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§1. Introduction, By a remarkable result of Erdos and Selfridge [3] in
1975. the diophantine equation

/ = (x + 1 )(.Y + 2) • • • (x + m), (1)

with integers A'>2 and »7^2, has only the trivial solutions .v =
—/(/ = 1 m), v = 0. This put an end to the old question whether the
product of consecutive positive integers could ever be a perfect power; for a
brief account of its history see [7].

From the viewpoint of algebraic geometry (1) represents a so-called
superelliptic curve, and it seems to be more natural to ask for rational solutions
(x: V) instead of integer solutions. Rational points on elliptic curves are well
understood, but for general k and m, their nice arithmetic properties fade
away. It follows from Faltings's proof [4] of Mordell's conjecture that, for
fixed k > \,m > 1 and k + m> 6, equation (1) has at most finitely many
rational solutions (cf. [7]).

It was shown by the second author [7] that, for k^2 and 2 ^ w < 4 , all
rational points (.v; v) on the superelliptic curve (1) are the trivial ones with
\ — —j (j = 1 m) and v = 0, except for the case k — m = 2 where we have
exactly those satisfying

V =
f 2 — C[ Ci — Cf

wiih coprime integers c\ ^ ±c'2- The second author also made the following

CONJECTURE. For k^2 and m ^ 2 , all rational points (x; y) on the
superelliptic curve (1) are the trivial ones with x=— J (j — 1, .. . , m) and
v = 0. except for the case k = m — 2 with exactly those satisfying

X — 5 y , }> —
C2 ~ Cl

with coprime integers c\ ^ i c i .

The purpose of this article is to prove the conjecture for m = 5 and all k 5= 2.
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114 M. LAK.HAL AND J. W. SANDER

THEOREM. Let k^2. Then the only rational points on the superelliptic
curve

/ = (x + 1 )(JC + 2)(x + 3)(x + 4)(.r + 5) (2)

are (x; 0) with -x € {1, 2, 3, 4, 5}.

§2. Notation and preliminary results. For a positive integer A', let

* {k, for 5/A,
' I A-/5, for 5 | k.

For arbitrary integers a and ft we define the greatest common divisors

Gx =Gx(a,b):=(a,a2-4b2),

G2 = G2(a, ft) := (a2 - ft2, a2 - 4ft2).

For (a, ft) = 1 they satisfy

G](a,b) = (a,4)e {1,2,4}, (3)

G2(a, ft) = (a 2 - f t 2 , 3) e {1,3}. (4)

Our proof of the theorem uses results on the solutions of several
diophantine equations, all of which are based on the work of Wiles [9]. An
integral solution (x; y; z) of the equation

aX* +bYI = eZm,

with given integers a, ft, c and positive integers A", /, m, is called primitive if
gcd(x, y,z) — 1, and is called trivial if xyz e [0, ±1}.

THEOREM A (RIBET). Let p^-3 be a prime, and let 2 ^ a < p. Then

XP + Y'' = 2aZp

has only trivial solutions.

Proof. This is part of Ribet's Theorem 3 in [6].

THEOREM B (RIBET, DARMON & MEREL). Let p^ 3 be a prime. Then

X1' + Y1' = 2ZP

has only trivial solutions.

Proof. This is part 1 of the main theorem of Darmon and Merel in [1].

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579300014844
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 12 Jan 2018 at 10:37:46, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579300014844
https://www.cambridge.org/core


RATIONAL POINTS ON THE ERDOS-SELFRIDGE CURVE 1 1 5

THEOREM C (POONEN). The primitive solutions of

Xs + Y5 = Z2

are all trivial.

Proof. This result can be found in [5].

THEOREM D (SERRE, RIBET). For a positive integer a the equation

X5 + Y5 = TZ5

has only trivial solutions.

Proof. This is shown in the same fashion as Ribet's Theorem 1 in [6], since
Serre's Theoreme 2 in [8] also works in the case L — 3 and p = 5.

§3. Proof of the main theorem. According to the possible values of G\ and
G; (cf. (3) and (4)), the proof of our theorem falls into four parts.

PROPOSITION 1. Let k^2,a,b — bf>0 and c be integers satisfying
G2(a. b) = (a, b) = 1 and

ck = a(a2 - b2)(a2 - 4b2). (5)

Then c - 0.

