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A hierarchical human-robot interaction-planning
framework for task allocation in collaborative

industrial assembly processes
Lars Johannsmeier and Sami Haddadin

Abstract—In this paper we propose a framework for task
allocation in human-robot collaborative assembly planning. Our
framework distinguishes between two main layers of abstraction
and allocation. In the higher layer we use an abstract world
model, incorporating a multi-agent human-robot team approach
in order to describe the collaborative assembly planning prob-
lem. From this, nominal coordinated skill sequences for every
agent are produced. In order to be able to treat humans
and robots as agents of the same form, we move relevant
differences/peculiarities into distinct cost functions. The layer
beneath handles the concrete skill execution. On atomic level,
skills are composed of complex hierarchical and concurrent
hybrid state machines, which in turn coordinate the real-time
behavior of the robot. Their careful design allows to cope with
unpredictable events also on decisional level without having to
explicitly plan for them, instead one may rely also on manually
designed skills. Such events are likely to happen in dynamic and
potentially partially known environments, which is especially true
in case of human presence.

Index Terms—Physical Human-Robot Interaction, Assembly,
Co-Worker, Optimal Planning

I. INTRODUCTION

THE strict separation of human and robot workspaces was
considered a necessity until a few years ago, as humans

were usually considered as disturbances to the execution of a
robot task and robots in turn posed significant threats to the
human. However, with the recent emergence of safer robots [1]
that enable humans and robots to share the same workspace,
the field of physical human-robot-interaction (pHRI) gained
also significant practical relevance. In [2], [3], [4], [5] one
can find overviews on the current state of the art in human-
robot collaboration. On the practical side, pHRI is nowadays
of particular interest in purely manual industrial assembly
tasks. Despite robots have proven to be well suited for many
tasks and the potential of safer robots is now well understood,
numerous rather complex processes cannot be accomplished
yet by robots alone due to their limited cognitive capabili-
ties. In particular, flexible tasks, as well as unstructured or
underspecified environments pose still significant challenges
to full automation. Therefore, the combination of human cog-
nitive skills with the skills of collaborative robots allows not
only for working alongside humans and in partially unknown
environments, but also collaborate with other agents, let them
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Fig. 1: Collaborative assembly applications of human-robot teams as a
milestone towards pHRI in everyday scenarios.

be humans or other robots, for accomplishing a common goal.
Consequently, the robot needs to be able to plan complex tasks,
which involve interactions, collaborations, common goals and
certain group dynamics.

Realizing such human-robot collaboration in assembly tasks
is a rather difficult problem. Since humans and robots share
common workspaces, also safety is obviously of great concern
and injuries have to be avoided [6]. However, this topic is
clearly out of the scope of this paper. Moreover, humans
introduce potential indeterminism into the overall process.

The scope of the paper is as follows. We consider industrial
assembly processes that are typically well understood and
planned in advance. Therefore, we consider teams that build
products, which construction plans are known beforehand.
Also, we assume that during task execution all necessary tools
and parts are fed to the team by suitable mechanisms such
as conveyor belts, see Fig. 1. In turn, the requirements for
autonomy are restricted to specific problems such as being
able to execute a set of assembly and manipulation skills, or to
communicate with humans and other robots within the context
of assembly processes.

Up to now, existing approaches aim for performing ba-
sic and isolated assembly steps in human-robot coexistence.
There, each agent performs its task separately and non-
physical communications are exchanged also based on es-
timating the human intentions [7], [8], [9]. However, these
works do not consider yet the planning of entire collaborative
assemblies, where physical interactions are an essential skill
and play a great role in the successful execution of a given
task. Furthermore, to the best of the authors’ knowledge, the
automatic generation of entire collaborative assembly plans
and the according allocation to the team members, potentially
even under optimality considerations, has not yet been consid-
ered. Related work with a stronger emphasis on the human and
the communication with the robot can be found in [10], [11].
Further, in [12], e.g., the system SHARY for human aware
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task planning was introduced. It produces social plans of a
task by implementing communication schemes to negotiate the
task solution with the human partner. In [8] Dynamic Neural
Fields (DNFs) were used to build a decision making system
for interaction in cooperative human-robot tasks.

