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Let G be a noncomplete k-connected graph such that the graphs obtained from contracting

any edge in G are not k-connected, and let t(G) denote the number of triangles in G.

Thomassen proved t(G) � 1, which was later improved by Mader to t(G) � 1
3 |V (G)|.

Here we show t(G) � 2
3 |V (G)| (which is best possible in general).

Furthermore it is proved that, for k � 4, a k-connected graph without two disjoint

triangles must contain an edge not contained in a triangle whose contraction yields a

k-connected graph. As an application, for k � 4 every k-connected graph G admits two

disjoint induced cycles C1, C2 such that G − V (C1) and G − V (C2) are (k − 3)-connected.

1. Introduction

All graphs considered here are taken to be finite, undirected, and simple. For terminology

not defined here I would like to refer to [1] or [2].

An edge in a k-connected graph G is called k-contractible if its contraction yields a

k-connected graph. A noncomplete k-connected graph which has no k-contractible edge

at all is called contraction critically k-connected .

For k � 3, there exists no contraction critically k-connected graph, whereas for each

k � 4, there exist infinitely many nonisomorphic contraction critically k-connected graphs.

The contraction critically 4-connected graphs are characterized to be the squares of cycles

of length at least six plus the line graphs of cubic cyclically 4-edge-connected graphs. For

various references to these results, see [4]. Every vertex in such a graph has degree four

and is incident with at least two (edge-disjoint) triangles. Therefore, every contraction

critically 4-connected graph has at least 2
3
|V (G)| triangles, and this is attained for the

linegraphs of (the infinitely many) noncomplete cubic cyclically 4-edge-connected graphs.

Here it will be proved that the number t(G) of triangles in a contraction critically

k-connected graph G is at least 2
3
|V (G)|. This improves a result in [5], stating that

t(G) � 1
3
|V (G)|, which in turn improves a result in [6], stating that t(G) � 1. As we have

seen above, the constant 2
3

is sharp in general, but probably not for increasing connectivity

(see Section 3).
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134 M. Kriesell

Furthermore, the existence of large systems of edge-disjoint or vertex-disjoint triangles

in contraction critically k-connected graphs is discussed. In [6], the result t(G) � 1 for

every contraction critically k-connected graph has been used to prove that, for k � 4, every

k-connected graph G has an induced cycle C such that G − V (C) is (k − 3)-connected.

Here it will be shown that G contains even two disjoint induced cycles C1, C2 such

that G − V (C1) and G − V (C2) are (k − 3)-connected. Here ‘two’ can not be improved in

general.

2. Large systems of triangles

Let us recall some concepts of connectivity theory from [5]. For a graph G, let T(G) :=

{T ⊆ V (G) : G − T disconnected and |T | = κ(G)} be the set of smallest separators of G,

where κ(G) =: k denotes the connectivity of G. For an arbitrary set S of subsets of V (G),

let TS(G) := {T ∈ T(G) : S ⊆ T for some S ∈ S}. For T ∈ TS(G), any union of the

vertex sets of at least one but not of all components of G − T is called a T − S-fragment .

An S-fragment is a T − S-fragment for some T ∈ TS(G), and an S-end is an inclusion

minimal S-fragment. If S = ∅ then TS(G) = T(G), and in this case we omit S in the

notation, thus defining T -fragments, fragments and ends . If A is a T − S-fragment in

G then so is A := V (G) − (A ∪ T ). (At the risk of being somewhat imprecise, readability

is probably increased by omitting a reference to G in the notion of A.) A fragment

of cardinality 1 is called trivial . Note that if F is a T -fragment in G then T = NG(F),

where NG(F) := {y ∈ V (G) − F : there exists an x ∈ F such that xy ∈ E(G)} denotes the

neighbourhood of F in G.

For two fragments F1, F2 of G, define

TG(F1, F2) := (F1 ∩ NG(F2)) ∪ (NG(F1) ∩ NG(F2)) ∪ (NG(F1) ∩ F2).

Clearly, NG(F1 ∩ F2) ⊆ TG(F1, F2), and

V (G) − ((F1 ∩ F2) ∪ TG(F1, F2)) = F1 ∪ F2 �= ∅.

Therefore, if F1 ∩ F2 �= ∅ then

k � |NG(F1 ∩ F2)| � |TG(F1, F2)| = |F1 ∩ NG(F2)| + |NG(F1) − F2|
= |F1 ∩ NG(F2)| + k − |F2 ∩ NG(F1)|.

From this inequality chain we obtain the following, fundamental property of fragments:

For intersecting fragments F1, F2,

|F1 ∩ NG(F2)| � |F2 ∩ NG(F1)|,
and if equality holds then

F1 ∩ F2 is a TG(F1, F2)-fragment.


 (2.1)

The key observation in the proof of [5, Theorem 4], which states that t(G) � 1
3
|V (G)|

for every contraction critically k-connected graph G, is that whenever a vertex x is not

contained in a triangle in G then there exists a ‘small’ nontrivial T -fragment A such that

T contains x and a neighbour of x. (In A, a neighbour of x which is contained in ‘many’

triangles can be located – see [5, Theorem 3] – which then helps to prove the statement.)
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Triangle Density and Contractibility 135

Here this is generalized by proving that even if x is contained in at most one triangle

in G then there will be a ‘small’ nontrivial T -fragment such that T contains x and a

neighbour of x.

We will need the following lemma, which follows more or less from the considerations

in [5].

