RATIONAL POINTS ON THE SUPERELLIPTIC
ERDOS-SELFRIDGE CURVE OF FIFTH DEGREE

M. LAKHAL anp J. W. SANDER

S1. Imroduction. By a remarkable result of Erdés and Selfridge [3] in
1975, the diophantine equation

Vo= (x o+ DX+ 2) - (x + m), ()

with integers A>2 and m>=2, has only the trivial solutions x=
—j(j=1...., m), v =0. This put an end to the old question whether the
product of consecutive positive integers could ever be a perfect power; for a
brief account of its history see [7].

From the viewpoint of algebraic geometry (1) represents a so-called
superelliptic curve, and it seems to be more natural to ask for rational solutions
(x: 1) instead of integer solutions. Rational points on elliptic curves are well
understood, but for general k and m, their nice arithmetic properties fade
away. It follows from Faltings’s proof [4] of Mordell’s conjecture that, for
fixed A > I,m > 1 and k +m > 6, equation (1) has at most finitely many
rational solutions (¢f. {7)).

It was shown by the second author [7] that, for k=2 and 2<m <4, all
rational points (x; v) on the superelliptic curve (1) are the trivial ones with
N=—j(j=1...., m) and vy = 0, except for the case k = m = 2 where we have
exactly those satisfying

- A~

with coprime integers ¢; # *¢;. The second author also made the following
CONIECTURE.  For k=22 and m=2, all rational points (x;y) on the

superelliptic curve (1) are the trivial ones with x=—j(j=1,...,m) and

v =0. except for the case k = m = 2 with exactly those satisfying

2 2
207 — 5 162

3 : ]
o= A3 -c
with coprime integers ¢| # £ca.

The purpose of this article is to prove the conjecture for m = 5and all k= 2.
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114 M. LAKHAL AND J. W. SANDER

THEOREM. Let k=2. Then the only rational points on the superelliptic
curve

Vo= (x4 Dx 4+ 2)(x + 3)(x + H(x +5) (2)

are (x; 0) with —x € {1, 2,3,4, 5}.
§2. Notation and preliminary results. For a positive integer k, let

P k, for Sfk,
’ k/5, for S|k.
For arbitrary integers a and b we define the greatest common divisors

G| = Gi(a, b) := (a, d* — 4b),
Gy = Gala, b) := (d* = b*, a* — 4b*).

For (a, by = 1 they satisfy
Gi(a,b) = (a,4) € {1,2, 4}, (3
Ga(a, b) = (&> — b*,3) € {1, 3). (4)

Our proof of the theorem uses results on the solutions of several
diophantine equations, all of which are based on the work of Wiles [9]. An
integral solution (x; y; z) of the equation

aX* +bY = 72",

with given integers a, b, ¢ and positive integers k, [, m, is called primitive if
ged(x, y, z) = 1, and is called trivial if xyz € {0, £1}.

THEOREM A (RIBET). Let p=3 be a prime, and let 2<a < p. Then
Xr+ Yy =270
has only trivial solutions.
Proof. This is part of Ribet’s Theorem 3 in [6].
THEOREM B (RIBET, DARMON & MEREL). Let p=3 be a prime. Then
Xr+ Y =27
has only trivial solutions.

Proof. This is part 1 of the main theorem of Darmon and Merel in {1].
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THeorEM C (PooNEN).  The primitive solutions of
XS4+ v =2
are all trivial.
Proof. This result can be found in [5].

THeorEM D (SERRE. RIBET).  For a positive integer o the equation
XS 4 YS — 30125
has only trivial solutions.

Proof. This is shown in the same fashion as Ribet’s Theorem 1 in [6], since
Serre’s Théoréme 2 in [8] also works in the case L = 3 and p = 5.

§3. Proof of the main theorem. According to the possible values of G| and
G- (¢f. (3) and (4)). the proof of our theorem falls into four parts.