In summary, the contribution of this paper is as follows.
We propose a framework for human-robot collaboration that
comprises three different architectural levels: the team-level
assembly task planner, the agent-level skill planning, and the
skill execution level that is the final decisional component
above the robot real-time control stack.

The planner at team-level performs the task allocation for
the agents based on an abstract world model and with the
help of suitable cost metrics. In this context, note the first
theoretical analysis in multi-agent task allocation [13]. To
model our types of assembly processes suitably we employ
AND/OR graphs [14] as they implicitly model parallelism. The
team-level planner produces task sequences for every agent via
A∗ graph-search, from which it derives task descriptions that
are then passed down to the agent’s skill execution level. The
agents in turn implement modular and parameterizable skills
via hierarchical and concurrent state machines [15] in order
to map abstract task descriptions to the subsequent real-time-
level. Here, the concrete motion and interaction controls are
performed in combination with protective reflexes.

The proposed separation in terms of entities (agents, team-
level planner) and abstraction leads to an efficient planning
framework that can produce optimal nominal task plans to
build a desired assembly, while handling failures due to
dynamic and uncertain environments in a safe and reliable
way on the lower levels of control.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview on modeling assembly plan-
ning and assembly processes based on AND/OR graphs. In
Section III the structure of our collaborative assembly and
task allocation framework, both at team- and agent-level,
is provided. In Section IV two basic experiments underline
the feasibility of our proposed approach. Finally, our paper
concludes in Sec. V.

II. ASSEMBLY PLANNING

To be able to create (large) assembly plans and design
control processes that implement those plans, it is necessary to
select a proper representation. In this section we briefly intro-
duce such a representation and make reasonable assumptions
about the structure of the assembly, simplifying the subsequent
theoretical analysis. Note that in this work we do not treat
the generation process of assembly plans. Instead, we assume
that we already have such plans at our disposal. A popular
algorithm to generate assembly plans is e.g. described in [16].

In the following, a mechanical assembly is denoted by M.
An intuitive representation for a single assembly is the graph
of connections G. This is obtained by simplifying the graph of
contact, which was already used in several works [16], [17],
[18]. The resulting graph of connection contains a node for
every part p ∈ P, where P ⊂ M, and an edge if and only if
there is at least one contact between the two respective parts.

The parts p are assumed to be solid rigid objects, i.e. their
shape remains the same throughout the complete assembly
process. A subassembly Ps ⊂ P is defined as a subset of
P that has similar properties as the complete assembly. If
a subassembly consists of more than one part, all the parts
are connected, meaning the graph of connections induced by

that subassembly is connected. For the sake of simplicity
we assume that every part p is unique, i.e. they are not
interchangeable when they have equal properties (e.g. two
screws of the same type). Furthermore, we assume that the
geometry and characteristics of the connection of every pair
of parts are unique. Thus, every subassembly implicitly defines
the complete geometry of the involved parts as well as their
connections. A subassembly with only one part is considered
atomic.

In order to build an assembly an assembly plan is needed,
which describes the possibilities of how to assemble a work-
piece. In particular, it assumes that all parts are in their
designated places and the necessary connections were made
already, so that one begins with the correct subassemblies.
The process of executing the assembly plan is called assembly
process. We call the process of assigning the available workers
w∈W (for which we also use the more general term agent) to
the assembly actions task allocation. A sequence of assembly
actions that lead from the initial configuration to the finished
product is called an assembly sequence α which, in general,
is a partially ordered set of assembly actions a. An assembly
action a denotes one step in the assembly process.

