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Abstract 

In this study we experimentally assess whether the bulk composition of the 

Kiruna-type iron-fluorine Vergenoeg deposit, South Africa (17 wt.% SiO2 and 55 

wt.% FeOtot) could correspond to an immiscible Fe-rich melt paired with its host 

rhyolite. Synthetic powder of the host rhyolite was mixed with mafic end-

members (ore rocks) in variable proportions. Experimental conditions were 1-2 

kbar and 1010°C, with a range of H2O and F contents in the starting compositions. 

Pairs of distinct immiscible liquids occur in experiments saturated with fluorite, 

under relatively dry conditions, and at oxygen fugacity conditions corresponding 

to FMQ-1.4 to FMQ+1.8 (FMQ = fayalite-magnetite-quartz solid buffer). The Si-

rich immiscible liquids contain 60.9–73.0 wt.% SiO2, 9.1–12.5 wt.% FeOtot, 2.4-

4.2 wt.% F, and are enriched in Na2O, K2O and Al2O3. The paired Fe-rich 

immiscible melts have 41.0–49.5 wt.% SiO2, 20.6–36.1 wt.% FeOtot and 4.5-6.0 

wt.% F, and are enriched in MgO, CaO and TiO2. Immiscibility does not develop 

in experiments performed under water-rich (aH2O>0.2; a = activity) and/or 

oxidized (>FMQ+1.8) conditions. In all experiments, solid phases are magnetite, 

± fayalite, fluorite and tridymite. Our results indicate that the rocks from the 

Vergenoeg pipe crystallized in a magma chamber hosting two immiscible silicate 

melts. Crystallization of the pipe from the Fe-rich melt explains its extreme 

enrichment in Ca, F and Fe compared to the host rhyolitic rocks. However, its low 

bulk silica content compared to experimental Fe-rich melts indicates that the pipe 

formed by remobilization of a mafic crystal mush dominated by magnetite and 

fayalite. Segregation of evolved residual liquids as well as the conjugate 

immiscible Si-rich melt produced the host rhyolite. The huge amount of fluorine 

in Vergenoeg ores (~12wt.% F) can hardly be explained by simple crystallization 

of fluorite from the Fe-rich silicate melt (up to 6 wt.% F at fluorite saturation). 

Instead, we confirm a previous hypothesis that the fluorite enrichment is, in part, 

due to the migration of hydrothermal fluids. 



	

1. Introduction 

Kiruna-type iron oxide (± apatite) deposits occur in a number of locations 

across the world. They range in age from Proterozoic to Holocene, and are 

associated with volcanic rocks or sub-volcanic intrusions (Frietsch, 1978; 

Hitzman et al., 1992; Nyström and Henriquez, 1994; Dill, 2010). Controversy 

persists regarding the genesis of these enigmatic deposits that are dominated by 

sulfide-poor mineral assemblages (magnetite/hematite, ± fluorapatite, ± fayalite, ± 

fluorite) and range in size from large bodies (thousands of meters in scale) 

containing billions of tons of iron ore, to small veins and veinlets (Hildebrand, 

1986; Williams et al., 2005). The Kiruna-type deposits have been interpreted to 

have an exhalative-synsedimentary origin (Parak, 1975), or to have formed by 

epigenetic-hydrothermal processes (Gleason et al., 2000; Dare et al., 2014a). 

‘Kiruna-type’ deposits are often considered as an end-member of the 

hydrothermal Iron Oxide–Copper–Gold ‘IOCG’ group (Hitzman, 2000; Hitzman 

et al., 1992). Magmatic processes are also commonly invoked to explain the 

formation of Kiruna-type deposits due to magmatic oxygen and iron isotope ratios 

(Jonsson et al., 2013; Bilenker et al., 2016). Processes typically proposed include 

formation and stagnation of a volatile-bearing Fe-rich immiscible melt (e.g. 

Naslund et al., 2002; Chen et al., 2010; Tornos et al., 2016; Velasco et al., 2016) 

followed by fractional crystallization, and formation of magnetite-rich cumulate 

rocks (Knipping et al., 2015a). Melt inclusions in plagioclase phenocrysts from 

andesite hosts of Chilean deposits are dominated by silica-rich melts with droplets 

of immiscible iron-rich melt. These confirm the likely role of silicate liquid 

immiscibility in the formation of Kiruna-type deposits (Tornos et al., 2016). The 

magmatic stage in the formation of Kiruna-type deposits is firmly suggested by 



	

the presence of volcanic textures and structures such as magmatic flows, vesicular 

structures and volcanic bombs (Naslund et al., 2002; Nyström et al., 2008; 

Knipping et al., 2015a). The extent to which hydrothermal fluids played a role in 

remobilizing iron in Kiruna deposits is however more debated. Accurate 

constraints on this issue are complicated by the comparatively small effect of 

post-mineralization metasomatism on the Fe isotope signature compared to its 

effect on the O isotope signature (Childress et al., 2016). However, it is known 

that metasomatism strongly affects critical elements, promotes the exsolution of 

REE-phosphates within apatite grains and can alter the F/Cl ratio of apatite 

(Harlov et al., 2016; Jonsson et al., 2016). Fluids may also affect the redistribution 

of some elements such as F, S and P (e.g. Harlov et al., 2002; Knipping et al., 

2015a,b). 

The Vergenoeg deposit (~1.95 Ga; Crocker, 1985) in South Africa is a 

Kiruna-type massive iron oxide deposit (Borrok et al., 1998), characterized by a 

high content of fluorite. It is currently mined and accounts for 3.4% of the total 

world production of fluorine (Graupner et al., 2015) with a fluorite resource in 

excess of 174 million tons at 28.1 wt.% CaF2 (Fourie, 2000). Three contrasting 

genetic models have been proposed for Vergenoeg: (1) the separation of an 

immiscible Fe-rich liquid, i.e. Fe-rich mafic melt from the conjugate granitic 

(rhyolitic) magma (Crocker, 1985); (2) combined magmatic and hydrothermal 

activity leading to the extensive alteration of the primary fayalite-fluorite-ilmenite 

assemblage (Borrok et al., 1998; Fourie, 2000), and (3) the development of a 

fluorine-rich end-member of the iron oxide copper–gold (IOCG) group associated 

with carbonatites, in particular the Phalaborwa carbonatite of similar age (ca. 2.05 

Ga, Goff et al., 2004). The origin of the Vergenoeg deposit is therefore highly 



	

controversial, as is the origin of the large amounts of fluorite observed in the 

deposit. Rb-Sr and Sm-Nd isotopic ratios of fluorite crystals indicate that a 

significant proportion of these crystals formed from magmas (Kinnaird et al., 

2004; Graupner et al., 2015) but fluid inclusion analyses also suggest that some 

fluorite crystals formed from hydrothermal fluids (Borrok et al., 1998).  