Lemma 2.1. Let G be a graph, let S be a set of subsets of V (G), let B be an S-end, let

S ∈ S, and let F be a T -fragment such that T ∩ B �= ∅ and S ⊆ T − B.

Then one of B,B, F, F has at most |T−NG(B)|
2

vertices.

Proof. Let TB := NG(B). If B ∩ F �= ∅ and B ∩ F �= ∅ then |B ∩ T | = |F ∩ TB | by (2.1)

(applied to B, F and F, B for F1, F2). Again by (2.1), B ∩ F is a TG(B, F)-fragment properly

contained in B. Since S ⊆ TG(B, F), B ∩ F is an S-fragment properly contained in the

S-end B, which is absurd.

So either B ∩ F = ∅ or B ∩ F = ∅, and, symmetrically, either B ∩ F = ∅ or B ∩ F = ∅.

It follows that F ⊆ TB or F ⊆ TB or B ⊆ T or B ⊆ T . The property of B being an S-

end will not be used furthermore, and |T − TB | = |TB − T |, so we may assume F ⊆ TB

without loss of generality.

Let us assume that the assertion is not true. Then F �⊆ TB , and, without loss of

generality, B ∩ F �= ∅. By (2.1), |B ∩ T | � |F ∩ TB | = |F | > |T − TB |/2, which implies

|B ∩ T | < |T − TB |/2. So B �⊆ T neither, which implies B ∩ F �= ∅, and, by (2.1), |B ∩ T | �
|F ∩ TB | = |F | > |T − TB |/2, which is a contradiction.

It is not hard to see that an edge in a noncomplete k-connected graph is not k-

contractible if and only if its endvertices are contained in some smallest separator of G

of cardinality k. This observation will be used throughout, without any further reference.

Lemma 2.2. Let x be a vertex of degree at least 3 in a k-connected graph which is contained

in at most one triangle such that every k-contractible edge incident with x is contained in a

triangle.

Then there exists a T -fragment F such that the subgraph G(F) induced by F in G is

connected, x ∈ T , NG(x) ∩ T �= ∅, and 2 � |F | � k−1
2

.

Proof. Set S := {{x, y} : y ∈ NG(x) ∧ NG(x) ∩ NG(y) = ∅}. By the conditions on x, S
is not empty, and for every S ∈ S, there exists a T ∈ T(G) such that S ⊆ T .

Suppose, to the contrary, that G contains no connected S-fragment F such that

2 � |F | � k−1
2

. We may assume that G contains no S-fragment F such that 2 � |F | � k−1
2

,

for otherwise G(F) would have at least two components, each of which must be trivial, so

x would be on at least two triangles.

Let T ′ ∈ TS(G). Then there exists a T ′-fragment F ′ which does not intersect any

triangle containing x. F contains an S-end B having the same property. B is intersected

by some S ∈ S, and there exists a T ∈ T(G) containing S . Let F be a T -fragment.

Since the vertex in S − {x} has no neighbour in NG(x), neither F nor F is trivial, and
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136 M. Kriesell

since NG(B) contains an S ′ ∈ S, neither B nor B is trivial. By Lemma 2.1, one of the

S-fragments B,B, F, F has cardinality at most k−1
2

, contradicting our assumption.

Lemma 2.2 is best possible in the sense that, for every k � 3 and every b � 1, there are

infinitely many k-connected graphs G which contain a vertex x that is not incident with a

k-contractible edge at all and is contained in exactly two triangles, but |F | � b for every

nontrivial T -fragment F such x ∈ T and NG(x) ∩ T �= ∅ (so we can not replace ‘at most

one’ with ‘at most two’ in the statement). An explicit construction is omitted to keep the

paper short.

The existence of a fragment F as in the conclusion of Lemma 2.2 implies k � 5,

which has some consequences for the distribution of 4- or 3-contractible edges in 4- or

3-connected graphs, respectively. For example, independently from the characterization

of the contraction critically 4-connected graphs mentioned above, it implies that every

vertex in a contraction critically 4-connected graph is contained in two triangles.

Small but nontrivial fragments as provided by Lemma 2.2 will now help to partition

contraction critically k-connected graphs into parts where the average number of triangles

in which its vertices are contained is large. Let us introduce some further notation.

Let G be a graph. For x ∈ V (G), let tG(x) := |E(G(NG(x)))| denote the number of

triangles incident with x. For X ⊆ V (G), let tG(X) :=
∑

x∈X tG(x). If X �= ∅ then tG(X) :=
tG(X)

|X| is the average number of triangles in which a vertex in X is contained. Consequently,

any graph G contains exactly tG(V (G))
3

|V (G)| triangles. For an integer j � 0, let D
j
G :=

{x ∈ V (G) : tG(x) = j} be the set of vertices contained in exactly j triangles in G, and let

D
0,1
G := D0

G ∪ D1
G.

Lemma 2.3. Let A be a nontrivial T -fragment of a graph of connectivity k such that G(A)

is connected. Let X ⊆ T ∩ D
0,1
G be nonempty, and let Y := NG(X) ∩ A. Then the following

holds.

(1) If |Y | � |X| then tG(X ∪ Y ) � k−|A|
2

.

(2) If 3 � |A| � k−1
2

then tG(X ∪ Y ) � 2.

(3) If G(A) is a triangle and T contains vertices t1 �= t2 such that |NG(t1) ∩ A| =

|NG(t1) ∩ A| = 1 then tG(X ∪ Y ) � min{k − 3, 6k−15
7

}.