Moreover, we introduce three predicates to further con-
cretize the scenario we are investigating1. First, we assume
that a subassembly Ps is stable, st(Ps), i.e. its parts remain in
contact without applying any external forces and the relative
geometry of all parts does not change. Then, we classify the
actions a that are used in the assembly process as geometri-
cally feasible and mechanically feasible:
• g f (a) denotes that there exists a collision free path to

join the two involved subassemblies.
• m f (a) holds if it is possible to permanently establish all

necessary connections.
a) Sequentiality: A plan is sequential if there exists a

sequence of assembly actions, involving only one subassembly
that can represent the plan. This means that it is never
necessary, though possible, to move two subassemblies at a
time. A plan that holds this property could thus be executed
by a robot with a single manipulator. Whether an assembly
can be described by a sequential plan obviously depends on
its geometry. Also, it requires that every subassembly is stable.

b) Monotonicity: A plan is called monotone if it contains
no action that would break an already established connection
or modifies the relative geometry in an already existing sub-
assembly. Monotonicity is often built into real world assem-
blies.

c) Coherency: A plan is coherent for a graph G if every
subassembly occurring in the plan corresponds to a connected
subgraph of G. More formally, there exists a connected graph
G such that
• there exists an isomorphism from the set of parts to the

set of nodes in G and
• for every subassembly occurring in the plan, the subgraph

of G that is induced by that subassembly is connected.

A. Assembly Plan Representation
In a collaborative scenario where actions are distributed

among several agents w ∈W , it may be desirable and more
efficient that some of the actions are executed in parallel. In

1Please note that they hardly pose any constraints when considering real-
world assemblies.
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Fig. 2: Partial AND/OR graph of an exemplary assembly. The blue colored
rectangles depict OR nodes, the red colored circles AND nodes.

particular, when humans and robots work together, scenarios
become possible where joining subassemblies may require
rather complex and delicate procedures that are extremely hard
to be automated, while assembly of subassemblies may be
very easy to automate. Consequently, one possibility is that the
human handles the complex task of joining the subassemblies,
while the robotic co-workers prepare the mentioned subassem-
blies and “feed” them to the human when needed.

As mentioned above we chose AND/OR graphs as the
representation of assembly plans because of their ability to
explicitly facilitate parallel execution of assembly actions, as
well as the time independence of parallelly executable actions.
Using AND/OR graphs for the representation of assembly
sequences was first proposed in [14]. More recent applications
can be found in [19]. The AND/OR graph of a particular
assembly can be constructed by disassembling the complete
assembly until only atomic parts p are left. Having this idea
in mind, the graph of feasible assembly actions is built.

Definition 1: (AND/OR graph of feasible assembly se-
quences): Let M = (P,st,g f ,m f ) be a mechanical assembly.
The AND/OR graph YM of feasible assembly sequences of
assembly M is defined as the hypergraph (V,E), where

V = {Ps | Ps ⊆ P∧ st(Ps)},
E = {{Ps,k,Ps,i,Ps, j} | Ps,k,Ps,i,Ps, j ∈V},

and
Ps,k = (Ps,i∪Ps, j)∧g f ({Ps,i,Ps, j})∧m f ({Ps,i,Ps, j}).

Note, that though each edge in the hypergraph is an unordered
set, one of the three subassemblies, namely Ps,k is distin-
guished because it is the union of the other two sets Ps,i and
Ps, j.

Figure 2 shows an excerpt from an AND/OR graph of a
four part assembly consisting of the parts P = {A,B,C,D}.

III. TASK ALLOCATION AND PLANNING

In this section we discuss our task allocation framework
that handles multi-agent planning, single-agent planning and
real-time execution in assembly scenarios, see Fig. 3 for
an overview. The used notation w → a denotes a specific
allocation of agent w to action a. Atomic actions are the
most basic implementations at agent-level and communicate
directly with the real-time-level. The framework comprises
three main levels, which are strictly separated. However, they
communicate bilaterally with each other and share common

information. Although we consider the approach as rather
general in principle, we focus on its application to industrial
assembly processes for sake of clarity.