With this study, we aim to better understand the magmatic stages in the 

formation of the Vergenoeg deposit, and specifically test the hypothesis that 

silicate liquid immiscibility formed a rhyolitic melt and a conjugate iron-rich 

silicate melt. We experimentally assess whether the bulk composition of the ore 

body and the host rhyolite could represent a pair of immiscible melts in 

equilibrium. We investigate the role of volatiles (fluorine and H2O) in the 

development of immiscibility and saturation of fluorite in immiscible melts. 

Based on our new experimental data, we propose that the Vergenoeg pipe 

represents the cumulates from an immiscible Fe-rich melt which was saturated in 

fluorite. We also confirm that hydrothermal fluids contributed to the high fluorine 

content of the Vergenoeg deposit. 

2. Geology of the Vergenoeg deposit 

The Vergenoeg deposit is situated in the center of the Bushveld Complex 

in South Africa. The Bushveld Complex intruded sedimentary and volcanic rocks 

of the Transvaal Sequence (Eriksson et al., 1995), within the Kaapvaal Craton. 

These host rocks belong to the Rooiberg Group rhyolite (Hatton and Schweitzer, 

1995; Buchanan et al., 2004). The Rooiberg Group is divided into four formations 

comprising the lower Dullstroom and Damwal Formations and the upper 

Kwaggasnek and Schrikkloof Formations (Schweitzer et al., 1995; Mathez et al., 



	

2013) with a total thickness of 3-5 km (Twist and French, 1983; Schweitzer et al., 

1995). The Dullstroom Formation (61−78 wt.% SiO2) includes interbedded 

basaltic, andesitic, dacitic and rhyolitic flows and becomes richer in silica with 

increasing stratigraphic height. The Damwal Formation is dominated by dacite to 

low-silica rhyolite (~68 wt.% SiO2) while the Kwaggasnek (~72 wt.% SiO2) and 

Schrikkloof (~74 wt.% SiO2) Formations are rhyolites (Schweitzer and Hatton, 

1995; Schweitzer et al., 1995; Buchanan et al., 1999; 2002). The Vergenoeg 

deposit consists of a vertical, discordant, igneous pipe emplaced in rhyolites and 

pyroclastic rocks (Schweitzer et al., 1995; Fig. 1). The pyroclastic succession is 

commonly referred to as the Vergenoeg Pyroclastic Rock Suite (Crocker, 1985).  

2.1 The Vergenoeg pipe 

The Vergenoeg pipe has an oval shape at the surface with a north-south 

extension of 900 m and an east-west diameter of ~ 600 m (Fig. 1; Goff et al., 

2004). The shape of the pipe below the surface has been investigated using 

geophysical methods (gravity surveys) as well as drill core mapping. The body of 

the pipe appears to have a funnel shape (depth >650 m; Crocker, 1985). Similar 

pipe-like morphologies have been described for several other Kiruna-type and 

related deposits (e.g. the Pea Ridge deposit in USA; Harlov et al., 2016). 

The Vergenoeg pipe consists of three gradational hypogene units of 

magnetite-fluorite, magnetite-fayalite and fayalite. The contacts between the pipe 

and the surrounding rocks are highly variable in terms of mineralogy. Some zones 

have sharp contacts with little alteration of the felsic wall rocks, whereas other 

areas have strongly altered wall rocks with Fe-rich sericite and epidote locally 

observed (Goff et al., 2004). Both massive and disseminated fluorites occur 

throughout the pipe, with decreasing abundance towards greater depths.  



	

 The upper part of the pipe is made up of gossan (ca. 50 m thick). It was 

formed by weathering of magnetite-fluorite rocks through oxidation and hydration 

of magnetite, iron sulfides and siderite into hematite and goethite (Borrok et al., 

1998). Within the gossan, three types of ore can be distinguished: (1) high-grade, 

massive, specularitic hematite ore (60 wt.% Fe2O3); (2) mixed fluorite-

hematite/goethite ore forming the bulk of the gossan; and (3) high-grade fluorite 

ore (60 wt.% CaF2; Crocker, 1985) in veins and brecciated plugs rich in fluorite, 

with associated siderite and magnetite (Fig. 2). The presence of preserved fluorite 

veins of metspar provides clear evidence for alteration of the host rock to gossan. 

They are usually vertical and locally merge to form plugs of fluorite-rich rock 

with veins of siderite and magnetite (Crocker, 1985). 

 The magnetite-fluorite unit (~100 m thick) is the main fluorite ore resource 

at Vergenoeg (Goff et al., 2004). The fluorite content decreases from 32 vol.% at 

the top to 20 vol.% at the bottom (Fourie, 2000). Coarse-grained fluorite and 

magnetite crystals are set in a groundmass of magnetite, fluorite and siderite with 

accessory REE minerals (Goff et al., 2004). At a depth of about 150 m, there is a 

gradational change into the magnetite-fayalite unit that represents a transition 

zone between the magnetite-fluorite unit and the deeper fayalite unit. Rocks of the 

magnetite-fayalite unit are composed of fayalite, magnetite and interstitial 

fluorite. The lowermost fayalite unit of the Vergenoeg pipe is almost exclusively 

made up of unaltered, coarse-grained, prismatic fayalite (> 90 vol.%) with rare 

fluorite and apatite. 

2.2 The Vergenoeg Pyroclastic Rock Suite (VPS) 

Pyroclastic rocks associated with the Vergenoeg pipe discordantly overlie 

the uppermost flow-banded Rooiberg Group rhyolites, i.e. Schrikkloof Formation 



	

(Crocker et al., 2001). Two units are distinguished within the pyroclastic rocks. 

The basement is formed by siliceous rocks and welded agglomerate, laterally 

grading into a fine-grained tuff with increasing distance from the pipe (Crocker, 

1985). The thickness of this unit reaches 60 m, a local maximum. It is commonly 

referred to as the basal felsite (Borrok et al., 1998) but can be genetically referred 

to as an ignimbrite (Fig. 1; Fourie, 2000). Borrok et al. (1998) suggested that the 

basal felsites might also represent a certain facies of the Rooiberg Group rhyolites 

(Mathez et al., 2013). The basal felsites are overlain by a 40 m thick volcanic 

breccia (Fig. 1), consisting of partly rounded felsic clasts in a fine-grained 

ferruginous-felsic matrix, interlayered with a hematite tuff (Fourie, 2000). The 

upper part of the succession is formed by 10 m of sedimentary rocks consisting of 

pyroclastic detritus and alternating layers of hematite and felsite (Crocker, 1985; 

Fourie, 2000).  