Proof. For every edge xy ∈ E(G(A)),

|NG(x) ∩ NG(y)| = |NG(x)| + |NG(y)| − |NG(x) ∪ NG(y)| � k + k − |T ∪ A| = k − |A|.

Since G(A) is connected and |A| � 2, every vertex x ∈ A has a neighbour in A, and thus

tG(x) � k − |A|.
Consequently, tG(Y ) � |Y | · (k − |A|) and if |Y | � |X| then

tG(X ∪ Y ) � |Y | · (k − |A|)
|X| + |Y | � |Y | · (k − |A|)

2|Y | =
k − |A|

2
,

as has been claimed in (1) of the statement.
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Triangle Density and Contractibility 137

For the second part, suppose that 3 � |A| � k−1
2

. In particular, k � 7, and

k − |A|
2

� k + 1

4
� 2,

so (2) follows from (1) if |Y | � |X|.
Now let us assume, in addition, |Y | < |X|. It follows that A = Y , as all neighbours of

A − Y are contained in (A ∩ Y ) ∪ (T − X), which has fewer than |T | = k vertices.

We now have to refine the argument from above. Set X0 := X ∩ D0
G and X1 := X ∩ D1

G

(so X is the disjoint union of X0 and X1).

Let m := |EG(T ,A)| denote the number of edges having one endvertex in T and the

other one in A. Since |A| � 3 and G(A) is connected, we obtain |E(G(A))| � 2, so every

x ∈ X is nonadjacent to at least one vertex in A.

If G(A) does not contain an independent set of |A| − 1 vertices then every x ∈ X0 is

nonadjacent to at least two vertices in A. So m � |A| · k − 2|X0| − |X1|. On the other

hand, every vertex in A is adjacent to at least k − (|A| − 1) vertices in T , which implies

m � |A| · k − |A| · (|A| − 1). It follows that 2|X0| + |X1| � |A| · (|A| − 1).

If G(A) does contain an independent set of |A| − 1 vertices then G(A) is a star K1,|A|−1. Let

c be the vertex of degree |A| − 1 in G(A). Then every x ∈ X0 ∩ NG(c) has only one neigh-

bour in A. There are, however, at most |A| − 1 vertices in X0 − NG(c), which implies m �
|A| · k − 2|X0| + |A| − 1 − |X1|. Since |E(G(A))| = |A| − 1, then m � |A| · k − 2(|A| − 1).

It follows that 2|X0| + |X1| � 3 · (|A| − 1) � |A| · (|A| − 1).

Therefore, in either case we may estimate

|X1| + |A| · (k − |A|) � |X1| + |A| · k + 1

2
� |X1| + |A| · (|A| + 1)

= |X1| + |A| · (|A| − 1) + 2|A| � |X1| + 2|X0| + |X1| + 2|A|
= 2 · (|X| + |A|),

so

tG(X ∪ Y ) � |X1| + |A| · (k − |A|)
|X| + |A| � 2.

These considerations imply (2) of the statement.

To prove (3), let ai be the vertex in NG(ti) ∩ A, where i ∈ {1, 2}. Note that a1 �= a2,

for otherwise |NG(A − {a1})| � k − 1, which contradicts k-connectivity. Setting H :=

G(A ∪ T − {t1, t2}) we obtain, as above,

|NH (a1) ∩ NH (a2)| � dH (a1) + dH (a2) − |V (H)| � (k − 1) + (k − 1) − (k + 1) = k − 3,

and |NH (ai) ∩ NH (a3)| � (k − 1) + k − (k + 1) = k − 2

for i ∈ {1, 2}. It follows that tG(ai) � tH (ai) � (k − 3) + (k − 2) − 1 = 2k − 6 for i ∈ {1, 2},
and tG(a3) � tH (a3) � (k − 2) + (k − 2) − 1 = 2k − 5. If |Y | � |X| then

tG(X ∪ Y ) � |Y | · (2k − 6)

|X| + |Y | � |Y | · (2k − 6)

2|Y | = k − 3.

If |Y | < |X| then Y = A as above. Set S := (NH (a1) ∩ NH (a2)) − {a3}. As we have seen,

|S | � k − 4, and every vertex in S is adjacent to a3. So S ∩ X = ∅, which implies |X| � 4,
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138 M. Kriesell

so |X| = 4 and t1, t2 ∈ X. Let s1, s2 be the vertices in X − {t1, t2}. Since they are in X and

adjacent to a3, they are not adjacent to both a1, a2. Conversely, a1 is adjacent to at least

one of s1, s2, and so is a2. So s1 is adjacent to exactly one of a1, a2, and so is s2, which

implies s1, s2 ∈ X1. Now

tG(X ∪ Y ) � 2 + (2k − 6) + (2k − 6) + (2k − 5)

7
=

6k − 15

7

We need another, rather particular observation on contraction critically 5-connected

graphs.

Lemma 2.4. Let A be a T -fragment of cardinality 2 in a contraction critically 5-connected

graph G and let t1 �= t2 in T such that |NG(t1) ∩ A| = |NG(t2) ∩ A| = 1. Then one of t1, t2
has a neighbour of degree 5 in T − {t1, t2}.

