Prediction of losses in belt-typ

SPECIAL ISSUE PAPER 235

e continuously variable

transmission due to sliding between belt and disc

G Poll, T Kruse, and C Meyer

Department of Machine Elements, Institute for Machine Elements, Engineering Design and Tribology,

University of Hannover, Hannover, Germany

The manuscript was received on 1 September 2005 and was accepted after revision for publication on 10 February 2006.

DOLI: 10.1243/13506501JET141

Abstract: The efficiency of belt-type continuously variable transmission (CVT) — apart from the
power consumption of auxiliary systems such as hydraulics — predominantly depends on the
energy dissipated during sliding at the belt-disc contacts. These sliding motions are a conse-
quence of elastic deformations and misalignments because of clearances, resulting in a so-
called spiral path of the belt elements on the discs and hence tangential and radial sliding
motions.

The performance of such systems can be predicted through an iterative computation by
numerically solving a set of differential equations for the forces and motions coupled with a
finite-element computation of the deformations.

A comparison with elaborate measurements of deflections, belt motions, and losses shows
that a relatively simple modified Coulomb type friction model with a steep gradient through
the origin delivers sufficiently accurate results. The computations reveal the existence of
‘locked’ zones with extremely low ‘creeping’ motions.

Thus, the mechanisms of power transmission in belt-type CVT are better understood and
designers have a validated tool to optimize shaft and disc geometry concerning maximum
efficiency.
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1 INTRODUCTION

Belt-type continuously variable transmission (CVT)
units are gear units with transmission by traction
forces. They comprise two parallel shafts, each with
one fixed disc and one moveable disc. Axial displace-
ment of the moveable disc forces the chain to contact
the discs on a different running perimeter. The ratio
of transmission changes and the input speed and
torque are transformed (Fig. 1). The subassembly
that comprises both shafts and the chain is referred
to as the variator.

In most applications, the normal force required for
power transmission is generated using a hydraulic
clamping system. It also provides oil to lubricate the
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traction contact between the discs and the chain.
The forces applied to the arc of contact and the lim-
ited disc stiffness impose elastic deformations on
the discs and shafts and thereby deflections, which
vary along the perimeter (Fig. 2). The necessary clear-
ance between the moveable disc and the shaft causes
the moveable disc to tilt. Furthermore, the normal
forces compress the chain. All these effects induce
sliding movements between the chain and the discs,
or what is known as a spiral path, which is largely
responsible for the loss of power and wear in the
variator (Fig. 3) [1, 2]. Therefore, the performance of
the variator can be improved by optimizing its
geometry with respect to deflections.

2 BASES FOR A NUMERICAL MODEL

To design a highly efficient yet compact variator,
it is important to understand the key influencing
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variables in the arc of contact, such as the sliding
velocity and sliding direction, the longitudinal tensile
force in the chain, and the force components trans-
mitted between discs and pins. The loss of power
and the resultant efficiency can be calculated from
these quantities. A simulation programme has been
developed for this purpose. It can be used at a very
early stage of the development process, i.e. as soon
as the first geometric variant of the variator has been
devised. The results are used for determining the
ideal geometry of the variator and also help to deter-
mine the best way to design the other components
of the transmission unit, e.g. hydraulics. The simu-
lation is based on the following assumptions [2, 3].

1. The longitudinal strain and the transverse com-
pression are independent of each other. This
strictly applies to the rocker pin element chain
because the functions of the rocker pin elements
(axial forces) and links (peripheral forces) are sep-
arated, which means that the compression in the
rocker pin elements does not have any influence
on the longitudinal strain in the links. Likewise,
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Fig. 3 Spiral path [2, 9]

the longitudinal strain in the links has no effect
on the normal forces in the pin elements.

2. The chain is a continual element with even mass
distribution and longitudinal and transverse
stiffness.

3. The wedge-shaped gap between the discs is con-
cerned as symmetrical. Both contacts (with the
moveable disc and the fixed disc) have the same
contact conditions. The deformations on the driv-
ing disc and the moveable disc are of a similar
magnitude. Although the two discs may deflect
and tilt differently, the error when assuming
equal contact angles on both sides can be con-
cerned as negligible.