3. Experimental and analytical procedures 

3.1. Initial hypothesis and methodology 

The formation of the Vergenoeg deposit was previously attributed to a 

silicate-liquid immiscibility process by Crocker (1985). In this model, the basal 

felsites of the VPS constitute the extrusive equivalent of an immiscible Si-rich 

end-member whereas the Vergenoeg pipe is the conjugate Fe-rich end-member. 

The corollary of this hypothesis is that the weighted sum of the silicic host rocks 

and the iron ore body, possibly in combination with variable amounts of volatiles 

(H2O, S, F and Cl), represents the composition of the original parent ore-bearing 

magma prior to immiscibility. To test the hypothesis of immiscibility we do not 

require the exact relative proportions of the two end-members as the compositions 



	

of immiscible pairs define a locus between which immiscibility develops. Any 

composition that plots on the mixing trend between the equilibrium immiscible 

pairs would unmix, with the proportions of the two conjugate liquids determined 

by the lever rule.   

As stated above, the Vergenoeg pipe shows significant mineralogical and 

geochemical variations with depth and is also laterally heterogeneous (Fig. 1). In 

order to obtain a representative (average) bulk composition of the pipe, it is 

necessary to use a mixture of sample compositions from various units of the pipe. 

We sampled fresh fluorite ore, magnetite-fayalite and magnetite-fluorite rocks 

from KI 24 drill core, and gossan rocks in the open pit (Fig. 1 and see details in 

Supplementary Table 1). After screening under the microscope, fresh samples 

were selected, sawed into slabs, and the central parts were used for whole-rock 

analyses. Specimens were crushed in a steel mortar and ground to powder in a 

steel mill. Loss on ignition was determined gravimetrically after heating the 

samples at 1030°C for 15 minutes. Major element analyses (Supplementary Table 

1) were performed on fused glass discs using a scanning wavelength dispersion X-

ray fluorescence (XRF) spectrometer at BGR in Hannover. In-house standards 

and 130 certified reference materials were used for calibration and assessment of 

accuracy. The analytical uncertainties are typically less than 1% as estimated by 

repeated analyses of international standards, which were not used in the 

development of the calibration curves for the XRF. 

Magnetite-fayalite and fayalite units constitute the dominant facies of the 

Vergenoeg pipe (Fig. 1); fluorite contents are variable but, on average, relatively 

high (Fig. 2). Average F content is 6.70 wt.% in the magnetite-fayalite unit and 

0.9 wt.% in the fayalite unit. Based on volume consideration of the deposit, we 



	

assume that the Vergenoeg pipe consists of 40% magnetite-fayalite unit, 40% 

fayalite unit and 20% fluorite ores. Based on these values, we prepared mafic end-

members for the experiments using two approaches (Fig. 2): (1) we mixed the 

natural samples SA15 (magnetite-fayalite unit), SA31 (fayalite unit) and SA25 

(massive fluorite) in a ratio of 0.4:0.4:0.2 (composition M0; Table 1); (2) we 

prepared synthetic mafic compositions by mixing synthetic oxides according to 

the compositions of mineral end-members: composition M1 (30 wt.% fayalite + 

70 wt.% magnetite) and composition M2 (60 wt.% fayalite + 40 wt.% magnetite) 

to which we added variable amounts of fluorite (Table 2). The average mineral 

compositions of fayalite and magnetite are from Borrok et al. (1998).  

Abundant studies have been conducted on the felsic rocks in the Bushveld 

Complex (e.g. Hatton and Schweitzer, 1995; Mathez et al., 2013). Using previous 

studies, we prepared two rhyolitic glasses representative of the felsic end-

members (Fig. 3): F1 is representative of the average composition of the rhyolite 

of the Schrikkloof Formation, whereas F2 is the average composition of the felsic 

(i.e. rhyolitic) rocks from Dullstroom, Schrikkloof and Kwaggasnek Formations. 

F1 has a higher concentration of K2O whereas F2 has a higher FeOtot 

concentration.  

3.2. Preparation of starting materials 

For the natural mafic end-member, powdered samples of SA15, SA31 and 

SA25 were mixed together in ethanol. For the synthetic mafic end-members we 

mixed high-purity commercially purchased oxide powders (SiO2, TiO2, Al2O3, 

Fe2O3, MnO and MgO). Synthetic and natural dry starting materials were 

homogenized in an agate planetary ball mill for a minimum of 2 hours.  



	

For the felsic compositions we mixed high-purity oxides and carbonates 

and homogenized the powders in an agate planetary ball mill. The powder mixture 

was then melted in a Pt crucible at 1600°C (atmospheric oxygen fugacity; fO2) for 

3 hours. The rhyolitic glass was then ground in a steel mortar (to a  grain size < 2 

mm) and re-melted in the furnace (1600°C, 3.5 hours) in order to homogenize the 

material and to promote complete degassing of CO2. After quenching, parts of the 

glasses were seperated, mounted in epoxy, polished and analyzed by electron 

microprobe (F1 and F2 in the Table 1).  

The starting materials for experiments were produced by mixing mafic 

end-members (M0, M1 and M2) and felsic end-members (F1 and F2) in specific 

proportions (Table 2). In some experiments, deionized water was added to the 

starting material (see the column H2O in Table 2). In experiments using synthetic 

mafic starting compositions (M1 and M2), we also added fluorine (as CaF2) in 

varying amounts.  

3.2. Experimental conditions and methods 

According to Buchanan et al. (2004) the maximum thickness of the 

Rooiberg Group within the Transvaal Basin is approximately 6 km. A magma 

chamber situated at the base of the Rooiberg Group would therefore attain a 

maximum pressure of about 2 kbars. Kleemann and Twist (1989) suggest that the 

nearby coeval granite was emplaced at a high level and estimated a pressure of 

about 1 kbar during the crystallization of the upper part of the granite intrusion 

based on a 3 km thick cover of Rooiberg Group felsites. Consequently, a pressure 

of 1 kbar was chosen for most experiments but several were run at 2 kbars.  



	

The experiments were performed in internally heated pressure vessels 

(IHPV), at the Institute of Mineralogy, Leibniz Universität Hannover (Berndt et 

al., 2002). Experimental conditions are summarized in Table 3. Pressure was 

monitored continuously with an uncertainty of about 1 bar. Temperature was 

measured with four S-type (Pt-Pt90Rh10) thermocouples to control the temperature 

gradient over a length of ~30 mm inside the vessel. Temperature oscillations were 

below 3-5°C depending on the vessel and the experimental run. Rapid quench 

[150°C/s; Berndt et al. (2002)] was performed at the end of the runs. Experiments 

were performed at the intrinsic fO2 of the vessel or at controlled fO2. For 

experiments at intrinsic fO2 conditions, we used an autoclave with Ar as the sole 

pressure medium. In these experiments, fO2 ranges from ~ FMQ (fayalite-

magnetite-quartz redox equilibrium) in dry conditions to FMQ+3.3 under fluid 

saturated conditions. Experiments at controlled fO2 were conducted using a vessel 

equipped with a H2-membrane which allows monitoring and adjustment of the 

hydrogen pressure (fH2) and thus the fO2 inside the vessel. The evolution of H2 

pressure (fH2) in the vessel was directly measured with the Shaw membrane 

technique applied at Hannover (Berndt et al., 2002). Experiments were run for 4-

500 hours (Table 3). 