Proof. Let us assume, to the contrary, that neither t1 nor t2 has a neighbour of degree 5

in T − {t1, t2}. Let i ∈ {1, 2}, and let ai be the vertex in NG(ti) ∩ A. Since G is 5-connected,

a1 �= a2. There exists a Ti ∈ T(G) containing ti and ai. Then ai has neighbours in distinct

components of G − Ti, which implies a3−i ∈ Ti, as NG(ai) − {t1} ⊆ NG(a3−i) ∪ {a3−i}.
By assumption, there exists no trivial Ti-fragment Fi, for otherwise the vertex contained

in it had degree 5 and would be adjacent to a1, a2, and ti, and would thus be contained

in T − {t1, t2}. In particular, |Fi| � 2 and |Fi| � 2.

Now take an arbitrary Ti-fragment Fi. By (2.1) it follows that |Fi ∩ T | � 2 and |Fi ∩ T | �
2, implying |Fi ∩ T | = |Fi ∩ T | = 2. Without loss of generality, t2 ∈ F1 (otherwise we swap

the roles of F1 and F1), and |F1 ∩ F2 ∩ T | = 1 (otherwise we swap the roles of F2 and

F2). Since F1 ∩ F2 �= ∅, X := F1 ∩ F2 is a TG(F1, F2)-fragment by (2.1). From |X ∩ T | = 1

and A ⊆ TG(F1, F2) it follows that |X| = 1. But then the vertex in X is a neighbour of

t2 ∈ TG(F1, F2) of degree 5 in T − {t1, t2}, a contradiction.

Now we are equipped to prove the main result of this work.

Theorem 2.5. The vertex set of every contraction critically k-connected graph G admits a

partition Z1, . . . , Z� such that |Zh| � max{ k−1
2
, 3} and tG(Zh) � 2.

Proof. If D := D
0,1
G = ∅ then, among others, the partition of V (G) into sets of cardinality

1 has the properties of the assertion.

So we may assume that D is not empty. By Lemma 2.2, k � 5. Let us call a T -fragment

A good throughout this proof if either

(G1) G(A) is connected, 2 � |A| � k−1
2

, and tG(X ∪ (NG(X) ∩ A)) � 2 holds for every

nonempty X ⊆ T ∩ D, or

(G2) G(A) is a triangle, and T contains vertices t1 �= t2 such that |NG(t1) ∩ T | =

|NG(t2) ∩ A| = 1.

Note that if A is a good T -fragment then by means of (G2) we have tG(X ∪ (NG(X) ∩ A)) �
2, for every nonempty X ⊆ T ∩ D, by the third part of Lemma 2.3. (So the option (G2)

for a good fragment is designed only for the cases k ∈ {5, 6}.)
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Triangle Density and Contractibility 139

We construct, inductively, a sequence (αi = (Ai, Ti, Xi, Yi)) of length � � 1 as follows.

Let i � 1 and suppose that αh has been constructed for h ∈ {1, . . . , i − 1}. If D −⋃i−1
h=1 Xh = ∅ then the construction is finished, otherwise we proceed as follows.

Choice (A). If there exists a good T -fragment A such that X := T ∩ (D −
⋃i−1

h=1 Xh) is

not empty then we set αi := (Ai, Ti, Xi, Yi) := (A,T ,X,NG(X) ∩ A) and construct the next

item.

Choice (B). Otherwise, we take any x ∈ D −
⋃i−1

h=1 Xh. By Lemma 2.2 there exists a

T -fragment A such that G(A) is connected, 2 � |A| � k−1
2

, x ∈ T , and T ∩ NG(x) �= ∅.

Since Choice (A) has not been applied here, A is not good, and |A| = 2 follows from

Lemma 2.3. The set X := {x ∈ D −
⋃i−1

h=1 Xh : x ∈ T , T ∩ NG(x) �= ∅} is not empty, and

we take αi := (Ai, Ti, Xi, Yi) := (A,T ,X,NG(X) ∩ A) and construct the next item.

Every vertex a in some Ai has a neighbour b in Ai, and

|NG(a) ∩ NG(b)| � dG(a) + dG(b) − |Ti ∪ Ai| � k − 1

2
� 2.

It follows that
⋃�

h=1 Ah ⊆ V (G) − D. In particular,
⋃�

h=1 Yh ⊆ V (G) − D, and since Xi ⊆ D,

Xi is disjoint from every Aj and every Yj .

By construction, the Xj are pairwise disjoint. The same holds for the Yj , as we will see

now. Let i < j be two indices in {1, . . . , �}.
Let us assume, to the contrary, that there exists an a ∈ Yi ∩ Yj ⊆ Ai ∩ Aj . Then a must

have a neighbour x in Xj . Since Xj ∩ Ai = ∅, x ∈ Ti follows. Since

x ∈ D −
j−1⋃
h=1

Xh ⊆ D −
i−1⋃
h=1

Xh

but x �∈ Xi, αi has been chosen according to Choice (B). Consequently:

There is no good T -fragment A such that

T ∩ (D −
⋃i−1

h=1 Xh) is not empty.

}
(2.2)

In particular, Aj is not good (recall that x ∈ Tj ∩ (D −
⋃i−1

h=1 Xh)), so αj has been chosen

according to Choice (B), too. Since x ∈ Xj − Xi, x has a neighbour in Tj but no neighbour

in Ti, implying that Ti �= Tj . Therefore, Ai �= Aj .