Proof. Since (a, b) = 1, we have (a, a2 — b2) — 1. Then (5) and
G;(a. b) = I imply that

c,2-b2 = ck
x and (a2 - 4b2)a = c\ (6)

for some coprime integers c\, ci- By (3) we have G\\4, and so we obtain from
the second equation in (6) that

a=Gl2"cM
3 and a2 - 4b2 = G\2'ck

A (7)

for some odd, coprime integers a, CA, satisfying [c\, C3C4) = 1, where

(0,0), forGi = l,
(O-A-2) , f o r G , = 2 ,
(0,0), for Gy =4,4\W,
(jk-4,0), forGi=4, 8|a,

for a suitable positive integer/ Since b — bf, (6) and (7) yield

G222sr2k _ h2k* _ k

in three pairwise coprime terms. Since G\ |4 by (3), that is an identity of type

22aX2k - Y2k* = Zk (8)
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116 M. LAK.HAL AND J. W. SANDER

with a — s• + log2 G].
First, assume that there is a p r ime / ; ^ {2, 5} dividing k, or 52|A\ Then (8) is

of type

22aXp — Y1' — Z1'

in coprime terms for a prime p •£ 2. By Theorem A together with Theorem B
this has only trivial solutions (more precisely XYZ = 0); hence cu'i = 0 and
thus c = 0. We are left with the case k = 2''5f with a non-negative integer /• and
£ e {0, 1}. For t = 0we have r ^ 1, since k^2. Therefore (8) is of type

•y2a y4 y4 -yl

which Euler knew to be unsolvable except for XYZ — 0 (cf. [2], p. 626). So we
only have to deal with the case e = 1, when (8) is of type

22aXU) - Y2 =Z5. (9)

For a — 0, we have an equation of the form X5 + Z5 — Y2 in coprime terms,
which has only trivial solutions by Theorem C and thus implies that c = 0. For
a > 1, we have

(2aX5 - Y, 2aX5 + Y) = (2aX5 - Y, 2a+[X^) = 1;

hence, by (9),

2aX5 - Y = Z\ and 2"X5 + Y = Z\.

We obtain 2a+l X5 =Z\+Z\ in coprime terms, which again has only trivial
solutions by Theorems A and B. This completes the proof of Proposition 1.

PROPOSITION 2. Let k^2,a,b = bk
j*>0 and c be integers satisfying

, b) = (a, b) = 1, G2(a, b) = 3 and (5). Then c = 0.

Proof. Since G\ = (a, 4) = 1 by (3), we know that 2/a, and hence

(a -2b,a + 2b) = (a - 2 b , 2a) = (a - 2 b , a ) = \ . (10)

Moreover, (a, b) — 1 implies that

(a-b,a-2b) = (a + b,a + 2b)=\. ( 1 1 )

By the fact that 3 = G2{a, b) — ((a - b)(a + b), (a - 2b)(a + 2b)). we have either
(a -b,a + 2b) = 3, {a + b, a - 2b) = 1, or {a - b, a + 2b) = 1, (a + b, a - 2b)
= 3. By the transformation bt-+ — b each of the two cases turns into the other.
Therefore, we may assume without loss of generality that

(a-b,a + 2b) = 3 and (a + b,a-2b) = \. (12)

Consequently, (a - b, 3) = 3, and clearly (a, {a2 - b2)(a2 - 4b2)) = G\ = 1. By
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RATIONAL POINTS ON THE ERDOS-SELFRIDGE CURVE 117

virtue of (5), (10), (11) and (12), we only have to distinguish two cases, namely,

a = c,
a -2b =

k-lJc
(13)

= i c

a2~b2 = 3ck

and

a = c

a~2b = ck
2,

a + 2b = 3ck
3,

(14)

for some pairwise coprime integers o, c2, c$, C4 satisfying 2/C1C2C3 and 3/C]C2.
Since d := (a + b, a — b) = (a + b, 2) e {1, 2}, we have

(a + b, a{a - b)(a2 - 4b2)) = d.

So, by (5), we have in coprime terms

a + b - c\ or a + b-2c\ or a + b = 2

for a suitable c$. Both (13) and (14) imply that a — ck, and we have b = bk* by
definition of b. So we obtain an equation of type

Xk+Yk'=2s-Zk (15)

in coprime terms and 8 e {0, 1, k — 1). If k has an odd prime divisor p =fi 5 or
5" | k, then (15) has only trivial solutions by Theorems A and B, which all lead
to c = 0. The same is true in case 4 | k, which was known to Euler (cf. [2], p.
626). So we are left with the three exponents k e {2, 5, 10}.

For k e {2, 10} we obtain (with b = bk*) an equation of type X4 - Y4 = 3Z2

in coprime terms from the last identity in (13) or (14), respectively. This
equation can be shown to have only trivial solutions by Fermat's method of
descent (cf. [2], p. 634), or with a simple congruence argument by careful use of
the divisibility properties we have.

