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Abstract. For practical reasons, the majority of past Lorentz tests has involved stable or
quasistable particles, such as photons, neutrinos, electrons, protons, and neutrons. Similar
efforts in the electroweak sector have only recently taken shape. Within this context, Lorentz-
violation searches in the Standard-Model Extension’s Z-Boson sector will be discussed. It is
argued that existing precision data on polarized electron–electron scattering can be employed to
extract the first conservative two-sided limits on Lorentz breakdown in this sector at the level
of 10−7.

1. Introduction
Investigations of Lorentz symmetry may provide experimental access to physics beyond the
Standard Model [1, 2, 3, 4, 5]. The effective-field-theory description of such effects is provided
by the Standard-Model Extension (SME) framework [6, 7], which contains the usual Standard
Model and General Relativity as special cases, but also incorporates Lorentz- and CPT-violating
operators of arbitrary mass dimension. To date, the SME framework has not only been employed
for numerous experimental [8, 9, 10, 11, 12, 13, 14] and theoretical [15, 16, 17, 18, 19, 20]
analyses of Lorentz breakdown, but also for phenomenological studies of spacetime torsion [21]
and nonmetricity [22].

Previous Lorentz-violation searches have primarily focused on stable or quasistable particles.
Only a few studies have been performed in the context of weak-interaction physics [23, 24, 25];
only some of these studies have constrained the SME coefficients for the massive gauge
bosons [24, 25]. The present work reports on recent progress in this field. In particular, we
discuss the idea that polarized electron–electron scattering is affected by the Lorentz-breaking
SME coefficients kφφ and kW associated with the Z boson. Both of these coefficients are
CPT even and part of the minimal SME (mSME), which restricts attention to power-counting
renormalizable Lorentz-breaking operators.

The presentation of this report is divided into two parts. The first part reviews the theoretical
aspects of tree-level polarized Møller scattering in the mSME and derives a general expression
for the corresponding cross section. The second part focuses on a special case of this cross
section, in which the structure of the Lorentz violation takes a simplified form. The goal of
this second part is to identify generic experimental signals and estimate the sensitivities that
could be reached. Throughout, natural units h̄ = c = 1 are used, and the convention for the
Minkowski metric are ηµν = diag (+,−,−,−).

http://creativecommons.org/licenses/by/3.0
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2. Theory
The mSME is set up to describe general power-counting renormalizable Lorentz breakdown while
retaining other fundamental physics properties including the ordinary SU(3)×SU(2)×U(1) gauge
structure. The mSME’s electroweak parameter space is therefore most transparently introduced
before SU(2)×U(1) symmetry violation. Spontaneous gauge-symmetry breaking then mixes the
mSME coefficients kB, kW , and kφφ of the original U(1), SU(2), and Higgs sectors [6]. This
leads to the following quadratic contributions to the mSME sector containing the photon and
the Z boson [6, 26]:

δL(2)A,Z = − 1
4(kB cos2 θW + kW sin2 θW )κλµν F

κλFµν

− 1
4(kW cos2 θW + kB sin2 θW )κλµν Z

κλZµν

− 1
4 sin 2θW (kW − kB)κλµν F

κλZµν

+ 1
2M

2
Z Re (kφφ)µν Z

µZν , (1)

where Fµν = ∂µAν − ∂νAµ is now the photon gauge field corresponding to the remaining
unbroken U(1)γ symmetry, and is Zµν = ∂µZν − ∂νZµ the massive gauge field corresponding to
the Z boson. The usual weak angle is denoted by θW and the mass of the Z by MZ .

Disregarding Chern–Simons-type Lorentz breakdown, the Lagrangian corrections (1) are
general in a purely theoretical sense. However, previous observations may be employed to
eliminate those coefficients whose experimental limits are well beyond the sensitivity reach
of present-day and near-future Møller-scattering measurements. This arguments applies in
particular to the mSME coefficient

(kF )κλµν ≡ (kB cos2 θW + kW sin2 θW )κλµν (2)

appearing in Eq. (1), which governs the photon: existing bounds effectively render kF zero for
our present purposes. Then, kB may be expressed in terms of kW as

(kB)κλµν = − tan2 θW (kW )κλµν . (3)

This phenomenological simplification together with Eq. (1) determines the Feynman rules
given in Fig. 1. These rules govern the dominant Lorentz-violating effects in electron–electron
scattering.