Starting materials were weighed and placed in Au capsules (20 mm in 

length and 2.8 mm in internal diameter, with a 0.2 mm wall thickness). One end 

of each capsule was welded shut before the starting material was inserted. 

Deionized water was added to some samples (Table 2). Open capsule ends of dry 

samples were immediately welded shut whereas water-bearing samples were 

frozen in liquid nitrogen before they were welded shut. This method minimizes 

the loss of water due to vaporization during welding. Capsules were weighed after 



	

welding and then placed in a dry furnace at 150°C for 1-2 hours before they were 

weighed again, to check for any loss of material. Re-weighing of the capsules 

after the experimental runs showed identical weights for most capsules indicating 

that no volatiles were lost during the experiments. Small chips of experimental 

products (about 2 mm in diameter) of each sample were prepared as polished thin 

sections or mounted in epoxy for electron microprobe analyses. 

3.3. Electron microprobe analyses 

The analyses of the experimental products were performed at the Leibniz 

Universtät Hannover, and at BGR. Both institutes use a Cameca SX100 electron 

microprobe equipped with five WDS detectors. Operating conditions were set at 

15 kV with a 10 nA beam current. We used a focused beam (1 µm) for minerals 

and a defocused beam (5-20 µm) for glasses. The peak counting times for glasses 

were 10 s for Si, Ti, Al, Fe, Mn, Mg and Ca, and 8 s for the alkalis. The elements 

Na, K, Si, Ca and Fe were analyzed first. Subsequent analyses of F were 

performed using a second set of analytical conditions (60 nA), and the counting 

time was 120 s on peak and 60 s for background. More details on the method used 

for fluorine measurements can be found in Zhang et al. (2016). For glasses and 

minerals, we used the following standards for Kα X-ray line calibration: albite for 

Na, orthoclase for K, wollastonite for Si and Ca, TiO2 for Ti, Fe2O3 for Fe, MgO 

for Mg, Mn3O4 for Mn. Raw data were corrected using the PAP routine (Zhang et 

al., 2016). The precision for oxide concentrations was better than 1%. No 

significant alkali loss (within uncertainty) was detected during measurements.  

3.4. Water content in the glass and oxygen fugacity 



	

The water content of the homogenous glass in sample B0a (the only super-

liquidus experiment) was determined by Fourier transform infra-red (FTIR) 

spectroscopy using the mid-infrared (MIR) range (i.e. wave numbers between 400 

and 4000 cm-1 corresponding to wavelengths of 25-2.5 µm). We obtained a value 

of 1.48 wt.% H2O. For other samples the water contents were estimated from a 

combination of microprobe totals (by difference method), and added water and 

melt proportions (mass balance calculation). The typical error is 0.5 wt.% H2O. 

The water content of sample B0a (1.48 wt.%), as determined by IR, allowed us to 

evaluate the accuracy of the ‘by-difference’ method (e.g., Devine et al., 1995). 

The calculated value (i.e. 1.0 ± 0.5 wt.% H2O) is in relatively good agreement 

with the H2O concentration measured by FTIR. The water contents of the 

experimental glasses are presented in Table 4. The water activity (aH2O) was 

calculated from the H2O content in the melt using the model of Burnham (1994). 

This model works well up to 2 kbar (e.g. Berndt et al., 2005).  

We used several methods to estimate the oxygen fugacity in our 

experiments. Under H2O-saturated conditions and intrinsic fO2 conditions of the 

IHPV, the oxygen fugacity was determined to be 3.3 log units above the oxygen 

fugacity of the fayalite-magnetite-quartz (FMQ) solid oxygen buffer (hereafter 

labeled FMQ+3.3). For water-bearing experiments performed at the intrinsic fO2 

conditions, which are not saturated in a fluid phase, we used calculated aH2O 

values to estimate the oxygen fugacity of the runs following the method described 

by Botcharnikov et al. (2005). For the G, H and I series, which were conducted at 

nominally dry conditions (no fluid added), we assumed an aH2O of 0.05. This is 

because such experiments are not strictly water-free for two reasons: (1) it is 

nearly impossible to avoid adsorbed water on the surface of the glass grains, and 



	

(2) hydrogen can be present in the pressure medium (gas) and may diffuse 

through the noble metal capsules. Thus in nominally dry experiments, a fluid 

phase was not present, but the silicate melts contained small amounts of water 

mainly present as OH groups (~0.3-1.0 wt.% depending on pressure and extent of 

crystallization; Almeev et al., 2012).  

Other experiments were performed under controlled reduced oxygen 

fugacity conditions. For these experiments, H2 was added to the Ar pressure 

medium and the autoclave was equilibrated at a fO2 of FMQ+1 for water-saturated 

conditions. The dissociation of water is the main reaction controlling redox 

equilibria inside the capsules. Using the estimated aH2O values, the prevailing fO2 

was calculated for each water-undersaturated experiment as log fO2
capsule = log 

fO2
apparent + 2log (aH2O) (see also Botcharnikov et al., 2005, 2008) where log 

fO2
apparent is the oxygen fugacity that is expected in the system at aH2O=1. 

Results of aH2O and fO2 calculations are presented in the Table 3. The 

error in fO2 mainly depends on the uncertainty of the melt water content and thus 

aH2O. In water-saturated samples or in experiments approaching water-saturated 

conditions, errors are expected to be very low, because a change in melt water 

content does not result in significant changes of aH2O and fO2. In contrast, in 

highly water-undersaturated samples, a change in water content (0.5 wt.%) 

implies distinct changes in aH2O and fO2. We estimate that the overall error in the 

calculated fO2 is about ~0.2 log units (Botcharnikov et al., 2005).  

4. Experimental results 

4.1. Phase equilibria and immiscibility textures 



	

Table 3 summarizes the conditions and phase assemblages of experimental 

runs. Figs. 4 and 5 show representative BSE images of the experimental run 

products acquired on the electron microprobe and QEMSCAN FEI Quanta 650F 

at RWTH Aachen. Crystalline phases observed in experiments are fluorite, 

magnetite, fayalite (or olivine when the forsterite content is higher than 10%), a 

silica phase (tridymite), and occasionally trace amounts of apatite. Experiments 

can be classified into three groups: experiments showing distinct liquid 

immiscibility between two silicate liquids, experiments containing a nano-

emulsion of immiscible liquids and experiments with a single homogeneous 

silicate glass. 