It remains to consider the unique exponent k — 5, which leaves us with four
cases according to the two subcases (13) and (14) as well as
d=(a + b,a-b)e (1,2). Let us first examine (13) with d-\. By (12) we
have 3 | (a - b), and thus 3/(a + b). It follows from (13) that

a-2b = c5
2,
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118 M. LAKHAL AND J. W. SANDER

with coprime integers c6, c7. Consequently,

b = (a + 2b) - (a + b) = 34r^ - c5
7

and

3/j = (a + b)- (a - 2b) = 4 - cl

Comparison of these two implies that

(3c 3 ) 5 - 3c5-, = c5
7 - cl

so that we have an equation of type X5 + Y5 — 4Z5, which has only trivial
solutions by Theorem A.

In case (13) with d — 2 we get

4 ,,5

or

which imply that

or

From (16) follow

and

which lead to

a - b = 3 • 2c\ and a + b = 24r7
s

a = d
a — Ib — c-,,

a + 2b = 34cl

a — b = 2 • 3c\,

a + b = 24cl

a-2b = cl

a + 2b = 34c\,

a-b = 24- 3d

2b)~ (a

'-{a-2b) = 24c'-cl

(16)

(17)

(3c3)
5 + c\ = 2(2cj)l
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RATIONAL POINTS ON THE ERDOS-SELFRIDGE CURVE 119

an equation having only trivial solutions by Theorem B. In the other situation
(17) we similarly obtain

which has only trivial solutions by Theorem A.
In case (14) with d — 1 then follow

,.5a-2b = c5
2,

a + 2b = 3c5
3,

which imply that

and

thus

= (a -b)-(a- 2b) = 34c5
b - c\

- b) - {a - 2b) = c5
7 - c{,3b =

(3f6)5 - c5
7 = 2c\,

having only trivial solutions by Theorem B.
Finally we have to consider (14) with d— 2, so that

a = c{,

a -2b = c\,

= 24c5
1,

or

a~2b = c\,

a-b = 24- 34c4c5

From (18) follows

= 3o = 2(a + b) + (a- 2b) = 2s<$ + c\,

(18)

(19)
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120 M. LAK.HAL AND J. W. SANDER

which means that

This equation of type Xs + F5 — 3Z5 has only trivial solutions by Theorem D.
From (19) we obtain

C5 = a = 2(a - b) - (a - 2b) = 25 • 34c5
6 - c{;

hence

and again there are only trivial solutions by Theorem D. This proves
Proposition 2.

PROPOSITION 3. Let k^2,a,b = bf>0 and c be integers satisfying
(a, b)=\, Gi(a, b) = 2, G2(a, b) = 3 and (5). Then c = 0.

Proof. It follows from G\ = {a, a2 - 4b2) = 2 that 2\\a. Then (5) implies,
by virtue of (a, a2 - b2) = 1, and G2 = (a2 - b2, a2 - 4b2) = 3, that

a = 2c\ and (a2 - b2)(a2 - 4b2) = 2k~l ck
2 (20)

for some coprime integers c\ and c2 with odd c\. Since (a, ft) = 1 and 2 | a, we
know that

( a - Z > , a + 6) = ( a - 6 , 2 ) = 1. (21)

By the condition G2 — 3, we may assume without loss of generality (as in the
proof of Proposition 2) that

(a - b, a + 2b) = 3 and (a + b, a - 2b) = 1. (22)

Since 2\\a, and thus 2J(b, we have a ± 2b = 0 mod 4, and therefore

(a - 2b, a + 2b) = (a- 2b, 4b) = (a - 2b, 4) = 4. (23)

Now (20), (21), (22) and (a + b, a + 2b) = 1 imply that

a + b = c\, (24)

and, with (23) in addition, we necessarily have one of the following four
situations:

a - b = 3c$,

a-22> = 2 2 4 , (25)
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or

a-b = 3ck,

a-2b = 2k-

121

(26)

or

a-2b = 22cL
5, (27)

or

a-2b =

= 223cl

where c3, c4, c5 and cb are pairwise coprime integers.
First of all, (24), (20) and b = ftf imply that

• * ? • = •

(28)

(29)

in coprime terms. For even k this equation is of type 2X2 + Y2 — Z2 in coprime
terms, where 2 / XYZ by definition of c\, CT, and b\, since 2\\a and 2/b. This is
contradictory, because 2X2 + Y2 = 3 ^ 1 = Z2 mod 4. For odd )fc, (29) is an
equation of type A7 + Yp — 2ZP for some prime p > 2, unless k — 5, which is
the only exponent left by Theorem B.

For k = 5 we obtain in both cases (25) and (26)

a2 - 4b2 = (a - 2b)(a + 2b) = (2 • 3)4(c5c6)5.

