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Abstract

We prove that

(
P

thus dealing with open problems concerning divisors of binomial coefficients.

1. Introduction

In 1975, Erdds, Graham, Ruzsa and Straus[3], investigated the sum

f(n)= S K
P

where p runs over the primes. They proved that

fc-2 ^

say, and l im- £ (f(n))2 = cjj.

This implies that f(n) = c0 + o(l)

for all n with the exception of at most o(N) numbers by n ^ JV. Erdos e< al. could not
decide whether/(n) is bounded or not. By applying the method introduced in [3] to
the function

we immediately obtain

P S P 1 1 3
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226 J. W. SANDER

and lim — - — - £ (g(n)f = ( l- log2)2 .

As above, this yields
g(n) = (l- log2)logn + o(logw) (1)

for almost all n. In this paper, we will show that (1) in fact holds for all n.

THEOREM. For n > 1,

g(n) = (l-log2)log«+o(logra).

We mention that the error term o(logn) could be replaced by an error term
O(\ogn/s(n)) with an explicitly given function s(n) > 0, where s(n)-+co for n-+oo.
I t will become clear in the sequel (and we will comment on it in the final paragraph),
why this, though easy in principle, would cause an unjustifiable amount of tedious
work.

Another question raised in [3], also linked with prime divisors of binomial
coefficients, has been treated by the author in [5]. For references connected with the
present problem, the reader may consult [2].

In the remainder of this article, explicit constants c1; c2,..., may depend on k resp.
K, while implicit constants occurring in 0{), o(), or <| are absolute.

2. Preliminaries

Let real numbers m4 and positive integers j t (1 < i =SJ r) be given, satisfying

M = max {\mt\: 1 ^ i =% r},

and 1 ̂  j x < j 2 < ... < j r ^ k.

Furthermore, let
A(x,y) =

Recently, we proved the following exponential sum estimate, which generalizes a
result of Jutila[4]. The proof of this lemma uses exponential sum estimates of van der
Corput, Vinogradov and Karacuba combined with Vaughan's identity.

LEMMA 1 (see [6]). For 2 =% t ^ nlllc, we have

P ')

where e(x) = exj)(2nix).

The second tool in our proof is Vinogradov's Fourier series method, as described
in [7], p. 32, or [1], lemma 2-1.

LEMMA 2. Let 0 < e < | . Then there are periodic functions ifr{x) and W(x) with period
1 satisfying 0 < f{x) ^ 1 , 0 ^ W(x) ^ 1 for all xeU and

1 for e ^x ^ \ — e,

0 /or|^a

1 forO^x

^ ( * ) = ( ! * , ! < • " ; ' ( 2 )

M l THY — < T <Z I

. , , . . , (3)
for | + e ^ a ; < 1 — e.
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Divisors of binomial coefficients 227

Moreover, \]r{x) and W(x) have Fourier expansions of the form

f(x) = \-e+ S ame(mx) (4)
0<|m|<oo

and "¥{x)=\ + e + £ Ame(mx), (5)
0<|m|<oo

where am,AmsC satisfy for m 4= 0

Finally, we need the following easy

LEMMA 3. Let hx(x) and h2(x) be two positive, continuous, strictly decreasing functions
defined for x > x0 with

lim hx(x) = lim h2(x) = 0.
x-*co z-*oo

Then there is a positive, increasing function s(x) satisfying

lim s(x) = oo (7)

and h^six)) > h2(x) (8)

for sufficiently large x.

Remark. The lemma holds under much weaker conditions, but for convenience we
prove it in this form.

Proof. Since h2 is decreasing with h2(x)^-0, there is an xx such that for all x > xx,
we have h2(x) < |A1(1). Since hx is continuous and h1(x)-^0, we have for each x > xx

an s(x) > 0 satisfying „

For 0 < x < y, we have h2(x) > h2(y), thus h^six)) > h^siy)). Therefore s(x) < s(y); in
other words s(x) is increasing. Since h2(x)—*0, we can see by (9) that s(x) gets
arbitrarily big. Being an increasing function, s(x) therefore satisfies (7). In addition,
(9) implies (8), which proves the lemma.

