoder and 

decoder phases), but achieves a reduction of the number of 

parameters of 40%. SegNet-O is illustrated in Fig. 1. 
 

 
 

Figure 1: Architecture of SegNet-O. 

 

3.2.3 Ensembles: We also test ensembles of the networks 

described so far. For that purpose, an image is classified using all 

networks of the ensemble; we combine the results by multiplying 

the probabilistic class scores for each pixel. 

 

3.3 Implementation and Training  

All networks are implemented based on the Caffe framework (Jia 

et al., 2014). We use a GPU (Nvidia GTX 1060, 6GB) to 

accelerate training and inference. 

 

3.3.1 Training: For training of all the networks we employed a 

SGD optimizer with weight decay 0.00015, momentum 0.9 and 

step learning policy. The input size for all networks is 256 x 256 

pixels. Due to the limitations of our GPU, the mini-batch size and 
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base learning rate are set to different values for different 

architectures. For SegNet-B, the learning rate is set to 0.1 with a 

mini-batch size of 18; for SegNet-F and SegNet-O, the 

corresponding values are 0.01 and 4, respectively. 

 

3.3.2 Transfer learning: For SegNet-B we also compare a 

variant based on training from scratch (cf. section 3.3.1) with 

another one in which we initialize the weights from the original 

SegNet trained on the CamVid dataset (Brostow et al., 2009). 

Starting from this initialisation, we fine-tune the network using 

SGD with a learning rate of 0.01 and a mini-batch size of 18. 

 

 

4. CNN-BASED CLASSIFICATION OF LAND USE  

The classification of land use is based on a CNN taking an image 

patch of 256 x 256 pixels and returning a land use label. Again, 

the networks are based on Caffe with GPU support. Before 

applying the CNN, the patch is prepared so that it represents the 

land use object from the geospatial database for which the class 

label is derived. In this context, large land use objects are split 

into several patches. Patch preparation is described in section 4.1, 

whereas section 4.2 outlines the CNN architectures used for 

classification.  

 

4.1 Patch preparation 

The image patch should represent the image data inside the 

polygon corresponding to an object from the geospatial database. 

As the images may have a very high resolution, a patch of 256 x 

256 pixels may correspond to a very small area in object space. 

Thus, we start by rescaling the images using a uniform scale 

factor so that the resultant patches correspond to an area of about 

100 m x 100 m in object space, a value we found to be appropriate 

in preliminary experiments. If the polygon fits into a 256 x 256 

patch after rescaling, patch preparation is straightforward. We 

initialise the patch by a background colour (black) and place the 

polygon in the centre of the patch. After that, for each pixel inside 

the polygon we replace the background colour by the RGB values 

from the rescaled image. In this way, the polygon shape is 

represented by the transition between RGB data and the 

background, which we expect to be beneficial for the 

classification.  

 

For polygons that do not fit into a single patch, we define a 

rectangle that is aligned with the row and column directions of 

the image and split it into a series of tiles of 256 x 256 pixels with 

25% overlap between neighbouring tiles. For each tile we check 

the proportion of its area that is inside the object from the 

database; we exclude tiles having an overlap smaller than a 

threshold (set to 99.995% of its area) from further processing. As 

this may still result in a large number of tiles, we randomly select 

30% of the remaining tiles for further processing. Each tile results 

in a patch to be classified. A tile is initialised by the background 

colour; after that, the RGB values of pixels inside the land use 

objects are copied from the rescaled image. Patch generation for 

a land cover image, which serves as additional input, works in a 

similar way.  

 

4.2 Network Variants 

4.2.1 LiteNet-B: This architecture is based on (Paisitkriangkrai 

et al., 2016) and serves as our baseline. We use it because it 

requires much fewer parameters than other networks (2.7 million, 

compared e.g. to 140 million of VGG-16) while still promising a 

similar performance. The input size for all networks is 256 x 256 

pixels. The network consists of four convolution layers, each 

followed by a ReLU and a max-pooling layer with a window of 

2 x 2 and stride 2. The first three convolutional layers have 32, 

64, and 96 filters of size 5 x 5, respectively. The fourth 

convolutional layer has 128 filters with a size of 3 x 3. No 

padding is applied in any convolutional layer. After the last 

pooling layer there are two FC layers having 128 neurons each, 

each of them followed by a dropout layer with dropout ratio 0.5. 