4. Coulomb’s law of friction applies except for very
low-sliding speed. The friction coefficient has a
constant mean value that is derived from the
measured values. A continuous analytic function
is selected for areas in which sliding speeds are
very small (discussed subsequently).

5. Internal losses in the chains are not taken into
account. The rocker pin element chains have a
very low level of internal losses. Specific func-
tional approaches have to be added to determine
internal losses in push belts [4].

6. The same approaches are used for the driving and
the driven set of discs.

Figure 4 shows the sliding velocity (Vg = Vgisc —

Venain) and force vectors in the contact between the

tapered disc and the chain in a tapered disc incre-
ment with a size of d¢ and a taper angle of 8. The
normal force dN between the chain and the disc
acts perpendicular to the surface. The varying longi-
tudinal stretching of the chain causes sliding move-
ments in the direction of the periphery when
tensile force is built up or reduced.

In addition there is radial sliding and as a conse-
quence, the running radius changes. The sliding
angle vy, which in the mathematically positive sense
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Fig. 4 Sliding and force vectors in the contact [3]

is measured against the outward pointing radial
beam, denotes the direction of the sliding move-
ment. The effective taper angle Bs indicates the
spatial direction of the sliding movement. The force
of friction on the chain is directed opposite to
the sliding velocity vector v and is the product of
the normal force and the local friction value u dN.
This formally corresponds to Coulomb’s law of
friction. However, in reality, there may be different
friction levels in the contact between the chain and
the discs depending on the position of the arc of
contact and the peripheral velocity.

The adhering layer of lubricant is first entrained in
the chain’s inlet zone into the wedge-shaped gap

and subsequently gradually squeezed out of the con-
tacts. This then results in mixed lubrication and finally
boundary lubrication. Calculating the thickness of the
lubricating films, the temperature-related viscosity
and the resultant fluid friction and boundary friction
ratio are complicated tasks. Therefore, for an initial
approximation, a uniform and location-independent
law of friction is adopted with which the friction
value for low-sliding velocities tends towards zero (1)

p=pg - (L= (1)

Figure 5 shows the applied function for low-sliding
velocities (vs < 1 mm/s) with a sliding coefficient of
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Fig. 5 Friction law at low-sliding velocities
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friction ws = 0.09 and a speed constant vy = 0.1 mm/s
[5]. Thus, the static coefficient of friction is zero;
instead of genuine adhesion, creeping takes place at
very low-sliding velocities. This type of behaviour
seems physically very plausible, although it has yet
to be confirmed in experiments [6].

This approach has the numerical advantage that
adhesion conditions do not have to be checked and
there is always a small sliding velocity with which
the sliding angle can be determined. The force of
friction can be separated into a radial component
(u-dN-cos Bs cos(m— 7)) and a tangential com-
ponent (u dN-cos Bs-sin(w— 7)), which causes
the tensile force to change. Figure 6 shows the
radial and tangential components of the force of
friction. The equation for dN results after trans-
formation, neglecting the change in the radius of
curvature. It is important to take into account that
the axial components count twice because of the
two-pulley chain contacts.
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Fig. 6 Forces acting on the arc element in the axial
section
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In this way, a system of first-order differential
equations can be established for the calculation
(Fig. 7). The motion relationship in the arc of contact
can be described with these equations. As all coupled
variables are known at the outset or can be described
by analytical functions, the calculation can be con-
sidered as an initial value problem and solved
according to the Runge—Kutta procedure of fourth
order for coupled systems of differential equations
[2, 3].

The local taper angle B and widening w of the
wedge-shaped gap between the discs are determined
by finite-element calculations. Two-dimensional
finite-element models for the half-section of the var-
iator suffice for these calculations, because the
selected element type and rotationally symmetrical
components allow to apply stresses which are not
axially symmetrical. Following the finite-element
calculation, the axial deformation and the actual
tapered angle are determined at discrete points on
the running radius and approximated with a
polynomial function, delivering the variables as a
function of the arc angle.

