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Abstract: This paper introduces an intelligent system for monitoring and recognition of process
disturbances during short-circuiting gas–metal arc welding. It is based on the measured and
statistically processed data of welding electrical parameters. A 12-dimensional array of process
features is designed to describe various welding conditions and is employed as input vector of the
intelligent system. Three methods, such as fuzzy c-means, neural network and fuzzy Kohonen
clustering network are used to conduct process monitoring and automatic recognition. The correct
recognition rates of these three methods are compared.
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1 INTRODUCTION

Gas–metal arc welding (GMAW) is installed in most arc
welding robots. Its consumable electrode melts and
transfers into the weld pool [1]. Because of the good
controllability of droplet size and detachment timing
[2], drop spray is typically considered a perfect transfer
mode. A conventional pulsed GMAW process uses a
peak current higher than the transition current [3] and
produces a large arc pressure [4], which is undesirable
for welding of sheet metals. In a recent series of studies
[5–7], the momentum of an oscillating droplet has been
taken advantage of to reduce significantly the peak
current. However, during short-circuiting GMAW, the
current is small and the transfer is accomplished on the
weld pool surface so that the arc pressure is small and
the impact of the drop on the weld pool is eliminated.
Hence, short-circuiting is more suitable for sheet metal
welding [8] where burn-through is a major issue.

Complex physical phenomena occur during short-
circuiting transfer. The process appears dynamic,
stochastic and non-linear. Therefore, it is necessary to
use an automated monitoring system to recognize process
error and/or disturbance to prevent cost-intensive post
processing or to avoid defective welds [9]. Various sensors,
such as electrical, optical or acoustical sensors, are in use.

Looking to the robust and versatile application of a
monitoring system, the electrical parameters (welding
voltage and current) can be seen as the most appropriate
process characterizing parameters. In the transient run of
voltage and current, all process information is stored,
whereby disturbances can be recognized by variations of
well-known transient runs. Because of the complexity of
these transients, the captured raw data should be further
processed. An effective method can be seen in the
application of statistic methods to the non-deterministic
stochastic welding process [10]. The description of a
stochastic process is possible by means of probability
density distributions (PDDs) and class frequency distribu-
tions (CFDs) [10–12]. The definitions and descriptions of
both PDDs and CFDs have been introduced in detail in
the Appendix of a previous paper [13], and so they are
not reiterated here. The PDDs and CFDs of welding
voltage and current deliver characteristic information of
the welding process behaviour. Hence, the identification
of process disturbances or failures is enabled by means
of PDDs and CFDs, but this is only accomplished with
comprehensive expert knowledge which is based on the
correlation of physical phenomena and its effect on the
regarded distributed variables [11].

For automated recognition the required expert knowl-
edge has to be formulated so that it can be processed by
computational algorithms. Artificial intelligence methods
should be used. Fuzzy logic and neural network tech-
niques have been adapted for recognizing GMAW
process disturbances [12, 13], but the correct recognition
rate is around 92 per cent. For practical application in
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manufacturing, it needs 100 per cent accuracy to ensure
weld quality. Therefore, great efforts should be made
further in this field. This paper introduces a system
which is based on the accurate extraction of process
characteristics from PDDs and CFDs, and the combina-
tion of fuzzy logic and neural network methods.

2 EXPERIMENTAL SET-UP

The GMAW experiments in short-circuiting mode were
done with a CO2–Ar mixed shielding gas (18% CO2–
82%Ar; gas flowrate, 10 l/min) and thin sheets (1mm;
mild steel). The transistorized power source (secondary
chopper type) was set to 18V. The wire had a diameter
of 1mm, the wire feed rate was 4.0m/min and the
welding speed was 76 cm/min. Welding was done in an
overlapped joint, as it is normal practice in the auto-
motive industry.

The computer aided monitoring and analysing system,
Analysator Hannover AH XV [4], was used for data

acquisition and data processing. Figure 1 gives the block
diagram of the experimental set-up. The AH XV consists
of an industrial personal computer (Intel Pentium central
processing unit) with a high-performance analogue-to-
digital converter board and special software. The voltage
channel of the AHXVwas connected to the welding torch
(electrode) and the base metal (workpiece) by the low-pass
filter with voltage divider and peak clipper. A compen-
sated Hall effect sensor (current sensor) fed the current
channel of the AH XV by a coaxial cable.

The measuring time was set to 10 s for each welding
test. During this time, 2 000 000 samples of the transient
voltage and current values were quasi-simultaneously
captured and on-line processed into PDDs and CFDs.

The present investigation is based on 48 welding
experiments. The purpose was to perform undisturbed
and intentionally disturbed welds. These data were
used for training and testing different automatic quality
determination systems. In reference to an ideal undis-
turbed welding set-up the simulated welding distur-
bances are characterized as follows:

Fig. 1 Block diagram of the measurement set-up

Fig. 2 Voltage PDDs

1146 C S WU, Q X HU, J S SUN, T POLTE AND D REHFELDT

Proc. Instn Mech. Engrs Vol. 218 Part B: J. Engineering Manufacture B18102 # IMechE 2004



No. 1. Normal (reference).
No. 2. Increased wire feed rate.
No. 3. Decreased wire feed rate.
No. 4. Increased gas nozzle diameter.
No. 5. Welding over two sheets (bead-on-plate, no

overlap).
No. 6. Welding an overlapped joint with an air gap

between the upper and lower sheet.
No. 7. Oily workpiece surface.
No. 8. Welding two sheets in overlap, upper sheet with

notch.

