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Abstract: An adaptive learning algorithm using an artificial neural network (ANN) has been
proposed to predict the passive joint position of under-actuated robot manipulator. In this
approach, a specific ANN model has been designed and trained to learn a desired set of joint
angular positions for the passive joint from a given set of input torque and angular position for the
active joint over a certain period of time. Trying to overcome the disadvantages of many used
techniques in the literature, the ANNs have a significant advantage of being a model-free method.
The learning algorithm can directly determine the position of its passive joint, and can, therefore,
completely eliminate the need for any system modelling. Even though it is very difficult in prac-
tice, data used in this study were recorded experimentally from sensors fixed on robot’s joints to
overcome the effect of kinematics uncertainties present in the real world such as ill-defined
linkage parameters and backlashes in gear trains. An ANN was trained using the experimentally
obtained data and then used to predict the path of the passive joint that is positioned by the
dynamic coupling of the active joint. The generality and efficiency of the proposed algorithm are
demonstrated through simulations of an under-actuated robot manipulator; finally, the obtained
results were successfully verified experimentally.
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1 INTRODUCTION

Robot manipulators, in general, are required to have

the same number of actuators as the number of joints

to obtain full control. In the case of under-actuated

robots, this condition is not satisfied, which makes

the behaviour of that class of robots very difficult to

be predicted. Under-actuated robots can be a better

design choice for robots in space and other industrial

applications, and their advantages over fully actuated

robots led to many studies to predict their behaviour

[1–15]. As a first advantage, a light-weight and low

power consumption manipulator can be made. This

feature is required in low-cost automation and space

robots. Second, they can easily overcome actuator

failure due to unexpected accident. The under-actu-

ated manipulator could be the model of the direct

drive manipulator that has some failed joints; such

fault-tolerant behaviour is highly desirable for robots

in remote or hazardous environments [1]. Other

interesting applications include the Acrobot [2, 3],

the gymnast robots [4], the brachiating robots [5],

and surgical robots [6].

The mathematical complexity and wide variety of

applications have kept under-actuated robots an area
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of open research. Luca et al. [7, 8] have investigated

the behaviour of a 2 R manipulator moving in a

horizontal plane with a single actuator at the first

joint using a mathematical model, neglecting joint

friction which is not easy to achieve in real world as

it involves high manufacturing cost. As it is well-

known, using mathematical model, any parameter

can be neglected, in this case the friction in the

joints, which is a major drawback using the mathe-

matical model approach. Trying to overcome that

problem, some researchers have implemented addi-

tional equipments such as breaks at the passive joint

[9–12]. In this case, the brake can generate torque;

that means, after all, that kind of system is considered

some kind of actuator. So, it will be difficult to con-

sider that robot as an under-actuated manipulator.

Motivated by this problem, Yu et al. [1] have inves-

tigated the dynamic characteristics of a two-link

manipulator in view of global motion including

joint friction by proposing a mathematical model;

they have found that the manipulator can be posi-

tioned if the friction acts on the passive joint. In this

case, any additional equipment such as brakes is not

needed in positioning all the joints to desired posi-

tion. (A mathematical model showing the ability of

friction acting to fix passive joints is discussed in

detail in section 2 in the manuscript). Their results

were verified using numerical simulation. The main

purpose of this article is the use of an ANN to learn the

system characteristics rather than to explicit a system

model. The addition of the mathematical model

was just to show the complexity of the model rather

than to use it in the solution provided in this article.

Later on, Mahindrakar et al. [13] have presented a

mathematical model for a two-link under-actuated

manipulator wherein the motion of the system was

confined to a horizontal plane; their proposed

dynamic model takes into account the frictional

forces acting on the joints. Results obtained were

also verified through numerical simulation.

Many attempts to solve the problem have been

found in the literature. Yet, solutions proposed still

lack generality and systematization. To overcome

this problem, artificial intelligence (AI) was intro-

duced for predicting and making robot systems able

to attribute more intelligence and high degree of

autonomy.