Let Ai = {a, bi} and Aj = {a, bj}. Since bi ∈ Tj , bi has a neighbour t1 in Aj . Clearly,

t1 ∈ Ti and NG(a) − {bi} = Ti − {t1}, so dG(a) = k. Symmetrically, there exists a t2 ∈
NG(bj) ∩ Ai, and NG(a) − {bj} = Tj − {t2}. It follows that Ti ∩ Tj = NG(a) − {bi, bj}, and

T := NG(A := {a, bi, bj}) = (Ti ∩ Tj) ∪ {t1, t2}. Since |V (G)| � k + 4, A is a T -fragment,

and |NG(t1) ∩ A| = |NG(t2) ∩ A| = 1. Recall that bj ∈ Ti is not adjacent to x, so NG(bj) −
{a} = Tj − {x}. In particular, G(A) is a triangle.

Now A is a good T -fragment and x ∈ T ∩ (D −
⋃i−1

h=1 Xh), which violates (2.2).

This contradiction proves Yi ∩ Yj = ∅.

We will now see that, unless we are in a rather particular situation, tG(Xi ∪ Yi) � 2

holds. So let us identify this setting.

If Xi, Yi have been chosen according to Choice (A) then tG(Xi ∪ Yi) � 2; this is trivially

true if A is good by means of (G1), and it follows from Lemma 2.3 otherwise.
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Otherwise, |Ai| = 2, say Ai = {a1, a2}. Let S := NG(a1) ∩ NG(a2), so |S | � k − 2. If x ∈ S

has a neighbour in Ti then x is contained in at least two triangles, so x ∈ T − Xi. It

follows that |Xi| � 2, and, consequently, |Yi| � |Xi|. If k � 6 then tG(Xi ∪ Yi) � k−|Ai|
2

� 2

by Lemma 2.3; so let us assume k = 5 from now on.

If tG(a1) � 4 and tG(a2) � 4 then tG(Xi ∪ Yi) � 2, so we may assume that tG(a1) � 3

without loss of generality. In particular, |S | � 3, so |S | = 3 = tG(a1), and there exist t1 �= t2
in Ti such that NG(t1) ∩ A = {a1} and NG(t2) ∩ A = {a2}. Furthermore, S is independent

in G. By Lemma 2.4, t1 or t2 has a neighbour in S , and since tG(a1) = 3, t2 must have a

neighbour in S , which in turn implies tG(t2) � 1 and tG(a2) � 4. Now if Xi would contain

a vertex x with tG(x) � 1 then tG(Xi ∪ Yi) � 2. Hence we may assume Xi = {t1}, which

implies Yi = {a1}. By definition of Xi, t1 must have a neighbour in T , which can only be

t2 since tG(t1) = 0.

Let j �= i. We claim that Aj is disjoint from Ai.

Assume first that |Aj | = 2. If Aj = Ai then (since Ai = Aj is not a good fragment)

Xj ⊆ {t1, t2}; but then t1, t2 ∈ Xmin{i,j}, which is absurd. So Aj �= Ai.

Furthermore, Aj �= {a1, t1}, since the latter set is adjacent to all 5 vertices in Ai ∪ Ti −
{a1, t1} and to some further neighbour of t1 in Ai. Suppose that Aj = {a1, x} holds for

some x ∈ S . Now the two vertices in S − {x} are adjacent to a1 but not adjacent to x,

which is impossible. It follows that a1 �∈ Aj and, symmetrically, a2 �∈ Aj .

So we may assume that |Aj | �= 2, which implies that Aj is a good fragment by means

of (G2) (the actual vertices t1, t2 do not coincide with the respective ones in the definition

of a good fragment). Since tG(t1) = 0, t1 �∈ Aj , and since t1 can not be contained in the

neighbourhood of a good fragment by choice, a1, t2 �∈ Aj . Suppose that a2 ∈ Aj . But then

Aj − {a2} ⊆ S , which is absurd since G(S) has no edge.

So we have proved:

Either tG(Xi ∪ Yi) � 2, or:

k = 5, |Xi| = 1, |Ai| = 2, and

Ai is disjoint from Aj for all j �= i.


 (2.3)

Now we can construct a partition as follows. If tG(Xi ∪ Yi) � 2 then we set Zi := Xi ∪ Yi.

Otherwise, we set Zi := Xi ∪ Ai; in this case, Ai is disjoint from every Aj with j �= i, and

thus from every Yj , j �= i, too; furthermore, tG(Xi ∪ Ai) � 2·(k−2)
3

� 2.

It follows that the Zh are pairwise disjoint and satisfy tG(Zh) � 2. If Z :=
⋃�

h=1 Zh =

V (G) then the assertion is proved. Otherwise, we add a partition Z�+1, . . . , Z�+|V (G)−Z | of

V (G) − Z into parts of cardinality 1. Since D ⊆ Z , the assertion is proved as well.

Corollary 2.6. A contraction critically k-connected graph G has at least 2
3
|V (G)| triangles.

One could equally well ask for large systems of edge-disjoint or vertex-disjoint triangles

in contraction critically k-connected graphs. The concept of minimally k-connected graphs

is helpful in proving the following.

Corollary 2.7. For k � 4, a contraction critically k-connected graph G has at least
2

9k−6
|V (G)| edge-disjoint triangles.
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Proof. Recall that a k-connected graph G′ is minimally k-connected if G′ − e is not

k-connected for every e ∈ E(G′). Clearly, there exists a minimally k-connected spanning

subgraph of G. Since E(G′) ⊆ E(G) and T(G′) ⊇ T(G), G′ is contraction critically k-

connected, too, and it suffices to prove the assertion for G′.