ProposiioN 1. Let k>=2,a,b=b" >0 and ¢ be integers satisfying
Gr(a.b)y = (a,b) =1 and
& =a(@ — b)(d ~4p7). (5)
Then ¢ = 0.
Proof. Since (a,b)=1, we have (a,a>—b*)=1. Then (5) and
G-(a.b) = 1 imply that

k

@ —b=¢ and (d —4b%)a=d (6)

for some coprime integers ¢, ¢2. By (3) we have (71]4, and so we obtain from
the second equation in (6) that

a=G2d and o -4’ =G2'd (7)

for some odd. coprime integers ¢3, ¢4 satisfying (cy, ¢czc4) = 1, where

(0, O), for G = 1,
(s,0) = (Os]k - 2), for G = 2,
"= 00, for Gy — 4 4la,

(jk —4,0), for G, =4,8la,
for a suitable positive integer j. Since b = b<", (6) and (7) yield
GI2B ek — pI = cf
in three pairwise coprime terms. Since G1}4 by (3), that is an identity of type

2201X2k _ YZk* — Zk (g)
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with o = s + log, G,.
First, assume that there is a prime p ¢ {2, 5} dividing k. or 5°|k. Then (8) is
of type

20N — Y = 7P

in coprime terms for a prime p # 2. By Theorem A together with Theorem B
this has only trivial solutions (more precisely XYZ = 0); hence ¢3¢y = 0 and
thus ¢ = 0. We are left with the case k = 2”5 with a non-negative integer r and
g € {0, 1}. For ¢ = 0 we have r>=1, since k>=2. Therefore (8) 1s of type

2yt vt = 2,

which Euler knew to be unsolvable except for XYZ = 0 (¢f. [2], p. 626). So we
only have to deal with the case ¢ = 1, when (8) is of type

24XV -y =27, )

For a = 0, we have an equation of the form X° + Z° = ¥? in coprime terms.
which has only trivial solutions by Theorem C and thus implies that ¢ = 0. For
a=1, we have

(22X — V. 22X+ V)= (2°X° — Y. 27y = 1
hence, by (9),
X~ y=2] and 2°X°+Y =275

We obtain 271 X° = Z] + Z3 in coprime terms, which again has only trivial
solutions by Theorems A and B. This completes the proof of Proposition 1.

ProposiTiOoN 2. Let kZ=2,a,b = b’l"* >0 and ¢ be integers satisfying
Gi(a,b) =(a,b)y =1,Gyla,b)y =3 and (5). Then ¢ = 0.

Proof. Since G| = (4, 4) = 1 by (3), we know that 2 fu, and hence
(a —2b,a+2b) =(a—2b,2a) = (¢~ 2b,a) = 1. (10)
Moreover, (a, b) = 1 implies that
(a—b,a=2b)y=(a+b,a+2bh)= 1. (1)

By the fact that 3 = Ga(a, b) = (¢ — b} a + b), (a — 2b)(a + 2b)). we have either
(a—b,a+2b)=3, (a+b,a—=2b)=1, or (a—b,a+2b)=1, (a+b.a—-2h)
= 3. By the transformation b — — b each of the two cases turns into the other.
Therefore, we may assume without loss of generality that

(a—b,a+2b)=3 and (a+b.a-2h)=1. (12

Consequently, (¢ — b, 3) = 3, and clearly («. (¢’ — b*)(* —4b*) = G, = 1. By
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RATIONAL POINTS ON THE ERDOS-SELFRIDGE CURVE 117

virtue of (§), (10), (11) and (12), we only have to distinguish two cases, namely,

0=,
a—2b=c§, (13)
f—
a+2b =31k,
a* —b* =3¢k,
and
a-_c’f,
a~2b~c§, (14)
a—+2b= 3c/§,

@ — b = 31

for some pairwise coprime integers ¢y, ¢z, ¢3, ¢4 satisfying 2 fc1cpc3 and 3 feyca.
Since d . =(a+b,a—-b)=(a+b,2) € {1,2}, we have

(a+ b, ala — bYa* — 4b%)) = d.

So. by (5), we have in coprime terms

a+b=c or a+b=2% or at+b=2"

for a suitable ¢s. Both (13) and (14) imply that a = ¢¥, and we have b = 5" by
definition of 4. So we obtain an equation of type

X+ Y =27 (15)

in coprime terms and 8§ € {0, 1, k — 1}. If £ has an odd prime divisor p # 5 or
5% | k. then (15) has only trivial solutions by Theorems A and B, which all lead
to ¢ = 0. The same is true in case 4|k, which was known to Euler (¢f. [2], p.
626). So we are left with the three exponents k € {2, 5, 10}.