The last FC layer converts the resultant feature vectors into a 

vector of class scores 𝒛𝑳𝑼 = ( 𝑧𝐿𝑈1 , … , 𝑧𝐿𝑈𝑀)𝑇 , where ℂ𝐿𝑈 =
 {𝐶𝐿𝑈1 , … , 𝐶𝐿𝑈𝑀} is a set of land use classes and 𝑧𝐿𝑈𝑐 is the score 

of for class 𝐶𝐿𝑈𝑐. To get a probabilistic class score, the softmax 

function (eq. 1) is applied to the class scores, thus 𝑃(𝐶𝐿𝑈𝑐|X) =

softmax(𝒛𝐿𝑈, 𝐶𝐿𝑈𝑐). Training is based on SGD; the function to 

be optimised is the cross-entropy loss  
 

                𝐿 = −
1

𝑁
∙ ∑ [𝑦𝐿𝑈𝑐

𝑘 ∙ 𝑙𝑜𝑔(𝑃(𝐶𝐿𝑈𝑐|𝑋𝑘))]𝑐,𝑘 ,   (3) 

 

where 𝑋𝑘 is the kth  image in the mini-batch, N is the number of 

images in a mini-batch, and 𝑦𝐿𝑈𝑐
𝑘  is 1 if the training label of 𝑋𝑘 is 

𝐶𝐿𝑈𝑐 and 0 otherwise. 

 

4.2.2 LiteNet-O: We extend LiteNet-B by replacing all 

convolutional layers by two successive 3 x 3 convolutional 

layers, each followed by a ReLU, for the reasons already given 

in section 3.3.2. The last convolution in LiteNet-B has a filter size 

of 3 x 3, but we also replace it by two successive 3x3 

convolutional layers, so the receptive field of the combined 

convolution is larger than the one of the last LiteNet-B layer. 

Figure 2 shows the resultant network architecture. 
 

 
 

Figure 2: Architecture of LiteNet-O. 

 

4.2.2 Ensembles: We also test a combination of the results of 

different classifiers, similarly to section 3.2.3. 

 

4.2.3 Training and inference: For all variants, training uses 

SGD with weight decay 0.00015, momentum 0.9 and step 

learning policy. The base learning rate is set to 0.001 with a mini-

batch size of 32. In the classification, the CNN delivers a 

prediction for each patch. For polygons that had to be split into 

multiple patches, the probabilistic class scores of all patches are 

multiplied to obtain a combined score for the compound object. 

 

 

5. EXPERIMENTS 

5.1 Test Data und Test Setup 

The approach is evaluated using a test site located in the city of 

Hameln (Germany). It is characterised by residential areas with 

detached houses as well as by densely built-up areas in the centre 

of the city, but there are also industrial areas, rural areas and 

rivers. The test site covers an area of 2 km x 6 km. The input 

consists of digital orthophotos (DOP), DSM, DTM and land use 

objects corresponding to cadastral parcels of the German 
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Authoritative Real Estate Cadastre Information System (ALKIS) 

(Albert et al., 2017). The DOP are multispectral images (RGB + 

infrared / IR) with a ground sampling distance of 20 cm. We 

generated the normalised DSM (nDSM) by subtracting the DTM 

from DSM; the nDSM is used to represent the height information 

in the experiments. A pixel-based reference for land cover was 

generated by manual labelling. We could use 37 manually 

labelled images for land cover classification, each having a size 

of 768 x 768 pixels (153.6 m x 153.6 m in object space). The 

reference for land use classification was derived from the 

geospatial database. We distinguish eight land cover classes: 

building (build.), sealed area (seal.), bare soil (soil), grass, tree, 

water, car and others. The definition of land use classes has to 

comply with the specifications of the German geospatial land use 

database; we distinguish ten land use classes: residential (res.), 

non-residential (non-res.), urban green (green), traffic (traf.), 

square, cropland (cropl.), grassland (grassl.), forest, water body 

(water) and others. The class structures of land cover and land 

use are the same as in (Albert et al., 2017). 

 

The evaluation is based on cross validation. We split the data into 

subsets and use some subsets for training and the others for 

testing, repeating this process multiple times so that in the end 

each object is used for testing once. After each test run, we 

compare the results to the reference and determine the confusion 

matrix as well as derived metrics. Here, we report average 

metrics over all test runs. We focus on the overall accuracy (OA), 

i.e. the percentage of entities (pixels for land cover, objects for 

land use) that are assigned the correct class label by the 

classification process, and the average F1 score, i.e., the average 

of the harmonic means of the completeness and the correctness 

per class.  

