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In this paper we consider a 2π-periodic and two-dimensional Hele-Shaw flow describing the

motion of a viscous, incompressible fluid. The free surface is moving under the influence of

surface tension and gravity. The motion of the fluid is modelled using a modified version

of Darcy’s law for Stokesian fluids. The bottom of the cell is assumed to be impermeable.

We prove the existence of a unique classical solution for a domain which is a small per-

turbation of a cylinder. Moreover, we identify the equilibria of the flow and study their

stability.

1 Introduction

In a Stokesian fluid the stress tensor is a continuous function of the deformation tensor

and the viscosity depends in general non-linearly on the gradient of the velocity field.

The Newtonian fluid is a linear Stokesian fluid for which the viscosity is constant. Non-

Newtonian fluids play an important role in industrial processes since many polymer

solutions and molten polymers are fluids of that type.

Despite their importance in applications, the mathematical understanding of the full

problem is far from being complete. For this reason, we study a rather simple situation:

fluid flows in a two-dimensional setting of a vertical Hele-Shaw cell. The model is based

on a non-Newtonian version of Darcy’s law which has been derived in ref. [14]. The

liquid phase and the gas phase are separated by a sharp interface. Our main concern is

the determination of the motion of this interface, i.e. we have to solve a moving boundary

problem.

Similar models are used to describe flows in porous media in refs. [6–9], particularly

the dynamic of incompressible fluids in deformable porous media (see ref. [3]). Our paper

is a continuation of these studies. In addition to the common Newtonian liquids, the

analysis presented in this paper allows us to consider a large class of Stokesian fluids in

this model, e.g. Oldroyd-B fluids and power law fluids. In comparison to the Newtonian

case the mathematical problem becomes more involved because the generalized Darcy law

leads to a nonlinear elliptic boundary value problem for the velocity potential, whereas

for Newtonian fluids this potential is harmonic.
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718 J. Escher and B-V. Matioc

1.1 The mathematical model

Let α ∈ (0, 1) be fixed. We define the set of admissible functions

U :=

{
f ∈ C4+α(�1) : min

x∈�1
f(x) > 0

}
,

and denote by hk+α(�1) the closure of C∞(�1) in Ck+α(�1), k ∈ �. Here, �1 is the unit

circle. The fluid domain Ωf is defined for f ∈ U as the set

Ωf := {(x, y) : x ∈ �1, 0 < y < f(x)},

and the boundary components of Ωf are

Γf := {(x, f(x)) : x ∈ �1}, Γ0 := �1 × {0}.

Further, we denote by ν the outward normal of ∂Ωf. For simplicity we identify functions

on �1 with 2π-periodic functions in �. The fluid is modelled using a modified Darcy law

v = − Du

μ(|Du|2) ,

cf. ref. [11], where

u(x, y) =
p(x, y)

g · ρ + y, (x, y) ∈ Ωf

is the so-called velocity potential, v is the velocity field, p is the pressure distribution within

the fluid’s body, Du= (u1, u2) is the gradient of u, g is the gravitational constant and ρ is

the density of the fluid.

Denoting by μ∈C∞([0,∞), (0,∞)) the viscosity of the fluid, we assume that the function

[0,∞) � r �→ h(r) := rμ2(r) is invertible, that is μ(r) + 2rμ′(r) > 0 for r � 0. The effective

viscosity μ, see ref. [11], is defined by

1

μ(r)
:= cμ

∫ 1

−1

s2

μ̃(rs2)
ds,

where cμ is a positive constant and μ̃ := μ◦h−1. The fluid is assumed to be incompressible

(div v = 0), thus we get

div

(
Du

μ(|Du|2)

)
= 0 in Ωf.

The free surface Γf separating the fluid from air, at pressure normalized to zero, moves

under the influence of surface tension and gravity. At each point on the interface Γf the

pressure has a jump according to the formula

pint − pout = −σκf,

where pout is the pressure outside the fluid, pint the pressure inside the fluid domain Ωf , κf

the curvature of Γf and σ the surface tension coefficient (see ref. [14], (2.38b)). Denoting
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Stokesian Hele-Shaw flows with surface tension 719

by γ the ratio of σ and gρ we obtain

u =
p

gρ
+ f = − σ

gρ
κf + f = −γκf + f on Γf.

The bottom of the Hele-Shaw cell is impermeable, thus we have no flux on the fixed

boundary component Γ0,

∂νu = 0 on Γ0.

In order to derive an evolution equation for the free surface we assume that a particle

located on the interface Γf remains on the interface as time progresses. The free surface

Γf is implicitly given by F(t, z) = 0, where z = (x, y) and F(t, z) = y − f(t, x). Taking the

derivative of this equation with respect to the time variable t and using once again the

generalized Darcy’s law, we obtain

∂tf +

√
1 + ∂xf2

μ(|Du|2) ∂νu = 0 on Γf.

