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Abstract

Concepts like gentelligent products, smart objects or cyber-physical systems have already proven a high potential especially for 
decentralized production planning and control. In this context, decentralized communication, new sensor technologies and the 
increased application of simulation and monitoring systems lead to an enormous increase of manufacturing data. Additionally, a 
new approach for the assessment of manufacturing quality based on process signals from the machine tool is proposed, which 
provides current tool state and surface roughness information for every manufacturing process. In order to reuse and evaluate this 
data for knowledge-based process planning, an approach to manufacturing data collection and evaluation using data mining 
methods was developed. The advantages of the proposed data mining approach for process planning is demonstrated by an 
exemplary testing case.
© 2014 The Authors. Published by Elsevier Ltd.
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Keywords: process planning; data mining; manufacturing data; process parameters; knowledge discovery

1. Introduction

Significant advances in system-integrated intelligence, novel communication technologies and the application of 
autonomous objects and systems in production have led to new paradigms in production. Concepts like gentelligent 
components, smart objects or cyber-physical systems have already proven a high potential especially for 
decentralized manufacturing planning and control. First concepts have been evaluated in testing cases and lead the 
way to an individualized product-driven production [1, 2].
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In this context, decentralized communication, new sensor technologies and the increased application of 
simulation and monitoring systems lead to an enormous increase of available manufacturing data like machine data, 
product quality data or information on failures and disturbances. The availability of manufacturing data offers new 
possibilities for a knowledge-based manufacturing planning and control, for instance finding suitable resources and 
optimum manufacturing process parameters. Especially process planning is a task that is strongly dependent on 
expert’s knowledge. In the recent decades of research, subjects like feature technology, expert systems and data 
format standardization (e. g. STEP-NC) have been investigated and form the basis for knowledge-based computer-
aided decision support systems [3].

In terms of knowledge acquisition from large volumes of data, knowledge discovery in databases has become a 
separate but interdisciplinary research trend over the years. It includes methods from statistics, machine learning and 
data modelling. Fayyad et al. proposed a procedure model that contains five steps of data processing: selection, 
preprocessing, transformation, data mining and interpretation [4]. The relevance of the first steps is strongly 
influenced by the kind and the structure of input data. The main task of this procedure is the data mining. The 
purpose of data mining is the recognition of unknown patterns within data. Different algorithms are used and some 
of them have already proved their applicability in terms of analyzing manufacturing data [5].

Up to now, the major part of the available manufacturing data is not yet exploited for manufacturing planning and 
control. The main reasons are the huge amount of highly detailed information and the adherence to established 
structures of information systems in manufacturing, which leads to an inconsistent data basis. A further obstacle is 
the absence of concepts for the evaluation of manufacturing data that integrate data sources from smart objects [6]. 
This paper presents an approach to the systematic evaluation of manufacturing data for knowledge-based process 
planning related to the concept of gentelligent production. First, manufacturing data is analyzed and classified and a 
new approach for data acquisition by online process assessment is presented. Based on the manufacturing data and 
new data sources, an evaluation procedure using data mining methods and its first application results are described.

2. Concept of knowledge-based process planning in gentelligent production

The idea of gentelligent production developed within the Collaborative Research Center (CRC) 653 aims at the 
merging of physical components with its related information. Intelligent workpieces store their manufacturing data 
inherently, search their way through the factory autonomously, trigger their own production processes and store 
their manufacturing history permanently. This enables maximum adaptability and the ability for single workpiece 
tracking and tracing over their whole life cycle [7]. In this context, a concept for knowledge-based process planning 
by reusing individualized manufacturing information was developed (see Fig. 1).

Fig. 1. Knowledge-based planning in gentelligent production.
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In the first step, process plans are generated based on the workpiece’s construction data (Fig. 1a). Then, 
considering current production state information, the next working step is selected and – if necessary – adapted 
within a manufacturing control system (Fig. 1b). During machining, process signals are evaluated by a process 
monitoring system (Fig. 1c). Finally, a production protocol can be stored inherently in the workpiece, which will be 
available over the whole product life cycle. In order to reproduce optimum process results, workpiece-specific 
process information from process monitoring will be combined with additional manufacturing data (data 
enrichment) and fed back to process planning (data enhancement). Therefore, an approach to manufacturing data 
collection and evaluation using data mining has been developed. In a first step, an analysis and classification of 
manufacturing data has been carried out.