Figures 2 to 4 demonstrate the superposition of weld-
ing voltage and current PDDs as well as the CFDs of the
short-circuiting time at different process disturbances
(dist, disturbance No. 6; gup, disturbance No. 8; norm,
reference; oil, disturbance No. 7).

3 FEATURE EXTRACTION

As shown in Figs 2 to 4, the curves of PDDs and
CFDs are different for various disturbances, but they

are not sufficiently different. Further extraction of the
features hidden in the values of PDDs and CFDs
should be carried out to distinguish the types of
disturbance clearly. Statistical processing of the values
of voltage PDDs, current PDDs, short-circuiting time
CFDs and arc-burning time CFDs was carried out
to obtain further characteristics for different welding
conditions:

Mean M ¼ 1

N

XN

n¼1

xn ð1Þ

Variance V ¼ 1

N � 1

XN

n¼1

ðxn �MÞ2 ð2Þ

Standard deviation SD ¼
ffiffiffiffi
V

p
ð3Þ

where N is the number of sampled data and xn is the
variable processed.

The values of mean, variance and standard deviation
for PDDs of voltage U, PDDs of current I , CFDs of
short-circuiting time T1, and CFDs of arc-burning time

Fig. 3 Current PDDs

Fig. 4 Short-circuiting time T1 CFDs
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T2 constitute the following 12-dimensional array of char-
acteristics:

EC12 ¼ ðUM,UV,USD, IM, IV, ISD,T1M,T1V,

T1SD,T2M,T2V,T2SDÞ ð4Þ
Each welding case should have its own EC12 which
contains the essential information on the values of
PDDs and CFDs in a definite integral way. Table 1
shows EC12 for different GMAW tests.

In order to demonstrate the difference in EC12 more
clearly, the curves of EC12 for eight types of test are
shown in Fig. 5. It should be noted that the normaliza-
tion of data over the range [0, 1] has been carried out

to avoid the weighted effect of some big data and to
consider the effect of small data.

4 AUTOMATIC RECOGNITION

Although the curves of EC12 demonstrate a clear differ-
ence for welding process tests, a reliable recognition of
these curves depends on the expert’s skill. The purpose of
this research is to develop an intelligent system that can
recognize the process disturbances automatically and reli-
ably without requiring expert knowledge. Figure 6 shows
the block diagram of the developed intelligent recognition
system, which concerns the following three methods.

Table 1 EC12 under different conditions

Test UM UV USD IM IV ISD T1M T1V T1SD T2M T2V T2SD

1-1 1.85 8.747 2.96 0.435 0.959 0.98 6.18 243.3 15.60 1.85 8.75 2.96
2-1 0.83 5.442 2.33 0.463 0.777 0.88 7.03 288.6 16.99 2.11 12.22 3.51
3-1 0.82 6.876 2.62 0.435 1.068 1.03 5.57 226.1 15.04 1.65 4.925 2.22
4-1 0.83 5.907 2.43 0.435 0.889 0.94 6.26 232.4 15.25 1.88 11.03 3.32
5-1 0.83 7.398 2.72 0.465 0.937 0.97 6.89 334.6 18.29 2.07 11.09 3.33

Fig. 5 (continued over)
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4.1 Fuzzy c-means

Fuzzy c-means (FCM) is a fuzzy cluster method and is
thus suitable for classification tasks. It determines the
class prototypes for an existing data set and a specified
number of classes. Each of the so-called cluster centres
represents a typical object for one class. The FCM
algorithm assigns a classification of 0 to 1 between each
object to be classified and each class. That means the
memberships of all objects to the clusters are calculated

for each cluster. In this case, there are eight welding
conditions to be recognized. Therefore the structure of
FCM subsystem includes four steps: clustering (training),
labelling, testing (validating) and recalling (applying).

4.2 Kohonen network

The Kohonen network (self-organizing feature map) is
an unsupervised learning neural network. It can be

Fig. 5 EC12 under different welding conditions

Fig. 6 Block diagram of the intelligent system
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used to solve classification tasks and to find structures in
data. It is able to organize independently a set of input
patterns into classes. The detailed structure and algo-
rithm of the Kohonen network may be referred to in
reference [12].