 

5.1.1 Test setup for land cover classification: For evaluating 

the land cover classification, we split each of the 37 images with 

reference data into nine non-overlapping tiles of size 256 x 256, 

which results in 333 tiles. The tile size corresponds with the input 

size required by our CNN variants. These tiles were divided into 

three subsets of equal size, and in each test run we use one subset 

for training and one for testing, so that there are altogether three 

test runs. For training, we applied data augmentation by flipping 

the training samples in horizontal and vertical directions and 

applying rotations of 90°, 180° and 270°. We tested Segnet-B in 

two scenarios: SegNet-B0 is based on training from scratch, 

whereas SegNet-B1 used a pre-trained model for initialisation 

(cf. section 3.3.2); in both cases, the RGB bands of the DOP were 

the only input. The latter statement is also true for the 

experiments using SegNet-O, whereas for SegNet-F we used the 

RGB and IR bands as well as the nDSM. We also compared 

different ensembles (EN), where we drop the term SegNet to 

denote the classifiers that were combined. For instance, EN(O, F) 

refers to an ensemble that combines the output of SegNet-O and 

SegNet-F.  

 

5.1.2 Test setup for land use classification: The test data set is 

split into twelve blocks of 5000 x 5000 pixels (1 km2) each. In 

each test run, we used 11 blocks for training and one for testing. 

Land use objects crossing the block boundaries were split at these 

boundaries; after splitting these polygons, the reference consisted 

of 4155 land use objects. For patch generation, a scale of 1:2 was 

used which corresponds to a ground sampling distance of 40 cm. 

For training we applied data augmentation by horizontal and 

vertical flipping and by rotations of 45°, 90°, 135°, 180°, 225°, 

270° and 335°. Patch generation and data augmentation resulted 

in 154570 patches. We carried out two tests for each of the two 

architectures: in the first test, RGB images were used as the basis 

of classification; these variants are referred to LiteNet-B0 and 

LiteNet-O0, respectively. In the second set of tests (LiteNet-B1, 

LiteNet-O1), we used a label image encoding the land cover as 

the single input. This means that the CNN had to be adapted to 

use a single image band as input, i.e., the filters in the first 

convolution layers have different numbers. In the tests involving 

land cover as input, we used an ensemble of all land cover 

classifiers to derive the land cover information. For both CNN 

architectures, we also tested an ensemble of the nets based on 

RGB and land cover data, referred to as EN(B0, B1) and EN(O0, 

O1), respectively. In the classification process, the set of 

geometrical transformations used for data augmentation was also 

applied to each test patch, so that each patch was classified 10 

times by the CNN; the combined class scores were obtained by 

multiplying the scores from the individual results.  

 

5.2 Evaluation of land cover classification 

Table 1 presents the land cover classification results for all 

variants described in section 5.1.1. In general, we consider the 

results to be quite good, with OA being larger than 81% in all 

cases. The F1 scores show that the correct classification of 

classes having few training samples (car and others, covering 

1.0% and 0.5% of the test area, respectively) is more challenging 

than the classification of other classes. In the subsequent sections, 

we analyse the variants in more detail.  

 

5.2.1 SegNet-B: SegNet-B trained from scratch (SegNet-B0) 

yields a mean overall accuracy of about 81.7% and an average F1 

score of about 72.1%, with particularly low F1 scores for car and 

others. When applying transfer learning (SegNet-B1), the OA is 

improved by a small margin (0.2%), the most obvious effect 

being an improvement of the F1 scores for water and car (2.3% 

/ 2.2%, respectively). This is in accordance with the findings of 

Yosinski et al. (2014), who show that results after transfer 

learning may be slightly better than results achieved when 

training from scratch because the classifier seems to “remember” 

previously seen samples even if taken from a different domain. It 

is to be expected that training from scratch and fine-tuning will 

arrive at different minima in parameter space, which makes the 

two classifiers complementary. This is confirmed by the results 

achieved by a combination of the two classifiers, EN(B0, B1), 

which results in an improvement of 1.9% in OA and 3% in the 

average F1 score compared to SegNet-B. The F1 scores of all 

classes are improved, most obviously for car and others (6.1% / 

5.4%).  