3 SOLUTION BY ITERATIVE COMPUTATION

The computation of an operating point is an iterative
process, and the calculation is made first for the
output set of discs. For this purpose, starting values
are specified for the starting tensile force F, and the
starting sliding angle vy,, and an initial deformation
is specified. The nominal axial force S,.g and
the nominal drive torque T, Serve as target
values. If no solution is achieved after a first calcu-
lation, the starting values (Fy, vy,) are varied such
that better agreement with the target values is
obtained (Fig. 8).

w-cos fig-siny
sin i — - cos B¢ cosy

_ =K (O@+D)+K, W) B —K,- (O+D)-w—K, -V

K- (@+®)+K;- ¥

running perimeter: ' = e (ry+ry-tany, )-r e
gp . F, + EA (] Yo tany
torque: T'=-F"r
cos f§ —u-sin fi

clamping force:

dP,
power losses:
de

S':S—;:(F—m’-a)zvrz)

3 _ V.\Var _
Boya =——=12-

'2-(sinﬁ — p-cos ;- cosy)
(Ffm‘-(u:«rz)

e 2-(sin B —p - cos - cosy)

numerical solution: Runge Kutta of 4™ order for coupled sets of differential
equations (see appendix)

w(o), B(p) :

FE-computation

Fig. 7 Differential equations system [10]

Proc. IMechE Vol. 220 Part J: J. Engineering Tribology

JET141 © IMechE 2006



Prediction of losses in belt-type CVT 239

iteration default: £y,
output shaft — 2>
4’{ solve DE-set |
v
] compute 7"_, = |
v
[ F=0S.5u) |
v
—'i solve DE-set |
'
o= (T.T\])H compute T,.. |

FE-computation
approximation f3,w

final result
output shaft

I
v

unloaded section force = F,

loaded section force =F,

default: F,,y,,

- A _ iteration
T input shaft
‘ solve DE-set I
v
| compute Fz‘m,g ‘
v

| compute F, _, ‘

Y

F,

act™ F; 2 !arg?

FE-computation

no
@ approximation B,w

final result
input shaft
v
total - act = actual value
otal resu targ = target value

Fig. 8 Computation scheme for driving and driven discs [2, 10]

Only the torque is known at the input set of discs. In
the real gear unit, the clamping force is varied such
that the nominal transmission ratio is obtained. As
no change of ratio operations can be simulated with
the calculation procedure and the clamping force at
the drive is not known a priori, a different boundary
condition must be found. Both disc sets are in
mutual contact only via the chain. After the calculation
for the driven set of discs, the belt tension forces are
known and can thus be used as boundary condition
and target values for the calculation on the driving
side. The tensile force at the output of the driven set
of discs is the tensile force at the input of the driving
set of discs. Consequently, the starting tensile force
at the driving set of discs is not available as variation
parameter for solving the set of differential equations.
However, only one boundary condition, namely, the
final tensile force F,, still has to be fulfilled. The start-
ing sliding angle remains as variation parameter. For
the driving discs, as already for the driven discs with
the torque, the tensile force is not used for the vari-
ation, but instead the tensile force changes as refer-
ence variable and controlled variable.

The possibilities of the procedure will now be
explained with the help of an example. The tensile
force F, the local axial force S, and the local power
transmission losses Py v, are shown in Fig. 9 over
the arc of contact at the two disc sets. The arrows

indicate the direction of the sliding movements (slid-
ing angle ), and the arrow length corresponds to the
magnitude of the sliding velocity.

The transmitted torque is increased in steps start-
ing from zero. Without torque, the tensile forces are
identical in both belt sections. For i = 1, the clamp-
ing forces at the driving and driven discs are also
equal; consequently, identical conditions must exist
at both disc sets. The sliding movement is directed
inwards and backwards at the input. Over the arc of
contact, the vector changes direction through 180°
(purely inward sliding at the orthogonal point). The
sliding velocity becomes smaller.