The first level, called team-level, plans the assembly process
from the view of a foreman, i.e. it has information about
the possible construction plans, assembly parts, the available
agents and other resources. It knows only actions that can
manipulate this world model in an abstract way, i.e. it is
domain-specific. The planning process on team-level solves the
problem of task allocation in the assembly process for a team
of human and robotic workers. It should be noted that at this
level of abstraction we make no explicit distinction between
human and robotic workers, since the team-level planner relays
only abstract task descriptions without the need to take into
account specific implementations of the necessary skills. This
is due to the fact that the cost function (see Sec. III-A3)
makes it possible to distinguish between agents by encoding
their respective capabilities. At this point it is important to
state how the planner interacts with the agents. During the
search process the planner sends the request to perform a
specific action to an agent. The agent answers with the cost
and possibly a further request for an interaction, which in
turn is integrated into the planning process. If an agent is not
able to perform a specific action it returns infinite costs. The
planner then uses the received costs from all available agents
to determine the optimal task allocation. Please note further,
that the planning process at team-level is offline, see Fig. 3,
hence, fast replanning and refinement methods are out of the
planner’s scope, despite it might be possible for a manageable
assembly complexity.

The second level, called agent-level, maps the team-level
planning process to a degree of abstraction just above the
actual body (actuators and sensors) of the robot. In our case
we use the already mentioned hierarchical and concurrent
state machines. In general, the agent-level may of course
contain also other sophisticated planning systems, which in
turn use robot specific actions to accomplish a given task.
However, for executing industrially relevant skills that need
a high level of expert knowledge, practical experience shows
that their automatic planning instead of semi-handcrafting in
collaboration with process experts is the significantly less
capable approach as of today. Note that since the agent-
level is implemented on the robot itself, it is possible to use
different robot types. For this, the systems have to provide the
necessary formal semantics to the team-level, which obviously
requires the systems to be able to execute the same actions
in principle. Another important task of the agent-level is the
consistent handling of events such as collisions or human
induced interruptions of the assembly process. Although the
reaction to the actual event itself is assumed to be handled by
the real-time layer, the agent-level either has to deal with the
consequences in a way that is consistent with the overall plan
on team-level, or report a failure in plan execution and request
replanning from the team-level planner.

The third level, the real-time level, is directly responsible
for executing trajectory planning, controllers, etc. At this level,
also reflexes of the robot to unforeseen events are implemented
as simple reactions to unexpected disturbances. Further details
about this level can e.g. be found in [20].

In the following, we discuss the respective levels in more
detail.
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Fig. 3: Collaborative assembly planning framework. The top layer depicts the input to the team-level planner, which is an AND/OR graph YM resulting
from an assembly M (Step I). The planner then solves the problem of optimal task allocation (Step II) for multiple agents considering a given cost function
and constructs a set of assembly sequences (Step III). The actions from the sequences are then passed to the respective agents (Step IV), which possess
corresponding skills T . These skills in turn consist of more basic structures, i.e. atomic actions, which eventually map to the real-time-level.

A. Team-Level Planning and Task Allocation

Let us now elaborate the team-level planner in the context of
assembly planning. First, the planner takes an assembly plan
in the form of an AND/OR graph as input. Furthermore, a
reference to a database is needed, which contains the necessary
information about part locations, agents and other resources.
To optimally solve the allocation problem with respect to a
particular cost metric, we apply the well-known A∗ graph
search algorithm [21]. In the following, we provide the formal
problem statement, relevant cost metrics and heuristics, as well
as further considerations concerning multi-agent allocation.

1) Problem Statement: The overall goal is to find an alloca-
tion of agents to assembly actions that is optimal with respect
to a specified cost function. In the following, S = {s1, . . . ,sn}
denotes the set of states, each of which corresponds to a set of
OR nodes vo(s)⊆Vo, where Vo denotes the set of all OR nodes
in the AND/OR graph YM . Similarly, the assembly actions
a(s) that are applicable in a state s correspond to a set of
AND nodes va(s)⊆Va, where Va denotes the set of all AND
nodes in YM . Since YM and the number of available agents,
and therefore, the number of possible allocations, are finite,
the search space is finite as well.