 

5.2.2 SegNet-O: Our extension achieves similar results as the 

baseline while only requiring 40% of the parameters. Despite the 

network being deeper, there is only a small improvement in OA 

and average F1 score of 0.1% and 0.4%, respectively. An 

improvement in the F1 score for class car of 6.7% is contrasted 

by a decrease in class soil of 4%. By combining Segnet-O with 

SegNet-B (variant EN(B0, O)) the results are improved to a level 

similar to EN(B0, B1), with advantages for car and others and 

slight disadvantages for water. 

 

5.2.3 SegNet-F: This network integrates RGB, IR and nDSM 

data in one model. We expected the additional channels of IR and 

nDSM to improve the results, but this is not the case: SegNet-F 

performs slightly worse than the baseline in terms of OA and 

average F1 score. One reason for that behaviour could be that the 

SegNet-F requires almost three times as many parameters as 

SegNet-B. Consequently, it may be necessary to use more 

training data, but in our experiments, the same number of samples 

was used for training. There are also some problems with the 

quality of the DSM at building boundaries and with trees. 

However, the benefits of the additional information sources are 
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indicated by the results achieved by the ensembles EN(B0, F) and 

EN(O, F) of SegNet-F with SegNet-B0 and SegNet-O, 

respectively. Compared to the baseline, OA is improved by about 

3% in both cases, and there is also an improvement of 1% 

compared to the best ensemble methods without SegNet-F. It 

would seem that SegNet-F indeed covers cases that are not 

represented well by the nets not relying on IR and height data. 

However, the improvement is not distributed equally over the 

classes: build., seal. and water show the largest improvement, 

whereas the F1 scores of others and soil are considerably lower 

than for ensembles without SegNet-F.  

 

5.2.4 EN(B0, B1, O, F) - Ensemble of all classifiers: Finally, 

we tested an ensemble of all the classifiers, which clearly 

outperformed all other variants with an OA of 85.7% and an 

average F1 score of 76.6%. This is an improvement of 4% 

compared to the baseline and of 1% compared to ensembles of 

two nets and involving SegNet-F (section 5.2.3). Nearly all F1 

scores are better than for all other variants; the only F1 score that 

is notably lower is the one for others.  

 

5.3 Evaluation of land use classification 

Table 2 presents the results of the land use classification for 

different networks. In general, the quality indices are at a lower 

level than the ones for land cover, which may be partly attributed 

to the fact that despite data augmentation, the number of available 

training samples is still very low for some classes.  

 

5.3.1 LiteNet-B: LiteNet-B0, only based on RGB images, 

achieved an OA of 76.1% and an average F1 score of 61.2%. The 

CNN has problems in classifying objects of types square, 

grassland and others, which we attribute to the small amount of 

training samples available for these data (only 1.2%, 1.3% and  

5% of all training samples belong to grassland, square, and 

others, respectively; in addition, others is a class of very 

heterogeneous appearance). Although the OA is slightly lower 

when using the semantic classification results as input (LiteNet-

B1), the average F1 score is almost the same. For some of the 

classes, the F1 score is improved by a margin of up to 15.6%. 

(square) and for others it is reduced by up to 6.1% (others). Using 

the ensemble EN(B0, B1) results in an improvement of OA of 

1.3% and the average F1 score of 1.9%, compared to LiteNet-B0. 

Except for the classes grassland and others, the F1 scores are 

improved by adding the land cover data to the RGB images. This 

shows that the two networks (based on different input data) 

complement each other, resulting in a better overall performance. 

Compared to the results of LiteNet-B1, there is a loss in F1 score 

in the classes square and grassland by adding the RGB 

information. 

 

5.3.2 LiteNet-O: In general, our extensions LiteNet-O0 and 

LiteNet-O1 do not outperform the corresponding LiteNet-B 

variants. While delivering OAs of a similar level, the average F1 

scores are smaller. Compared to LiteNet-B0, LiteNet-O0 

achieves slightly better F1 scores for the classes residential, non-

residential, traffic, forest, water and others (improvement 

between 0.2% and 3.8%). This is contrasted by a drop in F1 

scores for the other classes, in particular for square (16.5%). 