Summarizing, we arrive at the following moving boundary problem

div

(
Du

μ(|Du|2)

)
= 0 in Ωf(t), t � 0,

∂νu = 0 on Γ0, t � 0,

u = −γκf + f on Γf(t), t � 0,

∂tf(t, · ) +

√
1 + ∂xf2(t, · )

μ(|Du( · , f(t, · ))|2)∂νu( · , f(t, · )) = 0 on �1, t > 0,

f(0, · ) = f0 on �1,

(1)

where f0 is the initial data.

We set V := U ∩ h4+α(�1). A pair (u, f) is called a classical Hölder solution of (1) on

[0, T ], with T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(�1)),

u( · , t) ∈ buc2+α(Ωf(t)), t ∈ [0, T ],

and if (u, f) satisfies the equations (1) pointwise. For f ∈ U, the space1 buc2+α(Ωf) is

defined as the closure of BUC∞(Ωf) in BUC2+α(Ωf).

We denote by Q the quasilinear operator

Qu := div

(
Du

μ(|Du|2)

)
,

acting on twice-differentiable functions on deformed cylinders Ωf , or Gf , where f ∈ U and

Gf := {(x, y) : x ∈ �1, −f(x) < y < f(x)}.

1 The notation buc or BUC stands for ‘bounded and uniformly continuous’.
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720 J. Escher and B-V. Matioc

The coefficients of the quasilinear operator u �−→ Qu = aij(Du)uij are

aij(x1, x2) =
δij

μ
(
x2

1 + x2
2

) −
2xixjμ

′(x2
1 + x2

2

)
μ2

(
x2

1 + x2
2

) , 1 � i, j � 2, (x1, x2) ∈ �2.

The eigenvalues of the matrix [aij(x)]1�i, j�2, x∈ �2 are

λ1(x) =
1

μ(|x|2) , λ2(x) =
1

μ(|x|2) − 2|x|2μ′(|x|2)
μ2(|x|2)

,

and we have

c|ξ|2 � aij(x)ξiξj � C|ξ|2, ∀ξ = (ξ1, ξ2) ∈ �2, x ∈ �2,

if we assume that there exist positive constants c and C such that

(A1) c �
1

μ(r)
� C ∀ r � 0,

(A2) c �
1

μ(r)
− 2rμ′(r)

μ2(r)
� C, ∀ r � 0.

It can be shown, cf. ref. [4], that (A1) and (A2) hold, provided there exist positive constants

mμ and Mμ such that

(V1) mμ � μ(r) � Mμ,

(V2) mμ � μ(r) + 2rμ′(r) � Mμ,

for all r � 0. If the viscosity μ is constant the fluid is called Newtonian. The class of

Stokesian, sometimes also called non-Newtonian, fluids satisfying (V1) and (V2) is quite

large. This class includes particularly numerous Oldroyd-B and power law fluids. For

Oldroyd-B fluids with viscosity given by

μ(r) = ν∞ + (ν0 − ν∞)
1 + ln(1 + λr)

1 + λr
, r � 0,

where λ> 0 is a material constant and ν0 > ν∞ > 0, relations (V1) and (V2) hold if

(e2 + 1)ν∞ > ν0. The power law fluids with viscosity laws:

μ(r) = ν∞ + ν0(1 + r2)s/4, or μ(r) = ν∞ + ν0(1 + r)s/2, r � 0,

where ν0 and ν∞ are positive and s � 0, belong to this class if s ∈ [−1, 0]. The examples

mentioned earlier are all shear thinning fluids, i.e. the viscosity decreases with the shear

rate. The shear thickening fluid with viscosity

μ(r) = μ0
βr + r0

r + r0
, r � 0,

where r0 > 0, β � 1 and μ0 > 0, satisfies (V1) and (V2) for any choice of the parameters

r0, μ0 and β.
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Stokesian Hele-Shaw flows with surface tension 721

Thus, if (V1) and (V2) hold, then Q is a uniformly elliptic quasilinear operator in �2.

Let us now consider the moving boundary problem

div

(
Du

μ(|Du|2)

)
= 0 in Gf(t), t � 0,

u = −γκf + f on ∂Gf(t), t � 0,

∂tf(t, · ) +

√
1 + ∂xf2(t, · )

μ(|Du( · , f(t, · ))|2)∂νu( · , f(t, · )) = 0 on �1, t > 0,

f(0, · ) = f0 on �1.

(2)

A pair (u, f) is called a classical Hölder solution of (2) on [0, T ], with T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(�1)),

u( · , t) ∈ buc2+α(Gf(t)), t ∈ [0, T ],

and if (u, f) satisfies the equations (2) pointwise. Given f ∈ V, buc2+α(Gf) stands again

for the closure of BUC∞(Gf) in BUC2+α(Gf).

Let f ∈ V be given and denote by u∈ buc2+α(Gf) the unique solution of the quasilinear

Dirichlet problem

Qu = 0 in Gf,

u = −γκf + f on ∂Gf.
(3)

Because of the symmetry of the domain Gf and of the boundary conditions we obtain

u(x,−y) = u(x, y) for all (x, y) ∈Gf, thus the restriction of u to Ωf is the unique solution

of the mixed boundary problem

Qu = 0 in Ωf,

∂νu = 0 on Γ0,

u = −γκf + f on Γf.