Applying fuzzy logic to under-actuated robots (as

an AI method), there were few studies in recent past

[14, 15]. Although the results presented were prom-

ising, several drawbacks are also found. First these

results cannot be generalized to other systems,

because they only came from practical consider-

ations. Second, despite the fact that unlike most

learning control algorithms, multiple trials are

not necessary for the robot to learn the desired

trajectory. Additional major drawback was that

fuzzy logic-based approaches only remember the

most recent data points introduced [16]. Gleaning

the learning abilities of genetic algorithms GA (as

another method of AI) to solve the problem was an

alternative. Blending of GA with fuzzy rules in order to

capture the hidden non-linearities of the system will

be useful in developing any learning techniques. Lee

and Zak [17] have presented the design criterion of a

GA-based neural fuzzy controller for an anti-break

system.

As it has been seen, each of the previously men-

tioned techniques has its own drawbacks. To over-

come this problem, researchers have recommended

neural networks so that they would remember the

trajectories as they traverse them [16].

Artificial neural networks (ANNs) have been widely

used for their extreme flexibility due to their learning

ability and the capability to make non-linear function

approximation. Their ability to learn by example

makes them very flexible and powerful. ANNs, while

implemented on computers, are not programmed to

perform specific tasks. Instead, they are trained with

respect to data sets until they learn the patterns pre-

sented to them. Once they are trained, new patterns

may be presented to them for prediction or classifi-

cation [18, 19]. Therefore, ANNs have been inten-

sively used for solving regression and classification

problems in many fields. A number of realistic

approaches have been proposed and justified for

applications to robotic systems [20–25].

In real world application, no physical property such

as the friction coefficient can be exactly derived.

Besides, there are always kinematics uncertainties

present in the real world such as ill-defined linkage

parameters and backlashes in gear trains [26, 27]. In

this article, and to overcome whichever uncertainty

presented in the real world, data were recorded

experimentally from sensors fixed on each joint for

a horizontal two-link under-actuated robot.

The implementation of ANN, as the prediction

algorithm, is established on learning the target para-

meters based on weight adaptation by minimizing

the tracking error after each iteration process. This

scheme does not require any prior knowledge of the

dynamic model of the system. The basic idea of this

concept is the use of the ANNs to learn the character-

istics of the robot system rather than to specify an

explicit robot system model, so that every uncertainty

in the system will be counted for. Experimental tra-

jectory tracking has shown the ability of the proposed

approach to overcome the disadvantages of using

some schemes, like the fuzzy learning for example,
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that only remembers the most recent data sets intro-

duced, as the literature has shown.

2 EQUATIONS OF MOTION WITH FRICTION

EFFECT

As Fig. 1 show, the space coordinate of the manipu-

lator is parameterized by q. The coordinate qi, i¼ 1, 2

are the joint angles. The Euler–Lagrange equation of

motion is [13]

M ðqÞ €q þ hðq, _qÞ ¼ �, ð1Þ

where _q and €q are the generalized velocities and

accelerations, respectively. M ðqÞ is the inertia matrix,

which is symmetric and positive definite. The cen-

tripetal and Coriolis terms are collected in the

vector hðq, _qÞ. The vector h contains terms purely

quadratic in the velocities; gravity terms are absent

since it assumed that the manipulator moves in a

horizontal plane.

Define the following constants

c1¼m1r2
1 þm2l2

1 þ I1, c2 ¼m2r2
2 þ I2, c3 ¼m2l1r2

The equations of motion accounting for the

Coulomb plus viscous friction at the joints become

m11 €q1 þm12 €q2 þ h1 ¼ � � SGN _q1

� �
F1 � b1 _q1 ð2Þ

m21 €q1 þm22 €q2 þ h2 ¼ �SGN _q2

� �
F2 � b2 _q2 ð3Þ

where

m11 ¼ c1 þ c2 þ 2c3 cosq2, m12 ¼ c2 þ c3 cosq2

m21 ¼ m12, m22 ¼ c2

h1 ¼ �c3 2 _q1 _q2 þ _q2
2

� �
sin q2, h2 ¼ c3 _q2

1 sinq2

The Fi , bi _qi , i ¼ 1, 2 represent the Coulomb and vis-

cous friction forces, respectively; more details on

joint friction could be found in Mahindrakar [13].

The set-valued signum function signð�Þ is defined as:

SGN ðxÞ

f1g if x 4 0,

f�1g if x 5 0,

½�1, 1� if x ¼ 0:

8><
>:

ð4Þ

The above shown functions (1 till 4) suffer from the

fact that the solution does not give a clear indication

on how to select an appropriate solution from the

several possible solutions for a particular arm config-

uration. However, the dynamic model with friction

was not used or involved in this study attributed to

the collection of real data from fabricated model. The

real model is definite and naturally operates with the

effect of friction and it is incorporated in the experi-

mentally data collected, which are provided to the

ANN to learn.