Consider an arbitrary edge xy in G′. Since G′ − xy is not k-connected but G′ is, G′ − xy

has a T -fragment F such that x ∈ F , y ∈ F , and |T | � k − 1. In particular, x, y have at

most k − 1 common neighbours in G′ − xy, so xy is contained in at most k − 1 triangles

of G′.

So for every triangle ∆ of G′, there are at most 3k − 3 other triangles which are not

edge-disjoint from ∆. Consequently, if we take a maximal set S of edge-disjoint triangles in

G′ then the total number of triangles is at most (3k − 2)|S |. Conversely, by Corollary 2.6,

G′ has at least 2
3
|V (G′)| triangles, so |S | � 2

9k−6
|V (G′)|, as has been asserted.

By a more careful analysis the constant at k in the bound in Corollary 2.7 can be

improved. I expect, however a much better bound (see Conjecture 3.3 below).

Finding a large system of vertex-disjoint triangles seems to be a harder task. We will

see that small nontrivial fragments are useful in this context, too. The following lemma

suggests that there could be a tradeoff between (disjoint) triangles and k-contractible

edges.

Lemma 2.8. Let A be a T -fragment of a k-connected graph such that G(A) is connected,

2 � |A| � k−1
2

, and |A| � 2. Then either G has two disjoint triangles or there exists a k-

contractible edge which is not contained in a triangle of G.

Proof. Since the statement of the conclusion does not depend on A, we may choose a T -

fragment A such that G(A) is connected, 2 � |A| � k−1
2

, and |A| � 2 under the additional

condition that |A| is as large as possible. Note that k � 5. Let us assume that G does not

have two disjoint triangles.

Every edge in G(A) is contained in at least k − |A| � k+1
2

� |A| + 1 triangles of G. At

least three of these must intersect T , and so G(A) does not contain two independent edges

(these would be on disjoint triangles). It follows that G(A) is a triangle or a star K1,|A|−1.

Let x ∈ A. Then x is not contained in a triangle (for such a triangle would be disjoint

from one of the (at least) three triangles containing any prescribed edge in G(A) and some

vertex in T . Therefore, we may assume that there is no k-contractible edge incident with x.

By Lemma 2.2, there exists a Tx-fragment Ax such that G(Ax) is connected, Ax contains

x and a neighbour yx of x, 2 � |Ax| � k−1
2

, and |Ax| � 2. Let ax ∈ A be a neighbour of

x, and let bx ∈ Ax be a neighbour of ax. Note that bx is not adjacent to x, and ax is not

adjacent yx, for x is not contained in a triangle. Furthermore, Ax does not intersect A, for

otherwise there would be an edge in G(Ax) intersecting A which would be contained in a

triangle disjoint from one of the triangles containing any prescribed edge in G(A).

Recall that axbx is contained in at least k − |Ax| � 3 triangles. If G(A) is a triangle

then at least one of them, say ∆, intersects G(A) in exactly one vertex, and the edge in

G(A) − V (∆) is contained in three triangles distinct from G(A), one of which is disjoint

from ∆. Hence we may assume that G(A) is a star K1,|A|−1.
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Let us assume that |A| � 3, let c be the vertex of degree |A| − 1 in G(A), and let

D := G(A) − {c}. Note that d ∈ D is not contained in a triangle which does not contain

c, for such a triangle would be disjoint from one of the triangles in which any edge in

G(A) − {d} would be contained. So NG(d) ∩ T is independent for all d ∈ D. In particular,

G(T ) does not contain a triangle. Since axbx is on at least k − |Ax| � k+1
2

> |A| triangles,

none of which intersects A, we obtain ax ∈ T and bx ∈ A. If bx ∈ D then NG(bx) ∩ T

would not be independent, so bx = c. Now axbx is on at most |D| triangles intersecting D,

which implies that ax has at least

k + 1

2
− |D| =

k + 1

2
− |A| + 1 � k + 1

2
− k − 1

2
+ 1 = 2

neighbours in G(T ). It follows that d is not adjacent to ax for all d ∈ D. This property

uniquely determines ax, independently from the particular choice of x!

Take any neighbour z of ax in T , and let x′ be a neighbour of z in A. Since ax = ax′ ,

ax, z, x
′ form a triangle intersecting A, which is impossible.

Hence we have proved that G(A) is a star K1,1. By choice of A, |Ax| = 2 for all x, too.

Let S := {t ∈ T : A ⊆ NG(t)}.
If Ax ⊆ T then A ⊆ Tx. Since no triangle intersects A and |Tx ∩ A| � |Ax ∩ T | = 2

by (2.1), it follows that Tx ∩ A = {x, yx}, and |T ∩ Tx| = k − 4 � 1, and ax, bx ∈ S . Note

that x is the unique neighbour of ax in A. Since A ∪ (Tx ∩ T ) contains a triangle ∆ and

S ⊆ V (∆), |S | = 3 < k = 5 follows. Moreover, E(G(T )) �= ∅.

If Ax �⊆ T then Ax intersects A. As in the proof of Theorem 2.5, x is the unique

neighbour of ax in A. Since yx is not adjacent to ax, ax ∈ S follows, and since bx is not

adjacent to all vertices of T (as above), |S | < k. Moreover, E(G(T )) �= ∅.

In either case, |S | < k, and for every x ∈ A there exists an ax ∈ S such that NG(ax) ∩ A =

{x}, implying that |A| � |S | < k. Since E(G(T )) �= ∅ and no triangle intersects A and

|A| � 2, G(A) contains an edge. However, this is contained in k − |A| � 1 triangles, a

contradiction.