In the first type of experimental products, pairs of distinct immiscible 

liquids occur in nine samples, A0a, A0c, B0b, C0a, G0b, G0c, H0c, I0b and I0c. 

Sharp two-liquid interfaces are usually observed (Fig. 4a-d). Immiscible liquids 

form small globules, or branching, skeletal structures within each other that may 

coalesce and form larger aggregates. The Fe-rich immiscible liquid in some of 

these samples also host nano-scale emulsion of Si-rich liquid (Fig. 4d). No 

compositional difference between small and large droplets is observed, supporting 

complete equilibration of the two liquids. The Fe-rich liquid has very small 

wetting angles with magnetite and fluorite. Magnetite and fluorite crystals 

preferentially occur in the Fe-rich immiscible melts (Fig. 4b) but they are also 

found in the Si-rich glasses. Tridymite crystals are also hosted by both immiscible 

melts. Fluorite crystals are present in all the samples showing distinct liquid 

immiscibility. 

In the second type of experimental products, the immiscible conjugates 

form ‘emulsion’ structures on the scale of <100-500 nm (Fig. 4e-f). This feature is 



	

interpreted as a result of a low efficiency of melt–melt separation, possibly caused 

by close proximity to the apex of the miscibility gap in the multicomponent 

composition space, just below the binodal (Charlier and Grove, 2012). In some of 

these experiments, the globule size is too small to measure the composition of the 

paired immiscible liquids by electron microprobe. 

In the third type of experimental products, the samples do not show liquid 

immiscibility. They are characterized by the ubiquitous presence of magnetite + 

fluorite ± tridymite ± fayalite (or olivine) ± apatite (Fig. 5). Both euhedral and 

rounded subhedral magnetite and fluorite crystals, and tiny apatites are observed. 

In sample G0a and I0a, fayalite and olivine occur as euhedral crystals co-existing 

with rounded subhedral magnetite (Figs. 5a,b and d). The glass compositions are 

presented below, but it is worth noting that samples with rhyolitic glass have 

considerable amounts of magnetite (18-38 wt.%; Table 3), whereas those with a 

relatively Fe-rich (intermediate) melt have less than 30 wt.% crystals, including 

magnetite and fluorite.  

4.2. Liquid compositions  

The compositions of experimental liquids are shown in Fig. 6 where they 

are compared to immiscible melts in experimental ferrobasaltic systems (Charlier 

and Grove, 2012). In the first type of experimental products where we observe 

distinct immiscible pairs, the Si-rich liquids (62.75-73.00 wt.% SiO2, 6.90-12.48 

wt.% FeOtot and 2.35-4.24 wt.% F) are enriched in Na2O, K2O and Al2O3 (Table 

4). The Fe-rich immiscible melts (40.95-51.40 wt.% SiO2, 14.81-36.09 wt.% 

FeOtot and 4.50-6.45 wt.% F), are enriched in MgO, CaO and TiO2. The 

partitioning coefficient of F between the Fe- and Si-rich immiscible conjugates is 

between 1.42 and 2.23 (Fig. 6d), similar to the values observed in the simplified 



	

systems Fe2SiO4–Fe3O4–KAlSi2O6–SiO2 ± F ± plagioclase (Lester et al., 2013). 

Compared to the immiscible pairs produced in dry conditions at 1 bar (Charlier 

and Grove, 2012), our samples show lower SiO2 contents in the Fe-rich melt and 

lower Al2O3 in the Si-rich melt (Fig. 6a-c). The distinct Si-rich immiscible melts 

produced in our study show similar SiO2, CaO and alkali contents compared to the 

dacites and low-silica rhyolites of the Dullstroom and Damwal Formations. 

However, they are more primitive than the rhyolite of the Schrikloof Formation 

which hosts the Vergenoeg pipe (Fig. 7). The immiscible Si-rich liquids have 

higher FeO contents and lower Al2O3 contents than any rhyolite from the 

Rooiberg Group.  

The second type of experiments with nano-scale emulsion of immiscible 

melts is represented by samples H0a, H0b, E2a, E4a and E6a. In these, the glass 

compositions that we measured are thought to represent the bulk composition of 

the nano-emulsions (Table 4). 

In the last type of experiments that do not show liquid immiscibility, we 

can also discriminate two groups. The first one (A5a, D series, E2b, E4b, E6b, and 

G0a and I0a) has rhyolitic liquids (67-74 wt.% SiO2; 2.8-6.8 wt.% FeOtot) with 

relatively low fluorine (1.14-3.01 wt.% F). High SiO2 contents are due to the 

significant crystallization of magnetite and fayalite (Fig. 6). The second one (A0b, 

A5b, B0a and J series) has intermediate melt compositions (54-63 wt.% SiO2; 6.6-

24 wt.% FeOtot), and contain moderate amounts of fluorine (2.99-4.10 wt.% F; 

Fig. 6).  

4.4. Olivine (Fayalite) and magnetite compositions 



	

The compositions of olivine and magnetite in the experimental products 

are presented in the Supplementary data. Olivine crystals in three samples (G0a, 

G0b and I0a) have been analyzed. The composition of the olivine in samples G0a 

and G0b (SiO2: 29.51-30.42 wt.%; FeOtot: 62.61-64.84 wt.%; Fo number: 7.4-8.2) 

is classified as fayalite and is similar to the natural samples (Borrok et al., 1998). 

Whereas sample I0a has olivine with a fayalite content of only 38%. The ratio of 

FeO to MgO in the olivine crystals as a function of the ratio of FeO to MgO in the 

liquid phase is shown for our experimental runs in Fig. 8a. We can see that the 

Kd#$%$&'()*+)&(
,)*-.  for the limited number of fayalite crystals plots above the line of 

Kd=0.3, and that the Kd values for the immiscible Fe-rich liquids are comparable 

to those for the Si-rich conjugates. The Kd value for olivine in sample I0a is close 

to 0.3. These observations could be explained by the F-rich characteristics of our 

experiments, as illustrated in Fig. 8b in which the Kd values are plotted as a 

function of F (wt.%). With increasing fluorine in the liquids, the Kd value 

dramatically increases for fayalite, suggesting that fluorine in the liquids 

complexes primarily with MgO, thus decreasing MgO activity, and shifting the 

Fe/Mg ratio of crystallizing minerals to higher values. We note that our calculated 

Kd values (0.49 for G0a, 0.58 and 0.55 for Fe and Si-rich liquids of G0b, 

respectively) are consistent with those observed in experiments of F-rich Martian 

basalts (Filiberto et al., 2012).  