For k € {2, 10} we obtain (with b = »¢") an equation of type X* — Y* = 322
11 coprime terms from the last identity in (13) or (14), respectively. This
equation can be shown to have only trivial solutions by Fermat’s method of
descent (¢f. 2], p. 634), or with a simple congruence argument by careful use of
the divisibility properties we have. ,

It remains to consider the unique exponent k = 5, which leaves us with four
cases according to the two subcases (13) and (14) as well as
d=(a+b,a—b)e{l,2}). Let us first examine (13) with d=1. By (12) we
have 3{(a — b), and thus 3 f(a + b). It follows from (13) that

{ a+2b=3%;,
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118 M. LAKHAL AND J. W. SANDER
with coprime integers ¢g, ¢7. Consequently,
b=(a+2b)—(a+h)=3c—
and
3b=(a+b)—(a—2b)= <’§ - (3
Comparison of these two implies that
(3ez)’ — 3(‘3 = (g — ('S,

so that we have an equation of type X° + ¥° =42Z°, which has only trivial
solutions by Theorem A.
In case (13) with d = 2 we get

a—b=3-2¢; and a+b=2
or

a—b=3-2' and a+b=2c.

which imply that

a=cj,
a—2b= (g
S a+2b:34c§. (16)
a—b=2- 3('2.
a+b:24('§,

or
a=c.
a—2b=qa.
a+2b=3, (17)
a—b=2%3c,
a+b=2a.

From (16) follow

and
3b=(a+b)—(a—2h) =2 -,
which lead to
(3e3)’ + 3 = 2(2¢7)°,
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RATIONAL POINTS ON THE ERDOS-SELFRIDGE CURVE 119
an equation having only trivial solutions by Theorem B. In the other situation
{17) we similarly obtain

5
(3c3) +¢5 =843,

which has only trivial solutions by Theorem A.
In case (14) with ¢ = 1 then follow

a=c,

a—2b=ac,
a+2b=3c,
a—b= 3462,

a+b= cg,

which imply that
b=(a—>b)—(a—2b)= 346’2 — c'g_
and
3b=(a+b)—(a—2b)=c—c3,
thus
(3es)’ — 3 =203,

having only trivial solutions by Theorem B.
Finally we have to consider (14) with d = 2, so that

a= cf,
a—2b=2c,
a+2b=3c3, (18)
a—b=2.3%,
a+b= 2403,
or
a=cj,
a~2b= cg,
a+2b=3c;, (19)
a—b=2%.3%,
a+b= 263.

From (18) follows

3¢} =3a=2(a+b)+ (a—2b) = 2% 4¢3,
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which means that
(2¢7)° + &3 = 3¢;.

This equation of type X> + ¥° = 3Z° has only trivial solutions by Theorem D.
From (19) we obtain

=a=2a—-b)—(a—2b) =23 - 3;
hence
S+ 3 = 3*Q2¢),

and again there are only trivial solutions by Theorem D. This proves
Proposition 2.

ProrosiTiON 3. Let k=2,a,b= b’l"* >0 and ¢ be integers satisfving
(a,b) =1,G(a,b) =2,Gy(a,b)y =3 and (5). Then ¢ = 0.

Proof. It follows from G| = (a, a* — 4b*) = 2 that 2||a. Then (5) implies.
by virtue of (a,a®> — b*) = 1, and G, = (a*> — b*, a* — 4b*) = 3, that

a=2* and (& - b)) —4b") =21 (20)

for some coprime integers ¢; and ¢, with odd ¢. Since (a,h) =1 and 2| a, we
know that

(a—b,a+b)=(@—b2)=1. 1)

By the condition G, = 3, we may assume without loss of generality (as in the
proof of Proposition 2) that

(a—b,a+2b)=3 and (a+b,a—2b)=1. (22)
Since 2)|a, and thus 2 )b, we have a +2b = 0 mod 4, and therefore
(a—2b,a+2b)=(a—2b,4b) =(a—2b,4)=4. (23)
Now (20), (21), (22) and (a + b, a + 2b) = 1 imply that
a+b=c, (24)

and, with (23) in addition, we necessarily have one of the following four
situations:

a—b= 3c§,
a—2b=22c, (25)
a+2b=2k3351¢k
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or
a—b= 3c§,
a—2b =23k, (26)
a+2b=223""ck,
or
a—b=73"1c,
a—2b=2%%, (27)
a+2b =233k
or

a—b=3"1ck
a—2b=23ck, (28)
a+2b=2%3c,

where ¢3, ¢4. ¢5 and ¢, are pairwise coprime integers.
First of all, (24), (20) and b = %" imply that

25+ = (29)

in coprime terms. For even k this equation is of type 2X? + Y? = Z? in coprime
terms, where 2 f XYZ by definition of ¢, ¢5 and by, since 2|la and 2 /4. This is
contradictory, because 2X? + Y?> =3 % 1 = Z*> mod 4. For odd k, (29) is an
equation of type X7 + Y? = 277 for some prime p > 2, unless kK = 5, which is
the only exponent left by Theorem B.