3. Analysis and classification of manufacturing data

As the gentelligent production concept aims at a maximum adaptability in process planning and manufacturing 
control, manufacturing data contains both static and dynamic information. According to literature [8, 9], the input
data for process planning consists of product, process and resource information. For metal cutting applications, the 
information classes order, workpiece, stock, process, machine tool, cutting tool and personnel can be identified 
exemplarily. Fig. 2 shows information sources for static and dynamic manufacturing data, which can serve as a data 
input for process planning.

Fig. 2. Manufacturing information analysis.

Existing information systems in manufacturing environments offer a wide range of static manufacturing data. 
Also dynamic data is acquired by systems like production or machine data acquisition (PDA/MDA). In the industrial 
practice, most of this information is neither collected consistently nor fed back to planning according to a lack of 
reliable information flow infrastructure and evaluation methods.

These deficits are addressed by the recent developments in smart systems like gentelligent components. Novel 
approaches in this field such as intelligent workpieces [7], intelligent machine tools [10] and new online process 
assessment methods deliver additional information with a higher level of detail, a direct reference to a single 
workpiece and almost real-time information availability (e. g. current process quality information or machine error 
information). In the next chapter, online process assessment is introduced as a main input source for knowledge-
based process planning.
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4. Online process assessment

In order to provide workpiece-specific process information for a knowledge based process planning, an online 
process assessment method has been developed. Beside conventional process monitoring or PDA strategies, a 
process assessment is necessary for compensating the lack of product specific information during the production 
process. In the following sections a new method for machine internal data acquisition is proposed and demonstrated 
by the reconstruction of tool runout and surface roughness for an exemplary milling process.

4.1. Data acquisition

In order to acquire process state information in real time from the manufacturing process, a modern machine tool 
has been equipped by sensory components. The so called Gentelligent Machine Tool is able to acquire and monitor 
internal signals from the manufacturing process [10]. This new kind of machine tool is able to sense forces between 
tool and workpiece during a machining process. Based on the provided force signals, the machining process can be 
monitored online (Fig. 3).

The determination of the process forces is achieved by measuring the mechanical strain in the integrated 
components. The sensory z-axis-slide and clamping system of the machine tool were completely new designed 
under the aspect of sensor integration (e.g. strain sensitive sensors) without affecting the stiffness of the components 
(Fig. 3).

The applied force on the tool can be captured with an actual resolution of 10 N by a sampling rate of 500 Hz. The 
available cutting force signals provide process information for a process or machine monitoring system and thereby 
can be used for the detection of cutter breakage or process instability [11]. Additionally, the cutting forces can be 
used for the reconstruction of process and workpiece conditions, which is demonstrated in the following section.

Fig. 3. Developed sensory machine components, integrated strain gauges in notches and recorded cutting forces.

4.2. Reconstruction of tool runout and surface roughness based on cutting forces

The surface topography of a milled surface in feed direction is characterized by the kinematic roughness profile. 
Beside the influence of process parameters of a milling process, the kinematic surface roughness is drastically 
influenced by vibrations and tool runout [12].

In order to assess the influence of tool runout on surface roughness in milling, an online determination of tool 
runout is required. Furthermore, the cutting forces from the gentelligent machine tool (Fig. 3) are used to identify 
the current runout parameters and to estimate the influence of surface roughness on the workpiece. Based on the 
extraction of characteristic signal features from cutting forces, a reference value was derived, which describes the 
effect of runout on the resulting cutting forces. In order to identify the tool runout parameters (amount and phase 
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angle ) accurately, a numerical optimization problem has been set up. The optimization problem is given by the 
identification of unknown runout parameters based on given process parameters and given signal features from 
cutting forces. For the identification of runout parameters, the estimated parameters have to be varied until the 
difference between the characteristic signal feature and the numerical computed reference feature is minimized. For 
a fast determination of runout parameters, a Nelder-Mead Simplex-algorithm was applied on the optimization 
problem. The developed runout identification algorithm has been tested extensively for various tools and process 
conditions. Thereby, the precision of runout identification has been determined statistically. The developed 
algorithm provides a precision of ±3μm for the amount of runout and ±3° for the phase angle of runout [13].