3 EXPERIMENT PROCEDURE

In this section, the real-time implementation of the

experimentally collecting data procedure is dis-

cussed. A 2 R under-actuated horizontal robot was

fabricated, as shown in Fig. 2. The robot arms were

made of an aluminium square section beam to ensure

a resisting to bending lightweight arm. Lengths

of arms are l1¼ 40 cm and l2¼ 35 cm, respectively.

The robot consists of base, actuated joint, two

links, passive joint, and two encoders. The base is

carrying the robot arm. The used actuator is a DC

motor connected to the first link through a gearbox

with a reduction ratio of 100 : 1, while the second

joint is passive. Each of the joints has an encoder

attached to it, in order to measure the rotation

angle. The motor torque was calculated from the

X

Y

r1

r2

q2

q1

Link 1

Link 2

m1,m2 = Link masses
L1,L2 = Link lengths
I1,I2 = Link moments of inertia
r1, r2 = Center of masses

Actuator

Fig. 1 Schematic diagram of the robot used
Fig. 2 The robot system used showing the computer,

the data acquisition card, and the robot arms
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voltage–torque relationship graph provided with the

motor. Practically, it is a linear proportional relation-

ship that allowed the torque to match the generated

signals.

Different methods for collecting data have been

found in the literature. Using a prespecified model,

using a trajectory planning method, and using a sim-

ulation program for this purpose are examples for

some of these methods. However, there are always

kinematics uncertainties present in the real world

such as ill-defined linkage parameters, link flexibility,

and backlashes in gear train. In this approach, data

were recorded directly from sensors fixed on each

joint, so that every uncertainty in the dynamics of

the system will be counted for.

The process of operating the manipulator and col-

lecting of data were computerized, as shown in Fig. 2.

A personal computer (PC) operating a MATLAB/

SIMULINK software package attached with QUANSER

data acquisition card (DAS) is used. The DAS is

extracting the signals generated by the SIMULINK

model via a digital to analogue convertor (DAC).

Then, the signals are manipulated to the desired

value using an amplifier device. At the same time,

the DAS would read the encoder signals digitally,

which could be read and stored in the SIMULINK

model.

A square wave excitation signal was applied to the

actuator causing different torque to the joints and the

dynamic coupling effect was moving the passive joint

correspondingly. As a standard signal generated by

the MATLAB/SIMULINK, the square wave excitation

signal, seen in Fig. 3, was chosen in order to cause a

robot motion that covers the whole working cell

rather than being a specified signal to perform a pre-

defined trajectory.

4 THE ADAPTIVE LEARNING ALGORITHM

The fundamental idea underlying the design of the

network is that the information entering the input

layer is mapped as an internal representation in the

units of the hidden layer and the outputs are gener-

ated by this internal representation rather than by

the input vector. Given that there are enough hidden

neurons, input vectors can always be encoded in a

form so that the appropriate output vector can be

generated from any input vector.

Figure 4 shows the developed ANN model. The out-

puts of the units in input layer are multiplied by

appropriate weights Wij and these are fed as inputs

to the hidden layer. Hence, if Oi are the output of

units in input layer, then the total input to the

hidden layer is

sumB ¼
X

i

OiWij ð5Þ

Also, the output Oj of a unit in hidden layer is

Oj ¼ f ðsumBÞ ð6Þ

where f is a non-linear activation function, it is a

common practice to choose the sigmoid function

given by

f ðOjÞ ¼
1

1þ e�Oj
ð7Þ

as a non-linear activation function.

However, any input–output function that possesses

a bounded derivative can be used in place of the sig-

moid function.

If there is a fixed, finite set of input–output pairs,

the total error in the performance of the network

with a particular set of weights can be computed by

comparing the actual and the desired output vectors

for each presentation of an input vector. The error at

any output unit eK in the output layer can be calcu-

lated by

eK ¼ dK �OK ð8Þ

where dK is the desired output for that unit in output

layer and OK the actual output produced by the net-

work. The total error (E) at the output can be calcu-

lated by

E ¼
1

2

X
K

dK � OKð Þ
2

ð9Þ

Learning comprises changing weights so as to min-

imize the error function (E) by the gradient descent

method. It is necessary to compute the partialFig. 3 The square wave excitation signal applied
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derivative of (E) with respect to each weight in the

network. Equations (5) and (6) describe the forward

pass through the network where units in each layer

have their states determined by the inputs they

received from units of lower layer.