Similarly to the LiteNet-B variants, using land cover rather than 

RGB data as input leads to a slightly lower OA, yet improves the 

average F1 score. The latter is due to an increased F1 score of 

most classes (up to 17.3% in case of square), though not for all 

of them; most notably, there is a decrease of 13.2% for water. As 

with the LiteNet-B variants, the ensemble EN(O0, O1) delivers 

better results than both LiteNet-O0 and LiteNet-O1, which again 

confirms that the land cover data and RGB are complementary. 

However, in this case the improvement for the ensemble is 

smaller than for the LiteNet-B variants. Whereas the OA of 

EN(B0, B1) is slightly larger than the one achieved for EN(O0, 

O1) (0.4%), the difference in the average F1 score is 2.4%. The 

LiteNet-B variants achieve more homogeneous results for all 

classes than LiteNet-O. In the light of these results, the ensemble 

of the LiteNet-B variants using both RGB and land cover data is 

the best of the compared methods.  

 

5.3.3 Influence of the patch generation strategy: In our patch 

generation strategy we set the area outside of the object to zero, 

thus clearly separating the object from its background. In this 

way, the CNN can implicitly learn a model of the shape of the 

object boundaries, which we consider important because in 

(Albert et al., 2017) we found that shape features were among the 

most important ones for land use classification. Without setting 

the background to zero, the object shape, related to property 

boundaries, would not be reflected clearly in the patches to be 

classified. This is illustrated by Figure 3, which shows two 

representative feature maps from the first convolutional layer of 

LiteNet-B0 for a land use object. In the top part of the figure, the 

Network 

variant 

Input F1 [%] avg. F1 

[%] 

OA  

[%] build. seal. soil grass tree water car others 

SegNet-B0 RGB 85.5 74.7 78.7 83.6 84.2 86.8 57.4 25.5 72.1 81.7 

SegNet-B1 RGB 85.4 75.4 78.6 83.4 83.7 89.1 59.6 25.9 72.6 81.9 
EN(B0, B1) RGB 87.2 77.4 81.1 84.8 85.3 90.1 63.5 30.9 75.1 83.6 

SegNet-O (O) RGB 85.7 76.0 74.7 82.4 84.4 86.3 64.1 26.1 72.5 81.8 

EN (B0, O) RGB 87.6 78.0 80.9 84.4 85.6 88.1 65.9 31.3 75.3 83.7 

SegNet-F DOP + nDSM 87.7 77.2 75.3 80.1 80.7 88.6 50.8 22.1 68.8 81.3 
EN (B0, F) DOP +  nDSM 90.8 80.3 77.7 84.7 85.5 91.6 58.9 26.7 74.5 84.5 

EN (O, F) DOP +  nDSM 90.7 80.6 76.4 84.6 86.0 91.3 63.9 25.8 74.9 84.7 

EN (B0, B1, O, F) DOP +  nDSM 90.8 81.4 81.2 85.7 86.8 91.5 66.1 29.6 76.6 85.7 
 

Table 1. Results of land cover classification. Network variant: cf. section 5.1.1. F1: F1 score, OA: Overall Accuracy, both 

evaluated on the basis of pixels. Best scores are printed in bold font. 
 

Network 

variant 

Input F1 [%] avg. 

F1[%] 

OA  

[%] res. non-res. green traf. square cropl. grassl. forest water others 

LiteNet-B0 RGB 80.7 64.6 68.8 88.0 31.8 78.2 34.4 73.8 60.5 31.5 61.2 76.1 

LiteNet-B1 LC 81.1 68.2 64.4 87.9 47.4 78.2 37.8 76.3 57.3 25.4 61.4 75.7 
EN (B0, B1) RGB + LC 82.0 70.8 69.2 88.2 40.4 80.6 33.3 77.0 63.4 25.9 63.1 77.4 

LiteNet-O0 RGB 81.4 66.0 67.3 88.2 15.3 77.4 25.6 75.3 60.8 35.3 59.2 76.1 

LiteNet-O1 LC 80.8 68.2 64.3 88.4 32.6 78.9 36.1 76.6 47.2 26.9 60.0 75.7 

EN (O0, O1) RGB + LC 83.1 69.4 67.8 88.1 23.3 79.6 27.9 77.0 60.0 30.6 60.7 77.0 
 

Table 2: Results of land use classification. Network variant: cf. section 5.1.2. LC: Land cover. F1: F1 score, OA: Overall 

Accuracy, both evaluated on the basis of objects. Best scores are printed in bold font. 
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patch is extracted from the RGB image without setting the 

background to zero; the resultant feature maps are related to 

image edges and corners that correspond to land cover changes 

or shadows. Applying our patch generation strategy yields 

feature maps that clearly highlight the object boundaries, while 

still responding to edges inside the object (bottom part of Figure 

3).  
 