4.3 Fuzzy Kohonen clustering network

The fuzzy Kohonen clustering network (FKCN) is a
neuro-fuzzy model in which a self-organizing Kohonen
artificial neural network is combined with FCM algo-
rithms. The goal of combining both together is to take
advantage of the benefits offered by both individual
methods and to compensate for each other’s shortcom-
ings. The idea behind this is that the learning rate is
replaced by membership values and in this way the
FCM algorithm is combined with the structure and
adaptive rules of the Kohonen network. The training
algorithm of FKCN is as follows:

Step 1. Initialize elements wij of the weights vector wi

using random numbers, mðt ¼ 0Þ ¼ m0.
Step 2. Calculate for each input vector xk the member-

ship uikðtÞ to the individual neurons:

uikðtÞ ¼
1

Pc
j¼1ðkxk � wiðtÞk=kxk � wjðtÞkÞ2=½mðtÞ�1� ,

8i ¼ 1, . . . , c, 8k ¼ 1, . . . ,K ð4Þ

where K is the number of training examples and c is
the number of neurons in the network. Calculate the
learning rate �ikðtÞ using these membership values:

�ikðtÞ ¼ ½uikðtÞ�mðtÞ ð5Þ
Step 3. Adjust the weight vectors wi such that

wiðtþ 1Þ ¼ wiðtÞ þ
PK

k¼1 �ikðtÞ½xk � wiðtÞ�Pc
j¼1 �ijðtÞ

,

8i ¼ 1, . . . , c ð6Þ
Step 4. Let mðtþ 1Þ ¼ mðtÞ ��m. If mðtþ 1Þ > 1:0 and

kwðtþ 1Þ � wðtÞk > " then go to step 2.

It turns out that the convergence properties of the
network are improved upon, far fewer training cycles
being needed to complete the task. It is also true that
the algorithm is very stable to changes in the exponent
step parameters, with changes only having minimum
effect on the training results.

EC12 is the input vector of the developed FKCN
system which is a two-dimensional configuration with
4� 4 neurons. The software DataEngine [14] is used to
complete the training, labelling, testing and applying of
the FKCN.

GMAW experiments were conducted under eight
conditions, i.e. one normal condition without any distur-
bance and seven conditions with intentional disturbances.

Table 2 Recognition results based on EC12

Test
FCM Kohonen network FKCN system

number Disturbance Output Correct? Output Correct? Output Correct?

1-4 No. 1. Normal 1.0 Yes 1.0 Yes 1.0 Yes
1-5 1.0 Yes 1.0 Yes 1.0 Yes
1-6 1.0 Yes 1.0 Yes 1.0 Yes

2-4 No. 2. Increased wire feed rate 1.0 Yes 1.0 Yes 1.0 Yes
2-5 1.0 Yes 1.0 Yes 1.0 Yes
2-6 1.0 Yes 1.0 Yes 1.0 Yes

3-4 No. 3. Decreased wire feed rate 1.0 Yes 1.0 Yes 1.0 Yes
3-5 1.0 Yes 1.0 Yes 1.0 Yes
3-6 1.0 Yes 1.0 Yes 1.0 Yes

4-4 No. 4. Increased gas nozzle diameter 1.0 Yes 1.0 Yes 1.0 Yes
4-5 0.0 No 1.0 Yes 1.0 Yes
4-6 1.0 Yes 1.0 Yes 1.0 Yes

5-4 No. 5. Welding over two sheets 1.0 Yes 1.0 Yes 1.0 Yes
5-5 1.0 Yes 1.0 Yes 1.0 Yes
5-6 1.0 Yes 0.0 No 1.0 Yes

6-4 No. 6. Welding an overlapped joint 1.0 Yes 1.0 Yes 1.0 Yes
6-5 with air gap between the upper and 1.0 Yes 1.0 Yes 1.0 Yes
6-6 lower sheets 1.0 Yes 1.0 Yes 1.0 Yes

7-4 No. 7. Oily workpiece surface 1.0 Yes 1.0 Yes 1.0 Yes
7-5 1.0 Yes 1.0 Yes 1.0 Yes
7-6 1.0 Yes 1.0 Yes 1.0 Yes

8-4 No. 8. Welding two sheets in overlap, 1.0 Yes 1.0 Yes 1.0 Yes
8-5 upper sheet with notch 1.0 Yes 1.0 Yes 1.0 Yes
8-6 1.0 Yes 1.0 Yes 1.0 Yes

Correct recognition rate 23/24¼ 96% 23/24¼ 96% 24/24¼ 100%
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For each welding condition, six welding experiments were
carried out. Input vectors EC12 from the data of the first
three experiments were used to train and label the FKCN,
and those from the data of three further experiments were
used to test the developed FKCN. As shown in Table 2,
for all the 24 experiments, the FKCN system recognizes
all cases completely. The FCM system and the Kohonen
network can automatically recognize 23 cases correctly.
The recognition rates for FKCN are 100 per cent.

5 CONCLUSIONS

A neuro-fuzzy system FKCN for process monitoring and
disturbance recognition in GMAW is developed. The
values of mean, variance and standard deviation for
PDDs of voltage, PDDs of current, CFDs of short-circuit
time and CFDs of arc-burning time are used to constitute
a 12-dimensional vector EC12 of characteristics for
describing various welding conditions. A certain welding
case has its own EC12 containing the essential informa-
tion on the values of PDDs andCFDs in a definite integral
way. GMAW experiments under eight conditions, i.e. one
normal condition without any disturbance and seven
conditions with intentional disturbances, are employed
to train and test the FKCN system. The FKCN system
successfully recognizes all the 24 cases correctly.
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