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Abstract
Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria

that cannot be associated with distinctive symptoms. These pathogens can easily travel on

asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the

rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot

disease in several rice growing areas around the world. The appearance of a similar Pseu-
domonas population, which here we named P. fuscovaginae-like, represents a perfect

opportunity to understand common genomic features that can explain the infection mecha-

nism in rice. We showed that the novel population is indeed closely related to P. fuscovagi-
nae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed
heterogeneous genomes and a high number of strain-specific genes. The genomes of P.
fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important

pathogenicity machinery that could probably facilitate rice colonization. We identified 123

core secreted proteins, most of which have strong signatures of positive selection suggest-

ing functional adaptation. Transcript accumulation of putative pathogenicity-related genes

during rice colonization revealed a concerted virulence mechanism. The study suggests

that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and

maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of

environments.

Introduction
The increasing global trade activities are the main cause of movement of plant pathogens that
continue to threaten modern agriculture. In such scenario, pathogen populations tend to diver-
sify and increase their evolutionary potential as they encounter more favorable conditions and
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recombination opportunities [1]. This is particularly true for many plant pathogens that colo-
nize the rice (Oryza sativa L.) seed, which include members of the genus Pseudomonas. One of
the most common rice-infecting pathogens is Pseudomonas fuscovaginae (Pfv), a seed-borne
and seed-transmitted Gram-negative bacterium that causes sheath brown rot and grain discol-
oration. Several reports have demonstrated epiphytic and endophytic colonization of Pfv in
symptomless rice seeds [2–4], suggesting that gene flow is still effective and more research is
needed to understand pathogen diversity and distribution. This pathogen was first reported in
Hokkaido, Japan in 1976 [2, 5] and soon appeared in many tropical and subtropical rice-grow-
ing regions of the world i.e. Latin America [6, 7], Sub-Saharan Africa [8–10], Southeast Asia
[11–13], and Australia [14].

Under favorable low temperature conditions, Pfv colonizes the rice sheath, producing
brown to reddish brown necrotic lesions. If conditions persist, the lesions can progress toward
the panicle, causing seed discoloration and grain sterility [6, 7]. The intrinsic capability of Pfv
in colonizing multiple plant tissues as well as its ability to survive as an epiphyte on the seed
surface [3] or endophytically in roots, stems, and leaves [4] probably require quite a versatile
metabolism. In addition, Pfv has a broad host range among wild and cultivated grasses [3, 15,
16], which also reveals a diverse panel of pathogenicity factors that is worth exploring.

From a taxonomical perspective, the genus Pseudomonas comprises at least two main line-
ages, the P. aeruginosa lineage and the P. fluorescens lineage. Phylogenetic analysis of 16S
rRNA, gyrB, rpoB and rpoD sequences clearly associates Pfv with the P. fluorescens subgroup
members [17]. This group appears to be highly diverse, harboring unusual levels of intra-spe-
cies heterogeneity. Silby and co-workers [18] compared three P. fluorescens genomes (SBW25,
Pf0-1, and Pf-5) and found that only 61% of genes were shared among them. Subsequent stud-
ies also found high numbers of unique genes when comparative analysis was performed among
different genomes of P. fluorescens [19–21].

Apart from Pfv, other rice-infecting Pseudomonas pathogens have been isolated from plant
tissues showing sheath brown rot symptoms. In the Philippines, disease surveys on tropical
rice ecologies have isolated fluorescent Pseudomonas colonies similar to Pfv [12]. In 1998, two
of these colonies, named IRRI 6609 and IRRI 7007, were isolated from rice sheaths collected in
Davao and Palawan regions in the month of December when temperatures are usually less
than 20°C. Also, the strain S-E1 was isolated in an agronomy trial in Siniloan, Luzon Island
during a low temperature spell [12, 22]. Serological, biochemical, and genetic analyses of IRRI
6609, IRRI 7007, and S-E1 together with other Pseudomonas groups revealed that all three
strains were closely related to Pfv but were part of a distinct population [12, 22]. Until the taxo-
nomic status of these populations is clarified, we will designate these populations as P. fuscov-
aginae-like (Pfv-like).

It is well documented that plant pathogenic bacteria evolved a plethora of mechanisms to
modulate host environment in order to facilitate colonization [23–25]. Several secretion sys-
tems are used to deliver molecules that interact with apoplastic or cytoplasmic plant compo-
nents [26]. While many Gram-negative bacteria inject type III (T3) effector proteins into host
cells [25, 27], other key virulence factors are also widely used such as cell wall-degrading
enzymes (CWDEs), phytotoxins, extracellular polysaccharides, and phytohormones, among
others [24]. However, only few studies have really addressed the presence of pathogenicity fac-
tors in rice-infecting Pseudomonas. For instance, the two N-acyl homoserine lactone (AHL)
quorum sensing systems (PfsI/R and PfvI/R) of Pfv have been reported by Mattiuzzo et al. [28]
to be involved in virulence. The presence of syringotoxin in Pfv extracts [29, 30] was
highlighted as a virulence factor when Batoko and co-workers [31] showed that it may affect
plant membrane integrity by inhibiting a membrane-associated H+-ATPase in vitro. Recently,
a Pfvmutant screening on Chenopodium quinoa and rice identified additional virulence factors
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involved in adhesion, phytotoxins, and secretion [32]. At the moment, it is not clear whether
other factors may be relevant during the Pseudomonas–rice interaction.

The fact that other Pseudomonas populations are able to infect rice opens the door for com-
parative analysis to identify a common set of virulence factors and depict the evolutionary con-
text of this group. To better explore Pfv-like genomic composition, structure, and diversity, we
obtained shotgun sequences of the two strains from the Philippines (IRRI 6009 and IRRI 7007)
and compared their genome assemblies with draft genomes of several Pfv and Pfv-like strains
that were recently released [33–35]. We found that Pfv-like strains are closely related to Pfv.
Although sequenced strains represent only a fraction of the overall diversity, we showed that
Pfv as well as Pfv-like populations are not genetically homogeneous, having acquired high levels
of diversification. We redefined the understanding of the Pfv pan-genome and identified a set
of common virulence factors that may be important to successfully colonize rice sheath. Inter-
estingly, Pfv and Pfv-like have plastic genomes with a high proportion of strain-specific genes
and unique metabolic capabilities. We also defined the core secretome for Pfv and Pfv-like,
which showed strong signatures of positive selection that matched with both pathogen
lifestyles.