In order to assess the influence of tool runout on surface roughness of the machined workpiece, the simplified 
equation for the calculation of kinematic surface roughness is not applicable. Hence, a geometrical process model 
has been developed. Therefore, the cutting edge movement is calculated analytically. The trajectory of cutting edge 
movement is influenced by the tool runout, which is calculated by the cutting edge radius Ri:

= ( )( ) (1)

= 2 ( ) ,  with  = 2 ( 1) ,    for  = 1 … (2)

where R0 is the nominal tool radius, is the amount of tool runout, is the phase angle of runout and i is the 
cutting edge position angle. The cutting edge radii influence the trajectory of the cutting edge Si. The surface profile 
of the machined workpiece is generated by the Boolean intersection of the cutting edge trajectory S and the 
workpiece polygon WP: =    ,  for  = 1 … (3)

WP(z) describes the shape of the workpiece at a specific height level z as a polygon. In order to assess the current 
surface roughness based on the identified tool runout, the functions have been implemented inside a process model, 
shown in the following Fig. 4.

Fig. 4. Process model for the assessment of surface roughness.

The process model generates the workpiece polygon WP, based on given process and system variables and based 
on the identified runout parameters from the process. The workpiece polygon incorporates the characteristic 
kinematic surface roughness of a milled surface. In order to calculate the commonly used roughness parameters of 
the surface profile, a surface analysis function has been developed. The developed model-based approach delivers a
detailed surface shape of the machined workpiece, which can be evaluated for roughness parameters over the 
engagement depths. An exemplary result for a milled surface is given in the following Fig. 5.
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Fig. 5. (a) reconstructed surface shape; (b) reconstructed roughness over depth of cut; (c) reconstructed surface profile.

The process model delivers a three dimensional shape model of the machined surface, which incorporates 
characteristic feed marks from the milling operation (Fig. 5 a). Due to the tool runout error, the kinematic surface 
roughness can vary over the depth of cut (Fig. 5 b). Fig. 5 c) shows the surface roughness profile of a specific 
contour line of the surface, which is used to compute the kinematic surface roughness by roughness parameters Rz,
Ra, Rmax (cf. DIN 4768). Thereby, the roughness parameters of the machined workpiece can be reconstructed in 
parallel to the machining process and are provided to the knowledge base during the manufacturing process.

5. Approach to manufacturing data evaluation for knowledge-based process planning

5.1. Data structure

In order to build up a knowledge base for process planning, manufacturing data from the online process 
assessment (e.g. surface roughness, process time) has to be documented systematically considering related 
information from other information systems (see section 3). As a basis for systematic evaluation, an information 
model has been developed (Fig. 6).

Fig. 6. Information model for the knowledge base.

The model determines the structure of the manufacturing database, which stores input and output operands for 
every manufacturing process. Taking into consideration that feature technology has become a standard for product 
modelling, the object “feature” was defined as the elementary object from the product view on the information 
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model. From the process view, the corresponding object is called “operation” which strictly refers to one feature. 
Hence, manufacturing results can be stored in the database connected to specific manufacturing operations. This 
allows rediscovering specific manufacturing information in the database.

5.2. Evaluation procedure

For the evaluation of the knowledge that is contained in the manufacturing database and its reuse in process 
planning, an evaluation procedure using data mining methods was developed (Fig. 7). Input data for the evaluation 
procedure is the product’s feature sequence. This can also include alternative feature chains (e. g. for non-linear 
process planning, see [14]). Current specifications like material, tolerances, etc. are taken into consideration, too. In 
a first step, the remaining degrees of freedom (e. g. cutting depth or width) which have to be determined within 
process planning, have to be defined. Other attributes (e. g. tool radius limitations) are set as boundary conditions for 
the further evaluation (Fig. 7, step 1).

Then, all relevant datasets that fulfill the specifications are searched in the database. Result of this step is the 
identification of possible combinations of machine tools and cutting tools that have coped with the specification set 
in the past (Fig. 7, step 2). In order to predict the capability of a specific process with one specific set of parameters 
succeeding in a manufacturing operation to be planned, datasets have to be analyzed concerning similarity (e. g. in 
terms of cutting parameters, process forces etc.). Therefore, a cluster analysis using k-means algorithm is applied. 
As a quality criterion for clustering the Silhouette Coefficient is used [15]. The result of this step is finding groups 
of similar datasets, which represent a specific process (same or similar input operands, different output operands, 
Fig. 7, step 3).

Fig. 7. Evaluation procedure.