Now we are prepared for two interesting conclusions on disjoint triangles in contraction

critically k-connected graphs and on high connectivity keeping induced cycles in arbitrary

graphs, respectively.

Theorem 2.9. Every contraction critically k-connected graph has two disjoint triangles.

Proof. Let G be a contraction critically k-connected graph. If every vertex of G is

contained in two triangles then it is straightforward to check that G has two disjoint

triangles. Otherwise, we may apply Lemma 2.2 to some vertex contained in at most one

triangle and find a fragment as it is supposed to exist in the statement of Lemma 2.8,

which then implies the assertion.

In [6], the existence of a single triangle in a contraction critically k-connected graph has

been used to prove that, in any k-connected graph, k � 4, there exists an induced cycle C

such that G − V (C) is (k − 3)-connected. The proof seems to be somehow robust against
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generalizations to larger systems of distinct, edge-disjoint, or vertex-disjoint systems of

high connectivity keeping cycles, obtained from the corresponding triangle systems in the

contraction critical case. In particular, there seems to be no direct way to derive the

following from Theorem 2.9.

Theorem 2.10. For k � 4, every k-connected graph G �∼= K5 has two disjoint induced cycles

C1, C2 such that G − V (C1) and G − V (C2) are (k − 3)-connected.

Proof. Let us call an induced cycle C of G a good cycle if G − V (C) is (k − 3)-connected

and |NG(x) ∩ V (C)| � 3 for every x ∈ V (G) − V (C). As in the proof of the theorem in

[6], we prove the stronger statement that G contains two disjoint good cycles C1, C2 by

induction on |V (G)|.
If the graph G in question has two disjoint triangles then they will serve for C1, C2.

Otherwise, we find a vertex which is contained in at most one triangle and may apply

Lemma 2.2 and Lemma 2.8 as in the preceding proof to show that G has a k-contractible

edge e = xy which is not contained in a triangle. By induction, the graph G′ := G/e obtained

from contracting e in G to a single vertex z has two disjoint good cycles C ′
1, C

′
2. Let Ci be

the subgraph induced in G by V (C ′
i ) − {z} plus all vertices w ∈ {x, y} such that there is

an edge az in C ′
i corresponding to an edge aw in G. Since e is not contained in a triangle,

C1 and C2 remain disjoint induced cycles.

Take i ∈ {1, 2}. If x, y �∈ V (Ci) then z �∈ V (C ′
i ), so C ′

i = Ci, and |NG(x) ∩ V (Ci)| �
|NG′ (z) ∩ V (C ′

i )| � 3. Symmetrically, |NG(y) ∩ V (Ci)| � 3, so |NG(w) ∩ V (Ci)| � 3 for all

w ∈ V (G) − V (Ci). Since x, y both have degree at least k − 3 in G − V (Ci), G − V (Ci) is

k-connected. Hence Ci is a good cycle in this case.

If x, y ∈ V (Ci) then G − V (Ci) = G′ − V (C ′
i ) is (k − 3)-connected. Since xy is not

contained in a triangle, |NG(w) ∩ V (Ci)| = |NG′(w) ∩ V (C ′
i )| � 3 for all w ∈ V (G) − V (Ci),

so Ci is a good cycle.

Finally, if x ∈ V (Ci) and y �∈ V (Ci) then |NG(y) ∩ V (Ci)| = 1 since xy is not on a

triangle and C ′
i is an induced cycle in G′. G − V (Ci) is k − 3-connected, since it is obtained

from the (k − 3)-connected graph G′ − V (C ′
i ) by adding the vertex y and making it

adjacent to at least k − 1 vertices. We deduce |NG(w) ∩ V (Ci)| � |NG′ (w) ∩ V (C ′
i )| � 3 for

every w ∈ (V (G) − {y}) − V (Ci) too, so Ci is a good cycle. The same conclusion holds if

y ∈ V (Ci) and x �∈ V (Ci).

So C1, C2 are disjoint good cycles in G, and the induction works.

Theorem 2.10 generalizes the theorem in [6]. If it is possible to prescribe an edge in a

high connectivity keeping cycle then this would give an affirmative answer to a conjecture

of Lovász (cf. [3]). Not even prescribing a single vertex in a high connectivity keeping

induced cycle seems to be possible today, but forbidding a single vertex is possible,

as an immediate consequence of Theorem 2.10 (or, with a worse loss of possibly 4 in

connectivity, as an immediate consequence of the theorem in [6]).

Corollary 2.11. For k � 4 and for every vertex of a k-connected graph G there exists an

induced cycle C not containing x such that G − V (C) is (k − 3)-connected.
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Figure 1.

3. Problems and open questions

Of course the question on the quality of the bound in Corollary 2.6 arises. In [4], for each

k � 4 infinitely many contraction critically k-connected graphs G with t(G) = k
6

· |V (G)| if

k is even and t(G) = k+3
6

· |V (G)| if k is odd have been constructed. For odd k, a further

improvement is possible.

Let m, n � 4 even integers. Define a graph Gm,n by V (Gm,k) := Zm × Zn and

E(Gm,n) = {(x, y)(x + 1, y), (x, y)(x, y + 1) : (x, y) ∈ V (Gk)}
∪ {(x, y)(x+ 1, y+ 1), (x+ 1, y+ 2)(x+ 2, y+ 1) : x∈Zm even and y ∈Zn even}.

Figure 1 shows G6,4 on the torus.