Magnetite compositions range between Mt0.98Usp0.02 and Mt0.41Usp0.59 (Mt 

= magnetite; USp = ulvöspinel). The variation of calculated ulvöspinel end-

member contents in magnetite is plotted against the TiO2 content in equilibrium 

melts in Fig.8c. The negative correlation between fO2 and the calculated 

ulvöspinel content in magnetite is consistent with fO2 being the key factor in 



	

controlling the composition of magnetite (Fig. 8d; Buddington and Lindsley, 

1964; Toplis and Carroll, 1995). 

5. Discussion 

5.1. The onset of silicate liquid immiscibility 

5.1.1. The role of fluorine 

In dry multicomponent magmatic systems, an extreme iron enrichment 

(>18–19 wt.% FeO) has usually been considered as necessary for the onset of 

unmixing (Dixon and Rutherford, 1979; Philpotts and Doyle, 1983).	Although the 

FeO activity probably needs to be high, the experiments of Charlier and Grove 

(2012) demonstrated that extreme iron enrichment is not necessary to reach the 

two-liquid field. Liquid immiscibility could also develop during the silica-

enrichment that follows Fe–Ti oxide saturation in the melt. This is consistent with 

our experiments showing that many runs with liquid immiscibility also contain 

abundant magnetite. 

In the case of Vergenoeg-related compositions, distinct liquid 

immiscibility occur only in samples in which fluorite is observed as a stable 

phase, which indicates that fluorine is one of the key factors that could facilitate 

immiscibility. This is illustrated by the plot of the bulk fluorine contents in 

experiments versus the fluorine contents of experimental liquids (Fig. 9a), which 

shows that only fluorine-rich experiments (> 3.4 wt.% bulk F) developed distinct 

immiscibility. We interpret this as resulting from fluorine complexing with MgO 

(Filiberto et al., 2012) in the melt, therefore increasing the activity of FeO, which 

is a favorable condition for the development of liquid immiscibility (Philpotts and 

Doyle, 1983). Potentially fluorine may also change the shape of the binodal by the 



	

reaction of fluorine with Si-O-Si bonds to form Si-F and Al-F bonds (Manning, 

1981), which leads to a depolymerization of the melt structure (Dingwell, 1985; 

Giordano et al., 2004) and therefore a decrease of the liquidus temperature.  

Although fluorite-saturation seems to promote the development of silicate 

liquid immiscibility, a high fluorine content by itself is insufficient to trigger the 

unmixing.  As shown in Fig. 9a, some samples with > 2 wt.% fluorine (e.g., J 

series) did not develop immiscibility. In contrast, Lester et al. (2013) report 

experiments with lower fluorine contents (<2 wt.%) which also have immiscible 

Fe-rich and Si-rich liquids.  

5.1.2. The role of oxygen fugacity 

Oxygen fugacity (fO2) has a significant influence on the development of 

immiscibility (Naslund, 1983). In our experiments, immiscible liquids occur in 

experiments performed at relatively reducing conditions from FMQ-1.4 to 

FMQ+1.8 (Fig. 9b). Naslund (1983) has shown that a high Fe2O3/FeO ratio (high 

fO2) widens the two-liquid field under super-liquidus conditions and increases the 

upper temperature limit of immiscibility in the system KAlSi3O8–FeO–Fe2O3–

SiO2. This would, in theory, enhance the development of immiscibility. However, 

most of our experiments run under highly oxidizing environments (>FMQ+3) 

crystallized considerable amounts of magnetite, which led to a strong iron 

depletion in the residual melt (Fig. 9b) and hampered the development of 

immiscibility. We conclude that the enlargement of the immiscibility field caused 

by high fO2, as observed by Naslund (1983) in a super-liquidus systems, is 

strongly counteracted by the stabilization of magnetite and resultant iron depletion 

that occurs in natural systems. It is worth noting that some F-rich samples, run 

under relatively reducing conditions, do not show immiscible textures. This 



	

implies that immiscibility is not only controlled by the bulk F content and fO2 but 

that other compositional features must play a dominant role in liquid unmixing. 

5.1.3. The effect of water 

Fig. 9c shows that distinct silicate liquid immiscibility only developed in 

the samples with low H2O contents, i.e. aH2O<0.2, suggesting that water 

suppresses the development of silicate liquid immiscibility. This has been 

confirmed by the comparison between I and J series, which have the same bulk 

composition (Table 2) and which were conducted at the same fO2 (FMQ+1). The 

water-saturated J6b and J6c samples show no liquid immiscibility whereas their 

counterparts, I0b and I0c, contain two liquids. However, the role of water in the 

development of immiscibility is relatively subtle. We believe that H2O may shift 

the critical temperature of the binodal below the liquid line of descent. Lester et 

al. (2013) have shown that H2O enlarges the solvus in silicate melts and therefore 

decreases the temperature of the solvus apex. The effect of water on the liquidus 

temperature of the magma may be important leading to a liquid line of descent 

that never hits the binodal surface. 

5.2. Model for the origin of the Vergenoeg deposit 

Based on the experimental results and discussions presented above, we 

observe that 1) moderate iron content in the starting composition; 2) high fluorine 

content, i.e. saturation of fluorite in the liquid; 3) moderate temperatures (1010°C) 

and fO2 (FMQ-1.4 to FMQ+1.8) and 4) low water content (aH2O<0.2), are the 

right conditions for the development of liquid immiscibility.  

Based on our experimental results, we propose a model for the 

petrogenesis of the Vergenoeg deposit. Essentially, the model constitutes a revised 



	

and extended version of the model proposed by Crocker (1985). In the case of 

Vergenoeg, it is envisaged that immiscibility occurred simply as a result of 

temperature decrease, compositional evolution and enrichment of F in the residual 

melt. This process possibly resulted in the formation of a stratified magma 

chamber with the denser Fe-rich melt forming the lower zone of the magma 

chamber, whereas the overlying Si-rich melt was located in the upper parts (Fig. 

10).  

Compared to the average composition of the ores (M0), the iron-rich 

immiscible liquid obtained experimentally contains higher SiO2 and lower FeOtot 

(Tables 1 and 4). This indicates that the bulk composition of the ore (pipe) may 

not simply represent a crystallized immiscible Fe-rich melt. As observed in our 

experiments showing liquid immiscibility, fluorite, together with magnetite and 

fayalite, are the stable liquidus phases. Thus, we suggest that the pipe may be a 

cumulate (or crystal mush) coexisting with small proportions of the unmixed Fe-

rich melt. The mush, consisting of magnetite, fayalite and interstitial Fe-rich melt, 

has significantly higher bulk Fe and lower Al2O3 contents compared to the 

immiscible Fe-rich melt, within the range of the Vergenoeg pipe bulk 

composition. If the magnetite crystals within this magma were not distributed 

uniformly, this might also explain the formation of different lithological units 

within the pipe. In our experiments, fayalite was only produced under fO2 close to 

FMQ, suggesting that such conditions prevailed during the crystallization of the 

Vergenoeg intrusion. 