(4)

We deduce that there exists a one-to-one correspondence between solutions to (1) and (2)

Namely, if (u, f) is a solution to (1) on the interval [0, T ], T > 0, then for each t∈ [0, T ]

the velocity potential u( · , t) ∈ buc2+α(Ωf(t)) can be extended by reflection on the entire

domain Gf(t). We obtain in this manner a solution to (2). Moreover, if (ũ, f) is a solution

to (2) on the interval [0, T ], T > 0, we can restrict for t∈ [0, T ] the function ũ( · , t) to Ωf(t),

and thus obtain a solution to (1). It is more convenient to treat (2), because we have in

this case a Dirichlet problem for the velocity potential.

The uniqueness of the solutions to (3) and (4) can be shown using the same method as

in the proof of Theorem 9.2 in ref. [10]. The existence of the solutions will be discussed

later.

The main results of this paper are as follows.

Theorem 1.1 (Existence and uniqueness) Assume that (A1) and (A2) hold.

(a) Let c be a positive constant. Then we find an open neighbourhood O of c in V such

that, for each f0 ∈ O, problem (2) has a classical Hölder solution (u, f) on an interval [0, T ]

with T > 0. Moreover, there exists a constant δ ∈ (0, 1) such that f ∈Cδ
δ ((0, T ], h4+α(�1)).
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722 J. Escher and B-V. Matioc

(b) Let (u1, f1) and (u2, f2) be solutions of (2) with f1 ∈Cδ1

δ1
((0, T ], h4+α(�1)) , δ1 ∈ (0, 1)

and f2 ∈Cδ2

δ2
((0, T ], h4+α(�1))), δ2 ∈ (0, 1). If f1([0, T ]) ⊂ O and f2([0, T ]) ⊂ O, then

(u1, f1) = (u2, f2).

For the definition of the weighted Hölder spaces Cγ
γ ((0, T ], h4+α(�1)), γ ∈ (0, 1), see, e.g.,

ref. [12].

Theorem 1.1 guarantees the existence and uniqueness of local solutions, provided they

are sufficiently near to a cylinder initially. In Section 4 first we will prove a conservation

law for the fluid volume. We further determine the steady-state solutions of the system

(1) and prove that the equilibrium (c, c), where c∈ �>0, attracts exponentially solutions

of (1) which correspond to initial data f0 ∈ c + h̃4+α(�1) sufficiently closed to c. Here

h̃4+α(�1) = {f ∈ h4+α(�1) :
∫

�1 f dx = 0}. Having f0 ∈ c + h̃4+α(�1) means the domains

Ωf0
and Ωc contain the same amount of liquid. More precisely we state:

Theorem 1.2 (Exponential stability) For any ω < (1 + γ) tanh c/μ(0), there are positive

constants r and M such that for any f0 ∈ c + h̃4+α(�1) with ‖f0 − c‖C4+α(�1) � r solution to

(1) exists and the estimate

‖f(t) − c‖C4+α(�1) + ‖f′(t)‖C1+α(�1) � Me−ωt‖f0 − c‖C4+α(�1), ∀t � 0,

holds. Moreover, the volume of the domain saturated by fluid is constant in time,

∫
�1

f(t) dx = c, ∀t � 0.

The new feature of the present paper compared to the problem studied in ref. [4] is the

inclusion of surface tension effects. From the analytical point of view this implies that the

full problem (1) is governed by a nonlinear evolution equation of third order, whereas the

problem studied in ref. [4] is of first order.

Furthermore, our analysis shows the regularizing effect of surface tension since the

value (1+ γ) tanh c/μ(0) from Theorem 1.2 tends to infinity as γ increases to infinity. Such

an effect cannot be observed for the system studied in ref. [4].

1.2 The transformed problem

In order to solve problem (2), first we have to study the dependence of the solution u

to (3) on the variable f ∈ V. This is quite a difficult task because u is defined on the

domain Gf , and the domain depends on f. Therefore, we transform the problem on a

fixed domain G := �1 × (0, 2). For f ∈ U, let φf ∈ BUC4+α(G,Gf) be defined by

φf(x, y) := (x, (1 − y)f(x)), (x, y) ∈ G.
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Stokesian Hele-Shaw flows with surface tension 723

It is clear that φf is a global diffeomorphism mapping G onto Gf. We introduce the

push-forward and pull-back operators induced by φf :

φ∗
f : BUC(Gf) → BUC(G), u �−→ u ◦ φf,

φ
f
∗ : BUC(G) → BUC(Gf), v �−→ v ◦ φ−1

f ,

and the transformed operators A(f) and B, acting on BUC2(G), respectively, on

U × BUC2+α(G) by

A(f) := φ∗
f ◦Q ◦ φ

f
∗ ,

B(f, v)(x) :=
D(φf

∗v)

μ(|D(φf
∗v)|2)

(x, f(x)) · n(x), x ∈ �1,

with n(x) := (−f′(x), 1), x ∈ �1.