With (20) then follows

Since (c\, b) = 1, we have (cf — b, c\ + b) = 2, and we conclude that

r? - 6 = 2 • and b = 2c\

or

and + ft = 2 • 34c:
4 ,,5

for some coprime integers c7 and c8. In both cases, addition leads to an
equation of type Xs - Y5 = 34Z5, which has only trivial solutions by Theorem
D.
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122 M. LAK.HAL AND J. W. SANDER

In the cases (25) and (26), we obtain, for k = 5,

a2 - 4b2 = {a- 2b)(a + 2b) = 24 • 3(c5cbf.

With (20) there follows

c;° - b2 = 22 • 3 ( W .

Again, (ci, A) = 1 implies that (q* — b, c\ + b) = 2, and we conclude that

c\-b = 2- 3c5, and c5 + /> = 2c5
H

or

c\-b = 2c5-, and c\+b = 2- 3c{

for some coprime integers c-i and c8. In both cases, addition leads to an
equation of type X5 — Y5 = 3Z5, which has only trivial solutions by Theorem
D.

PROPOSITION 4. Let k^2,a,b = bl{*>0 and c be integers satisfying
(a, b)=\, G](a, b) = 4, G2(a, b) = 3 awrf (5J. TACT; C = 0.

Proo/". It follows from G\ = (a, a2 - 4b2) — 4 that 4 | c/; hence 2//> and so
4||(<22 - 4/)2). Then (5) implies, by virtue of («, a2 - /r) = 1, that

a = 4*- '4 and (a2 - b2)(a2 - 4b2) = 4cA
2 (30)

for some coprime integers ci and c2 with odd o . Since (a, b) — 1 and 2\a. we
know that

( a - / ) , a + b) = (a-b, 2)= 1. (31)

By the condition Gj = 3, we may assume without loss of generality (as in the
proof of Proposition 2) that

(a-b, a + 2b) = 3 and (a + b, a - 2b) - 1. (32)

N o w (30), (31), (32), (a + b,a + 2b) = (a-b,a-2b)=l and (a-2b.
a + 2b) = (a- 2b, 2a) = 2 imply that

a + 6 = C3 and a - 2b - 2ck
4, (33)

and we necessarily have one of the following two situations:

a-b = 3ck
s and a + 2b = 2 • 3A'"'4 (34)

or

a - f c = 3*- '4 and a + 2b = 2 • 3ck
h (35)

with some pairwise coprime integers c^, C4, t'5 and c% satisfying 2J(CT,C^C~,C(, and
3/C3C4.
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RATIONAL POINTS ON THE ERDOS SELFRIDGE CURVE 123

From (33). (30) and b = b\*, we conclude that

4*-'c*+Af = c$ (36)

in coprime terms. For even k we consequently have X2 + Y2 = Z2 mod 3 with
3/ATZ by the definition of c\,b\ and c$ and 3 \ (a — b) by (35), but this
congruence cannot hold. For odd k, (36) is an equation of type
\T _ y/> = 4/'-'z' ' = 2P-\2Zf for some prime /? > 2, unless k = 5, which is
the only exponent left by Theorem A or Theorem B, respectively.

For A = 5, we obtain in case (34) with (33)

0 = 3 • la - 2 • 3a = 3 • ((a - 2b) + (a + 2b)) - 2 • ((a - 2b) + 2(a + b))

c5
3) = 2c\= 3 • (2cl + 2 • 3\i) - 2 • (2c* + 2c5

3) = 2c\ + 2(3c6)5 -

i.e.. an equation with only trivial solutions by Theorem B. In case (35) for
A- = 5 we obtain with (33)

0 = 3 • 2a - 2 • 3a = 3 • ({a + b) + (a - b)) - 2 • ((a - 2b) + 2(a + b))

= 3 • (cl + 344) - 2 • (2c\ + 2c5
3) = -4 + (3c5)5 - Ac\,

and we have only trivial solutions by Theorem A. So the proof of Proposition
4 is complete.

Proof of the Theorem. By the transformation x \-+x — 3 equation (2) turns
into

/ = .T(X2 - \){x2 - 4). (37)

Since .v and r are rational numbers, we have x = a/b and y — c/d for suitable
integers a. h > 0, e and cI > 0 satisfying {a, b) — (c, d) — 1. We obtain from (37)

ek _ a(a2 - b2)(a2 - 4b2)

By virtue of (a. b) = (e. d) = 1 this is equivalent with

ck = a(a2 - b2)(a2 - 4b2) and b5 = dk. (38)

The second identity implies that b = bf for some positive integer b\. Since
(a. b) = 1 it follows from (3) and (4) that Propositions 1-4 cover all possible
values of G\ and Gz- Hence c = 0, and consequently y — 0 in (2), which proves
the theorem.
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