Materials and Methods

Pathogenicity test
The pathogenicity of Pfv-like strains IRRI 6609, IRRI 7007, and S-E1 were performed on the
rice cultivars Azucena and Moroberekan using the toothpick method at maximum tillering
stage (40–45 days after transplanting). Bacterial cultures were grown for 24 h at 28–30°C on
King’s medium B (KB) and suspended in sterile demineralized water [22]. The middle portion
of the sheath was pricked with the toothpick dipped in the bacterial suspension with 108 cfu/
ml. Plants inoculated with sterile demineralized water served as negative control. The inocu-
lated plants were incubated in a growth chamber at 23°C/18°C day/night temperature with
90% relative humidity and photoperiod 12h/12h (light/dark). Sheath discoloration was
observed at 14 days post inoculation (dpi) and, to further confirm the disease, the inoculated
plants were kept until maturity stage for observations of grain discoloration.

Pseudomonas genomes and whole-genome alignments
We used different sources to obtain a representative sample of Pfv-like genomes. The genome
sequence of the strain S-E1 was downloaded from GenBank [35]. Pfv-like cultures of IRRI
6609 and IRRI 7007 were grown overnight at 28°C. Isolation of genomic DNA was done using
Easy-DNA kit (Invitrogen, USA) following the manufacturer’s protocol. Genome sequencing
was contracted as service to BGI-Shenzhen (Shenzhen, China), producing 90-bp paired-end
reads using Illumina GAIIx technology. Filtered paired-end reads were de novo assembled into
contigs and scaffolds using CLC Genomics Workbench 6.5 (CLC bio, Denmark). Alternative
assemblies did not result in better outputs so we followed CLC. Gene calling and annotation
were performed using JGI/IMG-ER 4 [36]. The genome sequence of the five Pfv strains
UPB0736 (Madagascar), CB98818 (China), ICMP 5940 (Japan), and DAR 77795 and DAR
77800 (Australia) were downloaded from GenBank [33–35]. All Pfv (5) and Pfv-like (3) genes
were classified according to cluster of orthologous groups (COG) terms [36]. The datasets of
the strains ICMP 5940, DAR 77795, and DAR 77800 were re-annotated using RAST [37].
Predicted genes with sizes less than 50 bp were removed from the analysis. Draft genome
sequences of Pfv-like strains IRRI 6609 and IRRI 7007 were deposited at GenBank under
accession numbers JSYZ00000000 and JTBY00000000. For comparative analysis, we used a set
of 79 different Pseudomonas genomes comprising main lineages (S1 Table). Intact prophage
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prediction and annotation were obtained using the PHAST server [38]. To assess if the pro-
phage is complete or not, we calculated the number of bases, genes, and cornerstone genes and
detected the presence of phage-like genes. All intact prophage should have at least a score of 90
by PHAST standards. For secondary metabolite cluster prediction, the antiSMASH 2.0 [39]
website was used. In addition, selected genes were BLASTp against the Pseudomonas dataset
with E-values less than 1e-20 and with a minimum identity of 20%. These were then visualized
using CodaChrome 1.1 [40]. Whole-genome alignment was performed in two steps: first, we
reordered contigs of Pfv-like and Pfv genomes against IRRI 6609 using MAUVE 2.3.1 [41]
under default parameters. Locally collinear blocks and iterative alignment were arranged using
MUSCLE [42]. In the second step, we produced the final alignments of the eight strains with
BLASTn and visualized with BLAST Ring Image Generator 0.95 (BRIG) [43]. All alignments
had a threshold E-value� 1e-25.

Average nucleotide identity (ANI) and tetranucleotide frequency
correlation coefficients (TETRA) analysis
To determine the relatedness among Pfv and Pfv-like strains, average nucleotide identity (ANI)
and tetranucleotide frequency correlation coefficients (TETRA) analyses were done using the
JSpecies 1.2.1 [44] software under default parameters. For the ANI values, alignment calcula-
tion was done using the MUMmer algorithm [45]. The ANI and TETRA matrices were used to
construct a pairwise relationship. The heatmap.2 function from the R package gplots was used
to build the dendrograms and heatmaps. Furthermore, 79 Pseudomonas species (S1 Table)
were compared for ANI using Pfv-like IRRI 6609 as the reference strain. The percentage value
cut-off for the ANI and TETRA analyses were>95% and>99%, respectively.

Orthologous gene identification and average amino acid identity (AAI)
analysis
Orthologous gene clustering of protein and nucleotide sequences collected from the Pfv and
Pfv-like genomes was performed using GET_HOMOLOGUES [46]. Pairwise alignment was
done using BLASTall [47] among sequences with a minimum E-value of 1e-5. For the ortholo-
gous gene identification, OrthoMCL [48] and COGtriangles [49] algorithms were used to filter
and cluster the BLAST results with sequences having a coverage of at least 50% and a minimum
identity of 50%. Genes that were not positive for both algorithms were filtered out from the
final list. Following this approach, we used all BLAST results to compute the average amino
acid identity (AAI) for each comparison and to build the pairwise relationship as stated above.

Secretome prediction and positive selection analysis
The secretome of Pfv and Pfv-like was predicted using 50,066 open reading frames obtained
from eight genomes. The presence of secretion signal was predicted using SignalP 4.1 [50] and
further filtered for transmembrane domain-containing proteins using TMHMM 2.0 [51]. To
predict type III effectors, we used BLASTp against T3DB resource [52]. All the predicted
secreted proteins were clustered using GET_HOMOLOGUES [46] with the same parameters
mentioned above. The core genes were then extracted for exhaustive Gene Ontology (GO)
term search using BLAST2GO [53] and through the Pfam 27.0 [54] and InterPro 48.0 [55]
websites. Multiple alignment of the core orthologous genes were generated using TranslatorX
[56] with the guidance of the MUSCLE program for the translated protein sequences. Gblocks
[57] was then applied to remove spurious alignments. An estimation of the numbers of synon-
ymous (Ks) and nonsynonymous (Ka) substitutions per site was used as parameters to assess
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selection at molecular level [58, 59]. The higher the ratio (ratio ω = Ka/Ks> 1), the stronger
the signal of positive selection between two DNA-coding sequences. Ka/Ks ratios were calcu-
lated with the support of KaKs-Calculator 2.0 [58]. The Yn00 model [59] was used for deter-
mining the ω values.