A well-recognizable region of very small, almost
constant, sliding velocity appears. In this ‘creep
zone’, genuine adhesion could appear if the static
coefficient of friction would not be zero at the
origin. Increased outward drifting appears as the
end of the arc of contact is approached. A stronger
increase in the axial force also takes place here, caus-
ing high local power transmission losses. The losses
are almost zero in the adhesion region. As the
torque is increased, the axial force peak at the
driven discs flattens and moves in the direction
towards the input. The region of small sliding velo-
city becomes smaller and is also displaced in the
direction towards the input. The sliding angle is
increasingly directed backwards.
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Fig. 9 Calculated forces, power losses, and sliding velocities over the arc of contact on increasing

the drive torque [2, 10]

The fundamental form of the axial force distri-
bution changes hardly at the driven discs, but its
maximum drifts in the direction towards the outlet.
The sliding angle turns into a forward at the inlet. In
the last section of the figure (131 Nm), the sliding
angle is directed forward at the driven disc and back-
ward at the driving disc along both contact arcs. The
large increase in the power transmission loss indicates
that the chain is close to the onset of gross slipping.

4 VERIFICATION

Computations were compared with experimental
results of the authors for verification. Figure 10
shows the power transmission efficiency and
power loss from one measurement and two
calculations. The power transmission loss curves
run approximately parallel with increasing torque
up to a nominal torque of 120 Nm, whereby the
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Fig. 10 Comparison of measurements and calculations for different friction coefficients
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calculated values lie slightly below the measured
values.

The curve with the friction coefficient of ug = 0.11
approaches the measured curve more closely. As
from ~120 Nm, the calculated power transmission
losses for a friction coefficient of ug = 0.09 increase
strongly and the power transmission efficiency falls.
This indicates that the chain is close to the onset of
gross slipping. In contrast thereto, the power
transmission efficiency maximum of the calculation
variant with a friction coefficient of ug = 0.11 is
reached only at ~135Nm. Although the power
dissipated with a friction coefficient of ug = 0.11
evidently matches the real system more closely, the
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Fig. 11 Measuring system for determining the shaft
and disc deformations

influence of the assumed sliding friction coefficient
is surprisingly small in the range of practical interest.
Only the threshold torque for the onset of slipping
responds sensitively as expected. The approximation
with a simple friction law already represents reality
very closely.

An explanation for this is that the friction has two
opposite effects that mutually cancel to a large
extent in the system considered here. With small
friction coefficients, the local friction forces become
smaller, but the sliding movements increase at the
same time, so that the frictional work hardly changes.

The reasons of the variator deformations described
earlier were investigated by measurements on vari-
ous shaft and disc geometries, so that measurement
results are available for various shaft stiffness values
and tilt play variants. For this purpose, a measuring
system was integrated in a test gear unit (Fig. 11).

The disc deformations are measured with six
distance sensors (three each on the fixed disc and on
the moveable disc; right part of the figure), which are
mounted on a measuring device. The measuring
device is pivot mounted on the bearing pots and, as
there are two sensor sets shifted by 180° with respect
to each other, the deformation can be measured
over the entire circumference. A sensor on the left
part of the figure determines the position of the
chain in the region of the arc of contact.

Figure 12 shows an example of the comparison
between the measurement (black line) and the calcu-
lation (grey line) for the driving and driven discs with
transmission ratio i=1 and a driving torque of
120 Nm. The chain runs at the top at 90° into the disc
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Fig. 12 Comparison of measured and calculated deformations [2]
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Fig. 13 Comparison between loss and efficiency
measurements and calculations [2]

and at the bottom at 270° out of the disc set again. The
different measured characteristics at the driving and
driven discs are reproduced well by the calculation.
This makes it reasonable to conclude that the axial
forces and their distribution over the arc of contact
come very close to the real conditions, albeit the calcu-
lated curves lie slightly below the measured values.
Power transmission efficiency measurements were
carried out for the same variator execution in
addition to the deformation measurements. The
measured and calculated results for the power trans-
mission efficiency and for the power loss are plotted
in Fig. 13 against the drive torque, with a trans-
mission ratio of i=1 and a rotation speed of
n = 1000 r/min. The respective curves match closely.
Again, a friction coefficient of ug = 0.11 was used in
the computations, also resulting in a good match for
the axial clamping force required to maintain the
transmission ratio. The model has been validated
with measurements at three different transmission
ratios, several rotational speeds, four different
geometries of the discs, and two different tilting
clearances of the moveable discs. The accuracy
margin of the measurements is 0.11 per cent.