Afterwards, those process clusters with the closest match to the specifications are selected. As the specifications 
depend on the planning task and can be seen as a dataset of characteristics, a k-nearest neighbor algorithm is used to 
identify the best process setting. This is done for every combination of machine tool and cutting tool identified in 
step 2. This step delivers process templates each based on a cluster of datasets (Fig. 7, step 4). As there could be 
more than one alternative in resources and processes, possible operations have to be evaluated concerning process 
capability in terms of the planned manufacturing task. Therefore, a capability index referring to critical process 
capability CpK that is known from serial production was defined (4).

=  ( ; )3 (4)
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The cluster capability index CpCK is calculated for a tolerated characteristic x considering the upper tolerance limit 
(UTL), the lower tolerance limit (LTL) and the spread of the characteristic value within the cluster. On the basis of 
the CpCK index it is possible to identify the optimum process setting for a specific manufacturing task (Fig. 7, step 5). 
In the last step, appropriate process parameter sets for every possible operation are calculated from the average 
cluster values (Fig. 7, step 6).

5.3. First application

In order to test the evaluation procedure, a first application based on an exemplary planning task has been carried 
out. In need of a broad basis of documented manufacturing process data, a testing case containing 10,000 datasets 
has been generated by means of random numbers. In order to ensure that the datasets correspond with realistic 
manufacturing conditions, experimental machining data of about 100 datasets have been analyzed. The testing case 
was elaborated by the variation of parameters and results of the experimental datasets. Thus, datasets representing 
machining operations performed on two machine tools, using end-milling tools with diameters from 2 to 30 mm for 
aluminum and steel material and different cutting conditions were generated as testing data.

Table 1 shows the planning results for an exemplary milling operation. As manufacturing task the machining of a 
flat face of an aluminum workpiece was defined. Further specifications are the material (G-AlSi7Mg wa), a tolerated 
surface roughness <3 μm and a machining allowance of <1 mm, which determines the cutting width ae for side 
milling.

Table 1: Proposed alternative operations for the process plan

Operation ID 30 20 3 37 4

Process Milling Milling Milling Milling Milling

Machine tool No. 2 No. 1 No. 1 No. 2 No. 1

Tool radius [mm] 4 2 15 5 6

Cutting speed vc [m/min] 210.00 190.00 185.00 210.00 200.00

Feed rate vf [m/min] 3.44 5.26 6.00 2.89 1.79

Cutting depth ap [mm] 4.30 2.20 0.66 3.50 2.70

Material removal rate QW [mm3/s] 246.37 193.02 65.89 168.51 80.75

As a planning result, the five optimum operations identified by means of the evaluation procedure are issued as 
alternative operations for the process plans. In order to select an operation for the process plan, the operations have 
to be compared concerning the expected results in tolerated characteristics (e. g. surface roughness) and efficiency. 
Fig. 8 shows the evaluation of the expected surface roughness based on the related data cluster and the calculated 
material removal rate.

Fig. 8. Evaluation of proposed operations for the process plan: (a) calculated material removal rate; (b) expected surface roughness.
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The evaluation procedure delivers a decision support for the process planner to select an optimum operation 
regarding productivity and quality factors for the process plan. In this case, operation no. 30 offers the most efficient 
machining process (Fig. 8, left). On the other hand, operations no. 20 and no. 4 lead to the optimum surface 
roughness. In this case, operation no. 20 would be the preferable operation for the process plan.

6. Conclusion and outlook

Smart systems in manufacturing deliver a high density of detailed manufacturing data. As manufacturing 
knowledge acquisition is one of the key factors to increase flexibility and efficiency in process planning, an 
approach to manufacturing data collection and evaluation using data mining has been presented in this contribution. 
An analysis and classification of manufacturing data has been carried out to identify input data for knowledge-based 
process planning. It was displayed, how smart objects’ information is used for online assessment of the 
manufacturing quality. The proposed method enables the online assessment of the influence of tool runout on 
surface roughness based on observed cutting forces of a milling process. 

Finally, the evaluation procedure was explained and applied with a testing case. Thus, the function of the 
approach to identify manufacturing operations for process planning by means of a knowledge base could be 
approved. The presented approach serves as a decision support for process planning and also offers the possibility to 
identify alternative processes e. g. in case of missing resources or for rescheduling in case of disturbances. As the 
input data for the manufacturing database has a major impact on the planning results, the range, the consistency and 
the level of detail of the manufacturing data should be examined in the next step. In this context, the performance 
and the limits of the approach have to be investigated.
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