The general idea is now to propagate through YM from the
root node via disassembly actions until some state contains

only atomic subassemblies. The following formal definition of
the problem complies to the simplifications for the assembly
process we introduced in Sec. II.
• The initial state s0 corresponds to the root node vo,0 of

YM , which corresponds to the complete assembly M.
• In a state s the number of applicable assembly actions is at

most as large as the number of OR nodes ns,o in that state
due to strict sequentiality. Also, a single OR node can
provide at most one AND node to a valid set of actions,
since a given assembly can not be disassembled into two
different configurations at the same time. Therefore, in
s there are ns,a = ∏i na,i different valid sets of actions,
where na,i denotes the number of children of the i-th OR
node. Also note that an agent w does not have to be
assigned to an action. In addition, every action from a(s)
can be assigned to every agent w ∈W . In a state s, there
is a maximum number of assignments

NA =
l

∑
i=1

ns,a

(
nw

i

)
ns,o!,

where l = min(nw,ns,o) is either the number of available
workers nw or the number of OR nodes with children no,
i.e. whichever is lower.
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Fig. 4: Example propagation via search through search space. In the top graph
agent w1 has been assigned to the indicated AND node in state s and thus,
the corresponding assembly action. This AND node has two children that are
expanded and form the new state s′. In the bottom graph two parallel actions
are assigned, which again yield two children, respectively. The dashed boxes
depict the currently active state, the dotted ones the chosen allocation.

• The goal state sg contains only OR nodes that correspond
to atomic subassemblies.

• The cost of an action can be chosen from different
possibilities and will be further elaborated in Sec. III-A3.

To illustrate the propagation of the search algorithm through
the search space (i.e. the AND/OR graph) Fig. 4 depicts an
example.

2) Multi-Agent Considerations: Up to now, we made no
particular assumptions regarding the number of workers in the
problem statement. Although the AND/OR graph implicitly
models parallelism, it is at no point required to have more
than one worker available if the simplifications from Sec. II
are met. Yet, to potentially increase efficiency/speed of the
assembly process, we use a team of agents. For this, we have to
consider some factors, which are introduced into the planning
process on team-level.

a) Actions and Interactions: Within a multi-agent sce-
nario in the domain of collaborative assembly planning, ac-
tions are not just used to build the assembly but also to
enable interactions between agents. Therefore, we distinguish
between actions that directly modify the assembly and actions
that characterize an interaction between two agents. Also note,
that at team level actions are considered to be atomic, i.e. they
directly change the model of the world. At agent level the same
actions are called skills which in turn map to the real-time-
level. We formally define the actions at team level as follows.

Definition 2: (Assembly action): Let a(type,W ) be a general
action in the context of assembly processes. Let type denote
a descriptor that specifies the action type that is requested
and W can either be a single assignment W = wi, or a pair
assignment W = (wi,w j) depending on the type. Note that we
consider interactions, i.e., actions with a pair assignment with
at most two agents.

If e.g. type = hand over and W = (w1,w2), a needed part
is not reachable by w1 and must be provided by w2 via a

Pk Pk

Pi Pj P′i Pj

Pi

a1 a1

a2

wa→

wb→

wa→

YM,s YM,s′

Fig. 5: To model an interaction between two agents in the AND/OR graph
we insert a new AND/OR node pair. In this example, the subassembly Pk is
created by agent wa via joining Pi and Pj , which corresponds to the action
a1 := a(assemble,wa). Yet, some kind of interaction is necessary to complete
the assembly step. E.g., the performing agent cannot reach Pi so another
agent wb needs to hand this part over. Therefore, P′i and the AND node that
corresponds to the interaction a2 := a(hand over,(wa,wb)) are inserted on
the right side.

hand-over action.
Note that there is no need to change the problem statement

to include interactions, it is only necessary to integrate them
into the expanded AND/OR graph YM,s that is defined as
follows.

Definition 3: (Expanded AND/OR graph): Let YM,s′ be called
the local AND/OR graph of the state s′, then YM,s′ is created
as a copy of YM,s of state s, which is the predecessor of s′.
The initial YM is the AND/OR graph of s0.

Since every interaction is specific to the assigned agent pair
and arises from a particular context (e.g one agent cannot reach
a part, yet another can, or one agent needs the assistance of
another agent to join two subassemblies), it makes sense to
change the AND/OR graph only locally in the search problem,
i.e. for the respective state s. Over a sequence of states s the
graph is expanding with the occurrence of interactions.