For k = 5 we obtain in both cases (25) and (26)

@ — 4b* = (a — 2b)(a + 2b) = (2 - 3)*(csce)’.
With (20) then follows
0 — b =223%csc6) .
Since (c1, b) = 1, we have (¢} — b, ¢ + b) = 2, and we conclude that
4 —b=2-3"¢ and ¢ +b=2c
or
¢ ~b=2¢ and ¢ +b=2.3"c

for some coprime integers ¢; and cg. In both cases, addition leads to an
equation of type X° — ¥ = 3*Z° which has only trivial solutions by Theorem
D.
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In the cases (25) and (26), we obtain, for k =5,
@ — 4b* = (a — 2b)(a + 2b) = 2* - 3(csee)’.
With (20) there follows
el — b =27 3(esee)’.

Again, (c, b) = 1 implies that (c? — b, c'f + b) = 2, and we conclude that

i —b=2-3¢5 and ¢ +b=2¢
or

(g—b=2c and ¢ +b=2.3¢
for some coprime integers ¢; and ¢g. In both cases, addition leads to an

equation of type X° — ¥° = 3Z°, which has only trivial solutions by Theorem
D.

ProrosiTion 4. Let k=22,a,b = b’l"’k >0 and ¢ be integers satisfving
(a,b) = 1,G\(a,b) =4,Gr(a,b) =3 and (5). Then ¢ = 0.

Proof. It follows from Gy = (a, a®> — 4h*) = 4 that 4| «; hence 2 /b and so
4|(a*> — 4b%). Then (5) implies, by virtue of (a, > — bh*) = 1. that

a=4""] and (& —b)@* —4b7) = 4 (30)

for some coprime integers ¢; and ¢, with odd ¢;. Since (a. b) = 1 and 2ja. we
know that

(a—b,a+b)=(a—hb2)=1. 1)

By the condition G, = 3, we may assume without loss of generality (as in the
proof of Proposition 2) that

(a—b,a+2b)=3 and (a+b,a-2b)=1. (32)

Now (30), (31), (32), (@+b,a+2b)=(a—b.a—2b)=1 and (a—2b.
a+ 2b) = (a— 2b, 2a) = 2 imply that

a+b=ci and a—2b=2d. (33)
and we necessarily have one of the following two situations:
a—b=3c% and a+2b=2.3""'¢ (34)
or
a—b=3"% and a+26=2.34 (33)

with some pairwise coprime integers ¢3, ¢4, ¢s5 and ¢ satisfying 2 f ¢3cq¢s¢q and
31036’4.
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From (33). (30) and b = b%*, we conclude that
Fh = (36)

in coprime terms. For even k we consequently have X? + Y? = Z%> mod 3 with
34 XYZ by the definition of ¢;, b and ¢3 and 3| (¢ — ) by (35), but this
congruence cannot hold. For odd k, (36) is an equation of type
AP — ¥ =471 720 = 2r-2(2Z) for some prime p > 2, unless k = 5, which is
the only exponent left by Theorem A or Theorem B, respectively.
For k = 5, we obtain in case (34) with (33)
0=3-2a4—2-3u=3-(a—2b)+ (a+2b))—2-((a—2b)+2(a+ b))
=3(2¢;+2-3) = 2- 2, + 2¢3)) = 2¢; + 2(3¢)’ — 4c3,
i.e.. an equation with only trivial solutions by Theorem B. In case (35) for
k =5 we obtain with (33)
0=32a—-2-3a=3-({a+by+(a—>b)—2 -((a—2b)+2a+ b))
=3-(3+ 3D ~2-Q2c +26) = —3 + (3es)’ — 4,
and we have only trivial solutions by Theorem A. So the proof of Proposition
4 is complete.

Proof of the Theorem. By the transformation x —x — 3 equation (2) turns
into

W= x(xF = D(x? - 4). (37)
Since x and v are rational numbers, we have x = a/b and y = ¢/d for suitable
integers ¢, b > 0, ¢ and d > 0 satistying (a, b) = (¢, d) = 1. We obtain from (37)
& a(d = b)) - 4b?)

d/\' bS

By virtue of (¢, b) = (¢. d) = 1 this is equivalent with
& =a@ ~b)a ~4b*) and b =dF. (38)

The second identity implies that b = bf" for some positive integer b;. Since
(a.b) = 1 it follows from (3) and (4) that Propositions 1-4 cover all possible
values of G| and G>. Hence ¢ = 0, and consequently y = 0 in (2), which proves
the theorem.
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