We arrive at the problem

A(f)v = 0 in G × [0,∞),

v = −γκf + f on ∂G × [0,∞),

∂tf + B(f, v) = 0 on �1 × (0,∞),

f(0) = f0.

(5)

Given f ∈ V, the operator A(f) is uniformly elliptic and

A(f)v = bij(y, f, Dv)vij + b(y, f, Dv)v2 ∀ v ∈ BUC2(G).

Here, we use the summation convention and vi and vij stand for partial derivatives of v.

Furthermore, the coefficients bij and b are given by

b11(y, f, Dv) = a11(Dfv),

b12(y, f, Dv) = b21(y, f, Dv) =
(1 − y)f′

f
a11(Dfv) − 1

f
a12(Dfv),

b22(y, f, Dv) =
(1 − y)2f′2

f2
a11(Dfv) − 2(1 − y)f′

f2
a12(Dfv) +

1

f2
a22(Dfv),

b(y, f, Dv) = (1 − y)

(
f′′

f
− 2f′2

f2

)
a11(Dfv) +

2f′

f2
a12(Dfv),

where Dfv := (v1 + (1−y)f′

f
v2,− 1

f
v2) for f ∈ U, v ∈ BUC2(G) and y ∈ [0, 2]. A pair (v, f) is

a classical Hölder solution of (5) on [0, T ], with T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(�1)),

v( · , t) ∈ buc2+α(G), t ∈ [0, T ],

and if (v, f) satisfies the equations (5) pointwise. It is obvious that problems (2) and (5)

are equivalent in the following sense:
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724 J. Escher and B-V. Matioc

Lemma 1.3 Let f0 ∈ V be given.

(a) If (u, f) is a classical Hölder solution of (2), then (φ∗
fu, f) is a classical Hölder solution

of (5).

(b) If (v, f) is a classical Hölder solution of (5), then (φf
∗v, f) is a classical Hölder solution

of (2)

Proof See for example ref. [4]. �

Lemma 1.4 Given ϑ ∈ (0, 1) and k � 0, the mapping

Ck+2+ϑ(�1) � g �−→ κg =
g′′

(1 + (g′)2)3/2
∈ Ck+ϑ(�1)

is smooth.

Proof The proof follows by direct computation. �

Using Lemma 1.3 and general results from the theory of quasilinear elliptic equations

we obtain the following existence, uniqueness and regularity result.

Theorem 1.5 Let f ∈ V be given. There exists a unique solution v ∈ buc2+α(G) of the

quasilinear Dirichlet problem

A(f)v = 0 in G,

v = −γκf + f on ∂G.
(6)

Denote by T(f) ∈ buc2+α(G) the solution to (6). The mapping [V � f �→ T(f) ∈ buc2+α(G)]

is smooth.

2 The abstract Cauchy problem

Let T : V ⊂ h4+α(�1) → buc2+α(G) be the solution operator defined in Theorem 1.5. We

reduce problem (5) into an abstract, nonlinear Cauchy problem on �1

∂tf + φ(f) = 0, f(0) = f0, (7)

where

φ(f) := B(f,T(f)).

We consider here the restriction B : V × buc2+α(G) → h1+α(�1) of the operator defined

in Section 1. Given (f, v) ∈ V × buc2+α(G), we have

B(f, v) = − 1

μ(|∇fv|2)

(
f′γ0v1 +

1

f
(1 + f′2)γ0v2

)
,

where ∇fv(x) := D(φf
∗v)(x, f(x)) = γ0Dfv(x) for x ∈ �1 and γ0 is the trace operator on Γ0.

The following result on the differentiability of B holds.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792508007699
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 09:04:18, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792508007699
https://www.cambridge.org/core


Stokesian Hele-Shaw flows with surface tension 725

Lemma 2.1 The mapping B : V×buc2+α(G) → h1+α(�1) is smooth. The Fréchet derivative

of B in (f, v) ∈ V × buc2+α(G) is given by

∂B(f, v)[h, u] = − 1

μ

(
|∇fv|2

) [
f′γ0u1 + h′γ0v1 +

1

f
(1 + f′2)γ0u2

−
(

h

f2
− 2f′h′

f
+

hf′2

f2

)
γ0v2

]

− 2

(
1

μ

)′ (
|∇fv|2

) (
f′γ0v1 +

1

f
(1 + f′2)γ0v2

)[
γ0v1u1 +

h′

f
γ0v1v2

+
f′

f
γ0u1v2 +

f′

f
γ0v1u2 − f′h

f2
γ0v1v2 +

f′h′

f2
γ0v

2
2 +

f′2

f2
γ0v2u2

− hf′2

f3
γ0v

2
2 +

1

f2
γ0v2u2 − h

f3
γ0v

2
2

]
,

for all [h, u] ∈ h2+α(�1) × buc2+α(G).