Figure 1. Feynman rules for Lorentz-breaking corrections to the Z boson. The corrections
relevant for the present report take the form of propagator insertions. The single and double
wavy lines represent the conventional Lorentz-symmetric photon and Z-boson propagators,
respectively. Taken from Ref. [26].

With the Feynman rules in place, the Lorentz-violating corrections to polarized Møller
scattering can be determined. This process is dominated by the electromagnetic interaction
via photon exchange. However, Lorentz-invariant subdominant contributions arise through
diagrams in which the internal photon line is replaced by an internal Z-boson line. Although
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Figure 2. Leading conventional tree-level contributions to Møller scattering. Solid lines denote
electrons. They are labeled by one of the four external 4-momenta kµ, k′µ, pµ, p′µ as well as
by one of the helicity observables r, r′, s, s′. A single wavy line represents the ordinary Lorentz-
symmetric photon propagator, and a double wavy line the usual Z-boson propagator. All vertices
are the conventional ones. Taken from Ref. [26].

small, the associated effects have previously been measured [27] for the purpose of investigating
the usual weak charge of the electron

QeW = 4 sin2 θW − 1 , (4)

and future, more sensitive measurements are planned [28]. But the precision of such
measurements and their dependence on Z-boson physics make them also an excellent candidate
for the study of the Lorentz-violating effects represented in Fig. 1.

To calculate these Lorentz-breaking Z-boson effects in polarized Møller scattering within the
mSME, we make the reasonable assumption that mSME coefficients are small, and leading-order
result are therefore sufficient. We have previously argued that the photon’s mSME coefficients
are known to be too small to contribute to observable effects in the present context and can
hence be disregarded here. An analogous reasoning holds for the electron’s mSME coefficients,
so that we may take the leading Lorentz-breaking effects in our Møller process to be entirely
due to the propagator insertions shown in Fig 1. At tree level, this process is thus described by
the conventional diagrams depicted in Fig. 2 and the Lorentz-violating corrections displayed in
Fig. 3.

To streamline the calculation of the diagrams, it is helpful to tailor the external-leg
polarizations to the actual experimental set-up. The measurements we have in mind, such
as the E158 experiment at the Stanford Linear Accelerator Center (SLAC) [27], typically focus
a beam of incoming, longitudinally polarized, relativistic electrons on a fixed unpolarized target.
After the scattering process, outgoing Møller electrons in a finite range of scattering angles are
detected and counted. It follows that we have to perform a calculation for incoming states
of definite helicity, average over the spin states of the fixed-target electrons, and sum over
outgoing electron spins. This gives two squared matrix elements |MR|2 and |ML|2 for incident
right-handed and left-handed beam electrons, respectively. The general structure of these is
determined by

|MR|2 = |M0
R|2 + δ|MR|2 ,

|ML|2 = |M0
L|2 + δ|ML|2 , (5)
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Figure 3. Dominant Lorentz-breaking corrections to Møller scattering. The notation is the
same as before. In particular, the 3-point vertices are the conventional Lorentz-invariant ones,
and the insertions are those shown in Fig. 1. Taken from Ref. [26].

where |M0
R|2 and |M0

L|2 are the ordinary Lorentz-symmetric contributions, which can be found
in the literature [29]. The Lorentz-breaking effects in this Møller process are contained in the

corrections δ|MR|2 and δ|ML|2. Our present interest is directed at the calculation of explicit
expressions for these corrections as functions of the relevant kinematical quantities and the kW
and kφφ coefficients.

To cast the result for δ|MR|2 and δ|ML|2 into a relatively compact form, we note that the
four conventional external momenta kµ, k′µ, pµ, and p′µ obey energy–momentum conservation,
as usual. This leaves three independent momenta, which we choose to parametrize as

Sµ = kµ + pµ , (6)

Tµ = k′µ − kµ , (7)

Uµ = pµ − k′µ , (8)

with a notation inspired by the Mandelstam variables. With these definition, one can show
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that [26]

δ|MR|2 =
2e4(kW )κµλν

sM2
Z y

2(1− y)2 cos2 θW

{
(y − 1)

[
(2− 4y + y2)QeW + 1− 2y

]
SκTµSλTν

+ y
[
(1− 2y − y2)QeW + 1− 2y

]
SκUµSλUν +

[
(2− y + y2)QeW + 1

]
TκUµTλUν

− s y (1− y) [y (2− y)QeW + 1] ηµν TκTλ − s y (1− y)
[
(1− y2)QeW + 1

]
ηµν UκUλ

}
−
e4(QeW + 1) Re (kφφ)µν

2M2
Z y (1− y) sin2 2θW

{
(QeW − 1)