Phylogeny based on MLSA
The phylogenetic relationship was evaluated using concatenated nucleotide sequences of rpoB
and rpoD genes (S2 Table). Multiple alignment was then performed in MEGA6 [60] using the
implementation of the MUSCLE algorithm and with the help of Gblocks to secure the con-
served blocks of the alignment [57]. Maximum Likelihood (ML) analysis was carried out to
infer the evolutionary relationship of eight Pfv and Pfv-like strains and 26 closely related Pseu-
domonas species. The E. coli K-12 sub-strain MG1655 was used as outgroup. The ML tree was
constructed using RAxML [61], with 1000 bootstrap replicates and GTRGAMMA as the sub-
stitution model. FigTree 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/) was used to visualize
the tree. To strengthen the phylogenetic analysis, we used concatenated nucleotide sequences
of 10 housekeeping genes: acsA, aroE, dnaE, guaA, gyrB,mutL, ppsA, pyrC, recA, and rpoB (S2
Table) on a subsample of species.

Transcript accumulation of Pfv-like genes
The rice cultivar Azucena and the Pfv-like strain IRRI 7007 were used in a time course gene
expression experiment. At maximum tillering, the leaf sheath of rice was syringe-infiltrated
with Pfv inoculum and sampling points 0, 3, 24, 48, and 72 hours post infection (hpi) were con-
sidered. IRRI 7007 was chosen because of its high virulence. For semi-quantitative RT-PCR,
the total RNA from the treated rice sheath tissues of Azucena, as well as tissues from mock
samples, were obtained using the Trizol method (Invitrogen, USA). Complementary DNA
(cDNA) was synthesized from the pooled RNA molecules using SuperScript III and random
hexamers (Invitrogen, USA). Primers were designed to target the coding sequences of candi-
date pathogenicity genes (S3 Table). In addition, two core random genes were selected.
RT-PCR was done with the gene-specific primers in a 20ul reaction mix and was performed in
a thermal cycler machine (G-storm GS1). We used the 16S gene to normalize the Pfv-like gene
expression assessment. This experiment was done in two independent biological replicates
with three technical replicates per sample. RT-PCR products were visualized on 1.25% agarose
gels.

Result and Discussion

Pfv-like populations are able to infect rice sheath and cause seed
discoloration
To reproduce sheath brown rot and grain discoloration symptoms produced by Pfv-like patho-
gens, we inoculated the rice cultivars Azucena and Moroberekan using the toothpick method
(Fig 1A). Phenotypic symptoms caused by the three Pfv-like strains were similar to Pfv as
reported in Asia, Africa, and South America [6, 7, 16] which include the appearance of brown
to reddish brown discolorations extending to the entire length of the sheath to its inner tissues
(Fig 1B and 1C). Similar to the findings made by Cottyn et al. [22], Pfv-like strains were patho-
genic on rice and showed variation in virulence spectrum. In order to validate pathogen spread,
plants were kept until maturity to assess phenotypic symptoms in the grain. In most cases, pan-
icles that emerged from the inoculated plants were necrotic and produced discolored grains
that are often sterile compared with the control plants (Fig 1D and 1E). Fluorescent

Genome Variation in Rice-Infecting Pseudomonas

PLOSONE | DOI:10.1371/journal.pone.0139256 September 30, 2015 5 / 25

http://tree.bio.ed.ac.uk/software/figtree/


Pseudomonas colonies similar to Pfv were re-isolated from the infected sheath (data not
shown). In addition to previous findings [22], these observations indicate that Pfv-like popula-
tions represented by IRRI 6609, IRRI 7007, and S-E1 harbor similar capabilities as that of Pfv
to infect the rice host. Although sheath brown rot and seed discoloration phenotype assessment
was not the aim of this study, we found that all strains were able to spread successfully across
different tissues. Therefore, we decided to investigate the composition of Pfv-like factors con-
tributing to bacterial sheath brown rot at the genomic level.

Genome sequence of Pfv-like IRRI 6609 and IRRI 7007 and other
available Pfv draft genomes
To date, the draft genomes of five Pfv and one Pfv-like strains are available in the public
domain [33–35], representing a useful resource to consolidate our understanding of this novel
pathogen population. To gain insight into the overall genome structure of Pfv-like, we gener-
ated high quality draft genomes of IRRI 6609 and IRRI 7007. Genome statistics of the strains
IRRI 6609, IRRI 7007, S-E1 (Philippines), UPB0736 (Madagascar), CB98818 (China), ICMP

Fig 1. Infection caused by P. fuscovaginae-like strain IRRI 7007 inO. sativa cv. Azucena. A) Plants
were inoculated at 45 days after transplanting using toothpick method.B) Symptom development along the
sheath showing brown necrotic lesions. C)Discolored inner sheath.D) Poorly emerged panicles with brown
to dark brown grains. E) Emerged panicles with discolored grains and progressive necrotic stripes at maturity
stage.

doi:10.1371/journal.pone.0139256.g001
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5940 (Japan), and DAR 77795 and DAR 77800 (Australia) are summarized in Table 1. Among
all Pfv-like genomes, the assembly of IRRI 6609 produced the largest genome and the least
number of scaffolds. Based on this, we considered IRRI 6609 as our reference genome for fur-
ther analysis. It is not clear whether the difference in contig number between IRRI 6609 and
IRRI 7007 is due to either the intrinsic differences between the strains or unresolved problems
with the assembly. However, there is no reason to believe that contamination or low-quality
reads are responsible for this difference. Interestingly, draft genomes of Pfv obtained from dif-
ferent sources [33–35] also show variability regarding genome size and number of protein cod-
ing genes (Table 1), suggesting that genome structure among groups may be more complex
than we previously thought. Although not significant, we detected variation of G+C content
between Pfv and Pfv-like genomes, with the Pfv genomes having an average of 61.31% while
Pfv-like genomes had 63.12%. The G+C content has a phylogenetic signal over a short evolu-
tionary time period [62], thus suggesting a close relatedness.