If an interaction is necessary, we insert a new OR node with
the corresponding subassembly P′s and a new AND node va,
which represents the interaction, see Fig. 5. The new AND
node (i.e. the action) can then be assigned to an agent as
described above. The new (intermediate) subassembly P′s has
the same parts as Ps i.e. p(P′s) = p(Ps). However, the state of
p(P′s) is different from that of p(Ps) depending on the type of
interaction.

b) Synchronization: Another important aspect in a multi-
agent scenario is synchronization. In an ideal situation, the
nominal plan would be executed in the real world without any
modifications. In practice, this is highly unlikely, in particular
due to dynamically changing environments and uncertainty.
Thus, it is not possible to guarantee e.g. a successful hand-over
action without communication. Since the action sequences
arise from the AND/OR graph, every need for synchronization
can be dealt with by interactions.

This means that agents do not need to synchronize their
actions, as long as their action sequences α are not connected
via an interaction. Since the team-level planner knows (via
confirmation from the agents) which actions have been per-
formed, it can let agents wait until the requirements for their
next scheduled task are fulfilled. This way only tasks that are
applicable are performed. We refer to Fig. 6 for the following
example, which is also the graph for the experiments in Sec.
IV: Consider an agent w1 that performs action a11 and is then
scheduled to perform action a7. Also consider agent w2 that
performs action a10. w1 can not perform a7 as long w2 does
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not confirm the completion of a10. Hence, the structure of the
AND/OR graph represents the agents actions.

3) Optimization Metric and Heuristic: Although the most
obvious way to evaluate the cost of an allocation is to
measure the overall execution time, there may be other metrics
that are more important in specific situations. Furthermore,
it is unlikely that time constraints assumed by the team-
level planner are adhered to by the human co-workers, since
the daily work routine of a factory worker is undetermined
over short periods of time. Considering this and the fact
that we do not explicitly distinguish between humans and
robots at team-level, we need other cost metrics that are
more applicable in human-robot collaboration and encode all
necessary information about the specific workers. For example,
the assembly could involve the handling of dangerous and/or
heavy material and thus the human workload and risk should
be minimized. Let us therefore introduce some example cost
functions that are suitable candidates to our given problem:
• Execution Time: We may distinguish between overall

execution time and local execution time, i.e. the time
needed for the execution of a single action.

• Resource costs: Resources such as energy consumption,
peak power, . . . could be taken into account.

• Risk factors: Danger to human, workload amplitude and
frequency or ergonomic factors may be of relevance.

• Assumptions about the human worker: A worker profile
could be generated that maps to a cost function, using
properties such as attention level, general experience
level, and reliability.

A cost function for a robot could e.g. look like cr(w,a) =
k1 ft(w,a) + k2 fp(w,a), where w and a denote the worker-
action pair of the assignment, ft the amount of time w would
need to perform a and fp the amount of power consumption of
w when performing a. k1 and k2 are weighting factors. A hu-
man cost function could be ch(w,a) = k1 fa(w,a)+k2 fw(w,a),
where fa is a measurement for the anticipated attention level
of the human when performing action a and fw is a workload
measurement.

Note that joint costs, i.e. costs that arise from interactions,
can be treated explicitly. This is useful in order to integrate
interdependencies between two specific agents into the cost
function.

Now, in order to make use of the advantages of the A∗ algo-
rithm, a suitable heuristic needs to be defined. Our approach
for the stated search problem is as follows. The minimum
amount of assembly actions na,min that need to be applied
under the assumptions from Sec. II to get from the current
state s to the goal state sg are found to be

na,min = log2(max
i
(np(vo,i))).

The function np yields the number of parts of the subassem-
bly Ps that corresponds to the OR node vo,i. An admissible and
consistent heuristic can then be derived by multiplying na,min
with the minimum cost an agent can achieve for any action
that has not yet been applied.

4) Problem Reduction: Due to the large number of possible
agent assignments to actions if many agents are used, or a
complex assembly with many possibilities is to be built, it is
often more efficient to reduce the problem complexity first.

