Prime power divisors of binomial coefficients: Reprise

By J. W. Sander at Hannover

In [1], we proved an old conjecture of P. Erdös by showing that, given a positive integer j, for each sufficiently large n, there is a prime p such that

$$p^{j}\left|\binom{2n}{n}\right|.$$

As K. Ramachandra recently pointed out to me, Erdös once asked him in a letter if the following holds.

Proposition. Let j be a positive integer. For sufficiently large n, there is a prime p such that

$$p^{j}\left\|\binom{2n}{n}\right\},$$

i.e. p^{j} is the highest power of p dividing $\binom{2n}{n}$.

This can be dealt with by the method introduced in section 5 of [1]. In particular, we consider

$$K_{j}(n) := \operatorname{card} \left\{ n^{\frac{1}{j+1}} \frac{2}{3} (2 \le i < j), \left\{\frac{n}{p}\right\} < \frac{1}{3} \right\},$$

where $\{x\}$ denotes the fractional part of the real number x. By Theorem 3 of [1], $K_j(n) > 0$ for sufficiently large n. Hence

$$n = n_j p^j + \cdots + n_1 p + n_0$$

for some prime p with $\frac{1}{2}p < n_i < p$ $(1 \le i \le j)$ and $0 \le n_0 < \frac{1}{3}p$. By Kummer's lemma ([1], Lemma 9), this implies

(1)
$$p^{j} \left\| \begin{pmatrix} 2n \\ n \end{pmatrix} \right\|$$

In fact, we can show much more by applying the following lemma which is a corollary to a recent upper bound for exponential sums of the type

$$\sum_{p \leq P} e\left(x\left(\frac{h_1}{p^{j_1}} + \cdots + \frac{h_r}{p^{j_r}}\right)\right)$$

with $e(x) := e^{2\pi i x}$ for real x.

Lemma (= Proposition 2 in [2]). For $0 < \sigma_i \leq 1$ $(1 \leq i \leq j)$,

$$\exp\left(c_1 j (\log 2j)^3\right) \le P \le x^{1/j}$$

and $0 < \varepsilon \leq 1/12$, we have

$$\left| \operatorname{card} \left\{ p \leq P : \left\{ \frac{x}{p^{i}} \right\} < \sigma_{i} (1 \leq i \leq j) \right\} - \sigma_{1} \dots \sigma_{j} \pi(P) \right|$$
$$\leq c_{2}^{j} \left(P^{1 - c_{3} \varepsilon v_{6}(j)(\log P/\log x)^{2}} + P^{\frac{j+2}{2} + \varepsilon} x^{-\frac{1}{2}} \right) (\log x)^{4j},$$

where c_2 and c_3 are some positive absolute constants, and

$$v_i(j) := \frac{1}{j^i (\log 2j)^2} \, .$$

Theorem. For sufficiently large n, there are s = s(n) primes p_1, \ldots, p_s with

$$s(n) \gg \left(\frac{\log n}{(\log \log n)^3}\right)^{\frac{1}{10}}$$

such that

1

$$p_j^{j} \left\| \begin{pmatrix} 2n \\ n \end{pmatrix} \left(1 \leq j \leq s(n) \right) \right\|$$

Proof. We follow the proof of Proposition 3 in [2]. Let $j > C_0$,

$$n \ge N_0 := C^{j^{10}(\log j)^3},$$

where C_0 and C are some absolute positive constants. Applying the lemma for $x := n \ge N_0$, $\varepsilon := 1/12$, and $P := n^{1/(j+1)}$ resp. $P := (3n/2)^{1/(j+1)}$, we obtain

$$\left| K_{j}(n) - \left(\frac{1}{3}\right)^{j} \left(\pi \left(\left(\frac{3}{2}n\right)^{\frac{1}{j+1}} \right) - \pi \left(n^{\frac{1}{j+1}}\right) \right) \right| \leq c_{4}^{j} n^{\frac{1}{j+1} - c_{5} \nu_{9}(j)} (\log n)^{4j}$$

where c_4 and c_5 are some absolute positive constants. Berefigestellt von recrimische Informationsbibliothek Hannover Angemeldet Heruntergeladen am | 10.04.18 11:49 Clearly,

$$\pi\left(\left(\frac{3}{2}n\right)^{\frac{1}{j+1}}\right) - \pi\left(n^{\frac{1}{j+1}}\right) > c_6 \frac{n^{\frac{1}{j+1}}}{\log n}$$

for some absolute positive constant c_6 . Consequently,

$$K_j(n) \ge c_7^j \frac{n^{1/(j+1)}}{\log n} - c_4^j n^{\frac{1}{j+1} - c_5 v_9(j)} (\log n)^{4j}$$

for yet another positive absolute constant c_7 .

As in the proof of Proposition 3 in [2], we conclude that $K_j(n) > 0$. Hence, by the same argument as the one leading to (1),

.. .

$$(2) p_j^j \left\| \begin{pmatrix} 2n \\ n \end{pmatrix} \right\|$$

for some prime p_i .

In order to prove the theorem, we may assume without loss of generality that

$$n > C^{(C_0+1)^{10}(\log(C_0+1))^3}$$

By the above reasoning, (2) holds for any $j > C_0$ satisfying

$$C^{j^{10}(\log j)^3} \leq n \, .$$

In other words, (2) holds for all j with

$$C_0 < j \ll \left(\frac{\log n}{(\log j)^3}\right)^{\frac{1}{10}}.$$

Sufficient for this is

$$C_0 < j \ll \left(\frac{\log n}{(\log \log n)^3}\right)^{\frac{1}{10}}.$$

For $j \leq C_0$, (2) is rather easy to verify if n is large enough. This completes the proof of the theorem.

Remark. We end this article by pointing out that the results obtained in the Proposition and the Theorem can be extended to binomial coefficients

by the above methods, if m is sufficiently large and
$$|m - k|$$
 is "small" in comparison with m (see [1]).

References

[1] J. W. Sander, Prime power divisors of binomial coefficients, J. reine angew. Math. 430 (1992), 1-20. [2] J. W. Sander, On the order of prime powers dividing $\binom{2n}{n}$, to appear.

Institut für Mathematik, Universität Hannover, Welfengarten 1, D-W-3000 Hannover 1

Eingegangen 19. August 1992