Lemma 2.2 Let f ∈ V and h ∈ h4+α(�1) be given. The function ∂T(f)[h] is the unique

solution of the linear Dirichlet problem

bijwij + bw2 + Dfw

[
u11∂a11(Dfu) + 2u12

(
(1 − y)f′

f
∂a11(Dfu) − 1

f
∂a12(Dfu)

)

+ u22

(
(1 − y)2f′2

f2
∂a11(Dfu) − 2

(1 − y)f′

f2
∂a12(Dfu) +

1

f2
∂a22(Dfu)

)

+ u2

(
(1 − y)

(
f′′

f
− 2

f′2

f2

)
∂a11(Dfu) + 2

f′

f2
∂a12(Dfu)

)]

= −u2

(
(1 − y)

fh′ − f′h

f2
,
h

f2

)
·
[
u11∂a11(Dfu)

+ 2u12

(
(1 − y)f′

f
∂a11(Dfu) − 1

f
∂a12(Dfu)

)
+ u22

(
(1 − y)2f′2

f2
∂a11(Dfu)

− 2
(1 − y)f′

f2
∂a12(Dfu) +

1

f2
∂a22(Dfu)

)
+ u2

(
(1 − y)

(
f′′

f
− 2

f′2

f2

)
∂a11(Dfu)

+ 2
f′

f2
∂a12(Dfu)

)]
− 2u12

(
(1 − y)

fh′ − f′h

f2
a11(Dfu) +

h

f2
a12(Dfu)

)

− 2u22

(
(1 − y)2(ff′h′ − f′2h)

f3
a11(Dfu) − (1 − y)

fh′ − 2f′h

f3
a12(Dfu) − h

f3
a22(Dfu)

)
− u2

(
(1 − y)

(
fh′′ − f′′h

f2
− 4

ff′h′ − f′2h

f3

)
a11(Dfu) + 2

fh′ − 2f′h

f3
a12(Dfu)

)
in G,

w = −γ
1

(1 + (f′)2)
3
2

h′′ + 3γ
f′f′′

(1 + (f′)2)
5
2

h′ + h on ∂G,
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where u := T(f) and bij = bij(y, f, Du), b = b(y, f, Du) are the coefficients of A(f). Again

wij , w1, w2 denote partial derivatives of w.

Proof The proof is standard and is left to the reader. �

Combining Lemmas 2.1 and 2.2 we conclude that the nonlocal pseudodifferential

operator φ defined at the very beginning of this section depends smoothly on the function

f. More precisely, we state:

Theorem 2.3

φ ∈ C∞(V, h1+α(�1)).

Given f ∈ V we have

∂φ(f) = ∂B(f,T(f)) ◦ (idh4+α(�1), ∂T(f)).

Let c ∈ �>0 be fixed. Our goal is to prove existence and uniqueness of the solution to

(7) for f0 in a small neighbourhood O of c in h4+α(�1). To this end we use general results

from the theory of maximal regularity, see ref. [12].

We prove next that −∂φ(c), regarded as an unbounded operator in h1+α(�1), with

dense domain h4+α(�1) generates a strongly continuous analytic semigroup, i.e. ∂φ(c) ∈
H(h4+α(�1), h1+α(�1)).

The solution T(c) to (6) is the constant function c on G. Given h ∈ h4+α(�1), w :=

∂T(c)[h] is the unique solution in buc2+α(G) of the Dirichlet problem

c2w11 + w22 = 0 in G,

(8)
w = h − γh′′ on ∂G,

and

−∂φ(c)[h] = −∂B(c,T(c))[h, w] =
ζ

c
γ0w2,

where ζ = 1/μ(0).

We consider Fourier expansions of h and w

h(x) =
∑
k∈�

cke
ikx, w(x, y) =

∑
k∈�

Ck(y)e
ikx,

and substitute these expressions in (8). Comparing the coefficients of eikx, k ∈ �, we get

the following equations for Ck:

C ′′
k − c2k2Ck = 0, 0 < y < 2,

Ck(0) = (1 + γk2)ck, (9)

Ck(2) = (1 + γk2)ck,
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Stokesian Hele-Shaw flows with surface tension 727

for k ∈ � \ {0}, and

C ′′
0 = 0, 0 < y < 2,

C0(0) = c0, (10)

C0(2) = c0.

Using ODE techniques we determine the solution to (10) to be the constant function

C0 ≡ c0, while, for k ∈ � \ {0}, the solution to (9) is

Ck(y) = (1 + γk2)ckdk(y), 0 � y � 2,

where

dk(y) :=
e2ck − 1

e4ck − 1
ecky +

e4ck − e2ck

e4ck − 1
e−cky, 0 � y � 2.

Consequently,

−∂φ(c)

[∑
k∈�

cke
ikx

]
=

∑
k∈�

λkcke
ikx, (11)

for all h =
∑

k∈� cke
ikx ∈ h4+α(�1), with

λk := −ζ
e2ck − 1

e2ck + 1
(k + γk3), k ∈ �. (12)

The multiplicative coefficients λk satisfy λk = λ−k for all k ∈ � and the sequence (λk)k�0

is strictly decreasing to −∞

0 = λ0 > λ±1 > λ±2 > · · · > λ±k > λ±(k+1) > · · · .