The method we propose to achieve this, is to reduce the
search space by simplifying the AND/OR graph. For this, we
introduce reducible subassemblies

Definition 4: (Reducible Subassembly): Let vo,R be the root
node of the partial AND/OR graph YR ⊂ YM that is induced
by the reducible subassembly PS,R and Va,p the set of parent
nodes of vo,R. If all edges E = {{(vo,R,vo}|vo ∈ Va,p} were
removed, the result would be two distinct AND/OR graphs,
i.e. YR∩Y ′M = /0, where Y ′M = YM \YR.
Obviously, this scheme is a divide-and-conquer approach. The
graph Y ′M is now smaller because it only contains the root node
vo,r of the reducible subassembly PS,R. Hence, the allocation
problem is easier to solve. This is the case because several
small search spaces are now present instead of a single larger
one.

B. Agent-Level Task Allocation
The agent-level implements the autonomous behavior of a

single robot to ensure the safe and successful execution of the
actions that are assigned to the robot by the planner at team
level. The assembly skills at agent level directly correspond
to the actions received from the team-level planner. Arrow IV
in Fig. 3 depicts this connection. For a robot to be able to
execute such assembly skills, they have to be implemented
at agent level for which we use hierarchical and concurrent
state machines [15]. We call the skills defined by the highest
layer of this state machine compound skills, since they are
composed of more basic ones, which are also called atomic
action (see bottom layer of Fig. 3). This approach originates
from [20]. The most important basic skills we implemented
are so far:
• pick-up part: This action assumes that the robot is already

at the right location to perform the pick-up. It then adjusts
its end-effector according to its available information
about the specified part and grasps it.

• assemble part: This action assumes that the robot is at
the right location to assemble the part. Furthermore, it
implements the process of assembling the part.

• hand-over: To realize the hand-over of an object from one
to another, several modalities are possible. In our case, we
use so called haptic gestures [22], which correspond to an
interpretation of contact force patterns and the according
execution of behaviors. Other approaches to hand-over
tasks can for example be found in [23].

• collision handling: This action corresponds to a collision
reflex reaction based on the interpretation of sensed con-
tact forces along the robot structure. In case of collisions
the robot switches e.g. to manual guidance mode. The
human may then safely store the robot at pre-defined
locations until the human signals e.g. via haptic gestures
that the robot may continue. Suitable algorithms for the
detection of collisions can be found in [24]. We assume
that the human brings the robot to the right state to
reengage to the task.

Next, the experimental performance of our approach is vali-
dated.

IV. EXPERIMENTS

We conducted two kinds of experiments. First, we investi-
gated how our planner works on team-level in a realistic set-
ting, however, isolated from real-world effects. In the second
experiment we tested the whole framework in a real human-
robot collaborative assembly scenario.

To show the output of the team level planner we con-
ducted a computational experiment in which a small assembly,
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Fig. 6: AND/OR graph of the experiments assembly plan.
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Fig. 7: Agents’ assembly sequences for C1 (a), and C2 (b). The solid arrows
depict a precedence relation, i.e. the source of the arrows provides a needed
subassembly to the sink.

consisting of eight parts is to be assembled by a team of
two robots and one human with two different cost measures.
The agents are denoted by W = {r1,r2,h}. The corresponding
AND/OR graph is shown in Fig. 6. None of the atomic parts
are in humans reach and the time needed for hand-over actions
is estimated to be 8 seconds. Except hand-over actions no
interactions are involved.

As cost function we use cm = maxi c(〈w,a〉i). 〈w,a〉 denotes
the assignment of an agent w to an action a in the state s.
The specific cost c for an assignment 〈w,a〉 is listed in Tab. I.
The left table shows the amount of time the agents need for
a specific action, i.e. the cost metric C1. In the second cost
metric C2, human workload is considered as well. Metrics for
measuring the human workload can for example be found in
[25]. The resulting action sequences are depicted in Fig. 7.

As can be seen from Fig. 7a, the planner produces par-
allelized execution schemes where possible, which leads to

TABLE I: Cost metrics C1 (left) and C2 (right).