Volatile pressure build-up resulted in the emplacement of the crystal mush 

and formation of the Vergenoeg pipe (Crocker, 1985). This model is in contrast to 

Borrok et al. (1998), who suggested that the Ti-poor magnetite observed at 



	

Vergenoeg mainly formed as an alteration product of primary fayalite. In our 

experiments, fayalite and magnetite crystals coexist, implying that most fayalite 

and magnetite can be considered as the primary magmatic phases. Moreover, such 

Ti-poor magmatic magnetites have also been documented recently in natural 

samples related to Kiruna ores (Dare et al., 2014b; Knipping et al., 2015a). 

As stated above, if the pipe was formed by solidification of an Fe-rich 

crystal mush, the bulk fluorine contents of the pipe should not exceed that of the 

Fe-rich melt, unless considerable amounts of fluorite-bearing cumulates formed 

and expelled a F-poor residual liquid. However, the estimated fluorine content of 

the pipe, ~12 wt.% F (Table 1), is about two times greater than that in the Fe-rich 

melt at fluorite saturation (~6 wt.% F; Table 4). This requires at least half of the 

immiscible Fe-rich melt volume to be expelled after fayalite + magnetite + fluorite 

crystallized. We therefore believe that the huge amount of fluorine (~12wt. % F in 

the ores with a magnetite/fluorite ratio of ~5:1) observed in the deposit cannot 

originate solely from the crystallization of fluorite from the Fe-rich silicate melt. 

This is supported by fluorite crystals in the pipe which have three types of 

inclusions: 1) subspherical, composite melt inclusions containing apatite, fayalite 

and magnetite, which indicate a magmatic origin; 2) two assemblages of primary 

fluid inclusions and, 3) six assemblages of secondary fluid inclusions (Borrok et 

al., 1998). The presence of fluid inclusions possibly relates to late stage "fluorine-

overprinting" during the evolution of the system. The structurally controlled 

mineralization took place shortly after pipe emplacement, with the pipe acting as a 

preferential channel for fluids. Fluorite precipitation was induced by mixing with 

a second fluid or meteoric waters, or changes in pH. The hydrothermal overprint 

is also supported by the presence of ferroactinolite (Fe#>0.9) in the Vergenoeg 



	

deposit (Borrok et al., 1998), as experiments show that such ferroactinolite is not 

stable at magmatic temperatures (Lledo and Jenkins, 2008). Thus we suggest that 

the "excess fluorine" is the result of a final stage of evolution of the magmatic (to 

late-stage magmatic-hydrothermal) system that formed the pipe-filling originally. 

The isotopic signature of fluorite in the Vergenoeg deposit also supports the 

suggestion of late magmatic fluids transporting fluorine (Kinnaird et al., 2004). 

5.5. Implications for Kiruna-type deposits 

The phase relations obtained in this experimental study have general 

implications for the genesis of magnetite deposits of the Kiruna type.  

(1) Our experiments indicate that silicate liquid immiscibility plays a role 

in the formation of Kiruna-type deposits as emphasized in several studies (e.g., 

Nyström and Henríquez, 1994; Travisany et al., 1995; Naslund et al., 2002; 

Henríquez et al., 2003; Chen et al., 2010), in contrast to the magmatic-

hydrothermal models (Rhodes and Oreskes, 1995, 1999; Barton and Johnson, 

1996, 2004; Haynes et al., 1995; Rhodes et al., 1999; Haynes, 2000; Sillitoe and 

Burrows, 2002). However, the nearly pure “oxide melt” often assumed in these 

magmatic models cannot be confirmed by our data. Although high-grade iron-rich 

melts can be produced experimentally in some simple systems (Weidner, 1982; 

Bogaerts and Schmidt, 2006; Lester et al., 2013), it is not observed in multi-

component systems and the most Fe-rich liquid observed in this study contains 

~36 wt.% FeOtot. Accordingly, the massive iron ores may rather represent 

cumulates that crystallized from a Fe-rich immiscible melt. 

(2) Enrichment of fluorine in residual melts is a favorable condition for 

liquid immiscibility. This is consistent with the experiments of Lester et al. 



	

(2013), which showed that additions of fluorine at 2 kbars increases the T–X 

(chemical composition) range of the miscibility gap in the system K2O–FeO–

Fe2O3–Al2O3–SiO2. In addition, the reduction in melt viscosity produced by the 

presence of fluorine, especially if the systems are water-poor (Baker and 

Vaillancourt 1995, Bartels et al., 2012), favors the efficient separation of 

conjugate liquids by density, an important component of the immiscible 

petrogenetic model for the Kiruna ore deposit type. Moreover, most Kiruna-type 

deposits are enriched both in fluorine and phosphorous. Many experiments have 

shown that phosphorous promotes liquid immiscibility (Bogaerts and Schmidt 

2006; Charlier and Grove, 2012; Ryerson and Hess 1978; Visser and Koster van 

Groos 1979; Watson 1976), by: 1) enhancing iron enrichment during 

differentiation because it destabilizes magnetite; 2) depressing the liquidus 

temperature, and expanding the two-liquid field. As stated above, fluorine can 

increase the activity of FeO in the melt and depress the liquidus temperature. Thus 

a F-P-rich system is a favorable magmatic environment for the development of 

liquid immiscibility.  

(3) The presence of water is not favorable for the development of silicate 

liquid immiscibility because it strongly increases oxygen fugacity, which 

promotes magnetite crystallization. Water thus is a limiting factor for a significant 

Fe enrichment during differentiation and inhibits the development of 

immiscibility.  

 



	

6. Conclusions 

Experimental results indicate that the Vergenoeg pipe may have formed 

from a stratified magma chamber hosting two immiscible silicate melts. 

Immiscibility in the shallow magma chamber was potentially induced by high 

fluorine concentrations in the magma, relatively water-poor conditions and low 

oxygen fugacity. Fractional crystallization of magnetite, fayalite and possibly 

fluorite led to the formation of a crystal mush in the lower part of the magma 

chamber. The extremely high fluorite content of the Vergenoeg pipe is, in part, 

attributed to hydrothermal fluids, with the pipe acting as a preferential channel for 

fluid migration.  
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Tables caption 

Table 1. Compositions of end-members for the preparation of starting 
compositions, M0, M1, M2, F1 and F2. 
 
Table 2. Compositions (wt.%) of starting materials, calculated from weight 
proportions of natural samples and synthetic glass.  
Note: Normalized bulk sample compositions calculated from weighing (precision 
± 0.1mg) of the different natural samples and synthetic glass ± H2O. Ca (were 
introduced as CaF2) was recalculated as CaO; F was recalculated as F2O-1 (for 
compositional balance). 
 