We shall make use of this representation of −∂φ(c) to prove that ∂φ(c) belongs to

H(h4+α(�1), h1+α(�1)). It is enough, cf. ref. [1], to find constants ω > 0 and χ � 1 such

that

λ + ∂φ(c) ∈ Isom(h4+α(�1), h1+α(�1)), (13)

|λ| · ‖R(λ,−∂φ(c))‖L(h1+α(�1)) � χ, (14)

for all Re λ � ω. Here, given two Banach spaces E and F, we denote by Isom(E, F) the

subset of L(E, F) containing just isomorphisms, i.e. bijective linear operators. As usually,

L(E, F) stands for the space of all linear and bounded operators form E to F. The open

map theorem implies especially that the inverse T−1 belongs to L(F,E), if T is an element

of Isom(E, F).

For simplicity we choose ω = 1. We now study −∂φ(c), regarded as an multiplier

operator on Sobolev spaces over �1. Given r � 0, the Sobolev space Hr(�1) is defined by

Hr(�1) := {f ∈ L2(�1) :
∑
n∈�

(1 + n2)r|f̂(n)|2 < ∞},
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728 J. Escher and B-V. Matioc

where f̂(n) is the nth Fourier coefficient of f. This space is endowed with the scalar

product

〈f , g〉 :=
∑
n∈�

(1 + n2)rf̂(n)ĝ(n).

The smooth functions are dense in Hr(�1) and the Sobolev embedding Hk+r(�1) ↪→ Ck(�1)

holds for all k ∈ �, provided r > 1/2. Therefore we have

Hk+s(�1)
d
↪→ hk+β(�1), (15)

for all k ∈ �, β ∈ [0, 1] and s > 3/2.

Lemma 2.4 Given r � 0 and Re λ � ω, we have λ + ∂φ(c) ∈ Isom(Hr+3(�1), Hr(�1)).

Proof The proof follows directly from limk→∞ λk/k
3 = −γζ. Given Re λ � ω and h =∑

k∈� ĥ(k)eikx ∈ Hr+3(�1) we have∥∥∥∥∥∂φ(c)

[∑
k∈�

ĥ(k)eikx

]∥∥∥∥∥
Hr(�1)

=
∑
k∈�

(1 + k2)r|λkĥ(k)|2 � M2
∑
k∈�

(1 + k2)r+3|ĥ(k)|2

= M2

∥∥∥∥∥∑
k∈�

ĥ(k)eikx

∥∥∥∥∥
Hr+3(�1)

,

with M > 0 such that |λk| � M(1 + k2)
3
2 , ∀k ∈ �. Since |λ − λk| � 1 holds for all k ∈ �, it

follows that λ + ∂φ(c) is injective.

Using the same argument as given earlier it is easy to verify that the linear mapping

Hr(�1) �
∑
k∈�

cke
ikx �−→

∑
k∈�

1

λ − λk
cke

ikx ∈ Hr+3(�1),

is well defined and this completes the proof. �

Given r � 0 and Re λ � ω, the inverse of λ + ∂φ(c) is the operator R(λ,−∂φ(c)) ∈
Isom(Hr(�1), Hr+3(�1)) defined by

R(λ,−∂φ(c))

[∑
k∈�

cke
ikx

]
=

∑
k∈�

1

λ − λk
cke

ikx, (16)

for all h :=
∑

k∈� cke
ikx ∈ Hr(�1).

By virtue of (15) and Lemma 2.4 we obtain

Corollary 2.5 Let k ∈ {1, 4} and suppose R(λ,−∂φ(c)) ∈ L(C1+α(�1), Ck+α(�1)), for some

Re λ � ω. Then R(λ,−∂φ(c)) ∈ L(h1+α(�1), hk+α(�1)).

Proof We prove first the case k = 4. The proof of the assertion in the case k = 1 is similar.

By assumption, we know that R(λ,−φ(c)) ∈ L(h1+α(�1), C4+α(�1)). Given f ∈ h1+α(�1),

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792508007699
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 23 Jan 2018 at 09:04:18, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792508007699
https://www.cambridge.org/core


Stokesian Hele-Shaw flows with surface tension 729

from (15) we find a sequence (fn)n ⊂ Hr(�1), r > 3, such that fn → f in C1+α(�1). Thus

R(λ,−∂φ(c))fn −→ R(λ,−∂φ(c))f in C4+α(�1).

We know that R(λ,−A)fn ∈ Hr+3(�1). Consequently

R(λ,−∂φ(c))f ∈ Hr+3(�1)
‖ · ‖

C4+α (�1) = h4+α(�1).

�

Having stated Corollary 2.5 we prove now that the resolvent set ρ(−∂φ(c)) of the

linearization contains an halfplane. More precisely, we have:

Proposition 2.6

{λ ∈ � : Re λ � ω} ⊂ ρ(−∂φ(c)).