[
(1− 2y + 2y2)SµSν − TµTν − UµUν

]
+ s

[
(1− y + y2)QeW + 1 + y − y2

]
ηµν

}
, (9)

and

δ|ML|2 =
2e4(kW )κµλν

sM2
Z y

2(1− y)2 cos2 θW

{
(y − 1)

[
(2− 4y + y2)QeW − 1 + 2y

]
SκTµSλTν

+ y
[
(1− 2y − y2)QeW − 1 + 2y

]
SκUµSλUν +

[
(2− y + y2)QeW − 1

]
TκUµTλUν

− s y (1− y) [y (2− y)QeW − 1] ηµν TκTλ − s y (1− y)
[
(1− y2)QeW − 1

]
ηµν UκUλ

}
−
e4(QeW − 1) Re (kφφ)µν

2M2
Z y (1− y) sin2 2θW

{
(QeW + 1)

[
(1− 2y + 2y2)SµSν − TµTν − UµUν

]
+ s

[
(1− y + y2)QeW − 1− y + y2

]
ηµν

}
. (10)

In these expressions, s = S2 = (k+p)2 denotes the usual Mandelstam variable corresponding to
the center-of-mass energy of the system. Employing the notation of Ref. [29], we have defined
y ≡ −s−1T 2 = −s−1(k′ − k)2, which provides a measure of the scattering angle. In the above
results, terms of order M−3Z and higher have been dropped, and the ultrarelativistic limit for
the external electron momenta has been adopted by setting explicitly appearing m to zero.
Equations (9) and (10) are the primary theoretical result of this report. We remark that the
last lines of both Eqs. (9) and (10) contain the Lorentz-symmetric trace part of kφφ, which is
independently unobservable and can thus be disregarded.

Actual measurements of |MR|2 and |ML|2 are often combined into the following asymmetry
observable:

A ≡ dσR − dσL
dσR + dσL

=
|MR|2 − |ML|2

|MR|2 + |ML|2
. (11)

Just as the individual cross sections (5), the asymmetry A = A0 + δA consists of a Lorentz-
invariant contribution [29]

A0 =
GF

2
√

2πα

y (1− y)

(y2 − y + 1)2
sQeW . (12)

and a Lorentz-breaking correction [26]

δA =
GF√
2πα

(kW )κµλν

(y2 − y + 1)2
sin2 θW

s

[
(1− 2y) y SκUµSλUν − (2y2 − 3y + 1)SκTµSλTν

+ TκUµTλUν − s (1− y) y ηµν (TκTλ + UκUλ)] . (13)
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These expressions are again correct at leading order in M−2Z and in the ultrarelativistic limit for
the external momenta. For convenience, we have expressed MZ in terms of the fine-structure
constant α and the Fermi constant GF . It turns out that the asymmetry correction δA depends
on kφφ only through the unobservable Lorentz-invariant trace of kφφ, which has been dropped
from Eq. (13).

3. Experimental tests
In principle, the general mSME prediction (13) for the dominant Lorentz-breaking effects in
Møller scattering allows the extraction of experimental constraints on the full kW . However, in
what follows we assume a special structure for kW for simplicity:

(kW )µνρσ= 1
2

[
ηµρζ{νξσ}−ηµσζ{νξρ}+ηνσζ{µξρ}−ηνρζ{µξσ}

]
, (14)

where
ζ{µξν} ≡ 1

2(ζµξν + ζνξµ) , ζµ = (1,~0) , ξµ = (0, ~ξ) . (15)

This assumption reduces the number of Lorentz-breaking coefficients from 19 for the general kW
to the three components of ~ξ. Note that the analogous three coefficients in the photon sector are
constrained by the weakest experimental limits and have thus also been investigated separately
as a special case [30, 13]. With this assumption, δA simplifies to

δA =
GF√
2πα

ζ{µξν} sin2 θW
(y2 − y + 1)2

[
k′µk

′
ν + y pµpν + (1− y) kµkν − 2(1− y) kµk

′
ν − 2y pµk

′
ν

]
. (16)

Here, we have reverted to the original momentum variables with p′µ eliminated by energy–
momentum conservation, and we have again implemented the ultrarelativistic limit m→ 0.