The backward pass through the network that

involves ‘back propagation’ of weight error deriva-

tives from the output layer back to the input layer is

more complicated. For the sigmoid activation func-

tion given in equation (7), the so-called delta rule for

iterative convergence towards a solution, stated in

general is given as

�WJK ¼ ��K OJ ð10Þ

where � is the learning rate parameter, and the error

�K at an output layer unit K is given by

�K ¼ OK ð1�OK ÞðdK �OK Þ ð11Þ

Also, the error �J at a hidden layer unit is given by

�J ¼ OJ ð1� OJ Þ
X

K

�K WJK ð12Þ

Using the generalized delta rule to adjust weights

leading to the hidden units is back propagating the

error adjustment, which allows for adjustment of

weights leading to the hidden layer neurons in addi-

tion to the usual adjustments to the weights leading

to the output layer neurons.

A back propagation network trains with a two-step

procedure, the activity from the input pattern flows

forward through the network, and the error signal

flows backwards to adjust the weights using the fol-

lowing equations

WIJ ¼WIJ þ ��J OI ð13Þ

WJK ¼WJK þ ��K OJ ð14Þ

until for each input vector the output vector produced

by the network is the same as (or sufficiently close to)

the desired output vector [18–19]. The number of

hidden neurons and the learning factor are deter-

mined by trial and error [28]. Figure 5 graphically

shows the design steps of the network.

5 RESULTS AND DISCUSSION

The 2 R manipulator equipped with one active joint,

which is the main source of motion. Consequently,

when the excitation signal is given, it would cause

angular motion of the active joint and the corre-

sponding response of the passive joint. The attached

encoders collected both angular positions, as shown

in Fig. 6. These collected data will be used as the

target vector to be captured by the ANN model

during the training process.

A supervised feed-forward ANN was designed using

C programming language to learn the system behav-

iour over its workspace. The network consists of

input, output, and one hidden layer. The input

vector for the network consists of the angular dis-

placement, the torque applied at the active joint

(first joint), and the time interval, while the output

vector was the angular position of the passive joint

(second joint). As seen in Fig. 4, every neuron in the

Fig. 4 The topology of the ANN model
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network is fully connected with each other, sigmoid

transfer function was used to be the activation func-

tion, and generalized backpropagation delta learning

rule (GDR) algorithm was used in the training pro-

cess. All control data sets values had been scaled indi-

vidually so that the overall difference in the dataset

was maximized.

Training data were divided into 75 input–output

sets that cover the entire work cell of the manipulator.

To learn the target parameters, a training process was

carried out using the experimentally obtained data.

The network was trained by presenting several target

points that the network had to learn. The number

of neurons in the hidden layer was set to 25 with a

constant learning factor of 0.9 by trial and error.

Figure 7 shows the building knowledge process for

the system.

To verify the success of the algorithm, the pre-

dicted values of the passive joint were compared to

the experimentally collected data. The average abso-

lute error was 4.9 per cent after 100 000 Iterations.

Figure 8 graphically shows the trajectory tracking

of the passive joint, and the results obtained show

that the designed network is capable of learning

Fig. 5 The design steps of the network [28]
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and predicting the position of the passive joint

successfully.

6 CONCLUSIONS

ANN technique was applied to the problem of posi-

tioning an under-actuated robot manipulator. The

positioning of the passive joint of 2 R under-actuated

manipulator was achieved by learning through train-

ing an ANN based only on observation of the input–

output relationship. The proposed technique does

not require any prior knowledge of the target

system. The basic idea of this concept is the use of

the ANN to learn and predict the behaviour of the

robot system rather than to specify explicit robot

system model, which is a significant advantage of

using neural network approach.

A generated signal is used to operate the actuator.

Results obtained have shown the ability of the net-

work to predict the trajectory of the passive joint,

which is positioned by the dynamic coupling of the

active joint, overcoming the disadvantages of using

some schemes, like the fuzzy learning for example,

that only remember the most recent data sets

introduced.
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