It is easy to see that Gm,n is a toroidal 5-connected vertex-transitive graph where every

edge is contained in some triangle and every vertex is on precisely 3 triangles. So G has

|V (G)| triangles. Now, for odd k � 7, the graph

Gm,n,k := Gm,n ×
(k − 5)/2 times︷ ︸︸ ︷
K3 × · · · × K3

is a vertex-transitive contraction critically k-connected k-regular graph where every vertex

is on k+1
2

triangles. So t(Gm,n,k) = k+1
6

· |V (G)|.
I should guess that this is best possible.

Conjecture 3.1. For even k, every contraction critically k-connected graph G has at least
k
6

· |V (G)| triangles, and for odd k, every contraction critically k-connected graph G has at

least k+1
6

· |V (G)| triangles.

If G is a contraction critically k-connected graph such that

{T ∈ T(G) : E(G(T )) �= ∅} ⊆ {NG(z) : z ∈ V (G)}

then the statement of Conjecture 3.1 holds (and is best possible). To see this, take any

vertex x. For every y ∈ NG(x), take a T ∈ T(G) containing x, y. Then T = NG(z) for

some z. It follows that the minimum degree of G(NG(x)) is at least 1, implying that
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|E(G(NG(x)))| � � k+1
2

, so every vertex is contained in at least � k+1
2

 triangles, which then

proves t(G) � k
6

· |V (G)| if k is even and t(G) � k+1
6

· |V (G)| if k is odd.

From Conjecture 3.1 it would follow that the triangle density t(G)/V (G) of contraction

critically k-connected graphs G grows linearly in k.

Conjecture 3.2. There exists a positive real c such that, for every k, every contraction

critically k-connected graph has at least c · k · |V (G)| triangles.

It should be a hard task to prove that, ‘next to’ every x ∈ D2
G there is some suitable

subset Y (x) such that tG(Y (x)) is large enough and such that the union
⋃

x∈D2
G
Y (x) is

also large enough compared with D2
G. So a straightforward generalization of my proof of

Theorem 2.5 towards Conjecture 3.2 is impossible.

Conjecture 3.2 had, if true, the following interesting consequence. (This can be shown

using the same argument as in Corollary 2.7.)

Conjecture 3.3. There exists a positive real c such that, for every k, every contraction

critically k-connected graph has a system of at least c · |V (G)| edge-disjoint triangles.

It seems likely that Conjecture 3.3 can even be sharpened to vertex-disjoint triangle

systems instead of edge-disjoint ones. A further generalization to vertex-disjoint induced

high-connectivity keeping cycles as in Theorem 2.10 is not possible, not even if c may

depend on k, as is shown by the graphs obtained from cycles by adding k − 2 new vertices

and adding all edges from the new to the old ones: these graphs do not admit systems of

more than min{1, k − 2} vertex-disjoint cycles at all.

In [5], examples of contraction critically k-connected graphs G have been constructed

which contain a vertex x with tG(x) = 0. In the construction, k � 9. On the other hand,

tG � 2 for every contraction critically 4-connected graph G. Most of the additional

considerations in the proof of Theorem 2.5 concerning the case k = 5 would be obsolete

if tG � 1 holds for every contraction critically 5-connected graph G; so far I do not know

of a counterexample to this statement.

Problem 3.4. Is every vertex of a contraction critically 5-connected graph contained in a

triangle?

It is an open problem whether there exist numbers b5 and h5 such that every 5-

connected graph G with |V (G)| � b5 can be contracted to a 5-connected graph H such

that 0 < |V (G)| − |V (H)| < h5. Of course, the similar question can be formulated for

arbitrary k instead of 5, but, tantalizingly, for k < 5 the answer to that question is ‘yes’,

and for k > 5 it is ‘no’ [4]. So, with respect to this problem, it is of particular interest to

understand contraction critically 5-connected graphs.

Again, let x be a vertex of a contraction critically k-connected graph G. By Lemma 2.2

(or the results in [5]), there exists a T -fragment A such that x ∈ T , T ∩ NG(x) �= ∅, and

|A| � k−1
2

. From this it follows easily that x is contained in a cycle of length at most 5. It

need not be contained in a triangle, and here is a gap to fill.
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Problem 3.5. Is every vertex of a contraction critically k-connected graph contained in a

cycle of length 3 or 4?

Apparently, the existence of a short cycle containing some prescribed vertex in a

contraction critically k-connected graph can not be used to find a high connectivity

keeping induced cycle containing some prescribed vertex in an arbitrary k-connected

graph. To adapt the proof technique of [6] it would be necessary that, if a vertex x of a

k-connected graph G is not on some (‘good’) short cycle then there exists a contractible

edge in G not incident with x. Such a statement is not true in general: it is possible

to construct k-regular k-connected line graphs where every clique has size �k/2 + 1 or

�k/2� + 1 such that the shortest induced cycle of length exceeding three is arbitrarily

large. If these graphs are large enough, then they must contain a set of k vertices which

are mutually far apart from each other, and so making a new vertex x adjacent to all of

these k will produce a k-connected graph where x is not contained in some short cycle.

If k � 6 then, by the clique size condition, the endvertices of every edge not incident

with x have a common neighbour of degree k. So the edges not incident with x are not

k-contractible. So the following remains open here.

Problem 3.6. Is there a number h such that for every k > h and an arbitrary vertex x of

a k-connected graph G there exists an induced cycle C containing x such that G − V (C) is

(k − h)-connected?
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