5 SUMMARY

Owing to deformations, sliding movements take
place in variators of chain type CVT. They are largely
responsible for the power transmission losses.
Measurements and calculations show that the
operational behaviour of continuously variable belt
transmissions can be reproduced accurately even
when a very simplified friction law is taken as basis.
This requires an iterative computation method
based on a system of differential equations and
finite-element calculations. The distribution of the
axial forces and the deformations of all variator com-
ponents can be reproduced realistically therewith,
making it a useful tool for variator optimization
already in the early design stage.

REFERENCES

1 Dittrich, O. Anwendung der Theorie des keilf6rmigen
Umschlingungstriebes auf stufenlose Getriebe. Bad
Homburg, 1992.

2 Sue, A. Betriebsverhalten stufenloser Umschlingungsge-
triebe unter Einfluss von Kippspiel und Verformungen.
Doctoral Thesis, Hannover University, IMKT 2003.

3 Sattler, H. Stationdres Betriebsverhalten stufenlos
verstellbarer Metallumschlingungsgetriebe. Doctoral
Thesis, Hannover University, IMKT 1999.

4 Sladek, W. Mdglichkeiten zur Wirkungsgradoptimier-
ung von Stufenlosgetrieben. Doctoral Thesis, Hannover
University, IMKT 2001.

5 Srnik, J. Dynamik von CVT-Keilkettengetrieben. Doc-
toral Thesis, TU Munich, 1998, VDI-Fortschritt-Bericht
No. 372 Reihe 12, (VDI-Publishing, Diisseldorf).

6 Wang, G. Untersuchungen an stufenlos einstellbaren
Zug- und Schubgliedergetrieben. Doctoral Thesis, TU
Clausthal, 1991.

7 Faust, H. and Linnenbriigger, A. CVT-Entwicklung bei
LuK. 6th LuK Kolloquium, 1998, pp. 159-181 (LuK,
Biihl).

8 Sattler, H. Efficiency of metal chain on V-Belt CVT.
International Congress on Continuously variable
power transmission, Eindhoven University of Techno-
logy, 1999, pp. 99-104.

9 Sue, A. Dittrich, O., and Poll, G. CVT-Wirkungsgrad-
berechnung aus der Verformung beim Umschlingung-
strieb. CVT 2002 Congress, VDI-reports Vol. 1709,
2002, pp. 69-88 (VDI-Publishing, Diisseldorf).

10 Sue, A. and Poll G. Analytisch-iteratives Berechnungs-
verfahren fiir stufenlose Umschlingungsgetriebe. VDI-
reports Vol. 1827, 2004, pp. 691-712 (VDI-publishing,
Diisseldorf).

APPENDIX 1

Notation

Fy starting tensile force

F, force in the unloaded belt section
F, force in the loaded belt section

i ratio

Py var local power losses in the variator
q stiffness

R running perimeter

S clamping force

S local clamping force

T torque

T local torque

Vg sliding velocity

B tapered disc angle

Bs effective tapered disc angle

0 sliding angle

Yo starting sliding angle

sl coefficient of friction

® revolution speed
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6 APPENDIX 2 Ks=-0-(AB—- CD) + BCM — CDO
q-E _( r~r-D)
= 1T= Ks=|—~—) (AB—-CD)-CGHJ/A
(AB — CD)? - HJ ST \F-b-1 /
q* - AE? A= 1nB M - cos Bg - oSy
(I): B
) 5 - -tan 3
(AB—CD) -H]~\/(q~AE) —F-b-C-(AB-CD) C—= S,B 1 - sin Bg
v — F-b D=m* -o*-b
_2ABCDH\/AE2FbCABCD F=2:R-nfy -
-(AB-CD)-HJ -,/(q-AE)*—F-b-C-(AB—-CD) G=pn- OSBS smy
Ki=L-(AB—CD)—A-(4q-AH + BL) + ADN H=1+tan?B-cos®y
K, =M - (AB — CD) — ABM + ADO J = cos® B ,

HJ L= —p-sinBg-cos“y+cosB-H-J
KS:_A'(AB_CD)'f M= p-sinf8-cosB-sinfBg-siny-cosy+G-H-J
Ky=-N-(AB-CD)+C- (4q-AH + BL) N=p,-cosBS-cosy—sinB-coszﬂ~H

—CDN O=—sinB-cosB-G
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