Proof Let Re λ � ω be given. In virtue of Corollary 2.5, it is enough to show that

R(λ,−∂φ(c)) ∈ L(C1+α(�1), C4+α(�1)). Because R(λ,−∂φ(c)) is a multiplier operator (see

(16)), we are done if we have

(i) sup
k∈�

|k|3|Mk| < ∞,

(ii) sup
k∈�

|k|4|Mk+1 − Mk| < ∞, and

(iii) sup
k∈�

|k|5|Mk+2 − 2Mk+1 + Mk| < ∞,

where Mk := 1/(λ − λk) (see, e.g., refs. [2] and [13]). From

lim
k→∞

k3

λ − λk
=

1

γζ

we obtain (i). For k � 1 we have

k4|Mk+1 − Mk| =
k3

|λ − λk+1|
k3

|λ − λk|
|λk+1 − λk|

k2
−→
k→∞

3

γζ
,

because of (λk − λk+1)/k
2 → 3γζ, (ii) is proved. For k � 1 we compute

k5|Mk+2 − 2Mk+1 + Mk| =
k3

|λ − λk+2|
k3

|λ − λk+1|
k3

|λ − λk|
1

k4
|λ(λk+2 − 2λk+1 + λk)

+ λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|,

and (λk+2 −2λk+1 +λk)/k
4 → 0, respectively (λk(λk+1 −λk+2)+λk+2(λk+1 −λk))/k

4 → 12γ2ζ2.

This completes the proof. �

Proposition 2.7 There exists χ � 1 such that

|λ| · ‖R(λ,−∂φ(c))‖L(h1+α(�1)) � χ,

for all Re λ � ω.
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730 J. Escher and B-V. Matioc

Proof Given h =
∑

k∈� ĥ(k)eikx ∈ h1+α(�1), we have

|λ|R(λ,−∂φ(c))

[∑
k∈�

ĥ(k)eikx

]
=

∑
k∈�

Mλ
k ĥ(k)e

ikx,

where

Mλ
k =

|λ|
λ − λk

, ∀ k ∈ �, Re λ � ω.

It suffices to prove (see refs. [2] and [13]) that there exist positive constants s1, s2 and s3
such that

(i) sup
k∈�

|Mλ
k | � s1,

(ii) sup
k∈�

|k||Mλ
k+1 − Mλ

k | � s2, and

(iii) sup
k∈�

|k|2|Mλ
k+2 − 2Mλ

k+1 + Mλ
k | � s3,

for all Re λ � ω. For Re λ � ω and k ∈ � we have Re(λ − λk) � 1 and |λ − λk| � |λ|.
Consequently (i) holds with s1 = 1. For k � 0, we have |λ − λk| � |λk|, for all Re λ � ω,

hence

|k||Mλ
k+1 − Mλ

k | =
|λ|

|λ − λk+1|
|k|3

|λ − λk|
|λk+1 − λk|

k2
�

|k|3
|λk|

|λk+1 − λk|
k2

,

and (ii) holds. For k � 1 we further have

k2|Mk+2 − 2Mk+1 + Mk| =
|λ|

|λ − λk+2|
k3

|λ − λk+1|
k3

|λ − λk|
1

k4
|λ(λk+2 − 2λk+1 + λk)

+ λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|

�
k3

|λk|
|λk+2 − 2λk+1 + λk|

k

+
k3

|λk|
k3

|λk+1|
|λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|

k4
.

Since

λk+2 − 2λk+1 + λk

k
−→
k→∞

−6γζ,

we obtain, using the symmetry of the coefficients λk , (iii) and the proof is completed. �

From (13) and (14) we conclude that −∂φ(c) generates a strongly continuous ana-

lytic semigroup in L(h1+α(�1)). The proof of Theorem 1.1 is now similar to that of

Theorem 8.1.1 in ref. [12], and the assumptions of this theorem are all satisfied (see

Theorem 2.3).
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Stokesian Hele-Shaw flows with surface tension 731

3 Stability results

A pair (u, f) ∈ buc2+α(Ωf) × V is a steady state of the flow (1) iff it is a solution of the

free boundary value problem

div

(
Du

μ(|Du|2)

)
= 0 in Ωf,

∂νu= 0 on Γ0,

u= −γκf + f on Γf,

∂νu= 0 on Γf.

(17)

It is obvious that constant functions (u, f) = (c, c), with c ∈ �>0, are steady-state solutions

of system (1). In the following we show that there are in fact no other steady states. Assume

that (u, f) is an equilibrium of (1). Then it follows from the first, the second and the last

equation of (17) that there exists a constant c ∈ � such that u = c. Moreover the function

f must solve the differential equation

f − c = γ
f′′

(1 + (f′)2)3/2
on �1. (18)

Because of the periodicity of f we find a point x0 where f attains its maximum M. Let

us first assume that M > c. From f′′(x0) = (M − c)/γ > 0 and f′(x0) = 0 we obtain that f

is constant in the neighbourhood of x0. The set f−1(M) is therefore a non-empty, closed

and open in �1. We conclude that f = M, in contradiction with (18).

If M<c we have f′′ < 0 and we obtain a contradiction to the periodicity of f. Con-

sequently M = c and together with (18) we deduce f = c.

Summarizing, a pair (u, f) ∈ buc2+α(Ωf) × V is a steady state of the flow iff there exists

a positive constant c such that (u, f) = (c, c).