Pfv-like strains are closely related to Pfv
To get insight into the overall homology levels and to evaluate genetic relatedness among Pfv
and Pfv-like genomes, we calculated both ANI and AAI values for the eight genomes [44, 63].
We found levels of homology that were inconsistent with a single monophyletic group. In our
analysis, the ANI values ranged from 87.95% to 98.65% while the AAI values varied from
87.95% to 99.35% (Fig 2A). We built a distance matrix based on pair-wise ANI-AAI values
which identified at least two subgroups within rice-infecting Pseudomonas (Fig 2A). The den-
drogram topology clustered the Pfv strains fromMadagascar, Japan, China, and Australia sepa-
rately from those Pfv-like strains from the Philippines. Similar to previous reports [22], IRRI
6609, IRRI7007, and S-E1 appear to be more related to each other. Values that separate Pfv and
Pfv-like groups were below the species boundary cut-off of 95% (Fig 2A). This result also corre-
lates with the TETRA analysis that had a species delineation cut-off of� 99% (S1 Fig). Using a
one-way comparison approach, we also explored the distribution of homology between IRRI
6609 and 78 closely related Pseudomonas genomes (S1 Table). Results were more consistent
with a continuous distribution rather than a clearly defined cluster, with average ANI values
ranging from 82.57% for P. stutzeri (n = 6) genomes to 96.13% for Pfv-like (n = 2) genomes (S2
Fig). The data suggest that Pfv-like genomes were more related to Pfv than to any of the other
71 closely related Pseudomonas genomes. We also characterized genome ancestry using a phy-
logenetic analysis involving 34 Pseudomonas accessions. Using rpoB and rpoD, we found two

Table 1. General features of the eight rice-infecting Pseudomonas draft genomes.

Pseudomonas fuscovaginae-like Pseudomonas fuscovaginae

IRRI 6609 IRRI 7007 S-E1 CB98818 UPB0736 ICMP 5940 DAR 77795 DAR 77800

Origina Philip Philip Philip China Madag Aus Aus Aus

No. contigs 79 617 692 263 102 459 482 791

N50 (kbp) 355.2 27.0 92.3 44.5 205.3 47.4 39.6 17.8

Largest contig size (kbp) 746.8 133.1 305.2 202.4 605.8 189.6 142.3 96.1

Total size (Mbp) 7.14 6.73 6.55 6.54 6.35 6.37 6.25 5.97

G+C content (%) 63.25 63.00 63.13 61.4 61.46 61.2 61.40 61.10

RNA coding genes 133 127 113 140 125 56 53 51

Protein coding genes 6,342 6,699 5,897 6,433 5,689 6,367 6,035 7,202

a Country names: Philip = Philippines, Madag = Madagascar, and Aus = Australia.

doi:10.1371/journal.pone.0139256.t001
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Fig 2. P. fuscovaginae-like (Pfv-like) strains are closely related to P. fuscovaginae (Pfv). A) Average nucleotide identity (ANI) and average amino acid
identity (AAI) clustering analysis of the eight rice-infecting Pseudomonas draft genomes. Clustering analysis identified two separated groups involving Pfv-
like strains (orange) collected in the Philippines and Pfv strains (blue) collected elsewhere. Values scale is depicted in red, orange, yellow, and white colors in
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separated clusters (Fig 2B) that correlated with the homology status of ANI and AAI, in which
Pfv and Pfv-like populations share a common ancestor. To further support the phylogenetic
relationship of Pfv and Pfv-like strains (Fig 2B), we constructed a robust evolutionary tree
using 10 housekeeping genes and observed similar results (S3 Fig). It is clear that species defini-
tion in the genus Pseudomonas can be particularly problematic for some of the groups due to
the intrinsic diversity in their genomic content [17, 21]. For instance, the P. fluorescens group
actually involved multiple species [20, 21] occupying quite diverse ecological niches. Based on
the whole genome comparison or phylogenetic inference, we did not find any evidence suggest-
ing that Pfv-like strains may be considered as Pfv sensu stricto. Moreover, Pfvmay be part of a
species complex composed of different groups including the Pfv-like organisms analyzed in
this study. Whether these strains can be considered a novel species or not will need further
research efforts.

Pfv-like and Pfv harbor high levels of structural polymorphism
A significant variation in the genomic composition of Pseudomonas groups has been reported
recently [20, 64] and previous studies on Pfv have also found important genetic and biochemi-
cal variations among strains from different parts of the world [10, 35]. To understand the
genome structure of rice-infecting Pseudomonas pathogens, we performed a comparative geno-
mics analysis on eight draft genome datasets (Table 1). Whole genome alignments showed a
high level of polymorphism among strains of Pfv and Pfv-like (Fig 3). Many syntenic blocks
were interrupted by insertions, deletions, and rearrangements. A closer comparison of the
eight genomes in terms of percentage of nucleotide identity and orthologous genes can be
found in Table 2. Although Pfv and Pfv-like genomes appear to have many syntenic regions
(Fig 3), our structural and gene content assessments illustrate a large degree of genomic diver-
sity in Pfv-like strains. Loper et al. [20] also found a similar pattern when they analyzed mem-
bers of the P. fluorescens subgroup that are closely related or belonged to the same taxa.

A considerable large proportion of prophage-related gene clusters were found in Pfv and
Pfv-like strains (S4 Fig), indicating that they might have played an important evolutionary role
in lateral gene transfer and contributed as well in the internal rearrangement of the genomes
[65]. Out of the nine putative intact prophage clusters, three were present in more than one
genome and five were found to be strain-specific. An overall assessment of prophage sequences
in the eight genomes identified 644 phage-related genes, 37 novel non-phage related intact cod-
ing sequences, and 10 putative secreted proteins (S4 Fig). We showed that structural variation
is consistent with major events of insertion/deletion in Pfv-like. While prophage insertions
may not be the only mechanism incorporating foreign genes in the Pfv genetic pool, it is cer-
tainly contributing to genetic diversity. The presence of predicted secreted proteins within the
inserted fragments may add an additional layer of functional adaptation as observed in other
Pseudomonas groups [21].