Table 3. Experimental conditions and phase assemblages. 
Note: Phase proportions were calculated by mass balance as well as optical 
estimations. “0” means trace amount. Total iron is expressed as FeO. Details on 
the calculation of oxygen fugacity and water activity can be found in the text. For 
G, H and I series, we assumed a water activity of 0.05. When the forsterite (Fo) 
content is >10%, it is defined as olivine. Abbreviations: Ap –apatite, Mt – 
magnetite, Fa – fayalite, Flu – fluorite, Tri – tridymite, Ol –olivine. 
 
Table 4. Microprobe analyses [wt.%] of major oxides in experimental glasses.  
Note: a Number of microprobe analyses; b The water content was analyzed by 
FTIR, following the method described in Almeev et al. (2012). F was also 
recalculated to F2O-1 for compositional balance, F2O-1 (1% F2O-1 = 1.73% F). n.d. 
= not determined. 
 

Figures caption 
 
Fig. 1. (a) Simplified geological map of the Bushveld Complex (modified after 
Barnes and Maier, 2002); Geological overview (b) and a cross-section (c) of the 
Vergenoeg deposit (modified after Goff et al., 2004), showing the distribution of 
the lithological units and the position of the drill cores. The samples used in this 
study are from the open pit and the drill core KI24. See Appendix for details. 
 
Fig. 2. Harker diagrams illustrating the compositional range of rocks from the 
Vergenoeg pipe (Appendix). M0 is calculated by mixing 40 wt.% SA15 with 40 
wt.% SA31 and 20 wt.% SA25, and represents the estimated average bulk 
composition of the pipe. M1 and M2 are mixed from 30 wt.% fayalite and 70 
wt.% magnetite, and 60 wt.% fayalite and 40 wt.% magnetite, respectively.  

Fig. 3. Harker diagrams illustrating the compositional range of rocks of the 
Rooiberg Group, including the felsic rocks of Dullstroom, Damwal, Schrikkloof 
and Kwaggasnek Formations (the data are compiled from Mathez et al., 2013, 
Hatton and Schweitzer, 1995; Buchanan et al., 2002; Twist and French, 1983). F1 
refers to the average composition of Schrikkloof Formation in Hatton and 
Schweitzer (1995). F2 is the average composition of the rhyolitic rocks from 
Dullstroom, Schrikkloof and Kwaggasnek Formations. 
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Fig. 4. Back-scattered electron (BSE; a and c) and QEMSCAN (b, d-f) images of 
experiments showing silicate liquid immiscibility. (a) Sample A0c shows a 
typical irregularly-shaped (coalesced) patch of Fe-rich glass within Si-rich glass 
as well as numerous small globules of Fe-rich and Si-rich glass. Large, euhedral 
grains of magnetite and spherical fluorite also occur. (b) Sample I0c: Magnetite 
and/or spherical fluorite are preferentially enclosed by the immiscible Fe-rich 
liquid. (c) Sample C0a: large amounts of Fe- and Si-rich glasses as well as 
smaller Fe-rich glass globules. Fluorite and magnetite, euhedral grains of 
tridymite (dark grey) represent the solid phases. (d) Sample H0c: irregularly-
shaped (coalesced) patch of Fe-rich glass (or emulsion) within Si-rich glass. 
Large, euhedral grains of spherical fluorite occur. (e) Sample G0b and (f) Sample 
H0b: Emulsion of Si-rich and Fe-rich glasses occurring in the Si-rich 
homogenous glass. Abbreviations: Mt= magnetite, Flu= fluorite, Tri=tridymite. 
 
Fig. 5. Representative BSE (c) and QEMSCAN (a, b and d) images of 
experiments without liquid immiscibility. (a) Sample G0a: Si-rich glass hosting 
rounded shaped magnetite and fayalite. Note that some of the fayalite crystals 
contain rounded shaped magnetite. Sample A5a: a homogeneous Fe-rich glass 
hosts grains of magnetite and fluorite. (b) Sample J6a: a homogeneous Si-rich 
glass hosting grains of magnetite and fayalite. (c) Sample A5a: magnetite and 
fluorite in a groundmass of homogeneous Si-rich glass. (d) Sample I0a: Si-rich 
glass hosting rounded shaped magnetite and olivine. 
 
Fig. 6. Selected major element oxides in experimental glasses. (a) FeOtot versus 
SiO2; (b) CaO versus Al2O3; (c) total alkalis versus SiO2; (d) F versus FeOtot. The 
composition of the immiscible pairs produced at one atmosphere at FMQ buffer 
under anhydrous conditions from Charlier and Grove (2012) are plotted for 
comparison. 
 
Fig.7. Selected major element composition of experimental immiscible pair of 
glasses. The felsic volcanic rocks of the Rooiberg Group including Dullstroom, 
Damwal, Schrikklof and Kwaggasnek Formations upwards are also shown for 
comparison.  
 
Fig. 8. (a) FeO/MgO ratio (mol.%) olivine vs FeO/MgO ratio in melt in the G0a, 
G0b and I0a runs; (b) KdFe-Mg as a function of F (wt.%) for fayalite-bearing 
experimental charges. The black line is from the linear regression through the data 
for olivine-bearing Fe-Mg rich basalt (Filiberto et al., 2012); (c) Variation of TiO2 
content in the melt and calculated ulvöspinel end-member contents in magnetite 
from experimental charges. Black lines represent linear regressions through the 
data (r2=0.88) for the immiscible Fe-rich liquids, and (r2=0.96) for the Si-rich 
conjugates. (d) Calculated ulvöspinel end-member contents in magnetite vs 
ΔFMQ. FMQ=fayalite-magnetite-quartz buffer. Lsi=Si-rich liquid, Lfe=Fe-rich 
liquid. 
 
Fig. 9. (a) Bulk F in experimental charges vs F in the experimental glasses. (b) 
FeOtot in the melt vs ΔFMQ (c) FeOtot content in experimental glasses vs activity 
of water in the experimental runs. The symbols are same as in Fig. 6. 
 
Fig.10. A schematic model for the formation of the Vergenoeg Fe-F deposit. i) 
fluorine becomes enriched in the magma; ii) development of silicate liquid 
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immiscibility in the magma chamber; iii) formation of crystal mush, 
crystallization of fayalite + magnetite which are concentrated in the iron-rich 
melt; iv) eruption of Si-rich melt and emplacement of Fe-rich crystal much 
leading to the formation of Vergenoeg pipe; v) secondary fluorine enrichment in 
the pipe probably as a result of post-magmatic hydrothermal fluids. Note that the 
proportion of Fe-rich and Si-rich liquid may not reflect the real proportion. 
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