C1 r1 r2 h
a1 ∞ ∞ 20
a2 ∞ ∞ 5
a3 ∞ ∞ 15
a4 10 10 20
a5 5 5 5
a6 20 10 3
a7 10 5 15
a8 ∞ 5 10
a9 20 20 5
a10 10 10 5
a11 10 10 10
a12 10 10 10

C2 r1 r2 h
a1 ∞ ∞ 50
a2 ∞ ∞ 50
a3 ∞ ∞ 50
a4 10 10 200
a5 5 5 50
a6 20 10 30
a7 10 5 100
a8 ∞ 5 100
a9 20 20 50
a10 10 10 50
a11 10 10 100
a12 10 10 100

a short overall execution time. A disadvantage of such a
parallelized assembly process is the dependency of the agents
on each other. If one agent is disturbed in its task, other agents
may have to wait. In Fig. 7b the human workload has been
considered as well, resulting in an execution scheme where
the robots work in parallel and the human is only assigned to
a task the robots are not capable of performing.

Note, that in order to formally incorporate the aspect of
a (human) worker being distracted and therefore potentially
disturbing the entire assembly process, one could use a cost
function that encodes e.g. some form of worker profile (as
mentioned in Sec. III-A3). The probability of a worker being
distracted from his task could depend, among others, on his
daily routine and experience.

The simulation experiments show that the planner can be
adapted to the requirements of a specific scenario by providing
a cost function that reflects the needs of the situation. E.g.
consider that the assembly from Fig. 6 is being built in large
quantities by human-robot teams. When the demand is normal,
a cost metric similar to C2 could be used. The robots would
do most of the work while the human co-workers could
be available to other tasks as well. If the demand rises, a
cost metric such as C1 could be used, resulting in a higher
production output at higher human workload.

The simulation experiments were performed on a computer
with a Windows 7 operating system, an Intel i7-3770 processor
with 3.4 GHz and 4 GB RAM. The A∗ algorithm took about
40 ms, respectively 2 ms to calculate the action sequences
and expanded 74, respectively 6 nodes. A Fibonacci heap
was used as data structure for the open list and a hash table
for the closed set. In order to indicate the scaleability of
our approach we conducted an additional experiment with a
strongly connected assembly [14] with 10 parts, two workers
and random costs for the worker-actions pairs. The amount
of planning time averages at 15 s. As another example we
conducted the same experiment on a binary assembly with 32
parts. All subassemblies of a binary assembly can be divided
into two subassemblies with an equal number of parts. Here,
the average execution time is 3.5 seconds.

The second experiment (its setting is not related to the
previous simulations) was conducted with a real robot in a
collaborative assembly scenario, see Fig. 8. Note, that for sake
of simplicity we did not time the actions of the robot and the
human (apart from the implicit, discrete timing determined by
the team-level) in this experiment. Nonetheless, it is straight
forward to introduce an additional timing e.g. via simple
human confirmation. Such an input would be incorporated
on team-level. Other synchronization schemes that could be
employed on agent- or real-time-level are for example time
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: The robot is started by the human (a), the robot uses its assembly
skills (b), a tool is handed over to the human (c), the human co-worker and
the robot work in parallel (d), the human stops the robot in order to finish an
assembly step the robot would otherwise disturb (e), the human signals the
robot to continue its nominal behavior (f).

scaling, i.e. the robot would drive slower or even stop in the
vicinity of the human [1]. For such capabilities visual per-
ception and/or real-time robot-to-robot communication would
have to be available.

V. CONCLUSION

In this paper we proposed a framework for collaborative
assembly planning that is suited to solve real-world assembly
problems by combining the capabilities of humans and robots
in an optimal way. Our layered architecture enables the system
not only to generate nominal plans, but also react to and cope
with unforeseen and possibly faulty events, a crucial capability
to be prepared for the real-world. Our layered planning scheme
differentiates between the human-robot team as a whole, the
single agent, i.e. every robot and human, and the real-time
command structure of that agent. This makes the system able
to deal with problems at the right level of abstraction in
order to find the most efficient solution, respectively. Also
experimentally the system performs very well and shows
promising results. Future work will in particular concern the
application of our system to other scenarios and also apply it
in real-world factory settings.
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