Pan-genome of Pfv and Pfv-like are highly accessorized
The pan-genome is the overall repository of genes within a species which is further subdivided
into core genes shared by all members, dispensable genes shared by more than one member,
and strain-specific genes which can be found only in one member [66]. To get insight into the

ANI (horizontal) and AAI (vertical) pairwise comparison. Value cut-offs with >95% reflect the possibility of same species grouping. The heatmap was
generated in the R package gplots using the heatmap.2 function.B) Phylogenetic reconstruction of rice-infecting Pseudomonas and closely related
Pseudomonas species using the concatenated housekeeping rpoB and rpoD. Maximum likelihood was used to infer the phylogenetic relationship with
bootstrap of 1000 using the RAxML software [61]. Pfv and Pfv-like are highlighted in blue and orange, respectively.

doi:10.1371/journal.pone.0139256.g002
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pan-genome of rice-infecting Pseudomonas, we first grouped all 50,664 predicted open reading
frames from the eight genomes into 12,351 orthologous gene clusters. Interestingly, the major-
ity of clusters were present in only one of the strains, suggesting that Pfv and Pfv-like have
highly accessorized pan-genomes (Fig 4A). It is not likely that the reduced core genome
observed in Pfv and Pfv-like is due to poorly assembled draft genomes. All strains showed big
genome sizes, high number of coding genes, and random distribution of strain-specific genes
located in syntenic regions. For that reason, we predicted that fully assembled Pfv and Pfv-like
genomes will produce a slight increase in the core genome but will not change drastically the
pattern of strain-specific genes.

Fig 3. The genome of rice-infecting Pseudomonas harbor high level of structural polymorphism.Global comparison of eight rice-infecting
Pseudomonas draft genomes using BLASTn. The inner most ring corresponds to the genomic position at IRRI 6609. The second and third rings indicate G
+C content and G+C skew, respectively. The rest of the rings indicate presence and absence portions of the eight rice-infecting Pseudomonas draft genomes
against IRRI 6609. Solid colors represent genomic regions with hits while white spaced represent gaps. P. fuscovaginae (Pfv) and P. fuscovaginae-like (Pfv-
like) strains are depicted. Sequence identity is related to color intensity. Also included are locations of four intact prophage insertions found in Pfv-like IRRI
6609 (S4 Fig). The global alignment was visualized using BRIG [43].

doi:10.1371/journal.pone.0139256.g003
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To explore the genetic differences within rice-infecting Pseudomonas populations in more
detail, we repeated the analysis using Pfv and Pfv-like genomes independently and found that
77% of the 12,351 orthologous clusters were present in Pfv. As expected, the number of strain-
specific clusters remained high, which suggests that each strain maintains its own repertoire of
genes (Fig 4B). Although Pfv-like have only three strains and share the 54% of the overall
orthologous clusters, we identified 1,696 strain-specific clusters in this dataset (Fig 4B). In line
with these findings, the functional annotation of Pfv and Pfv-like core genes was also consistent
with metabolic versatility (S5 Fig). We observed an enrichment in core genes related to tran-
scription, inorganic ion transport metabolism, and intracellular trafficking between Pfv-like
and Pfv. The examined trend suggests that each Pfv-like and Pfv genome is extremely plastic
and harbored a battery of genes potentially involved in their adaptation to a number of hosts or
different environments. As of the moment, we cannot discard that sampling bias may also con-
tribute to the observed differences.

Accurate estimation of bacterial pan-genome can be highly dependent on the number and
diversity of strains involved in the analysis [67]. To estimate if Pfv has an open or close pan-
genome, we used a power law regression model [68] to establish the relationship between clus-
ter size and strain number. Our result was consistent with an infinite or open Pfv pan-genome
(S6 Fig), in which the number of genes in the pool increased exponentially with each genome
added without reaching a clear plateau. The number of core genes was also constantly decreas-
ing with the addition of each new genome (S6 Fig). The inferred pan-genome also correlates
with high levels of structural variation (Fig 3), low levels of sequence homology as measured by
ANI-AAI analysis (Fig 2A), and high proportion of strain-specific genes (Fig 4A and 4B).
Therefore, our findings are not surprising since Pfv appears to be an opportunistic pathogen
with a broad host range and mechanism that allow frequent gene exchange in multiple niches.
It is likely that Pfv-like groups are also capable to use multiple sources and colonize different
environments. A similar situation was described for other Pseudomonas groups that have
evolved high levels of genomic plasticity such as P. fluorescens and P. syringae pathovars [19,
21, 64]. Despite the limited understanding about Pfv and Pfv-like life cycle, the analysis of the
pan-genome structure is giving us important clues into the biology of these rice pathogens.

Pfv-like has four major secretion apparatus
Plant pathogenic bacteria use a combination of secretion systems to modify the surrounding
environment and to interact with hosts and other microbes [69]. Using homology pairwise
comparison, we investigated the composition and conservation of the secretion apparatus in

Table 2. Nucleotide identity and percentage of orthologous genes obtained in rice-infecting Pseudomonas draft genomes compared to IRRI 6609

Species Strain Nucleotide Identity (%)a Percentage of orthologous genes

Pseudomonas fuscovaginae-like IRRI 6609 100 100

Pseudomonas fuscovaginae-like IRRI 7007 91.93 90.19

Pseudomonas fuscovaginae-like S-E1 86.39 80.19

Pseudomonas fuscovaginae CB98818 84.03 74.17

Pseudomonas fuscovaginae UPB7036 84.21 76.22

Pseudomonas fuscovaginae DAR 77795 83.89 71.13

Pseudomonas fuscovaginae DAR 77800 84.52 60.56

Pseudomonas fuscovaginae ICMP 5940 84.04 71.44

a Identity based on BLASTn results

doi:10.1371/journal.pone.0139256.t002
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Pfv-like genomes and found intact Type I (T1SS), Type II (T2SS), Type III (T3SS), and Type
VI (T6SS) systems (Fig 5 and S4 Table). All these secretion systems are commonly found in
host-associated bacteria and have been reported in Pfv draft genomes [33–35].