 
 

Figure 3: Feature maps from the first convolutional layer for a 

land use object (right) and corresponding image patch 

(left). Top / bottom: without / with setting the grey 

values outside the object to zero. 

 

5.3.4 Influence of object size: In section 5.3.1, we have seen that 

the performance of land use classification is related to the number 

of training samples per class. Here we analyse how the polygon 

size affects the classification accuracy. Table 3 shows the OA 

achieved by EN(B0, B1) for three different sets of land use 

objects. The set small consists of all objects that were represented 

by a single patch in the classification process, whereas the set 

large consists of all objects that were split in the patch generation 

phase (cf. section 4.1). The table also contains the combined 

results (all), which are identical to the ones shown in Table 2. 

The results show that the large objects are classified more reliably 

(OA 85.3%) than the smaller ones (OA 69.5%).  
 

object set large small all 

objects 2076 2079 4155 

OA [%] 85.3 69.5 77.4 
 

Table 3: OA for three different sets of objects based on EN(B0, 

B1); objects: number of objects in the set.  

 

We also evaluate the OA of the objects from the small set as a 

function of the ratio of the object area and the tile size 

(occupation ratio; Table 4). In nearly 75% of all cases, the object 

covers less than 10% of the tile, and the corresponding OA is low 

(66.9%). In general, the OA increases with the object size, 

achieving 79.1% for objects between 10% and 20% of the patch 

size; the number for the largest objects, based on very few 

instances, is not representative. However, even for the largest 

objects, the OA remains smaller than the one for the objects in 

the large set. This evaluation clearly gives us a direction of 

conducting further research, focussing on a better classification 

of small objects. This could for instance be achieved by involving 

multiple scales for resizing the image patches, so that also for 

small objects a larger proportion of the patch to be classified is 

different from the background.  

 

 

6. CONCLUSION 

In this work, we have investigated the use of different encoder-

decoder structures of CNN based on SegNet for the pixel-wise 

classification of land cover based on aerial images and derived 

data. We compared different variants of the CNN architecture. 

Our experiments have shown that an ensemble of CNN having 

different architectures and using different input data achieves the 

best performance with an overall accuracy of almost 86% for 

eight land cover classes, whereas it was 83.7% in Albert et al., 

2017. However, there are still some misclassifications; for 

instance, the asphalt on bridges is sometimes misclassified as 

building, or bare soil is misclassified as grass. At the same time, 

the boundaries between objects, e.g. between building and street, 

are not very precise. These problems will be addressed in our 

future work on land cover classification, where we will 

investigate deeper network structures and architectures that place 

more focus on a precise delineation of the object boundaries.  

 

We have also proposed a new method for the classification of 

land use objects based on CNN and a task-specific patch 

generation strategy. Although the overall accuracy is about 1% 

lower than the ones in Albert et al., 2017, the results are still very 

promising, in particular for large objects. A small number of 

training samples and small object size could be identified as the 

major limiting factors. We have shown that integrating the results 

of land cover classification improves the classification of land 

use. We compared networks of different depth, but did not 

achieve better results for deeper networks than for more shallow 

ones. Our future work will focus on improving the method by 

concentrating on its current limitations. Firstly, a multi-scale 

analysis could help to improve the classification accuracy for 

small objects. The problems related to the number of training 

samples could be tackled by label noise robust methods for 

training (Mnih & Hinton, 2012) that can leverage the (existing 

but potentially outdated) land use labels from the geospatial 

database for training. Post-processing by a CRF (Albert et al., 

2017) could also improve the results. Finally, we want to develop 

an improved framework for the integration of land cover and land 

use classification. 

 
OR [%] <10 10 - 20 20 - 30 >30 

objects 1557 373 129 20 
OA [%] 66.9 76.7 79.1 70.0 

 

Table 4: OA as a function of the occupation ratio (OR); objects: 

number of objects in the respective set.  
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