Now we fix c ∈ �>0, and study the stability of the equilibrium (c, c) ∈ buc2+α(Ωc) × V
for the flow (1). The corresponding steady state for the flow (5) is the pair (c, c) ∈
buc2+α(G) × V. Using similar arguments as given in Proposition 2.6 we compute

{λk : k ∈ �} = σp(−∂φ(c)) = σ(−∂φ(c)).

In [6] the spectrum of the linearized operator is discrete and contains only positive

eigenvalues. The situation presented here is more complicated since λ0 = 0 belongs to the

spectrum of the linearization.

We now transfer problem (7) in the neighbourhood of the origin by letting Vc := V−c

and defining ψ : Vc ⊂ h4+α(�1) → h1+α(�1) by ψ(f) := −φ(f + c), for f ∈ Vc. We have

to study now the stability of the equilibrium f = 0 for the abstract Cauchy problem

∂tf = ψ(f), f(0) = f0. (19)

Let C̃∞(�1) := {f ∈ C∞(�1) :
∫

�1 f dx = 0}. For k ∈ �, let h̃k+α(�1) be the closure of

C̃∞(�1) in Ck+α(�1). In this way we have defined closed subspaces of the little Hölder
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spaces. We have h̃4+α(�1)
d
↪→ h̃1+α(�1) and

h̃k+α(�1) = {f ∈ hk+α(�1) :

∫
�1

f dx = 0},

for all k ∈ �. Let Ṽ := Vc ∩ h4+α(�1).

Lemma 3.1 (Conservation of volume) Given g ∈ Ṽ, we have ψ(g) ∈ h̃1+α(�1).

Proof Let g + c = f ∈ V and denote by u the solution of (4). We have∫
�1

ψ(g) dx = −
∫

�1

φ(f) dx = −
∫

�1

B(f,T(f)) dx

= −
∫

�1

Du

μ(|Du|2) (x, f(x)) · n(x) dx = − 1

2π

∫
Γf

∂νu

μ(|Du|2) dσ

= − 1

2π

∫
Ωf

div

(
Du

μ(|Du|2)

)
dx +

1

2π

∫
Γ0

∂νu

μ(|Du|2) dσ = 0.

�

This motivates us to consider the restriction ψ̃ of ψ to Ṽ. From Theorem 2.3 we have

that ψ̃ belongs to C∞(Ṽ, h̃1+α(�1)) and

∂ψ̃(0)

⎡⎣ ∑
k∈�\{0}

ĥ(k)eikx

⎤⎦ =
∑

k∈�\{0}

λkĥ(k)e
ikx,

for all h =
∑

k∈�\{0} ĥ(k)e
ikx ∈ h̃4+α(�1). The coefficients {λk}k∈�\{0} are given by (12).

Because the functions h ∈ h4+α(�1) have integral mean equal to zero, that is ĥ(0) = 0, we

can invert ∂ψ̃(0).

Even more, we have the following result:

Theorem 3.2 Consider ∂ψ̃(0) as an unbounded operator in h̃1+α(�1) with dense domain

h̃4+α(�1). Then

σ(∂ψ̃(0)) = {λk : k � 1}, (20)

|λ| · ‖R(λ,−∂ψ̃(0))‖L(h̃1+α(�1))
� χ, ∀ Re λ � ω, (21)

where χ and ω are the constants from Proposition 2.7.

Summarizing, −∂ψ̃(0) belongs to H(h̃4+α(�1), h̃1+α(�1)) and therefore, if the initial value

f0 in (19) belongs to h̃4+α(�1) and is small enough, then this problem possesses a unique

solution and the evolution takes place entirely in h̃4+α(�1).

Combining Theorem 3.2 and Theorem 9.1.2 of ref. [12] we obtain the stability result

stated in Theorem 1.2.
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4 Conclusion

Starting from a generalized version of Darcy’s law we have derived a mathematical model

for the dynamic of a Stokesian fluid situated between the parallel plates of a vertical

Hele-Shaw cell. Comparing it to ref. [4], the inclusion of surface tension effects is the new

important feature of this work. The Newtonian case μ ≡ constant, treated in refs. [6–9], is

included in this model.

The corresponding moving boundary problem is a coupled system consisting of a

quasilinear mixed boundary problem for the velocity potential u and a fully nonlinear

evolution equation for the interface f. We transformed the problem into an abstract

Cauchy problem for f on the unit circle �1:

∂tf + φ(f) = 0, f(0) = f0,

and attacked it by investigating the Fréchet derivative of φ. Using the theory of maximal

regularity given by Lunardi [12], we proved the existence and uniqueness of local solutions

for initial data f0 sufficiently close to a positive constant. The volume of the fluid is

preserved by the flow.

In fact, the constant functions are the only equilibria of this system. Different equilibria

correspond to different quantities of fluid. Prescribing a volume of fluid, there exists a

unique steady state with the property that the domain determined by it contains exactly

this volume of fluid. This steady state attracts all solutions at an exponential rate, provided

they are initially close enough to the cylinder determined by the steady state and enclose

the same volume of fluid.
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