We then used a comparative approach to investigate the level of conservation of the Pfv-like
secretion apparatus in 79 closely related Pseudomonas genomes, including rice-infecting Pseu-
domonas. The T1SS, which includes the apr and has clusters [70], was highly conserved across
all Pseudomonas genomes with the exception of P. putida and P. stutzeri (Fig 5). This cluster
includes an alkaline protease which has a strong homology to arpA [71] and additional genes
with predicted exoprotease activities. We found three different T2SS gene clusters in Pfv-like.

Fig 4. The pan-genome of rice-infecting Pseudomonas reveals high proportion of strain-specific genes. A) Distribution of the 12,351 orthologous
gene clusters according to strain-specific genes (only in one genome = 1), dispensable genes (in more than one genome = 2� x� 7), and core genes (in all
genomes = 8). B) Orthologous gene distribution in the P. fuscovaginae (blue) and P. fuscovaginae-like (orange) genomes depicting number of core,
dispensable, and strain-specific gene clusters.

doi:10.1371/journal.pone.0139256.g004
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The xcp cluster showed strong homology with P. aeruginosa [70] while the gsp cluster appears
to be conserved within P. syringae genomes [72]. Interestingly, the hxc cluster is only present in
Pfv-like strains and has homology to P. fluorescens and P. aeruginosa genomes (Fig 5). Sub-
strates for T2SS, such as CWDE, were also identified in Pfv-like genomes (see below).

Interestingly, Pfv and Pfv-like populations lack the typical hrp/hrc T3SS found in other
plant pathogenic Pseudomonas but carry another T3SS family member, the SPI-1 (Salmonella
Pathogenicity Island 1) (Fig 5 and S4 Table). Loss-of-function experiments suggest that Salmo-
nella enterica SPI-1 contributes to virulence by secreting type III effectors during human cell
colonization [73]. Recent reports that showed SPI-1 in several plant-associated bacteria [21, 33,
74–77] suggested alternative functions outside the mammalian system [78]. Indirect evidence
from Arabidopsis thaliana and Nicotiana tabacum showed that S. typhimurium SPI-1 mutants
were unable to suppress plant immune response [79, 80]. In our analysis, SPI-1 was poorly con-
served in almost 70 Pseudomonas genomes. Only the P. fluorescens strain F113, a plant growth-
promoting bacterium, carries an intact SPI-1 cluster [21]. Interestingly, our analysis identified
only a few candidate type III effectors in the IRRI 6609 and IRRI 7007 genomes but their role
during host colonization is still unclear. Whether SPI-1 is used by Pfv or Pfv-like to deliver
unknown type III effectors to interact with rice or with alternative hosts outside the plant king-
dom remains to be an area that should be investigated further.

T6SS showed strong homology to the corresponding hcp Secretion Island 1 (HSI-1) [81]
encoded in the genome of all 14 P. aeruginosa, 5 out of 6 P. fluorescens, and 3 out of 27 P.

Fig 5. Comparative genomic analysis of rice-infecting Pseudomonas secretion apparatus.Genetic components of T1SS, T2SS, T3SS and T6SS
apparatus of P. fuscovaginae-like (Pfv-like) IRRI 6609 was used to compare against 79 closely related Pseudomonas genomes (S1 Table). The apr, has,
xcp, hxc, gsp, SPI-1, and HSI-1 are previously characterized gene clusters found within each secretion system. Horizontal axis describes the number of
species used for comparison. The rows were sorted by amino acid sequence identity with threshold set at 20%. The heat map was visualized in
CodaChrome. Homology range values are shown in bottom right.

doi:10.1371/journal.pone.0139256.g005
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syringae strains (Fig 5). This finding is not surprising since T6SS is highly conserved among
pathogenic bacteria and has been implicated in multiple functions. For instance, P. aeruginosa
uses T6SS to secret the effector protein Tse2 as a component of a toxin-substrate system that
mediates interactions between bacteria [82]. Meanwhile, T6SS mutants of the seed-borne path-
ogen Acidovorax citrulli were impaired in seed-to-seedling transmission in citrus plants [83].
More recently, a Pfv Tn5 mutant of the T6SS showed impaired colonization of rice tissue [32],
suggesting that T6SS contributes to pathogenicity. Even though functional data that links Pfv-
like secretion system with virulence in rice is still missing, it is likely that each secretion system
was acquired independently. This observation indicates a diversity of functional roles that is
aligned with the general idea that Pfv-like, similar to Pfv, is capable of colonizing multiple
environments.

The core secreted repertoire of Pfv and Pfv-like has signatures of
positive selection
Similar to other bacterial pathogens, rice-infecting Pseudomonas are predicted to secrete a
number of effector proteins that contribute to disease progression. To investigate the secretion
capabilities in Pfv and Pfv-like genomes and to identify putative core and dispensable secre-
tome, we used a combination of prediction tools. We first used SignalP [50] and identified
4,244 proteins that had canonical secretion signals in all the eight genomes. Then, we removed
715 proteins which were predicted to have at least one transmembrane domain, as those may
represent membrane-anchored proteins. Using the same approach as described above, we esti-
mated 734 orthologous gene clusters as the overall repertoire of putative secreted proteins in
the eight genomes (Fig 6A). Among those, 168 corresponded to strain-specific genes (Fig 6A).
We also analyzed the distribution of putative secreted proteins in Pfv and Pfv-like groups inde-
pendently. Both groups maintained high proportion of unique genes reaching 20.98% for Pfv
and 17.05% for Pfv-like (Fig 6B). These findings point out to a unique set of secreted proteins
in each rice-infecting Pseudomonas genome consistent with multiple functional capabilities. In
the same way, Baltrus et al. [64] found dramatic variation in the number and distribution of
effector genes across a range of P. syringae clades from different hosts. Recent analysis of the P.
fluorescens F113 strain harbored an unprecedented combination of unique genes related to rhi-
zosphere colonization [21]. Therefore, it can be assumed that some Pseudomonas groups prob-
ably evolved to maximize the dispensable secretome as a strategy to occupy a range of
environments.