3. Proof of the theorem

We denote by e(n;p) the exponent of p in the prime factor decomposition of n. I t
is well-known that

For xeIR, we clearly have

for {x} < \,

where {x} denotes the fractional part of x. Thus, by (10),

Before we start applying Vinogradov's Lemma 2 to the last sum, we make some
preliminary considerations.
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228 J . W. SANDER

The constant c2 in Lemma 1 possibly depends on k. Without loss of generality, we
may assume that 0 < c2 = c2(k) is a strictly decreasing function of k. Hence

1. /M _ C2(fc)

may be continued to a positive, continuous, decreasing real function h^x) which
tends to 0 for large x. Obviously h2(x) = (loga;)"* also satisfies the conditions of
Lemma 3. Thus, by Lemma 3, there is an increasing function s^x) > 0 with

lim s^ri) = oo (12)

and

for k = s^ri). The same reasoning applied to the functions

"»-' c9(k)' " " " " loglogz'

where c9(k) > 0 will be defined later (and will be increasing without loss of
generality), yields an increasing function s2(x) > 0 with

lim s2(n) = oo (14)

and , °»[k) < 1 (15)
log log n

for k = s2(n). Now we define for sufficiently large n

K = s(n) = min {s1{n),s2(n)! (log log n)*}. (16)

Then, by (12) and (14),
lim s(n) = oo, (17)

and for 1 sj k < K, (13) and (15) hold.

The prime number theorem of Mertens asserts that

2 ^ = ^ + 0 ( 1 ) . (18)

With this, (11) implies p^n V

k + l p k V

For 1 ̂  k < K, define

U>o)

lnof nn / 1 \

(19)

nw
k (log TO)12'

Since, by (18), g

P
log log n, (20)
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Divisors of binomial coefficients

we have, by (19),

9{n) =
k-1 nk+l<psibk P

U

Applying Lemma 2, we get by (2) and (3)

By (6), we have

thus by (4)

Also by (23)

0<|m|<oo

By (4), these estimates imply

r - i

P

-2 me
e,

ame(mx

i-l \o<|m;|<oo

229

(21)

P

(23)

x l l l 2 amie m ( ^ -

k

r - l

X 2 O ... 2

\k-r

Therefore, by (18) and (6),

2
)=1 P

max 2 4
0<|mr|<e"2?7lre

(24)
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230 J. W. SANDER

We define A = A(n) = exp ((log TO)*).

Then, for t ^ A, small S > 0 and sufficiently large n, we have by (13) for k < K, thus
satisfying (13),

< I

This implies

(4fc + 3) log log /i < |c2 ̂ ^ = Jc8 A(t, n) log«,

hence for t^ A,

<l-foA<«,n)(logM)4fc<_^L_. (25)

We choose e = (log logw)"2. Clearly, for 0 < m < n2,

A(t, mri) > A(t, n3) = %A(t, n).

Thus we have by (25), for 0 < m < e~2, t ^ A and sufficiently large n,

tl-cUt m»)(l yk t

(log*)3 (26)

For k < K, we have bk > %+ 1 ^ A by (16). Hence, by partial summation, Lemma 1
and (26), we get for 0 < |ra4| < e~2 and k < K with if as in (16)

ph ph

- + H -
^^1 ' " Pir

- l["* (

oS°k)

+ n-*(log n)

1log?i
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Divisors of binomial coefficients 231

Since K <g (loglogn)* by (16), (24) yields for k < K

(loglogrc)2*

An analogous argument with (5) and (6) yields

By (20),

Hence, by (21), (22), (27), (28), (15) and (17), we have

Obviously £ (l)fc =
k-K

Integrating the geometric series twice, we get for \x\ < 1

S *+1 + (l

( 2 7 )

K-\ j

Joan). (29)

and thus g(n) = £ , . , | . 1X (|)* log n + o(log n). (30)

Therefore (30) implies the theorem.

4. Final remarks

In order to be able to prove our theorem with an error term 0(logn/s(n)), the
dependence of the constants cx and c2 of k in Lemma 1 must be given explicitly (see
(29)). Such a version of Lemma 1, however, seems not to be worth the effort for the
present purpose.
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