In the mSME, in flat spacetime, the Lorentz-breaking kW , and hence ζ and ξ, are usually
considered to be position independent. Their components in cartesian inertial coordinates are
then constant. The standard frame in which to express these and other SME coefficients is the
Sun-centered celestial equatorial frame (SCCEF) [8]. It is therefore natural (but not necessary)
to continue our analysis in the SCCEF. To this end, we need to transform all momenta appearing
in Eq. (16) from the terrestrial laboratory frame, where they are typically measured, to the
SCCEF. The dominant motion of the laboratory with respect to the SCCEF is the rotation of
the Earth about its axis. Other effects, such as the associated boosts or the motion around the
Sun can be neglected for our present purposes.

The explicit transformation between laboratory and Sun-centered frames requires a definite
laboratory frame. Our choice for a laboratory at colatitude χ is characterized by an xy-plane
parallel to the local surface of the Earth with the x-axis pointing South and the y-axis East.
Right-handed cartesian coordinates then have the z-axis pointing vertically upward. This yields
the following rotation matrix converting between the laboratory frame and the SCCEF [10]:

RJj(t) =

 cosχ cos Ω⊕t − sin Ω⊕t sinχ cos Ω⊕t
cosχ sin Ω⊕t cos Ω⊕t sinχ sin Ω⊕t
− sinχ 0 cosχ

 . (17)

Here, Ω⊕ = 2π/(23 h 56 min) is the Earth’s sidereal angular frequency, J = X,Y, Z are the
spatial SCCEF components, and j = x, y, z the spatial laboratory-frame components. The
time dependence of RJj(t) implies that the spatial components of various momenta that appear
constant in the laboratory frame are in general time dependent in the SCCEF. In particular,
SCCEF momenta for the beam electrons, the target electrons, and the collected scattered
electrons take the form kµ = (Ek,~k(t)), pµ = (m,~0), and k′µ = (Ek′ ,~k

′(t)), respectively.
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Expressing the magnitude of all 3-momenta in terms of the beam energy Ek and the previously
introduced variable y,1 and considering an incoming-beam direction that is parallel to the local
surface of the Earth and points in a direction α East of South, we find

δA(t) =
GF√
2πα

Ek y (1− y) sin2 θW
(y2 − y + 1)2

~k(t) · ~ξ

=
GF√
2πα

E2
k y (1− y) sin2 θW

(y2 − y + 1)2
×[√

ξ2X + ξ2Y

√
1− cos2 α sin2 χ cos Ω⊕t+ c0

]
, (18)

where we have implemented the ultrarelativistic limit, as before. We have also absorbed an
irrelevant phase into the definition of the origin of the time variable t. Moreover, we have dropped
a constant shift in the asymmetry correction because it is difficult to disentangle from Lorentz-
invariant effects. Our primary result is the square-root term; it predicts sidereal oscillation of
the asymmetry δA with an amplitude determined by the Lorentz-breaking coefficients ξX and
ξY .

A measurement of this kind was carried out by the E158 experiment at SLAC [27]. The
colatitude of this laboratory is χ = 53◦, and the incoming-beam direction points α = 123◦ East
of South. Incoming polarized electrons with an energy of roughly Ek = 50 GeV were scattered
off the atomic electrons of a stationary liquid-hydrogen target. The outgoing Møller electrons
were detected and counted for angles 1

2 < y < 3
4 . This data has permitted a measurement of

the asymmetry A with a statistical uncertainty of 1.4× 10−8.
This result may be used to estimate possible limits on mSME coefficients ξX and ξY that

may be extracted from the full E158 data set. We begin with the assumption that the Lorentz-
violating amplitude

a⊕ ≡
√

1− cos2 α sin2 χE2
k y (1− y)

2M2
Z (y2 − y + 1)2 cos2 θW

√
ξ2X + ξ2Y (19)

of the predicted sidereal oscillations cannot be much larger than the statistical uncertainty of
the measurement a⊕ ∼< 1.4× 10−8. This yields√

ξ2X + ξ2Y ∼< 3.4× 10−7 . (20)

To obtain this estimate, the following additional consideration has been implemented: from the
range 1

2 < y < 3
4 in the collected data, we have taken y = 3

4 . At this value, the prediction for
a⊕ is smallest giving the most conservative estimate. Relative to previous studies preformed in
other systems and with different methods, the result (20) represents an improvement by two
orders of magnitude.
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[1] Kostelecký V A and Samuel S 1989 Phys. Rev. D 39 683
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