Importantly, we identified 123 core genes that codified for putative secreted proteins in all
the rice-infecting Pseudomonas genomes (Fig 6A and 6B, and S5 Table). Most of the candidate
core secretome was associated with transport, catalytic, and binding activities (S6 Table),
which are the possible molecular functions of the core secreted proteins. To further categorize
the level of conservation in other Pseudomonas genomes, we used homology comparison and
identified 31 candidate genes that were homologous to known plant pathogenic Pseudomonas
(Fig 7). Among these, 13 putative secreted proteins were unique to rice-infecting Pseudomonas
strains. Since all strains were isolated from rice and showed exactly the same brown rot and
seed discoloration symptoms, this set of genes is likely to play a role during interaction with the
host plant. The other 96 secreted proteins were conserved among free living and pathogenic
Pseudomonas isolated from a range of eukaryotic hosts (Fig 7). Future research is needed to
understand the role of these secreted proteins during interaction with rice.

A common feature of effector genes from plant pathogenic microbes is the strong signature
of positive selection [84–86]. To characterize the selection pressures underlying the Pfv and
Pfv-like core secretome and to identify candidate effector genes, we calculated Ka/Ks ratio
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using Yn00 [59] on alignments of 123 orthologous loci across the eight genomes. Using a cutoff
p-value of 95%, we found that Ka value was greater than Ks (ω = Ka/Ks> 1) in 75 of 123 genes
(Fig 8). We obtained ω values ranging from 0.45 to 4.0 (average of 2.4). When we analyzed
each group separately, Pfv secretome ω values ranged from 0.37 to 3.76 (average of 1.65) while
Pfv-like ranged from 0.14 to 0.8 (average of 0.48) (Fig 8). Among the 75 selected genes, we

Fig 6. The secretome of rice-infecting Pseudomonas has high proportion of dispensable genes. A) Distribution of the 729 orthologous gene clusters in
the secretome according to strain-specific genes (only in one genome = 1), dispensable genes (in more than one genome = 2� x� 7) and core genes (in all
genomes = 8). B) Orthologous gene distribution in the P. fuscovaginae (blue) and P. fuscovaginae-like (orange) genomes depicting number of core,
dispensable, and strain-specific gene clusters.

doi:10.1371/journal.pone.0139256.g006
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found high ω values in 3 out of 13 genes that were specific to rice-infecting Pseudomonas (Fig
8). This result shows significant differences in the number of genes under selection between Pfv
and Pfv-like. Whether this difference is due to variation in selection pressure or sampling bias
between groups is still unknown. Collectively, our findings point out that natural selection is
continuously shaping the secreted repertoire of the rice-infecting Pseudomonas, which is a
common pattern for other Pseudomonas pathogens [85, 87].

Additional features potentially involved in pathogenicity of Pfv-like
To further explore the presence of additional pathogenicity mechanisms within the Pfv-like
genome, we identified putative genes involved in secondary metabolism biosynthesis, hormone
metabolism, motility, cell adhesion, pilus formation, and cell wall degradation (S3 and S4
Tables). All of the probable secondary metabolite gene clusters of Pfv-like are found in S4
Table. Three gene clusters related to AHL biosynthesis and quorum sensing were identified.
Pfv harbors both AHL clusters (PfsI/R and PfvI/R) described in Mattiuzzo et al. [28] and one
additional putative novel cluster yet to be characterized (S3 and S4 Tables). Additionally, two
classes of siderophores biosynthetic genes were located in the genomes of Pfv-like. The cluster
for pyoverdine biosynthesis found in Pfv-like is homologous to the pvd gene cluster from P.
aeruginosa [88]. Pyoverdine gives Pseudomonas spp. their fluorescent pigments and is associ-
ated with iron acquisition [88]. We also found the acs gene cluster that is associated to achro-
mobactin production [89]. Achromobactin, just like pyoverdine, appears to facilitate iron
acquisition as an alternative function. Mutant strains of P. syringae pv. phaseolicola 1448a
showed that pyoverdine and achromobactin were not essential in causing halo blight in beans
[90]. In addition, the pyoverdine production of P. fluorescens F113 was effective in inhibiting
the growth of Pectobacterium atrosepticum in vitro [91]. Whether the production of pyoverdine
and achromobactin is important for microbial competition or during host pathogenicity of
Pfv-like is still not known.

Fig 7. The core secretome of rice-infecting Pseudomonas harbor unique genes.Conservation of core secreted proteins from rice-infecting
Pseudomonas was evaluated in 79 closely related Pseudomonas genomes (S1 Table). Columns were sorted by averaging the amino acid identity to identify
conserved and species-specific proteins using threshold of 20%. Secreted proteins are also classified in: conserved in all Pseudomonas, non-conserved in
all Pseudomonas, and Pfv- and Pfv-like-specific. Horizontal axis describes the number of species used for comparison. The heat map was visualized in
CodaChrome [40]. Homology range values are shown in bottom right.

doi:10.1371/journal.pone.0139256.g007
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We found three non-ribosomal peptide (NRP) gene clusters involving at least 69 genes (S3
and S4 Tables). Two of these clusters showed no homology to any NRP cluster in other Pseudo-
monas species. Moreover, the biosynthetic products could not be identified. We also predicted
a gene that codifies for tryptophan 2-monooxygenase, which is an important enzyme in auxin
anabolism (S4 Table). Heterologous expression of this gene in A. thaliana promoted suscepti-
bility to the bacterial pathogen P. syringae pv. tomato DC3000 [92]. Pfv-like genome also har-
bored T4 pili and flagella formation gene clusters which are important in bacterial adhesion to
the cell and motility, respectively. In contrast to plant pathogens that cause rotting [93], Pfv-
like appeared to have reduced repertoire of CWDE. From the 85 proteins predicted to have car-
bohydrate-active enzymes, only three harbored a canonical secretion signal (S4 Table). Some
of the putative pathogenicity factors found in Pfv-like were also present in Pfv. The tryptophan
2-monooxygenase gene, clusters involved in pilus and flagella formation, biosynthetic clusters
of achromobactin and pyoverdine, and the second putative NRP gene cluster were all

Fig 8. The core secretome of rice-infecting Pseudomonas has signatures of positive selection.
Distribution of Ka/Ks ratio for 123 protein-coding genes, calculated with Yn00 [59] method on rice-infecting
Pseudomonas-all (black, P-all, n = 8), P. fuscovaginae (blue, Pfv, n = 5), and P. fuscovaginae-like (orange,
Pfv-like, n = 3) datasets. All secreted protein selected on this graph have p-values� 0.01.

doi:10.1371/journal.pone.0139256.g008
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conserved in Pfv, suggesting similar mechanisms. However, the third quorum sensing, and the
two remaining NRP gene clusters appear to be unique to Pfv-like (S4 Table).

Pfv-like induce multiple putative virulence factors during its interaction
with rice
Infection of host plants by pathogenic bacteria is a complex process that requires the coordi-
nated expression of many virulence components [94]. To determine the contribution of Pfv-
like putative virulence factors during rice colonization, we analyzed the expression of 19 patho-
gen genes during a time course infection experiment using semi-quantitative RT-PCR. Total
RNA was isolated from rice sheaths at 0, 3, 24, 48, and 72 hpi of strain IRRI 7007 in rice cv.
Azucena. Selected genes are listed in S4 Table and represents: secretion apparatus T1SS (1),
T2SS (3), T6SS (1), and SPI-1 (1); one gene involved in T4 pili formation; one flagella gene; two
putative CWDEs; one gene predicted to be involved in putative NRP biosynthesis; six core
secreted proteins; and two random core genes present in IRRI 6609 and IRRI 7007 (S3 and S4
Tables).

We detected transcript accumulation in 14 of 19 pathogen genes in at least one of the exam-
ined time points (S7 Fig). As expected, the pattern of expression varied considerably among
genes. Some genes were constitutively expressed while others were induced as early as 3 hpi or
down regulated after infiltration. Interestingly, genes that formed the secretion apparatus and
those presumed to be secreted throughout this mechanism were detected at early stages of bac-
terial infection (S7 Fig). A putative alkaline proteases (PF66_01465), which is known to be
secreted by T1SS, was induced at an early time point. In the same way, two genes with pre-
dicted CWDE activity (PF66_04809 and PF66_04639) were expressed during the first hours of
infection. However, none of the genes representing the T2SS apparatus (PF66_01622,
PF66_04896, and PF66_01114) were induced, suggesting that CWDE may be secreted
throughout alternative pathways. Two putative methionine aminopeptidase with a predicted
T3 secretion signal were expressed in this experiment (S7 Fig) The predicted T3SS effector
gene PF66_01486 showed detectable levels at 3 hpi and was down regulated afterwards while
PF66_00566 showed constitutive expression (S7 Fig). Recent experimental data showed that
T6SS might be important for Pfv pathogenicity [32]. In our experiment, PF66_03771, which is
part of T6SS was upregulated during the first three hours. These results may highlight the con-
tribution of at least three secretion systems during the infection of Pfv-like in rice sheath.

The gene involved in membrane adhesion (PF66_01105) was found to be expressed at 3 hpi
while the gene involved in locomotive function (PF66_05042) was highly expressed at all time
points. Four (PF66_04809, PF66_01042, PF66_04639, and PF66_00996) out of six predicted
secreted genes showed very early response during the interaction of rice and the Pfv-like strain
IRRI 7007. The gene PF66_00996, which has a putative copper oxidase function, is also specific
for Pfv and Pfv-like and has strong signature of positive selection (S7 Fig). Similar to known
effector proteins, the induction of candidate core secreted genes during the early stage of infec-
tion may suggest the important functional role of PF66_04809, PF66_01042, PF66_04639, and
PF66_00996 in Pfv-like pathogenicity. At a later stage (72 hpi), most of the tested genes had
low level of expression. Overall, data obtained here revealed that Pfv-like interaction with rice
sheath is accompanied by transcript accumulation of genes involved in secretion, adhesion,
and trafficking, representing a concerted virulence mechanism to infect rice.

Conclusion
In this study, we focused on understanding the complexity of rice-infecting Pseudomonas
genomes that cause sheath brown rot and the underlying mechanisms that might govern its
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virulence in rice. Rather than genetically homogeneous lineages, Pfv and Pfv-like appear to
have an open pan-genome with each isolate representing a very distinct lineage carrying its
own repertoire of accessory genes. Structural variation may reflect major events of insertion-
deletion in a genome that allows frequent gene exchange. The plasticity in genome content, the
overall diversity of metabolic capabilities, and the functional adaptation of its secretome are all
consistent with the idea that Pfv and Pfv-like are able to occupy multiple niches. Similar to
other Pseudomonas species that show intrinsic genetic variation and continuous distribution of
genetic diversity [17, 20, 21], Pfv and Pfv-like appear to represent different phylogenetic
groups. However, the phylogenetic status of these strains needs to be analyzed in the context of
Pfvmeta-population. At the genomic level, Pfv-like harbors many distinct mechanisms that are
potentially involved in rice colonization. Many of the genes involved in secretion, adhesion,
and trafficking are activated during the early stages of infection, thereby highlighting its poten-
tial role during rice pathogenicity. We predicted a conserved set of secreted proteins in the
pan-genome of Pfv-like and Pfv, most of which have strong signatures of positive selection.
These observations reveal a unique evolutionary pathway of rice-infecting Pseudomonas in the
agricultural landscape but also explain partially the ability of Pfv to infect a broad range of host
plants outside the rice cropping system. Functional validation of core and strain-specific genes
as well as an assessment of phenotypic differences between Pfv and Pfv-like groups will be
important to reveal the conserved mechanism of infection and the unique set of metabolic
capabilities of these populations. We hope these observations can lead to better strategies of
control, monitoring and management of sheath blight rot in the rice plant.
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S1 Fig. Tetranucleotide frequency correlation coefficients (TETRA) of eight rice-infecting
Pseudomonas genomes. Clustering analysis differentiates P. fuscovaginae-like (Pfv-like) col-
lected in the Philippines and P. fuscovaginae (Pfv) collected elsewhere. Values scale is depicted
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package gplots using the heatmap.2 function.
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S4 Fig. Composition of prophage insertions among eight rice-infecting Pseudomonas
genomes. A)Distribution of intact prophage insertions are color-coded among rice-infecting
Pseudomonas strains. Prophage ID is based on PHAST database [38]. All intact prophage have
scores>90 [38]. B) Bar plot distribution of the number of genes found within all prophage
regions in each of the eight rice-infecting Pseudomonas draft genomes. Non-phage related
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each COG category per rice-infecting Pseudomonas-all (black, n = 8), P. fuscovaginae (blue,
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